2001-04-09 Andrew MacLeod <amacleod@redhat.com>
[official-gcc.git] / gcc / reload.c
blobea5bea62331a9d55f3954813817c8d5d8ac2b34f
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
57 NOTE SIDE EFFECTS:
59 find_reloads can alter the operands of the instruction it is called on.
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
73 Using a reload register for several reloads in one insn:
75 When an insn has reloads, it is considered as having three parts:
76 the input reloads, the insn itself after reloading, and the output reloads.
77 Reloads of values used in memory addresses are often needed for only one part.
79 When this is so, reload_when_needed records which part needs the reload.
80 Two reloads for different parts of the insn can share the same reload
81 register.
83 When a reload is used for addresses in multiple parts, or when it is
84 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
85 a register with any other reload. */
87 #define REG_OK_STRICT
89 #include "config.h"
90 #include "system.h"
91 #include "rtl.h"
92 #include "tm_p.h"
93 #include "insn-config.h"
94 #include "recog.h"
95 #include "reload.h"
96 #include "regs.h"
97 #include "hard-reg-set.h"
98 #include "flags.h"
99 #include "real.h"
100 #include "output.h"
101 #include "function.h"
102 #include "expr.h"
103 #include "toplev.h"
105 #ifndef REGISTER_MOVE_COST
106 #define REGISTER_MOVE_COST(m, x, y) 2
107 #endif
109 #ifndef REGNO_MODE_OK_FOR_BASE_P
110 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
111 #endif
113 #ifndef REG_MODE_OK_FOR_BASE_P
114 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
115 #endif
117 /* All reloads of the current insn are recorded here. See reload.h for
118 comments. */
119 int n_reloads;
120 struct reload rld[MAX_RELOADS];
122 /* All the "earlyclobber" operands of the current insn
123 are recorded here. */
124 int n_earlyclobbers;
125 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
127 int reload_n_operands;
129 /* Replacing reloads.
131 If `replace_reloads' is nonzero, then as each reload is recorded
132 an entry is made for it in the table `replacements'.
133 Then later `subst_reloads' can look through that table and
134 perform all the replacements needed. */
136 /* Nonzero means record the places to replace. */
137 static int replace_reloads;
139 /* Each replacement is recorded with a structure like this. */
140 struct replacement
142 rtx *where; /* Location to store in */
143 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
144 a SUBREG; 0 otherwise. */
145 int what; /* which reload this is for */
146 enum machine_mode mode; /* mode it must have */
149 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
151 /* Number of replacements currently recorded. */
152 static int n_replacements;
154 /* Used to track what is modified by an operand. */
155 struct decomposition
157 int reg_flag; /* Nonzero if referencing a register. */
158 int safe; /* Nonzero if this can't conflict with anything. */
159 rtx base; /* Base address for MEM. */
160 HOST_WIDE_INT start; /* Starting offset or register number. */
161 HOST_WIDE_INT end; /* Ending offset or register number. */
164 #ifdef SECONDARY_MEMORY_NEEDED
166 /* Save MEMs needed to copy from one class of registers to another. One MEM
167 is used per mode, but normally only one or two modes are ever used.
169 We keep two versions, before and after register elimination. The one
170 after register elimination is record separately for each operand. This
171 is done in case the address is not valid to be sure that we separately
172 reload each. */
174 static rtx secondary_memlocs[NUM_MACHINE_MODES];
175 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
176 #endif
178 /* The instruction we are doing reloads for;
179 so we can test whether a register dies in it. */
180 static rtx this_insn;
182 /* Nonzero if this instruction is a user-specified asm with operands. */
183 static int this_insn_is_asm;
185 /* If hard_regs_live_known is nonzero,
186 we can tell which hard regs are currently live,
187 at least enough to succeed in choosing dummy reloads. */
188 static int hard_regs_live_known;
190 /* Indexed by hard reg number,
191 element is nonnegative if hard reg has been spilled.
192 This vector is passed to `find_reloads' as an argument
193 and is not changed here. */
194 static short *static_reload_reg_p;
196 /* Set to 1 in subst_reg_equivs if it changes anything. */
197 static int subst_reg_equivs_changed;
199 /* On return from push_reload, holds the reload-number for the OUT
200 operand, which can be different for that from the input operand. */
201 static int output_reloadnum;
203 /* Compare two RTX's. */
204 #define MATCHES(x, y) \
205 (x == y || (x != 0 && (GET_CODE (x) == REG \
206 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
207 : rtx_equal_p (x, y) && ! side_effects_p (x))))
209 /* Indicates if two reloads purposes are for similar enough things that we
210 can merge their reloads. */
211 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
212 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
213 || ((when1) == (when2) && (op1) == (op2)) \
214 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
215 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
216 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
217 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
218 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
220 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
221 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
222 ((when1) != (when2) \
223 || ! ((op1) == (op2) \
224 || (when1) == RELOAD_FOR_INPUT \
225 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
226 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
228 /* If we are going to reload an address, compute the reload type to
229 use. */
230 #define ADDR_TYPE(type) \
231 ((type) == RELOAD_FOR_INPUT_ADDRESS \
232 ? RELOAD_FOR_INPADDR_ADDRESS \
233 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
234 ? RELOAD_FOR_OUTADDR_ADDRESS \
235 : (type)))
237 #ifdef HAVE_SECONDARY_RELOADS
238 static int push_secondary_reload PARAMS ((int, rtx, int, int, enum reg_class,
239 enum machine_mode, enum reload_type,
240 enum insn_code *));
241 #endif
242 static enum reg_class find_valid_class PARAMS ((enum machine_mode, int));
243 static int reload_inner_reg_of_subreg PARAMS ((rtx, enum machine_mode));
244 static int push_reload PARAMS ((rtx, rtx, rtx *, rtx *, enum reg_class,
245 enum machine_mode, enum machine_mode,
246 int, int, int, enum reload_type));
247 static void push_replacement PARAMS ((rtx *, int, enum machine_mode));
248 static void combine_reloads PARAMS ((void));
249 static int find_reusable_reload PARAMS ((rtx *, rtx, enum reg_class,
250 enum reload_type, int, int));
251 static rtx find_dummy_reload PARAMS ((rtx, rtx, rtx *, rtx *,
252 enum machine_mode, enum machine_mode,
253 enum reg_class, int, int));
254 static int hard_reg_set_here_p PARAMS ((unsigned int, unsigned int, rtx));
255 static struct decomposition decompose PARAMS ((rtx));
256 static int immune_p PARAMS ((rtx, rtx, struct decomposition));
257 static int alternative_allows_memconst PARAMS ((const char *, int));
258 static rtx find_reloads_toplev PARAMS ((rtx, int, enum reload_type, int,
259 int, rtx, int *));
260 static rtx make_memloc PARAMS ((rtx, int));
261 static int find_reloads_address PARAMS ((enum machine_mode, rtx *, rtx, rtx *,
262 int, enum reload_type, int, rtx));
263 static rtx subst_reg_equivs PARAMS ((rtx, rtx));
264 static rtx subst_indexed_address PARAMS ((rtx));
265 static void update_auto_inc_notes PARAMS ((rtx, int, int));
266 static int find_reloads_address_1 PARAMS ((enum machine_mode, rtx, int, rtx *,
267 int, enum reload_type,int, rtx));
268 static void find_reloads_address_part PARAMS ((rtx, rtx *, enum reg_class,
269 enum machine_mode, int,
270 enum reload_type, int));
271 static rtx find_reloads_subreg_address PARAMS ((rtx, int, int, enum reload_type,
272 int, rtx));
273 static int find_inc_amount PARAMS ((rtx, rtx));
275 #ifdef HAVE_SECONDARY_RELOADS
277 /* Determine if any secondary reloads are needed for loading (if IN_P is
278 non-zero) or storing (if IN_P is zero) X to or from a reload register of
279 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
280 are needed, push them.
282 Return the reload number of the secondary reload we made, or -1 if
283 we didn't need one. *PICODE is set to the insn_code to use if we do
284 need a secondary reload. */
286 static int
287 push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
288 type, picode)
289 int in_p;
290 rtx x;
291 int opnum;
292 int optional;
293 enum reg_class reload_class;
294 enum machine_mode reload_mode;
295 enum reload_type type;
296 enum insn_code *picode;
298 enum reg_class class = NO_REGS;
299 enum machine_mode mode = reload_mode;
300 enum insn_code icode = CODE_FOR_nothing;
301 enum reg_class t_class = NO_REGS;
302 enum machine_mode t_mode = VOIDmode;
303 enum insn_code t_icode = CODE_FOR_nothing;
304 enum reload_type secondary_type;
305 int s_reload, t_reload = -1;
307 if (type == RELOAD_FOR_INPUT_ADDRESS
308 || type == RELOAD_FOR_OUTPUT_ADDRESS
309 || type == RELOAD_FOR_INPADDR_ADDRESS
310 || type == RELOAD_FOR_OUTADDR_ADDRESS)
311 secondary_type = type;
312 else
313 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
315 *picode = CODE_FOR_nothing;
317 /* If X is a paradoxical SUBREG, use the inner value to determine both the
318 mode and object being reloaded. */
319 if (GET_CODE (x) == SUBREG
320 && (GET_MODE_SIZE (GET_MODE (x))
321 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
323 x = SUBREG_REG (x);
324 reload_mode = GET_MODE (x);
327 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
328 is still a pseudo-register by now, it *must* have an equivalent MEM
329 but we don't want to assume that), use that equivalent when seeing if
330 a secondary reload is needed since whether or not a reload is needed
331 might be sensitive to the form of the MEM. */
333 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
334 && reg_equiv_mem[REGNO (x)] != 0)
335 x = reg_equiv_mem[REGNO (x)];
337 #ifdef SECONDARY_INPUT_RELOAD_CLASS
338 if (in_p)
339 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
340 #endif
342 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
343 if (! in_p)
344 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
345 #endif
347 /* If we don't need any secondary registers, done. */
348 if (class == NO_REGS)
349 return -1;
351 /* Get a possible insn to use. If the predicate doesn't accept X, don't
352 use the insn. */
354 icode = (in_p ? reload_in_optab[(int) reload_mode]
355 : reload_out_optab[(int) reload_mode]);
357 if (icode != CODE_FOR_nothing
358 && insn_data[(int) icode].operand[in_p].predicate
359 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
360 icode = CODE_FOR_nothing;
362 /* If we will be using an insn, see if it can directly handle the reload
363 register we will be using. If it can, the secondary reload is for a
364 scratch register. If it can't, we will use the secondary reload for
365 an intermediate register and require a tertiary reload for the scratch
366 register. */
368 if (icode != CODE_FOR_nothing)
370 /* If IN_P is non-zero, the reload register will be the output in
371 operand 0. If IN_P is zero, the reload register will be the input
372 in operand 1. Outputs should have an initial "=", which we must
373 skip. */
375 char insn_letter
376 = insn_data[(int) icode].operand[!in_p].constraint[in_p];
377 enum reg_class insn_class
378 = (insn_letter == 'r' ? GENERAL_REGS
379 : REG_CLASS_FROM_LETTER ((unsigned char) insn_letter));
381 if (insn_class == NO_REGS
382 || (in_p
383 && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
384 /* The scratch register's constraint must start with "=&". */
385 || insn_data[(int) icode].operand[2].constraint[0] != '='
386 || insn_data[(int) icode].operand[2].constraint[1] != '&')
387 abort ();
389 if (reg_class_subset_p (reload_class, insn_class))
390 mode = insn_data[(int) icode].operand[2].mode;
391 else
393 char t_letter = insn_data[(int) icode].operand[2].constraint[2];
394 class = insn_class;
395 t_mode = insn_data[(int) icode].operand[2].mode;
396 t_class = (t_letter == 'r' ? GENERAL_REGS
397 : REG_CLASS_FROM_LETTER ((unsigned char) t_letter));
398 t_icode = icode;
399 icode = CODE_FOR_nothing;
403 /* This case isn't valid, so fail. Reload is allowed to use the same
404 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
405 in the case of a secondary register, we actually need two different
406 registers for correct code. We fail here to prevent the possibility of
407 silently generating incorrect code later.
409 The convention is that secondary input reloads are valid only if the
410 secondary_class is different from class. If you have such a case, you
411 can not use secondary reloads, you must work around the problem some
412 other way.
414 Allow this when a reload_in/out pattern is being used. I.e. assume
415 that the generated code handles this case. */
417 if (in_p && class == reload_class && icode == CODE_FOR_nothing
418 && t_icode == CODE_FOR_nothing)
419 abort ();
421 /* If we need a tertiary reload, see if we have one we can reuse or else
422 make a new one. */
424 if (t_class != NO_REGS)
426 for (t_reload = 0; t_reload < n_reloads; t_reload++)
427 if (rld[t_reload].secondary_p
428 && (reg_class_subset_p (t_class, rld[t_reload].class)
429 || reg_class_subset_p (rld[t_reload].class, t_class))
430 && ((in_p && rld[t_reload].inmode == t_mode)
431 || (! in_p && rld[t_reload].outmode == t_mode))
432 && ((in_p && (rld[t_reload].secondary_in_icode
433 == CODE_FOR_nothing))
434 || (! in_p &&(rld[t_reload].secondary_out_icode
435 == CODE_FOR_nothing)))
436 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
437 && MERGABLE_RELOADS (secondary_type,
438 rld[t_reload].when_needed,
439 opnum, rld[t_reload].opnum))
441 if (in_p)
442 rld[t_reload].inmode = t_mode;
443 if (! in_p)
444 rld[t_reload].outmode = t_mode;
446 if (reg_class_subset_p (t_class, rld[t_reload].class))
447 rld[t_reload].class = t_class;
449 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
450 rld[t_reload].optional &= optional;
451 rld[t_reload].secondary_p = 1;
452 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
453 opnum, rld[t_reload].opnum))
454 rld[t_reload].when_needed = RELOAD_OTHER;
457 if (t_reload == n_reloads)
459 /* We need to make a new tertiary reload for this register class. */
460 rld[t_reload].in = rld[t_reload].out = 0;
461 rld[t_reload].class = t_class;
462 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
463 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
464 rld[t_reload].reg_rtx = 0;
465 rld[t_reload].optional = optional;
466 rld[t_reload].inc = 0;
467 /* Maybe we could combine these, but it seems too tricky. */
468 rld[t_reload].nocombine = 1;
469 rld[t_reload].in_reg = 0;
470 rld[t_reload].out_reg = 0;
471 rld[t_reload].opnum = opnum;
472 rld[t_reload].when_needed = secondary_type;
473 rld[t_reload].secondary_in_reload = -1;
474 rld[t_reload].secondary_out_reload = -1;
475 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
476 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
477 rld[t_reload].secondary_p = 1;
479 n_reloads++;
483 /* See if we can reuse an existing secondary reload. */
484 for (s_reload = 0; s_reload < n_reloads; s_reload++)
485 if (rld[s_reload].secondary_p
486 && (reg_class_subset_p (class, rld[s_reload].class)
487 || reg_class_subset_p (rld[s_reload].class, class))
488 && ((in_p && rld[s_reload].inmode == mode)
489 || (! in_p && rld[s_reload].outmode == mode))
490 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
491 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
492 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
493 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
494 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
495 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
496 opnum, rld[s_reload].opnum))
498 if (in_p)
499 rld[s_reload].inmode = mode;
500 if (! in_p)
501 rld[s_reload].outmode = mode;
503 if (reg_class_subset_p (class, rld[s_reload].class))
504 rld[s_reload].class = class;
506 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
507 rld[s_reload].optional &= optional;
508 rld[s_reload].secondary_p = 1;
509 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
510 opnum, rld[s_reload].opnum))
511 rld[s_reload].when_needed = RELOAD_OTHER;
514 if (s_reload == n_reloads)
516 #ifdef SECONDARY_MEMORY_NEEDED
517 /* If we need a memory location to copy between the two reload regs,
518 set it up now. Note that we do the input case before making
519 the reload and the output case after. This is due to the
520 way reloads are output. */
522 if (in_p && icode == CODE_FOR_nothing
523 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
525 get_secondary_mem (x, reload_mode, opnum, type);
527 /* We may have just added new reloads. Make sure we add
528 the new reload at the end. */
529 s_reload = n_reloads;
531 #endif
533 /* We need to make a new secondary reload for this register class. */
534 rld[s_reload].in = rld[s_reload].out = 0;
535 rld[s_reload].class = class;
537 rld[s_reload].inmode = in_p ? mode : VOIDmode;
538 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
539 rld[s_reload].reg_rtx = 0;
540 rld[s_reload].optional = optional;
541 rld[s_reload].inc = 0;
542 /* Maybe we could combine these, but it seems too tricky. */
543 rld[s_reload].nocombine = 1;
544 rld[s_reload].in_reg = 0;
545 rld[s_reload].out_reg = 0;
546 rld[s_reload].opnum = opnum;
547 rld[s_reload].when_needed = secondary_type;
548 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
549 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
550 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
551 rld[s_reload].secondary_out_icode
552 = ! in_p ? t_icode : CODE_FOR_nothing;
553 rld[s_reload].secondary_p = 1;
555 n_reloads++;
557 #ifdef SECONDARY_MEMORY_NEEDED
558 if (! in_p && icode == CODE_FOR_nothing
559 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
560 get_secondary_mem (x, mode, opnum, type);
561 #endif
564 *picode = icode;
565 return s_reload;
567 #endif /* HAVE_SECONDARY_RELOADS */
569 #ifdef SECONDARY_MEMORY_NEEDED
571 /* Return a memory location that will be used to copy X in mode MODE.
572 If we haven't already made a location for this mode in this insn,
573 call find_reloads_address on the location being returned. */
576 get_secondary_mem (x, mode, opnum, type)
577 rtx x ATTRIBUTE_UNUSED;
578 enum machine_mode mode;
579 int opnum;
580 enum reload_type type;
582 rtx loc;
583 int mem_valid;
585 /* By default, if MODE is narrower than a word, widen it to a word.
586 This is required because most machines that require these memory
587 locations do not support short load and stores from all registers
588 (e.g., FP registers). */
590 #ifdef SECONDARY_MEMORY_NEEDED_MODE
591 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
592 #else
593 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
594 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
595 #endif
597 /* If we already have made a MEM for this operand in MODE, return it. */
598 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
599 return secondary_memlocs_elim[(int) mode][opnum];
601 /* If this is the first time we've tried to get a MEM for this mode,
602 allocate a new one. `something_changed' in reload will get set
603 by noticing that the frame size has changed. */
605 if (secondary_memlocs[(int) mode] == 0)
607 #ifdef SECONDARY_MEMORY_NEEDED_RTX
608 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
609 #else
610 secondary_memlocs[(int) mode]
611 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
612 #endif
615 /* Get a version of the address doing any eliminations needed. If that
616 didn't give us a new MEM, make a new one if it isn't valid. */
618 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
619 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
621 if (! mem_valid && loc == secondary_memlocs[(int) mode])
622 loc = copy_rtx (loc);
624 /* The only time the call below will do anything is if the stack
625 offset is too large. In that case IND_LEVELS doesn't matter, so we
626 can just pass a zero. Adjust the type to be the address of the
627 corresponding object. If the address was valid, save the eliminated
628 address. If it wasn't valid, we need to make a reload each time, so
629 don't save it. */
631 if (! mem_valid)
633 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
634 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
635 : RELOAD_OTHER);
637 find_reloads_address (mode, NULL_PTR, XEXP (loc, 0), &XEXP (loc, 0),
638 opnum, type, 0, 0);
641 secondary_memlocs_elim[(int) mode][opnum] = loc;
642 return loc;
645 /* Clear any secondary memory locations we've made. */
647 void
648 clear_secondary_mem ()
650 memset ((char *) secondary_memlocs, 0, sizeof secondary_memlocs);
652 #endif /* SECONDARY_MEMORY_NEEDED */
654 /* Find the largest class for which every register number plus N is valid in
655 M1 (if in range). Abort if no such class exists. */
657 static enum reg_class
658 find_valid_class (m1, n)
659 enum machine_mode m1 ATTRIBUTE_UNUSED;
660 int n;
662 int class;
663 int regno;
664 enum reg_class best_class = NO_REGS;
665 unsigned int best_size = 0;
667 for (class = 1; class < N_REG_CLASSES; class++)
669 int bad = 0;
670 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
671 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
672 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
673 && ! HARD_REGNO_MODE_OK (regno + n, m1))
674 bad = 1;
676 if (! bad && reg_class_size[class] > best_size)
677 best_class = class, best_size = reg_class_size[class];
680 if (best_size == 0)
681 abort ();
683 return best_class;
686 /* Return the number of a previously made reload that can be combined with
687 a new one, or n_reloads if none of the existing reloads can be used.
688 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
689 push_reload, they determine the kind of the new reload that we try to
690 combine. P_IN points to the corresponding value of IN, which can be
691 modified by this function.
692 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
693 static int
694 find_reusable_reload (p_in, out, class, type, opnum, dont_share)
695 rtx *p_in, out;
696 enum reg_class class;
697 enum reload_type type;
698 int opnum, dont_share;
700 rtx in = *p_in;
701 int i;
702 /* We can't merge two reloads if the output of either one is
703 earlyclobbered. */
705 if (earlyclobber_operand_p (out))
706 return n_reloads;
708 /* We can use an existing reload if the class is right
709 and at least one of IN and OUT is a match
710 and the other is at worst neutral.
711 (A zero compared against anything is neutral.)
713 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
714 for the same thing since that can cause us to need more reload registers
715 than we otherwise would. */
717 for (i = 0; i < n_reloads; i++)
718 if ((reg_class_subset_p (class, rld[i].class)
719 || reg_class_subset_p (rld[i].class, class))
720 /* If the existing reload has a register, it must fit our class. */
721 && (rld[i].reg_rtx == 0
722 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
723 true_regnum (rld[i].reg_rtx)))
724 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
725 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
726 || (out != 0 && MATCHES (rld[i].out, out)
727 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
728 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
729 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
730 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
731 return i;
733 /* Reloading a plain reg for input can match a reload to postincrement
734 that reg, since the postincrement's value is the right value.
735 Likewise, it can match a preincrement reload, since we regard
736 the preincrementation as happening before any ref in this insn
737 to that register. */
738 for (i = 0; i < n_reloads; i++)
739 if ((reg_class_subset_p (class, rld[i].class)
740 || reg_class_subset_p (rld[i].class, class))
741 /* If the existing reload has a register, it must fit our
742 class. */
743 && (rld[i].reg_rtx == 0
744 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
745 true_regnum (rld[i].reg_rtx)))
746 && out == 0 && rld[i].out == 0 && rld[i].in != 0
747 && ((GET_CODE (in) == REG
748 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == 'a'
749 && MATCHES (XEXP (rld[i].in, 0), in))
750 || (GET_CODE (rld[i].in) == REG
751 && GET_RTX_CLASS (GET_CODE (in)) == 'a'
752 && MATCHES (XEXP (in, 0), rld[i].in)))
753 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
754 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
755 && MERGABLE_RELOADS (type, rld[i].when_needed,
756 opnum, rld[i].opnum))
758 /* Make sure reload_in ultimately has the increment,
759 not the plain register. */
760 if (GET_CODE (in) == REG)
761 *p_in = rld[i].in;
762 return i;
764 return n_reloads;
767 /* Return nonzero if X is a SUBREG which will require reloading of its
768 SUBREG_REG expression. */
770 static int
771 reload_inner_reg_of_subreg (x, mode)
772 rtx x;
773 enum machine_mode mode;
775 rtx inner;
777 /* Only SUBREGs are problematical. */
778 if (GET_CODE (x) != SUBREG)
779 return 0;
781 inner = SUBREG_REG (x);
783 /* If INNER is a constant, then INNER must be reloaded. */
784 if (CONSTANT_P (inner))
785 return 1;
787 /* If INNER is not a hard register, then INNER will not need to
788 be reloaded. */
789 if (GET_CODE (inner) != REG
790 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
791 return 0;
793 /* If INNER is not ok for MODE, then INNER will need reloading. */
794 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
795 return 1;
797 /* If the outer part is a word or smaller, INNER larger than a
798 word and the number of regs for INNER is not the same as the
799 number of words in INNER, then INNER will need reloading. */
800 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
801 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
802 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
803 != HARD_REGNO_NREGS (REGNO (inner), GET_MODE (inner))));
806 /* Record one reload that needs to be performed.
807 IN is an rtx saying where the data are to be found before this instruction.
808 OUT says where they must be stored after the instruction.
809 (IN is zero for data not read, and OUT is zero for data not written.)
810 INLOC and OUTLOC point to the places in the instructions where
811 IN and OUT were found.
812 If IN and OUT are both non-zero, it means the same register must be used
813 to reload both IN and OUT.
815 CLASS is a register class required for the reloaded data.
816 INMODE is the machine mode that the instruction requires
817 for the reg that replaces IN and OUTMODE is likewise for OUT.
819 If IN is zero, then OUT's location and mode should be passed as
820 INLOC and INMODE.
822 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
824 OPTIONAL nonzero means this reload does not need to be performed:
825 it can be discarded if that is more convenient.
827 OPNUM and TYPE say what the purpose of this reload is.
829 The return value is the reload-number for this reload.
831 If both IN and OUT are nonzero, in some rare cases we might
832 want to make two separate reloads. (Actually we never do this now.)
833 Therefore, the reload-number for OUT is stored in
834 output_reloadnum when we return; the return value applies to IN.
835 Usually (presently always), when IN and OUT are nonzero,
836 the two reload-numbers are equal, but the caller should be careful to
837 distinguish them. */
839 static int
840 push_reload (in, out, inloc, outloc, class,
841 inmode, outmode, strict_low, optional, opnum, type)
842 rtx in, out;
843 rtx *inloc, *outloc;
844 enum reg_class class;
845 enum machine_mode inmode, outmode;
846 int strict_low;
847 int optional;
848 int opnum;
849 enum reload_type type;
851 register int i;
852 int dont_share = 0;
853 int dont_remove_subreg = 0;
854 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
855 int secondary_in_reload = -1, secondary_out_reload = -1;
856 enum insn_code secondary_in_icode = CODE_FOR_nothing;
857 enum insn_code secondary_out_icode = CODE_FOR_nothing;
859 /* INMODE and/or OUTMODE could be VOIDmode if no mode
860 has been specified for the operand. In that case,
861 use the operand's mode as the mode to reload. */
862 if (inmode == VOIDmode && in != 0)
863 inmode = GET_MODE (in);
864 if (outmode == VOIDmode && out != 0)
865 outmode = GET_MODE (out);
867 /* If IN is a pseudo register everywhere-equivalent to a constant, and
868 it is not in a hard register, reload straight from the constant,
869 since we want to get rid of such pseudo registers.
