* flow.c (insn_dead_p): A clobber of a dead hard register is a
[official-gcc.git] / libjava / verify.cc
blob236bc4dcebfe6a4ae02f6b16e130bcc7bf31d9d2
1 // verify.cc - verify bytecode
3 /* Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation
5 This file is part of libgcj.
7 This software is copyrighted work licensed under the terms of the
8 Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
9 details. */
11 // Written by Tom Tromey <tromey@redhat.com>
13 // Define VERIFY_DEBUG to enable debugging output.
15 #include <config.h>
17 #include <jvm.h>
18 #include <gcj/cni.h>
19 #include <java-insns.h>
20 #include <java-interp.h>
22 #ifdef INTERPRETER
24 #include <java/lang/Class.h>
25 #include <java/lang/VerifyError.h>
26 #include <java/lang/Throwable.h>
27 #include <java/lang/reflect/Modifier.h>
28 #include <java/lang/StringBuffer.h>
30 #ifdef VERIFY_DEBUG
31 #include <stdio.h>
32 #endif /* VERIFY_DEBUG */
35 // This is used to mark states which are not scheduled for
36 // verification.
37 #define INVALID_STATE ((state *) -1)
39 static void debug_print (const char *fmt, ...)
40 __attribute__ ((format (printf, 1, 2)));
42 static inline void
43 debug_print (MAYBE_UNUSED const char *fmt, ...)
45 #ifdef VERIFY_DEBUG
46 va_list ap;
47 va_start (ap, fmt);
48 vfprintf (stderr, fmt, ap);
49 va_end (ap);
50 #endif /* VERIFY_DEBUG */
53 // This started as a fairly ordinary verifier, and for the most part
54 // it remains so. It works in the obvious way, by modeling the effect
55 // of each opcode as it is encountered. For most opcodes, this is a
56 // straightforward operation.
58 // This verifier does not do type merging. It used to, but this
59 // results in difficulty verifying some relatively simple code
60 // involving interfaces, and it pushed some verification work into the
61 // interpreter.
63 // Instead of merging reference types, when we reach a point where two
64 // flows of control merge, we simply keep the union of reference types
65 // from each branch. Then, when we need to verify a fact about a
66 // reference on the stack (e.g., that it is compatible with the
67 // argument type of a method), we check to ensure that all possible
68 // types satisfy the requirement.
70 // Another area this verifier differs from the norm is in its handling
71 // of subroutines. The JVM specification has some confusing things to
72 // say about subroutines. For instance, it makes claims about not
73 // allowing subroutines to merge and it rejects recursive subroutines.
74 // For the most part these are red herrings; we used to try to follow
75 // these things but they lead to problems. For example, the notion of
76 // "being in a subroutine" is not well-defined: is an exception
77 // handler in a subroutine? If you never execute the `ret' but
78 // instead `goto 1' do you remain in the subroutine?
80 // For clarity on what is really required for type safety, read
81 // "Simple Verification Technique for Complex Java Bytecode
82 // Subroutines" by Alessandro Coglio. Among other things this paper
83 // shows that recursive subroutines are not harmful to type safety.
84 // We implement something similar to what he proposes. Note that this
85 // means that this verifier will accept code that is rejected by some
86 // other verifiers.
88 // For those not wanting to read the paper, the basic observation is
89 // that we can maintain split states in subroutines. We maintain one
90 // state for each calling `jsr'. In other words, we re-verify a
91 // subroutine once for each caller, using the exact types held by the
92 // callers (as opposed to the old approach of merging types and
93 // keeping a bitmap registering what did or did not change). This
94 // approach lets us continue to verify correctly even when a
95 // subroutine is exited via `goto' or `athrow' and not `ret'.
97 // In some other areas the JVM specification is (mildly) incorrect,
98 // but we still implement what is specified. For instance, you cannot
99 // violate type safety by allocating an object with `new' and then
100 // failing to initialize it, no matter how one branches or where one
101 // stores the uninitialized reference. See "Improving the official
102 // specification of Java bytecode verification" by Alessandro Coglio.
103 // Similarly, there's no real point in enforcing that padding bytes or
104 // the mystery byte of invokeinterface must be 0, but we do that too.
106 // The verifier is currently neither completely lazy nor eager when it
107 // comes to loading classes. It tries to represent types by name when
108 // possible, and then loads them when it needs to verify a fact about
109 // the type. Checking types by name is valid because we only use
110 // names which come from the current class' constant pool. Since all
111 // such names are looked up using the same class loader, there is no
112 // danger that we might be fooled into comparing different types with
113 // the same name.
115 // In the future we plan to allow for a completely lazy mode of
116 // operation, where the verifier will construct a list of type
117 // assertions to be checked later.
119 // Some test cases for the verifier live in the "verify" module of the
120 // Mauve test suite. However, some of these are presently
121 // (2004-01-20) believed to be incorrect. (More precisely the notion
122 // of "correct" is not well-defined, and this verifier differs from
123 // others while remaining type-safe.) Some other tests live in the
124 // libgcj test suite.
125 class _Jv_BytecodeVerifier
127 private:
129 static const int FLAG_INSN_START = 1;
130 static const int FLAG_BRANCH_TARGET = 2;
132 struct state;
133 struct type;
134 struct linked_utf8;
135 struct ref_intersection;
137 template<typename T>
138 struct linked
140 T *val;
141 linked<T> *next;
144 // The current PC.
145 int PC;
146 // The PC corresponding to the start of the current instruction.
147 int start_PC;
149 // The current state of the stack, locals, etc.
150 state *current_state;
152 // At each branch target we keep a linked list of all the states we
153 // can process at that point. We'll only have multiple states at a
154 // given PC if they both have different return-address types in the
155 // same stack or local slot. This array is indexed by PC and holds
156 // the list of all such states.
157 linked<state> **states;
159 // We keep a linked list of all the states which we must reverify.
160 // This is the head of the list.
161 state *next_verify_state;
163 // We keep some flags for each instruction. The values are the
164 // FLAG_* constants defined above. This is an array indexed by PC.
165 char *flags;
167 // The bytecode itself.
168 unsigned char *bytecode;
169 // The exceptions.
170 _Jv_InterpException *exception;
172 // Defining class.
173 jclass current_class;
174 // This method.
175 _Jv_InterpMethod *current_method;
177 // A linked list of utf8 objects we allocate. This is really ugly,
178 // but without this our utf8 objects would be collected.
179 linked<_Jv_Utf8Const> *utf8_list;
181 // A linked list of all ref_intersection objects we allocate.
182 ref_intersection *isect_list;
184 // Create a new Utf-8 constant and return it. We do this to avoid
185 // having our Utf-8 constants prematurely collected. FIXME this is
186 // ugly.
187 _Jv_Utf8Const *make_utf8_const (char *s, int len)
189 _Jv_Utf8Const *val = _Jv_makeUtf8Const (s, len);
190 _Jv_Utf8Const *r = (_Jv_Utf8Const *) _Jv_Malloc (sizeof (_Jv_Utf8Const)
191 + val->length
192 + 1);
193 r->length = val->length;
194 r->hash = val->hash;
195 memcpy (r->data, val->data, val->length + 1);
197 linked<_Jv_Utf8Const> *lu
198 = (linked<_Jv_Utf8Const> *) _Jv_Malloc (sizeof (linked<_Jv_Utf8Const>));
199 lu->val = r;
200 lu->next = utf8_list;
201 utf8_list = lu;
203 return r;
206 __attribute__ ((__noreturn__)) void verify_fail (char *s, jint pc = -1)
208 using namespace java::lang;
209 StringBuffer *buf = new StringBuffer ();
211 buf->append (JvNewStringLatin1 ("verification failed"));
212 if (pc == -1)
213 pc = start_PC;
214 if (pc != -1)
216 buf->append (JvNewStringLatin1 (" at PC "));
217 buf->append (pc);
220 _Jv_InterpMethod *method = current_method;
221 buf->append (JvNewStringLatin1 (" in "));
222 buf->append (current_class->getName());
223 buf->append ((jchar) ':');
224 buf->append (JvNewStringUTF (method->get_method()->name->data));
225 buf->append ((jchar) '(');
226 buf->append (JvNewStringUTF (method->get_method()->signature->data));
227 buf->append ((jchar) ')');
229 buf->append (JvNewStringLatin1 (": "));
230 buf->append (JvNewStringLatin1 (s));
231 throw new java::lang::VerifyError (buf->toString ());
234 // This enum holds a list of tags for all the different types we
235 // need to handle. Reference types are treated specially by the
236 // type class.
237 enum type_val
239 void_type,
241 // The values for primitive types are chosen to correspond to values
242 // specified to newarray.
243 boolean_type = 4,
244 char_type = 5,
245 float_type = 6,
246 double_type = 7,
247 byte_type = 8,
248 short_type = 9,
249 int_type = 10,
250 long_type = 11,
252 // Used when overwriting second word of a double or long in the
253 // local variables. Also used after merging local variable states
254 // to indicate an unusable value.
255 unsuitable_type,
256 return_address_type,
257 // This is the second word of a two-word value, i.e., a double or
258 // a long.
259 continuation_type,
261 // Everything after `reference_type' must be a reference type.
262 reference_type,
263 null_type,
264 uninitialized_reference_type
267 // This represents a merged class type. Some verifiers (including
268 // earlier versions of this one) will compute the intersection of
269 // two class types when merging states. However, this loses
270 // critical information about interfaces implemented by the various
271 // classes. So instead we keep track of all the actual classes that
272 // have been merged.
273 struct ref_intersection
275 // Whether or not this type has been resolved.
276 bool is_resolved;
278 // Actual type data.
279 union
281 // For a resolved reference type, this is a pointer to the class.
282 jclass klass;
283 // For other reference types, this it the name of the class.
284 _Jv_Utf8Const *name;
285 } data;
287 // Link to the next reference in the intersection.
288 ref_intersection *ref_next;
290 // This is used to keep track of all the allocated
291 // ref_intersection objects, so we can free them.
292 // FIXME: we should allocate these in chunks.
293 ref_intersection *alloc_next;
295 ref_intersection (jclass klass, _Jv_BytecodeVerifier *verifier)
296 : ref_next (NULL)
298 is_resolved = true;
299 data.klass = klass;
300 alloc_next = verifier->isect_list;
301 verifier->isect_list = this;
304 ref_intersection (_Jv_Utf8Const *name, _Jv_BytecodeVerifier *verifier)
305 : ref_next (NULL)
307 is_resolved = false;
308 data.name = name;
309 alloc_next = verifier->isect_list;
310 verifier->isect_list = this;
313 ref_intersection (ref_intersection *dup, ref_intersection *tail,
314 _Jv_BytecodeVerifier *verifier)
315 : ref_next (tail)
317 is_resolved = dup->is_resolved;
318 data = dup->data;
319 alloc_next = verifier->isect_list;
320 verifier->isect_list = this;
323 bool equals (ref_intersection *other, _Jv_BytecodeVerifier *verifier)
325 if (! is_resolved && ! other->is_resolved
326 && _Jv_equalUtf8Consts (data.name, other->data.name))
327 return true;
328 if (! is_resolved)
329 resolve (verifier);
330 if (! other->is_resolved)
331 other->resolve (verifier);
332 return data.klass == other->data.klass;
335 // Merge THIS type into OTHER, returning the result. This will
336 // return OTHER if all the classes in THIS already appear in
337 // OTHER.
