PR testsuite/66621
[official-gcc.git] / gcc / real.c
blob2d34b6202790f170c1f3a746b92e61b5117d3caf
1 /* real.c - software floating point emulation.
2 Copyright (C) 1993-2015 Free Software Foundation, Inc.
3 Contributed by Stephen L. Moshier (moshier@world.std.com).
4 Re-written by Richard Henderson <rth@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "alias.h"
27 #include "symtab.h"
28 #include "tree.h"
29 #include "diagnostic-core.h"
30 #include "realmpfr.h"
31 #include "tm_p.h"
32 #include "dfp.h"
33 #include "rtl.h"
34 #include "options.h"
36 /* The floating point model used internally is not exactly IEEE 754
37 compliant, and close to the description in the ISO C99 standard,
38 section 5.2.4.2.2 Characteristics of floating types.
40 Specifically
42 x = s * b^e * \sum_{k=1}^p f_k * b^{-k}
44 where
45 s = sign (+- 1)
46 b = base or radix, here always 2
47 e = exponent
48 p = precision (the number of base-b digits in the significand)
49 f_k = the digits of the significand.
51 We differ from typical IEEE 754 encodings in that the entire
52 significand is fractional. Normalized significands are in the
53 range [0.5, 1.0).
55 A requirement of the model is that P be larger than the largest
56 supported target floating-point type by at least 2 bits. This gives
57 us proper rounding when we truncate to the target type. In addition,
58 E must be large enough to hold the smallest supported denormal number
59 in a normalized form.
61 Both of these requirements are easily satisfied. The largest target
62 significand is 113 bits; we store at least 160. The smallest
63 denormal number fits in 17 exponent bits; we store 26. */
66 /* Used to classify two numbers simultaneously. */
67 #define CLASS2(A, B) ((A) << 2 | (B))
69 #if HOST_BITS_PER_LONG != 64 && HOST_BITS_PER_LONG != 32
70 #error "Some constant folding done by hand to avoid shift count warnings"
71 #endif
73 static void get_zero (REAL_VALUE_TYPE *, int);
74 static void get_canonical_qnan (REAL_VALUE_TYPE *, int);
75 static void get_canonical_snan (REAL_VALUE_TYPE *, int);
76 static void get_inf (REAL_VALUE_TYPE *, int);
77 static bool sticky_rshift_significand (REAL_VALUE_TYPE *,
78 const REAL_VALUE_TYPE *, unsigned int);
79 static void rshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
80 unsigned int);
81 static void lshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
82 unsigned int);
83 static void lshift_significand_1 (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
84 static bool add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *,
85 const REAL_VALUE_TYPE *);
86 static bool sub_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
87 const REAL_VALUE_TYPE *, int);
88 static void neg_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
89 static int cmp_significands (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
90 static int cmp_significand_0 (const REAL_VALUE_TYPE *);
91 static void set_significand_bit (REAL_VALUE_TYPE *, unsigned int);
92 static void clear_significand_bit (REAL_VALUE_TYPE *, unsigned int);
93 static bool test_significand_bit (REAL_VALUE_TYPE *, unsigned int);
94 static void clear_significand_below (REAL_VALUE_TYPE *, unsigned int);
95 static bool div_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
96 const REAL_VALUE_TYPE *);
97 static void normalize (REAL_VALUE_TYPE *);
99 static bool do_add (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
100 const REAL_VALUE_TYPE *, int);
101 static bool do_multiply (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
102 const REAL_VALUE_TYPE *);
103 static bool do_divide (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
104 const REAL_VALUE_TYPE *);
105 static int do_compare (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int);
106 static void do_fix_trunc (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
108 static unsigned long rtd_divmod (REAL_VALUE_TYPE *, REAL_VALUE_TYPE *);
109 static void decimal_from_integer (REAL_VALUE_TYPE *);
110 static void decimal_integer_string (char *, const REAL_VALUE_TYPE *,
111 size_t);
113 static const REAL_VALUE_TYPE * ten_to_ptwo (int);
114 static const REAL_VALUE_TYPE * ten_to_mptwo (int);
115 static const REAL_VALUE_TYPE * real_digit (int);
116 static void times_pten (REAL_VALUE_TYPE *, int);
118 static void round_for_format (const struct real_format *, REAL_VALUE_TYPE *);
120 /* Initialize R with a positive zero. */
122 static inline void
123 get_zero (REAL_VALUE_TYPE *r, int sign)
125 memset (r, 0, sizeof (*r));
126 r->sign = sign;
129 /* Initialize R with the canonical quiet NaN. */
131 static inline void
132 get_canonical_qnan (REAL_VALUE_TYPE *r, int sign)
134 memset (r, 0, sizeof (*r));
135 r->cl = rvc_nan;
136 r->sign = sign;
137 r->canonical = 1;
140 static inline void
141 get_canonical_snan (REAL_VALUE_TYPE *r, int sign)
143 memset (r, 0, sizeof (*r));
144 r->cl = rvc_nan;
145 r->sign = sign;
146 r->signalling = 1;
147 r->canonical = 1;
150 static inline void
151 get_inf (REAL_VALUE_TYPE *r, int sign)
153 memset (r, 0, sizeof (*r));
154 r->cl = rvc_inf;
155 r->sign = sign;
159 /* Right-shift the significand of A by N bits; put the result in the
160 significand of R. If any one bits are shifted out, return true. */
162 static bool
163 sticky_rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
164 unsigned int n)
166 unsigned long sticky = 0;
167 unsigned int i, ofs = 0;
169 if (n >= HOST_BITS_PER_LONG)
171 for (i = 0, ofs = n / HOST_BITS_PER_LONG; i < ofs; ++i)
172 sticky |= a->sig[i];
173 n &= HOST_BITS_PER_LONG - 1;
176 if (n != 0)
178 sticky |= a->sig[ofs] & (((unsigned long)1 << n) - 1);
179 for (i = 0; i < SIGSZ; ++i)
181 r->sig[i]
182 = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
183 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
184 << (HOST_BITS_PER_LONG - n)));
187 else
189 for (i = 0; ofs + i < SIGSZ; ++i)
190 r->sig[i] = a->sig[ofs + i];
191 for (; i < SIGSZ; ++i)
192 r->sig[i] = 0;
195 return sticky != 0;
198 /* Right-shift the significand of A by N bits; put the result in the
199 significand of R. */
201 static void
202 rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
203 unsigned int n)
205 unsigned int i, ofs = n / HOST_BITS_PER_LONG;
207 n &= HOST_BITS_PER_LONG - 1;
208 if (n != 0)
210 for (i = 0; i < SIGSZ; ++i)
212 r->sig[i]
213 = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
214 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
215 << (HOST_BITS_PER_LONG - n)));
218 else
220 for (i = 0; ofs + i < SIGSZ; ++i)
221 r->sig[i] = a->sig[ofs + i];
222 for (; i < SIGSZ; ++i)
223 r->sig[i] = 0;
227 /* Left-shift the significand of A by N bits; put the result in the
228 significand of R. */
230 static void
231 lshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
232 unsigned int n)
234 unsigned int i, ofs = n / HOST_BITS_PER_LONG;
236 n &= HOST_BITS_PER_LONG - 1;
237 if (n == 0)
239 for (i = 0; ofs + i < SIGSZ; ++i)
240 r->sig[SIGSZ-1-i] = a->sig[SIGSZ-1-i-ofs];
241 for (; i < SIGSZ; ++i)
242 r->sig[SIGSZ-1-i] = 0;
244 else
245 for (i = 0; i < SIGSZ; ++i)
247 r->sig[SIGSZ-1-i]
248 = (((ofs + i >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs]) << n)
249 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs-1])
250 >> (HOST_BITS_PER_LONG - n)));
254 /* Likewise, but N is specialized to 1. */
256 static inline void
257 lshift_significand_1 (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
259 unsigned int i;
261 for (i = SIGSZ - 1; i > 0; --i)
262 r->sig[i] = (a->sig[i] << 1) | (a->sig[i-1] >> (HOST_BITS_PER_LONG - 1));
263 r->sig[0] = a->sig[0] << 1;
266 /* Add the significands of A and B, placing the result in R. Return
267 true if there was carry out of the most significant word. */
269 static inline bool
270 add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
271 const REAL_VALUE_TYPE *b)
273 bool carry = false;
274 int i;
276 for (i = 0; i < SIGSZ; ++i)
278 unsigned long ai = a->sig[i];
279 unsigned long ri = ai + b->sig[i];
281 if (carry)
283 carry = ri < ai;
284 carry |= ++ri == 0;
286 else
287 carry = ri < ai;
289 r->sig[i] = ri;
292 return carry;
295 /* Subtract the significands of A and B, placing the result in R. CARRY is
296 true if there's a borrow incoming to the least significant word.
297 Return true if there was borrow out of the most significant word. */
299 static inline bool
300 sub_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
301 const REAL_VALUE_TYPE *b, int carry)
303 int i;
305 for (i = 0; i < SIGSZ; ++i)
307 unsigned long ai = a->sig[i];
308 unsigned long ri = ai - b->sig[i];
310 if (carry)
312 carry = ri > ai;
313 carry |= ~--ri == 0;
315 else
316 carry = ri > ai;
318 r->sig[i] = ri;
321 return carry;
324 /* Negate the significand A, placing the result in R. */
326 static inline void
327 neg_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
329 bool carry = true;
330 int i;
332 for (i = 0; i < SIGSZ; ++i)
334 unsigned long ri, ai = a->sig[i];
336 if (carry)
338 if (ai)
340 ri = -ai;
341 carry = false;
343 else
344 ri = ai;
346 else
347 ri = ~ai;
349 r->sig[i] = ri;
353 /* Compare significands. Return tri-state vs zero. */
355 static inline int
356 cmp_significands (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
358 int i;
360 for (i = SIGSZ - 1; i >= 0; --i)
362 unsigned long ai = a->sig[i];
363 unsigned long bi = b->sig[i];
365 if (ai > bi)
366 return 1;
367 if (ai < bi)
368 return -1;
371 return 0;
374 /* Return true if A is nonzero. */
376 static inline int
377 cmp_significand_0 (const REAL_VALUE_TYPE *a)
379 int i;
381 for (i = SIGSZ - 1; i >= 0; --i)
382 if (a->sig[i])
383 return 1;
385 return 0;
388 /* Set bit N of the significand of R. */
390 static inline void
391 set_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
393 r->sig[n / HOST_BITS_PER_LONG]
394 |= (unsigned long)1 << (n % HOST_BITS_PER_LONG);
397 /* Clear bit N of the significand of R. */
399 static inline void
400 clear_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
402 r->sig[n / HOST_BITS_PER_LONG]
403 &= ~((unsigned long)1 << (n % HOST_BITS_PER_LONG));
406 /* Test bit N of the significand of R. */
408 static inline bool
409 test_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
411 /* ??? Compiler bug here if we return this expression directly.
412 The conversion to bool strips the "&1" and we wind up testing
413 e.g. 2 != 0 -> true. Seen in gcc version 3.2 20020520. */
414 int t = (r->sig[n / HOST_BITS_PER_LONG] >> (n % HOST_BITS_PER_LONG)) & 1;
415 return t;
418 /* Clear bits 0..N-1 of the significand of R. */
420 static void
421 clear_significand_below (REAL_VALUE_TYPE *r, unsigned int n)
423 int i, w = n / HOST_BITS_PER_LONG;
425 for (i = 0; i < w; ++i)
426 r->sig[i] = 0;
428 r->sig[w] &= ~(((unsigned long)1 << (n % HOST_BITS_PER_LONG)) - 1);
431 /* Divide the significands of A and B, placing the result in R. Return
432 true if the division was inexact. */
434 static inline bool
435 div_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
436 const REAL_VALUE_TYPE *b)
438 REAL_VALUE_TYPE u;
439 int i, bit = SIGNIFICAND_BITS - 1;
440 unsigned long msb, inexact;
442 u = *a;
443 memset (r->sig, 0, sizeof (r->sig));
445 msb = 0;
446 goto start;
449 msb = u.sig[SIGSZ-1] & SIG_MSB;
450 lshift_significand_1 (&u, &u);
451 start:
452 if (msb || cmp_significands (&u, b) >= 0)
454 sub_significands (&u, &u, b, 0);
455 set_significand_bit (r, bit);
458 while (--bit >= 0);
460 for (i = 0, inexact = 0; i < SIGSZ; i++)
461 inexact |= u.sig[i];
463 return inexact != 0;
466 /* Adjust the exponent and significand of R such that the most
467 significant bit is set. We underflow to zero and overflow to
468 infinity here, without denormals. (The intermediate representation
469 exponent is large enough to handle target denormals normalized.) */
471 static void
472 normalize (REAL_VALUE_TYPE *r)
474 int shift = 0, exp;
475 int i, j;
477 if (r->decimal)
478 return;
480 /* Find the first word that is nonzero. */
481 for (i = SIGSZ - 1; i >= 0; i--)
482 if (r->sig[i] == 0)
483 shift += HOST_BITS_PER_LONG;
484 else
485 break;
487 /* Zero significand flushes to zero. */
488 if (i < 0)
490 r->cl = rvc_zero;
491 SET_REAL_EXP (r, 0);
492 return;
495 /* Find the first bit that is nonzero. */
496 for (j = 0; ; j++)
497 if (r->sig[i] & ((unsigned long)1 << (HOST_BITS_PER_LONG - 1 - j)))
498 break;
499 shift += j;
501 if (shift > 0)
503 exp = REAL_EXP (r) - shift;
504 if (exp > MAX_EXP)
505 get_inf (r, r->sign);
506 else if (exp < -MAX_EXP)
507 get_zero (r, r->sign);
508 else
510 SET_REAL_EXP (r, exp);
511 lshift_significand (r, r, shift);
516 /* Calculate R = A + (SUBTRACT_P ? -B : B). Return true if the
517 result may be inexact due to a loss of precision. */
519 static bool
520 do_add (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
521 const REAL_VALUE_TYPE *b, int subtract_p)
523 int dexp, sign, exp;
524 REAL_VALUE_TYPE t;
525 bool inexact = false;
527 /* Determine if we need to add or subtract. */
528 sign = a->sign;
529 subtract_p = (sign ^ b->sign) ^ subtract_p;
531 switch (CLASS2 (a->cl, b->cl))
533 case CLASS2 (rvc_zero, rvc_zero):
534 /* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0. */
535 get_zero (r, sign & !subtract_p);
536 return false;
538 case CLASS2 (rvc_zero, rvc_normal):
539 case CLASS2 (rvc_zero, rvc_inf):
540 case CLASS2 (rvc_zero, rvc_nan):
541 /* 0 + ANY = ANY. */
542 case CLASS2 (rvc_normal, rvc_nan):
543 case CLASS2 (rvc_inf, rvc_nan):
544 case CLASS2 (rvc_nan, rvc_nan):
545 /* ANY + NaN = NaN. */
546 case CLASS2 (rvc_normal, rvc_inf):
547 /* R + Inf = Inf. */
548 *r = *b;
549 r->sign = sign ^ subtract_p;
550 return false;
552 case CLASS2 (rvc_normal, rvc_zero):
553 case CLASS2 (rvc_inf, rvc_zero):
554 case CLASS2 (rvc_nan, rvc_zero):
555 /* ANY + 0 = ANY. */
556 case CLASS2 (rvc_nan, rvc_normal):
557 case CLASS2 (rvc_nan, rvc_inf):
558 /* NaN + ANY = NaN. */
559 case CLASS2 (rvc_inf, rvc_normal):
560 /* Inf + R = Inf. */
561 *r = *a;
562 return false;
564 case CLASS2 (rvc_inf, rvc_inf):
565 if (subtract_p)
566 /* Inf - Inf = NaN. */
567 get_canonical_qnan (r, 0);
568 else
569 /* Inf + Inf = Inf. */
570 *r = *a;
571 return false;
573 case CLASS2 (rvc_normal, rvc_normal):
574 break;
576 default:
577 gcc_unreachable ();
580 /* Swap the arguments such that A has the larger exponent. */
581 dexp = REAL_EXP (a) - REAL_EXP (b);
582 if (dexp < 0)
584 const REAL_VALUE_TYPE *t;
585 t = a, a = b, b = t;
586 dexp = -dexp;
587 sign ^= subtract_p;
589 exp = REAL_EXP (a);
591 /* If the exponents are not identical, we need to shift the
592 significand of B down. */
593 if (dexp > 0)
595 /* If the exponents are too far apart, the significands
596 do not overlap, which makes the subtraction a noop. */
597 if (dexp >= SIGNIFICAND_BITS)
599 *r = *a;
600 r->sign = sign;
601 return true;
604 inexact |= sticky_rshift_significand (&t, b, dexp);
605 b = &t;
608 if (subtract_p)
610 if (sub_significands (r, a, b, inexact))
612 /* We got a borrow out of the subtraction. That means that
613 A and B had the same exponent, and B had the larger
614 significand. We need to swap the sign and negate the
615 significand. */
616 sign ^= 1;
617 neg_significand (r, r);
620 else
622 if (add_significands (r, a, b))
624 /* We got carry out of the addition. This means we need to
625 shift the significand back down one bit and increase the
626 exponent. */
627 inexact |= sticky_rshift_significand (r, r, 1);
628 r->sig[SIGSZ-1] |= SIG_MSB;
629 if (++exp > MAX_EXP)
631 get_inf (r, sign);
632 return true;
637 r->cl = rvc_normal;
638 r->sign = sign;
639 SET_REAL_EXP (r, exp);
640 /* Zero out the remaining fields. */
641 r->signalling = 0;
642 r->canonical = 0;
643 r->decimal = 0;
645 /* Re-normalize the result. */
646 normalize (r);
648 /* Special case: if the subtraction results in zero, the result
649 is positive. */
650 if (r->cl == rvc_zero)
651 r->sign = 0;
652 else
653 r->sig[0] |= inexact;
655 return inexact;
658 /* Calculate R = A * B. Return true if the result may be inexact. */
660 static bool
661 do_multiply (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
662 const REAL_VALUE_TYPE *b)
664 REAL_VALUE_TYPE u, t, *rr;
665 unsigned int i, j, k;
666 int sign = a->sign ^ b->sign;
667 bool inexact = false;
669 switch (CLASS2 (a->cl, b->cl))
671 case CLASS2 (rvc_zero, rvc_zero):
672 case CLASS2 (rvc_zero, rvc_normal):
673 case CLASS2 (rvc_normal, rvc_zero):
674 /* +-0 * ANY = 0 with appropriate sign. */
675 get_zero (r, sign);
676 return false;
678 case CLASS2 (rvc_zero, rvc_nan):
679 case CLASS2 (rvc_normal, rvc_nan):
680 case CLASS2 (rvc_inf, rvc_nan):
681 case CLASS2 (rvc_nan, rvc_nan):
682 /* ANY * NaN = NaN. */
683 *r = *b;
684 r->sign = sign;
685 return false;
687 case CLASS2 (rvc_nan, rvc_zero):
688 case CLASS2 (rvc_nan, rvc_normal):
689 case CLASS2 (rvc_nan, rvc_inf):
690 /* NaN * ANY = NaN. */
691 *r = *a;
692 r->sign = sign;
693 return false;
695 case CLASS2 (rvc_zero, rvc_inf):
696 case CLASS2 (rvc_inf, rvc_zero):
697 /* 0 * Inf = NaN */
698 get_canonical_qnan (r, sign);
699 return false;
701 case CLASS2 (rvc_inf, rvc_inf):
702 case CLASS2 (rvc_normal, rvc_inf):
703 case CLASS2 (rvc_inf, rvc_normal):
704 /* Inf * Inf = Inf, R * Inf = Inf */
705 get_inf (r, sign);
706 return false;
708 case CLASS2 (rvc_normal, rvc_normal):
709 break;
711 default:
712 gcc_unreachable ();
715 if (r == a || r == b)
716 rr = &t;
717 else
718 rr = r;
719 get_zero (rr, 0);
721 /* Collect all the partial products. Since we don't have sure access
722 to a widening multiply, we split each long into two half-words.
