1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 [1] "Branch Prediction for Free"
24 Ball and Larus; PLDI '93.
25 [2] "Static Branch Frequency and Program Profile Analysis"
26 Wu and Larus; MICRO-27.
27 [3] "Corpus-based Static Branch Prediction"
28 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
33 #include "coretypes.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
46 #include "diagnostic-core.h"
56 #include "tree-flow.h"
58 #include "tree-dump.h"
59 #include "tree-pass.h"
61 #include "tree-scalar-evolution.h"
63 #include "pointer-set.h"
65 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
66 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
67 static sreal real_zero
, real_one
, real_almost_one
, real_br_prob_base
,
68 real_inv_br_prob_base
, real_one_half
, real_bb_freq_max
;
70 /* Random guesstimation given names.
71 PROV_VERY_UNLIKELY should be small enough so basic block predicted
72 by it gets bellow HOT_BB_FREQUENCY_FRANCTION. */
73 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 2000 - 1)
74 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
75 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
76 #define PROB_ALWAYS (REG_BR_PROB_BASE)
78 static void combine_predictions_for_insn (rtx
, basic_block
);
79 static void dump_prediction (FILE *, enum br_predictor
, int, basic_block
, int);
80 static void predict_paths_leading_to (basic_block
, enum br_predictor
, enum prediction
);
81 static void choose_function_section (void);
82 static bool can_predict_insn_p (const_rtx
);
84 /* Information we hold about each branch predictor.
85 Filled using information from predict.def. */
89 const char *const name
; /* Name used in the debugging dumps. */
90 const int hitrate
; /* Expected hitrate used by
91 predict_insn_def call. */
95 /* Use given predictor without Dempster-Shaffer theory if it matches
96 using first_match heuristics. */
97 #define PRED_FLAG_FIRST_MATCH 1
99 /* Recompute hitrate in percent to our representation. */
101 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
103 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
104 static const struct predictor_info predictor_info
[]= {
105 #include "predict.def"
107 /* Upper bound on predictors. */
112 /* Return TRUE if frequency FREQ is considered to be hot. */
115 maybe_hot_frequency_p (int freq
)
117 struct cgraph_node
*node
= cgraph_node (current_function_decl
);
118 if (!profile_info
|| !flag_branch_probabilities
)
120 if (node
->frequency
== NODE_FREQUENCY_UNLIKELY_EXECUTED
)
122 if (node
->frequency
== NODE_FREQUENCY_HOT
)
125 if (profile_status
== PROFILE_ABSENT
)
127 if (node
->frequency
== NODE_FREQUENCY_EXECUTED_ONCE
128 && freq
<= (ENTRY_BLOCK_PTR
->frequency
* 2 / 3))
130 if (freq
< BB_FREQ_MAX
/ PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION
))
135 /* Return TRUE if frequency FREQ is considered to be hot. */
138 maybe_hot_count_p (gcov_type count
)
140 if (profile_status
!= PROFILE_READ
)
142 /* Code executed at most once is not hot. */
143 if (profile_info
->runs
>= count
)
146 > profile_info
->sum_max
/ PARAM_VALUE (HOT_BB_COUNT_FRACTION
));
149 /* Return true in case BB can be CPU intensive and should be optimized
150 for maximal performance. */
153 maybe_hot_bb_p (const_basic_block bb
)
155 if (profile_status
== PROFILE_READ
)
156 return maybe_hot_count_p (bb
->count
);
157 return maybe_hot_frequency_p (bb
->frequency
);
160 /* Return true if the call can be hot. */
163 cgraph_maybe_hot_edge_p (struct cgraph_edge
*edge
)
165 if (profile_info
&& flag_branch_probabilities
167 <= profile_info
->sum_max
/ PARAM_VALUE (HOT_BB_COUNT_FRACTION
)))
169 if (edge
->caller
->frequency
== NODE_FREQUENCY_UNLIKELY_EXECUTED
170 || edge
->callee
->frequency
== NODE_FREQUENCY_UNLIKELY_EXECUTED
)
172 if (edge
->caller
->frequency
> NODE_FREQUENCY_UNLIKELY_EXECUTED
173 && edge
->callee
->frequency
<= NODE_FREQUENCY_EXECUTED_ONCE
)
177 if (edge
->caller
->frequency
== NODE_FREQUENCY_HOT
)
179 if (edge
->caller
->frequency
== NODE_FREQUENCY_EXECUTED_ONCE
180 && edge
->frequency
< CGRAPH_FREQ_BASE
* 3 / 2)
182 if (flag_guess_branch_prob
183 && edge
->frequency
<= (CGRAPH_FREQ_BASE
184 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION
)))
189 /* Return true in case BB can be CPU intensive and should be optimized
190 for maximal performance. */
193 maybe_hot_edge_p (edge e
)
195 if (profile_status
== PROFILE_READ
)
196 return maybe_hot_count_p (e
->count
);
197 return maybe_hot_frequency_p (EDGE_FREQUENCY (e
));
200 /* Return true in case BB is probably never executed. */
202 probably_never_executed_bb_p (const_basic_block bb
)
204 if (profile_info
&& flag_branch_probabilities
)
205 return ((bb
->count
+ profile_info
->runs
/ 2) / profile_info
->runs
) == 0;
206 if ((!profile_info
|| !flag_branch_probabilities
)
207 && cgraph_node (current_function_decl
)->frequency
== NODE_FREQUENCY_UNLIKELY_EXECUTED
)
212 /* Return true when current function should always be optimized for size. */
215 optimize_function_for_size_p (struct function
*fun
)
217 return (optimize_size
219 && (cgraph_node (fun
->decl
)->frequency
220 == NODE_FREQUENCY_UNLIKELY_EXECUTED
)));
223 /* Return true when current function should always be optimized for speed. */
226 optimize_function_for_speed_p (struct function
*fun
)
228 return !optimize_function_for_size_p (fun
);
231 /* Return TRUE when BB should be optimized for size. */
234 optimize_bb_for_size_p (const_basic_block bb
)
236 return optimize_function_for_size_p (cfun
) || !maybe_hot_bb_p (bb
);
239 /* Return TRUE when BB should be optimized for speed. */
242 optimize_bb_for_speed_p (const_basic_block bb
)
244 return !optimize_bb_for_size_p (bb
);
247 /* Return TRUE when BB should be optimized for size. */
250 optimize_edge_for_size_p (edge e
)
252 return optimize_function_for_size_p (cfun
) || !maybe_hot_edge_p (e
);
255 /* Return TRUE when BB should be optimized for speed. */
258 optimize_edge_for_speed_p (edge e
)
260 return !optimize_edge_for_size_p (e
);
263 /* Return TRUE when BB should be optimized for size. */
266 optimize_insn_for_size_p (void)
268 return optimize_function_for_size_p (cfun
) || !crtl
->maybe_hot_insn_p
;
271 /* Return TRUE when BB should be optimized for speed. */
274 optimize_insn_for_speed_p (void)
276 return !optimize_insn_for_size_p ();
279 /* Return TRUE when LOOP should be optimized for size. */
282 optimize_loop_for_size_p (struct loop
*loop
)
284 return optimize_bb_for_size_p (loop
->header
);
287 /* Return TRUE when LOOP should be optimized for speed. */
290 optimize_loop_for_speed_p (struct loop
*loop
)
292 return optimize_bb_for_speed_p (loop
->header
);
295 /* Return TRUE when LOOP nest should be optimized for speed. */
298 optimize_loop_nest_for_speed_p (struct loop
*loop
)
300 struct loop
*l
= loop
;
301 if (optimize_loop_for_speed_p (loop
))
304 while (l
&& l
!= loop
)
306 if (optimize_loop_for_speed_p (l
))
314 while (l
!= loop
&& !l
->next
)
323 /* Return TRUE when LOOP nest should be optimized for size. */
326 optimize_loop_nest_for_size_p (struct loop
*loop
)
328 return !optimize_loop_nest_for_speed_p (loop
);
331 /* Return true when edge E is likely to be well predictable by branch
335 predictable_edge_p (edge e
)
337 if (profile_status
== PROFILE_ABSENT
)
340 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME
) * REG_BR_PROB_BASE
/ 100)
341 || (REG_BR_PROB_BASE
- e
->probability
342 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME
) * REG_BR_PROB_BASE
/ 100))
348 /* Set RTL expansion for BB profile. */
351 rtl_profile_for_bb (basic_block bb
)
353 crtl
->maybe_hot_insn_p
= maybe_hot_bb_p (bb
);
356 /* Set RTL expansion for edge profile. */
359 rtl_profile_for_edge (edge e
)
361 crtl
->maybe_hot_insn_p
= maybe_hot_edge_p (e
);
364 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
366 default_rtl_profile (void)
368 crtl
->maybe_hot_insn_p
= true;
371 /* Return true if the one of outgoing edges is already predicted by
375 rtl_predicted_by_p (const_basic_block bb
, enum br_predictor predictor
)
378 if (!INSN_P (BB_END (bb
)))
380 for (note
= REG_NOTES (BB_END (bb
)); note
; note
= XEXP (note
, 1))
381 if (REG_NOTE_KIND (note
) == REG_BR_PRED
382 && INTVAL (XEXP (XEXP (note
, 0), 0)) == (int)predictor
)
387 /* This map contains for a basic block the list of predictions for the
390 static struct pointer_map_t
*bb_predictions
;
392 /* Return true if the one of outgoing edges is already predicted by
396 gimple_predicted_by_p (const_basic_block bb
, enum br_predictor predictor
)
398 struct edge_prediction
*i
;
399 void **preds
= pointer_map_contains (bb_predictions
, bb
);
404 for (i
= (struct edge_prediction
*) *preds
; i
; i
= i
->ep_next
)
405 if (i
->ep_predictor
== predictor
)
410 /* Return true when the probability of edge is reliable.
