PR testsuite/66621
[official-gcc.git] / gcc / ira-costs.c
blob972978d603a3b4520d413a3b29d782ead7780cd8
1 /* IRA hard register and memory cost calculation for allocnos or pseudos.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "hard-reg-set.h"
26 #include "rtl.h"
27 #include "symtab.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "alias.h"
31 #include "tree.h"
32 #include "insn-config.h"
33 #include "expmed.h"
34 #include "dojump.h"
35 #include "explow.h"
36 #include "calls.h"
37 #include "emit-rtl.h"
38 #include "varasm.h"
39 #include "stmt.h"
40 #include "expr.h"
41 #include "tm_p.h"
42 #include "predict.h"
43 #include "dominance.h"
44 #include "cfg.h"
45 #include "basic-block.h"
46 #include "regs.h"
47 #include "addresses.h"
48 #include "recog.h"
49 #include "reload.h"
50 #include "diagnostic-core.h"
51 #include "target.h"
52 #include "params.h"
53 #include "ira-int.h"
55 /* The flags is set up every time when we calculate pseudo register
56 classes through function ira_set_pseudo_classes. */
57 static bool pseudo_classes_defined_p = false;
59 /* TRUE if we work with allocnos. Otherwise we work with pseudos. */
60 static bool allocno_p;
62 /* Number of elements in array `costs'. */
63 static int cost_elements_num;
65 /* The `costs' struct records the cost of using hard registers of each
66 class considered for the calculation and of using memory for each
67 allocno or pseudo. */
68 struct costs
70 int mem_cost;
71 /* Costs for register classes start here. We process only some
72 allocno classes. */
73 int cost[1];
76 #define max_struct_costs_size \
77 (this_target_ira_int->x_max_struct_costs_size)
78 #define init_cost \
79 (this_target_ira_int->x_init_cost)
80 #define temp_costs \
81 (this_target_ira_int->x_temp_costs)
82 #define op_costs \
83 (this_target_ira_int->x_op_costs)
84 #define this_op_costs \
85 (this_target_ira_int->x_this_op_costs)
87 /* Costs of each class for each allocno or pseudo. */
88 static struct costs *costs;
90 /* Accumulated costs of each class for each allocno. */
91 static struct costs *total_allocno_costs;
93 /* It is the current size of struct costs. */
94 static int struct_costs_size;
96 /* Return pointer to structure containing costs of allocno or pseudo
97 with given NUM in array ARR. */
98 #define COSTS(arr, num) \
99 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
101 /* Return index in COSTS when processing reg with REGNO. */
102 #define COST_INDEX(regno) (allocno_p \
103 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
104 : (int) regno)
106 /* Record register class preferences of each allocno or pseudo. Null
107 value means no preferences. It happens on the 1st iteration of the
108 cost calculation. */
109 static enum reg_class *pref;
111 /* Allocated buffers for pref. */
112 static enum reg_class *pref_buffer;
114 /* Record allocno class of each allocno with the same regno. */
115 static enum reg_class *regno_aclass;
117 /* Record cost gains for not allocating a register with an invariant
118 equivalence. */
119 static int *regno_equiv_gains;
121 /* Execution frequency of the current insn. */
122 static int frequency;
126 /* Info about reg classes whose costs are calculated for a pseudo. */
127 struct cost_classes
129 /* Number of the cost classes in the subsequent array. */
130 int num;
131 /* Container of the cost classes. */
132 enum reg_class classes[N_REG_CLASSES];
133 /* Map reg class -> index of the reg class in the previous array.
134 -1 if it is not a cost class. */
135 int index[N_REG_CLASSES];
136 /* Map hard regno index of first class in array CLASSES containing
137 the hard regno, -1 otherwise. */
138 int hard_regno_index[FIRST_PSEUDO_REGISTER];
141 /* Types of pointers to the structure above. */
142 typedef struct cost_classes *cost_classes_t;
143 typedef const struct cost_classes *const_cost_classes_t;
145 /* Info about cost classes for each pseudo. */
146 static cost_classes_t *regno_cost_classes;
148 /* Helper for cost_classes hashing. */
150 struct cost_classes_hasher
152 typedef cost_classes *value_type;
153 typedef cost_classes *compare_type;
154 static inline hashval_t hash (const cost_classes *);
155 static inline bool equal (const cost_classes *, const cost_classes *);
156 static inline void remove (cost_classes *);
159 /* Returns hash value for cost classes info HV. */
160 inline hashval_t
161 cost_classes_hasher::hash (const cost_classes *hv)
163 return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
166 /* Compares cost classes info HV1 and HV2. */
167 inline bool
168 cost_classes_hasher::equal (const cost_classes *hv1, const cost_classes *hv2)
170 return (hv1->num == hv2->num
171 && memcmp (hv1->classes, hv2->classes,
172 sizeof (enum reg_class) * hv1->num) == 0);
175 /* Delete cost classes info V from the hash table. */
176 inline void
177 cost_classes_hasher::remove (cost_classes *v)
179 ira_free (v);
182 /* Hash table of unique cost classes. */
183 static hash_table<cost_classes_hasher> *cost_classes_htab;
185 /* Map allocno class -> cost classes for pseudo of given allocno
186 class. */
187 static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