870 Often this is done earlier, but not always in find_reloads_address. */
871 if (in != 0 && GET_CODE (in) == REG)
873 register int regno = REGNO (in);
875 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
876 && reg_equiv_constant[regno] != 0)
877 in = reg_equiv_constant[regno];
880 /* Likewise for OUT. Of course, OUT will never be equivalent to
881 an actual constant, but it might be equivalent to a memory location
882 (in the case of a parameter). */
883 if (out != 0 && GET_CODE (out) == REG)
885 register int regno = REGNO (out);
887 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
888 && reg_equiv_constant[regno] != 0)
889 out = reg_equiv_constant[regno];
892 /* If we have a read-write operand with an address side-effect,
893 change either IN or OUT so the side-effect happens only once. */
894 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
896 if (GET_CODE (XEXP (in, 0)) == POST_INC
897 || GET_CODE (XEXP (in, 0)) == POST_DEC
898 || GET_CODE (XEXP (in, 0)) == POST_MODIFY)
900 rtx new = gen_rtx_MEM (GET_MODE (in), XEXP (XEXP (in, 0), 0));
902 MEM_COPY_ATTRIBUTES (new, in);
903 in = new;
905 if (GET_CODE (XEXP (in, 0)) == PRE_INC
906 || GET_CODE (XEXP (in, 0)) == PRE_DEC
907 || GET_CODE (XEXP (in, 0)) == PRE_MODIFY)
909 rtx new = gen_rtx_MEM (GET_MODE (out), XEXP (XEXP (out, 0), 0));
911 MEM_COPY_ATTRIBUTES (new, out);
912 out = new;
916 /* If we are reloading a (SUBREG constant ...), really reload just the
917 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
918 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
919 a pseudo and hence will become a MEM) with M1 wider than M2 and the
920 register is a pseudo, also reload the inside expression.
921 For machines that extend byte loads, do this for any SUBREG of a pseudo
922 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
923 M2 is an integral mode that gets extended when loaded.
924 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
925 either M1 is not valid for R or M2 is wider than a word but we only
926 need one word to store an M2-sized quantity in R.
927 (However, if OUT is nonzero, we need to reload the reg *and*
928 the subreg, so do nothing here, and let following statement handle it.)
930 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
931 we can't handle it here because CONST_INT does not indicate a mode.
933 Similarly, we must reload the inside expression if we have a
934 STRICT_LOW_PART (presumably, in == out in the cas).
936 Also reload the inner expression if it does not require a secondary
937 reload but the SUBREG does.
939 Finally, reload the inner expression if it is a register that is in
940 the class whose registers cannot be referenced in a different size
941 and M1 is not the same size as M2. If SUBREG_BYTE is nonzero, we
942 cannot reload just the inside since we might end up with the wrong
943 register class. But if it is inside a STRICT_LOW_PART, we have
944 no choice, so we hope we do get the right register class there. */
946 if (in != 0 && GET_CODE (in) == SUBREG
947 #ifdef CLASS_CANNOT_CHANGE_MODE
948 && (class != CLASS_CANNOT_CHANGE_MODE
949 || ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (in)), inmode))
950 #endif
951 && (CONSTANT_P (SUBREG_REG (in))
952 || GET_CODE (SUBREG_REG (in)) == PLUS
953 || strict_low
954 || (((GET_CODE (SUBREG_REG (in)) == REG
955 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
956 || GET_CODE (SUBREG_REG (in)) == MEM)
957 && ((GET_MODE_SIZE (inmode)
958 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
959 #ifdef LOAD_EXTEND_OP
960 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
961 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
962 <= UNITS_PER_WORD)
963 && (GET_MODE_SIZE (inmode)
964 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
965 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
966 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
967 #endif
968 #ifdef WORD_REGISTER_OPERATIONS
969 || ((GET_MODE_SIZE (inmode)
970 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
971 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
972 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
973 / UNITS_PER_WORD)))
974 #endif
976 || (GET_CODE (SUBREG_REG (in)) == REG
977 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
978 /* The case where out is nonzero
979 is handled differently in the following statement. */
980 && (out == 0 || SUBREG_BYTE (in) == 0)
981 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
982 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
983 > UNITS_PER_WORD)
984 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
985 / UNITS_PER_WORD)
986 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
987 GET_MODE (SUBREG_REG (in)))))
988 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
989 #ifdef SECONDARY_INPUT_RELOAD_CLASS
990 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
991 && (SECONDARY_INPUT_RELOAD_CLASS (class,
992 GET_MODE (SUBREG_REG (in)),
993 SUBREG_REG (in))
994 == NO_REGS))
995 #endif
996 #ifdef CLASS_CANNOT_CHANGE_MODE
997 || (GET_CODE (SUBREG_REG (in)) == REG
998 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
999 && (TEST_HARD_REG_BIT
1000 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1001 REGNO (SUBREG_REG (in))))
1002 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (in)),
1003 inmode))
1004 #endif
1007 in_subreg_loc = inloc;
1008 inloc = &SUBREG_REG (in);
1009 in = *inloc;
1010 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1011 if (GET_CODE (in) == MEM)
1012 /* This is supposed to happen only for paradoxical subregs made by
1013 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1014 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
1015 abort ();
1016 #endif
1017 inmode = GET_MODE (in);
1020 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1021 either M1 is not valid for R or M2 is wider than a word but we only
1022 need one word to store an M2-sized quantity in R.
1024 However, we must reload the inner reg *as well as* the subreg in
1025 that case. */
1027 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1028 code above. This can happen if SUBREG_BYTE != 0. */
1030 if (in != 0 && reload_inner_reg_of_subreg (in, inmode))
1032 /* This relies on the fact that emit_reload_insns outputs the
1033 instructions for input reloads of type RELOAD_OTHER in the same
1034 order as the reloads. Thus if the outer reload is also of type
1035 RELOAD_OTHER, we are guaranteed that this inner reload will be
1036 output before the outer reload. */
1037 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), NULL_PTR,
1038 find_valid_class (inmode,
1039 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1040 GET_MODE (SUBREG_REG (in)),
1041 SUBREG_BYTE (in),
1042 GET_MODE (in))),
1043 VOIDmode, VOIDmode, 0, 0, opnum, type);
1044 dont_remove_subreg = 1;
1047 /* Similarly for paradoxical and problematical SUBREGs on the output.
1048 Note that there is no reason we need worry about the previous value
1049 of SUBREG_REG (out); even if wider than out,
1050 storing in a subreg is entitled to clobber it all
1051 (except in the case of STRICT_LOW_PART,
1052 and in that case the constraint should label it input-output.) */
1053 if (out != 0 && GET_CODE (out) == SUBREG
1054 && (SUBREG_BYTE (out) == 0 || strict_low)
1055 #ifdef CLASS_CANNOT_CHANGE_MODE
1056 && (class != CLASS_CANNOT_CHANGE_MODE
1057 || ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (out)),
1058 outmode))
1059 #endif
1060 && (CONSTANT_P (SUBREG_REG (out))
1061 || strict_low
1062 || (((GET_CODE (SUBREG_REG (out)) == REG
1063 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1064 || GET_CODE (SUBREG_REG (out)) == MEM)
1065 && ((GET_MODE_SIZE (outmode)
1066 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1067 #ifdef WORD_REGISTER_OPERATIONS
1068 || ((GET_MODE_SIZE (outmode)
1069 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1070 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1071 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1072 / UNITS_PER_WORD)))
1073 #endif
1075 || (GET_CODE (SUBREG_REG (out)) == REG
1076 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1077 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1078 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1079 > UNITS_PER_WORD)
1080 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1081 / UNITS_PER_WORD)
1082 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1083 GET_MODE (SUBREG_REG (out)))))
1084 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1085 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1086 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1087 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1088 GET_MODE (SUBREG_REG (out)),
1089 SUBREG_REG (out))
1090 == NO_REGS))
1091 #endif
1092 #ifdef CLASS_CANNOT_CHANGE_MODE
1093 || (GET_CODE (SUBREG_REG (out)) == REG
1094 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1095 && (TEST_HARD_REG_BIT
1096 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1097 REGNO (SUBREG_REG (out))))
1098 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (out)),
1099 outmode))
1100 #endif
1103 out_subreg_loc = outloc;
1104 outloc = &SUBREG_REG (out);
1105 out = *outloc;
1106 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1107 if (GET_CODE (out) == MEM
1108 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1109 abort ();
1110 #endif
1111 outmode = GET_MODE (out);
1114 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1115 either M1 is not valid for R or M2 is wider than a word but we only
1116 need one word to store an M2-sized quantity in R.
1118 However, we must reload the inner reg *as well as* the subreg in
1119 that case. In this case, the inner reg is an in-out reload. */
1121 if (out != 0 && reload_inner_reg_of_subreg (out, outmode))
1123 /* This relies on the fact that emit_reload_insns outputs the
1124 instructions for output reloads of type RELOAD_OTHER in reverse
1125 order of the reloads. Thus if the outer reload is also of type
1126 RELOAD_OTHER, we are guaranteed that this inner reload will be
1127 output after the outer reload. */
1128 dont_remove_subreg = 1;
1129 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1130 &SUBREG_REG (out),
1131 find_valid_class (outmode,
1132 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1133 GET_MODE (SUBREG_REG (out)),
1134 SUBREG_BYTE (out),
1135 GET_MODE (out))),
1136 VOIDmode, VOIDmode, 0, 0,
1137 opnum, RELOAD_OTHER);
1140 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1141 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1142 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1143 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1144 dont_share = 1;
1146 /* If IN is a SUBREG of a hard register, make a new REG. This
1147 simplifies some of the cases below. */
1149 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1150 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1151 && ! dont_remove_subreg)
1152 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1154 /* Similarly for OUT. */
1155 if (out != 0 && GET_CODE (out) == SUBREG
1156 && GET_CODE (SUBREG_REG (out)) == REG
1157 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1158 && ! dont_remove_subreg)
1159 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1161 /* Narrow down the class of register wanted if that is
1162 desirable on this machine for efficiency. */
1163 if (in != 0)
1164 class = PREFERRED_RELOAD_CLASS (in, class);
1166 /* Output reloads may need analogous treatment, different in detail. */
1167 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1168 if (out != 0)
1169 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1170 #endif
1172 /* Make sure we use a class that can handle the actual pseudo
1173 inside any subreg. For example, on the 386, QImode regs
1174 can appear within SImode subregs. Although GENERAL_REGS
1175 can handle SImode, QImode needs a smaller class. */
1176 #ifdef LIMIT_RELOAD_CLASS
1177 if (in_subreg_loc)
1178 class = LIMIT_RELOAD_CLASS (inmode, class);
1179 else if (in != 0 && GET_CODE (in) == SUBREG)
1180 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1182 if (out_subreg_loc)
1183 class = LIMIT_RELOAD_CLASS (outmode, class);
1184 if (out != 0 && GET_CODE (out) == SUBREG)
1185 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1186 #endif
1188 /* Verify that this class is at least possible for the mode that
1189 is specified. */
1190 if (this_insn_is_asm)
1192 enum machine_mode mode;
1193 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1194 mode = inmode;
1195 else
1196 mode = outmode;
1197 if (mode == VOIDmode)
1199 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1200 mode = word_mode;
1201 if (in != 0)
1202 inmode = word_mode;
1203 if (out != 0)
1204 outmode = word_mode;
1206 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1207 if (HARD_REGNO_MODE_OK (i, mode)
1208 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1210 int nregs = HARD_REGNO_NREGS (i, mode);
1212 int j;
1213 for (j = 1; j < nregs; j++)
1214 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1215 break;
1216 if (j == nregs)
1217 break;
1219 if (i == FIRST_PSEUDO_REGISTER)
1221 error_for_asm (this_insn, "impossible register constraint in `asm'");
1222 class = ALL_REGS;
1226 /* Optional output reloads are always OK even if we have no register class,
1227 since the function of these reloads is only to have spill_reg_store etc.
1228 set, so that the storing insn can be deleted later. */
1229 if (class == NO_REGS
1230 && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1231 abort ();
1233 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1235 if (i == n_reloads)
1237 /* See if we need a secondary reload register to move between CLASS
1238 and IN or CLASS and OUT. Get the icode and push any required reloads
1239 needed for each of them if so. */
1241 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1242 if (in != 0)
1243 secondary_in_reload
1244 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1245 &secondary_in_icode);
1246 #endif
1248 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1249 if (out != 0 && GET_CODE (out) != SCRATCH)
1250 secondary_out_reload
1251 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1252 type, &secondary_out_icode);
1253 #endif
1255 /* We found no existing reload suitable for re-use.
1256 So add an additional reload. */
1258 #ifdef SECONDARY_MEMORY_NEEDED
1259 /* If a memory location is needed for the copy, make one. */
1260 if (in != 0 && GET_CODE (in) == REG
1261 && REGNO (in) < FIRST_PSEUDO_REGISTER
1262 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
1263 class, inmode))
1264 get_secondary_mem (in, inmode, opnum, type);
1265 #endif
1267 i = n_reloads;
1268 rld[i].in = in;
1269 rld[i].out = out;
1270 rld[i].class = class;
1271 rld[i].inmode = inmode;
1272 rld[i].outmode = outmode;
1273 rld[i].reg_rtx = 0;
1274 rld[i].optional = optional;
1275 rld[i].inc = 0;
1276 rld[i].nocombine = 0;
1277 rld[i].in_reg = inloc ? *inloc : 0;
1278 rld[i].out_reg = outloc ? *outloc : 0;
1279 rld[i].opnum = opnum;
1280 rld[i].when_needed = type;
1281 rld[i].secondary_in_reload = secondary_in_reload;
1282 rld[i].secondary_out_reload = secondary_out_reload;
1283 rld[i].secondary_in_icode = secondary_in_icode;
1284 rld[i].secondary_out_icode = secondary_out_icode;
1285 rld[i].secondary_p = 0;
1287 n_reloads++;
1289 #ifdef SECONDARY_MEMORY_NEEDED
1290 if (out != 0 && GET_CODE (out) == REG
1291 && REGNO (out) < FIRST_PSEUDO_REGISTER
1292 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
1293 outmode))
1294 get_secondary_mem (out, outmode, opnum, type);
1295 #endif
1297 else
1299 /* We are reusing an existing reload,
1300 but we may have additional information for it.
1301 For example, we may now have both IN and OUT
1302 while the old one may have just one of them. */
1304 /* The modes can be different. If they are, we want to reload in
1305 the larger mode, so that the value is valid for both modes. */
1306 if (inmode != VOIDmode
1307 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1308 rld[i].inmode = inmode;
1309 if (outmode != VOIDmode
1310 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1311 rld[i].outmode = outmode;
1312 if (in != 0)
1314 rtx in_reg = inloc ? *inloc : 0;
1315 /* If we merge reloads for two distinct rtl expressions that
1316 are identical in content, there might be duplicate address
1317 reloads. Remove the extra set now, so that if we later find
1318 that we can inherit this reload, we can get rid of the
1319 address reloads altogether.
1321 Do not do this if both reloads are optional since the result
1322 would be an optional reload which could potentially leave
1323 unresolved address replacements.
1325 It is not sufficient to call transfer_replacements since
1326 choose_reload_regs will remove the replacements for address
1327 reloads of inherited reloads which results in the same
1328 problem. */
1329 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1330 && ! (rld[i].optional && optional))
1332 /* We must keep the address reload with the lower operand
1333 number alive. */
1334 if (opnum > rld[i].opnum)
1336 remove_address_replacements (in);
1337 in = rld[i].in;
1338 in_reg = rld[i].in_reg;
1340 else
1341 remove_address_replacements (rld[i].in);
1343 rld[i].in = in;
1344 rld[i].in_reg = in_reg;
1346 if (out != 0)
1348 rld[i].out = out;
1349 rld[i].out_reg = outloc ? *outloc : 0;
1351 if (reg_class_subset_p (class, rld[i].class))
1352 rld[i].class = class;
1353 rld[i].optional &= optional;
1354 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1355 opnum, rld[i].opnum))
1356 rld[i].when_needed = RELOAD_OTHER;
1357 rld[i].opnum = MIN (rld[i].opnum, opnum);
1360 /* If the ostensible rtx being reload differs from the rtx found
1361 in the location to substitute, this reload is not safe to combine
1362 because we cannot reliably tell whether it appears in the insn. */
1364 if (in != 0 && in != *inloc)
1365 rld[i].nocombine = 1;
1367 #if 0
1368 /* This was replaced by changes in find_reloads_address_1 and the new
1369 function inc_for_reload, which go with a new meaning of reload_inc. */
1371 /* If this is an IN/OUT reload in an insn that sets the CC,
1372 it must be for an autoincrement. It doesn't work to store
1373 the incremented value after the insn because that would clobber the CC.
1374 So we must do the increment of the value reloaded from,
1375 increment it, store it back, then decrement again. */
1376 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1378 out = 0;
1379 rld[i].out = 0;
1380 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1381 /* If we did not find a nonzero amount-to-increment-by,
1382 that contradicts the belief that IN is being incremented
1383 in an address in this insn. */
1384 if (rld[i].inc == 0)
1385 abort ();
1387 #endif
1389 /* If we will replace IN and OUT with the reload-reg,
1390 record where they are located so that substitution need
1391 not do a tree walk. */
1393 if (replace_reloads)
1395 if (inloc != 0)
1397 register struct replacement *r = &replacements[n_replacements++];
1398 r->what = i;
1399 r->subreg_loc = in_subreg_loc;
1400 r->where = inloc;
1401 r->mode = inmode;
1403 if (outloc != 0 && outloc != inloc)
1405 register struct replacement *r = &replacements[n_replacements++];
1406 r->what = i;
1407 r->where = outloc;
1408 r->subreg_loc = out_subreg_loc;
1409 r->mode = outmode;
1413 /* If this reload is just being introduced and it has both
1414 an incoming quantity and an outgoing quantity that are
1415 supposed to be made to match, see if either one of the two
1416 can serve as the place to reload into.
1418 If one of them is acceptable, set rld[i].reg_rtx
1419 to that one. */
1421 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1423 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1424 inmode, outmode,
1425 rld[i].class, i,
1426 earlyclobber_operand_p (out));
1428 /* If the outgoing register already contains the same value
1429 as the incoming one, we can dispense with loading it.
1430 The easiest way to tell the caller that is to give a phony
1431 value for the incoming operand (same as outgoing one). */
1432 if (rld[i].reg_rtx == out
1433 && (GET_CODE (in) == REG || CONSTANT_P (in))
1434 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1435 static_reload_reg_p, i, inmode))
1436 rld[i].in = out;
1439 /* If this is an input reload and the operand contains a register that
1440 dies in this insn and is used nowhere else, see if it is the right class
1441 to be used for this reload. Use it if so. (This occurs most commonly
1442 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1443 this if it is also an output reload that mentions the register unless
1444 the output is a SUBREG that clobbers an entire register.
1446 Note that the operand might be one of the spill regs, if it is a
1447 pseudo reg and we are in a block where spilling has not taken place.
1448 But if there is no spilling in this block, that is OK.
1449 An explicitly used hard reg cannot be a spill reg. */
1451 if (rld[i].reg_rtx == 0 && in != 0)
1453 rtx note;
1454 int regno;
1455 enum machine_mode rel_mode = inmode;
1457 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1458 rel_mode = outmode;
1460 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1461 if (REG_NOTE_KIND (note) == REG_DEAD
1462 && GET_CODE (XEXP (note, 0)) == REG
1463 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1464 && reg_mentioned_p (XEXP (note, 0), in)
1465 && ! refers_to_regno_for_reload_p (regno,
1466 (regno
1467 + HARD_REGNO_NREGS (regno,
1468 rel_mode)),
1469 PATTERN (this_insn), inloc)
1470 /* If this is also an output reload, IN cannot be used as
1471 the reload register if it is set in this insn unless IN
1472 is also OUT. */
1473 && (out == 0 || in == out
1474 || ! hard_reg_set_here_p (regno,
1475 (regno
1476 + HARD_REGNO_NREGS (regno,
1477 rel_mode)),
1478 PATTERN (this_insn)))
1479 /* ??? Why is this code so different from the previous?
1480 Is there any simple coherent way to describe the two together?
1481 What's going on here. */
1482 && (in != out
1483 || (GET_CODE (in) == SUBREG
1484 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1485 / UNITS_PER_WORD)
1486 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1487 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1488 /* Make sure the operand fits in the reg that dies. */
1489 && (GET_MODE_SIZE (rel_mode)
1490 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1491 && HARD_REGNO_MODE_OK (regno, inmode)
1492 && HARD_REGNO_MODE_OK (regno, outmode))
1494 unsigned int offs;
1495 unsigned int nregs = MAX (HARD_REGNO_NREGS (regno, inmode),
1496 HARD_REGNO_NREGS (regno, outmode));
1498 for (offs = 0; offs < nregs; offs++)
1499 if (fixed_regs[regno + offs]
1500 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1501 regno + offs))
1502 break;
1504 if (offs == nregs)
1506 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1507 break;
1512 if (out)
1513 output_reloadnum = i;
1515 return i;
1518 /* Record an additional place we must replace a value
1519 for which we have already recorded a reload.
1520 RELOADNUM is the value returned by push_reload
1521 when the reload was recorded.
1522 This is used in insn patterns that use match_dup. */
1524 static void
1525 push_replacement (loc, reloadnum, mode)
1526 rtx *loc;
1527 int reloadnum;
1528 enum machine_mode mode;
1530 if (replace_reloads)
1532 register struct replacement *r = &replacements[n_replacements++];
1533 r->what = reloadnum;
1534 r->where = loc;
1535 r->subreg_loc = 0;
1536 r->mode = mode;
1540 /* Transfer all replacements that used to be in reload FROM to be in
1541 reload TO. */
1543 void
1544 transfer_replacements (to, from)
1545 int to, from;
1547 int i;
1549 for (i = 0; i < n_replacements; i++)
1550 if (replacements[i].what == from)
1551 replacements[i].what = to;
1554 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1555 or a subpart of it. If we have any replacements registered for IN_RTX,
1556 cancel the reloads that were supposed to load them.
1557 Return non-zero if we canceled any reloads. */
1559 remove_address_replacements (in_rtx)
1560 rtx in_rtx;
1562 int i, j;
1563 char reload_flags[MAX_RELOADS];
1564 int something_changed = 0;
1566 memset (reload_flags, 0, sizeof reload_flags);
1567 for (i = 0, j = 0; i < n_replacements; i++)
1569 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1570 reload_flags[replacements[i].what] |= 1;
1571 else
1573 replacements[j++] = replacements[i];
1574 reload_flags[replacements[i].what] |= 2;
1577 /* Note that the following store must be done before the recursive calls. */
1578 n_replacements = j;
1580 for (i = n_reloads - 1; i >= 0; i--)
1582 if (reload_flags[i] == 1)
1584 deallocate_reload_reg (i);
1585 remove_address_replacements (rld[i].in);
1586 rld[i].in = 0;
1587 something_changed = 1;
1590 return something_changed;
1593 /* If there is only one output reload, and it is not for an earlyclobber
1594 operand, try to combine it with a (logically unrelated) input reload
1595 to reduce the number of reload registers needed.
1597 This is safe if the input reload does not appear in
1598 the value being output-reloaded, because this implies
1599 it is not needed any more once the original insn completes.
1601 If that doesn't work, see we can use any of the registers that
1602 die in this insn as a reload register. We can if it is of the right
1603 class and does not appear in the value being output-reloaded. */
1605 static void
1606 combine_reloads ()
1608 int i;
1609 int output_reload = -1;
1610 int secondary_out = -1;
1611 rtx note;
1613 /* Find the output reload; return unless there is exactly one
1614 and that one is mandatory. */
1616 for (i = 0; i < n_reloads; i++)
1617 if (rld[i].out != 0)
1619 if (output_reload >= 0)
1620 return;
1621 output_reload = i;
1624 if (output_reload < 0 || rld[output_reload].optional)
1625 return;
1627 /* An input-output reload isn't combinable. */
1629 if (rld[output_reload].in != 0)
1630 return;
1632 /* If this reload is for an earlyclobber operand, we can't do anything. */
1633 if (earlyclobber_operand_p (rld[output_reload].out))
1634 return;
1636 /* Check each input reload; can we combine it? */
1638 for (i = 0; i < n_reloads; i++)
1639 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1640 /* Life span of this reload must not extend past main insn. */
1641 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1642 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1643 && rld[i].when_needed != RELOAD_OTHER
1644 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1645 == CLASS_MAX_NREGS (rld[output_reload].class,
1646 rld[output_reload].outmode))
1647 && rld[i].inc == 0
1648 && rld[i].reg_rtx == 0
1649 #ifdef SECONDARY_MEMORY_NEEDED
1650 /* Don't combine two reloads with different secondary
1651 memory locations. */
1652 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1653 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1654 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1655 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1656 #endif
1657 && (SMALL_REGISTER_CLASSES
1658 ? (rld[i].class == rld[output_reload].class)
1659 : (reg_class_subset_p (rld[i].class,
1660 rld[output_reload].class)
1661 || reg_class_subset_p (rld[output_reload].class,
1662 rld[i].class)))
1663 && (MATCHES (rld[i].in, rld[output_reload].out)
1664 /* Args reversed because the first arg seems to be
1665 the one that we imagine being modified
1666 while the second is the one that might be affected. */
1667 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1668 rld[i].in)
1669 /* However, if the input is a register that appears inside
1670 the output, then we also can't share.