412 The profile guessing code is good at predicting branch outcome (ie.
413 taken/not taken), that is predicted right slightly over 75% of time.
414 It is however notoriously poor on predicting the probability itself.
415 In general the profile appear a lot flatter (with probabilities closer
416 to 50%) than the reality so it is bad idea to use it to drive optimization
417 such as those disabling dynamic branch prediction for well predictable
420 There are two exceptions - edges leading to noreturn edges and edges
421 predicted by number of iterations heuristics are predicted well. This macro
422 should be able to distinguish those, but at the moment it simply check for
423 noreturn heuristic that is only one giving probability over 99% or bellow
424 1%. In future we might want to propagate reliability information across the
425 CFG if we find this information useful on multiple places. */
427 probability_reliable_p (int prob
)
429 return (profile_status
== PROFILE_READ
430 || (profile_status
== PROFILE_GUESSED
431 && (prob
<= HITRATE (1) || prob
>= HITRATE (99))));
434 /* Same predicate as above, working on edges. */
436 edge_probability_reliable_p (const_edge e
)
438 return probability_reliable_p (e
->probability
);
441 /* Same predicate as edge_probability_reliable_p, working on notes. */
443 br_prob_note_reliable_p (const_rtx note
)
445 gcc_assert (REG_NOTE_KIND (note
) == REG_BR_PROB
);
446 return probability_reliable_p (INTVAL (XEXP (note
, 0)));
450 predict_insn (rtx insn
, enum br_predictor predictor
, int probability
)
452 gcc_assert (any_condjump_p (insn
));
453 if (!flag_guess_branch_prob
)
456 add_reg_note (insn
, REG_BR_PRED
,
457 gen_rtx_CONCAT (VOIDmode
,
458 GEN_INT ((int) predictor
),
459 GEN_INT ((int) probability
)));
462 /* Predict insn by given predictor. */
465 predict_insn_def (rtx insn
, enum br_predictor predictor
,
466 enum prediction taken
)
468 int probability
= predictor_info
[(int) predictor
].hitrate
;
471 probability
= REG_BR_PROB_BASE
- probability
;
473 predict_insn (insn
, predictor
, probability
);
476 /* Predict edge E with given probability if possible. */
479 rtl_predict_edge (edge e
, enum br_predictor predictor
, int probability
)
482 last_insn
= BB_END (e
->src
);
484 /* We can store the branch prediction information only about
485 conditional jumps. */
486 if (!any_condjump_p (last_insn
))
489 /* We always store probability of branching. */
490 if (e
->flags
& EDGE_FALLTHRU
)
491 probability
= REG_BR_PROB_BASE
- probability
;
493 predict_insn (last_insn
, predictor
, probability
);
496 /* Predict edge E with the given PROBABILITY. */
498 gimple_predict_edge (edge e
, enum br_predictor predictor
, int probability
)
500 gcc_assert (profile_status
!= PROFILE_GUESSED
);
501 if ((e
->src
!= ENTRY_BLOCK_PTR
&& EDGE_COUNT (e
->src
->succs
) > 1)
502 && flag_guess_branch_prob
&& optimize
)
504 struct edge_prediction
*i
= XNEW (struct edge_prediction
);
505 void **preds
= pointer_map_insert (bb_predictions
, e
->src
);
507 i
->ep_next
= (struct edge_prediction
*) *preds
;
509 i
->ep_probability
= probability
;
510 i
->ep_predictor
= predictor
;
515 /* Remove all predictions on given basic block that are attached
518 remove_predictions_associated_with_edge (edge e
)
525 preds
= pointer_map_contains (bb_predictions
, e
->src
);
529 struct edge_prediction
**prediction
= (struct edge_prediction
**) preds
;
530 struct edge_prediction
*next
;
534 if ((*prediction
)->ep_edge
== e
)
536 next
= (*prediction
)->ep_next
;
541 prediction
= &((*prediction
)->ep_next
);
546 /* Clears the list of predictions stored for BB. */
549 clear_bb_predictions (basic_block bb
)
551 void **preds
= pointer_map_contains (bb_predictions
, bb
);
552 struct edge_prediction
*pred
, *next
;
557 for (pred
= (struct edge_prediction
*) *preds
; pred
; pred
= next
)
559 next
= pred
->ep_next
;
565 /* Return true when we can store prediction on insn INSN.
566 At the moment we represent predictions only on conditional
567 jumps, not at computed jump or other complicated cases. */
569 can_predict_insn_p (const_rtx insn
)
571 return (JUMP_P (insn
)
572 && any_condjump_p (insn
)
573 && EDGE_COUNT (BLOCK_FOR_INSN (insn
)->succs
) >= 2);
576 /* Predict edge E by given predictor if possible. */
579 predict_edge_def (edge e
, enum br_predictor predictor
,
580 enum prediction taken
)
582 int probability
= predictor_info
[(int) predictor
].hitrate
;
585 probability
= REG_BR_PROB_BASE
- probability
;
587 predict_edge (e
, predictor
, probability
);
590 /* Invert all branch predictions or probability notes in the INSN. This needs
591 to be done each time we invert the condition used by the jump. */
594 invert_br_probabilities (rtx insn
)
598 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
599 if (REG_NOTE_KIND (note
) == REG_BR_PROB
)
600 XEXP (note
, 0) = GEN_INT (REG_BR_PROB_BASE
- INTVAL (XEXP (note
, 0)));
601 else if (REG_NOTE_KIND (note
) == REG_BR_PRED
)
602 XEXP (XEXP (note
, 0), 1)
603 = GEN_INT (REG_BR_PROB_BASE
- INTVAL (XEXP (XEXP (note
, 0), 1)));
606 /* Dump information about the branch prediction to the output file. */
609 dump_prediction (FILE *file
, enum br_predictor predictor
, int probability
,
610 basic_block bb
, int used
)
618 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
619 if (! (e
->flags
& EDGE_FALLTHRU
))
622 fprintf (file
, " %s heuristics%s: %.1f%%",
623 predictor_info
[predictor
].name
,
624 used
? "" : " (ignored)", probability
* 100.0 / REG_BR_PROB_BASE
);
628 fprintf (file
, " exec ");
629 fprintf (file
, HOST_WIDEST_INT_PRINT_DEC
, bb
->count
);
632 fprintf (file
, " hit ");
633 fprintf (file
, HOST_WIDEST_INT_PRINT_DEC
, e
->count
);
634 fprintf (file
, " (%.1f%%)", e
->count
* 100.0 / bb
->count
);
638 fprintf (file
, "\n");
641 /* We can not predict the probabilities of outgoing edges of bb. Set them
642 evenly and hope for the best. */
644 set_even_probabilities (basic_block bb
)
650 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
651 if (!(e
->flags
& (EDGE_EH
| EDGE_FAKE
)))
653 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
654 if (!(e
->flags
& (EDGE_EH
| EDGE_FAKE
)))
655 e
->probability
= (REG_BR_PROB_BASE
+ nedges
/ 2) / nedges
;
660 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
661 note if not already present. Remove now useless REG_BR_PRED notes. */
664 combine_predictions_for_insn (rtx insn
, basic_block bb
)
669 int best_probability
= PROB_EVEN
;
670 enum br_predictor best_predictor
= END_PREDICTORS
;
671 int combined_probability
= REG_BR_PROB_BASE
/ 2;
673 bool first_match
= false;
676 if (!can_predict_insn_p (insn
))
678 set_even_probabilities (bb
);
682 prob_note
= find_reg_note (insn
, REG_BR_PROB
, 0);
683 pnote
= ®_NOTES (insn
);
685 fprintf (dump_file
, "Predictions for insn %i bb %i\n", INSN_UID (insn
),
688 /* We implement "first match" heuristics and use probability guessed
689 by predictor with smallest index. */
690 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
691 if (REG_NOTE_KIND (note
) == REG_BR_PRED
)
693 enum br_predictor predictor
= ((enum br_predictor
)
694 INTVAL (XEXP (XEXP (note
, 0), 0)));
695 int probability
= INTVAL (XEXP (XEXP (note
, 0), 1));
698 if (best_predictor
> predictor
)
699 best_probability
= probability
, best_predictor
= predictor
;
701 d
= (combined_probability
* probability
