PR testsuite/66621
[official-gcc.git] / gcc / tree-ssa-dom.c
blob8cded4c78c1d439f2c4f7361a0c1d3acc005e43e
1 /* SSA Dominator optimizations for trees
2 Copyright (C) 2001-2015 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "alias.h"
26 #include "symtab.h"
27 #include "tree.h"
28 #include "fold-const.h"
29 #include "stor-layout.h"
30 #include "flags.h"
31 #include "tm_p.h"
32 #include "predict.h"
33 #include "hard-reg-set.h"
34 #include "function.h"
35 #include "dominance.h"
36 #include "cfg.h"
37 #include "cfganal.h"
38 #include "basic-block.h"
39 #include "cfgloop.h"
40 #include "gimple-pretty-print.h"
41 #include "tree-ssa-alias.h"
42 #include "internal-fn.h"
43 #include "gimple-fold.h"
44 #include "tree-eh.h"
45 #include "gimple-expr.h"
46 #include "gimple.h"
47 #include "gimple-iterator.h"
48 #include "gimple-ssa.h"
49 #include "tree-cfg.h"
50 #include "tree-phinodes.h"
51 #include "ssa-iterators.h"
52 #include "stringpool.h"
53 #include "tree-ssanames.h"
54 #include "tree-into-ssa.h"
55 #include "domwalk.h"
56 #include "tree-pass.h"
57 #include "tree-ssa-propagate.h"
58 #include "tree-ssa-threadupdate.h"
59 #include "langhooks.h"
60 #include "params.h"
61 #include "tree-ssa-scopedtables.h"
62 #include "tree-ssa-threadedge.h"
63 #include "tree-ssa-dom.h"
64 #include "gimplify.h"
65 #include "tree-cfgcleanup.h"
67 /* This file implements optimizations on the dominator tree. */
69 /* Representation of a "naked" right-hand-side expression, to be used
70 in recording available expressions in the expression hash table. */
72 enum expr_kind
74 EXPR_SINGLE,
75 EXPR_UNARY,
76 EXPR_BINARY,
77 EXPR_TERNARY,
78 EXPR_CALL,
79 EXPR_PHI
82 struct hashable_expr
84 tree type;
85 enum expr_kind kind;
86 union {
87 struct { tree rhs; } single;
88 struct { enum tree_code op; tree opnd; } unary;
89 struct { enum tree_code op; tree opnd0, opnd1; } binary;
90 struct { enum tree_code op; tree opnd0, opnd1, opnd2; } ternary;
91 struct { gcall *fn_from; bool pure; size_t nargs; tree *args; } call;
92 struct { size_t nargs; tree *args; } phi;
93 } ops;
96 /* Structure for recording known values of a conditional expression
97 at the exits from its block. */
99 typedef struct cond_equivalence_s
101 struct hashable_expr cond;
102 tree value;
103 } cond_equivalence;
106 /* Structure for recording edge equivalences as well as any pending
107 edge redirections during the dominator optimizer.
109 Computing and storing the edge equivalences instead of creating
110 them on-demand can save significant amounts of time, particularly
111 for pathological cases involving switch statements.
113 These structures live for a single iteration of the dominator
114 optimizer in the edge's AUX field. At the end of an iteration we
115 free each of these structures and update the AUX field to point
116 to any requested redirection target (the code for updating the
117 CFG and SSA graph for edge redirection expects redirection edge
118 targets to be in the AUX field for each edge. */
120 struct edge_info
122 /* If this edge creates a simple equivalence, the LHS and RHS of
123 the equivalence will be stored here. */
124 tree lhs;
125 tree rhs;
127 /* Traversing an edge may also indicate one or more particular conditions
128 are true or false. */
129 vec<cond_equivalence> cond_equivalences;
132 /* Stack of available expressions in AVAIL_EXPRs. Each block pushes any
133 expressions it enters into the hash table along with a marker entry
134 (null). When we finish processing the block, we pop off entries and
135 remove the expressions from the global hash table until we hit the
136 marker. */
137 typedef struct expr_hash_elt * expr_hash_elt_t;
139 static vec<std::pair<expr_hash_elt_t, expr_hash_elt_t> > avail_exprs_stack;
141 /* Structure for entries in the expression hash table. */
143 struct expr_hash_elt
145 /* The value (lhs) of this expression. */
146 tree lhs;
148 /* The expression (rhs) we want to record. */
149 struct hashable_expr expr;
151 /* The virtual operand associated with the nearest dominating stmt
152 loading from or storing to expr. */
153 tree vop;
155 /* The hash value for RHS. */
156 hashval_t hash;
158 /* A unique stamp, typically the address of the hash
159 element itself, used in removing entries from the table. */
160 struct expr_hash_elt *stamp;
163 /* Hashtable helpers. */
165 static bool hashable_expr_equal_p (const struct hashable_expr *,
166 const struct hashable_expr *);
167 static void free_expr_hash_elt (void *);
169 struct expr_elt_hasher
171 typedef expr_hash_elt *value_type;
172 typedef expr_hash_elt *compare_type;
173 static inline hashval_t hash (const value_type &);
174 static inline bool equal (const value_type &, const compare_type &);
175 static inline void remove (value_type &);
178 inline hashval_t
179 expr_elt_hasher::hash (const value_type &p)
181 return p->hash;
184 inline bool
185 expr_elt_hasher::equal (const value_type &p1, const compare_type &p2)
187 const struct hashable_expr *expr1 = &p1->expr;
188 const struct expr_hash_elt *stamp1 = p1->stamp;
189 const struct hashable_expr *expr2 = &p2->expr;
190 const struct expr_hash_elt *stamp2 = p2->stamp;
192 /* This case should apply only when removing entries from the table. */
193 if (stamp1 == stamp2)
194 return true;
196 if (p1->hash != p2->hash)
197 return false;
199 /* In case of a collision, both RHS have to be identical and have the
200 same VUSE operands. */
201 if (hashable_expr_equal_p (expr1, expr2)
202 && types_compatible_p (expr1->type, expr2->type))
203 return true;
205 return false;
208 /* Delete an expr_hash_elt and reclaim its storage. */
210 inline void
211 expr_elt_hasher::remove (value_type &element)
213 free_expr_hash_elt (element);
216 /* Hash table with expressions made available during the renaming process.
217 When an assignment of the form X_i = EXPR is found, the statement is
218 stored in this table. If the same expression EXPR is later found on the
219 RHS of another statement, it is replaced with X_i (thus performing
220 global redundancy elimination). Similarly as we pass through conditionals
221 we record the conditional itself as having either a true or false value
222 in this table. */
223 static hash_table<expr_elt_hasher> *avail_exprs;
225 /* Unwindable const/copy equivalences. */
226 static const_and_copies *const_and_copies;
228 /* Track whether or not we have changed the control flow graph. */
229 static bool cfg_altered;
231 /* Bitmap of blocks that have had EH statements cleaned. We should
232 remove their dead edges eventually. */
233 static bitmap need_eh_cleanup;
234 static vec<gimple> need_noreturn_fixup;
236 /* Statistics for dominator optimizations. */
237 struct opt_stats_d
239 long num_stmts;
240 long num_exprs_considered;
241 long num_re;
242 long num_const_prop;
243 long num_copy_prop;
246 static struct opt_stats_d opt_stats;
248 /* Local functions. */
249 static void optimize_stmt (basic_block, gimple_stmt_iterator);
250 static tree lookup_avail_expr (gimple, bool);
251 static hashval_t avail_expr_hash (const void *);
252 static void htab_statistics (FILE *,
253 const hash_table<expr_elt_hasher> &);
254 static void record_cond (cond_equivalence *);
255 static void record_equality (tree, tree);
256 static void record_equivalences_from_phis (basic_block);
257 static void record_equivalences_from_incoming_edge (basic_block);
258 static void eliminate_redundant_computations (gimple_stmt_iterator *);
259 static void record_equivalences_from_stmt (gimple, int);
260 static void remove_local_expressions_from_table (void);
261 static edge single_incoming_edge_ignoring_loop_edges (basic_block);
264 /* Given a statement STMT, initialize the hash table element pointed to
265 by ELEMENT. */
267 static void
268 initialize_hash_element (gimple stmt, tree lhs,
269 struct expr_hash_elt *element)
271 enum gimple_code code = gimple_code (stmt);
272 struct hashable_expr *expr = &element->expr;
274 if (code == GIMPLE_ASSIGN)
276 enum tree_code subcode = gimple_assign_rhs_code (stmt);
278 switch (get_gimple_rhs_class (subcode))
280 case GIMPLE_SINGLE_RHS:
281 expr->kind = EXPR_SINGLE;
282 expr->type = TREE_TYPE (gimple_assign_rhs1 (stmt));
283 expr->ops.single.rhs = gimple_assign_rhs1 (stmt);
284 break;
285 case GIMPLE_UNARY_RHS:
286 expr->kind = EXPR_UNARY;
287 expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
288 if (CONVERT_EXPR_CODE_P (subcode))
289 subcode = NOP_EXPR;
290 expr->ops.unary.op = subcode;
291 expr->ops.unary.opnd = gimple_assign_rhs1 (stmt);
292 break;
293 case GIMPLE_BINARY_RHS:
294 expr->kind = EXPR_BINARY;
295 expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
296 expr->ops.binary.op = subcode;
297 expr->ops.binary.opnd0 = gimple_assign_rhs1 (stmt);
298 expr->ops.binary.opnd1 = gimple_assign_rhs2 (stmt);
299 break;
300 case GIMPLE_TERNARY_RHS:
301 expr->kind = EXPR_TERNARY;
302 expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
303 expr->ops.ternary.op = subcode;
304 expr->ops.ternary.opnd0 = gimple_assign_rhs1 (stmt);
305 expr->ops.ternary.opnd1 = gimple_assign_rhs2 (stmt);
306 expr->ops.ternary.opnd2 = gimple_assign_rhs3 (stmt);
307 break;
308 default:
309 gcc_unreachable ();
312 else if (code == GIMPLE_COND)
314 expr->type = boolean_type_node;
315 expr->kind = EXPR_BINARY;
316 expr->ops.binary.op = gimple_cond_code (stmt);
317 expr->ops.binary.opnd0 = gimple_cond_lhs (stmt);
318 expr->ops.binary.opnd1 = gimple_cond_rhs (stmt);
320 else if (gcall *call_stmt = dyn_cast <gcall *> (stmt))
322 size_t nargs = gimple_call_num_args (call_stmt);
323 size_t i;
325 gcc_assert (gimple_call_lhs (call_stmt));
327 expr->type = TREE_TYPE (gimple_call_lhs (call_stmt));
328 expr->kind = EXPR_CALL;
329 expr->ops.call.fn_from = call_stmt;
331 if (gimple_call_flags (call_stmt) & (ECF_CONST | ECF_PURE))
332 expr->ops.call.pure = true;
333 else
334 expr->ops.call.pure = false;
336 expr->ops.call.nargs = nargs;
337 expr->ops.call.args = XCNEWVEC (tree, nargs);
338 for (i = 0; i < nargs; i++)
339 expr->ops.call.args[i] = gimple_call_arg (call_stmt, i);
341 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
343 expr->type = TREE_TYPE (gimple_switch_index (swtch_stmt));
344 expr->kind = EXPR_SINGLE;
345 expr->ops.single.rhs = gimple_switch_index (swtch_stmt);
347 else if (code == GIMPLE_GOTO)
349 expr->type = TREE_TYPE (gimple_goto_dest (stmt));
350 expr->kind = EXPR_SINGLE;
351 expr->ops.single.rhs = gimple_goto_dest (stmt);
353 else if (code == GIMPLE_PHI)
355 size_t nargs = gimple_phi_num_args (stmt);
356 size_t i;
358 expr->type = TREE_TYPE (gimple_phi_result (stmt));
359 expr->kind = EXPR_PHI;
360 expr->ops.phi.nargs = nargs;
361 expr->ops.phi.args = XCNEWVEC (tree, nargs);
363 for (i = 0; i < nargs; i++)
364 expr->ops.phi.args[i] = gimple_phi_arg_def (stmt, i);
366 else
367 gcc_unreachable ();
369 element->lhs = lhs;
370 element->vop = gimple_vuse (stmt);
371 element->hash = avail_expr_hash (element);
372 element->stamp = element;
375 /* Given a conditional expression COND as a tree, initialize
376 a hashable_expr expression EXPR. The conditional must be a
377 comparison or logical negation. A constant or a variable is
378 not permitted. */
380 static void
381 initialize_expr_from_cond (tree cond, struct hashable_expr *expr)
383 expr->type = boolean_type_node;
385 if (COMPARISON_CLASS_P (cond))
387 expr->kind = EXPR_BINARY;
388 expr->ops.binary.op = TREE_CODE (cond);
389 expr->ops.binary.opnd0 = TREE_OPERAND (cond, 0);
390 expr->ops.binary.opnd1 = TREE_OPERAND (cond, 1);
392 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
394 expr->kind = EXPR_UNARY;
395 expr->ops.unary.op = TRUTH_NOT_EXPR;
396 expr->ops.unary.opnd = TREE_OPERAND (cond, 0);
398 else
399 gcc_unreachable ();
402 /* Given a hashable_expr expression EXPR and an LHS,
403 initialize the hash table element pointed to by ELEMENT. */
405 static void
406 initialize_hash_element_from_expr (struct hashable_expr *expr,
407 tree lhs,
408 struct expr_hash_elt *element)
410 element->expr = *expr;
411 element->lhs = lhs;
412 element->vop = NULL_TREE;
413 element->hash = avail_expr_hash (element);
414 element->stamp = element;
417 /* Compare two hashable_expr structures for equivalence.