1671 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1672 If the same reload reg is used for both reg 69 and the
1673 result to be stored in memory, then that result
1674 will clobber the address of the memory ref. */
1675 && ! (GET_CODE (rld[i].in) == REG
1676 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1677 rld[output_reload].out))))
1678 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode)
1679 && (reg_class_size[(int) rld[i].class]
1680 || SMALL_REGISTER_CLASSES)
1681 /* We will allow making things slightly worse by combining an
1682 input and an output, but no worse than that. */
1683 && (rld[i].when_needed == RELOAD_FOR_INPUT
1684 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1686 int j;
1688 /* We have found a reload to combine with! */
1689 rld[i].out = rld[output_reload].out;
1690 rld[i].out_reg = rld[output_reload].out_reg;
1691 rld[i].outmode = rld[output_reload].outmode;
1692 /* Mark the old output reload as inoperative. */
1693 rld[output_reload].out = 0;
1694 /* The combined reload is needed for the entire insn. */
1695 rld[i].when_needed = RELOAD_OTHER;
1696 /* If the output reload had a secondary reload, copy it. */
1697 if (rld[output_reload].secondary_out_reload != -1)
1699 rld[i].secondary_out_reload
1700 = rld[output_reload].secondary_out_reload;
1701 rld[i].secondary_out_icode
1702 = rld[output_reload].secondary_out_icode;
1705 #ifdef SECONDARY_MEMORY_NEEDED
1706 /* Copy any secondary MEM. */
1707 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1708 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1709 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1710 #endif
1711 /* If required, minimize the register class. */
1712 if (reg_class_subset_p (rld[output_reload].class,
1713 rld[i].class))
1714 rld[i].class = rld[output_reload].class;
1716 /* Transfer all replacements from the old reload to the combined. */
1717 for (j = 0; j < n_replacements; j++)
1718 if (replacements[j].what == output_reload)
1719 replacements[j].what = i;
1721 return;
1724 /* If this insn has only one operand that is modified or written (assumed
1725 to be the first), it must be the one corresponding to this reload. It
1726 is safe to use anything that dies in this insn for that output provided
1727 that it does not occur in the output (we already know it isn't an
1728 earlyclobber. If this is an asm insn, give up. */
1730 if (INSN_CODE (this_insn) == -1)
1731 return;
1733 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1734 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1735 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1736 return;
1738 /* See if some hard register that dies in this insn and is not used in
1739 the output is the right class. Only works if the register we pick
1740 up can fully hold our output reload. */
1741 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1742 if (REG_NOTE_KIND (note) == REG_DEAD
1743 && GET_CODE (XEXP (note, 0)) == REG
1744 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1745 rld[output_reload].out)
1746 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1747 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1748 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1749 REGNO (XEXP (note, 0)))
1750 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1751 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1752 /* Ensure that a secondary or tertiary reload for this output
1753 won't want this register. */
1754 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1755 || (! (TEST_HARD_REG_BIT
1756 (reg_class_contents[(int) rld[secondary_out].class],
1757 REGNO (XEXP (note, 0))))
1758 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1759 || ! (TEST_HARD_REG_BIT
1760 (reg_class_contents[(int) rld[secondary_out].class],
1761 REGNO (XEXP (note, 0)))))))
1762 && ! fixed_regs[REGNO (XEXP (note, 0))])
1764 rld[output_reload].reg_rtx
1765 = gen_rtx_REG (rld[output_reload].outmode,
1766 REGNO (XEXP (note, 0)));
1767 return;
1771 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1772 See if one of IN and OUT is a register that may be used;
1773 this is desirable since a spill-register won't be needed.
1774 If so, return the register rtx that proves acceptable.
1776 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1777 CLASS is the register class required for the reload.
1779 If FOR_REAL is >= 0, it is the number of the reload,
1780 and in some cases when it can be discovered that OUT doesn't need
1781 to be computed, clear out rld[FOR_REAL].out.
1783 If FOR_REAL is -1, this should not be done, because this call
1784 is just to see if a register can be found, not to find and install it.
1786 EARLYCLOBBER is non-zero if OUT is an earlyclobber operand. This
1787 puts an additional constraint on being able to use IN for OUT since
1788 IN must not appear elsewhere in the insn (it is assumed that IN itself
1789 is safe from the earlyclobber). */
1791 static rtx
1792 find_dummy_reload (real_in, real_out, inloc, outloc,
1793 inmode, outmode, class, for_real, earlyclobber)
1794 rtx real_in, real_out;
1795 rtx *inloc, *outloc;
1796 enum machine_mode inmode, outmode;
1797 enum reg_class class;
1798 int for_real;
1799 int earlyclobber;
1801 rtx in = real_in;
1802 rtx out = real_out;
1803 int in_offset = 0;
1804 int out_offset = 0;
1805 rtx value = 0;
1807 /* If operands exceed a word, we can't use either of them
1808 unless they have the same size. */
1809 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1810 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1811 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1812 return 0;
1814 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1815 respectively refers to a hard register. */
1817 /* Find the inside of any subregs. */
1818 while (GET_CODE (out) == SUBREG)
1820 if (GET_CODE (SUBREG_REG (out)) == REG
1821 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1822 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1823 GET_MODE (SUBREG_REG (out)),
1824 SUBREG_BYTE (out),
1825 GET_MODE (out));
1826 out = SUBREG_REG (out);
1828 while (GET_CODE (in) == SUBREG)
1830 if (GET_CODE (SUBREG_REG (in)) == REG
1831 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1832 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1833 GET_MODE (SUBREG_REG (in)),
1834 SUBREG_BYTE (in),
1835 GET_MODE (in));
1836 in = SUBREG_REG (in);
1839 /* Narrow down the reg class, the same way push_reload will;
1840 otherwise we might find a dummy now, but push_reload won't. */
1841 class = PREFERRED_RELOAD_CLASS (in, class);
1843 /* See if OUT will do. */
1844 if (GET_CODE (out) == REG
1845 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1847 unsigned int regno = REGNO (out) + out_offset;
1848 unsigned int nwords = HARD_REGNO_NREGS (regno, outmode);
1849 rtx saved_rtx;
1851 /* When we consider whether the insn uses OUT,
1852 ignore references within IN. They don't prevent us
1853 from copying IN into OUT, because those refs would
1854 move into the insn that reloads IN.
1856 However, we only ignore IN in its role as this reload.
1857 If the insn uses IN elsewhere and it contains OUT,
1858 that counts. We can't be sure it's the "same" operand
1859 so it might not go through this reload. */
1860 saved_rtx = *inloc;
1861 *inloc = const0_rtx;
1863 if (regno < FIRST_PSEUDO_REGISTER
1864 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1865 PATTERN (this_insn), outloc))
1867 unsigned int i;
1869 for (i = 0; i < nwords; i++)
1870 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1871 regno + i))
1872 break;
1874 if (i == nwords)
1876 if (GET_CODE (real_out) == REG)
1877 value = real_out;
1878 else
1879 value = gen_rtx_REG (outmode, regno);
1883 *inloc = saved_rtx;
1886 /* Consider using IN if OUT was not acceptable
1887 or if OUT dies in this insn (like the quotient in a divmod insn).
1888 We can't use IN unless it is dies in this insn,
1889 which means we must know accurately which hard regs are live.
1890 Also, the result can't go in IN if IN is used within OUT,
1891 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1892 if (hard_regs_live_known
1893 && GET_CODE (in) == REG
1894 && REGNO (in) < FIRST_PSEUDO_REGISTER
1895 && (value == 0
1896 || find_reg_note (this_insn, REG_UNUSED, real_out))
1897 && find_reg_note (this_insn, REG_DEAD, real_in)
1898 && !fixed_regs[REGNO (in)]
1899 && HARD_REGNO_MODE_OK (REGNO (in),
1900 /* The only case where out and real_out might
1901 have different modes is where real_out
1902 is a subreg, and in that case, out
1903 has a real mode. */
1904 (GET_MODE (out) != VOIDmode
1905 ? GET_MODE (out) : outmode)))
1907 unsigned int regno = REGNO (in) + in_offset;
1908 unsigned int nwords = HARD_REGNO_NREGS (regno, inmode);
1910 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, NULL_PTR)
1911 && ! hard_reg_set_here_p (regno, regno + nwords,
1912 PATTERN (this_insn))
1913 && (! earlyclobber
1914 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1915 PATTERN (this_insn), inloc)))
1917 unsigned int i;
1919 for (i = 0; i < nwords; i++)
1920 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1921 regno + i))
1922 break;
1924 if (i == nwords)
1926 /* If we were going to use OUT as the reload reg
1927 and changed our mind, it means OUT is a dummy that
1928 dies here. So don't bother copying value to it. */
1929 if (for_real >= 0 && value == real_out)
1930 rld[for_real].out = 0;
1931 if (GET_CODE (real_in) == REG)
1932 value = real_in;
1933 else
1934 value = gen_rtx_REG (inmode, regno);
1939 return value;
1942 /* This page contains subroutines used mainly for determining
1943 whether the IN or an OUT of a reload can serve as the
1944 reload register. */
1946 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1949 earlyclobber_operand_p (x)
1950 rtx x;
1952 int i;
1954 for (i = 0; i < n_earlyclobbers; i++)
1955 if (reload_earlyclobbers[i] == x)
1956 return 1;
1958 return 0;
1961 /* Return 1 if expression X alters a hard reg in the range
1962 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1963 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1964 X should be the body of an instruction. */
1966 static int
1967 hard_reg_set_here_p (beg_regno, end_regno, x)
1968 unsigned int beg_regno, end_regno;
1969 rtx x;
1971 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1973 register rtx op0 = SET_DEST (x);
1975 while (GET_CODE (op0) == SUBREG)
1976 op0 = SUBREG_REG (op0);
1977 if (GET_CODE (op0) == REG)
1979 unsigned int r = REGNO (op0);
1981 /* See if this reg overlaps range under consideration. */
1982 if (r < end_regno
1983 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
1984 return 1;
1987 else if (GET_CODE (x) == PARALLEL)
1989 register int i = XVECLEN (x, 0) - 1;
1991 for (; i >= 0; i--)
1992 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
1993 return 1;
1996 return 0;
1999 /* Return 1 if ADDR is a valid memory address for mode MODE,
2000 and check that each pseudo reg has the proper kind of
2001 hard reg. */
2004 strict_memory_address_p (mode, addr)
2005 enum machine_mode mode ATTRIBUTE_UNUSED;
2006 register rtx addr;
2008 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2009 return 0;
2011 win:
2012 return 1;
2015 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2016 if they are the same hard reg, and has special hacks for
2017 autoincrement and autodecrement.
2018 This is specifically intended for find_reloads to use
2019 in determining whether two operands match.
2020 X is the operand whose number is the lower of the two.
2022 The value is 2 if Y contains a pre-increment that matches
2023 a non-incrementing address in X. */
2025 /* ??? To be completely correct, we should arrange to pass
2026 for X the output operand and for Y the input operand.
2027 For now, we assume that the output operand has the lower number
2028 because that is natural in (SET output (... input ...)). */
2031 operands_match_p (x, y)
2032 register rtx x, y;
2034 register int i;
2035 register RTX_CODE code = GET_CODE (x);
2036 register const char *fmt;
2037 int success_2;
2039 if (x == y)
2040 return 1;
2041 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
2042 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
2043 && GET_CODE (SUBREG_REG (y)) == REG)))
2045 register int j;
2047 if (code == SUBREG)
2049 i = REGNO (SUBREG_REG (x));
2050 if (i >= FIRST_PSEUDO_REGISTER)
2051 goto slow;
2052 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2053 GET_MODE (SUBREG_REG (x)),
2054 SUBREG_BYTE (x),
2055 GET_MODE (x));
2057 else
2058 i = REGNO (x);
2060 if (GET_CODE (y) == SUBREG)
2062 j = REGNO (SUBREG_REG (y));
2063 if (j >= FIRST_PSEUDO_REGISTER)
2064 goto slow;
2065 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2066 GET_MODE (SUBREG_REG (y)),
2067 SUBREG_BYTE (y),
2068 GET_MODE (y));
2070 else
2071 j = REGNO (y);
2073 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2074 multiple hard register group, so that for example (reg:DI 0) and
2075 (reg:SI 1) will be considered the same register. */
2076 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2077 && i < FIRST_PSEUDO_REGISTER)
2078 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
2079 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2080 && j < FIRST_PSEUDO_REGISTER)
2081 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
2083 return i == j;
2085 /* If two operands must match, because they are really a single
2086 operand of an assembler insn, then two postincrements are invalid
2087 because the assembler insn would increment only once.
2088 On the other hand, an postincrement matches ordinary indexing
2089 if the postincrement is the output operand. */
2090 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2091 return operands_match_p (XEXP (x, 0), y);
2092 /* Two preincrements are invalid
2093 because the assembler insn would increment only once.
2094 On the other hand, an preincrement matches ordinary indexing
2095 if the preincrement is the input operand.
2096 In this case, return 2, since some callers need to do special
2097 things when this happens. */
2098 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2099 || GET_CODE (y) == PRE_MODIFY)
2100 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2102 slow:
2104 /* Now we have disposed of all the cases
2105 in which different rtx codes can match. */
2106 if (code != GET_CODE (y))
2107 return 0;
2108 if (code == LABEL_REF)
2109 return XEXP (x, 0) == XEXP (y, 0);
2110 if (code == SYMBOL_REF)
2111 return XSTR (x, 0) == XSTR (y, 0);
2113 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2115 if (GET_MODE (x) != GET_MODE (y))
2116 return 0;
2118 /* Compare the elements. If any pair of corresponding elements
2119 fail to match, return 0 for the whole things. */
2121 success_2 = 0;
2122 fmt = GET_RTX_FORMAT (code);
2123 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2125 int val, j;
2126 switch (fmt[i])
2128 case 'w':
2129 if (XWINT (x, i) != XWINT (y, i))
2130 return 0;
2131 break;
2133 case 'i':
2134 if (XINT (x, i) != XINT (y, i))
2135 return 0;
2136 break;
2138 case 'e':
2139 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2140 if (val == 0)
2141 return 0;
2142 /* If any subexpression returns 2,
2143 we should return 2 if we are successful. */
2144 if (val == 2)
2145 success_2 = 1;
2146 break;
2148 case '0':
2149 break;
2151 case 'E':
2152 if (XVECLEN (x, i) != XVECLEN (y, i))
2153 return 0;
2154 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2156 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2157 if (val == 0)
2158 return 0;
2159 if (val == 2)
2160 success_2 = 1;
2162 break;
2164 /* It is believed that rtx's at this level will never
2165 contain anything but integers and other rtx's,
2166 except for within LABEL_REFs and SYMBOL_REFs. */
2167 default:
2168 abort ();
2171 return 1 + success_2;
2174 /* Describe the range of registers or memory referenced by X.
2175 If X is a register, set REG_FLAG and put the first register
2176 number into START and the last plus one into END.
2177 If X is a memory reference, put a base address into BASE
2178 and a range of integer offsets into START and END.
2179 If X is pushing on the stack, we can assume it causes no trouble,
2180 so we set the SAFE field. */
2182 static struct decomposition
2183 decompose (x)
2184 rtx x;
2186 struct decomposition val;
2187 int all_const = 0;
2189 val.reg_flag = 0;
2190 val.safe = 0;
2191 val.base = 0;
2192 if (GET_CODE (x) == MEM)
2194 rtx base = NULL_RTX, offset = 0;
2195 rtx addr = XEXP (x, 0);
2197 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2198 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2200 val.base = XEXP (addr, 0);
2201 val.start = -GET_MODE_SIZE (GET_MODE (x));
2202 val.end = GET_MODE_SIZE (GET_MODE (x));
2203 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2204 return val;
2207 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2209 if (GET_CODE (XEXP (addr, 1)) == PLUS
2210 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2211 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2213 val.base = XEXP (addr, 0);
2214 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2215 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2216 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2217 return val;
2221 if (GET_CODE (addr) == CONST)
2223 addr = XEXP (addr, 0);
2224 all_const = 1;
2226 if (GET_CODE (addr) == PLUS)
2228 if (CONSTANT_P (XEXP (addr, 0)))
2230 base = XEXP (addr, 1);
2231 offset = XEXP (addr, 0);
2233 else if (CONSTANT_P (XEXP (addr, 1)))
2235 base = XEXP (addr, 0);
2236 offset = XEXP (addr, 1);
2240 if (offset == 0)
2242 base = addr;
2243 offset = const0_rtx;
2245 if (GET_CODE (offset) == CONST)
2246 offset = XEXP (offset, 0);
2247 if (GET_CODE (offset) == PLUS)
2249 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2251 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2252 offset = XEXP (offset, 0);
2254 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2256 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2257 offset = XEXP (offset, 1);
2259 else
2261 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2262 offset = const0_rtx;
2265 else if (GET_CODE (offset) != CONST_INT)
2267 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2268 offset = const0_rtx;
2271 if (all_const && GET_CODE (base) == PLUS)
2272 base = gen_rtx_CONST (GET_MODE (base), base);
2274 if (GET_CODE (offset) != CONST_INT)
2275 abort ();
2277 val.start = INTVAL (offset);
2278 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2279 val.base = base;
2280 return val;
2282 else if (GET_CODE (x) == REG)
2284 val.reg_flag = 1;
2285 val.start = true_regnum (x);
2286 if (val.start < 0)
2288 /* A pseudo with no hard reg. */
2289 val.start = REGNO (x);
2290 val.end = val.start + 1;
2292 else
2293 /* A hard reg. */
2294 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2296 else if (GET_CODE (x) == SUBREG)
2298 if (GET_CODE (SUBREG_REG (x)) != REG)
2299 /* This could be more precise, but it's good enough. */
2300 return decompose (SUBREG_REG (x));
2301 val.reg_flag = 1;
2302 val.start = true_regnum (x);
2303 if (val.start < 0)
2304 return decompose (SUBREG_REG (x));
2305 else
2306 /* A hard reg. */
2307 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2309 else if (CONSTANT_P (x)
2310 /* This hasn't been assigned yet, so it can't conflict yet. */
2311 || GET_CODE (x) == SCRATCH)
2312 val.safe = 1;
2313 else
2314 abort ();
2315 return val;
2318 /* Return 1 if altering Y will not modify the value of X.
2319 Y is also described by YDATA, which should be decompose (Y). */
2321 static int
2322 immune_p (x, y, ydata)
2323 rtx x, y;
2324 struct decomposition ydata;
2326 struct decomposition xdata;
2328 if (ydata.reg_flag)
2329 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, NULL_PTR);
2330 if (ydata.safe)
2331 return 1;
2333 if (GET_CODE (y) != MEM)
2334 abort ();
2335 /* If Y is memory and X is not, Y can't affect X. */
2336 if (GET_CODE (x) != MEM)
2337 return 1;
2339 xdata = decompose (x);
2341 if (! rtx_equal_p (xdata.base, ydata.base))
2343 /* If bases are distinct symbolic constants, there is no overlap. */
2344 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2345 return 1;
2346 /* Constants and stack slots never overlap. */
2347 if (CONSTANT_P (xdata.base)
2348 && (ydata.base == frame_pointer_rtx
2349 || ydata.base == hard_frame_pointer_rtx
2350 || ydata.base == stack_pointer_rtx))
2351 return 1;
2352 if (CONSTANT_P (ydata.base)
2353 && (xdata.base == frame_pointer_rtx
2354 || xdata.base == hard_frame_pointer_rtx
2355 || xdata.base == stack_pointer_rtx))
2356 return 1;
2357 /* If either base is variable, we don't know anything. */
2358 return 0;
2361 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2364 /* Similar, but calls decompose. */
2367 safe_from_earlyclobber (op, clobber)
2368 rtx op, clobber;
2370 struct decomposition early_data;
2372 early_data = decompose (clobber);
2373 return immune_p (op, clobber, early_data);
2376 /* Main entry point of this file: search the body of INSN
2377 for values that need reloading and record them with push_reload.
2378 REPLACE nonzero means record also where the values occur
2379 so that subst_reloads can be used.
2381 IND_LEVELS says how many levels of indirection are supported by this
2382 machine; a value of zero means that a memory reference is not a valid
2383 memory address.
2385 LIVE_KNOWN says we have valid information about which hard
2386 regs are live at each point in the program; this is true when
2387 we are called from global_alloc but false when stupid register
2388 allocation has been done.
2390 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2391 which is nonnegative if the reg has been commandeered for reloading into.
2392 It is copied into STATIC_RELOAD_REG_P and referenced from there
2393 by various subroutines.
2395 Return TRUE if some operands need to be changed, because of swapping
2396 commutative operands, reg_equiv_address substitution, or whatever. */
2399 find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2400 rtx insn;
2401 int replace, ind_levels;
2402 int live_known;
2403 short *reload_reg_p;
2405 register int insn_code_number;
2406 register int i, j;
2407 int noperands;
2408 /* These start out as the constraints for the insn
2409 and they are chewed up as we consider alternatives. */
2410 char *constraints[MAX_RECOG_OPERANDS];
2411 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2412 a register. */
2413 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2414 char pref_or_nothing[MAX_RECOG_OPERANDS];
2415 /* Nonzero for a MEM operand whose entire address needs a reload. */
2416 int address_reloaded[MAX_RECOG_OPERANDS];
2417 /* Value of enum reload_type to use for operand. */
2418 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2419 /* Value of enum reload_type to use within address of operand. */
2420 enum reload_type address_type[MAX_RECOG_OPERANDS];
2421 /* Save the usage of each operand. */
2422 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2423 int no_input_reloads = 0, no_output_reloads = 0;
2424 int n_alternatives;
2425 int this_alternative[MAX_RECOG_OPERANDS];
2426 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2427 char this_alternative_win[MAX_RECOG_OPERANDS];
2428 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2429 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2430 int this_alternative_matches[MAX_RECOG_OPERANDS];
2431 int swapped;
2432 int goal_alternative[MAX_RECOG_OPERANDS];
2433 int this_alternative_number;
2434 int goal_alternative_number = 0;
2435 int operand_reloadnum[MAX_RECOG_OPERANDS];
2436 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2437 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2438 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2439 char goal_alternative_win[MAX_RECOG_OPERANDS];
2440 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2441 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2442 int goal_alternative_swapped;
2443 int best;
2444 int commutative;
2445 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2446 rtx substed_operand[MAX_RECOG_OPERANDS];
2447 rtx body = PATTERN (insn);
2448 rtx set = single_set (insn);
2449 int goal_earlyclobber = 0, this_earlyclobber;
2450 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2451 int retval = 0;
2453 this_insn = insn;
2454 n_reloads = 0;
2455 n_replacements = 0;
2456 n_earlyclobbers = 0;
2457 replace_reloads = replace;
2458 hard_regs_live_known = live_known;
2459 static_reload_reg_p = reload_reg_p;
2461 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2462 neither are insns that SET cc0. Insns that use CC0 are not allowed
2463 to have any input reloads. */
2464 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2465 no_output_reloads = 1;
2467 #ifdef HAVE_cc0
2468 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2469 no_input_reloads = 1;
2470 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2471 no_output_reloads = 1;
2472 #endif
2474 #ifdef SECONDARY_MEMORY_NEEDED
2475 /* The eliminated forms of any secondary memory locations are per-insn, so
2476 clear them out here. */
2478 memset ((char *) secondary_memlocs_elim, 0, sizeof secondary_memlocs_elim);
2479 #endif
2481 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2482 is cheap to move between them. If it is not, there may not be an insn
2483 to do the copy, so we may need a reload. */
2484 if (GET_CODE (body) == SET
2485 && GET_CODE (SET_DEST (body)) == REG
2486 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2487 && GET_CODE (SET_SRC (body)) == REG
2488 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2489 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2490 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2491 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2492 return 0;
2494 extract_insn (insn);
2496 noperands = reload_n_operands = recog_data.n_operands;
2497 n_alternatives = recog_data.n_alternatives;
2499 /* Just return "no reloads" if insn has no operands with constraints. */
2500 if (noperands == 0 || n_alternatives == 0)
2501 return 0;
2503 insn_code_number = INSN_CODE (insn);
2504 this_insn_is_asm = insn_code_number < 0;
2506 memcpy (operand_mode, recog_data.operand_mode,
2507 noperands * sizeof (enum machine_mode));
2508 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2510 commutative = -1;
2512 /* If we will need to know, later, whether some pair of operands
2513 are the same, we must compare them now and save the result.
2514 Reloading the base and index registers will clobber them
2515 and afterward they will fail to match. */
2517 for (i = 0; i < noperands; i++)
2519 register char *p;
2520 register int c;
2522 substed_operand[i] = recog_data.operand[i];
2523 p = constraints[i];
2525 modified[i] = RELOAD_READ;
2527 /* Scan this operand's constraint to see if it is an output operand,
2528 an in-out operand, is commutative, or should match another. */
2530 while ((c = *p++))
2532 if (c == '=')
2533 modified[i] = RELOAD_WRITE;
2534 else if (c == '+')
2535 modified[i] = RELOAD_READ_WRITE;
2536 else if (c == '%')
2538 /* The last operand should not be marked commutative. */
2539 if (i == noperands - 1)
2540 abort ();
2542 commutative = i;
2544 else if (c >= '0' && c <= '9')
2546 c -= '0';
2547 operands_match[c][i]
2548 = operands_match_p (recog_data.operand[c],
2549 recog_data.operand[i]);
2551 /* An operand may not match itself. */
2552 if (c == i)
2553 abort ();
2555 /* If C can be commuted with C+1, and C might need to match I,
2556 then C+1 might also need to match I. */
2557 if (commutative >= 0)
2559 if (c == commutative || c == commutative + 1)
2561 int other = c + (c == commutative ? 1 : -1);
2562 operands_match[other][i]
2563 = operands_match_p (recog_data.operand[other],
2564 recog_data.operand[i]);
2566 if (i == commutative || i == commutative + 1)
2568 int other = i + (i == commutative ? 1 : -1);
2569 operands_match[c][other]
2570 = operands_match_p (recog_data.operand[c],
2571 recog_data.operand[other]);
2573 /* Note that C is supposed to be less than I.
2574 No need to consider altering both C and I because in
2575 that case we would alter one into the other. */
2581 /* Examine each operand that is a memory reference or memory address
2582 and reload parts of the addresses into index registers.
2583 Also here any references to pseudo regs that didn't get hard regs
2584 but are equivalent to constants get replaced in the insn itself
2585 with those constants. Nobody will ever see them again.