702 + (REG_BR_PROB_BASE
- combined_probability
)
703 * (REG_BR_PROB_BASE
- probability
));
705 /* Use FP math to avoid overflows of 32bit integers. */
707 /* If one probability is 0% and one 100%, avoid division by zero. */
708 combined_probability
= REG_BR_PROB_BASE
/ 2;
710 combined_probability
= (((double) combined_probability
) * probability
711 * REG_BR_PROB_BASE
/ d
+ 0.5);
714 /* Decide which heuristic to use. In case we didn't match anything,
715 use no_prediction heuristic, in case we did match, use either
716 first match or Dempster-Shaffer theory depending on the flags. */
718 if (predictor_info
[best_predictor
].flags
& PRED_FLAG_FIRST_MATCH
)
722 dump_prediction (dump_file
, PRED_NO_PREDICTION
,
723 combined_probability
, bb
, true);
726 dump_prediction (dump_file
, PRED_DS_THEORY
, combined_probability
,
728 dump_prediction (dump_file
, PRED_FIRST_MATCH
, best_probability
,
733 combined_probability
= best_probability
;
734 dump_prediction (dump_file
, PRED_COMBINED
, combined_probability
, bb
, true);
738 if (REG_NOTE_KIND (*pnote
) == REG_BR_PRED
)
740 enum br_predictor predictor
= ((enum br_predictor
)
741 INTVAL (XEXP (XEXP (*pnote
, 0), 0)));
742 int probability
= INTVAL (XEXP (XEXP (*pnote
, 0), 1));
744 dump_prediction (dump_file
, predictor
, probability
, bb
,
745 !first_match
|| best_predictor
== predictor
);
746 *pnote
= XEXP (*pnote
, 1);
749 pnote
= &XEXP (*pnote
, 1);
754 add_reg_note (insn
, REG_BR_PROB
, GEN_INT (combined_probability
));
756 /* Save the prediction into CFG in case we are seeing non-degenerated
758 if (!single_succ_p (bb
))
760 BRANCH_EDGE (bb
)->probability
= combined_probability
;
761 FALLTHRU_EDGE (bb
)->probability
762 = REG_BR_PROB_BASE
- combined_probability
;
765 else if (!single_succ_p (bb
))
767 int prob
= INTVAL (XEXP (prob_note
, 0));
769 BRANCH_EDGE (bb
)->probability
= prob
;
770 FALLTHRU_EDGE (bb
)->probability
= REG_BR_PROB_BASE
- prob
;
773 single_succ_edge (bb
)->probability
= REG_BR_PROB_BASE
;
776 /* Combine predictions into single probability and store them into CFG.
777 Remove now useless prediction entries. */
780 combine_predictions_for_bb (basic_block bb
)
782 int best_probability
= PROB_EVEN
;
783 enum br_predictor best_predictor
= END_PREDICTORS
;
784 int combined_probability
= REG_BR_PROB_BASE
/ 2;
786 bool first_match
= false;
788 struct edge_prediction
*pred
;
790 edge e
, first
= NULL
, second
= NULL
;
794 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
795 if (!(e
->flags
& (EDGE_EH
| EDGE_FAKE
)))
798 if (first
&& !second
)
804 /* When there is no successor or only one choice, prediction is easy.
806 We are lazy for now and predict only basic blocks with two outgoing
807 edges. It is possible to predict generic case too, but we have to
808 ignore first match heuristics and do more involved combining. Implement
813 set_even_probabilities (bb
);
814 clear_bb_predictions (bb
);
816 fprintf (dump_file
, "%i edges in bb %i predicted to even probabilities\n",
822 fprintf (dump_file
, "Predictions for bb %i\n", bb
->index
);
824 preds
= pointer_map_contains (bb_predictions
, bb
);
827 /* We implement "first match" heuristics and use probability guessed
828 by predictor with smallest index. */
829 for (pred
= (struct edge_prediction
*) *preds
; pred
; pred
= pred
->ep_next
)
831 enum br_predictor predictor
= pred
->ep_predictor
;
832 int probability
= pred
->ep_probability
;
834 if (pred
->ep_edge
!= first
)
835 probability
= REG_BR_PROB_BASE
- probability
;
838 /* First match heuristics would be widly confused if we predicted
840 if (best_predictor
> predictor
)
842 struct edge_prediction
*pred2
;
843 int prob
= probability
;
845 for (pred2
= (struct edge_prediction
*) *preds
; pred2
; pred2
= pred2
->ep_next
)
846 if (pred2
!= pred
&& pred2
->ep_predictor
== pred
->ep_predictor
)
848 int probability2
= pred
->ep_probability
;
850 if (pred2
->ep_edge
!= first
)
851 probability2
= REG_BR_PROB_BASE
- probability2
;
853 if ((probability
< REG_BR_PROB_BASE
/ 2) !=
854 (probability2
< REG_BR_PROB_BASE
/ 2))
857 /* If the same predictor later gave better result, go for it! */
858 if ((probability
>= REG_BR_PROB_BASE
/ 2 && (probability2
> probability
))
859 || (probability
<= REG_BR_PROB_BASE
/ 2 && (probability2
< probability
)))
863 best_probability
= prob
, best_predictor
= predictor
;
866 d
= (combined_probability
* probability
867 + (REG_BR_PROB_BASE
- combined_probability
)
868 * (REG_BR_PROB_BASE
- probability
));
870 /* Use FP math to avoid overflows of 32bit integers. */
872 /* If one probability is 0% and one 100%, avoid division by zero. */
873 combined_probability
= REG_BR_PROB_BASE
/ 2;
875 combined_probability
= (((double) combined_probability
)
877 * REG_BR_PROB_BASE
/ d
+ 0.5);
881 /* Decide which heuristic to use. In case we didn't match anything,
882 use no_prediction heuristic, in case we did match, use either
883 first match or Dempster-Shaffer theory depending on the flags. */
885 if (predictor_info
[best_predictor
].flags
& PRED_FLAG_FIRST_MATCH
)
889 dump_prediction (dump_file
, PRED_NO_PREDICTION
, combined_probability
, bb
, true);
892 dump_prediction (dump_file
, PRED_DS_THEORY
, combined_probability
, bb
,
894 dump_prediction (dump_file
, PRED_FIRST_MATCH
, best_probability
, bb
,
899 combined_probability
= best_probability
;
900 dump_prediction (dump_file
, PRED_COMBINED
, combined_probability
, bb
, true);
904 for (pred
= (struct edge_prediction
*) *preds
; pred
; pred
= pred
->ep_next
)
906 enum br_predictor predictor
= pred
->ep_predictor
;
907 int probability
= pred
->ep_probability
;
909 if (pred
->ep_edge
!= EDGE_SUCC (bb
, 0))
910 probability
= REG_BR_PROB_BASE
- probability
;
911 dump_prediction (dump_file
, predictor
, probability
, bb
,
912 !first_match
|| best_predictor
== predictor
);
915 clear_bb_predictions (bb
);
919 first
->probability
= combined_probability
;
920 second
->probability
= REG_BR_PROB_BASE
- combined_probability
;
924 /* Predict edge probabilities by exploiting loop structure. */
932 /* Try to predict out blocks in a loop that are not part of a
934 FOR_EACH_LOOP (li
, loop
, 0)
936 basic_block bb
, *bbs
;
938 VEC (edge
, heap
) *exits
;
939 struct tree_niter_desc niter_desc
;
942 exits
= get_loop_exit_edges (loop
);
943 n_exits
= VEC_length (edge
, exits
);
945 for (j
= 0; VEC_iterate (edge
, exits
, j
, ex
); j
++)
948 HOST_WIDE_INT nitercst
;
949 int max
= PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS
);
951 enum br_predictor predictor
;
953 if (number_of_iterations_exit (loop
, ex
, &niter_desc
, false))
954 niter
= niter_desc
.niter
;
955 if (!niter
|| TREE_CODE (niter_desc
.niter
) != INTEGER_CST
)
956 niter
= loop_niter_by_eval (loop
, ex
);
958 if (TREE_CODE (niter
) == INTEGER_CST
)
960 if (host_integerp (niter
, 1)
961 && compare_tree_int (niter
, max
-1) == -1)
962 nitercst
= tree_low_cst (niter
, 1) + 1;
965 predictor
= PRED_LOOP_ITERATIONS
;
967 /* If we have just one exit and we can derive some information about
968 the number of iterations of the loop from the statements inside
969 the loop, use it to predict this exit. */
970 else if (n_exits
== 1)
972 nitercst
= estimated_loop_iterations_int (loop
, false);
978 predictor
= PRED_LOOP_ITERATIONS_GUESSED
;
983 probability
= ((REG_BR_PROB_BASE
+ nitercst
/ 2) / nitercst
);
984 predict_edge (ex