418 They are considered equivalent when the the expressions
419 they denote must necessarily be equal. The logic is intended
420 to follow that of operand_equal_p in fold-const.c */
422 static bool
423 hashable_expr_equal_p (const struct hashable_expr *expr0,
424 const struct hashable_expr *expr1)
426 tree type0 = expr0->type;
427 tree type1 = expr1->type;
429 /* If either type is NULL, there is nothing to check. */
430 if ((type0 == NULL_TREE) ^ (type1 == NULL_TREE))
431 return false;
433 /* If both types don't have the same signedness, precision, and mode,
434 then we can't consider them equal. */
435 if (type0 != type1
436 && (TREE_CODE (type0) == ERROR_MARK
437 || TREE_CODE (type1) == ERROR_MARK
438 || TYPE_UNSIGNED (type0) != TYPE_UNSIGNED (type1)
439 || TYPE_PRECISION (type0) != TYPE_PRECISION (type1)
440 || TYPE_MODE (type0) != TYPE_MODE (type1)))
441 return false;
443 if (expr0->kind != expr1->kind)
444 return false;
446 switch (expr0->kind)
448 case EXPR_SINGLE:
449 return operand_equal_p (expr0->ops.single.rhs,
450 expr1->ops.single.rhs, 0);
452 case EXPR_UNARY:
453 if (expr0->ops.unary.op != expr1->ops.unary.op)
454 return false;
456 if ((CONVERT_EXPR_CODE_P (expr0->ops.unary.op)
457 || expr0->ops.unary.op == NON_LVALUE_EXPR)
458 && TYPE_UNSIGNED (expr0->type) != TYPE_UNSIGNED (expr1->type))
459 return false;
461 return operand_equal_p (expr0->ops.unary.opnd,
462 expr1->ops.unary.opnd, 0);
464 case EXPR_BINARY:
465 if (expr0->ops.binary.op != expr1->ops.binary.op)
466 return false;
468 if (operand_equal_p (expr0->ops.binary.opnd0,
469 expr1->ops.binary.opnd0, 0)
470 && operand_equal_p (expr0->ops.binary.opnd1,
471 expr1->ops.binary.opnd1, 0))
472 return true;
474 /* For commutative ops, allow the other order. */
475 return (commutative_tree_code (expr0->ops.binary.op)
476 && operand_equal_p (expr0->ops.binary.opnd0,
477 expr1->ops.binary.opnd1, 0)
478 && operand_equal_p (expr0->ops.binary.opnd1,
479 expr1->ops.binary.opnd0, 0));
481 case EXPR_TERNARY:
482 if (expr0->ops.ternary.op != expr1->ops.ternary.op
483 || !operand_equal_p (expr0->ops.ternary.opnd2,
484 expr1->ops.ternary.opnd2, 0))
485 return false;
487 if (operand_equal_p (expr0->ops.ternary.opnd0,
488 expr1->ops.ternary.opnd0, 0)
489 && operand_equal_p (expr0->ops.ternary.opnd1,
490 expr1->ops.ternary.opnd1, 0))
491 return true;
493 /* For commutative ops, allow the other order. */
494 return (commutative_ternary_tree_code (expr0->ops.ternary.op)
495 && operand_equal_p (expr0->ops.ternary.opnd0,
496 expr1->ops.ternary.opnd1, 0)
497 && operand_equal_p (expr0->ops.ternary.opnd1,
498 expr1->ops.ternary.opnd0, 0));
500 case EXPR_CALL:
502 size_t i;
504 /* If the calls are to different functions, then they
505 clearly cannot be equal. */
506 if (!gimple_call_same_target_p (expr0->ops.call.fn_from,
507 expr1->ops.call.fn_from))
508 return false;
510 if (! expr0->ops.call.pure)
511 return false;
513 if (expr0->ops.call.nargs != expr1->ops.call.nargs)
514 return false;
516 for (i = 0; i < expr0->ops.call.nargs; i++)
517 if (! operand_equal_p (expr0->ops.call.args[i],
518 expr1->ops.call.args[i], 0))
519 return false;
521 if (stmt_could_throw_p (expr0->ops.call.fn_from))
523 int lp0 = lookup_stmt_eh_lp (expr0->ops.call.fn_from);
524 int lp1 = lookup_stmt_eh_lp (expr1->ops.call.fn_from);
525 if ((lp0 > 0 || lp1 > 0) && lp0 != lp1)
526 return false;
529 return true;
532 case EXPR_PHI:
534 size_t i;
536 if (expr0->ops.phi.nargs != expr1->ops.phi.nargs)
537 return false;
539 for (i = 0; i < expr0->ops.phi.nargs; i++)
540 if (! operand_equal_p (expr0->ops.phi.args[i],
541 expr1->ops.phi.args[i], 0))
542 return false;
544 return true;
547 default:
548 gcc_unreachable ();
552 /* Generate a hash value for a pair of expressions. This can be used
553 iteratively by passing a previous result in HSTATE.
555 The same hash value is always returned for a given pair of expressions,
556 regardless of the order in which they are presented. This is useful in
557 hashing the operands of commutative functions. */
559 namespace inchash
562 static void
563 add_expr_commutative (const_tree t1, const_tree t2, hash &hstate)
565 hash one, two;
567 inchash::add_expr (t1, one);
568 inchash::add_expr (t2, two);
569 hstate.add_commutative (one, two);
572 /* Compute a hash value for a hashable_expr value EXPR and a
573 previously accumulated hash value VAL. If two hashable_expr
574 values compare equal with hashable_expr_equal_p, they must
575 hash to the same value, given an identical value of VAL.
576 The logic is intended to follow inchash::add_expr in tree.c. */
578 static void
579 add_hashable_expr (const struct hashable_expr *expr, hash &hstate)
581 switch (expr->kind)
583 case EXPR_SINGLE:
584 inchash::add_expr (expr->ops.single.rhs, hstate);
585 break;
587 case EXPR_UNARY:
588 hstate.add_object (expr->ops.unary.op);
590 /* Make sure to include signedness in the hash computation.
591 Don't hash the type, that can lead to having nodes which
592 compare equal according to operand_equal_p, but which
593 have different hash codes. */
594 if (CONVERT_EXPR_CODE_P (expr->ops.unary.op)
595 || expr->ops.unary.op == NON_LVALUE_EXPR)
596 hstate.add_int (TYPE_UNSIGNED (expr->type));
598 inchash::add_expr (expr->ops.unary.opnd, hstate);
599 break;
601 case EXPR_BINARY:
602 hstate.add_object (expr->ops.binary.op);
603 if (commutative_tree_code (expr->ops.binary.op))
604 inchash::add_expr_commutative (expr->ops.binary.opnd0,
605 expr->ops.binary.opnd1, hstate);
606 else
608 inchash::add_expr (expr->ops.binary.opnd0, hstate);
609 inchash::add_expr (expr->ops.binary.opnd1, hstate);
611 break;
613 case EXPR_TERNARY:
614 hstate.add_object (expr->ops.ternary.op);
615 if (commutative_ternary_tree_code (expr->ops.ternary.op))
616 inchash::add_expr_commutative (expr->ops.ternary.opnd0,
617 expr->ops.ternary.opnd1, hstate);
618 else
620 inchash::add_expr (expr->ops.ternary.opnd0, hstate);
621 inchash::add_expr (expr->ops.ternary.opnd1, hstate);
623 inchash::add_expr (expr->ops.ternary.opnd2, hstate);
624 break;
626 case EXPR_CALL:
628 size_t i;
629 enum tree_code code = CALL_EXPR;
630 gcall *fn_from;
632 hstate.add_object (code);
633 fn_from = expr->ops.call.fn_from;
634 if (gimple_call_internal_p (fn_from))
635 hstate.merge_hash ((hashval_t) gimple_call_internal_fn (fn_from));
636 else
637 inchash::add_expr (gimple_call_fn (fn_from), hstate);
638 for (i = 0; i < expr->ops.call.nargs; i++)
639 inchash::add_expr (expr->ops.call.args[i], hstate);
641 break;
643 case EXPR_PHI:
645 size_t i;
647 for (i = 0; i < expr->ops.phi.nargs; i++)
648 inchash::add_expr (expr->ops.phi.args[i], hstate);
650 break;
652 default:
653 gcc_unreachable ();
659 /* Print a diagnostic dump of an expression hash table entry. */
661 static void
662 print_expr_hash_elt (FILE * stream, const struct expr_hash_elt *element)
664 fprintf (stream, "STMT ");
666 if (element->lhs)
668 print_generic_expr (stream, element->lhs, 0);
669 fprintf (stream, " = ");
672 switch (element->expr.kind)
674 case EXPR_SINGLE:
675 print_generic_expr (stream, element->expr.ops.single.rhs, 0);
676 break;
678 case EXPR_UNARY:
679 fprintf (stream, "%s ", get_tree_code_name (element->expr.ops.unary.op));
680 print_generic_expr (stream, element->expr.ops.unary.opnd, 0);
681 break;
683 case EXPR_BINARY:
684 print_generic_expr (stream, element->expr.ops.binary.opnd0, 0);
685 fprintf (stream, " %s ", get_tree_code_name (element->expr.ops.binary.op));
686 print_generic_expr (stream, element->expr.ops.binary.opnd1, 0);
687 break;
689 case EXPR_TERNARY:
690 fprintf (stream, " %s <", get_tree_code_name (element->expr.ops.ternary.op));
691 print_generic_expr (stream, element->expr.ops.ternary.opnd0, 0);
692 fputs (", ", stream);
693 print_generic_expr (stream, element->expr.ops.ternary.opnd1, 0);
694 fputs (", ", stream);
695 print_generic_expr (stream, element->expr.ops.ternary.opnd2, 0);
696 fputs (">", stream);
697 break;
699 case EXPR_CALL:
701 size_t i;
702 size_t nargs = element->expr.ops.call.nargs;
703 gcall *fn_from;
705 fn_from = element->expr.ops.call.fn_from;
706 if (gimple_call_internal_p (fn_from))
707 fputs (internal_fn_name (gimple_call_internal_fn (fn_from)),
708 stream);
709 else
710 print_generic_expr (stream, gimple_call_fn (fn_from), 0);
711 fprintf (stream, " (");
712 for (i = 0; i < nargs; i++)
714 print_generic_expr (stream, element->expr.ops.call.args[i], 0);
715 if (i + 1 < nargs)
716 fprintf (stream, ", ");
718 fprintf (stream, ")");
720 break;
722 case EXPR_PHI:
724 size_t i;
725 size_t nargs = element->expr.ops.phi.nargs;
727 fprintf (stream, "PHI <");
728 for (i = 0; i < nargs; i++)
730 print_generic_expr (stream, element->expr.ops.phi.args[i], 0);
731 if (i + 1 < nargs)
732 fprintf (stream, ", ");
734 fprintf (stream, ">");
736 break;
739 if (element->vop)
741 fprintf (stream, " with ");
742 print_generic_expr (stream, element->vop, 0);
745 fprintf (stream, "\n");
748 /* Delete variable sized pieces of the expr_hash_elt ELEMENT. */
750 static void
751 free_expr_hash_elt_contents (struct expr_hash_elt *element)
753 if (element->expr.kind == EXPR_CALL)
754 free (element->expr.ops.call.args);
755 else if (element->expr.kind == EXPR_PHI)
756 free (element->expr.ops.phi.args);
759 /* Delete an expr_hash_elt and reclaim its storage. */
761 static void
762 free_expr_hash_elt (void *elt)
764 struct expr_hash_elt *element = ((struct expr_hash_elt *)elt);
765 free_expr_hash_elt_contents (element);
766 free (element);
769 /* Allocate an EDGE_INFO for edge E and attach it to E.
770 Return the new EDGE_INFO structure. */
772 static struct edge_info *
773 allocate_edge_info (edge e)
775 struct edge_info *edge_info;
777 edge_info = XCNEW (struct edge_info);
779 e->aux = edge_info;
780 return edge_info;
783 /* Free all EDGE_INFO structures associated with edges in the CFG.
784 If a particular edge can be threaded, copy the redirection
785 target from the EDGE_INFO structure into the edge's AUX field
786 as required by code to update the CFG and SSA graph for
787 jump threading. */
789 static void
790 free_all_edge_infos (void)
792 basic_block bb;
793 edge_iterator ei;
794 edge e;
796 FOR_EACH_BB_FN (bb, cfun)
798 FOR_EACH_EDGE (e, ei, bb->preds)
800 struct edge_info *edge_info = (struct edge_info *) e->aux;
802 if (edge_info)
804 edge_info->cond_equivalences.release ();
805 free (edge_info);
806 e->aux = NULL;
812 /* Build a cond_equivalence record indicating that the comparison
813 CODE holds between operands OP0 and OP1 and push it to **P. */
815 static void
816 build_and_record_new_cond (enum tree_code code,
817 tree op0, tree op1,
818 vec<cond_equivalence> *p)
820 cond_equivalence c;
821 struct hashable_expr *cond = &c.cond;
823 gcc_assert (TREE_CODE_CLASS (code) == tcc_comparison);
825 cond->type = boolean_type_node;
826 cond->kind = EXPR_BINARY;
827 cond->ops.binary.op = code;
828 cond->ops.binary.opnd0 = op0;
829 cond->ops.binary.opnd1 = op1;
831 c.value = boolean_true_node;
832 p->safe_push (c);
835 /* Record that COND is true and INVERTED is false into the edge information
836 structure. Also record that any conditions dominated by COND are true
837 as well.