338 ref_intersection *merge (ref_intersection *other,
339 _Jv_BytecodeVerifier *verifier)
341 ref_intersection *tail = other;
342 for (ref_intersection *self = this; self != NULL; self = self->ref_next)
344 bool add = true;
345 for (ref_intersection *iter = other; iter != NULL;
346 iter = iter->ref_next)
348 if (iter->equals (self, verifier))
350 add = false;
351 break;
355 if (add)
356 tail = new ref_intersection (self, tail, verifier);
358 return tail;
361 void resolve (_Jv_BytecodeVerifier *verifier)
363 if (is_resolved)
364 return;
366 using namespace java::lang;
367 java::lang::ClassLoader *loader
368 = verifier->current_class->getClassLoaderInternal();
369 // We might see either kind of name. Sigh.
370 if (data.name->data[0] == 'L'
371 && data.name->data[data.name->length - 1] == ';')
372 data.klass = _Jv_FindClassFromSignature (data.name->data, loader);
373 else
374 data.klass = Class::forName (_Jv_NewStringUtf8Const (data.name),
375 false, loader);
376 is_resolved = true;
379 // See if an object of type OTHER can be assigned to an object of
380 // type *THIS. This might resolve classes in one chain or the
381 // other.
382 bool compatible (ref_intersection *other,
383 _Jv_BytecodeVerifier *verifier)
385 ref_intersection *self = this;
387 for (; self != NULL; self = self->ref_next)
389 ref_intersection *other_iter = other;
391 for (; other_iter != NULL; other_iter = other_iter->ref_next)
393 // Avoid resolving if possible.
394 if (! self->is_resolved
395 && ! other_iter->is_resolved
396 && _Jv_equalUtf8Consts (self->data.name,
397 other_iter->data.name))
398 continue;
400 if (! self->is_resolved)
401 self->resolve(verifier);
402 if (! other_iter->is_resolved)
403 other_iter->resolve(verifier);
405 if (! is_assignable_from_slow (self->data.klass,
406 other_iter->data.klass))
407 return false;
411 return true;
414 bool isarray ()
416 // assert (ref_next == NULL);
417 if (is_resolved)
418 return data.klass->isArray ();
419 else
420 return data.name->data[0] == '[';
423 bool isinterface (_Jv_BytecodeVerifier *verifier)
425 // assert (ref_next == NULL);
426 if (! is_resolved)
427 resolve (verifier);
428 return data.klass->isInterface ();
431 bool isabstract (_Jv_BytecodeVerifier *verifier)
433 // assert (ref_next == NULL);
434 if (! is_resolved)
435 resolve (verifier);
436 using namespace java::lang::reflect;
437 return Modifier::isAbstract (data.klass->getModifiers ());
440 jclass getclass (_Jv_BytecodeVerifier *verifier)
442 if (! is_resolved)
443 resolve (verifier);
444 return data.klass;
447 int count_dimensions ()
449 int ndims = 0;
450 if (is_resolved)
452 jclass k = data.klass;
453 while (k->isArray ())
455 k = k->getComponentType ();
456 ++ndims;
459 else
461 char *p = data.name->data;
462 while (*p++ == '[')
463 ++ndims;
465 return ndims;
468 void *operator new (size_t bytes)
470 return _Jv_Malloc (bytes);
473 void operator delete (void *mem)
475 _Jv_Free (mem);
479 // Return the type_val corresponding to a primitive signature
480 // character. For instance `I' returns `int.class'.
481 type_val get_type_val_for_signature (jchar sig)
483 type_val rt;
484 switch (sig)
486 case 'Z':
487 rt = boolean_type;
488 break;
489 case 'B':
490 rt = byte_type;
491 break;
492 case 'C':
493 rt = char_type;
494 break;
495 case 'S':
496 rt = short_type;
497 break;
498 case 'I':
499 rt = int_type;
500 break;
501 case 'J':
502 rt = long_type;
503 break;
504 case 'F':
505 rt = float_type;
506 break;
507 case 'D':
508 rt = double_type;
509 break;
510 case 'V':
511 rt = void_type;
512 break;
513 default:
514 verify_fail ("invalid signature");
516 return rt;
519 // Return the type_val corresponding to a primitive class.
520 type_val get_type_val_for_signature (jclass k)
522 return get_type_val_for_signature ((jchar) k->method_count);
525 // This is like _Jv_IsAssignableFrom, but it works even if SOURCE or
526 // TARGET haven't been prepared.
527 static bool is_assignable_from_slow (jclass target, jclass source)
529 // First, strip arrays.
530 while (target->isArray ())
532 // If target is array, source must be as well.
533 if (! source->isArray ())
534 return false;
535 target = target->getComponentType ();
536 source = source->getComponentType ();
539 // Quick success.
540 if (target == &java::lang::Object::class$)
541 return true;
545 if (source == target)
546 return true;
548 if (target->isPrimitive () || source->isPrimitive ())
549 return false;
551 if (target->isInterface ())
553 for (int i = 0; i < source->interface_count; ++i)
555 // We use a recursive call because we also need to
556 // check superinterfaces.
557 if (is_assignable_from_slow (target, source->interfaces[i]))
558 return true;
561 source = source->getSuperclass ();
563 while (source != NULL);
565 return false;
568 // The `type' class is used to represent a single type in the
569 // verifier.
570 struct type
572 // The type key.
573 type_val key;
575 // For reference types, the representation of the type.
576 ref_intersection *klass;
578 // This is used in two situations.
580 // First, when constructing a new object, it is the PC of the
581 // `new' instruction which created the object. We use the special
582 // value UNINIT to mean that this is uninitialized, and the
583 // special value SELF for the case where the current method is
584 // itself the <init> method.
586 // Second, when the key is return_address_type, this holds the PC
587 // of the instruction following the `jsr'.
588 int pc;
590 static const int UNINIT = -2;
591 static const int SELF = -1;
593 // Basic constructor.
594 type ()
596 key = unsuitable_type;
597 klass = NULL;
598 pc = UNINIT;
601 // Make a new instance given the type tag. We assume a generic
602 // `reference_type' means Object.
603 type (type_val k)
605 key = k;
606 // For reference_type, if KLASS==NULL then that means we are
607 // looking for a generic object of any kind, including an
608 // uninitialized reference.
609 klass = NULL;
610 pc = UNINIT;
613 // Make a new instance given a class.
614 type (jclass k, _Jv_BytecodeVerifier *verifier)
616 key = reference_type;
617 klass = new ref_intersection (k, verifier);
618 pc = UNINIT;
621 // Make a new instance given the name of a class.
622 type (_Jv_Utf8Const *n, _Jv_BytecodeVerifier *verifier)
624 key = reference_type;
625 klass = new ref_intersection (n, verifier);
626 pc = UNINIT;
629 // Copy constructor.
630 type (const type &t)
632 key = t.key;
633 klass = t.klass;
634 pc = t.pc;
637 // These operators are required because libgcj can't link in
638 // -lstdc++.
639 void *operator new[] (size_t bytes)
641 return _Jv_Malloc (bytes);
644 void operator delete[] (void *mem)
646 _Jv_Free (mem);
649 type& operator= (type_val k)
651 key = k;
652 klass = NULL;
653 pc = UNINIT;
654 return *this;
657 type& operator= (const type& t)
659 key = t.key;
660 klass = t.klass;
661 pc = t.pc;
662 return *this;
665 // Promote a numeric type.
666 type &promote ()
668 if (key == boolean_type || key == char_type
669 || key == byte_type || key == short_type)
670 key = int_type;
671 return *this;
674 // Mark this type as the uninitialized result of `new'.
675 void set_uninitialized (int npc, _Jv_BytecodeVerifier *verifier)
677 if (key == reference_type)
678 key = uninitialized_reference_type;
679 else
680 verifier->verify_fail ("internal error in type::uninitialized");
681 pc = npc;
684 // Mark this type as now initialized.
685 void set_initialized (int npc)
687 if (npc != UNINIT && pc == npc && key == uninitialized_reference_type)
689 key = reference_type;
690 pc = UNINIT;
694 // Mark this type as a particular return address.
695 void set_return_address (int npc)
697 pc = npc;
700 // Return true if this type and type OTHER are considered
701 // mergeable for the purposes of state merging. This is related
702 // to subroutine handling. For this purpose two types are
703 // considered unmergeable if they are both return-addresses but
704 // have different PCs.
705 bool state_mergeable_p (const type &other) const
707 return (key != return_address_type
708 || other.key != return_address_type
709 || pc == other.pc);
712 // Return true if an object of type K can be assigned to a variable
713 // of type *THIS. Handle various special cases too. Might modify
714 // *THIS or K. Note however that this does not perform numeric
715 // promotion.
716 bool compatible (type &k, _Jv_BytecodeVerifier *verifier)
718 // Any type is compatible with the unsuitable type.
719 if (key == unsuitable_type)
720 return true;
722 if (key < reference_type || k.key < reference_type)
723 return key == k.key;
725 // The `null' type is convertible to any initialized reference
726 // type.
727 if (key == null_type)
728 return k.key != uninitialized_reference_type;
729 if (k.key == null_type)
730 return key != uninitialized_reference_type;
732 // A special case for a generic reference.
733 if (klass == NULL)
734 return true;
735 if (k.klass == NULL)
736 verifier->verify_fail ("programmer error in type::compatible");
738 // An initialized type and an uninitialized type are not
739 // compatible.
740 if (isinitialized () != k.isinitialized ())
741 return false;
743 // Two uninitialized objects are compatible if either:
744 // * The PCs are identical, or
745 // * One PC is UNINIT.
746 if (! isinitialized ())
748 if (pc != k.pc && pc != UNINIT && k.pc != UNINIT)
749 return false;
752 return klass->compatible(k.klass, verifier);
755 bool isvoid () const
757 return key == void_type;
760 bool iswide () const
762 return key == long_type || key == double_type;
765 // Return number of stack or local variable slots taken by this
766 // type.
767 int depth () const
769 return iswide () ? 2 : 1;
772 bool isarray () const
774 // We treat null_type as not an array. This is ok based on the
775 // current uses of this method.
776 if (key == reference_type)
777 return klass->isarray ();
778 return false;
781 bool isnull () const
783 return key == null_type;
786 bool isinterface (_Jv_BytecodeVerifier *verifier)
788 if (key != reference_type)
789 return false;
790 return klass->isinterface (verifier);
793 bool isabstract (_Jv_BytecodeVerifier *verifier)
795 if (key != reference_type)
796 return false;
797 return klass->isabstract (verifier);
800 // Return the element type of an array.
801 type element_type (_Jv_BytecodeVerifier *verifier)
803 if (key != reference_type)
804 verifier->verify_fail ("programmer error in type::element_type()", -1);
806 jclass k = klass->getclass (verifier)->getComponentType ();
807 if (k->isPrimitive ())
808 return type (verifier->get_type_val_for_signature (k));
809 return type (k, verifier);
812 // Return the array type corresponding to an initialized
813 // reference. We could expand this to work for other kinds of
814 // types, but currently we don't need to.