, predictor
, probability
);
986 VEC_free (edge
, heap
, exits
);
988 bbs
= get_loop_body (loop
);
990 for (j
= 0; j
< loop
->num_nodes
; j
++)
992 int header_found
= 0;
998 /* Bypass loop heuristics on continue statement. These
999 statements construct loops via "non-loop" constructs
1000 in the source language and are better to be handled
1002 if (predicted_by_p (bb
, PRED_CONTINUE
))
1005 /* Loop branch heuristics - predict an edge back to a
1006 loop's head as taken. */
1007 if (bb
== loop
->latch
)
1009 e
= find_edge (loop
->latch
, loop
->header
);
1013 predict_edge_def (e
, PRED_LOOP_BRANCH
, TAKEN
);
1017 /* Loop exit heuristics - predict an edge exiting the loop if the
1018 conditional has no loop header successors as not taken. */
1020 /* If we already used more reliable loop exit predictors, do not
1021 bother with PRED_LOOP_EXIT. */
1022 && !predicted_by_p (bb
, PRED_LOOP_ITERATIONS_GUESSED
)
1023 && !predicted_by_p (bb
, PRED_LOOP_ITERATIONS
))
1025 /* For loop with many exits we don't want to predict all exits
1026 with the pretty large probability, because if all exits are
1027 considered in row, the loop would be predicted to iterate
1028 almost never. The code to divide probability by number of
1029 exits is very rough. It should compute the number of exits
1030 taken in each patch through function (not the overall number
1031 of exits that might be a lot higher for loops with wide switch
1032 statements in them) and compute n-th square root.
1034 We limit the minimal probability by 2% to avoid
1035 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1036 as this was causing regression in perl benchmark containing such
1039 int probability
= ((REG_BR_PROB_BASE
1040 - predictor_info
[(int) PRED_LOOP_EXIT
].hitrate
)
1042 if (probability
< HITRATE (2))
1043 probability
= HITRATE (2);
1044 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1045 if (e
->dest
->index
< NUM_FIXED_BLOCKS
1046 || !flow_bb_inside_loop_p (loop
, e
->dest
))
1047 predict_edge (e
, PRED_LOOP_EXIT
, probability
);
1051 /* Free basic blocks from get_loop_body. */
1056 /* Attempt to predict probabilities of BB outgoing edges using local
1059 bb_estimate_probability_locally (basic_block bb
)
1061 rtx last_insn
= BB_END (bb
);
1064 if (! can_predict_insn_p (last_insn
))
1066 cond
= get_condition (last_insn
, NULL
, false, false);
1070 /* Try "pointer heuristic."
1071 A comparison ptr == 0 is predicted as false.
1072 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1073 if (COMPARISON_P (cond
)
1074 && ((REG_P (XEXP (cond
, 0)) && REG_POINTER (XEXP (cond
, 0)))
1075 || (REG_P (XEXP (cond
, 1)) && REG_POINTER (XEXP (cond
, 1)))))
1077 if (GET_CODE (cond
) == EQ
)
1078 predict_insn_def (last_insn
, PRED_POINTER
, NOT_TAKEN
);
1079 else if (GET_CODE (cond
) == NE
)
1080 predict_insn_def (last_insn
, PRED_POINTER
, TAKEN
);
1084 /* Try "opcode heuristic."
1085 EQ tests are usually false and NE tests are usually true. Also,
1086 most quantities are positive, so we can make the appropriate guesses
1087 about signed comparisons against zero. */
1088 switch (GET_CODE (cond
))
1091 /* Unconditional branch. */
1092 predict_insn_def (last_insn
, PRED_UNCONDITIONAL
,
1093 cond
== const0_rtx
? NOT_TAKEN
: TAKEN
);
1098 /* Floating point comparisons appears to behave in a very
1099 unpredictable way because of special role of = tests in
1101 if (FLOAT_MODE_P (GET_MODE (XEXP (cond
, 0))))
1103 /* Comparisons with 0 are often used for booleans and there is
1104 nothing useful to predict about them. */
1105 else if (XEXP (cond
, 1) == const0_rtx
1106 || XEXP (cond
, 0) == const0_rtx
)
1109 predict_insn_def (last_insn
, PRED_OPCODE_NONEQUAL
, NOT_TAKEN
);
1114 /* Floating point comparisons appears to behave in a very
1115 unpredictable way because of special role of = tests in
1117 if (FLOAT_MODE_P (GET_MODE (XEXP (cond
, 0))))
1119 /* Comparisons with 0 are often used for booleans and there is
1120 nothing useful to predict about them. */
1121 else if (XEXP (cond
, 1) == const0_rtx
1122 || XEXP (cond
, 0) == const0_rtx
)
1125 predict_insn_def (last_insn
, PRED_OPCODE_NONEQUAL
, TAKEN
);
1129 predict_insn_def (last_insn
, PRED_FPOPCODE
, TAKEN
);
1133 predict_insn_def (last_insn
, PRED_FPOPCODE
, NOT_TAKEN
);
1138 if (XEXP (cond
, 1) == const0_rtx
|| XEXP (cond
, 1) == const1_rtx
1139 || XEXP (cond
, 1) == constm1_rtx
)
1140 predict_insn_def (last_insn
, PRED_OPCODE_POSITIVE
, NOT_TAKEN
);
1145 if (XEXP (cond
, 1) == const0_rtx
|| XEXP (cond
, 1) == const1_rtx
1146 || XEXP (cond
, 1) == constm1_rtx
)
1147 predict_insn_def (last_insn
, PRED_OPCODE_POSITIVE
, TAKEN
);
1155 /* Set edge->probability for each successor edge of BB. */
1157 guess_outgoing_edge_probabilities (basic_block bb
)
1159 bb_estimate_probability_locally (bb
);
1160 combine_predictions_for_insn (BB_END (bb
), bb
);
1163 static tree
expr_expected_value (tree
, bitmap
);
1165 /* Helper function for expr_expected_value. */
1168 expr_expected_value_1 (tree type
, tree op0
, enum tree_code code
, tree op1
, bitmap visited
)
1172 if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
)
1174 if (TREE_CONSTANT (op0
))
1177 if (code
!= SSA_NAME
)
1180 def
= SSA_NAME_DEF_STMT (op0
);
1182 /* If we were already here, break the infinite cycle. */
1183 if (bitmap_bit_p (visited
, SSA_NAME_VERSION (op0
)))
1185 bitmap_set_bit (visited
, SSA_NAME_VERSION (op0
));
1187 if (gimple_code (def
) == GIMPLE_PHI
)
1189 /* All the arguments of the PHI node must have the same constant
1191 int i
, n
= gimple_phi_num_args (def
);
1192 tree val
= NULL
, new_val
;
1194 for (i
= 0; i
< n
; i
++)
1196 tree arg
= PHI_ARG_DEF (def
, i
);
1198 /* If this PHI has itself as an argument, we cannot
1199 determine the string length of this argument. However,
1200 if we can find an expected constant value for the other
1201 PHI args then we can still be sure that this is
1202 likely a constant. So be optimistic and just
1203 continue with the next argument. */
1204 if (arg
== PHI_RESULT (def
))
1207 new_val
= expr_expected_value (arg
, visited
);
1212 else if (!operand_equal_p (val
, new_val
, false))
1217 if (is_gimple_assign (def
))
1219 if (gimple_assign_lhs (def
) != op0
)
1222 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def
)),
1223 gimple_assign_rhs1 (def
),
1224 gimple_assign_rhs_code (def
),
1225 gimple_assign_rhs2 (def
),
1229 if (is_gimple_call (def
))
1231 tree decl
= gimple_call_fndecl (def
);
1234 if (DECL_BUILT_IN_CLASS (decl
) == BUILT_IN_NORMAL
1235 && DECL_FUNCTION_CODE (decl
) == BUILT_IN_EXPECT
)
1239 if (gimple_call_num_args (def
) != 2)
1241 val
= gimple_call_arg (def
, 0);
1242 if (TREE_CONSTANT (val
))
1244 return gimple_call_arg (def
, 1);
1251 if (get_gimple_rhs_class (code
) == GIMPLE_BINARY_RHS
)
1254 op0
= expr_expected_value (op0
, visited
);
1257 op1
= expr_expected_value (op1
, visited
);
1260 res
= fold_build2 (code
, type
, op0
, op1
);
1261 if (TREE_CONSTANT (res
))
1265 if (get_gimple_rhs_class (code
) == GIMPLE_UNARY_RHS
)
1268 op0
= expr_expected_value (op0
, visited
);
1271 res
= fold_build1 (code
, type
, op0
);
1272 if (TREE_CONSTANT (res
))
1279 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1280 The function is used by builtin_expect branch predictor so the evidence
1281 must come from this construct and additional possible constant folding.