839 For example, if a < b is true, then a <= b must also be true. */
841 static void
842 record_conditions (struct edge_info *edge_info, tree cond, tree inverted)
844 tree op0, op1;
845 cond_equivalence c;
847 if (!COMPARISON_CLASS_P (cond))
848 return;
850 op0 = TREE_OPERAND (cond, 0);
851 op1 = TREE_OPERAND (cond, 1);
853 switch (TREE_CODE (cond))
855 case LT_EXPR:
856 case GT_EXPR:
857 if (FLOAT_TYPE_P (TREE_TYPE (op0)))
859 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
860 &edge_info->cond_equivalences);
861 build_and_record_new_cond (LTGT_EXPR, op0, op1,
862 &edge_info->cond_equivalences);
865 build_and_record_new_cond ((TREE_CODE (cond) == LT_EXPR
866 ? LE_EXPR : GE_EXPR),
867 op0, op1, &edge_info->cond_equivalences);
868 build_and_record_new_cond (NE_EXPR, op0, op1,
869 &edge_info->cond_equivalences);
870 break;
872 case GE_EXPR:
873 case LE_EXPR:
874 if (FLOAT_TYPE_P (TREE_TYPE (op0)))
876 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
877 &edge_info->cond_equivalences);
879 break;
881 case EQ_EXPR:
882 if (FLOAT_TYPE_P (TREE_TYPE (op0)))
884 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
885 &edge_info->cond_equivalences);
887 build_and_record_new_cond (LE_EXPR, op0, op1,
888 &edge_info->cond_equivalences);
889 build_and_record_new_cond (GE_EXPR, op0, op1,
890 &edge_info->cond_equivalences);
891 break;
893 case UNORDERED_EXPR:
894 build_and_record_new_cond (NE_EXPR, op0, op1,
895 &edge_info->cond_equivalences);
896 build_and_record_new_cond (UNLE_EXPR, op0, op1,
897 &edge_info->cond_equivalences);
898 build_and_record_new_cond (UNGE_EXPR, op0, op1,
899 &edge_info->cond_equivalences);
900 build_and_record_new_cond (UNEQ_EXPR, op0, op1,
901 &edge_info->cond_equivalences);
902 build_and_record_new_cond (UNLT_EXPR, op0, op1,
903 &edge_info->cond_equivalences);
904 build_and_record_new_cond (UNGT_EXPR, op0, op1,
905 &edge_info->cond_equivalences);
906 break;
908 case UNLT_EXPR:
909 case UNGT_EXPR:
910 build_and_record_new_cond ((TREE_CODE (cond) == UNLT_EXPR
911 ? UNLE_EXPR : UNGE_EXPR),
912 op0, op1, &edge_info->cond_equivalences);
913 build_and_record_new_cond (NE_EXPR, op0, op1,
914 &edge_info->cond_equivalences);
915 break;
917 case UNEQ_EXPR:
918 build_and_record_new_cond (UNLE_EXPR, op0, op1,
919 &edge_info->cond_equivalences);
920 build_and_record_new_cond (UNGE_EXPR, op0, op1,
921 &edge_info->cond_equivalences);
922 break;
924 case LTGT_EXPR:
925 build_and_record_new_cond (NE_EXPR, op0, op1,
926 &edge_info->cond_equivalences);
927 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
928 &edge_info->cond_equivalences);
929 break;
931 default:
932 break;
935 /* Now store the original true and false conditions into the first
936 two slots. */
937 initialize_expr_from_cond (cond, &c.cond);
938 c.value = boolean_true_node;
939 edge_info->cond_equivalences.safe_push (c);
941 /* It is possible for INVERTED to be the negation of a comparison,
942 and not a valid RHS or GIMPLE_COND condition. This happens because
943 invert_truthvalue may return such an expression when asked to invert
944 a floating-point comparison. These comparisons are not assumed to
945 obey the trichotomy law. */
946 initialize_expr_from_cond (inverted, &c.cond);
947 c.value = boolean_false_node;
948 edge_info->cond_equivalences.safe_push (c);
951 /* We have finished optimizing BB, record any information implied by
952 taking a specific outgoing edge from BB. */
954 static void
955 record_edge_info (basic_block bb)
957 gimple_stmt_iterator gsi = gsi_last_bb (bb);
958 struct edge_info *edge_info;
960 if (! gsi_end_p (gsi))
962 gimple stmt = gsi_stmt (gsi);
963 location_t loc = gimple_location (stmt);
965 if (gimple_code (stmt) == GIMPLE_SWITCH)
967 gswitch *switch_stmt = as_a <gswitch *> (stmt);
968 tree index = gimple_switch_index (switch_stmt);
970 if (TREE_CODE (index) == SSA_NAME)
972 int i;
973 int n_labels = gimple_switch_num_labels (switch_stmt);
974 tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun));
975 edge e;
976 edge_iterator ei;
978 for (i = 0; i < n_labels; i++)
980 tree label = gimple_switch_label (switch_stmt, i);
981 basic_block target_bb = label_to_block (CASE_LABEL (label));
982 if (CASE_HIGH (label)
983 || !CASE_LOW (label)
984 || info[target_bb->index])
985 info[target_bb->index] = error_mark_node;
986 else
987 info[target_bb->index] = label;
990 FOR_EACH_EDGE (e, ei, bb->succs)
992 basic_block target_bb = e->dest;
993 tree label = info[target_bb->index];
995 if (label != NULL && label != error_mark_node)
997 tree x = fold_convert_loc (loc, TREE_TYPE (index),
998 CASE_LOW (label));
999 edge_info = allocate_edge_info (e);
1000 edge_info->lhs = index;
1001 edge_info->rhs = x;
1004 free (info);
1008 /* A COND_EXPR may create equivalences too. */
1009 if (gimple_code (stmt) == GIMPLE_COND)
1011 edge true_edge;
1012 edge false_edge;
1014 tree op0 = gimple_cond_lhs (stmt);
1015 tree op1 = gimple_cond_rhs (stmt);
1016 enum tree_code code = gimple_cond_code (stmt);
1018 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1020 /* Special case comparing booleans against a constant as we
1021 know the value of OP0 on both arms of the branch. i.e., we
1022 can record an equivalence for OP0 rather than COND. */
1023 if ((code == EQ_EXPR || code == NE_EXPR)
1024 && TREE_CODE (op0) == SSA_NAME
1025 && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
1026 && is_gimple_min_invariant (op1))
1028 if (code == EQ_EXPR)
1030 edge_info = allocate_edge_info (true_edge);
1031 edge_info->lhs = op0;
1032 edge_info->rhs = (integer_zerop (op1)
1033 ? boolean_false_node
1034 : boolean_true_node);
1036 edge_info = allocate_edge_info (false_edge);
1037 edge_info->lhs = op0;
1038 edge_info->rhs = (integer_zerop (op1)
1039 ? boolean_true_node
1040 : boolean_false_node);
1042 else
1044 edge_info = allocate_edge_info (true_edge);
1045 edge_info->lhs = op0;
1046 edge_info->rhs = (integer_zerop (op1)
1047 ? boolean_true_node
1048 : boolean_false_node);
1050 edge_info = allocate_edge_info (false_edge);
1051 edge_info->lhs = op0;
1052 edge_info->rhs = (integer_zerop (op1)
1053 ? boolean_false_node
1054 : boolean_true_node);
1057 else if (is_gimple_min_invariant (op0)
1058 && (TREE_CODE (op1) == SSA_NAME
1059 || is_gimple_min_invariant (op1)))
1061 tree cond = build2 (code, boolean_type_node, op0, op1);
1062 tree inverted = invert_truthvalue_loc (loc, cond);
1063 bool can_infer_simple_equiv
1064 = !(HONOR_SIGNED_ZEROS (op0)
1065 && real_zerop (op0));
1066 struct edge_info *edge_info;
1068 edge_info = allocate_edge_info (true_edge);
1069 record_conditions (edge_info, cond, inverted);
1071 if (can_infer_simple_equiv && code == EQ_EXPR)
1073 edge_info->lhs = op1;
1074 edge_info->rhs = op0;
1077 edge_info = allocate_edge_info (false_edge);
1078 record_conditions (edge_info, inverted, cond);
1080 if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
1082 edge_info->lhs = op1;
1083 edge_info->rhs = op0;
1087 else if (TREE_CODE (op0) == SSA_NAME
1088 && (TREE_CODE (op1) == SSA_NAME
1089 || is_gimple_min_invariant (op1)))
1091 tree cond = build2 (code, boolean_type_node, op0, op1);
1092 tree inverted = invert_truthvalue_loc (loc, cond);
1093 bool can_infer_simple_equiv
1094 = !(HONOR_SIGNED_ZEROS (op1)
1095 && (TREE_CODE (op1) == SSA_NAME || real_zerop (op1)));
1096 struct edge_info *edge_info;
1098 edge_info = allocate_edge_info (true_edge);
1099 record_conditions (edge_info, cond, inverted);
1101 if (can_infer_simple_equiv && code == EQ_EXPR)
1103 edge_info->lhs = op0;
1104 edge_info->rhs = op1;
1107 edge_info = allocate_edge_info (false_edge);
1108 record_conditions (edge_info, inverted, cond);
1110 if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
1112 edge_info->lhs = op0;
1113 edge_info->rhs = op1;
1118 /* ??? TRUTH_NOT_EXPR can create an equivalence too. */
1123 class dom_opt_dom_walker : public dom_walker
1125 public:
1126 dom_opt_dom_walker (cdi_direction direction)
1127 : dom_walker (direction), m_dummy_cond (NULL) {}
1129 virtual void before_dom_children (basic_block);
1130 virtual void after_dom_children (basic_block);
1132 private:
1133 void thread_across_edge (edge);
1135 gcond *m_dummy_cond;
1138 /* Jump threading, redundancy elimination and const/copy propagation.
1140 This pass may expose new symbols that need to be renamed into SSA. For
1141 every new symbol exposed, its corresponding bit will be set in
1142 VARS_TO_RENAME. */
1144 namespace {
1146 const pass_data pass_data_dominator =
1148 GIMPLE_PASS, /* type */
1149 "dom", /* name */
1150 OPTGROUP_NONE, /* optinfo_flags */
1151 TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */
1152 ( PROP_cfg | PROP_ssa ), /* properties_required */
1153 0, /* properties_provided */
1154 0, /* properties_destroyed */
1155 0, /* todo_flags_start */
1156 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
1159 class pass_dominator : public gimple_opt_pass
1161 public:
1162 pass_dominator (gcc::context *ctxt)
1163 : gimple_opt_pass (pass_data_dominator, ctxt)
1166 /* opt_pass methods: */
1167 opt_pass * clone () { return new pass_dominator (m_ctxt); }
1168 virtual bool gate (function *) { return flag_tree_dom != 0; }
1169 virtual unsigned int execute (function *);
1171 }; // class pass_dominator
1173 unsigned int
1174 pass_dominator::execute (function *fun)
1176 memset (&opt_stats, 0, sizeof (opt_stats));
1178 /* Create our hash tables. */
1179 avail_exprs = new hash_table<expr_elt_hasher> (1024);
1180 avail_exprs_stack.create (20);
1181 const_and_copies = new class const_and_copies (dump_file, dump_flags);
1182 need_eh_cleanup = BITMAP_ALLOC (NULL);
1183 need_noreturn_fixup.create (0);
1185 calculate_dominance_info (CDI_DOMINATORS);
1186 cfg_altered = false;
1188 /* We need to know loop structures in order to avoid destroying them
1189 in jump threading. Note that we still can e.g. thread through loop
1190 headers to an exit edge, or through loop header to the loop body, assuming
1191 that we update the loop info.
1193 TODO: We don't need to set LOOPS_HAVE_PREHEADERS generally, but due
1194 to several overly conservative bail-outs in jump threading, case
1195 gcc.dg/tree-ssa/pr21417.c can't be threaded if loop preheader is
1196 missing. We should improve jump threading in future then
1197 LOOPS_HAVE_PREHEADERS won't be needed here. */
1198 loop_optimizer_init (LOOPS_HAVE_PREHEADERS | LOOPS_HAVE_SIMPLE_LATCHES);
1200 /* Initialize the value-handle array. */
1201 threadedge_initialize_values ();
1203 /* We need accurate information regarding back edges in the CFG
1204 for jump threading; this may include back edges that are not part of
1205 a single loop. */
1206 mark_dfs_back_edges ();
1208 /* Recursively walk the dominator tree optimizing statements. */
1209 dom_opt_dom_walker (CDI_DOMINATORS).walk (fun->cfg->x_entry_block_ptr);
1212 gimple_stmt_iterator gsi;
1213 basic_block bb;
1214 FOR_EACH_BB_FN (bb, fun)
1216 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1217 update_stmt_if_modified (gsi_stmt (gsi));
1221 /* If we exposed any new variables, go ahead and put them into
1222 SSA form now, before we handle jump threading. This simplifies
1223 interactions between rewriting of _DECL nodes into SSA form
1224 and rewriting SSA_NAME nodes into SSA form after block
1225 duplication and CFG manipulation. */
1226 update_ssa (TODO_update_ssa);
1228 free_all_edge_infos ();
1230 /* Thread jumps, creating duplicate blocks as needed. */
1231 cfg_altered |= thread_through_all_blocks (first_pass_instance);
1233 if (cfg_altered)
1234 free_dominance_info (CDI_DOMINATORS);
1236 /* Removal of statements may make some EH edges dead. Purge
1237 such edges from the CFG as needed. */
1238 if (!bitmap_empty_p (need_eh_cleanup))
1240 unsigned i;
1241 bitmap_iterator bi;
1243 /* Jump threading may have created forwarder blocks from blocks
1244 needing EH cleanup; the new successor of these blocks, which
1245 has inherited from the original block, needs the cleanup.