2587 Finally, set up the preferred classes of each operand. */
2589 for (i = 0; i < noperands; i++)
2591 register RTX_CODE code = GET_CODE (recog_data.operand[i]);
2593 address_reloaded[i] = 0;
2594 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2595 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2596 : RELOAD_OTHER);
2597 address_type[i]
2598 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2599 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2600 : RELOAD_OTHER);
2602 if (*constraints[i] == 0)
2603 /* Ignore things like match_operator operands. */
2605 else if (constraints[i][0] == 'p')
2607 find_reloads_address (VOIDmode, NULL_PTR,
2608 recog_data.operand[i],
2609 recog_data.operand_loc[i],
2610 i, operand_type[i], ind_levels, insn);
2612 /* If we now have a simple operand where we used to have a
2613 PLUS or MULT, re-recognize and try again. */
2614 if ((GET_RTX_CLASS (GET_CODE (*recog_data.operand_loc[i])) == 'o'
2615 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2616 && (GET_CODE (recog_data.operand[i]) == MULT
2617 || GET_CODE (recog_data.operand[i]) == PLUS))
2619 INSN_CODE (insn) = -1;
2620 retval = find_reloads (insn, replace, ind_levels, live_known,
2621 reload_reg_p);
2622 return retval;
2625 recog_data.operand[i] = *recog_data.operand_loc[i];
2626 substed_operand[i] = recog_data.operand[i];
2628 else if (code == MEM)
2630 address_reloaded[i]
2631 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2632 recog_data.operand_loc[i],
2633 XEXP (recog_data.operand[i], 0),
2634 &XEXP (recog_data.operand[i], 0),
2635 i, address_type[i], ind_levels, insn);
2636 recog_data.operand[i] = *recog_data.operand_loc[i];
2637 substed_operand[i] = recog_data.operand[i];
2639 else if (code == SUBREG)
2641 rtx reg = SUBREG_REG (recog_data.operand[i]);
2642 rtx op
2643 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2644 ind_levels,
2645 set != 0
2646 && &SET_DEST (set) == recog_data.operand_loc[i],
2647 insn,
2648 &address_reloaded[i]);
2650 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2651 that didn't get a hard register, emit a USE with a REG_EQUAL
2652 note in front so that we might inherit a previous, possibly
2653 wider reload. */
2655 if (replace
2656 && GET_CODE (op) == MEM
2657 && GET_CODE (reg) == REG
2658 && (GET_MODE_SIZE (GET_MODE (reg))
2659 >= GET_MODE_SIZE (GET_MODE (op))))
2660 REG_NOTES (emit_insn_before (gen_rtx_USE (VOIDmode, reg), insn))
2661 = gen_rtx_EXPR_LIST (REG_EQUAL,
2662 reg_equiv_memory_loc[REGNO (reg)], NULL_RTX);
2664 substed_operand[i] = recog_data.operand[i] = op;
2666 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2667 /* We can get a PLUS as an "operand" as a result of register
2668 elimination. See eliminate_regs and gen_reload. We handle
2669 a unary operator by reloading the operand. */
2670 substed_operand[i] = recog_data.operand[i]
2671 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2672 ind_levels, 0, insn,
2673 &address_reloaded[i]);
2674 else if (code == REG)
2676 /* This is equivalent to calling find_reloads_toplev.
2677 The code is duplicated for speed.
2678 When we find a pseudo always equivalent to a constant,
2679 we replace it by the constant. We must be sure, however,
2680 that we don't try to replace it in the insn in which it
2681 is being set. */
2682 register int regno = REGNO (recog_data.operand[i]);
2683 if (reg_equiv_constant[regno] != 0
2684 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2686 /* Record the existing mode so that the check if constants are
2687 allowed will work when operand_mode isn't specified. */
2689 if (operand_mode[i] == VOIDmode)
2690 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2692 substed_operand[i] = recog_data.operand[i]
2693 = reg_equiv_constant[regno];
2695 if (reg_equiv_memory_loc[regno] != 0
2696 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2697 /* We need not give a valid is_set_dest argument since the case
2698 of a constant equivalence was checked above. */
2699 substed_operand[i] = recog_data.operand[i]
2700 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2701 ind_levels, 0, insn,
2702 &address_reloaded[i]);
2704 /* If the operand is still a register (we didn't replace it with an
2705 equivalent), get the preferred class to reload it into. */
2706 code = GET_CODE (recog_data.operand[i]);
2707 preferred_class[i]
2708 = ((code == REG && REGNO (recog_data.operand[i])
2709 >= FIRST_PSEUDO_REGISTER)
2710 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2711 : NO_REGS);
2712 pref_or_nothing[i]
2713 = (code == REG
2714 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2715 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2718 /* If this is simply a copy from operand 1 to operand 0, merge the
2719 preferred classes for the operands. */
2720 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2721 && recog_data.operand[1] == SET_SRC (set))
2723 preferred_class[0] = preferred_class[1]
2724 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2725 pref_or_nothing[0] |= pref_or_nothing[1];
2726 pref_or_nothing[1] |= pref_or_nothing[0];
2729 /* Now see what we need for pseudo-regs that didn't get hard regs
2730 or got the wrong kind of hard reg. For this, we must consider
2731 all the operands together against the register constraints. */
2733 best = MAX_RECOG_OPERANDS * 2 + 600;
2735 swapped = 0;
2736 goal_alternative_swapped = 0;
2737 try_swapped:
2739 /* The constraints are made of several alternatives.
2740 Each operand's constraint looks like foo,bar,... with commas
2741 separating the alternatives. The first alternatives for all
2742 operands go together, the second alternatives go together, etc.
2744 First loop over alternatives. */
2746 for (this_alternative_number = 0;
2747 this_alternative_number < n_alternatives;
2748 this_alternative_number++)
2750 /* Loop over operands for one constraint alternative. */
2751 /* LOSERS counts those that don't fit this alternative
2752 and would require loading. */
2753 int losers = 0;
2754 /* BAD is set to 1 if it some operand can't fit this alternative
2755 even after reloading. */
2756 int bad = 0;
2757 /* REJECT is a count of how undesirable this alternative says it is
2758 if any reloading is required. If the alternative matches exactly
2759 then REJECT is ignored, but otherwise it gets this much
2760 counted against it in addition to the reloading needed. Each
2761 ? counts three times here since we want the disparaging caused by
2762 a bad register class to only count 1/3 as much. */
2763 int reject = 0;
2765 this_earlyclobber = 0;
2767 for (i = 0; i < noperands; i++)
2769 register char *p = constraints[i];
2770 register int win = 0;
2771 int did_match = 0;
2772 /* 0 => this operand can be reloaded somehow for this alternative */
2773 int badop = 1;
2774 /* 0 => this operand can be reloaded if the alternative allows regs. */
2775 int winreg = 0;
2776 int c;
2777 register rtx operand = recog_data.operand[i];
2778 int offset = 0;
2779 /* Nonzero means this is a MEM that must be reloaded into a reg
2780 regardless of what the constraint says. */
2781 int force_reload = 0;
2782 int offmemok = 0;
2783 /* Nonzero if a constant forced into memory would be OK for this
2784 operand. */
2785 int constmemok = 0;
2786 int earlyclobber = 0;
2788 /* If the predicate accepts a unary operator, it means that
2789 we need to reload the operand, but do not do this for
2790 match_operator and friends. */
2791 if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
2792 operand = XEXP (operand, 0);
2794 /* If the operand is a SUBREG, extract
2795 the REG or MEM (or maybe even a constant) within.
2796 (Constants can occur as a result of reg_equiv_constant.) */
2798 while (GET_CODE (operand) == SUBREG)
2800 /* Offset only matters when operand is a REG and
2801 it is a hard reg. This is because it is passed
2802 to reg_fits_class_p if it is a REG and all pseudos
2803 return 0 from that function. */
2804 if (GET_CODE (SUBREG_REG (operand)) == REG
2805 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2807 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2808 GET_MODE (SUBREG_REG (operand)),
2809 SUBREG_BYTE (operand),
2810 GET_MODE (operand));
2812 operand = SUBREG_REG (operand);
2813 /* Force reload if this is a constant or PLUS or if there may
2814 be a problem accessing OPERAND in the outer mode. */
2815 if (CONSTANT_P (operand)
2816 || GET_CODE (operand) == PLUS
2817 /* We must force a reload of paradoxical SUBREGs
2818 of a MEM because the alignment of the inner value
2819 may not be enough to do the outer reference. On
2820 big-endian machines, it may also reference outside
2821 the object.
2823 On machines that extend byte operations and we have a
2824 SUBREG where both the inner and outer modes are no wider
2825 than a word and the inner mode is narrower, is integral,
2826 and gets extended when loaded from memory, combine.c has
2827 made assumptions about the behavior of the machine in such
2828 register access. If the data is, in fact, in memory we
2829 must always load using the size assumed to be in the
2830 register and let the insn do the different-sized
2831 accesses.
2833 This is doubly true if WORD_REGISTER_OPERATIONS. In
2834 this case eliminate_regs has left non-paradoxical
2835 subregs for push_reloads to see. Make sure it does
2836 by forcing the reload.
2838 ??? When is it right at this stage to have a subreg
2839 of a mem that is _not_ to be handled specialy? IMO
2840 those should have been reduced to just a mem. */
2841 || ((GET_CODE (operand) == MEM
2842 || (GET_CODE (operand)== REG
2843 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2844 #ifndef WORD_REGISTER_OPERATIONS
2845 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2846 < BIGGEST_ALIGNMENT)
2847 && (GET_MODE_SIZE (operand_mode[i])
2848 > GET_MODE_SIZE (GET_MODE (operand))))
2849 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2850 #ifdef LOAD_EXTEND_OP
2851 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2852 && (GET_MODE_SIZE (GET_MODE (operand))
2853 <= UNITS_PER_WORD)
2854 && (GET_MODE_SIZE (operand_mode[i])
2855 > GET_MODE_SIZE (GET_MODE (operand)))
2856 && INTEGRAL_MODE_P (GET_MODE (operand))
2857 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2858 #endif
2860 #endif
2862 /* This following hunk of code should no longer be
2863 needed at all with SUBREG_BYTE. If you need this
2864 code back, please explain to me why so I can
2865 fix the real problem. -DaveM */
2866 #if 0
2867 /* Subreg of a hard reg which can't handle the subreg's mode
2868 or which would handle that mode in the wrong number of
2869 registers for subregging to work. */
2870 || (GET_CODE (operand) == REG
2871 && REGNO (operand) < FIRST_PSEUDO_REGISTER
2872 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2873 && (GET_MODE_SIZE (GET_MODE (operand))
2874 > UNITS_PER_WORD)
2875 && ((GET_MODE_SIZE (GET_MODE (operand))
2876 / UNITS_PER_WORD)
2877 != HARD_REGNO_NREGS (REGNO (operand),
2878 GET_MODE (operand))))
2879 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2880 operand_mode[i])))
2881 #endif
2883 force_reload = 1;
2886 this_alternative[i] = (int) NO_REGS;
2887 this_alternative_win[i] = 0;
2888 this_alternative_match_win[i] = 0;
2889 this_alternative_offmemok[i] = 0;
2890 this_alternative_earlyclobber[i] = 0;
2891 this_alternative_matches[i] = -1;
2893 /* An empty constraint or empty alternative
2894 allows anything which matched the pattern. */
2895 if (*p == 0 || *p == ',')
2896 win = 1, badop = 0;
2898 /* Scan this alternative's specs for this operand;
2899 set WIN if the operand fits any letter in this alternative.
2900 Otherwise, clear BADOP if this operand could
2901 fit some letter after reloads,
2902 or set WINREG if this operand could fit after reloads
2903 provided the constraint allows some registers. */
2905 while (*p && (c = *p++) != ',')
2906 switch (c)
2908 case '=': case '+': case '*':
2909 break;
2911 case '%':
2912 /* The last operand should not be marked commutative. */
2913 if (i != noperands - 1)
2914 commutative = i;
2915 break;
2917 case '?':
2918 reject += 6;
2919 break;
2921 case '!':
2922 reject = 600;
2923 break;
2925 case '#':
2926 /* Ignore rest of this alternative as far as
2927 reloading is concerned. */
2928 while (*p && *p != ',')
2929 p++;
2930 break;
2932 case '0': case '1': case '2': case '3': case '4':
2933 case '5': case '6': case '7': case '8': case '9':
2935 c -= '0';
2936 this_alternative_matches[i] = c;
2937 /* We are supposed to match a previous operand.
2938 If we do, we win if that one did.
2939 If we do not, count both of the operands as losers.
2940 (This is too conservative, since most of the time
2941 only a single reload insn will be needed to make
2942 the two operands win. As a result, this alternative
2943 may be rejected when it is actually desirable.) */
2944 if ((swapped && (c != commutative || i != commutative + 1))
2945 /* If we are matching as if two operands were swapped,
2946 also pretend that operands_match had been computed
2947 with swapped.
2948 But if I is the second of those and C is the first,
2949 don't exchange them, because operands_match is valid
2950 only on one side of its diagonal. */
2951 ? (operands_match
2952 [(c == commutative || c == commutative + 1)
2953 ? 2 * commutative + 1 - c : c]
2954 [(i == commutative || i == commutative + 1)
2955 ? 2 * commutative + 1 - i : i])
2956 : operands_match[c][i])
2958 /* If we are matching a non-offsettable address where an
2959 offsettable address was expected, then we must reject
2960 this combination, because we can't reload it. */
2961 if (this_alternative_offmemok[c]
2962 && GET_CODE (recog_data.operand[c]) == MEM
2963 && this_alternative[c] == (int) NO_REGS
2964 && ! this_alternative_win[c])
2965 bad = 1;
2967 did_match = this_alternative_win[c];
2969 else
2971 /* Operands don't match. */
2972 rtx value;
2973 /* Retroactively mark the operand we had to match
2974 as a loser, if it wasn't already. */
2975 if (this_alternative_win[c])
2976 losers++;
2977 this_alternative_win[c] = 0;
2978 if (this_alternative[c] == (int) NO_REGS)
2979 bad = 1;
2980 /* But count the pair only once in the total badness of
2981 this alternative, if the pair can be a dummy reload. */
2982 value
2983 = find_dummy_reload (recog_data.operand[i],
2984 recog_data.operand[c],
2985 recog_data.operand_loc[i],
2986 recog_data.operand_loc[c],
2987 operand_mode[i], operand_mode[c],
2988 this_alternative[c], -1,
2989 this_alternative_earlyclobber[c]);
2991 if (value != 0)
2992 losers--;
2994 /* This can be fixed with reloads if the operand
2995 we are supposed to match can be fixed with reloads. */
2996 badop = 0;
2997 this_alternative[i] = this_alternative[c];
2999 /* If we have to reload this operand and some previous
3000 operand also had to match the same thing as this
3001 operand, we don't know how to do that. So reject this
3002 alternative. */
3003 if (! did_match || force_reload)
3004 for (j = 0; j < i; j++)
3005 if (this_alternative_matches[j]
3006 == this_alternative_matches[i])
3007 badop = 1;
3008 break;
3010 case 'p':
3011 /* All necessary reloads for an address_operand
3012 were handled in find_reloads_address. */
3013 this_alternative[i] = (int) BASE_REG_CLASS;
3014 win = 1;
3015 break;
3017 case 'm':
3018 if (force_reload)
3019 break;
3020 if (GET_CODE (operand) == MEM
3021 || (GET_CODE (operand) == REG
3022 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3023 && reg_renumber[REGNO (operand)] < 0))
3024 win = 1;
3025 if (CONSTANT_P (operand)
3026 /* force_const_mem does not accept HIGH. */
3027 && GET_CODE (operand) != HIGH)
3028 badop = 0;
3029 constmemok = 1;
3030 break;
3032 case '<':
3033 if (GET_CODE (operand) == MEM
3034 && ! address_reloaded[i]
3035 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3036 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3037 win = 1;
3038 break;
3040 case '>':
3041 if (GET_CODE (operand) == MEM
3042 && ! address_reloaded[i]
3043 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3044 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3045 win = 1;
3046 break;
3048 /* Memory operand whose address is not offsettable. */
3049 case 'V':
3050 if (force_reload)
3051 break;
3052 if (GET_CODE (operand) == MEM
3053 && ! (ind_levels ? offsettable_memref_p (operand)
3054 : offsettable_nonstrict_memref_p (operand))
3055 /* Certain mem addresses will become offsettable
3056 after they themselves are reloaded. This is important;
3057 we don't want our own handling of unoffsettables
3058 to override the handling of reg_equiv_address. */
3059 && !(GET_CODE (XEXP (operand, 0)) == REG
3060 && (ind_levels == 0
3061 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3062 win = 1;
3063 break;
3065 /* Memory operand whose address is offsettable. */
3066 case 'o':
3067 if (force_reload)
3068 break;
3069 if ((GET_CODE (operand) == MEM
3070 /* If IND_LEVELS, find_reloads_address won't reload a
3071 pseudo that didn't get a hard reg, so we have to
3072 reject that case. */
3073 && ((ind_levels ? offsettable_memref_p (operand)
3074 : offsettable_nonstrict_memref_p (operand))
3075 /* A reloaded address is offsettable because it is now
3076 just a simple register indirect. */
3077 || address_reloaded[i]))
3078 || (GET_CODE (operand) == REG
3079 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3080 && reg_renumber[REGNO (operand)] < 0
3081 /* If reg_equiv_address is nonzero, we will be
3082 loading it into a register; hence it will be
3083 offsettable, but we cannot say that reg_equiv_mem
3084 is offsettable without checking. */
3085 && ((reg_equiv_mem[REGNO (operand)] != 0
3086 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3087 || (reg_equiv_address[REGNO (operand)] != 0))))
3088 win = 1;
3089 /* force_const_mem does not accept HIGH. */
3090 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3091 || GET_CODE (operand) == MEM)
3092 badop = 0;
3093 constmemok = 1;
3094 offmemok = 1;
3095 break;
3097 case '&':
3098 /* Output operand that is stored before the need for the
3099 input operands (and their index registers) is over. */
3100 earlyclobber = 1, this_earlyclobber = 1;
3101 break;
3103 case 'E':
3104 #ifndef REAL_ARITHMETIC
3105 /* Match any floating double constant, but only if
3106 we can examine the bits of it reliably. */
3107 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
3108 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
3109 && GET_MODE (operand) != VOIDmode && ! flag_pretend_float)
3110 break;
3111 #endif
3112 if (GET_CODE (operand) == CONST_DOUBLE)
3113 win = 1;
3114 break;
3116 case 'F':
3117 if (GET_CODE (operand) == CONST_DOUBLE)
3118 win = 1;
3119 break;
3121 case 'G':
3122 case 'H':
3123 if (GET_CODE (operand) == CONST_DOUBLE
3124 && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
3125 win = 1;
3126 break;
3128 case 's':
3129 if (GET_CODE (operand) == CONST_INT
3130 || (GET_CODE (operand) == CONST_DOUBLE
3131 && GET_MODE (operand) == VOIDmode))
3132 break;
3133 case 'i':
3134 if (CONSTANT_P (operand)
3135 #ifdef LEGITIMATE_PIC_OPERAND_P
3136 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3137 #endif
3139 win = 1;
3140 break;
3142 case 'n':
3143 if (GET_CODE (operand) == CONST_INT
3144 || (GET_CODE (operand) == CONST_DOUBLE
3145 && GET_MODE (operand) == VOIDmode))
3146 win = 1;
3147 break;
3149 case 'I':
3150 case 'J':
3151 case 'K':
3152 case 'L':
3153 case 'M':
3154 case 'N':
3155 case 'O':
3156 case 'P':
3157 if (GET_CODE (operand) == CONST_INT
3158 && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3159 win = 1;
3160 break;
3162 case 'X':
3163 win = 1;
3164 break;
3166 case 'g':
3167 if (! force_reload
3168 /* A PLUS is never a valid operand, but reload can make
3169 it from a register when eliminating registers. */
3170 && GET_CODE (operand) != PLUS
3171 /* A SCRATCH is not a valid operand. */
3172 && GET_CODE (operand) != SCRATCH
3173 #ifdef LEGITIMATE_PIC_OPERAND_P
3174 && (! CONSTANT_P (operand)
3175 || ! flag_pic
3176 || LEGITIMATE_PIC_OPERAND_P (operand))
3177 #endif
3178 && (GENERAL_REGS == ALL_REGS
3179 || GET_CODE (operand) != REG
3180 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3181 && reg_renumber[REGNO (operand)] < 0)))
3182 win = 1;
3183 /* Drop through into 'r' case */
3185 case 'r':
3186 this_alternative[i]
3187 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3188 goto reg;
3190 default:
3191 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
3193 #ifdef EXTRA_CONSTRAINT
3194 if (EXTRA_CONSTRAINT (operand, c))
3195 win = 1;
3196 #endif
3197 break;
3200 this_alternative[i]
3201 = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3202 reg:
3203 if (GET_MODE (operand) == BLKmode)
3204 break;
3205 winreg = 1;
3206 if (GET_CODE (operand) == REG
3207 && reg_fits_class_p (operand, this_alternative[i],
3208 offset, GET_MODE (recog_data.operand[i])))
3209 win = 1;
3210 break;
3213 constraints[i] = p;
3215 /* If this operand could be handled with a reg,
3216 and some reg is allowed, then this operand can be handled. */
3217 if (winreg && this_alternative[i] != (int) NO_REGS)
3218 badop = 0;
3220 /* Record which operands fit this alternative. */
3221 this_alternative_earlyclobber[i] = earlyclobber;
3222 if (win && ! force_reload)
3223 this_alternative_win[i] = 1;
3224 else if (did_match && ! force_reload)
3225 this_alternative_match_win[i] = 1;
3226 else
3228 int const_to_mem = 0;
3230 this_alternative_offmemok[i] = offmemok;
3231 losers++;
3232 if (badop)
3233 bad = 1;
3234 /* Alternative loses if it has no regs for a reg operand. */
3235 if (GET_CODE (operand) == REG
3236 && this_alternative[i] == (int) NO_REGS
3237 && this_alternative_matches[i] < 0)
3238 bad = 1;
3240 /* If this is a constant that is reloaded into the desired
3241 class by copying it to memory first, count that as another
3242 reload. This is consistent with other code and is
3243 required to avoid choosing another alternative when
3244 the constant is moved into memory by this function on
3245 an early reload pass. Note that the test here is
3246 precisely the same as in the code below that calls
3247 force_const_mem. */
3248 if (CONSTANT_P (operand)
3249 /* force_const_mem does not accept HIGH. */
3250 && GET_CODE (operand) != HIGH
3251 && ((PREFERRED_RELOAD_CLASS (operand,
3252 (enum reg_class) this_alternative[i])
3253 == NO_REGS)
3254 || no_input_reloads)
3255 && operand_mode[i] != VOIDmode)
3257 const_to_mem = 1;
3258 if (this_alternative[i] != (int) NO_REGS)
3259 losers++;
3262 /* If we can't reload this value at all, reject this
3263 alternative. Note that we could also lose due to
3264 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3265 here. */
3267 if (! CONSTANT_P (operand)
3268 && (enum reg_class) this_alternative[i] != NO_REGS
3269 && (PREFERRED_RELOAD_CLASS (operand,
3270 (enum reg_class) this_alternative[i])
3271 == NO_REGS))
3272 bad = 1;
3274 /* Alternative loses if it requires a type of reload not
3275 permitted for this insn. We can always reload SCRATCH
3276 and objects with a REG_UNUSED note. */
3277 else if (GET_CODE (operand) != SCRATCH
3278 && modified[i] != RELOAD_READ && no_output_reloads
3279 && ! find_reg_note (insn, REG_UNUSED, operand))
3280 bad = 1;
3281 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3282 && ! const_to_mem)
3283 bad = 1;
3285 /* We prefer to reload pseudos over reloading other things,
3286 since such reloads may be able to be eliminated later.
3287 If we are reloading a SCRATCH, we won't be generating any
3288 insns, just using a register, so it is also preferred.
3289 So bump REJECT in other cases. Don't do this in the
3290 case where we are forcing a constant into memory and
3291 it will then win since we don't want to have a different
3292 alternative match then. */
3293 if (! (GET_CODE (operand) == REG
3294 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3295 && GET_CODE (operand) != SCRATCH
3296 && ! (const_to_mem && constmemok))
3297 reject += 2;
3299 /* Input reloads can be inherited more often than output
3300 reloads can be removed, so penalize output reloads. */
3301 if (operand_type[i] != RELOAD_FOR_INPUT
3302 && GET_CODE (operand) != SCRATCH)
3303 reject++;
3306 /* If this operand is a pseudo register that didn't get a hard
3307 reg and this alternative accepts some register, see if the
3308 class that we want is a subset of the preferred class for this
3309 register. If not, but it intersects that class, use the
3310 preferred class instead. If it does not intersect the preferred
3311 class, show that usage of this alternative should be discouraged;
3312 it will be discouraged more still if the register is `preferred
3313 or nothing'. We do this because it increases the chance of
3314 reusing our spill register in a later insn and avoiding a pair
3315 of memory stores and loads.
3317 Don't bother with this if this alternative will accept this
3318 operand.
3320 Don't do this for a multiword operand, since it is only a
3321 small win and has the risk of requiring more spill registers,
3322 which could cause a large loss.