724 Consider the long-hand form of a four half-word multiplication:
726 A B C D
727 * E F G H
728 --------------
729 DE DF DG DH
730 CE CF CG CH
731 BE BF BG BH
732 AE AF AG AH
734 We construct partial products of the widened half-word products
735 that are known to not overlap, e.g. DF+DH. Each such partial
736 product is given its proper exponent, which allows us to sum them
737 and obtain the finished product. */
739 for (i = 0; i < SIGSZ * 2; ++i)
741 unsigned long ai = a->sig[i / 2];
742 if (i & 1)
743 ai >>= HOST_BITS_PER_LONG / 2;
744 else
745 ai &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
747 if (ai == 0)
748 continue;
750 for (j = 0; j < 2; ++j)
752 int exp = (REAL_EXP (a) - (2*SIGSZ-1-i)*(HOST_BITS_PER_LONG/2)
753 + (REAL_EXP (b) - (1-j)*(HOST_BITS_PER_LONG/2)));
755 if (exp > MAX_EXP)
757 get_inf (r, sign);
758 return true;
760 if (exp < -MAX_EXP)
762 /* Would underflow to zero, which we shouldn't bother adding. */
763 inexact = true;
764 continue;
767 memset (&u, 0, sizeof (u));
768 u.cl = rvc_normal;
769 SET_REAL_EXP (&u, exp);
771 for (k = j; k < SIGSZ * 2; k += 2)
773 unsigned long bi = b->sig[k / 2];
774 if (k & 1)
775 bi >>= HOST_BITS_PER_LONG / 2;
776 else
777 bi &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
779 u.sig[k / 2] = ai * bi;
782 normalize (&u);
783 inexact |= do_add (rr, rr, &u, 0);
787 rr->sign = sign;
788 if (rr != r)
789 *r = t;
791 return inexact;
794 /* Calculate R = A / B. Return true if the result may be inexact. */
796 static bool
797 do_divide (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
798 const REAL_VALUE_TYPE *b)
800 int exp, sign = a->sign ^ b->sign;
801 REAL_VALUE_TYPE t, *rr;
802 bool inexact;
804 switch (CLASS2 (a->cl, b->cl))
806 case CLASS2 (rvc_zero, rvc_zero):
807 /* 0 / 0 = NaN. */
808 case CLASS2 (rvc_inf, rvc_inf):
809 /* Inf / Inf = NaN. */
810 get_canonical_qnan (r, sign);
811 return false;
813 case CLASS2 (rvc_zero, rvc_normal):
814 case CLASS2 (rvc_zero, rvc_inf):
815 /* 0 / ANY = 0. */
816 case CLASS2 (rvc_normal, rvc_inf):
817 /* R / Inf = 0. */
818 get_zero (r, sign);
819 return false;
821 case CLASS2 (rvc_normal, rvc_zero):
822 /* R / 0 = Inf. */
823 case CLASS2 (rvc_inf, rvc_zero):
824 /* Inf / 0 = Inf. */
825 get_inf (r, sign);
826 return false;
828 case CLASS2 (rvc_zero, rvc_nan):
829 case CLASS2 (rvc_normal, rvc_nan):
830 case CLASS2 (rvc_inf, rvc_nan):
831 case CLASS2 (rvc_nan, rvc_nan):
832 /* ANY / NaN = NaN. */
833 *r = *b;
834 r->sign = sign;
835 return false;
837 case CLASS2 (rvc_nan, rvc_zero):
838 case CLASS2 (rvc_nan, rvc_normal):
839 case CLASS2 (rvc_nan, rvc_inf):
840 /* NaN / ANY = NaN. */
841 *r = *a;
842 r->sign = sign;
843 return false;
845 case CLASS2 (rvc_inf, rvc_normal):
846 /* Inf / R = Inf. */
847 get_inf (r, sign);
848 return false;
850 case CLASS2 (rvc_normal, rvc_normal):
851 break;
853 default:
854 gcc_unreachable ();
857 if (r == a || r == b)
858 rr = &t;
859 else
860 rr = r;
862 /* Make sure all fields in the result are initialized. */
863 get_zero (rr, 0);
864 rr->cl = rvc_normal;
865 rr->sign = sign;
867 exp = REAL_EXP (a) - REAL_EXP (b) + 1;
868 if (exp > MAX_EXP)
870 get_inf (r, sign);
871 return true;
873 if (exp < -MAX_EXP)
875 get_zero (r, sign);
876 return true;
878 SET_REAL_EXP (rr, exp);
880 inexact = div_significands (rr, a, b);
882 /* Re-normalize the result. */
883 normalize (rr);
884 rr->sig[0] |= inexact;
886 if (rr != r)
887 *r = t;
889 return inexact;
892 /* Return a tri-state comparison of A vs B. Return NAN_RESULT if
893 one of the two operands is a NaN. */
895 static int
896 do_compare (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b,
897 int nan_result)
899 int ret;
901 switch (CLASS2 (a->cl, b->cl))
903 case CLASS2 (rvc_zero, rvc_zero):
904 /* Sign of zero doesn't matter for compares. */
905 return 0;
907 case CLASS2 (rvc_normal, rvc_zero):
908 /* Decimal float zero is special and uses rvc_normal, not rvc_zero. */
909 if (a->decimal)
910 return decimal_do_compare (a, b, nan_result);
911 /* Fall through. */
912 case CLASS2 (rvc_inf, rvc_zero):
913 case CLASS2 (rvc_inf, rvc_normal):
914 return (a->sign ? -1 : 1);
916 case CLASS2 (rvc_inf, rvc_inf):
917 return -a->sign - -b->sign;
919 case CLASS2 (rvc_zero, rvc_normal):
920 /* Decimal float zero is special and uses rvc_normal, not rvc_zero. */
921 if (b->decimal)
922 return decimal_do_compare (a, b, nan_result);
923 /* Fall through. */
924 case CLASS2 (rvc_zero, rvc_inf):
925 case CLASS2 (rvc_normal, rvc_inf):
926 return (b->sign ? 1 : -1);
928 case CLASS2 (rvc_zero, rvc_nan):
929 case CLASS2 (rvc_normal, rvc_nan):
930 case CLASS2 (rvc_inf, rvc_nan):
931 case CLASS2 (rvc_nan, rvc_nan):
932 case CLASS2 (rvc_nan, rvc_zero):
933 case CLASS2 (rvc_nan, rvc_normal):
934 case CLASS2 (rvc_nan, rvc_inf):
935 return nan_result;
937 case CLASS2 (rvc_normal, rvc_normal):
938 break;
940 default:
941 gcc_unreachable ();
944 if (a->sign != b->sign)
945 return -a->sign - -b->sign;
947 if (a->decimal || b->decimal)
948 return decimal_do_compare (a, b, nan_result);
950 if (REAL_EXP (a) > REAL_EXP (b))
951 ret = 1;
952 else if (REAL_EXP (a) < REAL_EXP (b))
953 ret = -1;
954 else
955 ret = cmp_significands (a, b);
957 return (a->sign ? -ret : ret);
960 /* Return A truncated to an integral value toward zero. */
962 static void
963 do_fix_trunc (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
965 *r = *a;
967 switch (r->cl)
969 case rvc_zero:
970 case rvc_inf:
971 case rvc_nan:
972 break;
974 case rvc_normal:
975 if (r->decimal)
977 decimal_do_fix_trunc (r, a);
978 return;
980 if (REAL_EXP (r) <= 0)
981 get_zero (r, r->sign);
982 else if (REAL_EXP (r) < SIGNIFICAND_BITS)
983 clear_significand_below (r, SIGNIFICAND_BITS - REAL_EXP (r));
984 break;
986 default:
987 gcc_unreachable ();
991 /* Perform the binary or unary operation described by CODE.
992 For a unary operation, leave OP1 NULL. This function returns
993 true if the result may be inexact due to loss of precision. */
995 bool
996 real_arithmetic (REAL_VALUE_TYPE *r, int icode, const REAL_VALUE_TYPE *op0,
997 const REAL_VALUE_TYPE *op1)
999 enum tree_code code = (enum tree_code) icode;
1001 if (op0->decimal || (op1 && op1->decimal))
1002 return decimal_real_arithmetic (r, code, op0, op1);
1004 switch (code)
1006 case PLUS_EXPR:
1007 /* Clear any padding areas in *r if it isn't equal to one of the
1008 operands so that we can later do bitwise comparisons later on. */
1009 if (r != op0 && r != op1)
1010 memset (r, '\0', sizeof (*r));
1011 return do_add (r, op0, op1, 0);
1013 case MINUS_EXPR:
1014 if (r != op0 && r != op1)
1015 memset (r, '\0', sizeof (*r));
1016 return do_add (r, op0, op1, 1);
1018 case MULT_EXPR:
1019 if (r != op0 && r != op1)
1020 memset (r, '\0', sizeof (*r));
1021 return do_multiply (r, op0, op1);
1023 case RDIV_EXPR:
1024 if (r != op0 && r != op1)
1025 memset (r, '\0', sizeof (*r));
1026 return do_divide (r, op0, op1);
1028 case MIN_EXPR:
1029 if (op1->cl == rvc_nan)
1030 *r = *op1;
1031 else if (do_compare (op0, op1, -1) < 0)
1032 *r = *op0;
1033 else
1034 *r = *op1;
1035 break;
1037 case MAX_EXPR:
1038 if (op1->cl == rvc_nan)
1039 *r = *op1;
1040 else if (do_compare (op0, op1, 1) < 0)
1041 *r = *op1;
1042 else
1043 *r = *op0;
1044 break;
1046 case NEGATE_EXPR:
1047 *r = *op0;
1048 r->sign ^= 1;
1049 break;
1051 case ABS_EXPR:
1052 *r = *op0;
1053 r->sign = 0;
1054 break;
1056 case FIX_TRUNC_EXPR:
1057 do_fix_trunc (r, op0);
1058 break;
1060 default:
1061 gcc_unreachable ();
1063 return false;
1066 REAL_VALUE_TYPE
1067 real_value_negate (const REAL_VALUE_TYPE *op0)
1069 REAL_VALUE_TYPE r;
1070 real_arithmetic (&r, NEGATE_EXPR, op0, NULL);
1071 return r;
1074 REAL_VALUE_TYPE
1075 real_value_abs (const REAL_VALUE_TYPE *op0)
1077 REAL_VALUE_TYPE r;
1078 real_arithmetic (&r, ABS_EXPR, op0, NULL);
1079 return r;
1082 bool
1083 real_compare (int icode, const REAL_VALUE_TYPE *op0,
1084 const REAL_VALUE_TYPE *op1)
1086 enum tree_code code = (enum tree_code) icode;
1088 switch (code)
1090 case LT_EXPR:
1091 return do_compare (op0, op1, 1) < 0;
1092 case LE_EXPR:
1093 return do_compare (op0, op1, 1) <= 0;
1094 case GT_EXPR:
1095 return do_compare (op0, op1, -1) > 0;
1096 case GE_EXPR:
1097 return do_compare (op0, op1, -1) >= 0;
1098 case EQ_EXPR:
1099 return do_compare (op0, op1, -1) == 0;
1100 case NE_EXPR:
1101 return do_compare (op0, op1, -1) != 0;
1102 case UNORDERED_EXPR:
1103 return op0->cl == rvc_nan || op1->cl == rvc_nan;
1104 case ORDERED_EXPR:
1105 return op0->cl != rvc_nan && op1->cl != rvc_nan;
1106 case UNLT_EXPR:
1107 return do_compare (op0, op1, -1) < 0;
1108 case UNLE_EXPR:
1109 return do_compare (op0, op1, -1) <= 0;
1110 case UNGT_EXPR:
1111 return do_compare (op0, op1, 1) > 0;
1112 case UNGE_EXPR:
1113 return do_compare (op0, op1, 1) >= 0;
1114 case UNEQ_EXPR:
1115 return do_compare (op0, op1, 0) == 0;
1116 case LTGT_EXPR:
1117 return do_compare (op0, op1, 0) != 0;
1119 default:
1120 gcc_unreachable ();
1124 /* Return floor log2(R). */
1127 real_exponent (const REAL_VALUE_TYPE *r)
1129 switch (r->cl)
1131 case rvc_zero:
1132 return 0;
1133 case rvc_inf:
1134 case rvc_nan:
1135 return (unsigned int)-1 >> 1;
1136 case rvc_normal:
1137 return REAL_EXP (r);
1138 default:
1139 gcc_unreachable ();
1143 /* R = OP0 * 2**EXP. */
1145 void
1146 real_ldexp (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0, int exp)
1148 *r = *op0;
1149 switch (r->cl)
1151 case rvc_zero:
1152 case rvc_inf:
1153 case rvc_nan:
1154 break;
1156 case rvc_normal:
1157 exp += REAL_EXP (op0);
1158 if (exp > MAX_EXP)
1159 get_inf (r, r->sign);
1160 else if (exp < -MAX_EXP)
1161 get_zero (r, r->sign);
1162 else
1163 SET_REAL_EXP (r, exp);
1164 break;
1166 default:
1167 gcc_unreachable ();
1171 /* Determine whether a floating-point value X is infinite. */
1173 bool
1174 real_isinf (const REAL_VALUE_TYPE *r)
1176 return (r->cl == rvc_inf);
1179 /* Determine whether a floating-point value X is a NaN. */
1181 bool
1182 real_isnan (const REAL_VALUE_TYPE *r)
1184 return (r->cl == rvc_nan);
1187 /* Determine whether a floating-point value X is finite. */
1189 bool
1190 real_isfinite (const REAL_VALUE_TYPE *r)
1192 return (r->cl != rvc_nan) && (r->cl != rvc_inf);
1195 /* Determine whether a floating-point value X is negative. */
1197 bool
1198 real_isneg (const REAL_VALUE_TYPE *r)
1200 return r->sign;
1203 /* Determine whether a floating-point value X is minus zero. */
1205 bool
1206 real_isnegzero (const REAL_VALUE_TYPE *r)
1208 return r->sign && r->cl == rvc_zero;
1211 /* Compare two floating-point objects for bitwise identity. */
1213 bool
1214 real_identical (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
1216 int i;
1218 if (a->cl != b->cl)
1219 return false;
1220 if (a->sign != b->sign)
1221 return false;
1223 switch (a->cl)
1225 case rvc_zero:
1226 case rvc_inf:
1227 return true;
1229 case rvc_normal:
1230 if (a->decimal != b->decimal)
1231 return false;
1232 if (REAL_EXP (a) != REAL_EXP (b))
1233 return false;
1234 break;
1236 case rvc_nan:
1237 if (a->signalling != b->signalling)
1238 return false;
1239 /* The significand is ignored for canonical NaNs. */
1240 if (a->canonical || b->canonical)
1241 return a->canonical == b->canonical;
1242 break;
1244 default:
1245 gcc_unreachable ();
1248 for (i = 0; i < SIGSZ; ++i)
1249 if (a->sig[i] != b->sig[i])
1250 return false;
1252 return true;
1255 /* Try to change R into its exact multiplicative inverse in machine
1256 mode MODE. Return true if successful. */