1246 Don't clear bits in the bitmap, as that can break the bitmap
1247 iterator. */
1248 EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup, 0, i, bi)
1250 basic_block bb = BASIC_BLOCK_FOR_FN (fun, i);
1251 if (bb == NULL)
1252 continue;
1253 while (single_succ_p (bb)
1254 && (single_succ_edge (bb)->flags & EDGE_EH) == 0)
1255 bb = single_succ (bb);
1256 if (bb == EXIT_BLOCK_PTR_FOR_FN (fun))
1257 continue;
1258 if ((unsigned) bb->index != i)
1259 bitmap_set_bit (need_eh_cleanup, bb->index);
1262 gimple_purge_all_dead_eh_edges (need_eh_cleanup);
1263 bitmap_clear (need_eh_cleanup);
1266 /* Fixup stmts that became noreturn calls. This may require splitting
1267 blocks and thus isn't possible during the dominator walk or before
1268 jump threading finished. Do this in reverse order so we don't
1269 inadvertedly remove a stmt we want to fixup by visiting a dominating
1270 now noreturn call first. */
1271 while (!need_noreturn_fixup.is_empty ())
1273 gimple stmt = need_noreturn_fixup.pop ();
1274 if (dump_file && dump_flags & TDF_DETAILS)
1276 fprintf (dump_file, "Fixing up noreturn call ");
1277 print_gimple_stmt (dump_file, stmt, 0, 0);
1278 fprintf (dump_file, "\n");
1280 fixup_noreturn_call (stmt);
1283 statistics_counter_event (fun, "Redundant expressions eliminated",
1284 opt_stats.num_re);
1285 statistics_counter_event (fun, "Constants propagated",
1286 opt_stats.num_const_prop);
1287 statistics_counter_event (fun, "Copies propagated",
1288 opt_stats.num_copy_prop);
1290 /* Debugging dumps. */
1291 if (dump_file && (dump_flags & TDF_STATS))
1292 dump_dominator_optimization_stats (dump_file);
1294 loop_optimizer_finalize ();
1296 /* Delete our main hashtable. */
1297 delete avail_exprs;
1298 avail_exprs = NULL;
1300 /* Free asserted bitmaps and stacks. */
1301 BITMAP_FREE (need_eh_cleanup);
1302 need_noreturn_fixup.release ();
1303 avail_exprs_stack.release ();
1304 delete const_and_copies;
1306 /* Free the value-handle array. */
1307 threadedge_finalize_values ();
1309 return 0;
1312 } // anon namespace
1314 gimple_opt_pass *
1315 make_pass_dominator (gcc::context *ctxt)
1317 return new pass_dominator (ctxt);
1321 /* Given a conditional statement CONDSTMT, convert the
1322 condition to a canonical form. */
1324 static void
1325 canonicalize_comparison (gcond *condstmt)
1327 tree op0;
1328 tree op1;
1329 enum tree_code code;
1331 gcc_assert (gimple_code (condstmt) == GIMPLE_COND);
1333 op0 = gimple_cond_lhs (condstmt);
1334 op1 = gimple_cond_rhs (condstmt);
1336 code = gimple_cond_code (condstmt);
1338 /* If it would be profitable to swap the operands, then do so to
1339 canonicalize the statement, enabling better optimization.
1341 By placing canonicalization of such expressions here we
1342 transparently keep statements in canonical form, even
1343 when the statement is modified. */
1344 if (tree_swap_operands_p (op0, op1, false))
1346 /* For relationals we need to swap the operands
1347 and change the code. */
1348 if (code == LT_EXPR
1349 || code == GT_EXPR
1350 || code == LE_EXPR
1351 || code == GE_EXPR)
1353 code = swap_tree_comparison (code);
1355 gimple_cond_set_code (condstmt, code);
1356 gimple_cond_set_lhs (condstmt, op1);
1357 gimple_cond_set_rhs (condstmt, op0);
1359 update_stmt (condstmt);
1364 /* Initialize local stacks for this optimizer and record equivalences
1365 upon entry to BB. Equivalences can come from the edge traversed to
1366 reach BB or they may come from PHI nodes at the start of BB. */
1368 /* Remove all the expressions in LOCALS from TABLE, stopping when there are
1369 LIMIT entries left in LOCALs. */
1371 static void
1372 remove_local_expressions_from_table (void)
1374 /* Remove all the expressions made available in this block. */
1375 while (avail_exprs_stack.length () > 0)
1377 std::pair<expr_hash_elt_t, expr_hash_elt_t> victim
1378 = avail_exprs_stack.pop ();
1379 expr_hash_elt **slot;
1381 if (victim.first == NULL)
1382 break;
1384 /* This must precede the actual removal from the hash table,
1385 as ELEMENT and the table entry may share a call argument
1386 vector which will be freed during removal. */
1387 if (dump_file && (dump_flags & TDF_DETAILS))
1389 fprintf (dump_file, "<<<< ");
1390 print_expr_hash_elt (dump_file, victim.first);
1393 slot = avail_exprs->find_slot (victim.first, NO_INSERT);
1394 gcc_assert (slot && *slot == victim.first);
1395 if (victim.second != NULL)
1397 free_expr_hash_elt (*slot);
1398 *slot = victim.second;
1400 else
1401 avail_exprs->clear_slot (slot);
1405 /* A trivial wrapper so that we can present the generic jump
1406 threading code with a simple API for simplifying statements. */
1407 static tree
1408 simplify_stmt_for_jump_threading (gimple stmt,
1409 gimple within_stmt ATTRIBUTE_UNUSED)
1411 return lookup_avail_expr (stmt, false);
1414 /* Record into the equivalence tables any equivalences implied by
1415 traversing edge E (which are cached in E->aux).
1417 Callers are responsible for managing the unwinding markers. */
1418 static void
1419 record_temporary_equivalences (edge e)
1421 int i;
1422 struct edge_info *edge_info = (struct edge_info *) e->aux;
1424 /* If we have info associated with this edge, record it into
1425 our equivalence tables. */
1426 if (edge_info)
1428 cond_equivalence *eq;
1429 tree lhs = edge_info->lhs;
1430 tree rhs = edge_info->rhs;
1432 /* If we have a simple NAME = VALUE equivalence, record it. */
1433 if (lhs && TREE_CODE (lhs) == SSA_NAME)
1434 const_and_copies->record_const_or_copy (lhs, rhs);
1436 /* If we have 0 = COND or 1 = COND equivalences, record them
1437 into our expression hash tables. */
1438 for (i = 0; edge_info->cond_equivalences.iterate (i, &eq); ++i)
1439 record_cond (eq);
1443 /* Wrapper for common code to attempt to thread an edge. For example,
1444 it handles lazily building the dummy condition and the bookkeeping
1445 when jump threading is successful. */
1447 void
1448 dom_opt_dom_walker::thread_across_edge (edge e)
1450 if (! m_dummy_cond)
1451 m_dummy_cond =
1452 gimple_build_cond (NE_EXPR,
1453 integer_zero_node, integer_zero_node,
1454 NULL, NULL);
1456 /* Push a marker on both stacks so we can unwind the tables back to their
1457 current state. */
1458 avail_exprs_stack.safe_push
1459 (std::pair<expr_hash_elt_t, expr_hash_elt_t> (NULL, NULL));
1460 const_and_copies->push_marker ();
1462 /* Traversing E may result in equivalences we can utilize. */
1463 record_temporary_equivalences (e);
1465 /* With all the edge equivalences in the tables, go ahead and attempt
1466 to thread through E->dest. */
1467 ::thread_across_edge (m_dummy_cond, e, false,
1468 const_and_copies,
1469 simplify_stmt_for_jump_threading);
1471 /* And restore the various tables to their state before
1472 we threaded this edge.
1474 XXX The code in tree-ssa-threadedge.c will restore the state of
1475 the const_and_copies table. We we just have to restore the expression
1476 table. */
1477 remove_local_expressions_from_table ();
1480 /* PHI nodes can create equivalences too.
1482 Ignoring any alternatives which are the same as the result, if
1483 all the alternatives are equal, then the PHI node creates an
1484 equivalence. */
1486 static void
1487 record_equivalences_from_phis (basic_block bb)
1489 gphi_iterator gsi;
1491 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1493 gphi *phi = gsi.phi ();
1495 tree lhs = gimple_phi_result (phi);
1496 tree rhs = NULL;
1497 size_t i;
1499 for (i = 0; i < gimple_phi_num_args (phi); i++)
1501 tree t = gimple_phi_arg_def (phi, i);
1503 /* Ignore alternatives which are the same as our LHS. Since
1504 LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
1505 can simply compare pointers. */
1506 if (lhs == t)
1507 continue;
1509 /* Valueize t. */
1510 if (TREE_CODE (t) == SSA_NAME)
1512 tree tmp = SSA_NAME_VALUE (t);
1513 t = tmp ? tmp : t;
1516 /* If we have not processed an alternative yet, then set
1517 RHS to this alternative. */
1518 if (rhs == NULL)
1519 rhs = t;
1520 /* If we have processed an alternative (stored in RHS), then
1521 see if it is equal to this one. If it isn't, then stop
1522 the search. */
1523 else if (! operand_equal_for_phi_arg_p (rhs, t))
1524 break;
1527 /* If we had no interesting alternatives, then all the RHS alternatives
1528 must have been the same as LHS. */
1529 if (!rhs)
1530 rhs = lhs;
1532 /* If we managed to iterate through each PHI alternative without
1533 breaking out of the loop, then we have a PHI which may create
1534 a useful equivalence. We do not need to record unwind data for
1535 this, since this is a true assignment and not an equivalence
1536 inferred from a comparison. All uses of this ssa name are dominated
1537 by this assignment, so unwinding just costs time and space. */
1538 if (i == gimple_phi_num_args (phi)
1539 && may_propagate_copy (lhs, rhs))
1540 set_ssa_name_value (lhs, rhs);
1544 /* Ignoring loop backedges, if BB has precisely one incoming edge then
1545 return that edge. Otherwise return NULL. */
1546 static edge
1547 single_incoming_edge_ignoring_loop_edges (basic_block bb)
1549 edge retval = NULL;
1550 edge e;
1551 edge_iterator ei;
1553 FOR_EACH_EDGE (e, ei, bb->preds)
1555 /* A loop back edge can be identified by the destination of
1556 the edge dominating the source of the edge. */
1557 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
1558 continue;
1560 /* If we have already seen a non-loop edge, then we must have
1561 multiple incoming non-loop edges and thus we return NULL. */
1562 if (retval)
1563 return NULL;
1565 /* This is the first non-loop incoming edge we have found. Record
1566 it. */
1567 retval = e;
1570 return retval;
1573 /* Record any equivalences created by the incoming edge to BB. If BB
1574 has more than one incoming edge, then no equivalence is created. */
1576 static void
1577 record_equivalences_from_incoming_edge (basic_block bb)
1579 edge e;
1580 basic_block parent;
1581 struct edge_info *edge_info;
1583 /* If our parent block ended with a control statement, then we may be
1584 able to record some equivalences based on which outgoing edge from
1585 the parent was followed. */
1586 parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1588 e = single_incoming_edge_ignoring_loop_edges (bb);
1590 /* If we had a single incoming edge from our parent block, then enter
1591 any data associated with the edge into our tables. */
1592 if (e && e->src == parent)
1594 unsigned int i;
1596 edge_info = (struct edge_info *) e->aux;
1598 if (edge_info)
1600 tree lhs = edge_info->lhs;
1601 tree rhs = edge_info->rhs;
1602 cond_equivalence *eq;
1604 if (lhs)
1605 record_equality (lhs, rhs);
1607 /* If LHS is an SSA_NAME and RHS is a constant integer and LHS was
1608 set via a widening type conversion, then we may be able to record
1609 additional equivalences. */
1610 if (lhs
1611 && TREE_CODE (lhs) == SSA_NAME
1612 && is_gimple_constant (rhs)
1613 && TREE_CODE (rhs) == INTEGER_CST)
1615 gimple defstmt = SSA_NAME_DEF_STMT (lhs);
1617 if (defstmt
1618 && is_gimple_assign (defstmt)
1619 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (defstmt)))
1621 tree old_rhs = gimple_assign_rhs1 (defstmt);
1623 /* If the conversion widens the original value and
1624 the constant is in the range of the type of OLD_RHS,
1625 then convert the constant and record the equivalence.
1627 Note that int_fits_type_p does not check the precision
1628 if the upper and lower bounds are OK. */
1629 if (INTEGRAL_TYPE_P (TREE_TYPE (old_rhs))
1630 && (TYPE_PRECISION (TREE_TYPE (lhs))
1631 > TYPE_PRECISION (TREE_TYPE (old_rhs)))
1632 && int_fits_type_p (rhs, TREE_TYPE (old_rhs)))
1634 tree newval = fold_convert (TREE_TYPE (old_rhs), rhs);
1635 record_equality (old_rhs, newval);
1640 for (i = 0; edge_info->cond_equivalences.iterate (i, &eq); ++i)
1641 record_cond (eq);
1646 /* Dump SSA statistics on FILE. */
1648 void
1649 dump_dominator_optimization_stats (FILE *file)
1651 fprintf (file, "Total number of statements: %6ld\n\n",
1652 opt_stats.num_stmts);
1653 fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
1654 opt_stats.num_exprs_considered);
1656 fprintf (file, "\nHash table statistics:\n");
1658 fprintf (file, " avail_exprs: ");
1659 htab_statistics (file, *avail_exprs);
1663 /* Dump SSA statistics on stderr. */
1665 DEBUG_FUNCTION void
1666 debug_dominator_optimization_stats (void)
1668 dump_dominator_optimization_stats (stderr);
1672 /* Dump statistics for the hash table HTAB. */
1674 static void
1675 htab_statistics (FILE *file, const hash_table<expr_elt_hasher> &htab)
1677 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1678 (long) htab.size (),
1679 (long) htab.elements (),
1680 htab.collisions ());
1684 /* Enter condition equivalence into the expression hash table.