815 type to_array (_Jv_BytecodeVerifier *verifier)
817 if (key != reference_type)
818 verifier->verify_fail ("internal error in type::to_array()");
820 jclass k = klass->getclass (verifier);
821 return type (_Jv_GetArrayClass (k, k->getClassLoaderInternal()),
822 verifier);
825 bool isreference () const
827 return key >= reference_type;
830 int get_pc () const
832 return pc;
835 bool isinitialized () const
837 return key == reference_type || key == null_type;
840 bool isresolved () const
842 return (key == reference_type
843 || key == null_type
844 || key == uninitialized_reference_type);
847 void verify_dimensions (int ndims, _Jv_BytecodeVerifier *verifier)
849 // The way this is written, we don't need to check isarray().
850 if (key != reference_type)
851 verifier->verify_fail ("internal error in verify_dimensions:"
852 " not a reference type");
854 if (klass->count_dimensions () < ndims)
855 verifier->verify_fail ("array type has fewer dimensions"
856 " than required");
859 // Merge OLD_TYPE into this. On error throw exception. Return
860 // true if the merge caused a type change.
861 bool merge (type& old_type, bool local_semantics,
862 _Jv_BytecodeVerifier *verifier)
864 bool changed = false;
865 bool refo = old_type.isreference ();
866 bool refn = isreference ();
867 if (refo && refn)
869 if (old_type.key == null_type)
871 else if (key == null_type)
873 *this = old_type;
874 changed = true;
876 else if (isinitialized () != old_type.isinitialized ())
877 verifier->verify_fail ("merging initialized and uninitialized types");
878 else
880 if (! isinitialized ())
882 if (pc == UNINIT)
883 pc = old_type.pc;
884 else if (old_type.pc == UNINIT)
886 else if (pc != old_type.pc)
887 verifier->verify_fail ("merging different uninitialized types");
890 ref_intersection *merged = old_type.klass->merge (klass,
891 verifier);
892 if (merged != klass)
894 klass = merged;
895 changed = true;
899 else if (refo || refn || key != old_type.key)
901 if (local_semantics)
903 // If we already have an `unsuitable' type, then we
904 // don't need to change again.
905 if (key != unsuitable_type)
907 key = unsuitable_type;
908 changed = true;
911 else
912 verifier->verify_fail ("unmergeable type");
914 return changed;
917 #ifdef VERIFY_DEBUG
918 void print (void) const
920 char c = '?';
921 switch (key)
923 case boolean_type: c = 'Z'; break;
924 case byte_type: c = 'B'; break;
925 case char_type: c = 'C'; break;
926 case short_type: c = 'S'; break;
927 case int_type: c = 'I'; break;
928 case long_type: c = 'J'; break;
929 case float_type: c = 'F'; break;
930 case double_type: c = 'D'; break;
931 case void_type: c = 'V'; break;
932 case unsuitable_type: c = '-'; break;
933 case return_address_type: c = 'r'; break;
934 case continuation_type: c = '+'; break;
935 case reference_type: c = 'L'; break;
936 case null_type: c = '@'; break;
937 case uninitialized_reference_type: c = 'U'; break;
939 debug_print ("%c", c);
941 #endif /* VERIFY_DEBUG */
944 // This class holds all the state information we need for a given
945 // location.
946 struct state
948 // The current top of the stack, in terms of slots.
949 int stacktop;
950 // The current depth of the stack. This will be larger than
951 // STACKTOP when wide types are on the stack.
952 int stackdepth;
953 // The stack.
954 type *stack;
955 // The local variables.
956 type *locals;
957 // We keep track of the type of `this' specially. This is used to
958 // ensure that an instance initializer invokes another initializer
959 // on `this' before returning. We must keep track of this
960 // specially because otherwise we might be confused by code which
961 // assigns to locals[0] (overwriting `this') and then returns
962 // without really initializing.
963 type this_type;
965 // The PC for this state. This is only valid on states which are
966 // permanently attached to a given PC. For an object like
967 // `current_state', which is used transiently, this has no
968 // meaning.
969 int pc;
970 // We keep a linked list of all states requiring reverification.
971 // If this is the special value INVALID_STATE then this state is
972 // not on the list. NULL marks the end of the linked list.
973 state *next;
975 // NO_NEXT is the PC value meaning that a new state must be
976 // acquired from the verification list.
977 static const int NO_NEXT = -1;
979 state ()
980 : this_type ()
982 stack = NULL;
983 locals = NULL;
984 next = INVALID_STATE;
987 state (int max_stack, int max_locals)
988 : this_type ()
990 stacktop = 0;
991 stackdepth = 0;
992 stack = new type[max_stack];
993 for (int i = 0; i < max_stack; ++i)
994 stack[i] = unsuitable_type;
995 locals = new type[max_locals];
996 for (int i = 0; i < max_locals; ++i)
997 locals[i] = unsuitable_type;
998 pc = NO_NEXT;
999 next = INVALID_STATE;
1002 state (const state *orig, int max_stack, int max_locals)
1004 stack = new type[max_stack];
1005 locals = new type[max_locals];
1006 copy (orig, max_stack, max_locals);
1007 pc = NO_NEXT;
1008 next = INVALID_STATE;
1011 ~state ()
1013 if (stack)
1014 delete[] stack;
1015 if (locals)
1016 delete[] locals;
1019 void *operator new[] (size_t bytes)
1021 return _Jv_Malloc (bytes);
1024 void operator delete[] (void *mem)
1026 _Jv_Free (mem);
1029 void *operator new (size_t bytes)
1031 return _Jv_Malloc (bytes);
1034 void operator delete (void *mem)
1036 _Jv_Free (mem);
1039 void copy (const state *copy, int max_stack, int max_locals)
1041 stacktop = copy->stacktop;
1042 stackdepth = copy->stackdepth;
1043 for (int i = 0; i < max_stack; ++i)
1044 stack[i] = copy->stack[i];
1045 for (int i = 0; i < max_locals; ++i)
1046 locals[i] = copy->locals[i];
1048 this_type = copy->this_type;
1049 // Don't modify `next' or `pc'.
1052 // Modify this state to reflect entry to an exception handler.
1053 void set_exception (type t, int max_stack)
1055 stackdepth = 1;
1056 stacktop = 1;
1057 stack[0] = t;
1058 for (int i = stacktop; i < max_stack; ++i)
1059 stack[i] = unsuitable_type;
1062 inline int get_pc () const
1064 return pc;
1067 void set_pc (int npc)
1069 pc = npc;
1072 // Merge STATE_OLD into this state. Destructively modifies this
1073 // state. Returns true if the new state was in fact changed.
1074 // Will throw an exception if the states are not mergeable.
1075 bool merge (state *state_old, int max_locals,
1076 _Jv_BytecodeVerifier *verifier)
1078 bool changed = false;
1080 // Special handling for `this'. If one or the other is
1081 // uninitialized, then the merge is uninitialized.
1082 if (this_type.isinitialized ())
1083 this_type = state_old->this_type;
1085 // Merge stacks.
1086 if (state_old->stacktop != stacktop) // FIXME stackdepth instead?
1087 verifier->verify_fail ("stack sizes differ");
1088 for (int i = 0; i < state_old->stacktop; ++i)
1090 if (stack[i].merge (state_old->stack[i], false, verifier))
1091 changed = true;
1094 // Merge local variables.
1095 for (int i = 0; i < max_locals; ++i)
1097 if (locals[i].merge (state_old->locals[i], true, verifier))
1098 changed = true;
1101 return changed;
1104 // Throw an exception if there is an uninitialized object on the
1105 // stack or in a local variable. EXCEPTION_SEMANTICS controls
1106 // whether we're using backwards-branch or exception-handing
1107 // semantics.
1108 void check_no_uninitialized_objects (int max_locals,
1109 _Jv_BytecodeVerifier *verifier,
1110 bool exception_semantics = false)
1112 if (! exception_semantics)
1114 for (int i = 0; i < stacktop; ++i)
1115 if (stack[i].isreference () && ! stack[i].isinitialized ())
1116 verifier->verify_fail ("uninitialized object on stack");
1119 for (int i = 0; i < max_locals; ++i)
1120 if (locals[i].isreference () && ! locals[i].isinitialized ())
1121 verifier->verify_fail ("uninitialized object in local variable");
1123 check_this_initialized (verifier);
1126 // Ensure that `this' has been initialized.
1127 void check_this_initialized (_Jv_BytecodeVerifier *verifier)
1129 if (this_type.isreference () && ! this_type.isinitialized ())
1130 verifier->verify_fail ("`this' is uninitialized");
1133 // Set type of `this'.
1134 void set_this_type (const type &k)
1136 this_type = k;
1139 // Mark each `new'd object we know of that was allocated at PC as
1140 // initialized.
1141 void set_initialized (int pc, int max_locals)
1143 for (int i = 0; i < stacktop; ++i)
1144 stack[i].set_initialized (pc);
1145 for (int i = 0; i < max_locals; ++i)
1146 locals[i].set_initialized (pc);
1147 this_type.set_initialized (pc);
1150 // This tests to see whether two states can be considered "merge
1151 // compatible". If both states have a return-address in the same
1152 // slot, and the return addresses are different, then they are not
1153 // compatible and we must not try to merge them.
1154 bool state_mergeable_p (state *other, int max_locals,
1155 _Jv_BytecodeVerifier *verifier)
1157 // This is tricky: if the stack sizes differ, then not only are
1158 // these not mergeable, but in fact we should give an error, as
1159 // we've found two execution paths that reach a branch target
1160 // with different stack depths. FIXME stackdepth instead?
1161 if (stacktop != other->stacktop)
1162 verifier->verify_fail ("stack sizes differ");
1164 for (int i = 0; i < stacktop; ++i)
1165 if (! stack[i].state_mergeable_p (other->stack[i]))
1166 return false;
1167 for (int i = 0; i < max_locals; ++i)
1168 if (! locals[i].state_mergeable_p (other->locals[i]))
1169 return false;
1170 return true;
1173 void reverify (_Jv_BytecodeVerifier *verifier)
1175 if (next == INVALID_STATE)
1177 next = verifier->next_verify_state;
1178 verifier->next_verify_state = this;
1182 #ifdef VERIFY_DEBUG
1183 void print (const char *leader, int pc,
1184 int max_stack, int max_locals) const
1186 debug_print ("%s [%4d]: [stack] ", leader, pc);
1187 int i;
1188 for (i = 0; i < stacktop; ++i)
1189 stack[i].print ();
1190 for (; i < max_stack; ++i)
1191 debug_print (".");
1192 debug_print (" [local] ");
1193 for (i = 0; i < max_locals; ++i)
1194 locals[i].print ();
1195 debug_print (" | %p\n", this);
1197 #else
1198 inline void print (const char *, int, int, int) const
1201 #endif /* VERIFY_DEBUG */
1204 type pop_raw ()
1206 if (current_state->stacktop <= 0)
1207 verify_fail ("stack empty");
1208 type r = current_state->stack[--current_state->stacktop];
1209 current_state->stackdepth -= r.depth ();
1210 if (current_state->stackdepth < 0)
1211 verify_fail ("stack empty", start_PC);
1212 return r;
1215 type pop32 ()
1217 type r = pop_raw ();
1218 if (r.iswide ())
1219 verify_fail ("narrow pop of wide type");
1220 return r;
1223 type pop_type (type match)
1225 match.promote ();
1226 type t = pop_raw ();
1227 if (! match.compatible (t, this))
1228 verify_fail ("incompatible type on stack");
1229 return t;
1232 // Pop a reference which is guaranteed to be initialized. MATCH
1233 // doesn't have to be a reference type; in this case this acts like
1234 // pop_type.