1258 bool
1259 exact_real_inverse (machine_mode mode, REAL_VALUE_TYPE *r)
1261 const REAL_VALUE_TYPE *one = real_digit (1);
1262 REAL_VALUE_TYPE u;
1263 int i;
1265 if (r->cl != rvc_normal)
1266 return false;
1268 /* Check for a power of two: all significand bits zero except the MSB. */
1269 for (i = 0; i < SIGSZ-1; ++i)
1270 if (r->sig[i] != 0)
1271 return false;
1272 if (r->sig[SIGSZ-1] != SIG_MSB)
1273 return false;
1275 /* Find the inverse and truncate to the required mode. */
1276 do_divide (&u, one, r);
1277 real_convert (&u, mode, &u);
1279 /* The rounding may have overflowed. */
1280 if (u.cl != rvc_normal)
1281 return false;
1282 for (i = 0; i < SIGSZ-1; ++i)
1283 if (u.sig[i] != 0)
1284 return false;
1285 if (u.sig[SIGSZ-1] != SIG_MSB)
1286 return false;
1288 *r = u;
1289 return true;
1292 /* Return true if arithmetic on values in IMODE that were promoted
1293 from values in TMODE is equivalent to direct arithmetic on values
1294 in TMODE. */
1296 bool
1297 real_can_shorten_arithmetic (machine_mode imode, machine_mode tmode)
1299 const struct real_format *tfmt, *ifmt;
1300 tfmt = REAL_MODE_FORMAT (tmode);
1301 ifmt = REAL_MODE_FORMAT (imode);
1302 /* These conditions are conservative rather than trying to catch the
1303 exact boundary conditions; the main case to allow is IEEE float
1304 and double. */
1305 return (ifmt->b == tfmt->b
1306 && ifmt->p > 2 * tfmt->p
1307 && ifmt->emin < 2 * tfmt->emin - tfmt->p - 2
1308 && ifmt->emin < tfmt->emin - tfmt->emax - tfmt->p - 2
1309 && ifmt->emax > 2 * tfmt->emax + 2
1310 && ifmt->emax > tfmt->emax - tfmt->emin + tfmt->p + 2
1311 && ifmt->round_towards_zero == tfmt->round_towards_zero
1312 && (ifmt->has_sign_dependent_rounding
1313 == tfmt->has_sign_dependent_rounding)
1314 && ifmt->has_nans >= tfmt->has_nans
1315 && ifmt->has_inf >= tfmt->has_inf
1316 && ifmt->has_signed_zero >= tfmt->has_signed_zero
1317 && !MODE_COMPOSITE_P (tmode)
1318 && !MODE_COMPOSITE_P (imode));
1321 /* Render R as an integer. */
1323 HOST_WIDE_INT
1324 real_to_integer (const REAL_VALUE_TYPE *r)
1326 unsigned HOST_WIDE_INT i;
1328 switch (r->cl)
1330 case rvc_zero:
1331 underflow:
1332 return 0;
1334 case rvc_inf:
1335 case rvc_nan:
1336 overflow:
1337 i = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
1338 if (!r->sign)
1339 i--;
1340 return i;
1342 case rvc_normal:
1343 if (r->decimal)
1344 return decimal_real_to_integer (r);
1346 if (REAL_EXP (r) <= 0)
1347 goto underflow;
1348 /* Only force overflow for unsigned overflow. Signed overflow is
1349 undefined, so it doesn't matter what we return, and some callers
1350 expect to be able to use this routine for both signed and
1351 unsigned conversions. */
1352 if (REAL_EXP (r) > HOST_BITS_PER_WIDE_INT)
1353 goto overflow;
1355 if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1356 i = r->sig[SIGSZ-1];
1357 else
1359 gcc_assert (HOST_BITS_PER_WIDE_INT == 2 * HOST_BITS_PER_LONG);
1360 i = r->sig[SIGSZ-1];
1361 i = i << (HOST_BITS_PER_LONG - 1) << 1;
1362 i |= r->sig[SIGSZ-2];
1365 i >>= HOST_BITS_PER_WIDE_INT - REAL_EXP (r);
1367 if (r->sign)
1368 i = -i;
1369 return i;
1371 default:
1372 gcc_unreachable ();
1376 /* Likewise, but producing a wide-int of PRECISION. If the value cannot
1377 be represented in precision, *FAIL is set to TRUE. */
1379 wide_int
1380 real_to_integer (const REAL_VALUE_TYPE *r, bool *fail, int precision)
1382 HOST_WIDE_INT val[2 * WIDE_INT_MAX_ELTS];
1383 int exp;
1384 int words, w;
1385 wide_int result;
1387 switch (r->cl)
1389 case rvc_zero:
1390 underflow:
1391 return wi::zero (precision);
1393 case rvc_inf:
1394 case rvc_nan:
1395 overflow:
1396 *fail = true;
1398 if (r->sign)
1399 return wi::set_bit_in_zero (precision - 1, precision);
1400 else
1401 return ~wi::set_bit_in_zero (precision - 1, precision);
1403 case rvc_normal:
1404 if (r->decimal)
1405 return decimal_real_to_integer (r, fail, precision);
1407 exp = REAL_EXP (r);
1408 if (exp <= 0)
1409 goto underflow;
1410 /* Only force overflow for unsigned overflow. Signed overflow is
1411 undefined, so it doesn't matter what we return, and some callers
1412 expect to be able to use this routine for both signed and
1413 unsigned conversions. */
1414 if (exp > precision)
1415 goto overflow;
1417 /* Put the significand into a wide_int that has precision W, which
1418 is the smallest HWI-multiple that has at least PRECISION bits.
1419 This ensures that the top bit of the significand is in the
1420 top bit of the wide_int. */
1421 words = (precision + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
1422 w = words * HOST_BITS_PER_WIDE_INT;
1424 #if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1425 for (int i = 0; i < words; i++)
1427 int j = SIGSZ - words + i;
1428 val[i] = (j < 0) ? 0 : r->sig[j];
1430 #else
1431 gcc_assert (HOST_BITS_PER_WIDE_INT == 2 * HOST_BITS_PER_LONG);
1432 for (int i = 0; i < words; i++)
1434 int j = SIGSZ - (words * 2) + (i * 2);
1435 if (j < 0)
1436 val[i] = 0;
1437 else
1438 val[i] = r->sig[j];
1439 j += 1;
1440 if (j >= 0)
1441 val[i] |= (unsigned HOST_WIDE_INT) r->sig[j] << HOST_BITS_PER_LONG;
1443 #endif
1444 /* Shift the value into place and truncate to the desired precision. */
1445 result = wide_int::from_array (val, words, w);
1446 result = wi::lrshift (result, w - exp);
1447 result = wide_int::from (result, precision, UNSIGNED);
1449 if (r->sign)
1450 return -result;
1451 else
1452 return result;
1454 default:
1455 gcc_unreachable ();
1459 /* A subroutine of real_to_decimal. Compute the quotient and remainder
1460 of NUM / DEN. Return the quotient and place the remainder in NUM.
1461 It is expected that NUM / DEN are close enough that the quotient is
1462 small. */
1464 static unsigned long
1465 rtd_divmod (REAL_VALUE_TYPE *num, REAL_VALUE_TYPE *den)
1467 unsigned long q, msb;
1468 int expn = REAL_EXP (num), expd = REAL_EXP (den);
1470 if (expn < expd)
1471 return 0;
1473 q = msb = 0;
1474 goto start;
1477 msb = num->sig[SIGSZ-1] & SIG_MSB;
1478 q <<= 1;
1479 lshift_significand_1 (num, num);
1480 start:
1481 if (msb || cmp_significands (num, den) >= 0)
1483 sub_significands (num, num, den, 0);
1484 q |= 1;
1487 while (--expn >= expd);
1489 SET_REAL_EXP (num, expd);
1490 normalize (num);
1492 return q;
1495 /* Render R as a decimal floating point constant. Emit DIGITS significant
1496 digits in the result, bounded by BUF_SIZE. If DIGITS is 0, choose the
1497 maximum for the representation. If CROP_TRAILING_ZEROS, strip trailing
1498 zeros. If MODE is VOIDmode, round to nearest value. Otherwise, round
1499 to a string that, when parsed back in mode MODE, yields the same value. */
1501 #define M_LOG10_2 0.30102999566398119521
1503 void
1504 real_to_decimal_for_mode (char *str, const REAL_VALUE_TYPE *r_orig,
1505 size_t buf_size, size_t digits,
1506 int crop_trailing_zeros, machine_mode mode)
1508 const struct real_format *fmt = NULL;
1509 const REAL_VALUE_TYPE *one, *ten;
1510 REAL_VALUE_TYPE r, pten, u, v;
1511 int dec_exp, cmp_one, digit;
1512 size_t max_digits;
1513 char *p, *first, *last;
1514 bool sign;
1515 bool round_up;
1517 if (mode != VOIDmode)
1519 fmt = REAL_MODE_FORMAT (mode);
1520 gcc_assert (fmt);
1523 r = *r_orig;
1524 switch (r.cl)
1526 case rvc_zero:
1527 strcpy (str, (r.sign ? "-0.0" : "0.0"));
1528 return;
1529 case rvc_normal:
1530 break;
1531 case rvc_inf:
1532 strcpy (str, (r.sign ? "-Inf" : "+Inf"));
1533 return;
1534 case rvc_nan:
1535 /* ??? Print the significand as well, if not canonical? */
1536 sprintf (str, "%c%cNaN", (r_orig->sign ? '-' : '+'),
1537 (r_orig->signalling ? 'S' : 'Q'));
1538 return;
1539 default:
1540 gcc_unreachable ();
1543 if (r.decimal)
1545 decimal_real_to_decimal (str, &r, buf_size, digits, crop_trailing_zeros);
1546 return;
1549 /* Bound the number of digits printed by the size of the representation. */
1550 max_digits = SIGNIFICAND_BITS * M_LOG10_2;
1551 if (digits == 0 || digits > max_digits)
1552 digits = max_digits;
1554 /* Estimate the decimal exponent, and compute the length of the string it
1555 will print as. Be conservative and add one to account for possible
1556 overflow or rounding error. */
1557 dec_exp = REAL_EXP (&r) * M_LOG10_2;
1558 for (max_digits = 1; dec_exp ; max_digits++)
1559 dec_exp /= 10;
1561 /* Bound the number of digits printed by the size of the output buffer. */
1562 max_digits = buf_size - 1 - 1 - 2 - max_digits - 1;
1563 gcc_assert (max_digits <= buf_size);
1564 if (digits > max_digits)
1565 digits = max_digits;
1567 one = real_digit (1);
1568 ten = ten_to_ptwo (0);
1570 sign = r.sign;
1571 r.sign = 0;
1573 dec_exp = 0;
1574 pten = *one;
1576 cmp_one = do_compare (&r, one, 0);
1577 if (cmp_one > 0)
1579 int m;
1581 /* Number is greater than one. Convert significand to an integer
1582 and strip trailing decimal zeros. */
1584 u = r;
1585 SET_REAL_EXP (&u, SIGNIFICAND_BITS - 1);
1587 /* Largest M, such that 10**2**M fits within SIGNIFICAND_BITS. */
1588 m = floor_log2 (max_digits);
1590 /* Iterate over the bits of the possible powers of 10 that might
1591 be present in U and eliminate them. That is, if we find that
1592 10**2**M divides U evenly, keep the division and increase
1593 DEC_EXP by 2**M. */
1596 REAL_VALUE_TYPE t;
1598 do_divide (&t, &u, ten_to_ptwo (m));
1599 do_fix_trunc (&v, &t);
1600 if (cmp_significands (&v, &t) == 0)
1602 u = t;
1603 dec_exp += 1 << m;
1606 while (--m >= 0);
1608 /* Revert the scaling to integer that we performed earlier. */
1609 SET_REAL_EXP (&u, REAL_EXP (&u) + REAL_EXP (&r)
1610 - (SIGNIFICAND_BITS - 1));
1611 r = u;
1613 /* Find power of 10. Do this by dividing out 10**2**M when
1614 this is larger than the current remainder. Fill PTEN with
1615 the power of 10 that we compute. */
1616 if (REAL_EXP (&r) > 0)
1618 m = floor_log2 ((int)(REAL_EXP (&r) * M_LOG10_2)) + 1;
1621 const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
1622 if (do_compare (&u, ptentwo, 0) >= 0)
1624 do_divide (&u, &u, ptentwo);
1625 do_multiply (&pten, &pten, ptentwo);
1626 dec_exp += 1 << m;
1629 while (--m >= 0);
1631 else
1632 /* We managed to divide off enough tens in the above reduction
1633 loop that we've now got a negative exponent. Fall into the
1634 less-than-one code to compute the proper value for PTEN. */
1635 cmp_one = -1;
1637 if (cmp_one < 0)
1639 int m;
1641 /* Number is less than one. Pad significand with leading
1642 decimal zeros. */
1644 v = r;
1645 while (1)
1647 /* Stop if we'd shift bits off the bottom. */
1648 if (v.sig[0] & 7)
1649 break;
1651 do_multiply (&u, &v, ten);
1653 /* Stop if we're now >= 1. */
1654 if (REAL_EXP (&u) > 0)
1655 break;
1657 v = u;
1658 dec_exp -= 1;
1660 r = v;
1662 /* Find power of 10. Do this by multiplying in P=10**2**M when
1663 the current remainder is smaller than 1/P. Fill PTEN with the
1664 power of 10 that we compute. */
1665 m = floor_log2 ((int)(-REAL_EXP (&r) * M_LOG10_2)) + 1;
1668 const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
1669 const REAL_VALUE_TYPE *ptenmtwo = ten_to_mptwo (m);
1671 if (do_compare (&v, ptenmtwo, 0) <= 0)
1673 do_multiply (&v, &v, ptentwo);
1674 do_multiply (&pten, &pten, ptentwo);
1675 dec_exp -= 1 << m;
1678 while (--m >= 0);
1680 /* Invert the positive power of 10 that we've collected so far. */
1681 do_divide (&pten, one, &pten);
1684 p = str;
1685 if (sign)
1686 *p++ = '-';
1687 first = p++;
1689 /* At this point, PTEN should contain the nearest power of 10 smaller
1690 than R, such that this division produces the first digit.