1685 This indicates that a conditional expression has a known
1686 boolean value. */
1688 static void
1689 record_cond (cond_equivalence *p)
1691 struct expr_hash_elt *element = XCNEW (struct expr_hash_elt);
1692 expr_hash_elt **slot;
1694 initialize_hash_element_from_expr (&p->cond, p->value, element);
1696 slot = avail_exprs->find_slot_with_hash (element, element->hash, INSERT);
1697 if (*slot == NULL)
1699 *slot = element;
1701 if (dump_file && (dump_flags & TDF_DETAILS))
1703 fprintf (dump_file, "1>>> ");
1704 print_expr_hash_elt (dump_file, element);
1707 avail_exprs_stack.safe_push
1708 (std::pair<expr_hash_elt_t, expr_hash_elt_t> (element, NULL));
1710 else
1711 free_expr_hash_elt (element);
1714 /* Return the loop depth of the basic block of the defining statement of X.
1715 This number should not be treated as absolutely correct because the loop
1716 information may not be completely up-to-date when dom runs. However, it
1717 will be relatively correct, and as more passes are taught to keep loop info
1718 up to date, the result will become more and more accurate. */
1720 static int
1721 loop_depth_of_name (tree x)
1723 gimple defstmt;
1724 basic_block defbb;
1726 /* If it's not an SSA_NAME, we have no clue where the definition is. */
1727 if (TREE_CODE (x) != SSA_NAME)
1728 return 0;
1730 /* Otherwise return the loop depth of the defining statement's bb.
1731 Note that there may not actually be a bb for this statement, if the
1732 ssa_name is live on entry. */
1733 defstmt = SSA_NAME_DEF_STMT (x);
1734 defbb = gimple_bb (defstmt);
1735 if (!defbb)
1736 return 0;
1738 return bb_loop_depth (defbb);
1741 /* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
1742 This constrains the cases in which we may treat this as assignment. */
1744 static void
1745 record_equality (tree x, tree y)
1747 tree prev_x = NULL, prev_y = NULL;
1749 if (tree_swap_operands_p (x, y, false))
1750 std::swap (x, y);
1752 /* Most of the time tree_swap_operands_p does what we want. But there
1753 are cases where we know one operand is better for copy propagation than
1754 the other. Given no other code cares about ordering of equality
1755 comparison operators for that purpose, we just handle the special cases
1756 here. */
1757 if (TREE_CODE (x) == SSA_NAME && TREE_CODE (y) == SSA_NAME)
1759 /* If one operand is a single use operand, then make it
1760 X. This will preserve its single use properly and if this
1761 conditional is eliminated, the computation of X can be
1762 eliminated as well. */
1763 if (has_single_use (y) && ! has_single_use (x))
1764 std::swap (x, y);
1766 if (TREE_CODE (x) == SSA_NAME)
1767 prev_x = SSA_NAME_VALUE (x);
1768 if (TREE_CODE (y) == SSA_NAME)
1769 prev_y = SSA_NAME_VALUE (y);
1771 /* If one of the previous values is invariant, or invariant in more loops
1772 (by depth), then use that.
1773 Otherwise it doesn't matter which value we choose, just so
1774 long as we canonicalize on one value. */
1775 if (is_gimple_min_invariant (y))
1777 else if (is_gimple_min_invariant (x)
1778 /* ??? When threading over backedges the following is important
1779 for correctness. See PR61757. */
1780 || (loop_depth_of_name (x) < loop_depth_of_name (y)))
1781 prev_x = x, x = y, y = prev_x, prev_x = prev_y;
1782 else if (prev_x && is_gimple_min_invariant (prev_x))
1783 x = y, y = prev_x, prev_x = prev_y;
1784 else if (prev_y)
1785 y = prev_y;
1787 /* After the swapping, we must have one SSA_NAME. */
1788 if (TREE_CODE (x) != SSA_NAME)
1789 return;
1791 /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
1792 variable compared against zero. If we're honoring signed zeros,
1793 then we cannot record this value unless we know that the value is
1794 nonzero. */
1795 if (HONOR_SIGNED_ZEROS (x)
1796 && (TREE_CODE (y) != REAL_CST
1797 || REAL_VALUES_EQUAL (dconst0, TREE_REAL_CST (y))))
1798 return;
1800 const_and_copies->record_const_or_copy (x, y, prev_x);
1803 /* Returns true when STMT is a simple iv increment. It detects the
1804 following situation:
1806 i_1 = phi (..., i_2)
1807 i_2 = i_1 +/- ... */
1809 bool
1810 simple_iv_increment_p (gimple stmt)
1812 enum tree_code code;
1813 tree lhs, preinc;
1814 gimple phi;
1815 size_t i;
1817 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1818 return false;
1820 lhs = gimple_assign_lhs (stmt);
1821 if (TREE_CODE (lhs) != SSA_NAME)
1822 return false;
1824 code = gimple_assign_rhs_code (stmt);
1825 if (code != PLUS_EXPR
1826 && code != MINUS_EXPR
1827 && code != POINTER_PLUS_EXPR)
1828 return false;
1830 preinc = gimple_assign_rhs1 (stmt);
1831 if (TREE_CODE (preinc) != SSA_NAME)
1832 return false;
1834 phi = SSA_NAME_DEF_STMT (preinc);
1835 if (gimple_code (phi) != GIMPLE_PHI)
1836 return false;
1838 for (i = 0; i < gimple_phi_num_args (phi); i++)
1839 if (gimple_phi_arg_def (phi, i) == lhs)
1840 return true;
1842 return false;
1845 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
1846 known value for that SSA_NAME (or NULL if no value is known).
1848 Propagate values from CONST_AND_COPIES into the PHI nodes of the
1849 successors of BB. */
1851 static void
1852 cprop_into_successor_phis (basic_block bb)
1854 edge e;
1855 edge_iterator ei;
1857 FOR_EACH_EDGE (e, ei, bb->succs)
1859 int indx;
1860 gphi_iterator gsi;
1862 /* If this is an abnormal edge, then we do not want to copy propagate
1863 into the PHI alternative associated with this edge. */
1864 if (e->flags & EDGE_ABNORMAL)
1865 continue;
1867 gsi = gsi_start_phis (e->dest);
1868 if (gsi_end_p (gsi))
1869 continue;
1871 /* We may have an equivalence associated with this edge. While
1872 we can not propagate it into non-dominated blocks, we can
1873 propagate them into PHIs in non-dominated blocks. */
1875 /* Push the unwind marker so we can reset the const and copies
1876 table back to its original state after processing this edge. */
1877 const_and_copies->push_marker ();
1879 /* Extract and record any simple NAME = VALUE equivalences.
1881 Don't bother with [01] = COND equivalences, they're not useful
1882 here. */
1883 struct edge_info *edge_info = (struct edge_info *) e->aux;
1884 if (edge_info)
1886 tree lhs = edge_info->lhs;
1887 tree rhs = edge_info->rhs;
1889 if (lhs && TREE_CODE (lhs) == SSA_NAME)
1890 const_and_copies->record_const_or_copy (lhs, rhs);
1893 indx = e->dest_idx;
1894 for ( ; !gsi_end_p (gsi); gsi_next (&gsi))
1896 tree new_val;
1897 use_operand_p orig_p;
1898 tree orig_val;
1899 gphi *phi = gsi.phi ();
1901 /* The alternative may be associated with a constant, so verify
1902 it is an SSA_NAME before doing anything with it. */
1903 orig_p = gimple_phi_arg_imm_use_ptr (phi, indx);
1904 orig_val = get_use_from_ptr (orig_p);
1905 if (TREE_CODE (orig_val) != SSA_NAME)
1906 continue;
1908 /* If we have *ORIG_P in our constant/copy table, then replace
1909 ORIG_P with its value in our constant/copy table. */
1910 new_val = SSA_NAME_VALUE (orig_val);
1911 if (new_val
1912 && new_val != orig_val
1913 && (TREE_CODE (new_val) == SSA_NAME
1914 || is_gimple_min_invariant (new_val))
1915 && may_propagate_copy (orig_val, new_val))
1916 propagate_value (orig_p, new_val);
1919 const_and_copies->pop_to_marker ();
1923 void
1924 dom_opt_dom_walker::before_dom_children (basic_block bb)
1926 gimple_stmt_iterator gsi;
1928 if (dump_file && (dump_flags & TDF_DETAILS))
1929 fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);
1931 /* Push a marker on the stacks of local information so that we know how
1932 far to unwind when we finalize this block. */
1933 avail_exprs_stack.safe_push
1934 (std::pair<expr_hash_elt_t, expr_hash_elt_t> (NULL, NULL));
1935 const_and_copies->push_marker ();
1937 record_equivalences_from_incoming_edge (bb);
1939 /* PHI nodes can create equivalences too. */
1940 record_equivalences_from_phis (bb);
1942 /* Create equivalences from redundant PHIs. PHIs are only truly
1943 redundant when they exist in the same block, so push another
1944 marker and unwind right afterwards. */
1945 avail_exprs_stack.safe_push
1946 (std::pair<expr_hash_elt_t, expr_hash_elt_t> (NULL, NULL));
1947 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1948 eliminate_redundant_computations (&gsi);
1949 remove_local_expressions_from_table ();
1951 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1952 optimize_stmt (bb, gsi);
1954 /* Now prepare to process dominated blocks. */
1955 record_edge_info (bb);
1956 cprop_into_successor_phis (bb);
1959 /* We have finished processing the dominator children of BB, perform
1960 any finalization actions in preparation for leaving this node in
1961 the dominator tree. */
1963 void
1964 dom_opt_dom_walker::after_dom_children (basic_block bb)
1966 gimple last;
1968 /* If we have an outgoing edge to a block with multiple incoming and
1969 outgoing edges, then we may be able to thread the edge, i.e., we
1970 may be able to statically determine which of the outgoing edges
1971 will be traversed when the incoming edge from BB is traversed. */
1972 if (single_succ_p (bb)
1973 && (single_succ_edge (bb)->flags & EDGE_ABNORMAL) == 0
1974 && potentially_threadable_block (single_succ (bb)))
1976 thread_across_edge (single_succ_edge (bb));
1978 else if ((last = last_stmt (bb))
1979 && gimple_code (last) == GIMPLE_COND
1980 && EDGE_COUNT (bb->succs) == 2
1981 && (EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL) == 0
1982 && (EDGE_SUCC (bb, 1)->flags & EDGE_ABNORMAL) == 0)
1984 edge true_edge, false_edge;
1986 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1988 /* Only try to thread the edge if it reaches a target block with
1989 more than one predecessor and more than one successor. */
1990 if (potentially_threadable_block (true_edge->dest))
1991 thread_across_edge (true_edge);
1993 /* Similarly for the ELSE arm. */
1994 if (potentially_threadable_block (false_edge->dest))
1995 thread_across_edge (false_edge);
1999 /* These remove expressions local to BB from the tables. */
2000 remove_local_expressions_from_table ();
2001 const_and_copies->pop_to_marker ();
2004 /* Search for redundant computations in STMT. If any are found, then
2005 replace them with the variable holding the result of the computation.
2007 If safe, record this expression into the available expression hash
2008 table. */
2010 static void
2011 eliminate_redundant_computations (gimple_stmt_iterator* gsi)
2013 tree expr_type;
2014 tree cached_lhs;
2015 tree def;
2016 bool insert = true;
2017 bool assigns_var_p = false;
2019 gimple stmt = gsi_stmt (*gsi);
2021 if (gimple_code (stmt) == GIMPLE_PHI)
2022 def = gimple_phi_result (stmt);
2023 else
2024 def = gimple_get_lhs (stmt);
2026 /* Certain expressions on the RHS can be optimized away, but can not
2027 themselves be entered into the hash tables. */
2028 if (! def
2029 || TREE_CODE (def) != SSA_NAME
2030 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
2031 || gimple_vdef (stmt)
2032 /* Do not record equivalences for increments of ivs. This would create
2033 overlapping live ranges for a very questionable gain. */
2034 || simple_iv_increment_p (stmt))
2035 insert = false;
2037 /* Check if the expression has been computed before. */
2038 cached_lhs = lookup_avail_expr (stmt, insert);
2040 opt_stats.num_exprs_considered++;
2042 /* Get the type of the expression we are trying to optimize. */
2043 if (is_gimple_assign (stmt))
2045 expr_type = TREE_TYPE (gimple_assign_lhs (stmt));
2046 assigns_var_p = true;
2048 else if (gimple_code (stmt) == GIMPLE_COND)
2049 expr_type = boolean_type_node;
2050 else if (is_gimple_call (stmt))
2052 gcc_assert (gimple_call_lhs (stmt));
2053 expr_type = TREE_TYPE (gimple_call_lhs (stmt));
2054 assigns_var_p = true;
2056 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
2057 expr_type = TREE_TYPE (gimple_switch_index (swtch_stmt));
2058 else if (gimple_code (stmt) == GIMPLE_PHI)
2059 /* We can't propagate into a phi, so the logic below doesn't apply.