3324 Don't do this if the preferred class has only one register
3325 because we might otherwise exhaust the class. */
3327 if (! win && ! did_match
3328 && this_alternative[i] != (int) NO_REGS
3329 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3330 && reg_class_size[(int) preferred_class[i]] > 1)
3332 if (! reg_class_subset_p (this_alternative[i],
3333 preferred_class[i]))
3335 /* Since we don't have a way of forming the intersection,
3336 we just do something special if the preferred class
3337 is a subset of the class we have; that's the most
3338 common case anyway. */
3339 if (reg_class_subset_p (preferred_class[i],
3340 this_alternative[i]))
3341 this_alternative[i] = (int) preferred_class[i];
3342 else
3343 reject += (2 + 2 * pref_or_nothing[i]);
3348 /* Now see if any output operands that are marked "earlyclobber"
3349 in this alternative conflict with any input operands
3350 or any memory addresses. */
3352 for (i = 0; i < noperands; i++)
3353 if (this_alternative_earlyclobber[i]
3354 && (this_alternative_win[i] || this_alternative_match_win[i]))
3356 struct decomposition early_data;
3358 early_data = decompose (recog_data.operand[i]);
3360 if (modified[i] == RELOAD_READ)
3361 abort ();
3363 if (this_alternative[i] == NO_REGS)
3365 this_alternative_earlyclobber[i] = 0;
3366 if (this_insn_is_asm)
3367 error_for_asm (this_insn,
3368 "`&' constraint used with no register class");
3369 else
3370 abort ();
3373 for (j = 0; j < noperands; j++)
3374 /* Is this an input operand or a memory ref? */
3375 if ((GET_CODE (recog_data.operand[j]) == MEM
3376 || modified[j] != RELOAD_WRITE)
3377 && j != i
3378 /* Ignore things like match_operator operands. */
3379 && *recog_data.constraints[j] != 0
3380 /* Don't count an input operand that is constrained to match
3381 the early clobber operand. */
3382 && ! (this_alternative_matches[j] == i
3383 && rtx_equal_p (recog_data.operand[i],
3384 recog_data.operand[j]))
3385 /* Is it altered by storing the earlyclobber operand? */
3386 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3387 early_data))
3389 /* If the output is in a single-reg class,
3390 it's costly to reload it, so reload the input instead. */
3391 if (reg_class_size[this_alternative[i]] == 1
3392 && (GET_CODE (recog_data.operand[j]) == REG
3393 || GET_CODE (recog_data.operand[j]) == SUBREG))
3395 losers++;
3396 this_alternative_win[j] = 0;
3397 this_alternative_match_win[j] = 0;
3399 else
3400 break;
3402 /* If an earlyclobber operand conflicts with something,
3403 it must be reloaded, so request this and count the cost. */
3404 if (j != noperands)
3406 losers++;
3407 this_alternative_win[i] = 0;
3408 this_alternative_match_win[j] = 0;
3409 for (j = 0; j < noperands; j++)
3410 if (this_alternative_matches[j] == i
3411 && this_alternative_match_win[j])
3413 this_alternative_win[j] = 0;
3414 this_alternative_match_win[j] = 0;
3415 losers++;
3420 /* If one alternative accepts all the operands, no reload required,
3421 choose that alternative; don't consider the remaining ones. */
3422 if (losers == 0)
3424 /* Unswap these so that they are never swapped at `finish'. */
3425 if (commutative >= 0)
3427 recog_data.operand[commutative] = substed_operand[commutative];
3428 recog_data.operand[commutative + 1]
3429 = substed_operand[commutative + 1];
3431 for (i = 0; i < noperands; i++)
3433 goal_alternative_win[i] = this_alternative_win[i];
3434 goal_alternative_match_win[i] = this_alternative_match_win[i];
3435 goal_alternative[i] = this_alternative[i];
3436 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3437 goal_alternative_matches[i] = this_alternative_matches[i];
3438 goal_alternative_earlyclobber[i]
3439 = this_alternative_earlyclobber[i];
3441 goal_alternative_number = this_alternative_number;
3442 goal_alternative_swapped = swapped;
3443 goal_earlyclobber = this_earlyclobber;
3444 goto finish;
3447 /* REJECT, set by the ! and ? constraint characters and when a register
3448 would be reloaded into a non-preferred class, discourages the use of
3449 this alternative for a reload goal. REJECT is incremented by six
3450 for each ? and two for each non-preferred class. */
3451 losers = losers * 6 + reject;
3453 /* If this alternative can be made to work by reloading,
3454 and it needs less reloading than the others checked so far,
3455 record it as the chosen goal for reloading. */
3456 if (! bad && best > losers)
3458 for (i = 0; i < noperands; i++)
3460 goal_alternative[i] = this_alternative[i];
3461 goal_alternative_win[i] = this_alternative_win[i];
3462 goal_alternative_match_win[i] = this_alternative_match_win[i];
3463 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3464 goal_alternative_matches[i] = this_alternative_matches[i];
3465 goal_alternative_earlyclobber[i]
3466 = this_alternative_earlyclobber[i];
3468 goal_alternative_swapped = swapped;
3469 best = losers;
3470 goal_alternative_number = this_alternative_number;
3471 goal_earlyclobber = this_earlyclobber;
3475 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3476 then we need to try each alternative twice,
3477 the second time matching those two operands
3478 as if we had exchanged them.
3479 To do this, really exchange them in operands.
3481 If we have just tried the alternatives the second time,
3482 return operands to normal and drop through. */
3484 if (commutative >= 0)
3486 swapped = !swapped;
3487 if (swapped)
3489 register enum reg_class tclass;
3490 register int t;
3492 recog_data.operand[commutative] = substed_operand[commutative + 1];
3493 recog_data.operand[commutative + 1] = substed_operand[commutative];
3495 tclass = preferred_class[commutative];
3496 preferred_class[commutative] = preferred_class[commutative + 1];
3497 preferred_class[commutative + 1] = tclass;
3499 t = pref_or_nothing[commutative];
3500 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3501 pref_or_nothing[commutative + 1] = t;
3503 memcpy (constraints, recog_data.constraints,
3504 noperands * sizeof (char *));
3505 goto try_swapped;
3507 else
3509 recog_data.operand[commutative] = substed_operand[commutative];
3510 recog_data.operand[commutative + 1]
3511 = substed_operand[commutative + 1];
3515 /* The operands don't meet the constraints.
3516 goal_alternative describes the alternative
3517 that we could reach by reloading the fewest operands.
3518 Reload so as to fit it. */
3520 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3522 /* No alternative works with reloads?? */
3523 if (insn_code_number >= 0)
3524 fatal_insn ("Unable to generate reloads for:", insn);
3525 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3526 /* Avoid further trouble with this insn. */
3527 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3528 n_reloads = 0;
3529 return 0;
3532 /* Jump to `finish' from above if all operands are valid already.
3533 In that case, goal_alternative_win is all 1. */
3534 finish:
3536 /* Right now, for any pair of operands I and J that are required to match,
3537 with I < J,
3538 goal_alternative_matches[J] is I.
3539 Set up goal_alternative_matched as the inverse function:
3540 goal_alternative_matched[I] = J. */
3542 for (i = 0; i < noperands; i++)
3543 goal_alternative_matched[i] = -1;
3545 for (i = 0; i < noperands; i++)
3546 if (! goal_alternative_win[i]
3547 && goal_alternative_matches[i] >= 0)
3548 goal_alternative_matched[goal_alternative_matches[i]] = i;
3550 for (i = 0; i < noperands; i++)
3551 goal_alternative_win[i] |= goal_alternative_match_win[i];
3553 /* If the best alternative is with operands 1 and 2 swapped,
3554 consider them swapped before reporting the reloads. Update the
3555 operand numbers of any reloads already pushed. */
3557 if (goal_alternative_swapped)
3559 register rtx tem;
3561 tem = substed_operand[commutative];
3562 substed_operand[commutative] = substed_operand[commutative + 1];
3563 substed_operand[commutative + 1] = tem;
3564 tem = recog_data.operand[commutative];
3565 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3566 recog_data.operand[commutative + 1] = tem;
3567 tem = *recog_data.operand_loc[commutative];
3568 *recog_data.operand_loc[commutative]
3569 = *recog_data.operand_loc[commutative + 1];
3570 *recog_data.operand_loc[commutative + 1] = tem;
3572 for (i = 0; i < n_reloads; i++)
3574 if (rld[i].opnum == commutative)
3575 rld[i].opnum = commutative + 1;
3576 else if (rld[i].opnum == commutative + 1)
3577 rld[i].opnum = commutative;
3581 for (i = 0; i < noperands; i++)
3583 operand_reloadnum[i] = -1;
3585 /* If this is an earlyclobber operand, we need to widen the scope.
3586 The reload must remain valid from the start of the insn being
3587 reloaded until after the operand is stored into its destination.
3588 We approximate this with RELOAD_OTHER even though we know that we
3589 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3591 One special case that is worth checking is when we have an
3592 output that is earlyclobber but isn't used past the insn (typically
3593 a SCRATCH). In this case, we only need have the reload live
3594 through the insn itself, but not for any of our input or output
3595 reloads.
3596 But we must not accidentally narrow the scope of an existing
3597 RELOAD_OTHER reload - leave these alone.
3599 In any case, anything needed to address this operand can remain
3600 however they were previously categorized. */
3602 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3603 operand_type[i]
3604 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3605 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3608 /* Any constants that aren't allowed and can't be reloaded
3609 into registers are here changed into memory references. */
3610 for (i = 0; i < noperands; i++)
3611 if (! goal_alternative_win[i]
3612 && CONSTANT_P (recog_data.operand[i])
3613 /* force_const_mem does not accept HIGH. */
3614 && GET_CODE (recog_data.operand[i]) != HIGH
3615 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3616 (enum reg_class) goal_alternative[i])
3617 == NO_REGS)
3618 || no_input_reloads)
3619 && operand_mode[i] != VOIDmode)
3621 substed_operand[i] = recog_data.operand[i]
3622 = find_reloads_toplev (force_const_mem (operand_mode[i],
3623 recog_data.operand[i]),
3624 i, address_type[i], ind_levels, 0, insn,
3625 NULL);
3626 if (alternative_allows_memconst (recog_data.constraints[i],
3627 goal_alternative_number))
3628 goal_alternative_win[i] = 1;
3631 /* Record the values of the earlyclobber operands for the caller. */
3632 if (goal_earlyclobber)
3633 for (i = 0; i < noperands; i++)
3634 if (goal_alternative_earlyclobber[i])
3635 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3637 /* Now record reloads for all the operands that need them. */
3638 for (i = 0; i < noperands; i++)
3639 if (! goal_alternative_win[i])
3641 /* Operands that match previous ones have already been handled. */
3642 if (goal_alternative_matches[i] >= 0)
3644 /* Handle an operand with a nonoffsettable address
3645 appearing where an offsettable address will do
3646 by reloading the address into a base register.
3648 ??? We can also do this when the operand is a register and
3649 reg_equiv_mem is not offsettable, but this is a bit tricky,
3650 so we don't bother with it. It may not be worth doing. */
3651 else if (goal_alternative_matched[i] == -1
3652 && goal_alternative_offmemok[i]
3653 && GET_CODE (recog_data.operand[i]) == MEM)
3655 operand_reloadnum[i]
3656 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3657 &XEXP (recog_data.operand[i], 0), NULL_PTR,
3658 BASE_REG_CLASS,
3659 GET_MODE (XEXP (recog_data.operand[i], 0)),
3660 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3661 rld[operand_reloadnum[i]].inc
3662 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3664 /* If this operand is an output, we will have made any
3665 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3666 now we are treating part of the operand as an input, so
3667 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3669 if (modified[i] == RELOAD_WRITE)
3671 for (j = 0; j < n_reloads; j++)
3673 if (rld[j].opnum == i)
3675 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3676 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3677 else if (rld[j].when_needed
3678 == RELOAD_FOR_OUTADDR_ADDRESS)
3679 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3684 else if (goal_alternative_matched[i] == -1)
3686 operand_reloadnum[i]
3687 = push_reload ((modified[i] != RELOAD_WRITE
3688 ? recog_data.operand[i] : 0),
3689 (modified[i] != RELOAD_READ
3690 ? recog_data.operand[i] : 0),
3691 (modified[i] != RELOAD_WRITE
3692 ? recog_data.operand_loc[i] : 0),
3693 (modified[i] != RELOAD_READ
3694 ? recog_data.operand_loc[i] : 0),
3695 (enum reg_class) goal_alternative[i],
3696 (modified[i] == RELOAD_WRITE
3697 ? VOIDmode : operand_mode[i]),
3698 (modified[i] == RELOAD_READ
3699 ? VOIDmode : operand_mode[i]),
3700 (insn_code_number < 0 ? 0
3701 : insn_data[insn_code_number].operand[i].strict_low),
3702 0, i, operand_type[i]);
3704 /* In a matching pair of operands, one must be input only
3705 and the other must be output only.
3706 Pass the input operand as IN and the other as OUT. */
3707 else if (modified[i] == RELOAD_READ
3708 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3710 operand_reloadnum[i]
3711 = push_reload (recog_data.operand[i],
3712 recog_data.operand[goal_alternative_matched[i]],
3713 recog_data.operand_loc[i],
3714 recog_data.operand_loc[goal_alternative_matched[i]],
3715 (enum reg_class) goal_alternative[i],
3716 operand_mode[i],
3717 operand_mode[goal_alternative_matched[i]],
3718 0, 0, i, RELOAD_OTHER);
3719 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3721 else if (modified[i] == RELOAD_WRITE
3722 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3724 operand_reloadnum[goal_alternative_matched[i]]
3725 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3726 recog_data.operand[i],
3727 recog_data.operand_loc[goal_alternative_matched[i]],
3728 recog_data.operand_loc[i],
3729 (enum reg_class) goal_alternative[i],
3730 operand_mode[goal_alternative_matched[i]],
3731 operand_mode[i],
3732 0, 0, i, RELOAD_OTHER);
3733 operand_reloadnum[i] = output_reloadnum;
3735 else if (insn_code_number >= 0)
3736 abort ();
3737 else
3739 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3740 /* Avoid further trouble with this insn. */
3741 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3742 n_reloads = 0;
3743 return 0;
3746 else if (goal_alternative_matched[i] < 0
3747 && goal_alternative_matches[i] < 0
3748 && optimize)
3750 /* For each non-matching operand that's a MEM or a pseudo-register
3751 that didn't get a hard register, make an optional reload.
3752 This may get done even if the insn needs no reloads otherwise. */
3754 rtx operand = recog_data.operand[i];
3756 while (GET_CODE (operand) == SUBREG)
3757 operand = SUBREG_REG (operand);
3758 if ((GET_CODE (operand) == MEM
3759 || (GET_CODE (operand) == REG
3760 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3761 /* If this is only for an output, the optional reload would not
3762 actually cause us to use a register now, just note that
3763 something is stored here. */
3764 && ((enum reg_class) goal_alternative[i] != NO_REGS
3765 || modified[i] == RELOAD_WRITE)
3766 && ! no_input_reloads
3767 /* An optional output reload might allow to delete INSN later.
3768 We mustn't make in-out reloads on insns that are not permitted
3769 output reloads.
3770 If this is an asm, we can't delete it; we must not even call
3771 push_reload for an optional output reload in this case,
3772 because we can't be sure that the constraint allows a register,
3773 and push_reload verifies the constraints for asms. */
3774 && (modified[i] == RELOAD_READ
3775 || (! no_output_reloads && ! this_insn_is_asm)))
3776 operand_reloadnum[i]
3777 = push_reload ((modified[i] != RELOAD_WRITE
3778 ? recog_data.operand[i] : 0),
3779 (modified[i] != RELOAD_READ
3780 ? recog_data.operand[i] : 0),
3781 (modified[i] != RELOAD_WRITE
3782 ? recog_data.operand_loc[i] : 0),
3783 (modified[i] != RELOAD_READ
3784 ? recog_data.operand_loc[i] : 0),
3785 (enum reg_class) goal_alternative[i],
3786 (modified[i] == RELOAD_WRITE
3787 ? VOIDmode : operand_mode[i]),
3788 (modified[i] == RELOAD_READ
3789 ? VOIDmode : operand_mode[i]),
3790 (insn_code_number < 0 ? 0
3791 : insn_data[insn_code_number].operand[i].strict_low),
3792 1, i, operand_type[i]);
3793 /* If a memory reference remains (either as a MEM or a pseudo that
3794 did not get a hard register), yet we can't make an optional
3795 reload, check if this is actually a pseudo register reference;
3796 we then need to emit a USE and/or a CLOBBER so that reload
3797 inheritance will do the right thing. */
3798 else if (replace
3799 && (GET_CODE (operand) == MEM
3800 || (GET_CODE (operand) == REG
3801 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3802 && reg_renumber [REGNO (operand)] < 0)))
3804 operand = *recog_data.operand_loc[i];
3806 while (GET_CODE (operand) == SUBREG)
3807 operand = SUBREG_REG (operand);
3808 if (GET_CODE (operand) == REG)
3810 if (modified[i] != RELOAD_WRITE)
3811 emit_insn_before (gen_rtx_USE (VOIDmode, operand), insn);
3812 if (modified[i] != RELOAD_READ)
3813 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3817 else if (goal_alternative_matches[i] >= 0
3818 && goal_alternative_win[goal_alternative_matches[i]]
3819 && modified[i] == RELOAD_READ
3820 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3821 && ! no_input_reloads && ! no_output_reloads
3822 && optimize)
3824 /* Similarly, make an optional reload for a pair of matching
3825 objects that are in MEM or a pseudo that didn't get a hard reg. */
3827 rtx operand = recog_data.operand[i];
3829 while (GET_CODE (operand) == SUBREG)
3830 operand = SUBREG_REG (operand);
3831 if ((GET_CODE (operand) == MEM
3832 || (GET_CODE (operand) == REG
3833 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3834 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3835 != NO_REGS))
3836 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3837 = push_reload (recog_data.operand[goal_alternative_matches[i]],
3838 recog_data.operand[i],
3839 recog_data.operand_loc[goal_alternative_matches[i]],
3840 recog_data.operand_loc[i],
3841 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3842 operand_mode[goal_alternative_matches[i]],
3843 operand_mode[i],
3844 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3847 /* Perform whatever substitutions on the operands we are supposed
3848 to make due to commutativity or replacement of registers
3849 with equivalent constants or memory slots. */
3851 for (i = 0; i < noperands; i++)
3853 /* We only do this on the last pass through reload, because it is
3854 possible for some data (like reg_equiv_address) to be changed during
3855 later passes. Moreover, we loose the opportunity to get a useful
3856 reload_{in,out}_reg when we do these replacements. */
3858 if (replace)
3860 rtx substitution = substed_operand[i];
3862 *recog_data.operand_loc[i] = substitution;
3864 /* If we're replacing an operand with a LABEL_REF, we need
3865 to make sure that there's a REG_LABEL note attached to
3866 this instruction. */
3867 if (GET_CODE (insn) != JUMP_INSN
3868 && GET_CODE (substitution) == LABEL_REF
3869 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
3870 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL,
3871 XEXP (substitution, 0),
3872 REG_NOTES (insn));
3874 else
3875 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
3878 /* If this insn pattern contains any MATCH_DUP's, make sure that
3879 they will be substituted if the operands they match are substituted.
3880 Also do now any substitutions we already did on the operands.
3882 Don't do this if we aren't making replacements because we might be
3883 propagating things allocated by frame pointer elimination into places
3884 it doesn't expect. */
3886 if (insn_code_number >= 0 && replace)
3887 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
3889 int opno = recog_data.dup_num[i];
3890 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
3891 if (operand_reloadnum[opno] >= 0)
3892 push_replacement (recog_data.dup_loc[i], operand_reloadnum[opno],
3893 insn_data[insn_code_number].operand[opno].mode);
3896 #if 0
3897 /* This loses because reloading of prior insns can invalidate the equivalence
3898 (or at least find_equiv_reg isn't smart enough to find it any more),
3899 causing this insn to need more reload regs than it needed before.
3900 It may be too late to make the reload regs available.
3901 Now this optimization is done safely in choose_reload_regs. */
3903 /* For each reload of a reg into some other class of reg,
3904 search for an existing equivalent reg (same value now) in the right class.
3905 We can use it as long as we don't need to change its contents. */
3906 for (i = 0; i < n_reloads; i++)
3907 if (rld[i].reg_rtx == 0
3908 && rld[i].in != 0
3909 && GET_CODE (rld[i].in) == REG
3910 && rld[i].out == 0)
3912 rld[i].reg_rtx
3913 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
3914 static_reload_reg_p, 0, rld[i].inmode);
3915 /* Prevent generation of insn to load the value
3916 because the one we found already has the value. */
3917 if (rld[i].reg_rtx)
3918 rld[i].in = rld[i].reg_rtx;
3920 #endif
3922 /* Perhaps an output reload can be combined with another
3923 to reduce needs by one. */
3924 if (!goal_earlyclobber)
3925 combine_reloads ();
3927 /* If we have a pair of reloads for parts of an address, they are reloading
3928 the same object, the operands themselves were not reloaded, and they
3929 are for two operands that are supposed to match, merge the reloads and
3930 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
3932 for (i = 0; i < n_reloads; i++)
3934 int k;
3936 for (j = i + 1; j < n_reloads; j++)
3937 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3938 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3939 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3940 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3941 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
3942 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3943 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3944 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3945 && rtx_equal_p (rld[i].in, rld[j].in)
3946 && (operand_reloadnum[rld[i].opnum] < 0
3947 || rld[operand_reloadnum[rld[i].opnum]].optional)
3948 && (operand_reloadnum[rld[j].opnum] < 0
3949 || rld[operand_reloadnum[rld[j].opnum]].optional)
3950 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
3951 || (goal_alternative_matches[rld[j].opnum]
3952 == rld[i].opnum)))
3954 for (k = 0; k < n_replacements; k++)
3955 if (replacements[k].what == j)
3956 replacements[k].what = i;
3958 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3959 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3960 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
3961 else
3962 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
3963 rld[j].in = 0;
3967 /* Scan all the reloads and update their type.
3968 If a reload is for the address of an operand and we didn't reload
3969 that operand, change the type. Similarly, change the operand number
3970 of a reload when two operands match. If a reload is optional, treat it
3971 as though the operand isn't reloaded.
3973 ??? This latter case is somewhat odd because if we do the optional
3974 reload, it means the object is hanging around. Thus we need only
3975 do the address reload if the optional reload was NOT done.
3977 Change secondary reloads to be the address type of their operand, not
3978 the normal type.
3980 If an operand's reload is now RELOAD_OTHER, change any
3981 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
3982 RELOAD_FOR_OTHER_ADDRESS. */
3984 for (i = 0; i < n_reloads; i++)
3986 if (rld[i].secondary_p
3987 && rld[i].when_needed == operand_type[rld[i].opnum])
3988 rld[i].when_needed = address_type[rld[i].opnum];
3990 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3991 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3992 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3993 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3994 && (operand_reloadnum[rld[i].opnum] < 0
3995 || rld[operand_reloadnum[rld[i].opnum]].optional))
3997 /* If we have a secondary reload to go along with this reload,
3998 change its type to RELOAD_FOR_OPADDR_ADDR. */
4000 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4001 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4002 && rld[i].secondary_in_reload != -1)
4004 int secondary_in_reload = rld[i].secondary_in_reload;
4006 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4008 /* If there's a tertiary reload we have to change it also. */
4009 if (secondary_in_reload > 0
4010 && rld[secondary_in_reload].secondary_in_reload != -1)
4011 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4012 = RELOAD_FOR_OPADDR_ADDR;
4015 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4016 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4017 && rld[i].secondary_out_reload != -1)
4019 int secondary_out_reload = rld[i].secondary_out_reload;
4021 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4023 /* If there's a tertiary reload we have to change it also. */
4024 if (secondary_out_reload
4025 && rld[secondary_out_reload].secondary_out_reload != -1)
4026 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4027 = RELOAD_FOR_OPADDR_ADDR;
4030 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4031 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4032 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4033 else
4034 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4037 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4038 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4039 && operand_reloadnum[rld[i].opnum] >= 0
4040 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4041 == RELOAD_OTHER))
4042 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4044 if (goal_alternative_matches[rld[i].opnum] >= 0)
4045 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4048 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4049 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4050 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4052 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4053 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4054 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4055 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4056 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4057 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4058 This is complicated by the fact that a single operand can have more
4059 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4060 choose_reload_regs without affecting code quality, and cases that
4061 actually fail are extremely rare, so it turns out to be better to fix
4062 the problem here by not generating cases that choose_reload_regs will
4063 fail for. */
4064 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4065 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4066 a single operand.
4067 We can reduce the register pressure by exploiting that a
4068 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4069 does not conflict with any of them, if it is only used for the first of
4070 the RELOAD_FOR_X_ADDRESS reloads. */
4072 int first_op_addr_num = -2;
4073 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4074 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4075 int need_change = 0;
4076 /* We use last_op_addr_reload and the contents of the above arrays
4077 first as flags - -2 means no instance encountered, -1 means exactly
4078 one instance encountered.
4079 If more than one instance has been encountered, we store the reload
4080 number of the first reload of the kind in question; reload numbers
4081 are known to be non-negative. */
4082 for (i = 0; i < noperands; i++)
4083 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4084 for (i = n_reloads - 1; i >= 0; i--)
4086 switch (rld[i].when_needed)
4088 case RELOAD_FOR_OPERAND_ADDRESS:
4089 if (++first_op_addr_num >= 0)
4091 first_op_addr_num = i;
4092 need_change = 1;
4094 break;
4095 case RELOAD_FOR_INPUT_ADDRESS:
4096 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4098 first_inpaddr_num[rld[i].opnum] = i;
4099 need_change = 1;
4101 break;
4102 case RELOAD_FOR_OUTPUT_ADDRESS:
4103 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4105 first_outpaddr_num[rld[i].opnum] = i;
4106 need_change = 1;
4108 break;
4109 default:
4110 break;
4114 if (need_change)
4116 for (i = 0; i < n_reloads; i++)
4118 int first_num;
4119 enum reload_type type;
4121 switch (rld[i].when_needed)
4123 case RELOAD_FOR_OPADDR_ADDR:
4124 first_num = first_op_addr_num;
4125 type = RELOAD_FOR_OPERAND_ADDRESS;
4126 break;
4127 case RELOAD_FOR_INPADDR_ADDRESS:
4128 first_num = first_inpaddr_num[rld[i].opnum];
4129 type = RELOAD_FOR_INPUT_ADDRESS;
4130 break;
4131 case RELOAD_FOR_OUTADDR_ADDRESS:
4132 first_num = first_outpaddr_num[rld[i].opnum];
4133 type = RELOAD_FOR_OUTPUT_ADDRESS;
4134 break;
4135 default:
4136 continue;
4138 if (first_num < 0)
4139 continue;
4140 else if (i > first_num)
4141 rld[i].when_needed = type;
4142 else
4144 /* Check if the only TYPE reload that uses reload I is
4145 reload FIRST_NUM. */
4146 for (j = n_reloads - 1; j > first_num; j--)
4148 if (rld[j].when_needed == type
4149 && (rld[i].secondary_p
4150 ? rld[j].secondary_in_reload == i
4151 : reg_mentioned_p (rld[i].in, rld[j].in)))
4153 rld[i].when_needed = type;
4154 break;
4162 /* See if we have any reloads that are now allowed to be merged
4163 because we've changed when the reload is needed to
4164 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4165 check for the most common cases. */
4167 for (i = 0; i < n_reloads; i++)
4168 if (rld[i].in != 0 && rld[i].out == 0
4169 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4170 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4171 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4172 for (j = 0; j < n_reloads; j++)
4173 if (i != j && rld[j].in != 0 && rld[j].out == 0
4174 && rld[j].when_needed == rld[i].when_needed
4175 && MATCHES (rld[i].in, rld[j].in)
4176 && rld[i].class == rld[j].class
4177 && !rld[i].nocombine && !rld[j].nocombine
4178 && rld[i].reg_rtx == rld[j].reg_rtx)
4180 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4181 transfer_replacements (i, j);
4182 rld[j].in = 0;
4185 #ifdef HAVE_cc0
4186 /* If we made any reloads for addresses, see if they violate a
4187 "no input reloads" requirement for this insn. But loads that we
4188 do after the insn (such as for output addresses) are fine. */
4189 if (no_input_reloads)
4190 for (i = 0; i < n_reloads; i++)
4191 if (rld[i].in != 0
4192 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4193 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4194 abort ();
4195 #endif
4197 /* Compute reload_mode and reload_nregs. */
4198 for (i = 0; i < n_reloads; i++)
4200 rld[i].mode
4201 = (rld[i].inmode == VOIDmode
4202 || (GET_MODE_SIZE (rld[i].outmode)
4203 > GET_MODE_SIZE (rld[i].inmode)))
4204 ? rld[i].outmode : rld[i].inmode;
4206 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4209 return retval;
4212 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4213 accepts a memory operand with constant address. */
4215 static int
4216 alternative_allows_memconst (constraint, altnum)
4217 const char *constraint;
4218 int altnum;
4220 register int c;
4221 /* Skip alternatives before the one requested. */
4222 while (altnum > 0)
4224 while (*constraint++ != ',');
4225 altnum--;
4227 /* Scan the requested alternative for 'm' or 'o'.