1692 Using a divide-step primitive that returns the complete integral
1693 remainder avoids the rounding error that would be produced if
1694 we were to use do_divide here and then simply multiply by 10 for
1695 each subsequent digit. */
1697 digit = rtd_divmod (&r, &pten);
1699 /* Be prepared for error in that division via underflow ... */
1700 if (digit == 0 && cmp_significand_0 (&r))
1702 /* Multiply by 10 and try again. */
1703 do_multiply (&r, &r, ten);
1704 digit = rtd_divmod (&r, &pten);
1705 dec_exp -= 1;
1706 gcc_assert (digit != 0);
1709 /* ... or overflow. */
1710 if (digit == 10)
1712 *p++ = '1';
1713 if (--digits > 0)
1714 *p++ = '0';
1715 dec_exp += 1;
1717 else
1719 gcc_assert (digit <= 10);
1720 *p++ = digit + '0';
1723 /* Generate subsequent digits. */
1724 while (--digits > 0)
1726 do_multiply (&r, &r, ten);
1727 digit = rtd_divmod (&r, &pten);
1728 *p++ = digit + '0';
1730 last = p;
1732 /* Generate one more digit with which to do rounding. */
1733 do_multiply (&r, &r, ten);
1734 digit = rtd_divmod (&r, &pten);
1736 /* Round the result. */
1737 if (fmt && fmt->round_towards_zero)
1739 /* If the format uses round towards zero when parsing the string
1740 back in, we need to always round away from zero here. */
1741 if (cmp_significand_0 (&r))
1742 digit++;
1743 round_up = digit > 0;
1745 else
1747 if (digit == 5)
1749 /* Round to nearest. If R is nonzero there are additional
1750 nonzero digits to be extracted. */
1751 if (cmp_significand_0 (&r))
1752 digit++;
1753 /* Round to even. */
1754 else if ((p[-1] - '0') & 1)
1755 digit++;
1758 round_up = digit > 5;
1761 if (round_up)
1763 while (p > first)
1765 digit = *--p;
1766 if (digit == '9')
1767 *p = '0';
1768 else
1770 *p = digit + 1;
1771 break;
1775 /* Carry out of the first digit. This means we had all 9's and
1776 now have all 0's. "Prepend" a 1 by overwriting the first 0. */
1777 if (p == first)
1779 first[1] = '1';
1780 dec_exp++;
1784 /* Insert the decimal point. */
1785 first[0] = first[1];
1786 first[1] = '.';
1788 /* If requested, drop trailing zeros. Never crop past "1.0". */
1789 if (crop_trailing_zeros)
1790 while (last > first + 3 && last[-1] == '0')
1791 last--;
1793 /* Append the exponent. */
1794 sprintf (last, "e%+d", dec_exp);
1796 #ifdef ENABLE_CHECKING
1797 /* Verify that we can read the original value back in. */
1798 if (mode != VOIDmode)
1800 real_from_string (&r, str);
1801 real_convert (&r, mode, &r);
1802 gcc_assert (real_identical (&r, r_orig));
1804 #endif
1807 /* Likewise, except always uses round-to-nearest. */
1809 void
1810 real_to_decimal (char *str, const REAL_VALUE_TYPE *r_orig, size_t buf_size,
1811 size_t digits, int crop_trailing_zeros)
1813 real_to_decimal_for_mode (str, r_orig, buf_size,
1814 digits, crop_trailing_zeros, VOIDmode);
1817 /* Render R as a hexadecimal floating point constant. Emit DIGITS
1818 significant digits in the result, bounded by BUF_SIZE. If DIGITS is 0,
1819 choose the maximum for the representation. If CROP_TRAILING_ZEROS,
1820 strip trailing zeros. */
1822 void
1823 real_to_hexadecimal (char *str, const REAL_VALUE_TYPE *r, size_t buf_size,
1824 size_t digits, int crop_trailing_zeros)
1826 int i, j, exp = REAL_EXP (r);
1827 char *p, *first;
1828 char exp_buf[16];
1829 size_t max_digits;
1831 switch (r->cl)
1833 case rvc_zero:
1834 exp = 0;
1835 break;
1836 case rvc_normal:
1837 break;
1838 case rvc_inf:
1839 strcpy (str, (r->sign ? "-Inf" : "+Inf"));
1840 return;
1841 case rvc_nan:
1842 /* ??? Print the significand as well, if not canonical? */
1843 sprintf (str, "%c%cNaN", (r->sign ? '-' : '+'),
1844 (r->signalling ? 'S' : 'Q'));
1845 return;
1846 default:
1847 gcc_unreachable ();
1850 if (r->decimal)
1852 /* Hexadecimal format for decimal floats is not interesting. */
1853 strcpy (str, "N/A");
1854 return;
1857 if (digits == 0)
1858 digits = SIGNIFICAND_BITS / 4;
1860 /* Bound the number of digits printed by the size of the output buffer. */
1862 sprintf (exp_buf, "p%+d", exp);
1863 max_digits = buf_size - strlen (exp_buf) - r->sign - 4 - 1;
1864 gcc_assert (max_digits <= buf_size);
1865 if (digits > max_digits)
1866 digits = max_digits;
1868 p = str;
1869 if (r->sign)
1870 *p++ = '-';
1871 *p++ = '0';
1872 *p++ = 'x';
1873 *p++ = '0';
1874 *p++ = '.';
1875 first = p;
1877 for (i = SIGSZ - 1; i >= 0; --i)
1878 for (j = HOST_BITS_PER_LONG - 4; j >= 0; j -= 4)
1880 *p++ = "0123456789abcdef"[(r->sig[i] >> j) & 15];
1881 if (--digits == 0)
1882 goto out;
1885 out:
1886 if (crop_trailing_zeros)
1887 while (p > first + 1 && p[-1] == '0')
1888 p--;
1890 sprintf (p, "p%+d", exp);
1893 /* Initialize R from a decimal or hexadecimal string. The string is
1894 assumed to have been syntax checked already. Return -1 if the
1895 value underflows, +1 if overflows, and 0 otherwise. */
1898 real_from_string (REAL_VALUE_TYPE *r, const char *str)
1900 int exp = 0;
1901 bool sign = false;
1903 get_zero (r, 0);
1905 if (*str == '-')
1907 sign = true;
1908 str++;
1910 else if (*str == '+')
1911 str++;
1913 if (!strncmp (str, "QNaN", 4))
1915 get_canonical_qnan (r, sign);
1916 return 0;
1918 else if (!strncmp (str, "SNaN", 4))
1920 get_canonical_snan (r, sign);
1921 return 0;
1923 else if (!strncmp (str, "Inf", 3))
1925 get_inf (r, sign);
1926 return 0;
1929 if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))
1931 /* Hexadecimal floating point. */
1932 int pos = SIGNIFICAND_BITS - 4, d;
1934 str += 2;
1936 while (*str == '0')
1937 str++;
1938 while (1)
1940 d = hex_value (*str);
1941 if (d == _hex_bad)
1942 break;
1943 if (pos >= 0)
1945 r->sig[pos / HOST_BITS_PER_LONG]
1946 |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
1947 pos -= 4;
1949 else if (d)
1950 /* Ensure correct rounding by setting last bit if there is
1951 a subsequent nonzero digit. */
1952 r->sig[0] |= 1;
1953 exp += 4;
1954 str++;
1956 if (*str == '.')
1958 str++;
1959 if (pos == SIGNIFICAND_BITS - 4)
1961 while (*str == '0')
1962 str++, exp -= 4;
1964 while (1)
1966 d = hex_value (*str);
1967 if (d == _hex_bad)
1968 break;
1969 if (pos >= 0)
1971 r->sig[pos / HOST_BITS_PER_LONG]
1972 |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
1973 pos -= 4;
1975 else if (d)
1976 /* Ensure correct rounding by setting last bit if there is
1977 a subsequent nonzero digit. */
1978 r->sig[0] |= 1;
1979 str++;
1983 /* If the mantissa is zero, ignore the exponent. */
1984 if (!cmp_significand_0 (r))
1985 goto is_a_zero;
1987 if (*str == 'p' || *str == 'P')
1989 bool exp_neg = false;
1991 str++;
1992 if (*str == '-')
1994 exp_neg = true;
1995 str++;
1997 else if (*str == '+')
1998 str++;
2000 d = 0;
2001 while (ISDIGIT (*str))
2003 d *= 10;
2004 d += *str - '0';
2005 if (d > MAX_EXP)
2007 /* Overflowed the exponent. */
2008 if (exp_neg)
2009 goto underflow;
2010 else
2011 goto overflow;
2013 str++;
2015 if (exp_neg)
2016 d = -d;
2018 exp += d;
2021 r->cl = rvc_normal;
2022 SET_REAL_EXP (r, exp);
2024 normalize (r);
2026 else
2028 /* Decimal floating point. */
2029 const char *cstr = str;
2030 mpfr_t m;
2031 bool inexact;
2033 while (*cstr == '0')
2034 cstr++;
2035 if (*cstr == '.')
2037 cstr++;
2038 while (*cstr == '0')
2039 cstr++;
2042 /* If the mantissa is zero, ignore the exponent. */
2043 if (!ISDIGIT (*cstr))
2044 goto is_a_zero;
2046 /* Nonzero value, possibly overflowing or underflowing. */
2047 mpfr_init2 (m, SIGNIFICAND_BITS);
2048 inexact = mpfr_strtofr (m, str, NULL, 10, GMP_RNDZ);
2049 /* The result should never be a NaN, and because the rounding is
2050 toward zero should never be an infinity. */
2051 gcc_assert (!mpfr_nan_p (m) && !mpfr_inf_p (m));
2052 if (mpfr_zero_p (m) || mpfr_get_exp (m) < -MAX_EXP + 4)
2054 mpfr_clear (m);
2055 goto underflow;
2057 else if (mpfr_get_exp (m) > MAX_EXP - 4)
2059 mpfr_clear (m);
2060 goto overflow;
2062 else
2064 real_from_mpfr (r, m, NULL_TREE, GMP_RNDZ);
2065 /* 1 to 3 bits may have been shifted off (with a sticky bit)
2066 because the hex digits used in real_from_mpfr did not
2067 start with a digit 8 to f, but the exponent bounds above
2068 should have avoided underflow or overflow. */
2069 gcc_assert (r->cl == rvc_normal);
2070 /* Set a sticky bit if mpfr_strtofr was inexact. */
2071 r->sig[0] |= inexact;
2072 mpfr_clear (m);
2076 r->sign = sign;
2077 return 0;
2079 is_a_zero:
2080 get_zero (r, sign);
2081 return 0;
2083 underflow:
2084 get_zero (r, sign);
2085 return -1;
2087 overflow:
2088 get_inf (r, sign);
2089 return 1;
2092 /* Legacy. Similar, but return the result directly. */
2094 REAL_VALUE_TYPE
2095 real_from_string2 (const char *s, machine_mode mode)
2097 REAL_VALUE_TYPE r;
2099 real_from_string (&r, s);
2100 if (mode != VOIDmode)
2101 real_convert (&r, mode, &r);
2103 return r;
2106 /* Initialize R from string S and desired MODE. */
2108 void
2109 real_from_string3 (REAL_VALUE_TYPE *r, const char *s, machine_mode mode)
2111 if (DECIMAL_FLOAT_MODE_P (mode))
2112 decimal_real_from_string (r, s);
2113 else
2114 real_from_string (r, s);
2116 if (mode != VOIDmode)
2117 real_convert (r, mode, r);
2120 /* Initialize R from the wide_int VAL_IN. The MODE is not VOIDmode,*/
2122 void
2123 real_from_integer (REAL_VALUE_TYPE *r, machine_mode mode,
2124 const wide_int_ref &val_in, signop sgn)
2126 if (val_in == 0)
2127 get_zero (r, 0);
2128 else
2130 unsigned int len = val_in.get_precision ();
2131 int i, j, e = 0;
2132 int maxbitlen = MAX_BITSIZE_MODE_ANY_INT + HOST_BITS_PER_WIDE_INT;
2133 const unsigned int realmax = (SIGNIFICAND_BITS / HOST_BITS_PER_WIDE_INT
2134 * HOST_BITS_PER_WIDE_INT);
2136 memset (r, 0, sizeof (*r));
2137 r->cl = rvc_normal;
2138 r->sign = wi::neg_p (val_in, sgn);
2140 /* We have to ensure we can negate the largest negative number. */
2141 wide_int val = wide_int::from (val_in, maxbitlen, sgn);
2143 if (r->sign)
2144 val = -val;
2146 /* Ensure a multiple of HOST_BITS_PER_WIDE_INT, ceiling, as elt
2147 won't work with precisions that are not a multiple of
2148 HOST_BITS_PER_WIDE_INT. */
2149 len += HOST_BITS_PER_WIDE_INT - 1;
2151 /* Ensure we can represent the largest negative number. */
2152 len += 1;
2154 len = len/HOST_BITS_PER_WIDE_INT * HOST_BITS_PER_WIDE_INT;
2156 /* Cap the size to the size allowed by real.h. */
2157 if (len > realmax)
2159 HOST_WIDE_INT cnt_l_z;
2160 cnt_l_z = wi::clz (val);
2162 if (maxbitlen - cnt_l_z > realmax)
2164 e = maxbitlen - cnt_l_z - realmax;
2166 /* This value is too large, we must shift it right to
2167 preserve all the bits we can, and then bump the
2168 exponent up by that amount. */
2169 val = wi::lrshift (val, e);
2171 len = realmax;
2174 /* Clear out top bits so elt will work with precisions that aren't
2175 a multiple of HOST_BITS_PER_WIDE_INT. */
2176 val = wide_int::from (val, len, sgn);
2177 len = len / HOST_BITS_PER_WIDE_INT;
2179 SET_REAL_EXP (r, len * HOST_BITS_PER_WIDE_INT + e);
2181 j = SIGSZ - 1;
2182 if (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT)
2183 for (i = len - 1; i >= 0; i--)
2185 r->sig[j--] = val.elt (i);
2186 if (j < 0)
2187 break;
2189 else
2191 gcc_assert (HOST_BITS_PER_LONG*2 == HOST_BITS_PER_WIDE_INT);
2192 for (i = len - 1; i >= 0; i--)
2194 HOST_WIDE_INT e = val.elt (i);
2195 r->sig[j--] = e >> (HOST_BITS_PER_LONG - 1) >> 1;
2196 if (j < 0)
2197 break;
2198 r->sig[j--] = e;
2199 if (j < 0)
2200 break;
2204 normalize (r);
2207 if (DECIMAL_FLOAT_MODE_P (mode))
2208 decimal_from_integer (r);
2209 else if (mode != VOIDmode)
2210 real_convert (r, mode, r);
2213 /* Render R, an integral value, as a floating point constant with no
2214 specified exponent. */
2216 static void
2217 decimal_integer_string (char *str, const REAL_VALUE_TYPE *r_orig,
2218 size_t buf_size)
2220 int dec_exp, digit, digits;
2221 REAL_VALUE_TYPE r, pten;
2222 char *p;
2223 bool sign;
2225 r = *r_orig;
2227 if (r.cl == rvc_zero)
2229 strcpy (str, "0.");
2230 return;
2233 sign = r.sign;
2234 r.sign = 0;
2236 dec_exp = REAL_EXP (&r) * M_LOG10_2;
2237 digits = dec_exp + 1;
2238 gcc_assert ((digits + 2) < (int)buf_size);
2240 pten = *real_digit (1);
2241 times_pten (&pten, dec_exp);
2243 p = str;
2244 if (sign)
2245 *p++ = '-';
2247 digit = rtd_divmod (&r, &pten);
2248 gcc_assert (digit >= 0 && digit <= 9);
2249 *p++ = digit + '0';
2250 while (--digits > 0)
2252 times_pten (&r, 1);
2253 digit = rtd_divmod (&r, &pten);
2254 *p++ = digit + '0';
2256 *p++ = '.';
2257 *p++ = '\0';
2260 /* Convert a real with an integral value to decimal float. */
2262 static void
2263 decimal_from_integer (REAL_VALUE_TYPE *r)
2265 char str[256];
2267 decimal_integer_string (str, r, sizeof (str) - 1);
2268 decimal_real_from_string (r, str);
2271 /* Returns 10**2**N. */
2273 static const REAL_VALUE_TYPE *
2274 ten_to_ptwo (int n)
2276 static REAL_VALUE_TYPE tens[EXP_BITS];
2278 gcc_assert (n >= 0);
2279 gcc_assert (n < EXP_BITS);
2281 if (tens[n].cl == rvc_zero)
2283 if (n < (HOST_BITS_PER_WIDE_INT == 64 ? 5 : 4))
2285 HOST_WIDE_INT t = 10;
2286 int i;
2288 for (i = 0; i < n; ++i)
2289 t *= t;
2291 real_from_integer (&tens[n], VOIDmode, t, UNSIGNED);
2293 else
2295 const REAL_VALUE_TYPE *t = ten_to_ptwo (n - 1);
2296 do_multiply (&tens[n], t, t);
2300 return &tens[n];
2303 /* Returns 10**(-2**N). */
2305 static const REAL_VALUE_TYPE *
2306 ten_to_mptwo (int n)
2308 static REAL_VALUE_TYPE tens[EXP_BITS];
2310 gcc_assert (n >= 0);
2311 gcc_assert (n < EXP_BITS);
2313 if (tens[n].cl == rvc_zero)
2314 do_divide (&tens[n], real_digit (1), ten_to_ptwo (n));
2316 return &tens[n];
2319 /* Returns N. */
2321 static const REAL_VALUE_TYPE *
2322 real_digit (int n)
2324 static REAL_VALUE_TYPE num[10];
2326 gcc_assert (n >= 0);
2327 gcc_assert (n <= 9);
2329 if (n > 0 && num[n].cl == rvc_zero)
2330 real_from_integer (&num[n], VOIDmode, n, UNSIGNED);
2332 return &num[n];
2335 /* Multiply R by 10**EXP. */
2337 static void
2338 times_pten (REAL_VALUE_TYPE *r, int exp)
2340 REAL_VALUE_TYPE pten, *rr;
2341 bool negative = (exp < 0);
2342 int i;
2344 if (negative)
2346 exp = -exp;
2347 pten = *real_digit (1);
2348 rr = &pten;
2350 else
2351 rr = r;
2353 for (i = 0; exp > 0; ++i, exp >>= 1)
2354 if (exp & 1)
2355 do_multiply (rr, rr, ten_to_ptwo (i));
2357 if (negative)
2358 do_divide (r, r, &pten);
2361 /* Returns the special REAL_VALUE_TYPE corresponding to 'e'. */
2363 const REAL_VALUE_TYPE *
2364 dconst_e_ptr (void)
2366 static REAL_VALUE_TYPE value;
2368 /* Initialize mathematical constants for constant folding builtins.
2369 These constants need to be given to at least 160 bits precision. */
2370 if (value.cl == rvc_zero)
2372 mpfr_t m;
2373 mpfr_init2 (m, SIGNIFICAND_BITS);
2374 mpfr_set_ui (m, 1, GMP_RNDN);
2375 mpfr_exp (m, m, GMP_RNDN);
2376 real_from_mpfr (&value, m, NULL_TREE, GMP_RNDN);
2377 mpfr_clear (m);
2380 return &value;
2383 /* Returns the special REAL_VALUE_TYPE corresponding to 1/3. */
2385 const REAL_VALUE_TYPE *
2386 dconst_third_ptr (void)
2388 static REAL_VALUE_TYPE value;
2390 /* Initialize mathematical constants for constant folding builtins.
2391 These constants need to be given to at least 160 bits precision. */
2392 if (value.cl == rvc_zero)
2394 real_arithmetic (&value, RDIV_EXPR, &dconst1, real_digit (3));
2396 return &value;
2399 /* Returns the special REAL_VALUE_TYPE corresponding to sqrt(2). */
2401 const REAL_VALUE_TYPE *
2402 dconst_sqrt2_ptr (void)
2404 static REAL_VALUE_TYPE value;
2406 /* Initialize mathematical constants for constant folding builtins.