1283 We may want to implement more involved value guess (such as value range
1284 propagation based prediction), but such tricks shall go to new
1288 expr_expected_value (tree expr
, bitmap visited
)
1290 enum tree_code code
;
1293 if (TREE_CONSTANT (expr
))
1296 extract_ops_from_tree (expr
, &code
, &op0
, &op1
);
1297 return expr_expected_value_1 (TREE_TYPE (expr
),
1298 op0
, code
, op1
, visited
);
1302 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
1303 we no longer need. */
1305 strip_predict_hints (void)
1313 gimple_stmt_iterator bi
;
1314 for (bi
= gsi_start_bb (bb
); !gsi_end_p (bi
);)
1316 gimple stmt
= gsi_stmt (bi
);
1318 if (gimple_code (stmt
) == GIMPLE_PREDICT
)
1320 gsi_remove (&bi
, true);
1323 else if (gimple_code (stmt
) == GIMPLE_CALL
)
1325 tree fndecl
= gimple_call_fndecl (stmt
);
1328 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
1329 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_EXPECT
1330 && gimple_call_num_args (stmt
) == 2)
1332 var
= gimple_call_lhs (stmt
);
1333 ass_stmt
= gimple_build_assign (var
, gimple_call_arg (stmt
, 0));
1335 gsi_replace (&bi
, ass_stmt
, true);
1344 /* Predict using opcode of the last statement in basic block. */
1346 tree_predict_by_opcode (basic_block bb
)
1348 gimple stmt
= last_stmt (bb
);
1357 if (!stmt
|| gimple_code (stmt
) != GIMPLE_COND
)
1359 FOR_EACH_EDGE (then_edge
, ei
, bb
->succs
)
1360 if (then_edge
->flags
& EDGE_TRUE_VALUE
)
1362 op0
= gimple_cond_lhs (stmt
);
1363 op1
= gimple_cond_rhs (stmt
);
1364 cmp
= gimple_cond_code (stmt
);
1365 type
= TREE_TYPE (op0
);
1366 visited
= BITMAP_ALLOC (NULL
);
1367 val
= expr_expected_value_1 (boolean_type_node
, op0
, cmp
, op1
, visited
);
1368 BITMAP_FREE (visited
);
1371 if (integer_zerop (val
))
1372 predict_edge_def (then_edge
, PRED_BUILTIN_EXPECT
, NOT_TAKEN
);
1374 predict_edge_def (then_edge
, PRED_BUILTIN_EXPECT
, TAKEN
);
1377 /* Try "pointer heuristic."
1378 A comparison ptr == 0 is predicted as false.
1379 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1380 if (POINTER_TYPE_P (type
))
1383 predict_edge_def (then_edge
, PRED_TREE_POINTER
, NOT_TAKEN
);
1384 else if (cmp
== NE_EXPR
)
1385 predict_edge_def (then_edge
, PRED_TREE_POINTER
, TAKEN
);
1389 /* Try "opcode heuristic."
1390 EQ tests are usually false and NE tests are usually true. Also,
1391 most quantities are positive, so we can make the appropriate guesses
1392 about signed comparisons against zero. */
1397 /* Floating point comparisons appears to behave in a very
1398 unpredictable way because of special role of = tests in
1400 if (FLOAT_TYPE_P (type
))
1402 /* Comparisons with 0 are often used for booleans and there is
1403 nothing useful to predict about them. */
1404 else if (integer_zerop (op0
) || integer_zerop (op1
))
1407 predict_edge_def (then_edge
, PRED_TREE_OPCODE_NONEQUAL
, NOT_TAKEN
);
1412 /* Floating point comparisons appears to behave in a very
1413 unpredictable way because of special role of = tests in
1415 if (FLOAT_TYPE_P (type
))
1417 /* Comparisons with 0 are often used for booleans and there is
1418 nothing useful to predict about them. */
1419 else if (integer_zerop (op0
)
1420 || integer_zerop (op1
))
1423 predict_edge_def (then_edge
, PRED_TREE_OPCODE_NONEQUAL
, TAKEN
);
1427 predict_edge_def (then_edge
, PRED_TREE_FPOPCODE
, TAKEN
);
1430 case UNORDERED_EXPR
:
1431 predict_edge_def (then_edge
, PRED_TREE_FPOPCODE
, NOT_TAKEN
);
1436 if (integer_zerop (op1
)
1437 || integer_onep (op1
)
1438 || integer_all_onesp (op1
)
1441 || real_minus_onep (op1
))
1442 predict_edge_def (then_edge
, PRED_TREE_OPCODE_POSITIVE
, NOT_TAKEN
);
1447 if (integer_zerop (op1
)
1448 || integer_onep (op1
)
1449 || integer_all_onesp (op1
)
1452 || real_minus_onep (op1
))
1453 predict_edge_def (then_edge
, PRED_TREE_OPCODE_POSITIVE
, TAKEN
);
1461 /* Try to guess whether the value of return means error code. */
1463 static enum br_predictor
1464 return_prediction (tree val
, enum prediction
*prediction
)
1468 return PRED_NO_PREDICTION
;
1469 /* Different heuristics for pointers and scalars. */
1470 if (POINTER_TYPE_P (TREE_TYPE (val
)))
1472 /* NULL is usually not returned. */
1473 if (integer_zerop (val
))
1475 *prediction
= NOT_TAKEN
;
1476 return PRED_NULL_RETURN
;
1479 else if (INTEGRAL_TYPE_P (TREE_TYPE (val
)))
1481 /* Negative return values are often used to indicate
1483 if (TREE_CODE (val
) == INTEGER_CST
1484 && tree_int_cst_sgn (val
) < 0)
1486 *prediction
= NOT_TAKEN
;
1487 return PRED_NEGATIVE_RETURN
;
1489 /* Constant return values seems to be commonly taken.