1235 type pop_init_ref (type match)
1237 type t = pop_raw ();
1238 if (t.isreference () && ! t.isinitialized ())
1239 verify_fail ("initialized reference required");
1240 else if (! match.compatible (t, this))
1241 verify_fail ("incompatible type on stack");
1242 return t;
1245 // Pop a reference type or a return address.
1246 type pop_ref_or_return ()
1248 type t = pop_raw ();
1249 if (! t.isreference () && t.key != return_address_type)
1250 verify_fail ("expected reference or return address on stack");
1251 return t;
1254 void push_type (type t)
1256 // If T is a numeric type like short, promote it to int.
1257 t.promote ();
1259 int depth = t.depth ();
1260 if (current_state->stackdepth + depth > current_method->max_stack)
1261 verify_fail ("stack overflow");
1262 current_state->stack[current_state->stacktop++] = t;
1263 current_state->stackdepth += depth;
1266 void set_variable (int index, type t)
1268 // If T is a numeric type like short, promote it to int.
1269 t.promote ();
1271 int depth = t.depth ();
1272 if (index > current_method->max_locals - depth)
1273 verify_fail ("invalid local variable");
1274 current_state->locals[index] = t;
1276 if (depth == 2)
1277 current_state->locals[index + 1] = continuation_type;
1278 if (index > 0 && current_state->locals[index - 1].iswide ())
1279 current_state->locals[index - 1] = unsuitable_type;
1282 type get_variable (int index, type t)
1284 int depth = t.depth ();
1285 if (index > current_method->max_locals - depth)
1286 verify_fail ("invalid local variable");
1287 if (! t.compatible (current_state->locals[index], this))
1288 verify_fail ("incompatible type in local variable");
1289 if (depth == 2)
1291 type t (continuation_type);
1292 if (! current_state->locals[index + 1].compatible (t, this))
1293 verify_fail ("invalid local variable");
1295 return current_state->locals[index];
1298 // Make sure ARRAY is an array type and that its elements are
1299 // compatible with type ELEMENT. Returns the actual element type.
1300 type require_array_type (type array, type element)
1302 // An odd case. Here we just pretend that everything went ok. If
1303 // the requested element type is some kind of reference, return
1304 // the null type instead.
1305 if (array.isnull ())
1306 return element.isreference () ? type (null_type) : element;
1308 if (! array.isarray ())
1309 verify_fail ("array required");
1311 type t = array.element_type (this);
1312 if (! element.compatible (t, this))
1314 // Special case for byte arrays, which must also be boolean
1315 // arrays.
1316 bool ok = true;
1317 if (element.key == byte_type)
1319 type e2 (boolean_type);
1320 ok = e2.compatible (t, this);
1322 if (! ok)
1323 verify_fail ("incompatible array element type");
1326 // Return T and not ELEMENT, because T might be specialized.
1327 return t;
1330 jint get_byte ()
1332 if (PC >= current_method->code_length)
1333 verify_fail ("premature end of bytecode");
1334 return (jint) bytecode[PC++] & 0xff;
1337 jint get_ushort ()
1339 jint b1 = get_byte ();
1340 jint b2 = get_byte ();
1341 return (jint) ((b1 << 8) | b2) & 0xffff;
1344 jint get_short ()
1346 jint b1 = get_byte ();
1347 jint b2 = get_byte ();
1348 jshort s = (b1 << 8) | b2;
1349 return (jint) s;
1352 jint get_int ()
1354 jint b1 = get_byte ();
1355 jint b2 = get_byte ();
1356 jint b3 = get_byte ();
1357 jint b4 = get_byte ();
1358 return (b1 << 24) | (b2 << 16) | (b3 << 8) | b4;
1361 int compute_jump (int offset)
1363 int npc = start_PC + offset;
1364 if (npc < 0 || npc >= current_method->code_length)
1365 verify_fail ("branch out of range", start_PC);
1366 return npc;
1369 // Add a new state to the state list at NPC.
1370 state *add_new_state (int npc, state *old_state)
1372 state *new_state = new state (old_state, current_method->max_stack,
1373 current_method->max_locals);
1374 debug_print ("== New state in add_new_state\n");
1375 new_state->print ("New", npc, current_method->max_stack,
1376 current_method->max_locals);
1377 linked<state> *nlink
1378 = (linked<state> *) _Jv_Malloc (sizeof (linked<state>));
1379 nlink->val = new_state;
1380 nlink->next = states[npc];
1381 states[npc] = nlink;
1382 new_state->set_pc (npc);
1383 return new_state;
1386 // Merge the indicated state into the state at the branch target and
1387 // schedule a new PC if there is a change. NPC is the PC of the
1388 // branch target, and FROM_STATE is the state at the source of the
1389 // branch. This method returns true if the destination state
1390 // changed and requires reverification, false otherwise.
1391 void merge_into (int npc, state *from_state)
1393 // Iterate over all target states and merge our state into each,
1394 // if applicable. FIXME one improvement we could make here is
1395 // "state destruction". Merging a new state into an existing one
1396 // might cause a return_address_type to be merged to
1397 // unsuitable_type. In this case the resulting state may now be
1398 // mergeable with other states currently held in parallel at this
1399 // location. So in this situation we could pairwise compare and
1400 // reduce the number of parallel states.
1401 bool applicable = false;
1402 for (linked<state> *iter = states[npc]; iter != NULL; iter = iter->next)
1404 state *new_state = iter->val;
1405 if (new_state->state_mergeable_p (from_state,
1406 current_method->max_locals, this))
1408 applicable = true;
1410 debug_print ("== Merge states in merge_into\n");
1411 from_state->print ("Frm", start_PC, current_method->max_stack,
1412 current_method->max_locals);
1413 new_state->print (" To", npc, current_method->max_stack,
1414 current_method->max_locals);
1415 bool changed = new_state->merge (from_state,
1416 current_method->max_locals,
1417 this);
1418 new_state->print ("New", npc, current_method->max_stack,
1419 current_method->max_locals);
1421 if (changed)
1422 new_state->reverify (this);
1426 if (! applicable)
1428 // Either we don't yet have a state at NPC, or we have a
1429 // return-address type that is in conflict with all existing
1430 // state. So, we need to create a new entry.
1431 state *new_state = add_new_state (npc, from_state);
1432 // A new state added in this way must always be reverified.
1433 new_state->reverify (this);
1437 void push_jump (int offset)
1439 int npc = compute_jump (offset);
1440 if (npc < PC)
1441 current_state->check_no_uninitialized_objects (current_method->max_locals, this);
1442 merge_into (npc, current_state);
1445 void push_exception_jump (type t, int pc)
1447 current_state->check_no_uninitialized_objects (current_method->max_locals,
1448 this, true);
1449 state s (current_state, current_method->max_stack,
1450 current_method->max_locals);
1451 if (current_method->max_stack < 1)
1452 verify_fail ("stack overflow at exception handler");
1453 s.set_exception (t, current_method->max_stack);
1454 merge_into (pc, &s);
1457 state *pop_jump ()
1459 state *new_state = next_verify_state;
1460 if (new_state == INVALID_STATE)
1461 verify_fail ("programmer error in pop_jump");
1462 if (new_state != NULL)
1464 next_verify_state = new_state->next;
1465 new_state->next = INVALID_STATE;
1467 return new_state;
1470 void invalidate_pc ()
1472 PC = state::NO_NEXT;
1475 void note_branch_target (int pc)
1477 // Don't check `pc <= PC', because we've advanced PC after
1478 // fetching the target and we haven't yet checked the next
1479 // instruction.
1480 if (pc < PC && ! (flags[pc] & FLAG_INSN_START))
1481 verify_fail ("branch not to instruction start", start_PC);
1482 flags[pc] |= FLAG_BRANCH_TARGET;
1485 void skip_padding ()
1487 while ((PC % 4) > 0)
1488 if (get_byte () != 0)
1489 verify_fail ("found nonzero padding byte");
1492 // Do the work for a `ret' instruction. INDEX is the index into the
1493 // local variables.
1494 void handle_ret_insn (int index)
1496 type ret_addr = get_variable (index, return_address_type);
1497 // It would be nice if we could do this. However, the JVM Spec
1498 // doesn't say that this is what happens. It is implied that
1499 // reusing a return address is invalid, but there's no actual
1500 // prohibition against it.
1501 // set_variable (index, unsuitable_type);
1503 int npc = ret_addr.get_pc ();
1504 // We might be returning to a `jsr' that is at the end of the
1505 // bytecode. This is ok if we never return from the called
1506 // subroutine, but if we see this here it is an error.
1507 if (npc >= current_method->code_length)
1508 verify_fail ("fell off end");
1510 if (npc < PC)
1511 current_state->check_no_uninitialized_objects (current_method->max_locals,
1512 this);
1513 merge_into (npc, current_state);
1514 invalidate_pc ();
1517 void handle_jsr_insn (int offset)
1519 int npc = compute_jump (offset);
1521 if (npc < PC)
1522 current_state->check_no_uninitialized_objects (current_method->max_locals, this);
1524 // Modify our state as appropriate for entry into a subroutine.
1525 type ret_addr (return_address_type);
1526 ret_addr.set_return_address (PC);
1527 push_type (ret_addr);
1528 merge_into (npc, current_state);
1529 invalidate_pc ();
1532 jclass construct_primitive_array_type (type_val prim)
1534 jclass k = NULL;
1535 switch (prim)
1537 case boolean_type:
1538 k = JvPrimClass (boolean);
1539 break;
1540 case char_type:
1541 k = JvPrimClass (char);
1542 break;
1543 case float_type:
1544 k = JvPrimClass (float);
1545 break;
1546 case double_type:
1547 k = JvPrimClass (double);
1548 break;
1549 case byte_type:
1550 k = JvPrimClass (byte);
1551 break;
1552 case short_type:
1553 k = JvPrimClass (short);
1554 break;
1555 case int_type:
1556 k = JvPrimClass (int);
1557 break;
1558 case long_type:
1559 k = JvPrimClass (long);
1560 break;
1562 // These aren't used here but we call them out to avoid
1563 // warnings.
1564 case void_type:
1565 case unsuitable_type:
1566 case return_address_type:
1567 case continuation_type:
1568 case reference_type:
1569 case null_type:
1570 case uninitialized_reference_type:
1571 default:
1572 verify_fail ("unknown type in construct_primitive_array_type");
1574 k = _Jv_GetArrayClass (k, NULL);
1575 return k;
1578 // This pass computes the location of branch targets and also
1579 // instruction starts.