2407 These constants need to be given to at least 160 bits precision. */
2408 if (value.cl == rvc_zero)
2410 mpfr_t m;
2411 mpfr_init2 (m, SIGNIFICAND_BITS);
2412 mpfr_sqrt_ui (m, 2, GMP_RNDN);
2413 real_from_mpfr (&value, m, NULL_TREE, GMP_RNDN);
2414 mpfr_clear (m);
2416 return &value;
2419 /* Fills R with +Inf. */
2421 void
2422 real_inf (REAL_VALUE_TYPE *r)
2424 get_inf (r, 0);
2427 /* Fills R with a NaN whose significand is described by STR. If QUIET,
2428 we force a QNaN, else we force an SNaN. The string, if not empty,
2429 is parsed as a number and placed in the significand. Return true
2430 if the string was successfully parsed. */
2432 bool
2433 real_nan (REAL_VALUE_TYPE *r, const char *str, int quiet,
2434 machine_mode mode)
2436 const struct real_format *fmt;
2438 fmt = REAL_MODE_FORMAT (mode);
2439 gcc_assert (fmt);
2441 if (*str == 0)
2443 if (quiet)
2444 get_canonical_qnan (r, 0);
2445 else
2446 get_canonical_snan (r, 0);
2448 else
2450 int base = 10, d;
2452 memset (r, 0, sizeof (*r));
2453 r->cl = rvc_nan;
2455 /* Parse akin to strtol into the significand of R. */
2457 while (ISSPACE (*str))
2458 str++;
2459 if (*str == '-')
2460 str++;
2461 else if (*str == '+')
2462 str++;
2463 if (*str == '0')
2465 str++;
2466 if (*str == 'x' || *str == 'X')
2468 base = 16;
2469 str++;
2471 else
2472 base = 8;
2475 while ((d = hex_value (*str)) < base)
2477 REAL_VALUE_TYPE u;
2479 switch (base)
2481 case 8:
2482 lshift_significand (r, r, 3);
2483 break;
2484 case 16:
2485 lshift_significand (r, r, 4);
2486 break;
2487 case 10:
2488 lshift_significand_1 (&u, r);
2489 lshift_significand (r, r, 3);
2490 add_significands (r, r, &u);
2491 break;
2492 default:
2493 gcc_unreachable ();
2496 get_zero (&u, 0);
2497 u.sig[0] = d;
2498 add_significands (r, r, &u);
2500 str++;
2503 /* Must have consumed the entire string for success. */
2504 if (*str != 0)
2505 return false;
2507 /* Shift the significand into place such that the bits
2508 are in the most significant bits for the format. */
2509 lshift_significand (r, r, SIGNIFICAND_BITS - fmt->pnan);
2511 /* Our MSB is always unset for NaNs. */
2512 r->sig[SIGSZ-1] &= ~SIG_MSB;
2514 /* Force quiet or signalling NaN. */
2515 r->signalling = !quiet;
2518 return true;
2521 /* Fills R with the largest finite value representable in mode MODE.
2522 If SIGN is nonzero, R is set to the most negative finite value. */
2524 void
2525 real_maxval (REAL_VALUE_TYPE *r, int sign, machine_mode mode)
2527 const struct real_format *fmt;
2528 int np2;
2530 fmt = REAL_MODE_FORMAT (mode);
2531 gcc_assert (fmt);
2532 memset (r, 0, sizeof (*r));
2534 if (fmt->b == 10)
2535 decimal_real_maxval (r, sign, mode);
2536 else
2538 r->cl = rvc_normal;
2539 r->sign = sign;
2540 SET_REAL_EXP (r, fmt->emax);
2542 np2 = SIGNIFICAND_BITS - fmt->p;
2543 memset (r->sig, -1, SIGSZ * sizeof (unsigned long));
2544 clear_significand_below (r, np2);
2546 if (fmt->pnan < fmt->p)
2547 /* This is an IBM extended double format made up of two IEEE
2548 doubles. The value of the long double is the sum of the
2549 values of the two parts. The most significant part is
2550 required to be the value of the long double rounded to the
2551 nearest double. Rounding means we need a slightly smaller
2552 value for LDBL_MAX. */
2553 clear_significand_bit (r, SIGNIFICAND_BITS - fmt->pnan - 1);
2557 /* Fills R with 2**N. */
2559 void
2560 real_2expN (REAL_VALUE_TYPE *r, int n, machine_mode fmode)
2562 memset (r, 0, sizeof (*r));
2564 n++;
2565 if (n > MAX_EXP)
2566 r->cl = rvc_inf;
2567 else if (n < -MAX_EXP)
2569 else
2571 r->cl = rvc_normal;
2572 SET_REAL_EXP (r, n);
2573 r->sig[SIGSZ-1] = SIG_MSB;
2575 if (DECIMAL_FLOAT_MODE_P (fmode))
2576 decimal_real_convert (r, fmode, r);
2580 static void
2581 round_for_format (const struct real_format *fmt, REAL_VALUE_TYPE *r)
2583 int p2, np2, i, w;
2584 int emin2m1, emax2;
2585 bool round_up = false;
2587 if (r->decimal)
2589 if (fmt->b == 10)
2591 decimal_round_for_format (fmt, r);
2592 return;
2594 /* FIXME. We can come here via fp_easy_constant
2595 (e.g. -O0 on '_Decimal32 x = 1.0 + 2.0dd'), but have not
2596 investigated whether this convert needs to be here, or
2597 something else is missing. */
2598 decimal_real_convert (r, DFmode, r);
2601 p2 = fmt->p;
2602 emin2m1 = fmt->emin - 1;
2603 emax2 = fmt->emax;
2605 np2 = SIGNIFICAND_BITS - p2;
2606 switch (r->cl)
2608 underflow:
2609 get_zero (r, r->sign);
2610 case rvc_zero:
2611 if (!fmt->has_signed_zero)
2612 r->sign = 0;
2613 return;
2615 overflow:
2616 get_inf (r, r->sign);
2617 case rvc_inf:
2618 return;
2620 case rvc_nan:
2621 clear_significand_below (r, np2);
2622 return;
2624 case rvc_normal:
2625 break;
2627 default:
2628 gcc_unreachable ();
2631 /* Check the range of the exponent. If we're out of range,
2632 either underflow or overflow. */
2633 if (REAL_EXP (r) > emax2)
2634 goto overflow;
2635 else if (REAL_EXP (r) <= emin2m1)
2637 int diff;
2639 if (!fmt->has_denorm)
2641 /* Don't underflow completely until we've had a chance to round. */
2642 if (REAL_EXP (r) < emin2m1)
2643 goto underflow;
2645 else
2647 diff = emin2m1 - REAL_EXP (r) + 1;
2648 if (diff > p2)
2649 goto underflow;
2651 /* De-normalize the significand. */
2652 r->sig[0] |= sticky_rshift_significand (r, r, diff);
2653 SET_REAL_EXP (r, REAL_EXP (r) + diff);
2657 if (!fmt->round_towards_zero)
2659 /* There are P2 true significand bits, followed by one guard bit,
2660 followed by one sticky bit, followed by stuff. Fold nonzero
2661 stuff into the sticky bit. */
2662 unsigned long sticky;
2663 bool guard, lsb;
2665 sticky = 0;
2666 for (i = 0, w = (np2 - 1) / HOST_BITS_PER_LONG; i < w; ++i)
2667 sticky |= r->sig[i];
2668 sticky |= r->sig[w]
2669 & (((unsigned long)1 << ((np2 - 1) % HOST_BITS_PER_LONG)) - 1);
2671 guard = test_significand_bit (r, np2 - 1);
2672 lsb = test_significand_bit (r, np2);
2674 /* Round to even. */
2675 round_up = guard && (sticky || lsb);
2678 if (round_up)
2680 REAL_VALUE_TYPE u;
2681 get_zero (&u, 0);
2682 set_significand_bit (&u, np2);
2684 if (add_significands (r, r, &u))
2686 /* Overflow. Means the significand had been all ones, and
2687 is now all zeros. Need to increase the exponent, and
2688 possibly re-normalize it. */
2689 SET_REAL_EXP (r, REAL_EXP (r) + 1);
2690 if (REAL_EXP (r) > emax2)
2691 goto overflow;
2692 r->sig[SIGSZ-1] = SIG_MSB;
2696 /* Catch underflow that we deferred until after rounding. */
2697 if (REAL_EXP (r) <= emin2m1)
2698 goto underflow;
2700 /* Clear out trailing garbage. */
2701 clear_significand_below (r, np2);
2704 /* Extend or truncate to a new mode. */
2706 void
2707 real_convert (REAL_VALUE_TYPE *r, machine_mode mode,
2708 const REAL_VALUE_TYPE *a)
2710 const struct real_format *fmt;
2712 fmt = REAL_MODE_FORMAT (mode);
2713 gcc_assert (fmt);
2715 *r = *a;
2717 if (a->decimal || fmt->b == 10)
2718 decimal_real_convert (r, mode, a);
2720 round_for_format (fmt, r);
2722 /* round_for_format de-normalizes denormals. Undo just that part. */
2723 if (r->cl == rvc_normal)
2724 normalize (r);
2727 /* Legacy. Likewise, except return the struct directly. */
2729 REAL_VALUE_TYPE
2730 real_value_truncate (machine_mode mode, REAL_VALUE_TYPE a)
2732 REAL_VALUE_TYPE r;
2733 real_convert (&r, mode, &a);
2734 return r;
2737 /* Return true if truncating to MODE is exact. */
2739 bool
2740 exact_real_truncate (machine_mode mode, const REAL_VALUE_TYPE *a)
2742 const struct real_format *fmt;
2743 REAL_VALUE_TYPE t;
2744 int emin2m1;
2746 fmt = REAL_MODE_FORMAT (mode);
2747 gcc_assert (fmt);
2749 /* Don't allow conversion to denormals. */
2750 emin2m1 = fmt->emin - 1;
2751 if (REAL_EXP (a) <= emin2m1)
2752 return false;
2754 /* After conversion to the new mode, the value must be identical. */
2755 real_convert (&t, mode, a);
2756 return real_identical (&t, a);
2759 /* Write R to the given target format. Place the words of the result
2760 in target word order in BUF. There are always 32 bits in each
2761 long, no matter the size of the host long.
2763 Legacy: return word 0 for implementing REAL_VALUE_TO_TARGET_SINGLE. */
2765 long
2766 real_to_target_fmt (long *buf, const REAL_VALUE_TYPE *r_orig,
2767 const struct real_format *fmt)
2769 REAL_VALUE_TYPE r;
2770 long buf1;
2772 r = *r_orig;
2773 round_for_format (fmt, &r);
2775 if (!buf)
2776 buf = &buf1;
2777 (*fmt->encode) (fmt, buf, &r);
2779 return *buf;
2782 /* Similar, but look up the format from MODE. */
2784 long
2785 real_to_target (long *buf, const REAL_VALUE_TYPE *r, machine_mode mode)
2787 const struct real_format *fmt;
2789 fmt = REAL_MODE_FORMAT (mode);
2790 gcc_assert (fmt);
2792 return real_to_target_fmt (buf, r, fmt);
2795 /* Read R from the given target format. Read the words of the result
2796 in target word order in BUF. There are always 32 bits in each
2797 long, no matter the size of the host long. */
2799 void
2800 real_from_target_fmt (REAL_VALUE_TYPE *r, const long *buf,
2801 const struct real_format *fmt)
2803 (*fmt->decode) (fmt, r, buf);
2806 /* Similar, but look up the format from MODE. */
2808 void
2809 real_from_target (REAL_VALUE_TYPE *r, const long *buf, machine_mode mode)
2811 const struct real_format *fmt;
2813 fmt = REAL_MODE_FORMAT (mode);
2814 gcc_assert (fmt);
2816 (*fmt->decode) (fmt, r, buf);
2819 /* Return the number of bits of the largest binary value that the
2820 significand of MODE will hold. */
2821 /* ??? Legacy. Should get access to real_format directly. */
2824 significand_size (machine_mode mode)
2826 const struct real_format *fmt;
2828 fmt = REAL_MODE_FORMAT (mode);
2829 if (fmt == NULL)
2830 return 0;
2832 if (fmt->b == 10)
2834 /* Return the size in bits of the largest binary value that can be
2835 held by the decimal coefficient for this mode. This is one more
2836 than the number of bits required to hold the largest coefficient
2837 of this mode. */
2838 double log2_10 = 3.3219281;
2839 return fmt->p * log2_10;
2841 return fmt->p;
2844 /* Return a hash value for the given real value. */
2845 /* ??? The "unsigned int" return value is intended to be hashval_t,
2846 but I didn't want to pull hashtab.h into real.h. */
2848 unsigned int
2849 real_hash (const REAL_VALUE_TYPE *r)
2851 unsigned int h;
2852 size_t i;
2854 h = r->cl | (r->sign << 2);
2855 switch (r->cl)
2857 case rvc_zero:
2858 case rvc_inf:
2859 return h;
2861 case rvc_normal:
2862 h |= REAL_EXP (r) << 3;
2863 break;
2865 case rvc_nan:
2866 if (r->signalling)
2867 h ^= (unsigned int)-1;
2868 if (r->canonical)
2869 return h;
2870 break;
2872 default:
2873 gcc_unreachable ();
2876 if (sizeof (unsigned long) > sizeof (unsigned int))
2877 for (i = 0; i < SIGSZ; ++i)
2879 unsigned long s = r->sig[i];
2880 h ^= s ^ (s >> (HOST_BITS_PER_LONG / 2));
2882 else
2883 for (i = 0; i < SIGSZ; ++i)
2884 h ^= r->sig[i];
2886 return h;
2889 /* IEEE single-precision format. */
2891 static void encode_ieee_single (const struct real_format *fmt,
2892 long *, const REAL_VALUE_TYPE *);
2893 static void decode_ieee_single (const struct real_format *,
2894 REAL_VALUE_TYPE *, const long *);
2896 static void
2897 encode_ieee_single (const struct real_format *fmt, long *buf,
2898 const REAL_VALUE_TYPE *r)
2900 unsigned long image, sig, exp;
2901 unsigned long sign = r->sign;
2902 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
2904 image = sign << 31;
2905 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
2907 switch (r->cl)
2909 case rvc_zero:
2910 break;
2912 case rvc_inf:
2913 if (fmt->has_inf)
2914 image |= 255 << 23;
2915 else
2916 image |= 0x7fffffff;
2917 break;
2919 case rvc_nan:
2920 if (fmt->has_nans)
2922 if (r->canonical)
2923 sig = (fmt->canonical_nan_lsbs_set ? (1 << 22) - 1 : 0);
2924 if (r->signalling == fmt->qnan_msb_set)
2925 sig &= ~(1 << 22);
2926 else
2927 sig |= 1 << 22;
2928 if (sig == 0)
2929 sig = 1 << 21;
2931 image |= 255 << 23;
2932 image |= sig;
2934 else
2935 image |= 0x7fffffff;
2936 break;
2938 case rvc_normal:
2939 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2940 whereas the intermediate representation is 0.F x 2**exp.
2941 Which means we're off by one. */
2942 if (denormal)
2943 exp = 0;
2944 else
2945 exp = REAL_EXP (r) + 127 - 1;
2946 image |= exp << 23;
2947 image |= sig;
2948 break;
2950 default:
2951 gcc_unreachable ();
2954 buf[0] = image;
2957 static void
2958 decode_ieee_single (const struct real_format *fmt, REAL_VALUE_TYPE *r,
2959 const long *buf)
2961 unsigned long image = buf[0] & 0xffffffff;
2962 bool sign = (image >> 31) & 1;
2963 int exp = (image >> 23) & 0xff;
2965 memset (r, 0, sizeof (*r));
2966 image <<= HOST_BITS_PER_LONG - 24;
2967 image &= ~SIG_MSB;
2969 if (exp == 0)
2971 if (image && fmt->has_denorm)
2973 r->cl = rvc_normal;
2974 r->sign = sign;
2975 SET_REAL_EXP (r, -126);
2976 r->sig[SIGSZ-1] = image << 1;
2977 normalize (r);
2979 else if (fmt->has_signed_zero)
2980 r->sign = sign;
2982 else if (exp == 255 && (fmt->has_nans || fmt->has_inf))
2984 if (image)
2986 r->cl = rvc_nan;
2987 r->sign = sign;
2988 r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
2989 ^ fmt->qnan_msb_set);
2990 r->sig[SIGSZ-1] = image;
2992 else
2994 r->cl = rvc_inf;
2995 r->sign = sign;
2998 else
3000 r->cl = rvc_normal;
3001 r->sign = sign;
3002 SET_REAL_EXP (r, exp - 127 + 1);
3003 r->sig[SIGSZ-1] = image | SIG_MSB;
3007 const struct real_format ieee_single_format =
3009 encode_ieee_single,
3010 decode_ieee_single,
3014 -125,
3015 128,
3018 false,
3019 true,
3020 true,
3021 true,
3022 true,
3023 true,
3024 true,
3025 false,
3026 "ieee_single"
3029 const struct real_format mips_single_format =
3031 encode_ieee_single,
3032 decode_ieee_single,
3036 -125,
3037 128,
3040 false,
3041 true,
3042 true,
3043 true,
3044 true,
3045 true,
3046 false,
3047 true,
3048 "mips_single"
3051 const struct real_format motorola_single_format =
3053 encode_ieee_single,
3054 decode_ieee_single,
3058 -125,
3059 128,
3062 false,
3063 true,
3064 true,
3065 true,
3066 true,
3067 true,
3068 true,
3069 true,
3070 "motorola_single"
3073 /* SPU Single Precision (Extended-Range Mode) format is the same as IEEE
3074 single precision with the following differences:
3075 - Infinities are not supported. Instead MAX_FLOAT or MIN_FLOAT
3076 are generated.
3077 - NaNs are not supported.
3078 - The range of non-zero numbers in binary is
3079 (001)[1.]000...000 to (255)[1.]111...111.
3080 - Denormals can be represented, but are treated as +0.0 when
3081 used as an operand and are never generated as a result.
3082 - -0.0 can be represented, but a zero result is always +0.0.