2060 Instead record an equivalence between the cached LHS and the
2061 PHI result of this statement, provided they are in the same block.
2062 This should be sufficient to kill the redundant phi. */
2064 if (def && cached_lhs)
2065 const_and_copies->record_const_or_copy (def, cached_lhs);
2066 return;
2068 else
2069 gcc_unreachable ();
2071 if (!cached_lhs)
2072 return;
2074 /* It is safe to ignore types here since we have already done
2075 type checking in the hashing and equality routines. In fact
2076 type checking here merely gets in the way of constant
2077 propagation. Also, make sure that it is safe to propagate
2078 CACHED_LHS into the expression in STMT. */
2079 if ((TREE_CODE (cached_lhs) != SSA_NAME
2080 && (assigns_var_p
2081 || useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs))))
2082 || may_propagate_copy_into_stmt (stmt, cached_lhs))
2084 gcc_checking_assert (TREE_CODE (cached_lhs) == SSA_NAME
2085 || is_gimple_min_invariant (cached_lhs));
2087 if (dump_file && (dump_flags & TDF_DETAILS))
2089 fprintf (dump_file, " Replaced redundant expr '");
2090 print_gimple_expr (dump_file, stmt, 0, dump_flags);
2091 fprintf (dump_file, "' with '");
2092 print_generic_expr (dump_file, cached_lhs, dump_flags);
2093 fprintf (dump_file, "'\n");
2096 opt_stats.num_re++;
2098 if (assigns_var_p
2099 && !useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs)))
2100 cached_lhs = fold_convert (expr_type, cached_lhs);
2102 propagate_tree_value_into_stmt (gsi, cached_lhs);
2104 /* Since it is always necessary to mark the result as modified,
2105 perhaps we should move this into propagate_tree_value_into_stmt
2106 itself. */
2107 gimple_set_modified (gsi_stmt (*gsi), true);
2111 /* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either
2112 the available expressions table or the const_and_copies table.
2113 Detect and record those equivalences. */
2114 /* We handle only very simple copy equivalences here. The heavy
2115 lifing is done by eliminate_redundant_computations. */
2117 static void
2118 record_equivalences_from_stmt (gimple stmt, int may_optimize_p)
2120 tree lhs;
2121 enum tree_code lhs_code;
2123 gcc_assert (is_gimple_assign (stmt));
2125 lhs = gimple_assign_lhs (stmt);
2126 lhs_code = TREE_CODE (lhs);
2128 if (lhs_code == SSA_NAME
2129 && gimple_assign_single_p (stmt))
2131 tree rhs = gimple_assign_rhs1 (stmt);
2133 /* If the RHS of the assignment is a constant or another variable that
2134 may be propagated, register it in the CONST_AND_COPIES table. We
2135 do not need to record unwind data for this, since this is a true
2136 assignment and not an equivalence inferred from a comparison. All
2137 uses of this ssa name are dominated by this assignment, so unwinding
2138 just costs time and space. */
2139 if (may_optimize_p
2140 && (TREE_CODE (rhs) == SSA_NAME
2141 || is_gimple_min_invariant (rhs)))
2143 /* Valueize rhs. */
2144 if (TREE_CODE (rhs) == SSA_NAME)
2146 tree tmp = SSA_NAME_VALUE (rhs);
2147 rhs = tmp ? tmp : rhs;
2150 if (dump_file && (dump_flags & TDF_DETAILS))
2152 fprintf (dump_file, "==== ASGN ");
2153 print_generic_expr (dump_file, lhs, 0);
2154 fprintf (dump_file, " = ");
2155 print_generic_expr (dump_file, rhs, 0);
2156 fprintf (dump_file, "\n");
2159 set_ssa_name_value (lhs, rhs);
2163 /* Make sure we can propagate &x + CST. */
2164 if (lhs_code == SSA_NAME
2165 && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
2166 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR
2167 && TREE_CODE (gimple_assign_rhs2 (stmt)) == INTEGER_CST)
2169 tree op0 = gimple_assign_rhs1 (stmt);
2170 tree op1 = gimple_assign_rhs2 (stmt);
2171 tree new_rhs
2172 = build_fold_addr_expr (fold_build2 (MEM_REF,
2173 TREE_TYPE (TREE_TYPE (op0)),
2174 unshare_expr (op0),
2175 fold_convert (ptr_type_node,
2176 op1)));
2177 if (dump_file && (dump_flags & TDF_DETAILS))
2179 fprintf (dump_file, "==== ASGN ");
2180 print_generic_expr (dump_file, lhs, 0);
2181 fprintf (dump_file, " = ");
2182 print_generic_expr (dump_file, new_rhs, 0);
2183 fprintf (dump_file, "\n");
2186 set_ssa_name_value (lhs, new_rhs);
2189 /* A memory store, even an aliased store, creates a useful
2190 equivalence. By exchanging the LHS and RHS, creating suitable
2191 vops and recording the result in the available expression table,
2192 we may be able to expose more redundant loads. */
2193 if (!gimple_has_volatile_ops (stmt)
2194 && gimple_references_memory_p (stmt)
2195 && gimple_assign_single_p (stmt)
2196 && (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
2197 || is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
2198 && !is_gimple_reg (lhs))
2200 tree rhs = gimple_assign_rhs1 (stmt);
2201 gassign *new_stmt;
2203 /* Build a new statement with the RHS and LHS exchanged. */
2204 if (TREE_CODE (rhs) == SSA_NAME)
2206 /* NOTE tuples. The call to gimple_build_assign below replaced
2207 a call to build_gimple_modify_stmt, which did not set the
2208 SSA_NAME_DEF_STMT on the LHS of the assignment. Doing so
2209 may cause an SSA validation failure, as the LHS may be a
2210 default-initialized name and should have no definition. I'm
2211 a bit dubious of this, as the artificial statement that we
2212 generate here may in fact be ill-formed, but it is simply
2213 used as an internal device in this pass, and never becomes
2214 part of the CFG. */
2215 gimple defstmt = SSA_NAME_DEF_STMT (rhs);
2216 new_stmt = gimple_build_assign (rhs, lhs);
2217 SSA_NAME_DEF_STMT (rhs) = defstmt;
2219 else
2220 new_stmt = gimple_build_assign (rhs, lhs);
2222 gimple_set_vuse (new_stmt, gimple_vdef (stmt));
2224 /* Finally enter the statement into the available expression
2225 table. */
2226 lookup_avail_expr (new_stmt, true);
2230 /* Replace *OP_P in STMT with any known equivalent value for *OP_P from
2231 CONST_AND_COPIES. */
2233 static void
2234 cprop_operand (gimple stmt, use_operand_p op_p)
2236 tree val;
2237 tree op = USE_FROM_PTR (op_p);
2239 /* If the operand has a known constant value or it is known to be a
2240 copy of some other variable, use the value or copy stored in
2241 CONST_AND_COPIES. */
2242 val = SSA_NAME_VALUE (op);
2243 if (val && val != op)
2245 /* Do not replace hard register operands in asm statements. */
2246 if (gimple_code (stmt) == GIMPLE_ASM
2247 && !may_propagate_copy_into_asm (op))
2248 return;
2250 /* Certain operands are not allowed to be copy propagated due
2251 to their interaction with exception handling and some GCC
2252 extensions. */
2253 if (!may_propagate_copy (op, val))
2254 return;
2256 /* Do not propagate copies into BIVs.
2257 See PR23821 and PR62217 for how this can disturb IV and
2258 number of iteration analysis. */
2259 if (TREE_CODE (val) != INTEGER_CST)
2261 gimple def = SSA_NAME_DEF_STMT (op);
2262 if (gimple_code (def) == GIMPLE_PHI
2263 && gimple_bb (def)->loop_father->header == gimple_bb (def))
2264 return;
2267 /* Dump details. */
2268 if (dump_file && (dump_flags & TDF_DETAILS))
2270 fprintf (dump_file, " Replaced '");
2271 print_generic_expr (dump_file, op, dump_flags);
2272 fprintf (dump_file, "' with %s '",
2273 (TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
2274 print_generic_expr (dump_file, val, dump_flags);
2275 fprintf (dump_file, "'\n");
2278 if (TREE_CODE (val) != SSA_NAME)
2279 opt_stats.num_const_prop++;
2280 else
2281 opt_stats.num_copy_prop++;
2283 propagate_value (op_p, val);
2285 /* And note that we modified this statement. This is now
2286 safe, even if we changed virtual operands since we will
2287 rescan the statement and rewrite its operands again. */
2288 gimple_set_modified (stmt, true);
2292 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
2293 known value for that SSA_NAME (or NULL if no value is known).
2295 Propagate values from CONST_AND_COPIES into the uses, vuses and
2296 vdef_ops of STMT. */
2298 static void
2299 cprop_into_stmt (gimple stmt)
2301 use_operand_p op_p;
2302 ssa_op_iter iter;
2304 FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_USE)
2305 cprop_operand (stmt, op_p);
2308 /* Optimize the statement pointed to by iterator SI.
2310 We try to perform some simplistic global redundancy elimination and
2311 constant propagation:
2313 1- To detect global redundancy, we keep track of expressions that have
2314 been computed in this block and its dominators. If we find that the
2315 same expression is computed more than once, we eliminate repeated
2316 computations by using the target of the first one.
2318 2- Constant values and copy assignments. This is used to do very
2319 simplistic constant and copy propagation. When a constant or copy
2320 assignment is found, we map the value on the RHS of the assignment to
2321 the variable in the LHS in the CONST_AND_COPIES table. */
2323 static void
2324 optimize_stmt (basic_block bb, gimple_stmt_iterator si)
2326 gimple stmt, old_stmt;
2327 bool may_optimize_p;
2328 bool modified_p = false;
2329 bool was_noreturn;
2331 old_stmt = stmt = gsi_stmt (si);
2332 was_noreturn = is_gimple_call (stmt) && gimple_call_noreturn_p (stmt);
2334 if (dump_file && (dump_flags & TDF_DETAILS))
2336 fprintf (dump_file, "Optimizing statement ");
2337 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2340 if (gimple_code (stmt) == GIMPLE_COND)
2341 canonicalize_comparison (as_a <gcond *> (stmt));
2343 update_stmt_if_modified (stmt);
2344 opt_stats.num_stmts++;
2346 /* Const/copy propagate into USES, VUSES and the RHS of VDEFs. */
2347 cprop_into_stmt (stmt);
2349 /* If the statement has been modified with constant replacements,
2350 fold its RHS before checking for redundant computations. */
2351 if (gimple_modified_p (stmt))
2353 tree rhs = NULL;
2355 /* Try to fold the statement making sure that STMT is kept
2356 up to date. */
2357 if (fold_stmt (&si))
2359 stmt = gsi_stmt (si);
2360 gimple_set_modified (stmt, true);
2362 if (dump_file && (dump_flags & TDF_DETAILS))
2364 fprintf (dump_file, " Folded to: ");
2365 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2369 /* We only need to consider cases that can yield a gimple operand. */
2370 if (gimple_assign_single_p (stmt))
2371 rhs = gimple_assign_rhs1 (stmt);
2372 else if (gimple_code (stmt) == GIMPLE_GOTO)
2373 rhs = gimple_goto_dest (stmt);
2374 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
2375 /* This should never be an ADDR_EXPR. */
2376 rhs = gimple_switch_index (swtch_stmt);
2378 if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
2379 recompute_tree_invariant_for_addr_expr (rhs);
2381 /* Indicate that maybe_clean_or_replace_eh_stmt needs to be called,
2382 even if fold_stmt updated the stmt already and thus cleared
2383 gimple_modified_p flag on it. */
2384 modified_p = true;
2387 /* Check for redundant computations. Do this optimization only
2388 for assignments that have no volatile ops and conditionals. */
2389 may_optimize_p = (!gimple_has_side_effects (stmt)
2390 && (is_gimple_assign (stmt)
2391 || (is_gimple_call (stmt)
2392 && gimple_call_lhs (stmt) != NULL_TREE)
2393 || gimple_code (stmt) == GIMPLE_COND
2394 || gimple_code (stmt) == GIMPLE_SWITCH));
2396 if (may_optimize_p)
2398 if (gimple_code (stmt) == GIMPLE_CALL)
2400 /* Resolve __builtin_constant_p. If it hasn't been
2401 folded to integer_one_node by now, it's fairly
2402 certain that the value simply isn't constant. */
2403 tree callee = gimple_call_fndecl (stmt);
2404 if (callee
2405 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2406 && DECL_FUNCTION_CODE (callee) == BUILT_IN_CONSTANT_P)
2408 propagate_tree_value_into_stmt (&si, integer_zero_node);
2409 stmt = gsi_stmt (si);
2413 update_stmt_if_modified (stmt);
2414 eliminate_redundant_computations (&si);
2415 stmt = gsi_stmt (si);
2417 /* Perform simple redundant store elimination. */
2418 if (gimple_assign_single_p (stmt)
2419 && TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
2421 tree lhs = gimple_assign_lhs (stmt);
2422 tree rhs = gimple_assign_rhs1 (stmt);
2423 tree cached_lhs;
2424 gassign *new_stmt;
2425 if (TREE_CODE (rhs) == SSA_NAME)
2427 tree tem = SSA_NAME_VALUE (rhs);
2428 if (tem)
2429 rhs = tem;
2431 /* Build a new statement with the RHS and LHS exchanged. */
2432 if (TREE_CODE (rhs) == SSA_NAME)
2434 gimple defstmt = SSA_NAME_DEF_STMT (rhs);
2435 new_stmt = gimple_build_assign (rhs, lhs);
2436 SSA_NAME_DEF_STMT (rhs) = defstmt;
2438 else
2439 new_stmt = gimple_build_assign (rhs, lhs);
2440 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2441 cached_lhs = lookup_avail_expr (new_stmt, false);
2442 if (cached_lhs
2443 && rhs == cached_lhs)
2445 basic_block bb = gimple_bb (stmt);
2446 unlink_stmt_vdef (stmt);
2447 if (gsi_remove (&si, true))
2449 bitmap_set_bit (need_eh_cleanup, bb->index);
2450 if (dump_file && (dump_flags & TDF_DETAILS))
2451 fprintf (dump_file, " Flagged to clear EH edges.\n");
2453 release_defs (stmt);
2454 return;
2459 /* Record any additional equivalences created by this statement. */
2460 if (is_gimple_assign (stmt))
2461 record_equivalences_from_stmt (stmt, may_optimize_p);
2463 /* If STMT is a COND_EXPR and it was modified, then we may know
2464 where it goes. If that is the case, then mark the CFG as altered.