1490 Zero/one often represent booleans so exclude them from the
1492 if (TREE_CONSTANT (val
)
1493 && (!integer_zerop (val
) && !integer_onep (val
)))
1495 *prediction
= TAKEN
;
1496 return PRED_CONST_RETURN
;
1499 return PRED_NO_PREDICTION
;
1502 /* Find the basic block with return expression and look up for possible
1503 return value trying to apply RETURN_PREDICTION heuristics. */
1505 apply_return_prediction (void)
1507 gimple return_stmt
= NULL
;
1511 int phi_num_args
, i
;
1512 enum br_predictor pred
;
1513 enum prediction direction
;
1516 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
1518 return_stmt
= last_stmt (e
->src
);
1520 && gimple_code (return_stmt
) == GIMPLE_RETURN
)
1525 return_val
= gimple_return_retval (return_stmt
);
1528 if (TREE_CODE (return_val
) != SSA_NAME
1529 || !SSA_NAME_DEF_STMT (return_val
)
1530 || gimple_code (SSA_NAME_DEF_STMT (return_val
)) != GIMPLE_PHI
)
1532 phi
= SSA_NAME_DEF_STMT (return_val
);
1533 phi_num_args
= gimple_phi_num_args (phi
);
1534 pred
= return_prediction (PHI_ARG_DEF (phi
, 0), &direction
);
1536 /* Avoid the degenerate case where all return values form the function
1537 belongs to same category (ie they are all positive constants)
1538 so we can hardly say something about them. */
1539 for (i
= 1; i
< phi_num_args
; i
++)
1540 if (pred
!= return_prediction (PHI_ARG_DEF (phi
, i
), &direction
))
1542 if (i
!= phi_num_args
)
1543 for (i
= 0; i
< phi_num_args
; i
++)
1545 pred
= return_prediction (PHI_ARG_DEF (phi
, i
), &direction
);
1546 if (pred
!= PRED_NO_PREDICTION
)
1547 predict_paths_leading_to (gimple_phi_arg_edge (phi
, i
)->src
, pred
,
1552 /* Look for basic block that contains unlikely to happen events
1553 (such as noreturn calls) and mark all paths leading to execution
1554 of this basic blocks as unlikely. */
1557 tree_bb_level_predictions (void)
1560 bool has_return_edges
= false;
1564 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
1565 if (!(e
->flags
& (EDGE_ABNORMAL
| EDGE_FAKE
| EDGE_EH
)))
1567 has_return_edges
= true;
1571 apply_return_prediction ();
1575 gimple_stmt_iterator gsi
;
1577 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1579 gimple stmt
= gsi_stmt (gsi
);
1582 if (is_gimple_call (stmt
))
1584 if ((gimple_call_flags (stmt
) & ECF_NORETURN
)
1585 && has_return_edges
)
1586 predict_paths_leading_to (bb
, PRED_NORETURN
,
1588 decl
= gimple_call_fndecl (stmt
);
1590 && lookup_attribute ("cold",
1591 DECL_ATTRIBUTES (decl
)))
1592 predict_paths_leading_to (bb
, PRED_COLD_FUNCTION
,
1595 else if (gimple_code (stmt
) == GIMPLE_PREDICT
)
1597 predict_paths_leading_to (bb
, gimple_predict_predictor (stmt
),
1598 gimple_predict_outcome (stmt
));
1599 /* Keep GIMPLE_PREDICT around so early inlining will propagate
1600 hints to callers. */
1606 #ifdef ENABLE_CHECKING
1608 /* Callback for pointer_map_traverse, asserts that the pointer map is
1612 assert_is_empty (const void *key ATTRIBUTE_UNUSED
, void **value
,
1613 void *data ATTRIBUTE_UNUSED
)
1615 gcc_assert (!*value
);
1620 /* Predict branch probabilities and estimate profile for basic block BB. */
1623 tree_estimate_probability_bb (basic_block bb
)
1629 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1631 /* Predict early returns to be probable, as we've already taken
1632 care for error returns and other cases are often used for
1633 fast paths through function.
1635 Since we've already removed the return statements, we are
1636 looking for CFG like:
1646 if (e
->dest
!= bb
->next_bb
1647 && e
->dest
!= EXIT_BLOCK_PTR
1648 && single_succ_p (e
->dest
)
1649 && single_succ_edge (e
->dest
)->dest
== EXIT_BLOCK_PTR
1650 && (last
= last_stmt (e
->dest
)) != NULL
1651 && gimple_code (last
) == GIMPLE_RETURN
)
1656 if (single_succ_p (bb
))
1658 FOR_EACH_EDGE (e1
, ei1
, bb
->preds
)
1659 if (!predicted_by_p (e1
->src
, PRED_NULL_RETURN
)
1660 && !predicted_by_p (e1
->src
, PRED_CONST_RETURN
)
1661 && !predicted_by_p (e1
->src
, PRED_NEGATIVE_RETURN
))
1662 predict_edge_def (e1
, PRED_TREE_EARLY_RETURN
, NOT_TAKEN
);
1665 if (!predicted_by_p (e
->src
, PRED_NULL_RETURN
)
1666 && !predicted_by_p (e
->src
, PRED_CONST_RETURN
)
1667 && !predicted_by_p (e
->src
, PRED_NEGATIVE_RETURN
))
1668 predict_edge_def (e
, PRED_TREE_EARLY_RETURN
, NOT_TAKEN
);
1671 /* Look for block we are guarding (ie we dominate it,
1672 but it doesn't postdominate us). */
1673 if (e
->dest
!= EXIT_BLOCK_PTR
&& e
->dest
!= bb
1674 && dominated_by_p (CDI_DOMINATORS
, e
->dest
, e
->src
)
1675 && !dominated_by_p (CDI_POST_DOMINATORS
, e
->src
, e
->dest
))
1677 gimple_stmt_iterator bi
;
1679 /* The call heuristic claims that a guarded function call
1680 is improbable. This is because such calls are often used
1681 to signal exceptional situations such as printing error
1683 for (bi
= gsi_start_bb (e
->dest
); !gsi_end_p (bi
);
1686 gimple stmt
= gsi_stmt (bi
);
1687 if (is_gimple_call (stmt
)
1688 /* Constant and pure calls are hardly used to signalize
1689 something exceptional. */
1690 && gimple_has_side_effects (stmt
))
1692 predict_edge_def (e
, PRED_CALL
, NOT_TAKEN
);
1698 tree_predict_by_opcode (bb
);
1701 /* Predict branch probabilities and estimate profile of the tree CFG.
1702 This function can be called from the loop optimizers to recompute
1703 the profile information. */
1706 tree_estimate_probability (void)
1710 add_noreturn_fake_exit_edges ();
1711 connect_infinite_loops_to_exit ();
1712 /* We use loop_niter_by_eval, which requires that the loops have
1714 create_preheaders (CP_SIMPLE_PREHEADERS
);
1715 calculate_dominance_info (CDI_POST_DOMINATORS
);
1717 bb_predictions
= pointer_map_create ();
1718 tree_bb_level_predictions ();
1719 record_loop_exits ();
1721 if (number_of_loops () > 1)
1725 tree_estimate_probability_bb (bb
);
1728 combine_predictions_for_bb (bb
);
1730 #ifdef ENABLE_CHECKING
1731 pointer_map_traverse (bb_predictions
, assert_is_empty
, NULL
);
1733 pointer_map_destroy (bb_predictions
);
1734 bb_predictions
= NULL
;
1736 estimate_bb_frequencies ();
1737 free_dominance_info (CDI_POST_DOMINATORS
);
1738 remove_fake_exit_edges ();
1741 /* Predict branch probabilities and estimate profile of the tree CFG.