3083 - the only supported rounding mode is trunction (towards zero). */
3084 const struct real_format spu_single_format =
3086 encode_ieee_single,
3087 decode_ieee_single,
3091 -125,
3092 129,
3095 true,
3096 false,
3097 false,
3098 false,
3099 true,
3100 true,
3101 false,
3102 false,
3103 "spu_single"
3106 /* IEEE double-precision format. */
3108 static void encode_ieee_double (const struct real_format *fmt,
3109 long *, const REAL_VALUE_TYPE *);
3110 static void decode_ieee_double (const struct real_format *,
3111 REAL_VALUE_TYPE *, const long *);
3113 static void
3114 encode_ieee_double (const struct real_format *fmt, long *buf,
3115 const REAL_VALUE_TYPE *r)
3117 unsigned long image_lo, image_hi, sig_lo, sig_hi, exp;
3118 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
3120 image_hi = r->sign << 31;
3121 image_lo = 0;
3123 if (HOST_BITS_PER_LONG == 64)
3125 sig_hi = r->sig[SIGSZ-1];
3126 sig_lo = (sig_hi >> (64 - 53)) & 0xffffffff;
3127 sig_hi = (sig_hi >> (64 - 53 + 1) >> 31) & 0xfffff;
3129 else
3131 sig_hi = r->sig[SIGSZ-1];
3132 sig_lo = r->sig[SIGSZ-2];
3133 sig_lo = (sig_hi << 21) | (sig_lo >> 11);
3134 sig_hi = (sig_hi >> 11) & 0xfffff;
3137 switch (r->cl)
3139 case rvc_zero:
3140 break;
3142 case rvc_inf:
3143 if (fmt->has_inf)
3144 image_hi |= 2047 << 20;
3145 else
3147 image_hi |= 0x7fffffff;
3148 image_lo = 0xffffffff;
3150 break;
3152 case rvc_nan:
3153 if (fmt->has_nans)
3155 if (r->canonical)
3157 if (fmt->canonical_nan_lsbs_set)
3159 sig_hi = (1 << 19) - 1;
3160 sig_lo = 0xffffffff;
3162 else
3164 sig_hi = 0;
3165 sig_lo = 0;
3168 if (r->signalling == fmt->qnan_msb_set)
3169 sig_hi &= ~(1 << 19);
3170 else
3171 sig_hi |= 1 << 19;
3172 if (sig_hi == 0 && sig_lo == 0)
3173 sig_hi = 1 << 18;
3175 image_hi |= 2047 << 20;
3176 image_hi |= sig_hi;
3177 image_lo = sig_lo;
3179 else
3181 image_hi |= 0x7fffffff;
3182 image_lo = 0xffffffff;
3184 break;
3186 case rvc_normal:
3187 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3188 whereas the intermediate representation is 0.F x 2**exp.
3189 Which means we're off by one. */
3190 if (denormal)
3191 exp = 0;
3192 else
3193 exp = REAL_EXP (r) + 1023 - 1;
3194 image_hi |= exp << 20;
3195 image_hi |= sig_hi;
3196 image_lo = sig_lo;
3197 break;
3199 default:
3200 gcc_unreachable ();
3203 if (FLOAT_WORDS_BIG_ENDIAN)
3204 buf[0] = image_hi, buf[1] = image_lo;
3205 else
3206 buf[0] = image_lo, buf[1] = image_hi;
3209 static void
3210 decode_ieee_double (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3211 const long *buf)
3213 unsigned long image_hi, image_lo;
3214 bool sign;
3215 int exp;
3217 if (FLOAT_WORDS_BIG_ENDIAN)
3218 image_hi = buf[0], image_lo = buf[1];
3219 else
3220 image_lo = buf[0], image_hi = buf[1];
3221 image_lo &= 0xffffffff;
3222 image_hi &= 0xffffffff;
3224 sign = (image_hi >> 31) & 1;
3225 exp = (image_hi >> 20) & 0x7ff;
3227 memset (r, 0, sizeof (*r));
3229 image_hi <<= 32 - 21;
3230 image_hi |= image_lo >> 21;
3231 image_hi &= 0x7fffffff;
3232 image_lo <<= 32 - 21;
3234 if (exp == 0)
3236 if ((image_hi || image_lo) && fmt->has_denorm)
3238 r->cl = rvc_normal;
3239 r->sign = sign;
3240 SET_REAL_EXP (r, -1022);
3241 if (HOST_BITS_PER_LONG == 32)
3243 image_hi = (image_hi << 1) | (image_lo >> 31);
3244 image_lo <<= 1;
3245 r->sig[SIGSZ-1] = image_hi;
3246 r->sig[SIGSZ-2] = image_lo;
3248 else
3250 image_hi = (image_hi << 31 << 2) | (image_lo << 1);
3251 r->sig[SIGSZ-1] = image_hi;
3253 normalize (r);
3255 else if (fmt->has_signed_zero)
3256 r->sign = sign;
3258 else if (exp == 2047 && (fmt->has_nans || fmt->has_inf))
3260 if (image_hi || image_lo)
3262 r->cl = rvc_nan;
3263 r->sign = sign;
3264 r->signalling = ((image_hi >> 30) & 1) ^ fmt->qnan_msb_set;
3265 if (HOST_BITS_PER_LONG == 32)
3267 r->sig[SIGSZ-1] = image_hi;
3268 r->sig[SIGSZ-2] = image_lo;
3270 else
3271 r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo;
3273 else
3275 r->cl = rvc_inf;
3276 r->sign = sign;
3279 else
3281 r->cl = rvc_normal;
3282 r->sign = sign;
3283 SET_REAL_EXP (r, exp - 1023 + 1);
3284 if (HOST_BITS_PER_LONG == 32)
3286 r->sig[SIGSZ-1] = image_hi | SIG_MSB;
3287 r->sig[SIGSZ-2] = image_lo;
3289 else
3290 r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo | SIG_MSB;
3294 const struct real_format ieee_double_format =
3296 encode_ieee_double,
3297 decode_ieee_double,
3301 -1021,
3302 1024,
3305 false,
3306 true,
3307 true,
3308 true,
3309 true,
3310 true,
3311 true,
3312 false,
3313 "ieee_double"
3316 const struct real_format mips_double_format =
3318 encode_ieee_double,
3319 decode_ieee_double,
3323 -1021,
3324 1024,
3327 false,
3328 true,
3329 true,
3330 true,
3331 true,
3332 true,
3333 false,
3334 true,
3335 "mips_double"
3338 const struct real_format motorola_double_format =
3340 encode_ieee_double,
3341 decode_ieee_double,
3345 -1021,
3346 1024,
3349 false,
3350 true,
3351 true,
3352 true,
3353 true,
3354 true,
3355 true,
3356 true,
3357 "motorola_double"
3360 /* IEEE extended real format. This comes in three flavors: Intel's as
3361 a 12 byte image, Intel's as a 16 byte image, and Motorola's. Intel
3362 12- and 16-byte images may be big- or little endian; Motorola's is
3363 always big endian. */
3365 /* Helper subroutine which converts from the internal format to the
3366 12-byte little-endian Intel format. Functions below adjust this
3367 for the other possible formats. */
3368 static void
3369 encode_ieee_extended (const struct real_format *fmt, long *buf,
3370 const REAL_VALUE_TYPE *r)
3372 unsigned long image_hi, sig_hi, sig_lo;
3373 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
3375 image_hi = r->sign << 15;
3376 sig_hi = sig_lo = 0;
3378 switch (r->cl)
3380 case rvc_zero:
3381 break;
3383 case rvc_inf:
3384 if (fmt->has_inf)
3386 image_hi |= 32767;
3388 /* Intel requires the explicit integer bit to be set, otherwise
3389 it considers the value a "pseudo-infinity". Motorola docs
3390 say it doesn't care. */
3391 sig_hi = 0x80000000;
3393 else
3395 image_hi |= 32767;
3396 sig_lo = sig_hi = 0xffffffff;
3398 break;
3400 case rvc_nan:
3401 if (fmt->has_nans)
3403 image_hi |= 32767;
3404 if (r->canonical)
3406 if (fmt->canonical_nan_lsbs_set)
3408 sig_hi = (1 << 30) - 1;
3409 sig_lo = 0xffffffff;
3412 else if (HOST_BITS_PER_LONG == 32)
3414 sig_hi = r->sig[SIGSZ-1];
3415 sig_lo = r->sig[SIGSZ-2];
3417 else
3419 sig_lo = r->sig[SIGSZ-1];
3420 sig_hi = sig_lo >> 31 >> 1;
3421 sig_lo &= 0xffffffff;
3423 if (r->signalling == fmt->qnan_msb_set)
3424 sig_hi &= ~(1 << 30);
3425 else
3426 sig_hi |= 1 << 30;
3427 if ((sig_hi & 0x7fffffff) == 0 && sig_lo == 0)
3428 sig_hi = 1 << 29;
3430 /* Intel requires the explicit integer bit to be set, otherwise
3431 it considers the value a "pseudo-nan". Motorola docs say it
3432 doesn't care. */
3433 sig_hi |= 0x80000000;
3435 else
3437 image_hi |= 32767;
3438 sig_lo = sig_hi = 0xffffffff;
3440 break;
3442 case rvc_normal:
3444 int exp = REAL_EXP (r);
3446 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3447 whereas the intermediate representation is 0.F x 2**exp.
3448 Which means we're off by one.
3450 Except for Motorola, which consider exp=0 and explicit
3451 integer bit set to continue to be normalized. In theory
3452 this discrepancy has been taken care of by the difference
3453 in fmt->emin in round_for_format. */
3455 if (denormal)
3456 exp = 0;
3457 else
3459 exp += 16383 - 1;
3460 gcc_assert (exp >= 0);
3462 image_hi |= exp;
3464 if (HOST_BITS_PER_LONG == 32)
3466 sig_hi = r->sig[SIGSZ-1];
3467 sig_lo = r->sig[SIGSZ-2];
3469 else
3471 sig_lo = r->sig[SIGSZ-1];
3472 sig_hi = sig_lo >> 31 >> 1;
3473 sig_lo &= 0xffffffff;
3476 break;
3478 default:
3479 gcc_unreachable ();
3482 buf[0] = sig_lo, buf[1] = sig_hi, buf[2] = image_hi;
3485 /* Convert from the internal format to the 12-byte Motorola format
3486 for an IEEE extended real. */
3487 static void
3488 encode_ieee_extended_motorola (const struct real_format *fmt, long *buf,
3489 const REAL_VALUE_TYPE *r)
3491 long intermed[3];
3492 encode_ieee_extended (fmt, intermed, r);
3494 if (r->cl == rvc_inf)
3495 /* For infinity clear the explicit integer bit again, so that the
3496 format matches the canonical infinity generated by the FPU. */
3497 intermed[1] = 0;
3499 /* Motorola chips are assumed always to be big-endian. Also, the
3500 padding in a Motorola extended real goes between the exponent and
3501 the mantissa. At this point the mantissa is entirely within
3502 elements 0 and 1 of intermed, and the exponent entirely within
3503 element 2, so all we have to do is swap the order around, and
3504 shift element 2 left 16 bits. */
3505 buf[0] = intermed[2] << 16;
3506 buf[1] = intermed[1];
3507 buf[2] = intermed[0];
3510 /* Convert from the internal format to the 12-byte Intel format for
3511 an IEEE extended real. */
3512 static void
3513 encode_ieee_extended_intel_96 (const struct real_format *fmt, long *buf,
3514 const REAL_VALUE_TYPE *r)
3516 if (FLOAT_WORDS_BIG_ENDIAN)
3518 /* All the padding in an Intel-format extended real goes at the high
3519 end, which in this case is after the mantissa, not the exponent.
3520 Therefore we must shift everything down 16 bits. */
3521 long intermed[3];
3522 encode_ieee_extended (fmt, intermed, r);
3523 buf[0] = ((intermed[2] << 16) | ((unsigned long)(intermed[1] & 0xFFFF0000) >> 16));
3524 buf[1] = ((intermed[1] << 16) | ((unsigned long)(intermed[0] & 0xFFFF0000) >> 16));
3525 buf[2] = (intermed[0] << 16);
3527 else
3528 /* encode_ieee_extended produces what we want directly. */
3529 encode_ieee_extended (fmt, buf, r);
3532 /* Convert from the internal format to the 16-byte Intel format for
3533 an IEEE extended real. */
3534 static void
3535 encode_ieee_extended_intel_128 (const struct real_format *fmt, long *buf,
3536 const REAL_VALUE_TYPE *r)
3538 /* All the padding in an Intel-format extended real goes at the high end. */
3539 encode_ieee_extended_intel_96 (fmt, buf, r);
3540 buf[3] = 0;
3543 /* As above, we have a helper function which converts from 12-byte
3544 little-endian Intel format to internal format. Functions below
3545 adjust for the other possible formats. */
3546 static void
3547 decode_ieee_extended (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3548 const long *buf)
3550 unsigned long image_hi, sig_hi, sig_lo;
3551 bool sign;
3552 int exp;
3554 sig_lo = buf[0], sig_hi = buf[1], image_hi = buf[2];
3555 sig_lo &= 0xffffffff;
3556 sig_hi &= 0xffffffff;
3557 image_hi &= 0xffffffff;
3559 sign = (image_hi >> 15) & 1;
3560 exp = image_hi & 0x7fff;
3562 memset (r, 0, sizeof (*r));
3564 if (exp == 0)
3566 if ((sig_hi || sig_lo) && fmt->has_denorm)
3568 r->cl = rvc_normal;
3569 r->sign = sign;
3571 /* When the IEEE format contains a hidden bit, we know that
3572 it's zero at this point, and so shift up the significand
3573 and decrease the exponent to match. In this case, Motorola
3574 defines the explicit integer bit to be valid, so we don't
3575 know whether the msb is set or not. */
3576 SET_REAL_EXP (r, fmt->emin);
3577 if (HOST_BITS_PER_LONG == 32)
3579 r->sig[SIGSZ-1] = sig_hi;
3580 r->sig[SIGSZ-2] = sig_lo;
3582 else
3583 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3585 normalize (r);
3587 else if (fmt->has_signed_zero)
3588 r->sign = sign;
3590 else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
3592 /* See above re "pseudo-infinities" and "pseudo-nans".
3593 Short summary is that the MSB will likely always be
3594 set, and that we don't care about it. */
3595 sig_hi &= 0x7fffffff;
3597 if (sig_hi || sig_lo)
3599 r->cl = rvc_nan;
3600 r->sign = sign;
3601 r->signalling = ((sig_hi >> 30) & 1) ^ fmt->qnan_msb_set;
3602 if (HOST_BITS_PER_LONG == 32)
3604 r->sig[SIGSZ-1] = sig_hi;
3605 r->sig[SIGSZ-2] = sig_lo;
3607 else
3608 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3610 else
3612 r->cl = rvc_inf;
3613 r->sign = sign;
3616 else
3618 r->cl = rvc_normal;
3619 r->sign = sign;
3620 SET_REAL_EXP (r, exp - 16383 + 1);
3621 if (HOST_BITS_PER_LONG == 32)
3623 r->sig[SIGSZ-1] = sig_hi;
3624 r->sig[SIGSZ-2] = sig_lo;
3626 else
3627 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3631 /* Convert from the internal format to the 12-byte Motorola format
3632 for an IEEE extended real. */
3633 static void
3634 decode_ieee_extended_motorola (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3635 const long *buf)
3637 long intermed[3];
3639 /* Motorola chips are assumed always to be big-endian. Also, the
3640 padding in a Motorola extended real goes between the exponent and
3641 the mantissa; remove it. */
3642 intermed[0] = buf[2];
3643 intermed[1] = buf[1];
3644 intermed[2] = (unsigned long)buf[0] >> 16;
3646 decode_ieee_extended (fmt, r, intermed);
3649 /* Convert from the internal format to the 12-byte Intel format for
3650 an IEEE extended real. */
3651 static void
3652 decode_ieee_extended_intel_96 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3653 const long *buf)
3655 if (FLOAT_WORDS_BIG_ENDIAN)
3657 /* All the padding in an Intel-format extended real goes at the high
3658 end, which in this case is after the mantissa, not the exponent.