1580 void branch_prepass ()
1582 flags = (char *) _Jv_Malloc (current_method->code_length);
1584 for (int i = 0; i < current_method->code_length; ++i)
1585 flags[i] = 0;
1587 PC = 0;
1588 while (PC < current_method->code_length)
1590 // Set `start_PC' early so that error checking can have the
1591 // correct value.
1592 start_PC = PC;
1593 flags[PC] |= FLAG_INSN_START;
1595 java_opcode opcode = (java_opcode) bytecode[PC++];
1596 switch (opcode)
1598 case op_nop:
1599 case op_aconst_null:
1600 case op_iconst_m1:
1601 case op_iconst_0:
1602 case op_iconst_1:
1603 case op_iconst_2:
1604 case op_iconst_3:
1605 case op_iconst_4:
1606 case op_iconst_5:
1607 case op_lconst_0:
1608 case op_lconst_1:
1609 case op_fconst_0:
1610 case op_fconst_1:
1611 case op_fconst_2:
1612 case op_dconst_0:
1613 case op_dconst_1:
1614 case op_iload_0:
1615 case op_iload_1:
1616 case op_iload_2:
1617 case op_iload_3:
1618 case op_lload_0:
1619 case op_lload_1:
1620 case op_lload_2:
1621 case op_lload_3:
1622 case op_fload_0:
1623 case op_fload_1:
1624 case op_fload_2:
1625 case op_fload_3:
1626 case op_dload_0:
1627 case op_dload_1:
1628 case op_dload_2:
1629 case op_dload_3:
1630 case op_aload_0:
1631 case op_aload_1:
1632 case op_aload_2:
1633 case op_aload_3:
1634 case op_iaload:
1635 case op_laload:
1636 case op_faload:
1637 case op_daload:
1638 case op_aaload:
1639 case op_baload:
1640 case op_caload:
1641 case op_saload:
1642 case op_istore_0:
1643 case op_istore_1:
1644 case op_istore_2:
1645 case op_istore_3:
1646 case op_lstore_0:
1647 case op_lstore_1:
1648 case op_lstore_2:
1649 case op_lstore_3:
1650 case op_fstore_0:
1651 case op_fstore_1:
1652 case op_fstore_2:
1653 case op_fstore_3:
1654 case op_dstore_0:
1655 case op_dstore_1:
1656 case op_dstore_2:
1657 case op_dstore_3:
1658 case op_astore_0:
1659 case op_astore_1:
1660 case op_astore_2:
1661 case op_astore_3:
1662 case op_iastore:
1663 case op_lastore:
1664 case op_fastore:
1665 case op_dastore:
1666 case op_aastore:
1667 case op_bastore:
1668 case op_castore:
1669 case op_sastore:
1670 case op_pop:
1671 case op_pop2:
1672 case op_dup:
1673 case op_dup_x1:
1674 case op_dup_x2:
1675 case op_dup2:
1676 case op_dup2_x1:
1677 case op_dup2_x2:
1678 case op_swap:
1679 case op_iadd:
1680 case op_isub:
1681 case op_imul:
1682 case op_idiv:
1683 case op_irem:
1684 case op_ishl:
1685 case op_ishr:
1686 case op_iushr:
1687 case op_iand:
1688 case op_ior:
1689 case op_ixor:
1690 case op_ladd:
1691 case op_lsub:
1692 case op_lmul:
1693 case op_ldiv:
1694 case op_lrem:
1695 case op_lshl:
1696 case op_lshr:
1697 case op_lushr:
1698 case op_land:
1699 case op_lor:
1700 case op_lxor:
1701 case op_fadd:
1702 case op_fsub:
1703 case op_fmul:
1704 case op_fdiv:
1705 case op_frem:
1706 case op_dadd:
1707 case op_dsub:
1708 case op_dmul:
1709 case op_ddiv:
1710 case op_drem:
1711 case op_ineg:
1712 case op_i2b:
1713 case op_i2c:
1714 case op_i2s:
1715 case op_lneg:
1716 case op_fneg:
1717 case op_dneg:
1718 case op_i2l:
1719 case op_i2f:
1720 case op_i2d:
1721 case op_l2i:
1722 case op_l2f:
1723 case op_l2d:
1724 case op_f2i:
1725 case op_f2l:
1726 case op_f2d:
1727 case op_d2i:
1728 case op_d2l:
1729 case op_d2f:
1730 case op_lcmp:
1731 case op_fcmpl:
1732 case op_fcmpg:
1733 case op_dcmpl:
1734 case op_dcmpg:
1735 case op_monitorenter:
1736 case op_monitorexit:
1737 case op_ireturn:
1738 case op_lreturn:
1739 case op_freturn:
1740 case op_dreturn:
1741 case op_areturn:
1742 case op_return:
1743 case op_athrow:
1744 case op_arraylength:
1745 break;
1747 case op_bipush:
1748 case op_ldc:
1749 case op_iload:
1750 case op_lload:
1751 case op_fload:
1752 case op_dload:
1753 case op_aload:
1754 case op_istore:
1755 case op_lstore:
1756 case op_fstore:
1757 case op_dstore:
1758 case op_astore:
1759 case op_ret:
1760 case op_newarray:
1761 get_byte ();
1762 break;
1764 case op_iinc:
1765 case op_sipush:
1766 case op_ldc_w:
1767 case op_ldc2_w:
1768 case op_getstatic:
1769 case op_getfield:
1770 case op_putfield:
1771 case op_putstatic:
1772 case op_new:
1773 case op_anewarray:
1774 case op_instanceof:
1775 case op_checkcast:
1776 case op_invokespecial:
1777 case op_invokestatic:
1778 case op_invokevirtual:
1779 get_short ();
1780 break;
1782 case op_multianewarray:
1783 get_short ();
1784 get_byte ();
1785 break;
1787 case op_jsr:
1788 case op_ifeq:
1789 case op_ifne:
1790 case op_iflt:
1791 case op_ifge:
1792 case op_ifgt:
1793 case op_ifle:
1794 case op_if_icmpeq:
1795 case op_if_icmpne:
1796 case op_if_icmplt:
1797 case op_if_icmpge:
1798 case op_if_icmpgt:
1799 case op_if_icmple:
1800 case op_if_acmpeq:
1801 case op_if_acmpne:
1802 case op_ifnull:
1803 case op_ifnonnull:
1804 case op_goto:
1805 note_branch_target (compute_jump (get_short ()));
1806 break;
1808 case op_tableswitch:
1810 skip_padding ();
1811 note_branch_target (compute_jump (get_int ()));
1812 jint low = get_int ();
1813 jint hi = get_int ();
1814 if (low > hi)
1815 verify_fail ("invalid tableswitch", start_PC);
1816 for (int i = low; i <= hi; ++i)
1817 note_branch_target (compute_jump (get_int ()));
1819 break;
1821 case op_lookupswitch:
1823 skip_padding ();
1824 note_branch_target (compute_jump (get_int ()));
1825 int npairs = get_int ();
1826 if (npairs < 0)
1827 verify_fail ("too few pairs in lookupswitch", start_PC);
1828 while (npairs-- > 0)
1830 get_int ();
1831 note_branch_target (compute_jump (get_int ()));
1834 break;
1836 case op_invokeinterface:
1837 get_short ();
1838 get_byte ();
1839 get_byte ();
1840 break;
1842 case op_wide:
1844 opcode = (java_opcode) get_byte ();
1845 get_short ();
1846 if (opcode == op_iinc)
1847 get_short ();
1849 break;
1851 case op_jsr_w:
1852 case op_goto_w:
1853 note_branch_target (compute_jump (get_int ()));
1854 break;
1856 // These are unused here, but we call them out explicitly
1857 // so that -Wswitch-enum doesn't complain.
1858 case op_putfield_1:
1859 case op_putfield_2:
1860 case op_putfield_4:
1861 case op_putfield_8:
1862 case op_putfield_a:
1863 case op_putstatic_1:
1864 case op_putstatic_2:
1865 case op_putstatic_4:
1866 case op_putstatic_8:
1867 case op_putstatic_a:
1868 case op_getfield_1:
1869 case op_getfield_2s:
1870 case op_getfield_2u:
1871 case op_getfield_4:
1872 case op_getfield_8:
1873 case op_getfield_a:
1874 case op_getstatic_1:
1875 case op_getstatic_2s:
1876 case op_getstatic_2u:
1877 case op_getstatic_4:
1878 case op_getstatic_8:
1879 case op_getstatic_a:
1880 default:
1881 verify_fail ("unrecognized instruction in branch_prepass",
1882 start_PC);
1885 // See if any previous branch tried to branch to the middle of
1886 // this instruction.
1887 for (int pc = start_PC + 1; pc < PC; ++pc)
1889 if ((flags[pc] & FLAG_BRANCH_TARGET))
1890 verify_fail ("branch to middle of instruction", pc);
1894 // Verify exception handlers.
1895 for (int i = 0; i < current_method->exc_count; ++i)
1897 if (! (flags[exception[i].handler_pc.i] & FLAG_INSN_START))
1898 verify_fail ("exception handler not at instruction start",
1899 exception[i].handler_pc.i);
1900 if (! (flags[exception[i].start_pc.i] & FLAG_INSN_START))
1901 verify_fail ("exception start not at instruction start",
1902 exception[i].start_pc.i);
1903 if (exception[i].end_pc.i != current_method->code_length
1904 && ! (flags[exception[i].end_pc.i] & FLAG_INSN_START))
1905 verify_fail ("exception end not at instruction start",
1906 exception[i].end_pc.i);
1908 flags[exception[i].handler_pc.i] |= FLAG_BRANCH_TARGET;
1912 void check_pool_index (int index)
1914 if (index < 0 || index >= current_class->constants.size)
1915 verify_fail ("constant pool index out of range", start_PC);
1918 type check_class_constant (int index)
1920 check_pool_index (index);
1921 _Jv_Constants *pool = &current_class->constants;
1922 if (pool->tags[index] == JV_CONSTANT_ResolvedClass)
1923 return type (pool->data[index].clazz, this);
1924 else if (pool->tags[index] == JV_CONSTANT_Class)
1925 return type (pool->data[index].utf8, this);
1926 verify_fail ("expected class constant", start_PC);
1929 type check_constant (int index)
1931 check_pool_index (index);
1932 _Jv_Constants *pool = &current_class->constants;
1933 if (pool->tags[index] == JV_CONSTANT_ResolvedString
1934 || pool->tags[index] == JV_CONSTANT_String)
1935 return type (&java::lang::String::class$, this);
1936 else if (pool->tags[index] == JV_CONSTANT_Integer)
1937 return type (int_type);
1938 else if (pool->tags[index] == JV_CONSTANT_Float)
1939 return type (float_type);
1940 verify_fail ("String, int, or float constant expected", start_PC);
1943 type check_wide_constant (int index)
1945 check_pool_index (index);
1946 _Jv_Constants *pool = &current_class->constants;
1947 if (pool->tags[index] == JV_CONSTANT_Long)
1948 return type (long_type);
1949 else if (pool->tags[index] == JV_CONSTANT_Double)
1950 return type (double_type);
1951 verify_fail ("long or double constant expected", start_PC);
1954 // Helper for both field and method. These are laid out the same in
1955 // the constant pool.