2466 This will cause us to later call remove_unreachable_blocks and
2467 cleanup_tree_cfg when it is safe to do so. It is not safe to
2468 clean things up here since removal of edges and such can trigger
2469 the removal of PHI nodes, which in turn can release SSA_NAMEs to
2470 the manager.
2472 That's all fine and good, except that once SSA_NAMEs are released
2473 to the manager, we must not call create_ssa_name until all references
2474 to released SSA_NAMEs have been eliminated.
2476 All references to the deleted SSA_NAMEs can not be eliminated until
2477 we remove unreachable blocks.
2479 We can not remove unreachable blocks until after we have completed
2480 any queued jump threading.
2482 We can not complete any queued jump threads until we have taken
2483 appropriate variables out of SSA form. Taking variables out of
2484 SSA form can call create_ssa_name and thus we lose.
2486 Ultimately I suspect we're going to need to change the interface
2487 into the SSA_NAME manager. */
2488 if (gimple_modified_p (stmt) || modified_p)
2490 tree val = NULL;
2492 update_stmt_if_modified (stmt);
2494 if (gimple_code (stmt) == GIMPLE_COND)
2495 val = fold_binary_loc (gimple_location (stmt),
2496 gimple_cond_code (stmt), boolean_type_node,
2497 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
2498 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
2499 val = gimple_switch_index (swtch_stmt);
2501 if (val && TREE_CODE (val) == INTEGER_CST && find_taken_edge (bb, val))
2502 cfg_altered = true;
2504 /* If we simplified a statement in such a way as to be shown that it
2505 cannot trap, update the eh information and the cfg to match. */
2506 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
2508 bitmap_set_bit (need_eh_cleanup, bb->index);
2509 if (dump_file && (dump_flags & TDF_DETAILS))
2510 fprintf (dump_file, " Flagged to clear EH edges.\n");
2513 if (!was_noreturn
2514 && is_gimple_call (stmt) && gimple_call_noreturn_p (stmt))
2515 need_noreturn_fixup.safe_push (stmt);
2519 /* Helper for walk_non_aliased_vuses. Determine if we arrived at
2520 the desired memory state. */
2522 static void *
2523 vuse_eq (ao_ref *, tree vuse1, unsigned int cnt, void *data)
2525 tree vuse2 = (tree) data;
2526 if (vuse1 == vuse2)
2527 return data;
2529 /* This bounds the stmt walks we perform on reference lookups
2530 to O(1) instead of O(N) where N is the number of dominating
2531 stores leading to a candidate. We re-use the SCCVN param
2532 for this as it is basically the same complexity. */
2533 if (cnt > (unsigned) PARAM_VALUE (PARAM_SCCVN_MAX_ALIAS_QUERIES_PER_ACCESS))
2534 return (void *)-1;
2536 return NULL;
2539 /* Search for an existing instance of STMT in the AVAIL_EXPRS table.
2540 If found, return its LHS. Otherwise insert STMT in the table and
2541 return NULL_TREE.
2543 Also, when an expression is first inserted in the table, it is also
2544 is also added to AVAIL_EXPRS_STACK, so that it can be removed when
2545 we finish processing this block and its children. */
2547 static tree
2548 lookup_avail_expr (gimple stmt, bool insert)
2550 expr_hash_elt **slot;
2551 tree lhs;
2552 tree temp;
2553 struct expr_hash_elt element;
2555 /* Get LHS of phi, assignment, or call; else NULL_TREE. */
2556 if (gimple_code (stmt) == GIMPLE_PHI)
2557 lhs = gimple_phi_result (stmt);
2558 else
2559 lhs = gimple_get_lhs (stmt);
2561 initialize_hash_element (stmt, lhs, &element);
2563 if (dump_file && (dump_flags & TDF_DETAILS))
2565 fprintf (dump_file, "LKUP ");
2566 print_expr_hash_elt (dump_file, &element);
2569 /* Don't bother remembering constant assignments and copy operations.
2570 Constants and copy operations are handled by the constant/copy propagator
2571 in optimize_stmt. */
2572 if (element.expr.kind == EXPR_SINGLE
2573 && (TREE_CODE (element.expr.ops.single.rhs) == SSA_NAME
2574 || is_gimple_min_invariant (element.expr.ops.single.rhs)))
2575 return NULL_TREE;
2577 /* Finally try to find the expression in the main expression hash table. */
2578 slot = avail_exprs->find_slot (&element, (insert ? INSERT : NO_INSERT));
2579 if (slot == NULL)
2581 free_expr_hash_elt_contents (&element);
2582 return NULL_TREE;
2584 else if (*slot == NULL)
2586 struct expr_hash_elt *element2 = XNEW (struct expr_hash_elt);
2587 *element2 = element;
2588 element2->stamp = element2;
2589 *slot = element2;
2591 if (dump_file && (dump_flags & TDF_DETAILS))
2593 fprintf (dump_file, "2>>> ");
2594 print_expr_hash_elt (dump_file, element2);
2597 avail_exprs_stack.safe_push
2598 (std::pair<expr_hash_elt_t, expr_hash_elt_t> (element2, NULL));
2599 return NULL_TREE;
2602 /* If we found a redundant memory operation do an alias walk to
2603 check if we can re-use it. */
2604 if (gimple_vuse (stmt) != (*slot)->vop)
2606 tree vuse1 = (*slot)->vop;
2607 tree vuse2 = gimple_vuse (stmt);
2608 /* If we have a load of a register and a candidate in the
2609 hash with vuse1 then try to reach its stmt by walking
2610 up the virtual use-def chain using walk_non_aliased_vuses.
2611 But don't do this when removing expressions from the hash. */
2612 ao_ref ref;
2613 if (!(vuse1 && vuse2
2614 && gimple_assign_single_p (stmt)
2615 && TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME
2616 && (ao_ref_init (&ref, gimple_assign_rhs1 (stmt)), true)
2617 && walk_non_aliased_vuses (&ref, vuse2,
2618 vuse_eq, NULL, NULL, vuse1) != NULL))
2620 if (insert)
2622 struct expr_hash_elt *element2 = XNEW (struct expr_hash_elt);
2623 *element2 = element;
2624 element2->stamp = element2;
2626 /* Insert the expr into the hash by replacing the current
2627 entry and recording the value to restore in the
2628 avail_exprs_stack. */
2629 avail_exprs_stack.safe_push (std::make_pair (element2, *slot));
2630 *slot = element2;
2631 if (dump_file && (dump_flags & TDF_DETAILS))
2633 fprintf (dump_file, "2>>> ");
2634 print_expr_hash_elt (dump_file, *slot);
2637 return NULL_TREE;
2641 free_expr_hash_elt_contents (&element);
2643 /* Extract the LHS of the assignment so that it can be used as the current
2644 definition of another variable. */
2645 lhs = (*slot)->lhs;
2647 /* See if the LHS appears in the CONST_AND_COPIES table. If it does, then
2648 use the value from the const_and_copies table. */
2649 if (TREE_CODE (lhs) == SSA_NAME)
2651 temp = SSA_NAME_VALUE (lhs);
2652 if (temp)
2653 lhs = temp;
2656 if (dump_file && (dump_flags & TDF_DETAILS))
2658 fprintf (dump_file, "FIND: ");
2659 print_generic_expr (dump_file, lhs, 0);
2660 fprintf (dump_file, "\n");
2663 return lhs;
2666 /* Hashing and equality functions for AVAIL_EXPRS. We compute a value number
2667 for expressions using the code of the expression and the SSA numbers of
2668 its operands. */
2670 static hashval_t
2671 avail_expr_hash (const void *p)
2673 const struct hashable_expr *expr = &((const struct expr_hash_elt *)p)->expr;
2674 inchash::hash hstate;
2676 inchash::add_hashable_expr (expr, hstate);
2678 return hstate.end ();
2681 /* PHI-ONLY copy and constant propagation. This pass is meant to clean
2682 up degenerate PHIs created by or exposed by jump threading. */
2684 /* Given a statement STMT, which is either a PHI node or an assignment,
2685 remove it from the IL. */
2687 static void
2688 remove_stmt_or_phi (gimple stmt)
2690 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
2692 if (gimple_code (stmt) == GIMPLE_PHI)
2693 remove_phi_node (&gsi, true);
2694 else
2696 gsi_remove (&gsi, true);
2697 release_defs (stmt);
2701 /* Given a statement STMT, which is either a PHI node or an assignment,
2702 return the "rhs" of the node, in the case of a non-degenerate
2703 phi, NULL is returned. */
2705 static tree
2706 get_rhs_or_phi_arg (gimple stmt)
2708 if (gimple_code (stmt) == GIMPLE_PHI)
2709 return degenerate_phi_result (as_a <gphi *> (stmt));
2710 else if (gimple_assign_single_p (stmt))
2711 return gimple_assign_rhs1 (stmt);
2712 else
2713 gcc_unreachable ();
2717 /* Given a statement STMT, which is either a PHI node or an assignment,
2718 return the "lhs" of the node. */
2720 static tree
2721 get_lhs_or_phi_result (gimple stmt)
2723 if (gimple_code (stmt) == GIMPLE_PHI)
2724 return gimple_phi_result (stmt);
2725 else if (is_gimple_assign (stmt))
2726 return gimple_assign_lhs (stmt);
2727 else
2728 gcc_unreachable ();
2731 /* Propagate RHS into all uses of LHS (when possible).
2733 RHS and LHS are derived from STMT, which is passed in solely so
2734 that we can remove it if propagation is successful.
2736 When propagating into a PHI node or into a statement which turns
2737 into a trivial copy or constant initialization, set the
2738 appropriate bit in INTERESTING_NAMEs so that we will visit those
2739 nodes as well in an effort to pick up secondary optimization
2740 opportunities. */
2742 static void
2743 propagate_rhs_into_lhs (gimple stmt, tree lhs, tree rhs, bitmap interesting_names)
2745 /* First verify that propagation is valid. */
2746 if (may_propagate_copy (lhs, rhs))
2748 use_operand_p use_p;
2749 imm_use_iterator iter;
2750 gimple use_stmt;
2751 bool all = true;
2753 /* Dump details. */
2754 if (dump_file && (dump_flags & TDF_DETAILS))
2756 fprintf (dump_file, " Replacing '");
2757 print_generic_expr (dump_file, lhs, dump_flags);
2758 fprintf (dump_file, "' with %s '",
2759 (TREE_CODE (rhs) != SSA_NAME ? "constant" : "variable"));
2760 print_generic_expr (dump_file, rhs, dump_flags);
2761 fprintf (dump_file, "'\n");
2764 /* Walk over every use of LHS and try to replace the use with RHS.
2765 At this point the only reason why such a propagation would not
2766 be successful would be if the use occurs in an ASM_EXPR. */
2767 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
2769 /* Leave debug stmts alone. If we succeed in propagating
2770 all non-debug uses, we'll drop the DEF, and propagation
2771 into debug stmts will occur then. */
2772 if (gimple_debug_bind_p (use_stmt))
2773 continue;
2775 /* It's not always safe to propagate into an ASM_EXPR. */
2776 if (gimple_code (use_stmt) == GIMPLE_ASM
2777 && ! may_propagate_copy_into_asm (lhs))
2779 all = false;
2780 continue;
2783 /* It's not ok to propagate into the definition stmt of RHS.
2784 <bb 9>:
2785 # prephitmp.12_36 = PHI <g_67.1_6(9)>
2786 g_67.1_6 = prephitmp.12_36;
2787 goto <bb 9>;
2788 While this is strictly all dead code we do not want to
2789 deal with this here. */
2790 if (TREE_CODE (rhs) == SSA_NAME
2791 && SSA_NAME_DEF_STMT (rhs) == use_stmt)
2793 all = false;
2794 continue;
2797 /* Dump details. */
2798 if (dump_file && (dump_flags & TDF_DETAILS))
2800 fprintf (dump_file, " Original statement:");
2801 print_gimple_stmt (dump_file, use_stmt, 0, dump_flags);
2804 /* Propagate the RHS into this use of the LHS. */
2805 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2806 propagate_value (use_p, rhs);
2808 /* Special cases to avoid useless calls into the folding
2809 routines, operand scanning, etc.