3659 Therefore we must shift everything up 16 bits. */
3660 long intermed[3];
3662 intermed[0] = (((unsigned long)buf[2] >> 16) | (buf[1] << 16));
3663 intermed[1] = (((unsigned long)buf[1] >> 16) | (buf[0] << 16));
3664 intermed[2] = ((unsigned long)buf[0] >> 16);
3666 decode_ieee_extended (fmt, r, intermed);
3668 else
3669 /* decode_ieee_extended produces what we want directly. */
3670 decode_ieee_extended (fmt, r, buf);
3673 /* Convert from the internal format to the 16-byte Intel format for
3674 an IEEE extended real. */
3675 static void
3676 decode_ieee_extended_intel_128 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3677 const long *buf)
3679 /* All the padding in an Intel-format extended real goes at the high end. */
3680 decode_ieee_extended_intel_96 (fmt, r, buf);
3683 const struct real_format ieee_extended_motorola_format =
3685 encode_ieee_extended_motorola,
3686 decode_ieee_extended_motorola,
3690 -16382,
3691 16384,
3694 false,
3695 true,
3696 true,
3697 true,
3698 true,
3699 true,
3700 true,
3701 true,
3702 "ieee_extended_motorola"
3705 const struct real_format ieee_extended_intel_96_format =
3707 encode_ieee_extended_intel_96,
3708 decode_ieee_extended_intel_96,
3712 -16381,
3713 16384,
3716 false,
3717 true,
3718 true,
3719 true,
3720 true,
3721 true,
3722 true,
3723 false,
3724 "ieee_extended_intel_96"
3727 const struct real_format ieee_extended_intel_128_format =
3729 encode_ieee_extended_intel_128,
3730 decode_ieee_extended_intel_128,
3734 -16381,
3735 16384,
3738 false,
3739 true,
3740 true,
3741 true,
3742 true,
3743 true,
3744 true,
3745 false,
3746 "ieee_extended_intel_128"
3749 /* The following caters to i386 systems that set the rounding precision
3750 to 53 bits instead of 64, e.g. FreeBSD. */
3751 const struct real_format ieee_extended_intel_96_round_53_format =
3753 encode_ieee_extended_intel_96,
3754 decode_ieee_extended_intel_96,
3758 -16381,
3759 16384,
3762 false,
3763 true,
3764 true,
3765 true,
3766 true,
3767 true,
3768 true,
3769 false,
3770 "ieee_extended_intel_96_round_53"
3773 /* IBM 128-bit extended precision format: a pair of IEEE double precision
3774 numbers whose sum is equal to the extended precision value. The number
3775 with greater magnitude is first. This format has the same magnitude
3776 range as an IEEE double precision value, but effectively 106 bits of
3777 significand precision. Infinity and NaN are represented by their IEEE
3778 double precision value stored in the first number, the second number is
3779 +0.0 or -0.0 for Infinity and don't-care for NaN. */
3781 static void encode_ibm_extended (const struct real_format *fmt,
3782 long *, const REAL_VALUE_TYPE *);
3783 static void decode_ibm_extended (const struct real_format *,
3784 REAL_VALUE_TYPE *, const long *);
3786 static void
3787 encode_ibm_extended (const struct real_format *fmt, long *buf,
3788 const REAL_VALUE_TYPE *r)
3790 REAL_VALUE_TYPE u, normr, v;
3791 const struct real_format *base_fmt;
3793 base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
3795 /* Renormalize R before doing any arithmetic on it. */
3796 normr = *r;
3797 if (normr.cl == rvc_normal)
3798 normalize (&normr);
3800 /* u = IEEE double precision portion of significand. */
3801 u = normr;
3802 round_for_format (base_fmt, &u);
3803 encode_ieee_double (base_fmt, &buf[0], &u);
3805 if (u.cl == rvc_normal)
3807 do_add (&v, &normr, &u, 1);
3808 /* Call round_for_format since we might need to denormalize. */
3809 round_for_format (base_fmt, &v);
3810 encode_ieee_double (base_fmt, &buf[2], &v);
3812 else
3814 /* Inf, NaN, 0 are all representable as doubles, so the
3815 least-significant part can be 0.0. */
3816 buf[2] = 0;
3817 buf[3] = 0;
3821 static void
3822 decode_ibm_extended (const struct real_format *fmt ATTRIBUTE_UNUSED, REAL_VALUE_TYPE *r,
3823 const long *buf)
3825 REAL_VALUE_TYPE u, v;
3826 const struct real_format *base_fmt;
3828 base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
3829 decode_ieee_double (base_fmt, &u, &buf[0]);
3831 if (u.cl != rvc_zero && u.cl != rvc_inf && u.cl != rvc_nan)
3833 decode_ieee_double (base_fmt, &v, &buf[2]);
3834 do_add (r, &u, &v, 0);
3836 else
3837 *r = u;
3840 const struct real_format ibm_extended_format =
3842 encode_ibm_extended,
3843 decode_ibm_extended,
3845 53 + 53,
3847 -1021 + 53,
3848 1024,
3849 127,
3851 false,
3852 true,
3853 true,
3854 true,
3855 true,
3856 true,
3857 true,
3858 false,
3859 "ibm_extended"
3862 const struct real_format mips_extended_format =
3864 encode_ibm_extended,
3865 decode_ibm_extended,
3867 53 + 53,
3869 -1021 + 53,
3870 1024,
3871 127,
3873 false,
3874 true,
3875 true,
3876 true,
3877 true,
3878 true,
3879 false,
3880 true,
3881 "mips_extended"
3885 /* IEEE quad precision format. */
3887 static void encode_ieee_quad (const struct real_format *fmt,
3888 long *, const REAL_VALUE_TYPE *);
3889 static void decode_ieee_quad (const struct real_format *,
3890 REAL_VALUE_TYPE *, const long *);
3892 static void
3893 encode_ieee_quad (const struct real_format *fmt, long *buf,
3894 const REAL_VALUE_TYPE *r)
3896 unsigned long image3, image2, image1, image0, exp;
3897 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
3898 REAL_VALUE_TYPE u;
3900 image3 = r->sign << 31;
3901 image2 = 0;
3902 image1 = 0;
3903 image0 = 0;
3905 rshift_significand (&u, r, SIGNIFICAND_BITS - 113);
3907 switch (r->cl)
3909 case rvc_zero:
3910 break;
3912 case rvc_inf:
3913 if (fmt->has_inf)
3914 image3 |= 32767 << 16;
3915 else
3917 image3 |= 0x7fffffff;
3918 image2 = 0xffffffff;
3919 image1 = 0xffffffff;
3920 image0 = 0xffffffff;
3922 break;
3924 case rvc_nan:
3925 if (fmt->has_nans)
3927 image3 |= 32767 << 16;
3929 if (r->canonical)
3931 if (fmt->canonical_nan_lsbs_set)
3933 image3 |= 0x7fff;
3934 image2 = image1 = image0 = 0xffffffff;
3937 else if (HOST_BITS_PER_LONG == 32)
3939 image0 = u.sig[0];
3940 image1 = u.sig[1];
3941 image2 = u.sig[2];
3942 image3 |= u.sig[3] & 0xffff;
3944 else
3946 image0 = u.sig[0];
3947 image1 = image0 >> 31 >> 1;
3948 image2 = u.sig[1];
3949 image3 |= (image2 >> 31 >> 1) & 0xffff;
3950 image0 &= 0xffffffff;
3951 image2 &= 0xffffffff;
3953 if (r->signalling == fmt->qnan_msb_set)
3954 image3 &= ~0x8000;
3955 else
3956 image3 |= 0x8000;
3957 if (((image3 & 0xffff) | image2 | image1 | image0) == 0)
3958 image3 |= 0x4000;
3960 else
3962 image3 |= 0x7fffffff;
3963 image2 = 0xffffffff;
3964 image1 = 0xffffffff;
3965 image0 = 0xffffffff;
3967 break;
3969 case rvc_normal:
3970 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3971 whereas the intermediate representation is 0.F x 2**exp.
3972 Which means we're off by one. */
3973 if (denormal)
3974 exp = 0;
3975 else
3976 exp = REAL_EXP (r) + 16383 - 1;
3977 image3 |= exp << 16;
3979 if (HOST_BITS_PER_LONG == 32)
3981 image0 = u.sig[0];
3982 image1 = u.sig[1];
3983 image2 = u.sig[2];
3984 image3 |= u.sig[3] & 0xffff;
3986 else
3988 image0 = u.sig[0];
3989 image1 = image0 >> 31 >> 1;
3990 image2 = u.sig[1];
3991 image3 |= (image2 >> 31 >> 1) & 0xffff;
3992 image0 &= 0xffffffff;
3993 image2 &= 0xffffffff;
3995 break;
3997 default:
3998 gcc_unreachable ();
4001 if (FLOAT_WORDS_BIG_ENDIAN)
4003 buf[0] = image3;
4004 buf[1] = image2;
4005 buf[2] = image1;
4006 buf[3] = image0;
4008 else
4010 buf[0] = image0;
4011 buf[1] = image1;
4012 buf[2] = image2;
4013 buf[3] = image3;
4017 static void
4018 decode_ieee_quad (const struct real_format *fmt, REAL_VALUE_TYPE *r,
4019 const long *buf)
4021 unsigned long image3, image2, image1, image0;
4022 bool sign;
4023 int exp;
4025 if (FLOAT_WORDS_BIG_ENDIAN)
4027 image3 = buf[0];
4028 image2 = buf[1];
4029 image1 = buf[2];
4030 image0 = buf[3];
4032 else
4034 image0 = buf[0];
4035 image1 = buf[1];
4036 image2 = buf[2];
4037 image3 = buf[3];
4039 image0 &= 0xffffffff;
4040 image1 &= 0xffffffff;
4041 image2 &= 0xffffffff;
4043 sign = (image3 >> 31) & 1;
4044 exp = (image3 >> 16) & 0x7fff;
4045 image3 &= 0xffff;
4047 memset (r, 0, sizeof (*r));
4049 if (exp == 0)
4051 if ((image3 | image2 | image1 | image0) && fmt->has_denorm)
4053 r->cl = rvc_normal;
4054 r->sign = sign;
4056 SET_REAL_EXP (r, -16382 + (SIGNIFICAND_BITS - 112));
4057 if (HOST_BITS_PER_LONG == 32)
4059 r->sig[0] = image0;
4060 r->sig[1] = image1;
4061 r->sig[2] = image2;
4062 r->sig[3] = image3;
4064 else
4066 r->sig[0] = (image1 << 31 << 1) | image0;
4067 r->sig[1] = (image3 << 31 << 1) | image2;
4070 normalize (r);
4072 else if (fmt->has_signed_zero)
4073 r->sign = sign;
4075 else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
4077 if (image3 | image2 | image1 | image0)
4079 r->cl = rvc_nan;
4080 r->sign = sign;
4081 r->signalling = ((image3 >> 15) & 1) ^ fmt->qnan_msb_set;
4083 if (HOST_BITS_PER_LONG == 32)
4085 r->sig[0] = image0;
4086 r->sig[1] = image1;
4087 r->sig[2] = image2;
4088 r->sig[3] = image3;
4090 else
4092 r->sig[0] = (image1 << 31 << 1) | image0;
4093 r->sig[1] = (image3 << 31 << 1) | image2;
4095 lshift_significand (r, r, SIGNIFICAND_BITS - 113);
4097 else
4099 r->cl = rvc_inf;
4100 r->sign = sign;
4103 else
4105 r->cl = rvc_normal;
4106 r->sign = sign;
4107 SET_REAL_EXP (r, exp - 16383 + 1);
4109 if (HOST_BITS_PER_LONG == 32)
4111 r->sig[0] = image0;
4112 r->sig[1] = image1;
4113 r->sig[2] = image2;
4114 r->sig[3] = image3;
4116 else
4118 r->sig[0] = (image1 << 31 << 1) | image0;
4119 r->sig[1] = (image3 << 31 << 1) | image2;
4121 lshift_significand (r, r, SIGNIFICAND_BITS - 113);
4122 r->sig[SIGSZ-1] |= SIG_MSB;
4126 const struct real_format ieee_quad_format =
4128 encode_ieee_quad,
4129 decode_ieee_quad,
4131 113,
4132 113,
4133 -16381,
4134 16384,
4135 127,
4136 127,
4137 false,
4138 true,
4139 true,
4140 true,
4141 true,
4142 true,
4143 true,
4144 false,
4145 "ieee_quad"
4148 const struct real_format mips_quad_format =
4150 encode_ieee_quad,
4151 decode_ieee_quad,
4153 113,
4154 113,
4155 -16381,
4156 16384,
4157 127,
4158 127,
4159 false,
4160 true,
4161 true,
4162 true,
4163 true,
4164 true,
4165 false,
4166 true,
4167 "mips_quad"
4170 /* Descriptions of VAX floating point formats can be found beginning at
4172 http://h71000.www7.hp.com/doc/73FINAL/4515/4515pro_013.html#f_floating_point_format
4174 The thing to remember is that they're almost IEEE, except for word
4175 order, exponent bias, and the lack of infinities, nans, and denormals.
4177 We don't implement the H_floating format here, simply because neither
4178 the VAX or Alpha ports use it. */
4180 static void encode_vax_f (const struct real_format *fmt,
4181 long *, const REAL_VALUE_TYPE *);
4182 static void decode_vax_f (const struct real_format *,
4183 REAL_VALUE_TYPE *, const long *);
4184 static void encode_vax_d (const struct real_format *fmt,
4185 long *, const REAL_VALUE_TYPE *);
4186 static void decode_vax_d (const struct real_format *,
4187 REAL_VALUE_TYPE *, const long *);
4188 static void encode_vax_g (const struct real_format *fmt,
4189 long *, const REAL_VALUE_TYPE *);
4190 static void decode_vax_g (const struct real_format *,
4191 REAL_VALUE_TYPE *, const long *);
4193 static void
4194 encode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4195 const REAL_VALUE_TYPE *r)
4197 unsigned long sign, exp, sig, image;
4199 sign = r->sign << 15;
4201 switch (r->cl)
4203 case rvc_zero:
4204 image = 0;
4205 break;
4207 case rvc_inf:
4208 case rvc_nan:
4209 image = 0xffff7fff | sign;
4210 break;
4212 case rvc_normal:
4213 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
4214 exp = REAL_EXP (r) + 128;
4216 image = (sig << 16) & 0xffff0000;
4217 image |= sign;
4218 image |= exp << 7;
4219 image |= sig >> 16;
4220 break;
4222 default:
4223 gcc_unreachable ();
4226 buf[0] = image;
4229 static void
4230 decode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED,
4231 REAL_VALUE_TYPE *r, const long *buf)
4233 unsigned long image = buf[0] & 0xffffffff;
4234 int exp = (image >> 7) & 0xff;
4236 memset (r, 0, sizeof (*r));
4238 if (exp != 0)
4240 r->cl = rvc_normal;
4241 r->sign = (image >> 15) & 1;
4242 SET_REAL_EXP (r, exp - 128);
4244 image = ((image & 0x7f) << 16) | ((image >> 16) & 0xffff);
4245 r->sig[SIGSZ-1] = (image << (HOST_BITS_PER_LONG - 24)) | SIG_MSB;
4249 static void
4250 encode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4251 const REAL_VALUE_TYPE *r)
4253 unsigned long image0, image1, sign = r->sign << 15;
4255 switch (r->cl)
4257 case rvc_zero:
4258 image0 = image1 = 0;
4259 break;
4261 case rvc_inf:
4262 case rvc_nan:
4263 image0 = 0xffff7fff | sign;
4264 image1 = 0xffffffff;
4265 break;
4267 case rvc_normal:
4268 /* Extract the significand into straight hi:lo. */
4269 if (HOST_BITS_PER_LONG == 64)
4271 image0 = r->sig[SIGSZ-1];
4272 image1 = (image0 >> (64 - 56)) & 0xffffffff;
4273 image0 = (image0 >> (64 - 56 + 1) >> 31) & 0x7fffff;
4275 else
4277 image0 = r->sig[SIGSZ-1];
4278 image1 = r->sig[SIGSZ-2];
4279 image1 = (image0 << 24) | (image1 >> 8);
4280 image0 = (image0 >> 8) & 0xffffff;
4283 /* Rearrange the half-words of the significand to match the
4284 external format. */
4285 image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff007f;
4286 image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
4288 /* Add the sign and exponent. */
4289 image0 |= sign;
4290 image0 |= (REAL_EXP (r) + 128) << 7;
4291 break;
4293 default:
4294 gcc_unreachable ();
4297 if (FLOAT_WORDS_BIG_ENDIAN)
4298 buf[0] = image1, buf[1] = image0;
4299 else
4300 buf[0] = image0, buf[1] = image1;
4303 static void
4304 decode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED,
4305 REAL_VALUE_TYPE *r, const long *buf)
4307 unsigned long image0, image1;
4308 int exp;
4310 if (FLOAT_WORDS_BIG_ENDIAN)
4311 image1 = buf[0], image0 = buf[1];
4312 else
4313 image0 = buf[0], image1 = buf[1];
4314 image0 &= 0xffffffff;
4315 image1 &= 0xffffffff;
4317 exp = (image0 >> 7) & 0xff;
4319 memset (r, 0, sizeof (*r));
4321 if (exp != 0)
4323 r->cl = rvc_normal;
4324 r->sign = (image0 >> 15) & 1;
4325 SET_REAL_EXP (r, exp - 128);
4327 /* Rearrange the half-words of the external format into
4328 proper ascending order. */
4329 image0 = ((image0 & 0x7f) << 16) | ((image0 >> 16) & 0xffff);
4330 image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
4332 if (HOST_BITS_PER_LONG == 64)
4334 image0 = (image0 << 31 << 1) | image1;
4335 image0 <<= 64 - 56;
4336 image0 |= SIG_MSB;
4337 r->sig[SIGSZ-1] = image0;
4339 else
4341 r->sig[SIGSZ-1] = image0;
4342 r->sig[SIGSZ-2] = image1;
4343 lshift_significand (r, r, 2*HOST_BITS_PER_LONG - 56);
4344 r->sig[SIGSZ-1] |= SIG_MSB;
4349 static void
4350 encode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4351 const REAL_VALUE_TYPE *r)
4353 unsigned long image0, image1, sign = r->sign << 15;
4355 switch (r->cl)
4357 case rvc_zero:
4358 image0 = image1 = 0;
4359 break;
4361 case rvc_inf:
4362 case rvc_nan:
4363 image0 = 0xffff7fff | sign;
4364 image1 = 0xffffffff;
4365 break;
4367 case rvc_normal:
4368 /* Extract the significand into straight hi:lo. */
4369 if (HOST_BITS_PER_LONG == 64)
4371 image0 = r->sig[SIGSZ-1];
4372 image1 = (image0 >> (64 - 53)) & 0xffffffff;
4373 image0 = (image0 >> (64 - 53 + 1) >> 31) & 0xfffff;
4375 else
4377 image0 = r->sig[SIGSZ-1];
4378 image1 = r->sig[SIGSZ-2];
4379 image1 = (image0 << 21) | (image1 >> 11);
4380 image0 = (image0 >> 11) & 0xfffff;
4383 /* Rearrange the half-words of the significand to match the