1956 type handle_field_or_method (int index, int expected,
1957 _Jv_Utf8Const **name,
1958 _Jv_Utf8Const **fmtype)
1960 check_pool_index (index);
1961 _Jv_Constants *pool = &current_class->constants;
1962 if (pool->tags[index] != expected)
1963 verify_fail ("didn't see expected constant", start_PC);
1964 // Once we know we have a Fieldref or Methodref we assume that it
1965 // is correctly laid out in the constant pool. I think the code
1966 // in defineclass.cc guarantees this.
1967 _Jv_ushort class_index, name_and_type_index;
1968 _Jv_loadIndexes (&pool->data[index],
1969 class_index,
1970 name_and_type_index);
1971 _Jv_ushort name_index, desc_index;
1972 _Jv_loadIndexes (&pool->data[name_and_type_index],
1973 name_index, desc_index);
1975 *name = pool->data[name_index].utf8;
1976 *fmtype = pool->data[desc_index].utf8;
1978 return check_class_constant (class_index);
1981 // Return field's type, compute class' type if requested.
1982 type check_field_constant (int index, type *class_type = NULL)
1984 _Jv_Utf8Const *name, *field_type;
1985 type ct = handle_field_or_method (index,
1986 JV_CONSTANT_Fieldref,
1987 &name, &field_type);
1988 if (class_type)
1989 *class_type = ct;
1990 if (field_type->data[0] == '[' || field_type->data[0] == 'L')
1991 return type (field_type, this);
1992 return get_type_val_for_signature (field_type->data[0]);
1995 type check_method_constant (int index, bool is_interface,
1996 _Jv_Utf8Const **method_name,
1997 _Jv_Utf8Const **method_signature)
1999 return handle_field_or_method (index,
2000 (is_interface
2001 ? JV_CONSTANT_InterfaceMethodref
2002 : JV_CONSTANT_Methodref),
2003 method_name, method_signature);
2006 type get_one_type (char *&p)
2008 char *start = p;
2010 int arraycount = 0;
2011 while (*p == '[')
2013 ++arraycount;
2014 ++p;
2017 char v = *p++;
2019 if (v == 'L')
2021 while (*p != ';')
2022 ++p;
2023 ++p;
2024 _Jv_Utf8Const *name = make_utf8_const (start, p - start);
2025 return type (name, this);
2028 // Casting to jchar here is ok since we are looking at an ASCII
2029 // character.
2030 type_val rt = get_type_val_for_signature (jchar (v));
2032 if (arraycount == 0)
2034 // Callers of this function eventually push their arguments on
2035 // the stack. So, promote them here.
2036 return type (rt).promote ();
2039 jclass k = construct_primitive_array_type (rt);
2040 while (--arraycount > 0)
2041 k = _Jv_GetArrayClass (k, NULL);
2042 return type (k, this);
2045 void compute_argument_types (_Jv_Utf8Const *signature,
2046 type *types)
2048 char *p = signature->data;
2049 // Skip `('.
2050 ++p;
2052 int i = 0;
2053 while (*p != ')')
2054 types[i++] = get_one_type (p);
2057 type compute_return_type (_Jv_Utf8Const *signature)
2059 char *p = signature->data;
2060 while (*p != ')')
2061 ++p;
2062 ++p;
2063 return get_one_type (p);
2066 void check_return_type (type onstack)
2068 type rt = compute_return_type (current_method->self->signature);
2069 if (! rt.compatible (onstack, this))
2070 verify_fail ("incompatible return type");
2073 // Initialize the stack for the new method. Returns true if this
2074 // method is an instance initializer.
2075 bool initialize_stack ()
2077 int var = 0;
2078 bool is_init = _Jv_equalUtf8Consts (current_method->self->name,
2079 gcj::init_name);
2080 bool is_clinit = _Jv_equalUtf8Consts (current_method->self->name,
2081 gcj::clinit_name);
2083 using namespace java::lang::reflect;
2084 if (! Modifier::isStatic (current_method->self->accflags))
2086 type kurr (current_class, this);
2087 if (is_init)
2089 kurr.set_uninitialized (type::SELF, this);
2090 is_init = true;
2092 else if (is_clinit)
2093 verify_fail ("<clinit> method must be static");
2094 set_variable (0, kurr);
2095 current_state->set_this_type (kurr);
2096 ++var;
2098 else
2100 if (is_init)
2101 verify_fail ("<init> method must be non-static");
2104 // We have to handle wide arguments specially here.
2105 int arg_count = _Jv_count_arguments (current_method->self->signature);
2106 type arg_types[arg_count];
2107 compute_argument_types (current_method->self->signature, arg_types);
2108 for (int i = 0; i < arg_count; ++i)
2110 set_variable (var, arg_types[i]);
2111 ++var;
2112 if (arg_types[i].iswide ())
2113 ++var;
2116 return is_init;
2119 void verify_instructions_0 ()
2121 current_state = new state (current_method->max_stack,
2122 current_method->max_locals);
2124 PC = 0;
2125 start_PC = 0;
2127 // True if we are verifying an instance initializer.
2128 bool this_is_init = initialize_stack ();
2130 states = (linked<state> **) _Jv_Malloc (sizeof (linked<state> *)
2131 * current_method->code_length);
2132 for (int i = 0; i < current_method->code_length; ++i)
2133 states[i] = NULL;
2135 next_verify_state = NULL;
2137 while (true)
2139 // If the PC was invalidated, get a new one from the work list.
2140 if (PC == state::NO_NEXT)
2142 state *new_state = pop_jump ();
2143 // If it is null, we're done.
2144 if (new_state == NULL)
2145 break;
2147 PC = new_state->get_pc ();
2148 debug_print ("== State pop from pending list\n");
2149 // Set up the current state.
2150 current_state->copy (new_state, current_method->max_stack,
2151 current_method->max_locals);
2153 else
2155 // We only have to do this checking in the situation where
2156 // control flow falls through from the previous
2157 // instruction. Otherwise merging is done at the time we
2158 // push the branch.
2159 if (states[PC] != NULL)
2161 // We've already visited this instruction. So merge
2162 // the states together. It is simplest, but not most
2163 // efficient, to just always invalidate the PC here.
2164 merge_into (PC, current_state);
2165 invalidate_pc ();
2166 continue;
2170 // Control can't fall off the end of the bytecode. We need to
2171 // check this in both cases, not just the fall-through case,
2172 // because we don't check to see whether a `jsr' appears at
2173 // the end of the bytecode until we process a `ret'.
2174 if (PC >= current_method->code_length)
2175 verify_fail ("fell off end");
2177 // We only have to keep saved state at branch targets. If
2178 // we're at a branch target and the state here hasn't been set
2179 // yet, we set it now. You might notice that `ret' targets
2180 // won't necessarily have FLAG_BRANCH_TARGET set. This
2181 // doesn't matter, since those states will be filled in by
2182 // merge_into.
2183 if (states[PC] == NULL && (flags[PC] & FLAG_BRANCH_TARGET))
2184 add_new_state (PC, current_state);
2186 // Set this before handling exceptions so that debug output is
2187 // sane.
2188 start_PC = PC;
2190 // Update states for all active exception handlers. Ordinarily
2191 // there are not many exception handlers. So we simply run
2192 // through them all.
2193 for (int i = 0; i < current_method->exc_count; ++i)
2195 if (PC >= exception[i].start_pc.i && PC < exception[i].end_pc.i)
2197 type handler (&java::lang::Throwable::class$, this);
2198 if (exception[i].handler_type.i != 0)
2199 handler = check_class_constant (exception[i].handler_type.i);
2200 push_exception_jump (handler, exception[i].handler_pc.i);
2204 current_state->print (" ", PC, current_method->max_stack,
2205 current_method->max_locals);
2206 java_opcode opcode = (java_opcode) bytecode[PC++];
2207 switch (opcode)
2209 case op_nop:
2210 break;
2212 case op_aconst_null:
2213 push_type (null_type);
2214 break;
2216 case op_iconst_m1:
2217 case op_iconst_0:
2218 case op_iconst_1:
2219 case op_iconst_2:
2220 case op_iconst_3:
2221 case op_iconst_4:
2222 case op_iconst_5:
2223 push_type (int_type);
2224 break;
2226 case op_lconst_0:
2227 case op_lconst_1:
2228 push_type (long_type);
2229 break;
2231 case op_fconst_0:
2232 case op_fconst_1:
2233 case op_fconst_2:
2234 push_type (float_type);
2235 break;
2237 case op_dconst_0:
2238 case op_dconst_1:
2239 push_type (double_type);
2240 break;
2242 case op_bipush:
2243 get_byte ();
2244 push_type (int_type);
2245 break;
2247 case op_sipush:
2248 get_short ();
2249 push_type (int_type);
2250 break;
2252 case op_ldc:
2253 push_type (check_constant (get_byte ()));
2254 break;
2255 case op_ldc_w:
2256 push_type (check_constant (get_ushort ()));
2257 break;
2258 case op_ldc2_w:
2259 push_type (check_wide_constant (get_ushort ()));
2260 break;
2262 case op_iload:
2263 push_type (get_variable (get_byte (), int_type));
2264 break;
2265 case op_lload:
2266 push_type (get_variable (get_byte (), long_type));
2267 break;
2268 case op_fload:
2269 push_type (get_variable (get_byte (), float_type));
2270 break;
2271 case op_dload:
2272 push_type (get_variable (get_byte (), double_type));
2273 break;
2274 case op_aload:
2275 push_type (get_variable (get_byte (), reference_type));
2276 break;
2278 case op_iload_0:
2279 case op_iload_1:
2280 case op_iload_2:
2281 case op_iload_3:
2282 push_type (get_variable (opcode - op_iload_0, int_type));
2283 break;
2284 case op_lload_0:
2285 case op_lload_1:
2286 case op_lload_2:
2287 case op_lload_3:
2288 push_type (get_variable (opcode - op_lload_0, long_type));
2289 break;
2290 case op_fload_0:
2291 case op_fload_1:
2292 case op_fload_2:
2293 case op_fload_3:
2294 push_type (get_variable (opcode - op_fload_0, float_type));
2295 break;
2296 case op_dload_0:
2297 case op_dload_1:
2298 case op_dload_2:
2299 case op_dload_3:
2300 push_type (get_variable (opcode - op_dload_0, double_type));
2301 break;
2302 case op_aload_0:
2303 case op_aload_1:
2304 case op_aload_2:
2305 case op_aload_3:
2306 push_type (get_variable (opcode - op_aload_0, reference_type));
2307 break;
2308 case op_iaload:
2309 pop_type (int_type);
2310 push_type (require_array_type (pop_init_ref (reference_type),
2311 int_type));
2312 break;
2313 case op_laload:
2314 pop_type (int_type);
2315 push_type (require_array_type (pop_init_ref (reference_type),
2316 long_type));
2317 break;
2318 case op_faload:
2319 pop_type (int_type);
2320 push_type (require_array_type (pop_init_ref (reference_type),
2321 float_type));
2322 break;
2323 case op_daload:
2324 pop_type (int_type);
2325 push_type (require_array_type (pop_init_ref (reference_type),
2326 double_type));
2327 break;
2328 case op_aaload:
2329 pop_type (int_type);
2330 push_type (require_array_type (pop_init_ref (reference_type),
2331 reference_type));
2332 break;
2333 case op_baload:
2334 pop_type (int_type);
2335 require_array_type (pop_init_ref (reference_type), byte_type);
2336 push_type (int_type);
2337 break;
2338 case op_caload:
2339 pop_type (int_type);
2340 require_array_type (pop_init_ref (reference_type), char_type);
2341 push_type (int_type);
2342 break;
2343 case op_saload:
2344 pop_type (int_type);
2345 require_array_type (pop_init_ref (reference_type), short_type);
2346 push_type (int_type);
2347 break;
2348 case op_istore:
2349 set_variable (get_byte (), pop_type (int_type));
2350 break;
2351 case op_lstore:
2352 set_variable (get_byte (), pop_type (long_type));
2353 break;
2354 case op_fstore:
2355 set_variable (get_byte (), pop_type (float_type));
2356 break;
2357 case op_dstore:
2358 set_variable (get_byte (), pop_type (double_type));
2359 break;
2360 case op_astore:
2361 set_variable (get_byte (), pop_ref_or_return ());
2362 break;
2363 case op_istore_0:
2364 case op_istore_1:
2365 case op_istore_2:
2366 case op_istore_3:
2367 set_variable (opcode - op_istore_0, pop_type (int_type));
2368 break;
2369 case op_lstore_0:
2370 case op_lstore_1:
2371 case op_lstore_2:
2372 case op_lstore_3:
2373 set_variable (opcode - op_lstore_0, pop_type (long_type));
2374 break;
2375 case op_fstore_0:
2376 case op_fstore_1:
2377 case op_fstore_2:
2378 case op_fstore_3:
2379 set_variable (opcode - op_fstore_0, pop_type (float_type));
2380 break;
2381 case op_dstore_0:
2382 case op_dstore_1:
2383 case op_dstore_2:
2384 case op_dstore_3:
2385 set_variable (opcode - op_dstore_0, pop_type (double_type));
2386 break;
2387 case op_astore_0:
2388 case op_astore_1:
2389 case op_astore_2:
2390 case op_astore_3:
2391 set_variable (opcode - op_astore_0, pop_ref_or_return ());
2392 break;
2393 case op_iastore:
2394 pop_type (int_type);
2395 pop_type (int_type);
2396 require_array_type (pop_init_ref (reference_type), int_type);
2397 break;
2398 case op_lastore:
2399 pop_type (long_type);
2400 pop_type (int_type);
2401 require_array_type (pop_init_ref (reference_type), long_type);
2402 break;
2403 case op_fastore:
2404 pop_type (float_type);
2405 pop_type (int_type);
2406 require_array_type (pop_init_ref (reference_type), float_type);
2407 break;
2408 case op_dastore:
2409 pop_type (double_type);
2410 pop_type (int_type);
2411 require_array_type (pop_init_ref (reference_type), double_type);
2412 break;
2413 case op_aastore:
2414 pop_type (reference_type);
2415 pop_type (int_type);
2416 require_array_type (pop_init_ref (reference_type), reference_type);
2417 break;
2418 case op_bastore:
2419 pop_type (int_type);
2420 pop_type (int_type);
2421 require_array_type (pop_init_ref (reference_type), byte_type);
2422 break;
2423 case op_castore:
2424 pop_type (int_type);
2425 pop_type (int_type);
2426 require_array_type (pop_init_ref (reference_type), char_type);
2427 break;
2428 case op_sastore:
2429 pop_type (int_type);
2430 pop_type (int_type);
2431 require_array_type (pop_init_ref (reference_type), short_type);
2432 break;
2433 case op_pop:
2434 pop32 ();
2435 break;
2436 case op_pop2:
2438 type t = pop_raw ();
2439 if (! t.iswide ())
2440 pop32 ();
2442 break;
2443 case op_dup:
2445 type t = pop32 ();
2446 push_type (t);
2447 push_type (t);
2449 break;
2450 case op_dup_x1:
2452 type t1 = pop32 ();
2453 type t2 = pop32 ();
2454 push_type (t1);
2455 push_type (t2);
2456 push_type (t1);
2458 break;
2459 case op_dup_x2:
2461 type t1 = pop32 ();
2462 type t2 = pop_raw ();
2463 if (! t2.iswide ())
2465 type t3 = pop32 ();
2466 push_type (t1);
2467 push_type (t3);
2469 else
2470 push_type (t1);
2471 push_type (t2);
2472 push_type (t1);
2474 break;
2475 case op_dup2:
2477 type t = pop_raw ();
2478 if (! t.iswide ())
2480 type t2 = pop32 ();
2481 push_type (t2);
2482 push_type (t);
2483 push_type (t2);
2485 else
2486 push_type (t);
2487 push_type (t);
2489 break;
2490 case op_dup2_x1:
2492 type t1 = pop_raw ();
2493 type t2 = pop32 ();
2494 if (! t1.iswide ())
2496 type t3 = pop32 ();
2497 push_type (t2);
2498 push_type (t1);
2499 push_type (t3);
2501 else
2502 push_type (t1);
2503 push_type (t2);
2504 push_type (t1);
2506 break;
2507 case op_dup2_x2:
2509 type t1 = pop_raw ();
2510 if (t1.iswide ())
2512 type t2 = pop_raw ();
2513 if (t2.iswide ())
2515 push_type (t1);
2516 push_type (t2);
2518 else
2520 type t3 = pop32 ();
2521 push_type (t1);
2522 push_type (t3);
2523 push_type (t2);
2525 push_type (t1);
2527 else
2529 type t2 = pop32 ();
2530 type t3 = pop_raw ();
2531 if (t3.iswide ())
2533 push_type (t2);
2534 push_type (t1);
2536 else
2538 type t4 = pop32 ();
2539 push_type (t2);
2540 push_type (t1);
2541 push_type (t4);
2543 push_type (t3);
2544 push_type (t2);
2545 push_type (t1);
2548 break;
2549 case op_swap:
2551 type t1 = pop32 ();
2552 type t2 = pop32 ();
2553 push_type (t1);
2554 push_type (t2);
2556 break;
2557 case op_iadd:
2558 case op_isub:
2559 case op_imul:
2560 case op_idiv:
2561 case op_irem:
2562 case op_ishl:
2563 case op_ishr:
2564 case op_iushr:
2565 case op_iand:
2566 case op_ior:
2567 case op_ixor:
2568 pop_type (int_type);
2569 push_type (pop_type (int_type));
2570 break;
2571 case op_ladd:
2572 case op_lsub:
2573 case op_lmul:
2574 case op_ldiv:
2575 case op_lrem:
2576 case op_land:
2577 case op_lor:
2578 case op_lxor:
2579 pop_type (long_type);
2580 push_type (pop_type (long_type));
2581 break;
2582 case op_lshl:
2583 case op_lshr:
2584 case op_lushr:
2585 pop_type (int_type);
2586 push_type (pop_type (long_type));
2587 break;
2588 case op_fadd:
2589 case op_fsub:
2590 case op_fmul:
2591 case op_fdiv:
2592 case op_frem:
2593 pop_type (float_type);
2594 push_type (pop_type (float_type));
2595 break;
2596 case op_dadd:
2597 case op_dsub:
2598 case op_dmul:
2599 case op_ddiv:
2600 case op_drem:
2601 pop_type (double_type);
2602 push_type (pop_type (double_type));
2603 break;
2604 case op_ineg:
2605 case op_i2b:
2606 case op_i2c:
2607 case op_i2s:
2608 push_type (pop_type (int_type));
2609 break;
2610 case op_lneg:
2611 push_type (pop_type (long_type));
2612 break;
2613 case op_fneg:
2614 push_type (pop_type (float_type));
2615 break;
2616 case op_dneg:
2617 push_type (pop_type (double_type));
2618 break;
2619 case op_iinc:
2620 get_variable (get_byte (), int_type);
2621 get_byte ();
2622 break;
2623 case op_i2l:
2624 pop_type (int_type);
2625 push_type (long_type);
2626 break;
2627 case op_i2f:
2628 pop_type (int_type);
2629 push_type (float_type);
2630 break;
2631 case op_i2d:
2632 pop_type (int_type);
2633 push_type (double_type);
2634 break;
2635 case op_l2i:
2636 pop_type (long_type);
2637 push_type (int_type);
2638 break;
2639 case op_l2f:
2640 pop_type (long_type);
2641 push_type (float_type);
2642 break;
2643 case op_l2d:
2644 pop_type (long_type);
2645 push_type (double_type);
2646 break;
2647 case op_f2i:
2648 pop_type (float_type);
2649 push_type (int_type);
2650 break;
2651 case op_f2l:
2652 pop_type (float_type);
2653 push_type (long_type);
2654 break;
2655 case op_f2d:
2656 pop_type (float_type);
2657 push_type (double_type);
2658 break;
2659 case op_d2i:
2660 pop_type (double_type);
2661 push_type (int_type);
2662 break;
2663 case op_d2l:
2664 pop_type (double_type);
2665 push_type (long_type);
2666 break;
2667 case op_d2f:
2668 pop_type (double_type);
2669 push_type (float_type);
2670 break;
2671 case op_lcmp:
2672 pop_type (long_type);
2673 pop_type (long_type);
2674 push_type (int_type);
2675 break;
2676 case op_fcmpl:
2677 case op_fcmpg:
2678 pop_type (float_type);
2679 pop_type (float_type);
2680 push_type (int_type);
2681 break;
2682 case op_dcmpl:
2683 case op_dcmpg:
2684 pop_type (double_type);
2685 pop_type (double_type);
2686 push_type (int_type);
2687 break;
2688 case op_ifeq:
2689 case op_ifne:
2690 case op_iflt:
2691 case op_ifge:
2692 case op_ifgt:
2693 case op_ifle:
2694 pop_type (int_type);
2695 push_jump (get_short ());
2696 break;
2697 case op_if_icmpeq:
2698 case op_if_icmpne:
2699 case op_if_icmplt:
2700 case op_if_icmpge:
2701 case op_if_icmpgt:
2702 case op_if_icmple:
2703 pop_type (int_type);
2704 pop_type (int_type);
2705 push_jump (get_short ());
2706 break;
2707 case op_if_acmpeq:
2708 case op_if_acmpne:
2709 pop_type (reference_type);
2710 pop_type (reference_type);
2711 push_jump (get_short ());
2712 break;
2713 case op_goto:
2714 push_jump (get_short ());
2715 invalidate_pc ();
2716 break;
2717 case op_jsr:
2718 handle_jsr_insn (get_short ());
2719 break;
2720 case op_ret:
2721 handle_ret_insn (get_byte ());
2722 break;
2723 case op_tableswitch:
2725 pop_type (int_type);
2726 skip_padding ();
2727 push_jump (get_int ());
2728 jint low = get_int ();
2729 jint high = get_int ();
2730 // Already checked LOW -vs- HIGH.