1742 This is the driver function for PASS_PROFILE. */
1745 tree_estimate_probability_driver (void)
1749 loop_optimizer_init (0);
1750 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1751 flow_loops_dump (dump_file
, NULL
, 0);
1753 mark_irreducible_loops ();
1755 nb_loops
= number_of_loops ();
1759 tree_estimate_probability ();
1764 loop_optimizer_finalize ();
1765 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1766 gimple_dump_cfg (dump_file
, dump_flags
);
1767 if (profile_status
== PROFILE_ABSENT
)
1768 profile_status
= PROFILE_GUESSED
;
1772 /* Predict edges to successors of CUR whose sources are not postdominated by
1773 BB by PRED and recurse to all postdominators. */
1776 predict_paths_for_bb (basic_block cur
, basic_block bb
,
1777 enum br_predictor pred
,
1778 enum prediction taken
)
1784 /* We are looking for all edges forming edge cut induced by
1785 set of all blocks postdominated by BB. */
1786 FOR_EACH_EDGE (e
, ei
, cur
->preds
)
1787 if (e
->src
->index
>= NUM_FIXED_BLOCKS
1788 && !dominated_by_p (CDI_POST_DOMINATORS
, e
->src
, bb
))
1794 /* Ignore abnormals, we predict them as not taken anyway. */
1795 if (e
->flags
& (EDGE_EH
| EDGE_FAKE
| EDGE_ABNORMAL
))
1797 gcc_assert (bb
== cur
|| dominated_by_p (CDI_POST_DOMINATORS
, cur
, bb
));
1799 /* See if there is how many edge from e->src that is not abnormal
1800 and does not lead to BB. */
1801 FOR_EACH_EDGE (e2
, ei2
, e
->src
->succs
)
1803 && !(e2
->flags
& (EDGE_EH
| EDGE_FAKE
| EDGE_ABNORMAL
))
1804 && !dominated_by_p (CDI_POST_DOMINATORS
, e2
->dest
, bb
))
1810 /* If there is non-abnormal path leaving e->src, predict edge
1811 using predictor. Otherwise we need to look for paths
1812 leading to e->src. */
1814 predict_edge_def (e
, pred
, taken
);
1816 predict_paths_for_bb (e
->src
, e
->src
, pred
, taken
);
1818 for (son
= first_dom_son (CDI_POST_DOMINATORS
, cur
);
1820 son
= next_dom_son (CDI_POST_DOMINATORS
, son
))
1821 predict_paths_for_bb (son
, bb
, pred
, taken
);
1824 /* Sets branch probabilities according to PREDiction and
1828 predict_paths_leading_to (basic_block bb
, enum br_predictor pred
,
1829 enum prediction taken
)
1831 predict_paths_for_bb (bb
, bb
, pred
, taken
);
1834 /* This is used to carry information about basic blocks. It is
1835 attached to the AUX field of the standard CFG block. */
1837 typedef struct block_info_def
1839 /* Estimated frequency of execution of basic_block. */
1842 /* To keep queue of basic blocks to process. */
1845 /* Number of predecessors we need to visit first. */
1849 /* Similar information for edges. */
1850 typedef struct edge_info_def
1852 /* In case edge is a loopback edge, the probability edge will be reached
1853 in case header is. Estimated number of iterations of the loop can be
1854 then computed as 1 / (1 - back_edge_prob). */
1855 sreal back_edge_prob
;
1856 /* True if the edge is a loopback edge in the natural loop. */
1857 unsigned int back_edge
:1;
1860 #define BLOCK_INFO(B) ((block_info) (B)->aux)
1861 #define EDGE_INFO(E) ((edge_info) (E)->aux)
1863 /* Helper function for estimate_bb_frequencies.
1864 Propagate the frequencies in blocks marked in
1865 TOVISIT, starting in HEAD. */
1868 propagate_freq (basic_block head
, bitmap tovisit
)
1877 /* For each basic block we need to visit count number of his predecessors
1878 we need to visit first. */
1879 EXECUTE_IF_SET_IN_BITMAP (tovisit
, 0, i
, bi
)
1884 bb
= BASIC_BLOCK (i
);
1886 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1888 bool visit
= bitmap_bit_p (tovisit
, e
->src
->index
);
1890 if (visit
&& !(e
->flags
& EDGE_DFS_BACK
))
1892 else if (visit
&& dump_file
&& !EDGE_INFO (e
)->back_edge
)
1894 "Irreducible region hit, ignoring edge to %i->%i\n",
1895 e
->src
->index
, bb
->index
);
1897 BLOCK_INFO (bb
)->npredecessors
= count
;
1898 /* When function never returns, we will never process exit block. */
1899 if (!count
&& bb
== EXIT_BLOCK_PTR
)
1900 bb
->count
= bb
->frequency
= 0;
1903 memcpy (&BLOCK_INFO (head
)->frequency
, &real_one
, sizeof (real_one
));
1905 for (bb
= head
; bb
; bb
= nextbb
)
1908 sreal cyclic_probability
, frequency
;
1910 memcpy (&cyclic_probability
, &real_zero
, sizeof (real_zero
));
1911 memcpy (&frequency
, &real_zero
, sizeof (real_zero
));
1913 nextbb
= BLOCK_INFO (bb
)->next
;
1914 BLOCK_INFO (bb
)->next
= NULL
;
1916 /* Compute frequency of basic block. */
1919 #ifdef ENABLE_CHECKING
1920 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1921 gcc_assert (!bitmap_bit_p (tovisit
, e
->src
->index
)
1922 || (e
->flags
& EDGE_DFS_BACK
));
1925 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1926 if (EDGE_INFO (e
)->back_edge
)
1928 sreal_add (&cyclic_probability
, &cyclic_probability
,
1929 &EDGE_INFO (e
)->back_edge_prob
);
1931 else if (!(e
->flags
& EDGE_DFS_BACK
))
1935 /* frequency += (e->probability
1936 * BLOCK_INFO (e->src)->frequency /
1937 REG_BR_PROB_BASE); */
1939 sreal_init (&tmp
, e
->probability
, 0);
1940 sreal_mul (&tmp
, &tmp
, &BLOCK_INFO (e
->src
)->frequency
);
1941 sreal_mul (&tmp
, &tmp
, &real_inv_br_prob_base
);
1942 sreal_add (&frequency
, &frequency
, &tmp
);
1945 if (sreal_compare (&cyclic_probability
, &real_zero
) == 0)
1947 memcpy (&BLOCK_INFO (bb
)->frequency
, &frequency
,
1948 sizeof (frequency
));
1952 if (sreal_compare (&cyclic_probability
, &real_almost_one
) > 0)
1954 memcpy (&cyclic_probability
, &real_almost_one
,
1955 sizeof (real_almost_one
));
1958 /* BLOCK_INFO (bb)->frequency = frequency
1959 / (1 - cyclic_probability) */
1961 sreal_sub (&cyclic_probability
, &real_one
, &cyclic_probability
);
1962 sreal_div (&BLOCK_INFO (bb
)->frequency
,
1963 &frequency
, &cyclic_probability
);
1967 bitmap_clear_bit (tovisit
, bb
->index
);
1969 e
= find_edge (bb
, head
);
1974 /* EDGE_INFO (e)->back_edge_prob
1975 = ((e->probability * BLOCK_INFO (bb)->frequency)
1976 / REG_BR_PROB_BASE); */
1978 sreal_init (&tmp
, e
->probability
, 0);
1979 sreal_mul (&tmp
, &tmp
, &BLOCK_INFO (bb
)->frequency
);
1980 sreal_mul (&EDGE_INFO (e
)->back_edge_prob
,
1981 &tmp
, &real_inv_br_prob_base
);
1984 /* Propagate to successor blocks. */
1985 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1986 if (!(e
->flags
& EDGE_DFS_BACK
)
1987 && BLOCK_INFO (e
->dest
)->npredecessors
)
1989 BLOCK_INFO (e
->dest
)->npredecessors
--;
1990 if (!BLOCK_INFO (e
->dest
)->npredecessors
)
1995 BLOCK_INFO (last
)->next
= e
->dest
;
2003 /* Estimate probabilities of loopback edges in loops at same nest level. */
2006 estimate_loops_at_level (struct loop
*first_loop
)
2010 for (loop
= first_loop
; loop
; loop
= loop
->next
)
2015 bitmap tovisit
= BITMAP_ALLOC (NULL
);
2017 estimate_loops_at_level (loop
->inner
);
2019 /* Find current loop back edge and mark it. */
2020 e
= loop_latch_edge (loop
);
2021 EDGE_INFO (e
)->back_edge
= 1;
2023 bbs
= get_loop_body (loop
);
2024 for (i
= 0; i
< loop
->num_nodes
; i
++)
2025 bitmap_set_bit (tovisit
, bbs
[i
]->index
);
2027 propagate_freq (loop
->header
, tovisit
);
2028 BITMAP_FREE (tovisit
);
2032 /* Propagates frequencies through structure of loops. */
2035 estimate_loops (void)
2037 bitmap tovisit
= BITMAP_ALLOC (NULL
);
2040 /* Start by estimating the frequencies in the loops. */
2041 if (number_of_loops () > 1)
2042 estimate_loops_at_level (current_loops
->tree_root
->inner
);
2044 /* Now propagate the frequencies through all the blocks. */
2047 bitmap_set_bit (tovisit
, bb
->index
);
2049 propagate_freq (ENTRY_BLOCK_PTR
, tovisit
);
2050 BITMAP_FREE (tovisit
);
2053 /* Convert counts measured by profile driven feedback to frequencies.