4228 If one of them is present, this alternative accepts memory constants. */
4229 while ((c = *constraint++) && c != ',' && c != '#')
4230 if (c == 'm' || c == 'o')
4231 return 1;
4232 return 0;
4235 /* Scan X for memory references and scan the addresses for reloading.
4236 Also checks for references to "constant" regs that we want to eliminate
4237 and replaces them with the values they stand for.
4238 We may alter X destructively if it contains a reference to such.
4239 If X is just a constant reg, we return the equivalent value
4240 instead of X.
4242 IND_LEVELS says how many levels of indirect addressing this machine
4243 supports.
4245 OPNUM and TYPE identify the purpose of the reload.
4247 IS_SET_DEST is true if X is the destination of a SET, which is not
4248 appropriate to be replaced by a constant.
4250 INSN, if nonzero, is the insn in which we do the reload. It is used
4251 to determine if we may generate output reloads, and where to put USEs
4252 for pseudos that we have to replace with stack slots.
4254 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4255 result of find_reloads_address. */
4257 static rtx
4258 find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest, insn,
4259 address_reloaded)
4260 rtx x;
4261 int opnum;
4262 enum reload_type type;
4263 int ind_levels;
4264 int is_set_dest;
4265 rtx insn;
4266 int *address_reloaded;
4268 register RTX_CODE code = GET_CODE (x);
4270 register const char *fmt = GET_RTX_FORMAT (code);
4271 register int i;
4272 int copied;
4274 if (code == REG)
4276 /* This code is duplicated for speed in find_reloads. */
4277 register int regno = REGNO (x);
4278 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4279 x = reg_equiv_constant[regno];
4280 #if 0
4281 /* This creates (subreg (mem...)) which would cause an unnecessary
4282 reload of the mem. */
4283 else if (reg_equiv_mem[regno] != 0)
4284 x = reg_equiv_mem[regno];
4285 #endif
4286 else if (reg_equiv_memory_loc[regno]
4287 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4289 rtx mem = make_memloc (x, regno);
4290 if (reg_equiv_address[regno]
4291 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4293 /* If this is not a toplevel operand, find_reloads doesn't see
4294 this substitution. We have to emit a USE of the pseudo so
4295 that delete_output_reload can see it. */
4296 if (replace_reloads && recog_data.operand[opnum] != x)
4297 emit_insn_before (gen_rtx_USE (VOIDmode, x), insn);
4298 x = mem;
4299 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4300 opnum, type, ind_levels, insn);
4301 if (address_reloaded)
4302 *address_reloaded = i;
4305 return x;
4307 if (code == MEM)
4309 rtx tem = x;
4311 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4312 opnum, type, ind_levels, insn);
4313 if (address_reloaded)
4314 *address_reloaded = i;
4316 return tem;
4319 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4321 /* Check for SUBREG containing a REG that's equivalent to a constant.
4322 If the constant has a known value, truncate it right now.
4323 Similarly if we are extracting a single-word of a multi-word
4324 constant. If the constant is symbolic, allow it to be substituted
4325 normally. push_reload will strip the subreg later. If the
4326 constant is VOIDmode, abort because we will lose the mode of
4327 the register (this should never happen because one of the cases
4328 above should handle it). */
4330 register int regno = REGNO (SUBREG_REG (x));
4331 rtx tem;
4333 if (subreg_lowpart_p (x)
4334 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4335 && reg_equiv_constant[regno] != 0
4336 && (tem = gen_lowpart_common (GET_MODE (x),
4337 reg_equiv_constant[regno])) != 0)
4338 return tem;
4340 if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
4341 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4342 && reg_equiv_constant[regno] != 0
4343 && (tem = operand_subword (reg_equiv_constant[regno],
4344 SUBREG_BYTE (x) / UNITS_PER_WORD, 0,
4345 GET_MODE (SUBREG_REG (x)))) != 0)
4347 /* TEM is now a word sized constant for the bits from X that
4348 we wanted. However, TEM may be the wrong representation.
4350 Use gen_lowpart_common to convert a CONST_INT into a
4351 CONST_DOUBLE and vice versa as needed according to by the mode
4352 of the SUBREG. */
4353 tem = gen_lowpart_common (GET_MODE (x), tem);
4354 if (!tem)
4355 abort ();
4356 return tem;
4359 /* If the SUBREG is wider than a word, the above test will fail.
4360 For example, we might have a SImode SUBREG of a DImode SUBREG_REG
4361 for a 16 bit target, or a DImode SUBREG of a TImode SUBREG_REG for
4362 a 32 bit target. We still can - and have to - handle this
4363 for non-paradoxical subregs of CONST_INTs. */
4364 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4365 && reg_equiv_constant[regno] != 0
4366 && GET_CODE (reg_equiv_constant[regno]) == CONST_INT
4367 && (GET_MODE_SIZE (GET_MODE (x))
4368 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
4370 int shift = SUBREG_BYTE (x) * BITS_PER_UNIT;
4371 if (WORDS_BIG_ENDIAN)
4372 shift = (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4373 - GET_MODE_BITSIZE (GET_MODE (x))
4374 - shift);
4375 /* Here we use the knowledge that CONST_INTs have a
4376 HOST_WIDE_INT field. */
4377 if (shift >= HOST_BITS_PER_WIDE_INT)
4378 shift = HOST_BITS_PER_WIDE_INT - 1;
4379 return GEN_INT (INTVAL (reg_equiv_constant[regno]) >> shift);
4382 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4383 && reg_equiv_constant[regno] != 0
4384 && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
4385 abort ();
4387 /* If the subreg contains a reg that will be converted to a mem,
4388 convert the subreg to a narrower memref now.
4389 Otherwise, we would get (subreg (mem ...) ...),
4390 which would force reload of the mem.
4392 We also need to do this if there is an equivalent MEM that is
4393 not offsettable. In that case, alter_subreg would produce an
4394 invalid address on big-endian machines.
4396 For machines that extend byte loads, we must not reload using
4397 a wider mode if we have a paradoxical SUBREG. find_reloads will
4398 force a reload in that case. So we should not do anything here. */
4400 else if (regno >= FIRST_PSEUDO_REGISTER
4401 #ifdef LOAD_EXTEND_OP
4402 && (GET_MODE_SIZE (GET_MODE (x))
4403 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4404 #endif
4405 && (reg_equiv_address[regno] != 0
4406 || (reg_equiv_mem[regno] != 0
4407 && (! strict_memory_address_p (GET_MODE (x),
4408 XEXP (reg_equiv_mem[regno], 0))
4409 || ! offsettable_memref_p (reg_equiv_mem[regno])
4410 || num_not_at_initial_offset))))
4411 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4412 insn);
4414 else if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM
4415 && (GET_MODE_SIZE (GET_MODE (x))
4416 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4417 && mode_dependent_address_p (XEXP (SUBREG_REG (x), 0)))
4419 /* A paradoxical subreg will simply have the mode of the access
4420 changed, so we need to reload such a memory operand to stabilize
4421 the meaning of the memory access. */
4422 enum machine_mode subreg_mode = GET_MODE (SUBREG_REG (x));
4424 /* SUBREG_REG (x) is a MEM, so we cant take the offset, instead we
4425 calculate the register number as :
4426 SUBREG_BYTE (x) / GET_MODE_SIZE (subreg_mode) */
4427 if (is_set_dest)
4428 push_reload (NULL_RTX, SUBREG_REG (x), NULL_PTR, &SUBREG_REG (x),
4429 find_valid_class (subreg_mode,
4430 SUBREG_BYTE (x) / GET_MODE_SIZE (subreg_mode)),
4431 VOIDmode, subreg_mode, 0, 0, opnum, type);
4432 else
4433 push_reload (SUBREG_REG (x), NULL_RTX, &SUBREG_REG (x), NULL_PTR,
4434 find_valid_class (subreg_mode,
4435 SUBREG_BYTE (x) / GET_MODE_SIZE (subreg_mode)),
4436 subreg_mode, VOIDmode, 0, 0, opnum, type);
4439 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4441 if (fmt[i] == 'e')
4443 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4444 ind_levels, is_set_dest, insn,
4445 address_reloaded);
4446 /* If we have replaced a reg with it's equivalent memory loc -
4447 that can still be handled here e.g. if it's in a paradoxical
4448 subreg - we must make the change in a copy, rather than using
4449 a destructive change. This way, find_reloads can still elect
4450 not to do the change. */
4451 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4453 x = shallow_copy_rtx (x);
4454 copied = 1;
4456 XEXP (x, i) = new_part;
4459 return x;
4462 /* Return a mem ref for the memory equivalent of reg REGNO.
4463 This mem ref is not shared with anything. */
4465 static rtx
4466 make_memloc (ad, regno)
4467 rtx ad;
4468 int regno;
4470 /* We must rerun eliminate_regs, in case the elimination
4471 offsets have changed. */
4472 rtx tem
4473 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4475 /* If TEM might contain a pseudo, we must copy it to avoid
4476 modifying it when we do the substitution for the reload. */
4477 if (rtx_varies_p (tem, 0))
4478 tem = copy_rtx (tem);
4480 tem = gen_rtx_MEM (GET_MODE (ad), tem);
4481 MEM_COPY_ATTRIBUTES (tem, reg_equiv_memory_loc[regno]);
4482 return tem;
4485 /* Record all reloads needed for handling memory address AD
4486 which appears in *LOC in a memory reference to mode MODE
4487 which itself is found in location *MEMREFLOC.
4488 Note that we take shortcuts assuming that no multi-reg machine mode
4489 occurs as part of an address.
4491 OPNUM and TYPE specify the purpose of this reload.
4493 IND_LEVELS says how many levels of indirect addressing this machine
4494 supports.
4496 INSN, if nonzero, is the insn in which we do the reload. It is used
4497 to determine if we may generate output reloads, and where to put USEs
4498 for pseudos that we have to replace with stack slots.
4500 Value is nonzero if this address is reloaded or replaced as a whole.
4501 This is interesting to the caller if the address is an autoincrement.
4503 Note that there is no verification that the address will be valid after
4504 this routine does its work. Instead, we rely on the fact that the address
4505 was valid when reload started. So we need only undo things that reload
4506 could have broken. These are wrong register types, pseudos not allocated
4507 to a hard register, and frame pointer elimination. */
4509 static int
4510 find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
4511 enum machine_mode mode;
4512 rtx *memrefloc;
4513 rtx ad;
4514 rtx *loc;
4515 int opnum;
4516 enum reload_type type;
4517 int ind_levels;
4518 rtx insn;
4520 register int regno;
4521 int removed_and = 0;
4522 rtx tem;
4524 /* If the address is a register, see if it is a legitimate address and
4525 reload if not. We first handle the cases where we need not reload
4526 or where we must reload in a non-standard way. */
4528 if (GET_CODE (ad) == REG)
4530 regno = REGNO (ad);
4532 /* If the register is equivalent to an invariant expression, substitute
4533 the invariant, and eliminate any eliminable register references. */
4534 tem = reg_equiv_constant[regno];
4535 if (tem != 0
4536 && (tem = eliminate_regs (tem, mode, insn))
4537 && strict_memory_address_p (mode, tem))
4539 *loc = ad = tem;
4540 return 0;
4543 tem = reg_equiv_memory_loc[regno];
4544 if (tem != 0)
4546 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4548 tem = make_memloc (ad, regno);
4549 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4551 find_reloads_address (GET_MODE (tem), NULL_PTR, XEXP (tem, 0),
4552 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
4553 ind_levels, insn);
4555 /* We can avoid a reload if the register's equivalent memory
4556 expression is valid as an indirect memory address.
4557 But not all addresses are valid in a mem used as an indirect
4558 address: only reg or reg+constant. */
4560 if (ind_levels > 0
4561 && strict_memory_address_p (mode, tem)
4562 && (GET_CODE (XEXP (tem, 0)) == REG
4563 || (GET_CODE (XEXP (tem, 0)) == PLUS
4564 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4565 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4567 /* TEM is not the same as what we'll be replacing the
4568 pseudo with after reload, put a USE in front of INSN
4569 in the final reload pass. */
4570 if (replace_reloads
4571 && num_not_at_initial_offset
4572 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4574 *loc = tem;
4575 emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn);
4576 /* This doesn't really count as replacing the address
4577 as a whole, since it is still a memory access. */
4579 return 0;
4581 ad = tem;
4585 /* The only remaining case where we can avoid a reload is if this is a
4586 hard register that is valid as a base register and which is not the
4587 subject of a CLOBBER in this insn. */
4589 else if (regno < FIRST_PSEUDO_REGISTER
4590 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4591 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4592 return 0;
4594 /* If we do not have one of the cases above, we must do the reload. */
4595 push_reload (ad, NULL_RTX, loc, NULL_PTR, BASE_REG_CLASS,
4596 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4597 return 1;
4600 if (strict_memory_address_p (mode, ad))
4602 /* The address appears valid, so reloads are not needed.
4603 But the address may contain an eliminable register.
4604 This can happen because a machine with indirect addressing
4605 may consider a pseudo register by itself a valid address even when
4606 it has failed to get a hard reg.
4607 So do a tree-walk to find and eliminate all such regs. */
4609 /* But first quickly dispose of a common case. */
4610 if (GET_CODE (ad) == PLUS
4611 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4612 && GET_CODE (XEXP (ad, 0)) == REG
4613 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4614 return 0;
4616 subst_reg_equivs_changed = 0;
4617 *loc = subst_reg_equivs (ad, insn);
4619 if (! subst_reg_equivs_changed)
4620 return 0;
4622 /* Check result for validity after substitution. */
4623 if (strict_memory_address_p (mode, ad))
4624 return 0;
4627 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4630 if (memrefloc)
4632 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4633 ind_levels, win);
4635 break;
4636 win:
4637 *memrefloc = copy_rtx (*memrefloc);
4638 XEXP (*memrefloc, 0) = ad;
4639 move_replacements (&ad, &XEXP (*memrefloc, 0));
4640 return 1;
4642 while (0);
4643 #endif
4645 /* The address is not valid. We have to figure out why. First see if
4646 we have an outer AND and remove it if so. Then analyze what's inside. */
4648 if (GET_CODE (ad) == AND)
4650 removed_and = 1;
4651 loc = &XEXP (ad, 0);
4652 ad = *loc;
4655 /* One possibility for why the address is invalid is that it is itself
4656 a MEM. This can happen when the frame pointer is being eliminated, a
4657 pseudo is not allocated to a hard register, and the offset between the
4658 frame and stack pointers is not its initial value. In that case the
4659 pseudo will have been replaced by a MEM referring to the
4660 stack pointer. */
4661 if (GET_CODE (ad) == MEM)
4663 /* First ensure that the address in this MEM is valid. Then, unless
4664 indirect addresses are valid, reload the MEM into a register. */
4665 tem = ad;
4666 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4667 opnum, ADDR_TYPE (type),
4668 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4670 /* If tem was changed, then we must create a new memory reference to
4671 hold it and store it back into memrefloc. */
4672 if (tem != ad && memrefloc)
4674 *memrefloc = copy_rtx (*memrefloc);
4675 copy_replacements (tem, XEXP (*memrefloc, 0));
4676 loc = &XEXP (*memrefloc, 0);
4677 if (removed_and)
4678 loc = &XEXP (*loc, 0);
4681 /* Check similar cases as for indirect addresses as above except
4682 that we can allow pseudos and a MEM since they should have been
4683 taken care of above. */
4685 if (ind_levels == 0
4686 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4687 || GET_CODE (XEXP (tem, 0)) == MEM
4688 || ! (GET_CODE (XEXP (tem, 0)) == REG
4689 || (GET_CODE (XEXP (tem, 0)) == PLUS
4690 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4691 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4693 /* Must use TEM here, not AD, since it is the one that will
4694 have any subexpressions reloaded, if needed. */
4695 push_reload (tem, NULL_RTX, loc, NULL_PTR,
4696 BASE_REG_CLASS, GET_MODE (tem),
4697 VOIDmode, 0,
4698 0, opnum, type);
4699 return ! removed_and;
4701 else
4702 return 0;
4705 /* If we have address of a stack slot but it's not valid because the
4706 displacement is too large, compute the sum in a register.
4707 Handle all base registers here, not just fp/ap/sp, because on some
4708 targets (namely SH) we can also get too large displacements from
4709 big-endian corrections. */
4710 else if (GET_CODE (ad) == PLUS
4711 && GET_CODE (XEXP (ad, 0)) == REG
4712 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4713 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4714 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4716 /* Unshare the MEM rtx so we can safely alter it. */
4717 if (memrefloc)
4719 *memrefloc = copy_rtx (*memrefloc);
4720 loc = &XEXP (*memrefloc, 0);
4721 if (removed_and)
4722 loc = &XEXP (*loc, 0);
4725 if (double_reg_address_ok)
4727 /* Unshare the sum as well. */
4728 *loc = ad = copy_rtx (ad);
4730 /* Reload the displacement into an index reg.
4731 We assume the frame pointer or arg pointer is a base reg. */
4732 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4733 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4734 type, ind_levels);
4735 return 0;
4737 else
4739 /* If the sum of two regs is not necessarily valid,
4740 reload the sum into a base reg.
4741 That will at least work. */
4742 find_reloads_address_part (ad, loc, BASE_REG_CLASS,
4743 Pmode, opnum, type, ind_levels);
4745 return ! removed_and;
4748 /* If we have an indexed stack slot, there are three possible reasons why
4749 it might be invalid: The index might need to be reloaded, the address
4750 might have been made by frame pointer elimination and hence have a
4751 constant out of range, or both reasons might apply.
4753 We can easily check for an index needing reload, but even if that is the
4754 case, we might also have an invalid constant. To avoid making the
4755 conservative assumption and requiring two reloads, we see if this address
4756 is valid when not interpreted strictly. If it is, the only problem is
4757 that the index needs a reload and find_reloads_address_1 will take care
4758 of it.
4760 If we decide to do something here, it must be that
4761 `double_reg_address_ok' is true and that this address rtl was made by
4762 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4763 rework the sum so that the reload register will be added to the index.
4764 This is safe because we know the address isn't shared.
4766 We check for fp/ap/sp as both the first and second operand of the
4767 innermost PLUS. */
4769 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4770 && GET_CODE (XEXP (ad, 0)) == PLUS
4771 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4772 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4773 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4774 #endif
4775 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4776 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4777 #endif
4778 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4779 && ! memory_address_p (mode, ad))
4781 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4782 plus_constant (XEXP (XEXP (ad, 0), 0),
4783 INTVAL (XEXP (ad, 1))),
4784 XEXP (XEXP (ad, 0), 1));
4785 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0), BASE_REG_CLASS,
4786 GET_MODE (ad), opnum, type, ind_levels);
4787 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4788 type, 0, insn);
4790 return 0;
4793 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4794 && GET_CODE (XEXP (ad, 0)) == PLUS
4795 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4796 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4797 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4798 #endif
4799 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4800 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4801 #endif
4802 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4803 && ! memory_address_p (mode, ad))
4805 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4806 XEXP (XEXP (ad, 0), 0),
4807 plus_constant (XEXP (XEXP (ad, 0), 1),
4808 INTVAL (XEXP (ad, 1))));
4809 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1), BASE_REG_CLASS,
4810 GET_MODE (ad), opnum, type, ind_levels);
4811 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4812 type, 0, insn);
4814 return 0;
4817 /* See if address becomes valid when an eliminable register
4818 in a sum is replaced. */
4820 tem = ad;
4821 if (GET_CODE (ad) == PLUS)
4822 tem = subst_indexed_address (ad);
4823 if (tem != ad && strict_memory_address_p (mode, tem))
4825 /* Ok, we win that way. Replace any additional eliminable
4826 registers. */
4828 subst_reg_equivs_changed = 0;
4829 tem = subst_reg_equivs (tem, insn);
4831 /* Make sure that didn't make the address invalid again. */
4833 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4835 *loc = tem;
4836 return 0;
4840 /* If constants aren't valid addresses, reload the constant address
4841 into a register. */
4842 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4844 /* If AD is in address in the constant pool, the MEM rtx may be shared.
4845 Unshare it so we can safely alter it. */
4846 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4847 && CONSTANT_POOL_ADDRESS_P (ad))
4849 *memrefloc = copy_rtx (*memrefloc);
4850 loc = &XEXP (*memrefloc, 0);
4851 if (removed_and)
4852 loc = &XEXP (*loc, 0);
4855 find_reloads_address_part (ad, loc, BASE_REG_CLASS, Pmode, opnum, type,
4856 ind_levels);
4857 return ! removed_and;
4860 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4861 insn);
4864 /* Find all pseudo regs appearing in AD
4865 that are eliminable in favor of equivalent values
4866 and do not have hard regs; replace them by their equivalents.
4867 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
4868 front of it for pseudos that we have to replace with stack slots. */
4870 static rtx
4871 subst_reg_equivs (ad, insn)
4872 rtx ad;
4873 rtx insn;
4875 register RTX_CODE code = GET_CODE (ad);
4876 register int i;
4877 register const char *fmt;
4879 switch (code)
4881 case HIGH:
4882 case CONST_INT:
4883 case CONST:
4884 case CONST_DOUBLE:
4885 case SYMBOL_REF:
4886 case LABEL_REF:
4887 case PC:
4888 case CC0:
4889 return ad;
4891 case REG:
4893 register int regno = REGNO (ad);
4895 if (reg_equiv_constant[regno] != 0)
4897 subst_reg_equivs_changed = 1;
4898 return reg_equiv_constant[regno];
4900 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
4902 rtx mem = make_memloc (ad, regno);
4903 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
4905 subst_reg_equivs_changed = 1;
4906 emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn);
4907 return mem;
4911 return ad;
4913 case PLUS:
4914 /* Quickly dispose of a common case. */
4915 if (XEXP (ad, 0) == frame_pointer_rtx
4916 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4917 return ad;
4918 break;
4920 default:
4921 break;
4924 fmt = GET_RTX_FORMAT (code);
4925 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4926 if (fmt[i] == 'e')
4927 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
4928 return ad;
4931 /* Compute the sum of X and Y, making canonicalizations assumed in an
4932 address, namely: sum constant integers, surround the sum of two
4933 constants with a CONST, put the constant as the second operand, and
4934 group the constant on the outermost sum.
4936 This routine assumes both inputs are already in canonical form. */
4939 form_sum (x, y)
4940 rtx x, y;
4942 rtx tem;
4943 enum machine_mode mode = GET_MODE (x);
4945 if (mode == VOIDmode)
4946 mode = GET_MODE (y);
4948 if (mode == VOIDmode)
4949 mode = Pmode;
4951 if (GET_CODE (x) == CONST_INT)
4952 return plus_constant (y, INTVAL (x));
4953 else if (GET_CODE (y) == CONST_INT)
4954 return plus_constant (x, INTVAL (y));
4955 else if (CONSTANT_P (x))
4956 tem = x, x = y, y = tem;
4958 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
4959 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
4961 /* Note that if the operands of Y are specified in the opposite
4962 order in the recursive calls below, infinite recursion will occur. */
4963 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
4964 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
4966 /* If both constant, encapsulate sum. Otherwise, just form sum. A
4967 constant will have been placed second. */
4968 if (CONSTANT_P (x) && CONSTANT_P (y))
4970 if (GET_CODE (x) == CONST)
4971 x = XEXP (x, 0);
4972 if (GET_CODE (y) == CONST)
4973 y = XEXP (y, 0);
4975 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
4978 return gen_rtx_PLUS (mode, x, y);
4981 /* If ADDR is a sum containing a pseudo register that should be
4982 replaced with a constant (from reg_equiv_constant),
4983 return the result of doing so, and also apply the associative
4984 law so that the result is more likely to be a valid address.
4985 (But it is not guaranteed to be one.)
4987 Note that at most one register is replaced, even if more are
4988 replaceable. Also, we try to put the result into a canonical form
4989 so it is more likely to be a valid address.