2731 for (int i = low; i <= high; ++i)
2732 push_jump (get_int ());
2733 invalidate_pc ();
2735 break;
2737 case op_lookupswitch:
2739 pop_type (int_type);
2740 skip_padding ();
2741 push_jump (get_int ());
2742 jint npairs = get_int ();
2743 // Already checked NPAIRS >= 0.
2744 jint lastkey = 0;
2745 for (int i = 0; i < npairs; ++i)
2747 jint key = get_int ();
2748 if (i > 0 && key <= lastkey)
2749 verify_fail ("lookupswitch pairs unsorted", start_PC);
2750 lastkey = key;
2751 push_jump (get_int ());
2753 invalidate_pc ();
2755 break;
2756 case op_ireturn:
2757 check_return_type (pop_type (int_type));
2758 invalidate_pc ();
2759 break;
2760 case op_lreturn:
2761 check_return_type (pop_type (long_type));
2762 invalidate_pc ();
2763 break;
2764 case op_freturn:
2765 check_return_type (pop_type (float_type));
2766 invalidate_pc ();
2767 break;
2768 case op_dreturn:
2769 check_return_type (pop_type (double_type));
2770 invalidate_pc ();
2771 break;
2772 case op_areturn:
2773 check_return_type (pop_init_ref (reference_type));
2774 invalidate_pc ();
2775 break;
2776 case op_return:
2777 // We only need to check this when the return type is
2778 // void, because all instance initializers return void.
2779 if (this_is_init)
2780 current_state->check_this_initialized (this);
2781 check_return_type (void_type);
2782 invalidate_pc ();
2783 break;
2784 case op_getstatic:
2785 push_type (check_field_constant (get_ushort ()));
2786 break;
2787 case op_putstatic:
2788 pop_type (check_field_constant (get_ushort ()));
2789 break;
2790 case op_getfield:
2792 type klass;
2793 type field = check_field_constant (get_ushort (), &klass);
2794 pop_type (klass);
2795 push_type (field);
2797 break;
2798 case op_putfield:
2800 type klass;
2801 type field = check_field_constant (get_ushort (), &klass);
2802 pop_type (field);
2804 // We have an obscure special case here: we can use
2805 // `putfield' on a field declared in this class, even if
2806 // `this' has not yet been initialized.
2807 if (! current_state->this_type.isinitialized ()
2808 && current_state->this_type.pc == type::SELF)
2809 klass.set_uninitialized (type::SELF, this);
2810 pop_type (klass);
2812 break;
2814 case op_invokevirtual:
2815 case op_invokespecial:
2816 case op_invokestatic:
2817 case op_invokeinterface:
2819 _Jv_Utf8Const *method_name, *method_signature;
2820 type class_type
2821 = check_method_constant (get_ushort (),
2822 opcode == op_invokeinterface,
2823 &method_name,
2824 &method_signature);
2825 // NARGS is only used when we're processing
2826 // invokeinterface. It is simplest for us to compute it
2827 // here and then verify it later.
2828 int nargs = 0;
2829 if (opcode == op_invokeinterface)
2831 nargs = get_byte ();
2832 if (get_byte () != 0)
2833 verify_fail ("invokeinterface dummy byte is wrong");
2836 bool is_init = false;
2837 if (_Jv_equalUtf8Consts (method_name, gcj::init_name))
2839 is_init = true;
2840 if (opcode != op_invokespecial)
2841 verify_fail ("can't invoke <init>");
2843 else if (method_name->data[0] == '<')
2844 verify_fail ("can't invoke method starting with `<'");
2846 // Pop arguments and check types.
2847 int arg_count = _Jv_count_arguments (method_signature);
2848 type arg_types[arg_count];
2849 compute_argument_types (method_signature, arg_types);
2850 for (int i = arg_count - 1; i >= 0; --i)
2852 // This is only used for verifying the byte for
2853 // invokeinterface.
2854 nargs -= arg_types[i].depth ();
2855 pop_init_ref (arg_types[i]);
2858 if (opcode == op_invokeinterface
2859 && nargs != 1)
2860 verify_fail ("wrong argument count for invokeinterface");
2862 if (opcode != op_invokestatic)
2864 type t = class_type;
2865 if (is_init)
2867 // In this case the PC doesn't matter.
2868 t.set_uninitialized (type::UNINIT, this);
2869 // FIXME: check to make sure that the <init>
2870 // call is to the right class.
2871 // It must either be super or an exact class
2872 // match.
2874 type raw = pop_raw ();
2875 if (! t.compatible (raw, this))
2876 verify_fail ("incompatible type on stack");
2878 if (is_init)
2879 current_state->set_initialized (raw.get_pc (),
2880 current_method->max_locals);
2883 type rt = compute_return_type (method_signature);
2884 if (! rt.isvoid ())
2885 push_type (rt);
2887 break;
2889 case op_new:
2891 type t = check_class_constant (get_ushort ());
2892 if (t.isarray () || t.isinterface (this) || t.isabstract (this))
2893 verify_fail ("type is array, interface, or abstract");
2894 t.set_uninitialized (start_PC, this);
2895 push_type (t);
2897 break;
2899 case op_newarray:
2901 int atype = get_byte ();
2902 // We intentionally have chosen constants to make this
2903 // valid.
2904 if (atype < boolean_type || atype > long_type)
2905 verify_fail ("type not primitive", start_PC);
2906 pop_type (int_type);
2907 type t (construct_primitive_array_type (type_val (atype)), this);
2908 push_type (t);
2910 break;
2911 case op_anewarray:
2912 pop_type (int_type);
2913 push_type (check_class_constant (get_ushort ()).to_array (this));
2914 break;
2915 case op_arraylength:
2917 type t = pop_init_ref (reference_type);
2918 if (! t.isarray () && ! t.isnull ())
2919 verify_fail ("array type expected");
2920 push_type (int_type);
2922 break;
2923 case op_athrow:
2924 pop_type (type (&java::lang::Throwable::class$, this));
2925 invalidate_pc ();
2926 break;
2927 case op_checkcast:
2928 pop_init_ref (reference_type);
2929 push_type (check_class_constant (get_ushort ()));
2930 break;
2931 case op_instanceof:
2932 pop_init_ref (reference_type);
2933 check_class_constant (get_ushort ());
2934 push_type (int_type);
2935 break;
2936 case op_monitorenter:
2937 pop_init_ref (reference_type);
2938 break;
2939 case op_monitorexit:
2940 pop_init_ref (reference_type);
2941 break;
2942 case op_wide:
2944 switch (get_byte ())
2946 case op_iload:
2947 push_type (get_variable (get_ushort (), int_type));
2948 break;
2949 case op_lload:
2950 push_type (get_variable (get_ushort (), long_type));
2951 break;
2952 case op_fload:
2953 push_type (get_variable (get_ushort (), float_type));
2954 break;
2955 case op_dload:
2956 push_type (get_variable (get_ushort (), double_type));
2957 break;
2958 case op_aload:
2959 push_type (get_variable (get_ushort (), reference_type));
2960 break;
2961 case op_istore:
2962 set_variable (get_ushort (), pop_type (int_type));
2963 break;
2964 case op_lstore:
2965 set_variable (get_ushort (), pop_type (long_type));
2966 break;
2967 case op_fstore:
2968 set_variable (get_ushort (), pop_type (float_type));
2969 break;
2970 case op_dstore:
2971 set_variable (get_ushort (), pop_type (double_type));
2972 break;
2973 case op_astore:
2974 set_variable (get_ushort (), pop_init_ref (reference_type));
2975 break;
2976 case op_ret:
2977 handle_ret_insn (get_short ());
2978 break;
2979 case op_iinc:
2980 get_variable (get_ushort (), int_type);
2981 get_short ();
2982 break;
2983 default:
2984 verify_fail ("unrecognized wide instruction", start_PC);
2987 break;
2988 case op_multianewarray:
2990 type atype = check_class_constant (get_ushort ());
2991 int dim = get_byte ();
2992 if (dim < 1)
2993 verify_fail ("too few dimensions to multianewarray", start_PC);
2994 atype.verify_dimensions (dim, this);
2995 for (int i = 0; i < dim; ++i)
2996 pop_type (int_type);
2997 push_type (atype);
2999 break;
3000 case op_ifnull:
3001 case op_ifnonnull:
3002 pop_type (reference_type);
3003 push_jump (get_short ());
3004 break;
3005 case op_goto_w:
3006 push_jump (get_int ());
3007 invalidate_pc ();
3008 break;
3009 case op_jsr_w:
3010 handle_jsr_insn (get_int ());
3011 break;
3013 // These are unused here, but we call them out explicitly
3014 // so that -Wswitch-enum doesn't complain.
3015 case op_putfield_1:
3016 case op_putfield_2:
3017 case op_putfield_4:
3018 case op_putfield_8:
3019 case op_putfield_a:
3020 case op_putstatic_1:
3021 case op_putstatic_2:
3022 case op_putstatic_4:
3023 case op_putstatic_8:
3024 case op_putstatic_a:
3025 case op_getfield_1:
3026 case op_getfield_2s:
3027 case op_getfield_2u:
3028 case op_getfield_4:
3029 case op_getfield_8:
3030 case op_getfield_a:
3031 case op_getstatic_1:
3032 case op_getstatic_2s:
3033 case op_getstatic_2u:
3034 case op_getstatic_4:
3035 case op_getstatic_8:
3036 case op_getstatic_a:
3037 default:
3038 // Unrecognized opcode.
3039 verify_fail ("unrecognized instruction in verify_instructions_0",
3040 start_PC);
3045 public:
3047 void verify_instructions ()
3049 branch_prepass ();
3050 verify_instructions_0 ();
3053 _Jv_BytecodeVerifier (_Jv_InterpMethod *m)
3055 // We just print the text as utf-8. This is just for debugging
3056 // anyway.
3057 debug_print ("--------------------------------\n");
3058 debug_print ("-- Verifying method `%s'\n", m->self->name->data);
3060 current_method = m;
3061 bytecode = m->bytecode ();
3062 exception = m->exceptions ();
3063 current_class = m->defining_class;
3065 states = NULL;
3066 flags = NULL;
3067 utf8_list = NULL;
3068 isect_list = NULL;
3071 ~_Jv_BytecodeVerifier ()
3073 if (flags)
3074 _Jv_Free (flags);
3076 while (utf8_list != NULL)
3078 linked<_Jv_Utf8Const> *n = utf8_list->next;
3079 _Jv_Free (utf8_list->val);
3080 _Jv_Free (utf8_list);
3081 utf8_list = n;
3084 while (isect_list != NULL)
3086 ref_intersection *next = isect_list->alloc_next;
3087 delete isect_list;
3088 isect_list = next;
3091 if (states)
3093 for (int i = 0; i < current_method->code_length; ++i)
3095 linked<state> *iter = states[i];
3096 while (iter != NULL)
3098 linked<state> *next = iter->next;
3099 delete iter->val;
3100 _Jv_Free (iter);
3101 iter = next;
3104 _Jv_Free (states);
3109 void
3110 _Jv_VerifyMethod (_Jv_InterpMethod *meth)
3112 _Jv_BytecodeVerifier v (meth);
3113 v.verify_instructions ();
3116 #endif /* INTERPRETER */