4384 external format. */
4385 image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff000f;
4386 image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
4388 /* Add the sign and exponent. */
4389 image0 |= sign;
4390 image0 |= (REAL_EXP (r) + 1024) << 4;
4391 break;
4393 default:
4394 gcc_unreachable ();
4397 if (FLOAT_WORDS_BIG_ENDIAN)
4398 buf[0] = image1, buf[1] = image0;
4399 else
4400 buf[0] = image0, buf[1] = image1;
4403 static void
4404 decode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED,
4405 REAL_VALUE_TYPE *r, const long *buf)
4407 unsigned long image0, image1;
4408 int exp;
4410 if (FLOAT_WORDS_BIG_ENDIAN)
4411 image1 = buf[0], image0 = buf[1];
4412 else
4413 image0 = buf[0], image1 = buf[1];
4414 image0 &= 0xffffffff;
4415 image1 &= 0xffffffff;
4417 exp = (image0 >> 4) & 0x7ff;
4419 memset (r, 0, sizeof (*r));
4421 if (exp != 0)
4423 r->cl = rvc_normal;
4424 r->sign = (image0 >> 15) & 1;
4425 SET_REAL_EXP (r, exp - 1024);
4427 /* Rearrange the half-words of the external format into
4428 proper ascending order. */
4429 image0 = ((image0 & 0xf) << 16) | ((image0 >> 16) & 0xffff);
4430 image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
4432 if (HOST_BITS_PER_LONG == 64)
4434 image0 = (image0 << 31 << 1) | image1;
4435 image0 <<= 64 - 53;
4436 image0 |= SIG_MSB;
4437 r->sig[SIGSZ-1] = image0;
4439 else
4441 r->sig[SIGSZ-1] = image0;
4442 r->sig[SIGSZ-2] = image1;
4443 lshift_significand (r, r, 64 - 53);
4444 r->sig[SIGSZ-1] |= SIG_MSB;
4449 const struct real_format vax_f_format =
4451 encode_vax_f,
4452 decode_vax_f,
4456 -127,
4457 127,
4460 false,
4461 false,
4462 false,
4463 false,
4464 false,
4465 false,
4466 false,
4467 false,
4468 "vax_f"
4471 const struct real_format vax_d_format =
4473 encode_vax_d,
4474 decode_vax_d,
4478 -127,
4479 127,
4482 false,
4483 false,
4484 false,
4485 false,
4486 false,
4487 false,
4488 false,
4489 false,
4490 "vax_d"
4493 const struct real_format vax_g_format =
4495 encode_vax_g,
4496 decode_vax_g,
4500 -1023,
4501 1023,
4504 false,
4505 false,
4506 false,
4507 false,
4508 false,
4509 false,
4510 false,
4511 false,
4512 "vax_g"
4515 /* Encode real R into a single precision DFP value in BUF. */
4516 static void
4517 encode_decimal_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4518 long *buf ATTRIBUTE_UNUSED,
4519 const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
4521 encode_decimal32 (fmt, buf, r);
4524 /* Decode a single precision DFP value in BUF into a real R. */
4525 static void
4526 decode_decimal_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4527 REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
4528 const long *buf ATTRIBUTE_UNUSED)
4530 decode_decimal32 (fmt, r, buf);
4533 /* Encode real R into a double precision DFP value in BUF. */
4534 static void
4535 encode_decimal_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
4536 long *buf ATTRIBUTE_UNUSED,
4537 const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
4539 encode_decimal64 (fmt, buf, r);
4542 /* Decode a double precision DFP value in BUF into a real R. */
4543 static void
4544 decode_decimal_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
4545 REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
4546 const long *buf ATTRIBUTE_UNUSED)
4548 decode_decimal64 (fmt, r, buf);
4551 /* Encode real R into a quad precision DFP value in BUF. */
4552 static void
4553 encode_decimal_quad (const struct real_format *fmt ATTRIBUTE_UNUSED,
4554 long *buf ATTRIBUTE_UNUSED,
4555 const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
4557 encode_decimal128 (fmt, buf, r);
4560 /* Decode a quad precision DFP value in BUF into a real R. */
4561 static void
4562 decode_decimal_quad (const struct real_format *fmt ATTRIBUTE_UNUSED,
4563 REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
4564 const long *buf ATTRIBUTE_UNUSED)
4566 decode_decimal128 (fmt, r, buf);
4569 /* Single precision decimal floating point (IEEE 754). */
4570 const struct real_format decimal_single_format =
4572 encode_decimal_single,
4573 decode_decimal_single,
4577 -94,
4581 false,
4582 true,
4583 true,
4584 true,
4585 true,
4586 true,
4587 true,
4588 false,
4589 "decimal_single"
4592 /* Double precision decimal floating point (IEEE 754). */
4593 const struct real_format decimal_double_format =
4595 encode_decimal_double,
4596 decode_decimal_double,
4600 -382,
4601 385,
4604 false,
4605 true,
4606 true,
4607 true,
4608 true,
4609 true,
4610 true,
4611 false,
4612 "decimal_double"
4615 /* Quad precision decimal floating point (IEEE 754). */
4616 const struct real_format decimal_quad_format =
4618 encode_decimal_quad,
4619 decode_decimal_quad,
4623 -6142,
4624 6145,
4625 127,
4626 127,
4627 false,
4628 true,
4629 true,
4630 true,
4631 true,
4632 true,
4633 true,
4634 false,
4635 "decimal_quad"
4638 /* Encode half-precision floats. This routine is used both for the IEEE
4639 ARM alternative encodings. */
4640 static void
4641 encode_ieee_half (const struct real_format *fmt, long *buf,
4642 const REAL_VALUE_TYPE *r)
4644 unsigned long image, sig, exp;
4645 unsigned long sign = r->sign;
4646 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
4648 image = sign << 15;
4649 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 11)) & 0x3ff;
4651 switch (r->cl)
4653 case rvc_zero:
4654 break;
4656 case rvc_inf:
4657 if (fmt->has_inf)
4658 image |= 31 << 10;
4659 else
4660 image |= 0x7fff;
4661 break;
4663 case rvc_nan:
4664 if (fmt->has_nans)
4666 if (r->canonical)
4667 sig = (fmt->canonical_nan_lsbs_set ? (1 << 9) - 1 : 0);
4668 if (r->signalling == fmt->qnan_msb_set)
4669 sig &= ~(1 << 9);
4670 else
4671 sig |= 1 << 9;
4672 if (sig == 0)
4673 sig = 1 << 8;
4675 image |= 31 << 10;
4676 image |= sig;
4678 else
4679 image |= 0x3ff;
4680 break;
4682 case rvc_normal:
4683 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
4684 whereas the intermediate representation is 0.F x 2**exp.
4685 Which means we're off by one. */
4686 if (denormal)
4687 exp = 0;
4688 else
4689 exp = REAL_EXP (r) + 15 - 1;
4690 image |= exp << 10;
4691 image |= sig;
4692 break;
4694 default:
4695 gcc_unreachable ();
4698 buf[0] = image;
4701 /* Decode half-precision floats. This routine is used both for the IEEE
4702 ARM alternative encodings. */
4703 static void
4704 decode_ieee_half (const struct real_format *fmt, REAL_VALUE_TYPE *r,
4705 const long *buf)
4707 unsigned long image = buf[0] & 0xffff;
4708 bool sign = (image >> 15) & 1;
4709 int exp = (image >> 10) & 0x1f;
4711 memset (r, 0, sizeof (*r));
4712 image <<= HOST_BITS_PER_LONG - 11;
4713 image &= ~SIG_MSB;
4715 if (exp == 0)
4717 if (image && fmt->has_denorm)
4719 r->cl = rvc_normal;
4720 r->sign = sign;
4721 SET_REAL_EXP (r, -14);
4722 r->sig[SIGSZ-1] = image << 1;
4723 normalize (r);
4725 else if (fmt->has_signed_zero)
4726 r->sign = sign;
4728 else if (exp == 31 && (fmt->has_nans || fmt->has_inf))
4730 if (image)
4732 r->cl = rvc_nan;
4733 r->sign = sign;
4734 r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
4735 ^ fmt->qnan_msb_set);
4736 r->sig[SIGSZ-1] = image;
4738 else
4740 r->cl = rvc_inf;
4741 r->sign = sign;
4744 else
4746 r->cl = rvc_normal;
4747 r->sign = sign;
4748 SET_REAL_EXP (r, exp - 15 + 1);
4749 r->sig[SIGSZ-1] = image | SIG_MSB;
4753 /* Half-precision format, as specified in IEEE 754R. */
4754 const struct real_format ieee_half_format =
4756 encode_ieee_half,
4757 decode_ieee_half,
4761 -13,
4765 false,
4766 true,
4767 true,
4768 true,
4769 true,
4770 true,
4771 true,
4772 false,
4773 "ieee_half"
4776 /* ARM's alternative half-precision format, similar to IEEE but with
4777 no reserved exponent value for NaNs and infinities; rather, it just
4778 extends the range of exponents by one. */
4779 const struct real_format arm_half_format =
4781 encode_ieee_half,
4782 decode_ieee_half,
4786 -13,
4790 false,
4791 true,
4792 false,
4793 false,
4794 true,
4795 true,
4796 false,
4797 false,
4798 "arm_half"
4801 /* A synthetic "format" for internal arithmetic. It's the size of the
4802 internal significand minus the two bits needed for proper rounding.
4803 The encode and decode routines exist only to satisfy our paranoia
4804 harness. */
4806 static void encode_internal (const struct real_format *fmt,
4807 long *, const REAL_VALUE_TYPE *);
4808 static void decode_internal (const struct real_format *,
4809 REAL_VALUE_TYPE *, const long *);
4811 static void
4812 encode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4813 const REAL_VALUE_TYPE *r)
4815 memcpy (buf, r, sizeof (*r));
4818 static void
4819 decode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED,
4820 REAL_VALUE_TYPE *r, const long *buf)
4822 memcpy (r, buf, sizeof (*r));
4825 const struct real_format real_internal_format =
4827 encode_internal,
4828 decode_internal,
4830 SIGNIFICAND_BITS - 2,
4831 SIGNIFICAND_BITS - 2,
4832 -MAX_EXP,
4833 MAX_EXP,
4836 false,
4837 false,
4838 true,
4839 true,
4840 false,
4841 true,
4842 true,
4843 false,
4844 "real_internal"
4847 /* Calculate X raised to the integer exponent N in mode MODE and store
4848 the result in R. Return true if the result may be inexact due to
4849 loss of precision. The algorithm is the classic "left-to-right binary
4850 method" described in section 4.6.3 of Donald Knuth's "Seminumerical
4851 Algorithms", "The Art of Computer Programming", Volume 2. */
4853 bool
4854 real_powi (REAL_VALUE_TYPE *r, machine_mode mode,
4855 const REAL_VALUE_TYPE *x, HOST_WIDE_INT n)
4857 unsigned HOST_WIDE_INT bit;
4858 REAL_VALUE_TYPE t;
4859 bool inexact = false;
4860 bool init = false;
4861 bool neg;
4862 int i;
4864 if (n == 0)
4866 *r = dconst1;
4867 return false;
4869 else if (n < 0)
4871 /* Don't worry about overflow, from now on n is unsigned. */
4872 neg = true;
4873 n = -n;
4875 else
4876 neg = false;
4878 t = *x;
4879 bit = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
4880 for (i = 0; i < HOST_BITS_PER_WIDE_INT; i++)
4882 if (init)
4884 inexact |= do_multiply (&t, &t, &t);
4885 if (n & bit)
4886 inexact |= do_multiply (&t, &t, x);
4888 else if (n & bit)
4889 init = true;
4890 bit >>= 1;
4893 if (neg)
4894 inexact |= do_divide (&t, &dconst1, &t);
4896 real_convert (r, mode, &t);
4897 return inexact;
4900 /* Round X to the nearest integer not larger in absolute value, i.e.
4901 towards zero, placing the result in R in mode MODE. */
4903 void
4904 real_trunc (REAL_VALUE_TYPE *r, machine_mode mode,
4905 const REAL_VALUE_TYPE *x)
4907 do_fix_trunc (r, x);
4908 if (mode != VOIDmode)
4909 real_convert (r, mode, r);
4912 /* Round X to the largest integer not greater in value, i.e. round
4913 down, placing the result in R in mode MODE. */
4915 void
4916 real_floor (REAL_VALUE_TYPE *r, machine_mode mode,
4917 const REAL_VALUE_TYPE *x)
4919 REAL_VALUE_TYPE t;
4921 do_fix_trunc (&t, x);
4922 if (! real_identical (&t, x) && x->sign)
4923 do_add (&t, &t, &dconstm1, 0);
4924 if (mode != VOIDmode)
4925 real_convert (r, mode, &t);
4926 else
4927 *r = t;
4930 /* Round X to the smallest integer not less then argument, i.e. round
4931 up, placing the result in R in mode MODE. */
4933 void
4934 real_ceil (REAL_VALUE_TYPE *r, machine_mode mode,
4935 const REAL_VALUE_TYPE *x)
4937 REAL_VALUE_TYPE t;
4939 do_fix_trunc (&t, x);
4940 if (! real_identical (&t, x) && ! x->sign)
4941 do_add (&t, &t, &dconst1, 0);
4942 if (mode != VOIDmode)
4943 real_convert (r, mode, &t);
4944 else
4945 *r = t;
4948 /* Round X to the nearest integer, but round halfway cases away from
4949 zero. */
4951 void
4952 real_round (REAL_VALUE_TYPE *r, machine_mode mode,
4953 const REAL_VALUE_TYPE *x)
4955 do_add (r, x, &dconsthalf, x->sign);
4956 do_fix_trunc (r, r);
4957 if (mode != VOIDmode)
4958 real_convert (r, mode, r);
4961 /* Set the sign of R to the sign of X. */
4963 void
4964 real_copysign (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *x)
4966 r->sign = x->sign;
4969 /* Check whether the real constant value given is an integer. */
4971 bool
4972 real_isinteger (const REAL_VALUE_TYPE *c, machine_mode mode)
4974 REAL_VALUE_TYPE cint;
4976 real_trunc (&cint, mode, c);
4977 return real_identical (c, &cint);
4980 /* Write into BUF the maximum representable finite floating-point
4981 number, (1 - b**-p) * b**emax for a given FP format FMT as a hex
4982 float string. LEN is the size of BUF, and the buffer must be large
4983 enough to contain the resulting string. */
4985 void
4986 get_max_float (const struct real_format *fmt, char *buf, size_t len)
4988 int i, n;
4989 char *p;
4991 strcpy (buf, "0x0.");
4992 n = fmt->p;
4993 for (i = 0, p = buf + 4; i + 3 < n; i += 4)
4994 *p++ = 'f';
4995 if (i < n)
4996 *p++ = "08ce"[n - i];
4997 sprintf (p, "p%d", fmt->emax);
4998 if (fmt->pnan < fmt->p)
5000 /* This is an IBM extended double format made up of two IEEE
5001 doubles. The value of the long double is the sum of the
5002 values of the two parts. The most significant part is
5003 required to be the value of the long double rounded to the
5004 nearest double. Rounding means we need a slightly smaller
5005 value for LDBL_MAX. */
5006 buf[4 + fmt->pnan / 4] = "7bde"[fmt->pnan % 4];
5009 gcc_assert (strlen (buf) < len);
5012 /* True if mode M has a NaN representation and
5013 the treatment of NaN operands is important. */
5015 bool
5016 HONOR_NANS (machine_mode m)
5018 return MODE_HAS_NANS (m) && !flag_finite_math_only;
5021 bool
5022 HONOR_NANS (const_tree t)
5024 return HONOR_NANS (element_mode (t));
5027 bool
5028 HONOR_NANS (const_rtx x)
5030 return HONOR_NANS (GET_MODE (x));
5033 /* Like HONOR_NANs, but true if we honor signaling NaNs (or sNaNs). */
5035 bool
5036 HONOR_SNANS (machine_mode m)
5038 return flag_signaling_nans && HONOR_NANS (m);
5041 bool
5042 HONOR_SNANS (const_tree t)
5044 return HONOR_SNANS (element_mode (t));
5047 bool
5048 HONOR_SNANS (const_rtx x)
5050 return HONOR_SNANS (GET_MODE (x));
5053 /* As for HONOR_NANS, but true if the mode can represent infinity and
5054 the treatment of infinite values is important. */
5056 bool
5057 HONOR_INFINITIES (machine_mode m)
5059 return MODE_HAS_INFINITIES (m) && !flag_finite_math_only;
5062 bool
5063 HONOR_INFINITIES (const_tree t)
5065 return HONOR_INFINITIES (element_mode (t));
5068 bool
5069 HONOR_INFINITIES (const_rtx x)
5071 return HONOR_INFINITIES (GET_MODE (x));
5074 /* Like HONOR_NANS, but true if the given mode distinguishes between
5075 positive and negative zero, and the sign of zero is important. */
5077 bool
5078 HONOR_SIGNED_ZEROS (machine_mode m)
5080 return MODE_HAS_SIGNED_ZEROS (m) && flag_signed_zeros;
5083 bool
5084 HONOR_SIGNED_ZEROS (const_tree t)
5086 return HONOR_SIGNED_ZEROS (element_mode (t));
5089 bool
5090 HONOR_SIGNED_ZEROS (const_rtx x)
5092 return HONOR_SIGNED_ZEROS (GET_MODE (x));
5095 /* Like HONOR_NANS, but true if given mode supports sign-dependent rounding,
5096 and the rounding mode is important. */
5098 bool
5099 HONOR_SIGN_DEPENDENT_ROUNDING (machine_mode m)
5101 return MODE_HAS_SIGN_DEPENDENT_ROUNDING (m) && flag_rounding_math;
5104 bool
5105 HONOR_SIGN_DEPENDENT_ROUNDING (const_tree t)
5107 return HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (t));
5110 bool
5111 HONOR_SIGN_DEPENDENT_ROUNDING (const_rtx x)
5113 return HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (x));