4991 In all other cases, return ADDR. */
4993 static rtx
4994 subst_indexed_address (addr)
4995 rtx addr;
4997 rtx op0 = 0, op1 = 0, op2 = 0;
4998 rtx tem;
4999 int regno;
5001 if (GET_CODE (addr) == PLUS)
5003 /* Try to find a register to replace. */
5004 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5005 if (GET_CODE (op0) == REG
5006 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5007 && reg_renumber[regno] < 0
5008 && reg_equiv_constant[regno] != 0)
5009 op0 = reg_equiv_constant[regno];
5010 else if (GET_CODE (op1) == REG
5011 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5012 && reg_renumber[regno] < 0
5013 && reg_equiv_constant[regno] != 0)
5014 op1 = reg_equiv_constant[regno];
5015 else if (GET_CODE (op0) == PLUS
5016 && (tem = subst_indexed_address (op0)) != op0)
5017 op0 = tem;
5018 else if (GET_CODE (op1) == PLUS
5019 && (tem = subst_indexed_address (op1)) != op1)
5020 op1 = tem;
5021 else
5022 return addr;
5024 /* Pick out up to three things to add. */
5025 if (GET_CODE (op1) == PLUS)
5026 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5027 else if (GET_CODE (op0) == PLUS)
5028 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5030 /* Compute the sum. */
5031 if (op2 != 0)
5032 op1 = form_sum (op1, op2);
5033 if (op1 != 0)
5034 op0 = form_sum (op0, op1);
5036 return op0;
5038 return addr;
5041 /* Update the REG_INC notes for an insn. It updates all REG_INC
5042 notes for the instruction which refer to REGNO the to refer
5043 to the reload number.
5045 INSN is the insn for which any REG_INC notes need updating.
5047 REGNO is the register number which has been reloaded.
5049 RELOADNUM is the reload number. */
5051 static void
5052 update_auto_inc_notes (insn, regno, reloadnum)
5053 rtx insn ATTRIBUTE_UNUSED;
5054 int regno ATTRIBUTE_UNUSED;
5055 int reloadnum ATTRIBUTE_UNUSED;
5057 #ifdef AUTO_INC_DEC
5058 rtx link;
5060 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5061 if (REG_NOTE_KIND (link) == REG_INC
5062 && REGNO (XEXP (link, 0)) == regno)
5063 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5064 #endif
5067 /* Record the pseudo registers we must reload into hard registers in a
5068 subexpression of a would-be memory address, X referring to a value
5069 in mode MODE. (This function is not called if the address we find
5070 is strictly valid.)
5072 CONTEXT = 1 means we are considering regs as index regs,
5073 = 0 means we are considering them as base regs.
5075 OPNUM and TYPE specify the purpose of any reloads made.
5077 IND_LEVELS says how many levels of indirect addressing are
5078 supported at this point in the address.
5080 INSN, if nonzero, is the insn in which we do the reload. It is used
5081 to determine if we may generate output reloads.
5083 We return nonzero if X, as a whole, is reloaded or replaced. */
5085 /* Note that we take shortcuts assuming that no multi-reg machine mode
5086 occurs as part of an address.
5087 Also, this is not fully machine-customizable; it works for machines
5088 such as vaxes and 68000's and 32000's, but other possible machines
5089 could have addressing modes that this does not handle right. */
5091 static int
5092 find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
5093 enum machine_mode mode;
5094 rtx x;
5095 int context;
5096 rtx *loc;
5097 int opnum;
5098 enum reload_type type;
5099 int ind_levels;
5100 rtx insn;
5102 register RTX_CODE code = GET_CODE (x);
5104 switch (code)
5106 case PLUS:
5108 register rtx orig_op0 = XEXP (x, 0);
5109 register rtx orig_op1 = XEXP (x, 1);
5110 register RTX_CODE code0 = GET_CODE (orig_op0);
5111 register RTX_CODE code1 = GET_CODE (orig_op1);
5112 register rtx op0 = orig_op0;
5113 register rtx op1 = orig_op1;
5115 if (GET_CODE (op0) == SUBREG)
5117 op0 = SUBREG_REG (op0);
5118 code0 = GET_CODE (op0);
5119 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5120 op0 = gen_rtx_REG (word_mode,
5121 (REGNO (op0) +
5122 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5123 GET_MODE (SUBREG_REG (orig_op0)),
5124 SUBREG_BYTE (orig_op0),
5125 GET_MODE (orig_op0))));
5128 if (GET_CODE (op1) == SUBREG)
5130 op1 = SUBREG_REG (op1);
5131 code1 = GET_CODE (op1);
5132 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5133 /* ??? Why is this given op1's mode and above for
5134 ??? op0 SUBREGs we use word_mode? */
5135 op1 = gen_rtx_REG (GET_MODE (op1),
5136 (REGNO (op1) +
5137 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5138 GET_MODE (SUBREG_REG (orig_op1)),
5139 SUBREG_BYTE (orig_op1),
5140 GET_MODE (orig_op1))));
5143 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5144 || code0 == ZERO_EXTEND || code1 == MEM)
5146 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5147 type, ind_levels, insn);
5148 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5149 type, ind_levels, insn);
5152 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5153 || code1 == ZERO_EXTEND || code0 == MEM)
5155 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5156 type, ind_levels, insn);
5157 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5158 type, ind_levels, insn);
5161 else if (code0 == CONST_INT || code0 == CONST
5162 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5163 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5164 type, ind_levels, insn);
5166 else if (code1 == CONST_INT || code1 == CONST
5167 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5168 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5169 type, ind_levels, insn);
5171 else if (code0 == REG && code1 == REG)
5173 if (REG_OK_FOR_INDEX_P (op0)
5174 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5175 return 0;
5176 else if (REG_OK_FOR_INDEX_P (op1)
5177 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5178 return 0;
5179 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5180 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5181 type, ind_levels, insn);
5182 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5183 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5184 type, ind_levels, insn);
5185 else if (REG_OK_FOR_INDEX_P (op1))
5186 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5187 type, ind_levels, insn);
5188 else if (REG_OK_FOR_INDEX_P (op0))
5189 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5190 type, ind_levels, insn);
5191 else
5193 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5194 type, ind_levels, insn);
5195 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5196 type, ind_levels, insn);
5200 else if (code0 == REG)
5202 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5203 type, ind_levels, insn);
5204 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5205 type, ind_levels, insn);
5208 else if (code1 == REG)
5210 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5211 type, ind_levels, insn);
5212 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5213 type, ind_levels, insn);
5217 return 0;
5219 case POST_MODIFY:
5220 case PRE_MODIFY:
5222 rtx op0 = XEXP (x, 0);
5223 rtx op1 = XEXP (x, 1);
5225 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5226 return 0;
5228 /* Currently, we only support {PRE,POST}_MODIFY constructs
5229 where a base register is {inc,dec}remented by the contents
5230 of another register or by a constant value. Thus, these
5231 operands must match. */
5232 if (op0 != XEXP (op1, 0))
5233 abort ();
5235 /* Require index register (or constant). Let's just handle the
5236 register case in the meantime... If the target allows
5237 auto-modify by a constant then we could try replacing a pseudo
5238 register with its equivalent constant where applicable. */
5239 if (REG_P (XEXP (op1, 1)))
5240 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5241 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5242 opnum, type, ind_levels, insn);
5244 if (REG_P (XEXP (op1, 0)))
5246 int regno = REGNO (XEXP (op1, 0));
5247 int reloadnum;
5249 /* A register that is incremented cannot be constant! */
5250 if (regno >= FIRST_PSEUDO_REGISTER
5251 && reg_equiv_constant[regno] != 0)
5252 abort ();
5254 /* Handle a register that is equivalent to a memory location
5255 which cannot be addressed directly. */
5256 if (reg_equiv_memory_loc[regno] != 0
5257 && (reg_equiv_address[regno] != 0
5258 || num_not_at_initial_offset))
5260 rtx tem = make_memloc (XEXP (x, 0), regno);
5262 if (reg_equiv_address[regno]
5263 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5265 /* First reload the memory location's address.
5266 We can't use ADDR_TYPE (type) here, because we need to
5267 write back the value after reading it, hence we actually
5268 need two registers. */
5269 find_reloads_address (GET_MODE (tem), 0, XEXP (tem, 0),
5270 &XEXP (tem, 0), opnum,
5271 RELOAD_OTHER,
5272 ind_levels, insn);
5274 /* Then reload the memory location into a base
5275 register. */
5276 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5277 &XEXP (op1, 0), BASE_REG_CLASS,
5278 GET_MODE (x), GET_MODE (x), 0,
5279 0, opnum, RELOAD_OTHER);
5281 update_auto_inc_notes (this_insn, regno, reloadnum);
5282 return 0;
5286 if (reg_renumber[regno] >= 0)
5287 regno = reg_renumber[regno];
5289 /* We require a base register here... */
5290 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5292 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5293 &XEXP (op1, 0), &XEXP (x, 0),
5294 BASE_REG_CLASS,
5295 GET_MODE (x), GET_MODE (x), 0, 0,
5296 opnum, RELOAD_OTHER);
5298 update_auto_inc_notes (this_insn, regno, reloadnum);
5299 return 0;
5302 else
5303 abort ();
5305 return 0;
5307 case POST_INC:
5308 case POST_DEC:
5309 case PRE_INC:
5310 case PRE_DEC:
5311 if (GET_CODE (XEXP (x, 0)) == REG)
5313 register int regno = REGNO (XEXP (x, 0));
5314 int value = 0;
5315 rtx x_orig = x;
5317 /* A register that is incremented cannot be constant! */
5318 if (regno >= FIRST_PSEUDO_REGISTER
5319 && reg_equiv_constant[regno] != 0)
5320 abort ();
5322 /* Handle a register that is equivalent to a memory location
5323 which cannot be addressed directly. */
5324 if (reg_equiv_memory_loc[regno] != 0
5325 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5327 rtx tem = make_memloc (XEXP (x, 0), regno);
5328 if (reg_equiv_address[regno]
5329 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5331 /* First reload the memory location's address.
5332 We can't use ADDR_TYPE (type) here, because we need to
5333 write back the value after reading it, hence we actually
5334 need two registers. */
5335 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5336 &XEXP (tem, 0), opnum, type,
5337 ind_levels, insn);
5338 /* Put this inside a new increment-expression. */
5339 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5340 /* Proceed to reload that, as if it contained a register. */
5344 /* If we have a hard register that is ok as an index,
5345 don't make a reload. If an autoincrement of a nice register
5346 isn't "valid", it must be that no autoincrement is "valid".
5347 If that is true and something made an autoincrement anyway,
5348 this must be a special context where one is allowed.
5349 (For example, a "push" instruction.)
5350 We can't improve this address, so leave it alone. */
5352 /* Otherwise, reload the autoincrement into a suitable hard reg
5353 and record how much to increment by. */
5355 if (reg_renumber[regno] >= 0)
5356 regno = reg_renumber[regno];
5357 if ((regno >= FIRST_PSEUDO_REGISTER
5358 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5359 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5361 int reloadnum;
5363 /* If we can output the register afterwards, do so, this
5364 saves the extra update.
5365 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5366 CALL_INSN - and it does not set CC0.
5367 But don't do this if we cannot directly address the
5368 memory location, since this will make it harder to
5369 reuse address reloads, and increases register pressure.
5370 Also don't do this if we can probably update x directly. */
5371 rtx equiv = (GET_CODE (XEXP (x, 0)) == MEM
5372 ? XEXP (x, 0)
5373 : reg_equiv_mem[regno]);
5374 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5375 if (insn && GET_CODE (insn) == INSN && equiv
5376 && memory_operand (equiv, GET_MODE (equiv))
5377 #ifdef HAVE_cc0
5378 && ! sets_cc0_p (PATTERN (insn))
5379 #endif
5380 && ! (icode != CODE_FOR_nothing
5381 && ((*insn_data[icode].operand[0].predicate)
5382 (equiv, Pmode))
5383 && ((*insn_data[icode].operand[1].predicate)
5384 (equiv, Pmode))))
5386 /* We use the original pseudo for loc, so that
5387 emit_reload_insns() knows which pseudo this
5388 reload refers to and updates the pseudo rtx, not
5389 its equivalent memory location, as well as the
5390 corresponding entry in reg_last_reload_reg. */
5391 loc = &XEXP (x_orig, 0);
5392 x = XEXP (x, 0);
5393 reloadnum
5394 = push_reload (x, x, loc, loc,
5395 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5396 GET_MODE (x), GET_MODE (x), 0, 0,
5397 opnum, RELOAD_OTHER);
5399 else
5401 reloadnum
5402 = push_reload (x, NULL_RTX, loc, NULL_PTR,
5403 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5404 GET_MODE (x), GET_MODE (x), 0, 0,
5405 opnum, type);
5406 rld[reloadnum].inc
5407 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5409 value = 1;
5412 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5413 reloadnum);
5415 return value;
5418 else if (GET_CODE (XEXP (x, 0)) == MEM)
5420 /* This is probably the result of a substitution, by eliminate_regs,
5421 of an equivalent address for a pseudo that was not allocated to a
5422 hard register. Verify that the specified address is valid and
5423 reload it into a register. */
5424 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5425 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5426 register rtx link;
5427 int reloadnum;
5429 /* Since we know we are going to reload this item, don't decrement
5430 for the indirection level.
5432 Note that this is actually conservative: it would be slightly
5433 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5434 reload1.c here. */
5435 /* We can't use ADDR_TYPE (type) here, because we need to
5436 write back the value after reading it, hence we actually
5437 need two registers. */
5438 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5439 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5440 opnum, type, ind_levels, insn);
5442 reloadnum = push_reload (x, NULL_RTX, loc, NULL_PTR,
5443 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5444 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5445 rld[reloadnum].inc
5446 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5448 link = FIND_REG_INC_NOTE (this_insn, tem);
5449 if (link != 0)
5450 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5452 return 1;
5454 return 0;
5456 case MEM:
5457 /* This is probably the result of a substitution, by eliminate_regs, of
5458 an equivalent address for a pseudo that was not allocated to a hard
5459 register. Verify that the specified address is valid and reload it
5460 into a register.
5462 Since we know we are going to reload this item, don't decrement for
5463 the indirection level.
5465 Note that this is actually conservative: it would be slightly more
5466 efficient to use the value of SPILL_INDIRECT_LEVELS from
5467 reload1.c here. */
5469 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5470 opnum, ADDR_TYPE (type), ind_levels, insn);
5471 push_reload (*loc, NULL_RTX, loc, NULL_PTR,
5472 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5473 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5474 return 1;
5476 case REG:
5478 register int regno = REGNO (x);
5480 if (reg_equiv_constant[regno] != 0)
5482 find_reloads_address_part (reg_equiv_constant[regno], loc,
5483 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5484 GET_MODE (x), opnum, type, ind_levels);
5485 return 1;
5488 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5489 that feeds this insn. */
5490 if (reg_equiv_mem[regno] != 0)
5492 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, NULL_PTR,
5493 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5494 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5495 return 1;
5497 #endif
5499 if (reg_equiv_memory_loc[regno]
5500 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5502 rtx tem = make_memloc (x, regno);
5503 if (reg_equiv_address[regno] != 0
5504 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5506 x = tem;
5507 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5508 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5509 ind_levels, insn);
5513 if (reg_renumber[regno] >= 0)
5514 regno = reg_renumber[regno];
5516 if ((regno >= FIRST_PSEUDO_REGISTER
5517 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5518 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5520 push_reload (x, NULL_RTX, loc, NULL_PTR,
5521 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5522 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5523 return 1;
5526 /* If a register appearing in an address is the subject of a CLOBBER
5527 in this insn, reload it into some other register to be safe.
5528 The CLOBBER is supposed to make the register unavailable
5529 from before this insn to after it. */
5530 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5532 push_reload (x, NULL_RTX, loc, NULL_PTR,
5533 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5534 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5535 return 1;
5538 return 0;
5540 case SUBREG:
5541 if (GET_CODE (SUBREG_REG (x)) == REG)
5543 /* If this is a SUBREG of a hard register and the resulting register
5544 is of the wrong class, reload the whole SUBREG. This avoids
5545 needless copies if SUBREG_REG is multi-word. */
5546 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5548 int regno = subreg_regno (x);
5550 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5551 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5553 push_reload (x, NULL_RTX, loc, NULL_PTR,
5554 (context ? INDEX_REG_CLASS : BASE_REG_CLASS),
5555 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5556 return 1;
5559 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5560 is larger than the class size, then reload the whole SUBREG. */
5561 else
5563 enum reg_class class = (context ? INDEX_REG_CLASS
5564 : BASE_REG_CLASS);
5565 if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5566 > reg_class_size[class])
5568 x = find_reloads_subreg_address (x, 0, opnum, type,
5569 ind_levels, insn);
5570 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
5571 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5572 return 1;
5576 break;
5578 default:
5579 break;
5583 register const char *fmt = GET_RTX_FORMAT (code);
5584 register int i;
5586 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5588 if (fmt[i] == 'e')
5589 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5590 opnum, type, ind_levels, insn);
5594 return 0;
5597 /* X, which is found at *LOC, is a part of an address that needs to be
5598 reloaded into a register of class CLASS. If X is a constant, or if
5599 X is a PLUS that contains a constant, check that the constant is a
5600 legitimate operand and that we are supposed to be able to load
5601 it into the register.
5603 If not, force the constant into memory and reload the MEM instead.
5605 MODE is the mode to use, in case X is an integer constant.
5607 OPNUM and TYPE describe the purpose of any reloads made.
5609 IND_LEVELS says how many levels of indirect addressing this machine
5610 supports. */
5612 static void
5613 find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
5614 rtx x;
5615 rtx *loc;
5616 enum reg_class class;
5617 enum machine_mode mode;
5618 int opnum;
5619 enum reload_type type;
5620 int ind_levels;
5622 if (CONSTANT_P (x)
5623 && (! LEGITIMATE_CONSTANT_P (x)
5624 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5626 rtx tem;
5628 tem = x = force_const_mem (mode, x);
5629 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5630 opnum, type, ind_levels, 0);
5633 else if (GET_CODE (x) == PLUS
5634 && CONSTANT_P (XEXP (x, 1))
5635 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5636 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5638 rtx tem;
5640 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5641 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5642 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5643 opnum, type, ind_levels, 0);
5646 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
5647 mode, VOIDmode, 0, 0, opnum, type);
5650 /* X, a subreg of a pseudo, is a part of an address that needs to be
5651 reloaded.
5653 If the pseudo is equivalent to a memory location that cannot be directly
5654 addressed, make the necessary address reloads.
5656 If address reloads have been necessary, or if the address is changed
5657 by register elimination, return the rtx of the memory location;
5658 otherwise, return X.
5660 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5661 memory location.
5663 OPNUM and TYPE identify the purpose of the reload.
5665 IND_LEVELS says how many levels of indirect addressing are
5666 supported at this point in the address.
5668 INSN, if nonzero, is the insn in which we do the reload. It is used
5669 to determine where to put USEs for pseudos that we have to replace with
5670 stack slots. */
5672 static rtx
5673 find_reloads_subreg_address (x, force_replace, opnum, type,
5674 ind_levels, insn)
5675 rtx x;
5676 int force_replace;
5677 int opnum;
5678 enum reload_type type;
5679 int ind_levels;
5680 rtx insn;
5682 int regno = REGNO (SUBREG_REG (x));
5684 if (reg_equiv_memory_loc[regno])
5686 /* If the address is not directly addressable, or if the address is not
5687 offsettable, then it must be replaced. */
5688 if (! force_replace
5689 && (reg_equiv_address[regno]
5690 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5691 force_replace = 1;
5693 if (force_replace || num_not_at_initial_offset)
5695 rtx tem = make_memloc (SUBREG_REG (x), regno);
5697 /* If the address changes because of register elimination, then
5698 it must be replaced. */
5699 if (force_replace
5700 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5702 int offset = SUBREG_BYTE (x);
5703 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5704 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5706 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5707 PUT_MODE (tem, GET_MODE (x));
5709 /* If this was a paradoxical subreg that we replaced, the
5710 resulting memory must be sufficiently aligned to allow
5711 us to widen the mode of the memory. */
5712 if (outer_size > inner_size && STRICT_ALIGNMENT)
5714 rtx base;
5716 base = XEXP (tem, 0);
5717 if (GET_CODE (base) == PLUS)
5719 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5720 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5721 return x;
5722 base = XEXP (base, 0);
5724 if (GET_CODE (base) != REG
5725 || (REGNO_POINTER_ALIGN (REGNO (base))
5726 < outer_size * BITS_PER_UNIT))
5727 return x;
5730 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5731 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5732 ind_levels, insn);
5734 /* If this is not a toplevel operand, find_reloads doesn't see
5735 this substitution. We have to emit a USE of the pseudo so
5736 that delete_output_reload can see it. */
5737 if (replace_reloads && recog_data.operand[opnum] != x)
5738 emit_insn_before (gen_rtx_USE (VOIDmode, SUBREG_REG (x)), insn);
5739 x = tem;
5743 return x;
5746 /* Substitute into the current INSN the registers into which we have reloaded
5747 the things that need reloading. The array `replacements'
5748 contains the locations of all pointers that must be changed
5749 and says what to replace them with.
5751 Return the rtx that X translates into; usually X, but modified. */
5753 void
5754 subst_reloads (insn)
5755 rtx insn;
5757 register int i;
5759 for (i = 0; i < n_replacements; i++)
5761 register struct replacement *r = &replacements[i];
5762 register rtx reloadreg = rld[r->what].reg_rtx;
5763 if (reloadreg)
5765 /* If we're replacing a LABEL_REF with a register, add a
5766 REG_LABEL note to indicate to flow which label this
5767 register refers to. */
5768 if (GET_CODE (*r->where) == LABEL_REF
5769 && GET_CODE (insn) == JUMP_INSN)
5770 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL,
5771 XEXP (*r->where, 0),
5772 REG_NOTES (insn));
5774 /* Encapsulate RELOADREG so its machine mode matches what
5775 used to be there. Note that gen_lowpart_common will
5776 do the wrong thing if RELOADREG is multi-word. RELOADREG
5777 will always be a REG here. */
5778 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5779 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5781 /* If we are putting this into a SUBREG and RELOADREG is a
5782 SUBREG, we would be making nested SUBREGs, so we have to fix
5783 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5785 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5787 if (GET_MODE (*r->subreg_loc)
5788 == GET_MODE (SUBREG_REG (reloadreg)))
5789 *r->subreg_loc = SUBREG_REG (reloadreg);
5790 else
5792 int final_offset =
5793 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
5795 /* When working with SUBREGs the rule is that the byte
5796 offset must be a multiple of the SUBREG's mode. */
5797 final_offset = (final_offset /
5798 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5799 final_offset = (final_offset *
5800 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5802 *r->where = SUBREG_REG (reloadreg);
5803 SUBREG_BYTE (*r->subreg_loc) = final_offset;
5806 else
5807 *r->where = reloadreg;
5809 /* If reload got no reg and isn't optional, something's wrong. */
5810 else if (! rld[r->what].optional)
5811 abort ();
5815 /* Make a copy of any replacements being done into X and move those copies
5816 to locations in Y, a copy of X. We only look at the highest level of
5817 the RTL. */
5819 void
5820 copy_replacements (x, y)
5821 rtx x;
5822 rtx y;
5824 int i, j;
5825 enum rtx_code code = GET_CODE (x);
5826 const char *fmt = GET_RTX_FORMAT (code);
5827 struct replacement *r;
5829 /* We can't support X being a SUBREG because we might then need to know its
5830 location if something inside it was replaced. */
5831 if (code == SUBREG)
5832 abort ();
5834 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5835 if (fmt[i] == 'e')
5836 for (j = 0; j < n_replacements; j++)
5838 if (replacements[j].subreg_loc == &XEXP (x, i))
5840 r = &replacements[n_replacements++];
5841 r->where = replacements[j].where;
5842 r->subreg_loc = &XEXP (y, i);
5843 r->what = replacements[j].what;
5844 r->mode = replacements[j].mode;
5846 else if (replacements[j].where == &XEXP (x, i))
5848 r = &replacements[n_replacements++];
5849 r->where = &XEXP (y, i);
5850 r->subreg_loc = 0;
5851 r->what = replacements[j].what;
5852 r->mode = replacements[j].mode;
5857 /* Change any replacements being done to *X to be done to *Y */
5859 void
5860 move_replacements (x, y)
5861 rtx *x;
5862 rtx *y;
5864 int i;
5866 for (i = 0; i < n_replacements; i++)
5867 if (replacements[i].subreg_loc == x)
5868 replacements[i].subreg_loc = y;
5869 else if (replacements[i].where == x)
5871 replacements[i].where = y;
5872 replacements[i].subreg_loc = 0;
5876 /* If LOC was scheduled to be replaced by something, return the replacement.
5877 Otherwise, return *LOC. */
5880 find_replacement (loc)
5881 rtx *loc;
5883 struct replacement *r;
5885 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
5887 rtx reloadreg = rld[r->what].reg_rtx;
5889 if (reloadreg && r->where == loc)
5891 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
5892 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5894 return reloadreg;
5896 else if (reloadreg && r->subreg_loc == loc)
5898 /* RELOADREG must be either a REG or a SUBREG.
5900 ??? Is it actually still ever a SUBREG? If so, why? */
5902 if (GET_CODE (reloadreg) == REG)
5903 return gen_rtx_REG (GET_MODE (*loc),
5904 (REGNO (reloadreg) +
5905 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
5906 GET_MODE (SUBREG_REG (*loc)),
5907 SUBREG_BYTE (*loc),
5908 GET_MODE (*loc))));
5909 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
5910 return reloadreg;
5911 else
5913 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
5915 /* When working with SUBREGs the rule is that the byte
5916 offset must be a multiple of the SUBREG's mode. */
5917 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
5918 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
5919 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
5920 final_offset);
5925 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
5926 what's inside and make a new rtl if so. */
5927 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
5928 || GET_CODE (*loc) == MULT)
5930 rtx x = find_replacement (&XEXP (*loc, 0));
5931 rtx y = find_replacement (&XEXP (*loc, 1));
5933 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
5934 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
5937 return *loc;
5940 /* Return nonzero if register in range [REGNO, ENDREGNO)
5941 appears either explicitly or implicitly in X
5942 other than being stored into (except for earlyclobber operands).