2054 Return nonzero iff there was any nonzero execution count. */
2057 counts_to_freqs (void)
2059 gcov_type count_max
, true_count_max
= 0;
2062 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
2063 true_count_max
= MAX (bb
->count
, true_count_max
);
2065 count_max
= MAX (true_count_max
, 1);
2066 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
2067 bb
->frequency
= (bb
->count
* BB_FREQ_MAX
+ count_max
/ 2) / count_max
;
2069 return true_count_max
;
2072 /* Return true if function is likely to be expensive, so there is no point to
2073 optimize performance of prologue, epilogue or do inlining at the expense
2074 of code size growth. THRESHOLD is the limit of number of instructions
2075 function can execute at average to be still considered not expensive. */
2078 expensive_function_p (int threshold
)
2080 unsigned int sum
= 0;
2084 /* We can not compute accurately for large thresholds due to scaled
2086 gcc_assert (threshold
<= BB_FREQ_MAX
);
2088 /* Frequencies are out of range. This either means that function contains
2089 internal loop executing more than BB_FREQ_MAX times or profile feedback
2090 is available and function has not been executed at all. */
2091 if (ENTRY_BLOCK_PTR
->frequency
== 0)
2094 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2095 limit
= ENTRY_BLOCK_PTR
->frequency
* threshold
;
2100 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
));
2101 insn
= NEXT_INSN (insn
))
2102 if (active_insn_p (insn
))
2104 sum
+= bb
->frequency
;
2113 /* Estimate basic blocks frequency by given branch probabilities. */
2116 estimate_bb_frequencies (void)
2121 if (profile_status
!= PROFILE_READ
|| !counts_to_freqs ())
2123 static int real_values_initialized
= 0;
2125 if (!real_values_initialized
)
2127 real_values_initialized
= 1;
2128 sreal_init (&real_zero
, 0, 0);
2129 sreal_init (&real_one
, 1, 0);
2130 sreal_init (&real_br_prob_base
, REG_BR_PROB_BASE
, 0);
2131 sreal_init (&real_bb_freq_max
, BB_FREQ_MAX
, 0);
2132 sreal_init (&real_one_half
, 1, -1);
2133 sreal_div (&real_inv_br_prob_base
, &real_one
, &real_br_prob_base
);
2134 sreal_sub (&real_almost_one
, &real_one
, &real_inv_br_prob_base
);
2137 mark_dfs_back_edges ();
2139 single_succ_edge (ENTRY_BLOCK_PTR
)->probability
= REG_BR_PROB_BASE
;
2141 /* Set up block info for each basic block. */
2142 alloc_aux_for_blocks (sizeof (struct block_info_def
));
2143 alloc_aux_for_edges (sizeof (struct edge_info_def
));
2144 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
2149 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2151 sreal_init (&EDGE_INFO (e
)->back_edge_prob
, e
->probability
, 0);
2152 sreal_mul (&EDGE_INFO (e
)->back_edge_prob
,
2153 &EDGE_INFO (e
)->back_edge_prob
,
2154 &real_inv_br_prob_base
);
2158 /* First compute probabilities locally for each loop from innermost
2159 to outermost to examine probabilities for back edges. */
2162 memcpy (&freq_max
, &real_zero
, sizeof (real_zero
));
2164 if (sreal_compare (&freq_max
, &BLOCK_INFO (bb
)->frequency
) < 0)
2165 memcpy (&freq_max
, &BLOCK_INFO (bb
)->frequency
, sizeof (freq_max
));
2167 sreal_div (&freq_max
, &real_bb_freq_max
, &freq_max
);
2168 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
2172 sreal_mul (&tmp
, &BLOCK_INFO (bb
)->frequency
, &freq_max
);
2173 sreal_add (&tmp
, &tmp
, &real_one_half
);
2174 bb
->frequency
= sreal_to_int (&tmp
);
2177 free_aux_for_blocks ();
2178 free_aux_for_edges ();
2180 compute_function_frequency ();
2181 if (flag_reorder_functions
)
2182 choose_function_section ();
2185 /* Decide whether function is hot, cold or unlikely executed. */
2187 compute_function_frequency (void)
2190 struct cgraph_node
*node
= cgraph_node (current_function_decl
);
2192 if (!profile_info
|| !flag_branch_probabilities
)
2194 int flags
= flags_from_decl_or_type (current_function_decl
);
2195 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl
))
2197 node
->frequency
= NODE_FREQUENCY_UNLIKELY_EXECUTED
;
2198 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl
))
2200 node
->frequency
= NODE_FREQUENCY_HOT
;
2201 else if (flags
& ECF_NORETURN
)
2202 node
->frequency
= NODE_FREQUENCY_EXECUTED_ONCE
;
2203 else if (MAIN_NAME_P (DECL_NAME (current_function_decl
)))
2204 node
->frequency
= NODE_FREQUENCY_EXECUTED_ONCE
;
2205 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
2206 || DECL_STATIC_DESTRUCTOR (current_function_decl
))
2207 node
->frequency
= NODE_FREQUENCY_EXECUTED_ONCE
;
2210 node
->frequency
= NODE_FREQUENCY_UNLIKELY_EXECUTED
;
2213 if (maybe_hot_bb_p (bb
))
2215 node
->frequency
= NODE_FREQUENCY_HOT
;
2218 if (!probably_never_executed_bb_p (bb
))
2219 node
->frequency
= NODE_FREQUENCY_NORMAL
;
2223 /* Choose appropriate section for the function. */
2225 choose_function_section (void)
2227 struct cgraph_node
*node
= cgraph_node (current_function_decl
);
2228 if (DECL_SECTION_NAME (current_function_decl
)
2229 || !targetm
.have_named_sections
2230 /* Theoretically we can split the gnu.linkonce text section too,
2231 but this requires more work as the frequency needs to match
2232 for all generated objects so we need to merge the frequency
2233 of all instances. For now just never set frequency for these. */
2234 || DECL_ONE_ONLY (current_function_decl
))
2237 /* If we are doing the partitioning optimization, let the optimization
2238 choose the correct section into which to put things. */
2240 if (flag_reorder_blocks_and_partition
)
2243 if (node
->frequency
== NODE_FREQUENCY_HOT
)
2244 DECL_SECTION_NAME (current_function_decl
) =
2245 build_string (strlen (HOT_TEXT_SECTION_NAME
), HOT_TEXT_SECTION_NAME
);
2246 if (node
->frequency
== NODE_FREQUENCY_UNLIKELY_EXECUTED
)
2247 DECL_SECTION_NAME (current_function_decl
) =
2248 build_string (strlen (UNLIKELY_EXECUTED_TEXT_SECTION_NAME
),
2249 UNLIKELY_EXECUTED_TEXT_SECTION_NAME
);
2253 gate_estimate_probability (void)
2255 return flag_guess_branch_prob
;
2258 /* Build PREDICT_EXPR. */
2260 build_predict_expr (enum br_predictor predictor
, enum prediction taken
)
2262 tree t
= build1 (PREDICT_EXPR
, void_type_node
,
2263 build_int_cst (NULL
, predictor
));
2264 SET_PREDICT_EXPR_OUTCOME (t
, taken
);
2269 predictor_name (enum br_predictor predictor
)
2271 return predictor_info
[predictor
].name
;
2274 struct gimple_opt_pass pass_profile
=
2278 "profile", /* name */
2279 gate_estimate_probability
, /* gate */
2280 tree_estimate_probability_driver
, /* execute */
2283 0, /* static_pass_number */
2284 TV_BRANCH_PROB
, /* tv_id */
2285 PROP_cfg
, /* properties_required */
2286 0, /* properties_provided */
2287 0, /* properties_destroyed */
2288 0, /* todo_flags_start */
2289 TODO_ggc_collect
| TODO_verify_ssa
/* todo_flags_finish */
2293 struct gimple_opt_pass pass_strip_predict_hints
=
2297 "*strip_predict_hints", /* name */
2299 strip_predict_hints
, /* execute */
2302 0, /* static_pass_number */
2303 TV_BRANCH_PROB
, /* tv_id */
2304 PROP_cfg
, /* properties_required */
2305 0, /* properties_provided */
2306 0, /* properties_destroyed */
2307 0, /* todo_flags_start */
2308 TODO_ggc_collect
| TODO_verify_ssa
/* todo_flags_finish */
2312 /* Rebuild function frequencies. Passes are in general expected to
2313 maintain profile by hand, however in some cases this is not possible:
2314 for example when inlining several functions with loops freuqencies might run
2315 out of scale and thus needs to be recomputed. */
2318 rebuild_frequencies (void)
2320 if (profile_status
== PROFILE_GUESSED
)
2322 loop_optimizer_init (0);
2323 add_noreturn_fake_exit_edges ();
2324 mark_irreducible_loops ();
2325 connect_infinite_loops_to_exit ();
2326 estimate_bb_frequencies ();
2327 remove_fake_exit_edges ();
2328 loop_optimizer_finalize ();
2330 else if (profile_status
== PROFILE_READ
)