2811 Propagation into a PHI may cause the PHI to become
2812 a degenerate, so mark the PHI as interesting. No other
2813 actions are necessary. */
2814 if (gimple_code (use_stmt) == GIMPLE_PHI)
2816 tree result;
2818 /* Dump details. */
2819 if (dump_file && (dump_flags & TDF_DETAILS))
2821 fprintf (dump_file, " Updated statement:");
2822 print_gimple_stmt (dump_file, use_stmt, 0, dump_flags);
2825 result = get_lhs_or_phi_result (use_stmt);
2826 bitmap_set_bit (interesting_names, SSA_NAME_VERSION (result));
2827 continue;
2830 /* From this point onward we are propagating into a
2831 real statement. Folding may (or may not) be possible,
2832 we may expose new operands, expose dead EH edges,
2833 etc. */
2834 /* NOTE tuples. In the tuples world, fold_stmt_inplace
2835 cannot fold a call that simplifies to a constant,
2836 because the GIMPLE_CALL must be replaced by a
2837 GIMPLE_ASSIGN, and there is no way to effect such a
2838 transformation in-place. We might want to consider
2839 using the more general fold_stmt here. */
2841 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
2842 fold_stmt_inplace (&gsi);
2845 /* Sometimes propagation can expose new operands to the
2846 renamer. */
2847 update_stmt (use_stmt);
2849 /* Dump details. */
2850 if (dump_file && (dump_flags & TDF_DETAILS))
2852 fprintf (dump_file, " Updated statement:");
2853 print_gimple_stmt (dump_file, use_stmt, 0, dump_flags);
2856 /* If we replaced a variable index with a constant, then
2857 we would need to update the invariant flag for ADDR_EXPRs. */
2858 if (gimple_assign_single_p (use_stmt)
2859 && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ADDR_EXPR)
2860 recompute_tree_invariant_for_addr_expr
2861 (gimple_assign_rhs1 (use_stmt));
2863 /* If we cleaned up EH information from the statement,
2864 mark its containing block as needing EH cleanups. */
2865 if (maybe_clean_or_replace_eh_stmt (use_stmt, use_stmt))
2867 bitmap_set_bit (need_eh_cleanup, gimple_bb (use_stmt)->index);
2868 if (dump_file && (dump_flags & TDF_DETAILS))
2869 fprintf (dump_file, " Flagged to clear EH edges.\n");
2872 /* Propagation may expose new trivial copy/constant propagation
2873 opportunities. */
2874 if (gimple_assign_single_p (use_stmt)
2875 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
2876 && (TREE_CODE (gimple_assign_rhs1 (use_stmt)) == SSA_NAME
2877 || is_gimple_min_invariant (gimple_assign_rhs1 (use_stmt))))
2879 tree result = get_lhs_or_phi_result (use_stmt);
2880 bitmap_set_bit (interesting_names, SSA_NAME_VERSION (result));
2883 /* Propagation into these nodes may make certain edges in
2884 the CFG unexecutable. We want to identify them as PHI nodes
2885 at the destination of those unexecutable edges may become
2886 degenerates. */
2887 else if (gimple_code (use_stmt) == GIMPLE_COND
2888 || gimple_code (use_stmt) == GIMPLE_SWITCH
2889 || gimple_code (use_stmt) == GIMPLE_GOTO)
2891 tree val;
2893 if (gimple_code (use_stmt) == GIMPLE_COND)
2894 val = fold_binary_loc (gimple_location (use_stmt),
2895 gimple_cond_code (use_stmt),
2896 boolean_type_node,
2897 gimple_cond_lhs (use_stmt),
2898 gimple_cond_rhs (use_stmt));
2899 else if (gimple_code (use_stmt) == GIMPLE_SWITCH)
2900 val = gimple_switch_index (as_a <gswitch *> (use_stmt));
2901 else
2902 val = gimple_goto_dest (use_stmt);
2904 if (val && is_gimple_min_invariant (val))
2906 basic_block bb = gimple_bb (use_stmt);
2907 edge te = find_taken_edge (bb, val);
2908 if (!te)
2909 continue;
2911 edge_iterator ei;
2912 edge e;
2913 gimple_stmt_iterator gsi;
2914 gphi_iterator psi;
2916 /* Remove all outgoing edges except TE. */
2917 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei));)
2919 if (e != te)
2921 /* Mark all the PHI nodes at the destination of
2922 the unexecutable edge as interesting. */
2923 for (psi = gsi_start_phis (e->dest);
2924 !gsi_end_p (psi);
2925 gsi_next (&psi))
2927 gphi *phi = psi.phi ();
2929 tree result = gimple_phi_result (phi);
2930 int version = SSA_NAME_VERSION (result);
2932 bitmap_set_bit (interesting_names, version);
2935 te->probability += e->probability;
2937 te->count += e->count;
2938 remove_edge (e);
2939 cfg_altered = true;
2941 else
2942 ei_next (&ei);
2945 gsi = gsi_last_bb (gimple_bb (use_stmt));
2946 gsi_remove (&gsi, true);
2948 /* And fixup the flags on the single remaining edge. */
2949 te->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
2950 te->flags &= ~EDGE_ABNORMAL;
2951 te->flags |= EDGE_FALLTHRU;
2952 if (te->probability > REG_BR_PROB_BASE)
2953 te->probability = REG_BR_PROB_BASE;
2958 /* Ensure there is nothing else to do. */
2959 gcc_assert (!all || has_zero_uses (lhs));
2961 /* If we were able to propagate away all uses of LHS, then
2962 we can remove STMT. */
2963 if (all)
2964 remove_stmt_or_phi (stmt);
2968 /* STMT is either a PHI node (potentially a degenerate PHI node) or
2969 a statement that is a trivial copy or constant initialization.
2971 Attempt to eliminate T by propagating its RHS into all uses of
2972 its LHS. This may in turn set new bits in INTERESTING_NAMES
2973 for nodes we want to revisit later.
2975 All exit paths should clear INTERESTING_NAMES for the result
2976 of STMT. */
2978 static void
2979 eliminate_const_or_copy (gimple stmt, bitmap interesting_names)
2981 tree lhs = get_lhs_or_phi_result (stmt);
2982 tree rhs;
2983 int version = SSA_NAME_VERSION (lhs);
2985 /* If the LHS of this statement or PHI has no uses, then we can
2986 just eliminate it. This can occur if, for example, the PHI
2987 was created by block duplication due to threading and its only
2988 use was in the conditional at the end of the block which was
2989 deleted. */
2990 if (has_zero_uses (lhs))
2992 bitmap_clear_bit (interesting_names, version);
2993 remove_stmt_or_phi (stmt);
2994 return;
2997 /* Get the RHS of the assignment or PHI node if the PHI is a
2998 degenerate. */
2999 rhs = get_rhs_or_phi_arg (stmt);
3000 if (!rhs)
3002 bitmap_clear_bit (interesting_names, version);
3003 return;
3006 if (!virtual_operand_p (lhs))
3007 propagate_rhs_into_lhs (stmt, lhs, rhs, interesting_names);
3008 else
3010 gimple use_stmt;
3011 imm_use_iterator iter;
3012 use_operand_p use_p;
3013 /* For virtual operands we have to propagate into all uses as
3014 otherwise we will create overlapping life-ranges. */
3015 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3016 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3017 SET_USE (use_p, rhs);
3018 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
3019 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
3020 remove_stmt_or_phi (stmt);
3023 /* Note that STMT may well have been deleted by now, so do
3024 not access it, instead use the saved version # to clear
3025 T's entry in the worklist. */
3026 bitmap_clear_bit (interesting_names, version);
3029 /* The first phase in degenerate PHI elimination.
3031 Eliminate the degenerate PHIs in BB, then recurse on the
3032 dominator children of BB. */
3034 static void
3035 eliminate_degenerate_phis_1 (basic_block bb, bitmap interesting_names)
3037 gphi_iterator gsi;
3038 basic_block son;
3040 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3042 gphi *phi = gsi.phi ();
3044 eliminate_const_or_copy (phi, interesting_names);
3047 /* Recurse into the dominator children of BB. */
3048 for (son = first_dom_son (CDI_DOMINATORS, bb);
3049 son;
3050 son = next_dom_son (CDI_DOMINATORS, son))
3051 eliminate_degenerate_phis_1 (son, interesting_names);
3055 /* A very simple pass to eliminate degenerate PHI nodes from the
3056 IL. This is meant to be fast enough to be able to be run several
3057 times in the optimization pipeline.
3059 Certain optimizations, particularly those which duplicate blocks
3060 or remove edges from the CFG can create or expose PHIs which are
3061 trivial copies or constant initializations.
3063 While we could pick up these optimizations in DOM or with the
3064 combination of copy-prop and CCP, those solutions are far too
3065 heavy-weight for our needs.
3067 This implementation has two phases so that we can efficiently
3068 eliminate the first order degenerate PHIs and second order
3069 degenerate PHIs.
3071 The first phase performs a dominator walk to identify and eliminate
3072 the vast majority of the degenerate PHIs. When a degenerate PHI
3073 is identified and eliminated any affected statements or PHIs
3074 are put on a worklist.
3076 The second phase eliminates degenerate PHIs and trivial copies
3077 or constant initializations using the worklist. This is how we
3078 pick up the secondary optimization opportunities with minimal
3079 cost. */
3081 namespace {
3083 const pass_data pass_data_phi_only_cprop =
3085 GIMPLE_PASS, /* type */
3086 "phicprop", /* name */
3087 OPTGROUP_NONE, /* optinfo_flags */
3088 TV_TREE_PHI_CPROP, /* tv_id */
3089 ( PROP_cfg | PROP_ssa ), /* properties_required */
3090 0, /* properties_provided */
3091 0, /* properties_destroyed */
3092 0, /* todo_flags_start */
3093 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
3096 class pass_phi_only_cprop : public gimple_opt_pass
3098 public:
3099 pass_phi_only_cprop (gcc::context *ctxt)
3100 : gimple_opt_pass (pass_data_phi_only_cprop, ctxt)
3103 /* opt_pass methods: */
3104 opt_pass * clone () { return new pass_phi_only_cprop (m_ctxt); }
3105 virtual bool gate (function *) { return flag_tree_dom != 0; }
3106 virtual unsigned int execute (function *);
3108 }; // class pass_phi_only_cprop
3110 unsigned int
3111 pass_phi_only_cprop::execute (function *fun)
3113 bitmap interesting_names;
3114 bitmap interesting_names1;
3116 /* Bitmap of blocks which need EH information updated. We can not
3117 update it on-the-fly as doing so invalidates the dominator tree. */
3118 need_eh_cleanup = BITMAP_ALLOC (NULL);
3120 /* INTERESTING_NAMES is effectively our worklist, indexed by
3121 SSA_NAME_VERSION.
3123 A set bit indicates that the statement or PHI node which
3124 defines the SSA_NAME should be (re)examined to determine if
3125 it has become a degenerate PHI or trivial const/copy propagation
3126 opportunity.
3128 Experiments have show we generally get better compilation
3129 time behavior with bitmaps rather than sbitmaps. */
3130 interesting_names = BITMAP_ALLOC (NULL);
3131 interesting_names1 = BITMAP_ALLOC (NULL);
3133 calculate_dominance_info (CDI_DOMINATORS);
3134 cfg_altered = false;
3136 /* First phase. Eliminate degenerate PHIs via a dominator
3137 walk of the CFG.
3139 Experiments have indicated that we generally get better
3140 compile-time behavior by visiting blocks in the first
3141 phase in dominator order. Presumably this is because walking
3142 in dominator order leaves fewer PHIs for later examination
3143 by the worklist phase. */
3144 eliminate_degenerate_phis_1 (ENTRY_BLOCK_PTR_FOR_FN (fun),
3145 interesting_names);
3147 /* Second phase. Eliminate second order degenerate PHIs as well
3148 as trivial copies or constant initializations identified by
3149 the first phase or this phase. Basically we keep iterating
3150 until our set of INTERESTING_NAMEs is empty. */
3151 while (!bitmap_empty_p (interesting_names))
3153 unsigned int i;
3154 bitmap_iterator bi;
3156 /* EXECUTE_IF_SET_IN_BITMAP does not like its bitmap
3157 changed during the loop. Copy it to another bitmap and
3158 use that. */
3159 bitmap_copy (interesting_names1, interesting_names);
3161 EXECUTE_IF_SET_IN_BITMAP (interesting_names1, 0, i, bi)
3163 tree name = ssa_name (i);
3165 /* Ignore SSA_NAMEs that have been released because
3166 their defining statement was deleted (unreachable). */
3167 if (name)
3168 eliminate_const_or_copy (SSA_NAME_DEF_STMT (ssa_name (i)),
3169 interesting_names);
3173 if (cfg_altered)
3175 free_dominance_info (CDI_DOMINATORS);
3176 /* If we changed the CFG schedule loops for fixup by cfgcleanup. */
3177 loops_state_set (LOOPS_NEED_FIXUP);
3180 /* Propagation of const and copies may make some EH edges dead. Purge
3181 such edges from the CFG as needed. */
3182 if (!bitmap_empty_p (need_eh_cleanup))
3184 gimple_purge_all_dead_eh_edges (need_eh_cleanup);
3185 BITMAP_FREE (need_eh_cleanup);
3188 BITMAP_FREE (interesting_names);
3189 BITMAP_FREE (interesting_names1);
3190 return 0;
3193 } // anon namespace
3195 gimple_opt_pass *
3196 make_pass_phi_only_cprop (gcc::context *ctxt)
3198 return new pass_phi_only_cprop (ctxt);