5944 References contained within the substructure at LOC do not count.
5945 LOC may be zero, meaning don't ignore anything.
5947 This is similar to refers_to_regno_p in rtlanal.c except that we
5948 look at equivalences for pseudos that didn't get hard registers. */
5951 refers_to_regno_for_reload_p (regno, endregno, x, loc)
5952 unsigned int regno, endregno;
5953 rtx x;
5954 rtx *loc;
5956 int i;
5957 unsigned int r;
5958 RTX_CODE code;
5959 const char *fmt;
5961 if (x == 0)
5962 return 0;
5964 repeat:
5965 code = GET_CODE (x);
5967 switch (code)
5969 case REG:
5970 r = REGNO (x);
5972 /* If this is a pseudo, a hard register must not have been allocated.
5973 X must therefore either be a constant or be in memory. */
5974 if (r >= FIRST_PSEUDO_REGISTER)
5976 if (reg_equiv_memory_loc[r])
5977 return refers_to_regno_for_reload_p (regno, endregno,
5978 reg_equiv_memory_loc[r],
5979 NULL_PTR);
5981 if (reg_equiv_constant[r])
5982 return 0;
5984 abort ();
5987 return (endregno > r
5988 && regno < r + (r < FIRST_PSEUDO_REGISTER
5989 ? HARD_REGNO_NREGS (r, GET_MODE (x))
5990 : 1));
5992 case SUBREG:
5993 /* If this is a SUBREG of a hard reg, we can see exactly which
5994 registers are being modified. Otherwise, handle normally. */
5995 if (GET_CODE (SUBREG_REG (x)) == REG
5996 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5998 unsigned int inner_regno = subreg_regno (x);
5999 unsigned int inner_endregno
6000 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6001 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6003 return endregno > inner_regno && regno < inner_endregno;
6005 break;
6007 case CLOBBER:
6008 case SET:
6009 if (&SET_DEST (x) != loc
6010 /* Note setting a SUBREG counts as referring to the REG it is in for
6011 a pseudo but not for hard registers since we can
6012 treat each word individually. */
6013 && ((GET_CODE (SET_DEST (x)) == SUBREG
6014 && loc != &SUBREG_REG (SET_DEST (x))
6015 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
6016 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6017 && refers_to_regno_for_reload_p (regno, endregno,
6018 SUBREG_REG (SET_DEST (x)),
6019 loc))
6020 /* If the output is an earlyclobber operand, this is
6021 a conflict. */
6022 || ((GET_CODE (SET_DEST (x)) != REG
6023 || earlyclobber_operand_p (SET_DEST (x)))
6024 && refers_to_regno_for_reload_p (regno, endregno,
6025 SET_DEST (x), loc))))
6026 return 1;
6028 if (code == CLOBBER || loc == &SET_SRC (x))
6029 return 0;
6030 x = SET_SRC (x);
6031 goto repeat;
6033 default:
6034 break;
6037 /* X does not match, so try its subexpressions. */
6039 fmt = GET_RTX_FORMAT (code);
6040 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6042 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6044 if (i == 0)
6046 x = XEXP (x, 0);
6047 goto repeat;
6049 else
6050 if (refers_to_regno_for_reload_p (regno, endregno,
6051 XEXP (x, i), loc))
6052 return 1;
6054 else if (fmt[i] == 'E')
6056 register int j;
6057 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6058 if (loc != &XVECEXP (x, i, j)
6059 && refers_to_regno_for_reload_p (regno, endregno,
6060 XVECEXP (x, i, j), loc))
6061 return 1;
6064 return 0;
6067 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6068 we check if any register number in X conflicts with the relevant register
6069 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6070 contains a MEM (we don't bother checking for memory addresses that can't
6071 conflict because we expect this to be a rare case.
6073 This function is similar to reg_overlap_mention_p in rtlanal.c except
6074 that we look at equivalences for pseudos that didn't get hard registers. */
6077 reg_overlap_mentioned_for_reload_p (x, in)
6078 rtx x, in;
6080 int regno, endregno;
6082 /* Overly conservative. */
6083 if (GET_CODE (x) == STRICT_LOW_PART)
6084 x = XEXP (x, 0);
6086 /* If either argument is a constant, then modifying X can not affect IN. */
6087 if (CONSTANT_P (x) || CONSTANT_P (in))
6088 return 0;
6089 else if (GET_CODE (x) == SUBREG)
6091 regno = REGNO (SUBREG_REG (x));
6092 if (regno < FIRST_PSEUDO_REGISTER)
6093 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6094 GET_MODE (SUBREG_REG (x)),
6095 SUBREG_BYTE (x),
6096 GET_MODE (x));
6098 else if (GET_CODE (x) == REG)
6100 regno = REGNO (x);
6102 /* If this is a pseudo, it must not have been assigned a hard register.
6103 Therefore, it must either be in memory or be a constant. */
6105 if (regno >= FIRST_PSEUDO_REGISTER)
6107 if (reg_equiv_memory_loc[regno])
6108 return refers_to_mem_for_reload_p (in);
6109 else if (reg_equiv_constant[regno])
6110 return 0;
6111 abort ();
6114 else if (GET_CODE (x) == MEM)
6115 return refers_to_mem_for_reload_p (in);
6116 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6117 || GET_CODE (x) == CC0)
6118 return reg_mentioned_p (x, in);
6119 else
6120 abort ();
6122 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6123 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6125 return refers_to_regno_for_reload_p (regno, endregno, in, NULL_PTR);
6128 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6129 registers. */
6132 refers_to_mem_for_reload_p (x)
6133 rtx x;
6135 const char *fmt;
6136 int i;
6138 if (GET_CODE (x) == MEM)
6139 return 1;
6141 if (GET_CODE (x) == REG)
6142 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6143 && reg_equiv_memory_loc[REGNO (x)]);
6145 fmt = GET_RTX_FORMAT (GET_CODE (x));
6146 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6147 if (fmt[i] == 'e'
6148 && (GET_CODE (XEXP (x, i)) == MEM
6149 || refers_to_mem_for_reload_p (XEXP (x, i))))
6150 return 1;
6152 return 0;
6155 /* Check the insns before INSN to see if there is a suitable register
6156 containing the same value as GOAL.
6157 If OTHER is -1, look for a register in class CLASS.
6158 Otherwise, just see if register number OTHER shares GOAL's value.
6160 Return an rtx for the register found, or zero if none is found.
6162 If RELOAD_REG_P is (short *)1,
6163 we reject any hard reg that appears in reload_reg_rtx
6164 because such a hard reg is also needed coming into this insn.
6166 If RELOAD_REG_P is any other nonzero value,
6167 it is a vector indexed by hard reg number
6168 and we reject any hard reg whose element in the vector is nonnegative
6169 as well as any that appears in reload_reg_rtx.
6171 If GOAL is zero, then GOALREG is a register number; we look
6172 for an equivalent for that register.
6174 MODE is the machine mode of the value we want an equivalence for.
6175 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6177 This function is used by jump.c as well as in the reload pass.
6179 If GOAL is the sum of the stack pointer and a constant, we treat it
6180 as if it were a constant except that sp is required to be unchanging. */
6183 find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
6184 register rtx goal;
6185 rtx insn;
6186 enum reg_class class;
6187 register int other;
6188 short *reload_reg_p;
6189 int goalreg;
6190 enum machine_mode mode;
6192 register rtx p = insn;
6193 rtx goaltry, valtry, value, where;
6194 register rtx pat;
6195 register int regno = -1;
6196 int valueno;
6197 int goal_mem = 0;
6198 int goal_const = 0;
6199 int goal_mem_addr_varies = 0;
6200 int need_stable_sp = 0;
6201 int nregs;
6202 int valuenregs;
6204 if (goal == 0)
6205 regno = goalreg;
6206 else if (GET_CODE (goal) == REG)
6207 regno = REGNO (goal);
6208 else if (GET_CODE (goal) == MEM)
6210 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6211 if (MEM_VOLATILE_P (goal))
6212 return 0;
6213 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6214 return 0;
6215 /* An address with side effects must be reexecuted. */
6216 switch (code)
6218 case POST_INC:
6219 case PRE_INC:
6220 case POST_DEC:
6221 case PRE_DEC:
6222 case POST_MODIFY:
6223 case PRE_MODIFY:
6224 return 0;
6225 default:
6226 break;
6228 goal_mem = 1;
6230 else if (CONSTANT_P (goal))
6231 goal_const = 1;
6232 else if (GET_CODE (goal) == PLUS
6233 && XEXP (goal, 0) == stack_pointer_rtx
6234 && CONSTANT_P (XEXP (goal, 1)))
6235 goal_const = need_stable_sp = 1;
6236 else if (GET_CODE (goal) == PLUS
6237 && XEXP (goal, 0) == frame_pointer_rtx
6238 && CONSTANT_P (XEXP (goal, 1)))
6239 goal_const = 1;
6240 else
6241 return 0;
6243 /* Scan insns back from INSN, looking for one that copies
6244 a value into or out of GOAL.
6245 Stop and give up if we reach a label. */
6247 while (1)
6249 p = PREV_INSN (p);
6250 if (p == 0 || GET_CODE (p) == CODE_LABEL)
6251 return 0;
6253 if (GET_CODE (p) == INSN
6254 /* If we don't want spill regs ... */
6255 && (! (reload_reg_p != 0
6256 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6257 /* ... then ignore insns introduced by reload; they aren't
6258 useful and can cause results in reload_as_needed to be
6259 different from what they were when calculating the need for
6260 spills. If we notice an input-reload insn here, we will
6261 reject it below, but it might hide a usable equivalent.
6262 That makes bad code. It may even abort: perhaps no reg was
6263 spilled for this insn because it was assumed we would find
6264 that equivalent. */
6265 || INSN_UID (p) < reload_first_uid))
6267 rtx tem;
6268 pat = single_set (p);
6270 /* First check for something that sets some reg equal to GOAL. */
6271 if (pat != 0
6272 && ((regno >= 0
6273 && true_regnum (SET_SRC (pat)) == regno
6274 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6276 (regno >= 0
6277 && true_regnum (SET_DEST (pat)) == regno
6278 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6280 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6281 /* When looking for stack pointer + const,
6282 make sure we don't use a stack adjust. */
6283 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6284 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6285 || (goal_mem
6286 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6287 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6288 || (goal_mem
6289 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6290 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6291 /* If we are looking for a constant,
6292 and something equivalent to that constant was copied
6293 into a reg, we can use that reg. */
6294 || (goal_const && REG_NOTES (p) != 0
6295 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6296 && ((rtx_equal_p (XEXP (tem, 0), goal)
6297 && (valueno
6298 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6299 || (GET_CODE (SET_DEST (pat)) == REG
6300 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6301 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6302 == MODE_FLOAT)
6303 && GET_CODE (goal) == CONST_INT
6304 && 0 != (goaltry
6305 = operand_subword (XEXP (tem, 0), 0, 0,
6306 VOIDmode))
6307 && rtx_equal_p (goal, goaltry)
6308 && (valtry
6309 = operand_subword (SET_DEST (pat), 0, 0,
6310 VOIDmode))
6311 && (valueno = true_regnum (valtry)) >= 0)))
6312 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6313 NULL_RTX))
6314 && GET_CODE (SET_DEST (pat)) == REG
6315 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6316 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6317 == MODE_FLOAT)
6318 && GET_CODE (goal) == CONST_INT
6319 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6320 VOIDmode))
6321 && rtx_equal_p (goal, goaltry)
6322 && (valtry
6323 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6324 && (valueno = true_regnum (valtry)) >= 0)))
6326 if (other >= 0)
6328 if (valueno != other)
6329 continue;
6331 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6332 continue;
6333 else
6335 int i;
6337 for (i = HARD_REGNO_NREGS (valueno, mode) - 1; i >= 0; i--)
6338 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6339 valueno + i))
6340 break;
6341 if (i >= 0)
6342 continue;
6344 value = valtry;
6345 where = p;
6346 break;
6351 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6352 (or copying VALUE into GOAL, if GOAL is also a register).
6353 Now verify that VALUE is really valid. */
6355 /* VALUENO is the register number of VALUE; a hard register. */
6357 /* Don't try to re-use something that is killed in this insn. We want
6358 to be able to trust REG_UNUSED notes. */
6359 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6360 return 0;
6362 /* If we propose to get the value from the stack pointer or if GOAL is
6363 a MEM based on the stack pointer, we need a stable SP. */
6364 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6365 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6366 goal)))
6367 need_stable_sp = 1;
6369 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6370 if (GET_MODE (value) != mode)
6371 return 0;
6373 /* Reject VALUE if it was loaded from GOAL
6374 and is also a register that appears in the address of GOAL. */
6376 if (goal_mem && value == SET_DEST (single_set (where))
6377 && refers_to_regno_for_reload_p (valueno,
6378 (valueno
6379 + HARD_REGNO_NREGS (valueno, mode)),
6380 goal, NULL_PTR))
6381 return 0;
6383 /* Reject registers that overlap GOAL. */
6385 if (!goal_mem && !goal_const
6386 && regno + (int) HARD_REGNO_NREGS (regno, mode) > valueno
6387 && regno < valueno + (int) HARD_REGNO_NREGS (valueno, mode))
6388 return 0;
6390 nregs = HARD_REGNO_NREGS (regno, mode);
6391 valuenregs = HARD_REGNO_NREGS (valueno, mode);
6393 /* Reject VALUE if it is one of the regs reserved for reloads.
6394 Reload1 knows how to reuse them anyway, and it would get
6395 confused if we allocated one without its knowledge.
6396 (Now that insns introduced by reload are ignored above,
6397 this case shouldn't happen, but I'm not positive.) */
6399 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6401 int i;
6402 for (i = 0; i < valuenregs; ++i)
6403 if (reload_reg_p[valueno + i] >= 0)
6404 return 0;
6407 /* Reject VALUE if it is a register being used for an input reload
6408 even if it is not one of those reserved. */
6410 if (reload_reg_p != 0)
6412 int i;
6413 for (i = 0; i < n_reloads; i++)
6414 if (rld[i].reg_rtx != 0 && rld[i].in)
6416 int regno1 = REGNO (rld[i].reg_rtx);
6417 int nregs1 = HARD_REGNO_NREGS (regno1,
6418 GET_MODE (rld[i].reg_rtx));
6419 if (regno1 < valueno + valuenregs
6420 && regno1 + nregs1 > valueno)
6421 return 0;
6425 if (goal_mem)
6426 /* We must treat frame pointer as varying here,
6427 since it can vary--in a nonlocal goto as generated by expand_goto. */
6428 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6430 /* Now verify that the values of GOAL and VALUE remain unaltered
6431 until INSN is reached. */
6433 p = insn;
6434 while (1)
6436 p = PREV_INSN (p);
6437 if (p == where)
6438 return value;
6440 /* Don't trust the conversion past a function call
6441 if either of the two is in a call-clobbered register, or memory. */
6442 if (GET_CODE (p) == CALL_INSN)
6444 int i;
6446 if (goal_mem || need_stable_sp)
6447 return 0;
6449 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6450 for (i = 0; i < nregs; ++i)
6451 if (call_used_regs[regno + i])
6452 return 0;
6454 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6455 for (i = 0; i < valuenregs; ++i)
6456 if (call_used_regs[valueno + i])
6457 return 0;
6460 #ifdef NON_SAVING_SETJMP
6461 if (NON_SAVING_SETJMP && GET_CODE (p) == NOTE
6462 && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
6463 return 0;
6464 #endif
6466 if (INSN_P (p))
6468 pat = PATTERN (p);
6470 /* Watch out for unspec_volatile, and volatile asms. */
6471 if (volatile_insn_p (pat))
6472 return 0;
6474 /* If this insn P stores in either GOAL or VALUE, return 0.
6475 If GOAL is a memory ref and this insn writes memory, return 0.
6476 If GOAL is a memory ref and its address is not constant,
6477 and this insn P changes a register used in GOAL, return 0. */
6479 if (GET_CODE (pat) == COND_EXEC)
6480 pat = COND_EXEC_CODE (pat);
6481 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6483 register rtx dest = SET_DEST (pat);
6484 while (GET_CODE (dest) == SUBREG
6485 || GET_CODE (dest) == ZERO_EXTRACT
6486 || GET_CODE (dest) == SIGN_EXTRACT
6487 || GET_CODE (dest) == STRICT_LOW_PART)
6488 dest = XEXP (dest, 0);
6489 if (GET_CODE (dest) == REG)
6491 register int xregno = REGNO (dest);
6492 int xnregs;
6493 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6494 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6495 else
6496 xnregs = 1;
6497 if (xregno < regno + nregs && xregno + xnregs > regno)
6498 return 0;
6499 if (xregno < valueno + valuenregs
6500 && xregno + xnregs > valueno)
6501 return 0;
6502 if (goal_mem_addr_varies
6503 && reg_overlap_mentioned_for_reload_p (dest, goal))
6504 return 0;
6505 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6506 return 0;
6508 else if (goal_mem && GET_CODE (dest) == MEM
6509 && ! push_operand (dest, GET_MODE (dest)))
6510 return 0;
6511 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6512 && reg_equiv_memory_loc[regno] != 0)
6513 return 0;
6514 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6515 return 0;
6517 else if (GET_CODE (pat) == PARALLEL)
6519 register int i;
6520 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6522 register rtx v1 = XVECEXP (pat, 0, i);
6523 if (GET_CODE (v1) == COND_EXEC)
6524 v1 = COND_EXEC_CODE (v1);
6525 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6527 register rtx dest = SET_DEST (v1);
6528 while (GET_CODE (dest) == SUBREG
6529 || GET_CODE (dest) == ZERO_EXTRACT
6530 || GET_CODE (dest) == SIGN_EXTRACT
6531 || GET_CODE (dest) == STRICT_LOW_PART)
6532 dest = XEXP (dest, 0);
6533 if (GET_CODE (dest) == REG)
6535 register int xregno = REGNO (dest);
6536 int xnregs;
6537 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6538 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6539 else
6540 xnregs = 1;
6541 if (xregno < regno + nregs
6542 && xregno + xnregs > regno)
6543 return 0;
6544 if (xregno < valueno + valuenregs
6545 && xregno + xnregs > valueno)
6546 return 0;
6547 if (goal_mem_addr_varies
6548 && reg_overlap_mentioned_for_reload_p (dest,
6549 goal))
6550 return 0;
6551 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6552 return 0;
6554 else if (goal_mem && GET_CODE (dest) == MEM
6555 && ! push_operand (dest, GET_MODE (dest)))
6556 return 0;
6557 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6558 && reg_equiv_memory_loc[regno] != 0)
6559 return 0;
6560 else if (need_stable_sp
6561 && push_operand (dest, GET_MODE (dest)))
6562 return 0;
6567 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6569 rtx link;
6571 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6572 link = XEXP (link, 1))
6574 pat = XEXP (link, 0);
6575 if (GET_CODE (pat) == CLOBBER)
6577 register rtx dest = SET_DEST (pat);
6579 if (GET_CODE (dest) == REG)
6581 register int xregno = REGNO (dest);
6582 int xnregs
6583 = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6585 if (xregno < regno + nregs
6586 && xregno + xnregs > regno)
6587 return 0;
6588 else if (xregno < valueno + valuenregs
6589 && xregno + xnregs > valueno)
6590 return 0;
6591 else if (goal_mem_addr_varies
6592 && reg_overlap_mentioned_for_reload_p (dest,
6593 goal))
6594 return 0;
6597 else if (goal_mem && GET_CODE (dest) == MEM
6598 && ! push_operand (dest, GET_MODE (dest)))
6599 return 0;
6600 else if (need_stable_sp
6601 && push_operand (dest, GET_MODE (dest)))
6602 return 0;
6607 #ifdef AUTO_INC_DEC
6608 /* If this insn auto-increments or auto-decrements
6609 either regno or valueno, return 0 now.
6610 If GOAL is a memory ref and its address is not constant,
6611 and this insn P increments a register used in GOAL, return 0. */
6613 register rtx link;
6615 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6616 if (REG_NOTE_KIND (link) == REG_INC
6617 && GET_CODE (XEXP (link, 0)) == REG)
6619 register int incno = REGNO (XEXP (link, 0));
6620 if (incno < regno + nregs && incno >= regno)
6621 return 0;
6622 if (incno < valueno + valuenregs && incno >= valueno)
6623 return 0;
6624 if (goal_mem_addr_varies
6625 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6626 goal))
6627 return 0;
6630 #endif
6635 /* Find a place where INCED appears in an increment or decrement operator
6636 within X, and return the amount INCED is incremented or decremented by.
6637 The value is always positive. */
6639 static int
6640 find_inc_amount (x, inced)
6641 rtx x, inced;
6643 register enum rtx_code code = GET_CODE (x);
6644 register const char *fmt;
6645 register int i;
6647 if (code == MEM)
6649 register rtx addr = XEXP (x, 0);
6650 if ((GET_CODE (addr) == PRE_DEC
6651 || GET_CODE (addr) == POST_DEC
6652 || GET_CODE (addr) == PRE_INC
6653 || GET_CODE (addr) == POST_INC)
6654 && XEXP (addr, 0) == inced)
6655 return GET_MODE_SIZE (GET_MODE (x));
6656 else if ((GET_CODE (addr) == PRE_MODIFY
6657 || GET_CODE (addr) == POST_MODIFY)
6658 && GET_CODE (XEXP (addr, 1)) == PLUS
6659 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6660 && XEXP (addr, 0) == inced
6661 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6663 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6664 return i < 0 ? -i : i;
6668 fmt = GET_RTX_FORMAT (code);
6669 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6671 if (fmt[i] == 'e')
6673 register int tem = find_inc_amount (XEXP (x, i), inced);
6674 if (tem != 0)
6675 return tem;
6677 if (fmt[i] == 'E')
6679 register int j;
6680 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6682 register int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6683 if (tem != 0)
6684 return tem;
6689 return 0;
6692 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6693 If SETS is nonzero, also consider SETs. */
6696 regno_clobbered_p (regno, insn, mode, sets)
6697 unsigned int regno;
6698 rtx insn;
6699 enum machine_mode mode;
6700 int sets;
6702 int nregs = HARD_REGNO_NREGS (regno, mode);
6703 int endregno = regno + nregs;
6705 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6706 || (sets && GET_CODE (PATTERN (insn)) == SET))
6707 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6709 int test = REGNO (XEXP (PATTERN (insn), 0));
6711 return test >= regno && test < endregno;
6714 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6716 int i = XVECLEN (PATTERN (insn), 0) - 1;
6718 for (; i >= 0; i--)
6720 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6721 if ((GET_CODE (elt) == CLOBBER
6722 || (sets && GET_CODE (PATTERN (insn)) == SET))
6723 && GET_CODE (XEXP (elt, 0)) == REG)
6725 int test = REGNO (XEXP (elt, 0));
6727 if (test >= regno && test < endregno)
6728 return 1;
6733 return 0;
6736 static const char *reload_when_needed_name[] =
6738 "RELOAD_FOR_INPUT",
6739 "RELOAD_FOR_OUTPUT",
6740 "RELOAD_FOR_INSN",
6741 "RELOAD_FOR_INPUT_ADDRESS",
6742 "RELOAD_FOR_INPADDR_ADDRESS",
6743 "RELOAD_FOR_OUTPUT_ADDRESS",
6744 "RELOAD_FOR_OUTADDR_ADDRESS",
6745 "RELOAD_FOR_OPERAND_ADDRESS",
6746 "RELOAD_FOR_OPADDR_ADDR",
6747 "RELOAD_OTHER",
6748 "RELOAD_FOR_OTHER_ADDRESS"
6751 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6753 /* These functions are used to print the variables set by 'find_reloads' */
6755 void
6756 debug_reload_to_stream (f)
6757 FILE *f;
6759 int r;
6760 const char *prefix;
6762 if (! f)
6763 f = stderr;
6764 for (r = 0; r < n_reloads; r++)
6766 fprintf (f, "Reload %d: ", r);
6768 if (rld[r].in != 0)
6770 fprintf (f, "reload_in (%s) = ",
6771 GET_MODE_NAME (rld[r].inmode));
6772 print_inline_rtx (f, rld[r].in, 24);
6773 fprintf (f, "\n\t");
6776 if (rld[r].out != 0)
6778 fprintf (f, "reload_out (%s) = ",
6779 GET_MODE_NAME (rld[r].outmode));
6780 print_inline_rtx (f, rld[r].out, 24);
6781 fprintf (f, "\n\t");
6784 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
6786 fprintf (f, "%s (opnum = %d)",
6787 reload_when_needed_name[(int) rld[r].when_needed],
6788 rld[r].opnum);
6790 if (rld[r].optional)
6791 fprintf (f, ", optional");
6793 if (rld[r].nongroup)
6794 fprintf (f, ", nongroup");
6796 if (rld[r].inc != 0)
6797 fprintf (f, ", inc by %d", rld[r].inc);
6799 if (rld[r].nocombine)
6800 fprintf (f, ", can't combine");
6802 if (rld[r].secondary_p)
6803 fprintf (f, ", secondary_reload_p");
6805 if (rld[r].in_reg != 0)
6807 fprintf (f, "\n\treload_in_reg: ");
6808 print_inline_rtx (f, rld[r].in_reg, 24);
6811 if (rld[r].out_reg != 0)
6813 fprintf (f, "\n\treload_out_reg: ");
6814 print_inline_rtx (f, rld[r].out_reg, 24);
6817 if (rld[r].reg_rtx != 0)
6819 fprintf (f, "\n\treload_reg_rtx: ");
6820 print_inline_rtx (f, rld[r].reg_rtx, 24);
6823 prefix = "\n\t";
6824 if (rld[r].secondary_in_reload != -1)
6826 fprintf (f, "%ssecondary_in_reload = %d",
6827 prefix, rld[r].secondary_in_reload);
6828 prefix = ", ";
6831 if (rld[r].secondary_out_reload != -1)
6832 fprintf (f, "%ssecondary_out_reload = %d\n",
6833 prefix, rld[r].secondary_out_reload);
6835 prefix = "\n\t";
6836 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
6838 fprintf (f, "%ssecondary_in_icode = %s", prefix,
6839 insn_data[rld[r].secondary_in_icode].name);
6840 prefix = ", ";
6843 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
6844 fprintf (f, "%ssecondary_out_icode = %s", prefix,
6845 insn_data[rld[r].secondary_out_icode].name);
6847 fprintf (f, "\n");
6851 void
6852 debug_reload ()
6854 debug_reload_to_stream (stderr);