189 /* Map mode -> cost classes for pseudo of give mode. */
190 static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
192 /* Cost classes that include all classes in ira_important_classes. */
193 static cost_classes all_cost_classes;
195 /* Use the array of classes in CLASSES_PTR to fill out the rest of
196 the structure. */
197 static void
198 complete_cost_classes (cost_classes_t classes_ptr)
200 for (int i = 0; i < N_REG_CLASSES; i++)
201 classes_ptr->index[i] = -1;
202 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
203 classes_ptr->hard_regno_index[i] = -1;
204 for (int i = 0; i < classes_ptr->num; i++)
206 enum reg_class cl = classes_ptr->classes[i];
207 classes_ptr->index[cl] = i;
208 for (int j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
210 unsigned int hard_regno = ira_class_hard_regs[cl][j];
211 if (classes_ptr->hard_regno_index[hard_regno] < 0)
212 classes_ptr->hard_regno_index[hard_regno] = i;
217 /* Initialize info about the cost classes for each pseudo. */
218 static void
219 initiate_regno_cost_classes (void)
221 int size = sizeof (cost_classes_t) * max_reg_num ();
223 regno_cost_classes = (cost_classes_t *) ira_allocate (size);
224 memset (regno_cost_classes, 0, size);
225 memset (cost_classes_aclass_cache, 0,
226 sizeof (cost_classes_t) * N_REG_CLASSES);
227 memset (cost_classes_mode_cache, 0,
228 sizeof (cost_classes_t) * MAX_MACHINE_MODE);
229 cost_classes_htab = new hash_table<cost_classes_hasher> (200);
230 all_cost_classes.num = ira_important_classes_num;
231 for (int i = 0; i < ira_important_classes_num; i++)
232 all_cost_classes.classes[i] = ira_important_classes[i];
233 complete_cost_classes (&all_cost_classes);
236 /* Create new cost classes from cost classes FROM and set up members
237 index and hard_regno_index. Return the new classes. The function
238 implements some common code of two functions
239 setup_regno_cost_classes_by_aclass and
240 setup_regno_cost_classes_by_mode. */
241 static cost_classes_t
242 setup_cost_classes (cost_classes_t from)
244 cost_classes_t classes_ptr;
246 classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
247 classes_ptr->num = from->num;
248 for (int i = 0; i < from->num; i++)
249 classes_ptr->classes[i] = from->classes[i];
250 complete_cost_classes (classes_ptr);
251 return classes_ptr;
254 /* Return a version of FULL that only considers registers in REGS that are
255 valid for mode MODE. Both FULL and the returned class are globally
256 allocated. */
257 static cost_classes_t
258 restrict_cost_classes (cost_classes_t full, machine_mode mode,
259 const HARD_REG_SET &regs)
261 static struct cost_classes narrow;
262 int map[N_REG_CLASSES];
263 narrow.num = 0;
264 for (int i = 0; i < full->num; i++)
266 /* Assume that we'll drop the class. */
267 map[i] = -1;
269 /* Ignore classes that are too small for the mode. */
270 enum reg_class cl = full->classes[i];
271 if (!contains_reg_of_mode[cl][mode])
272 continue;
274 /* Calculate the set of registers in CL that belong to REGS and
275 are valid for MODE. */
276 HARD_REG_SET valid_for_cl;
277 COPY_HARD_REG_SET (valid_for_cl, reg_class_contents[cl]);
278 AND_HARD_REG_SET (valid_for_cl, regs);
279 AND_COMPL_HARD_REG_SET (valid_for_cl,
280 ira_prohibited_class_mode_regs[cl][mode]);
281 AND_COMPL_HARD_REG_SET (valid_for_cl, ira_no_alloc_regs);
282 if (hard_reg_set_empty_p (valid_for_cl))
283 continue;
285 /* Don't use this class if the set of valid registers is a subset
286 of an existing class. For example, suppose we have two classes
287 GR_REGS and FR_REGS and a union class GR_AND_FR_REGS. Suppose
288 that the mode changes allowed by FR_REGS are not as general as
289 the mode changes allowed by GR_REGS.
291 In this situation, the mode changes for GR_AND_FR_REGS could
292 either be seen as the union or the intersection of the mode
293 changes allowed by the two subclasses. The justification for
294 the union-based definition would be that, if you want a mode
295 change that's only allowed by GR_REGS, you can pick a register
296 from the GR_REGS subclass. The justification for the
297 intersection-based definition would be that every register
298 from the class would allow the mode change.
300 However, if we have a register that needs to be in GR_REGS,
301 using GR_AND_FR_REGS with the intersection-based definition
302 would be too pessimistic, since it would bring in restrictions
303 that only apply to FR_REGS. Conversely, if we have a register
304 that needs to be in FR_REGS, using GR_AND_FR_REGS with the
305 union-based definition would lose the extra restrictions
306 placed on FR_REGS. GR_AND_FR_REGS is therefore only useful
307 for cases where GR_REGS and FP_REGS are both valid. */
308 int pos;
309 for (pos = 0; pos < narrow.num; ++pos)
311 enum reg_class cl2 = narrow.classes[pos];
312 if (hard_reg_set_subset_p (valid_for_cl, reg_class_contents[cl2]))
313 break;
315 map[i] = pos;
316 if (pos == narrow.num)
318 /* If several classes are equivalent, prefer to use the one
319 that was chosen as the allocno class. */
320 enum reg_class cl2 = ira_allocno_class_translate[cl];
321 if (ira_class_hard_regs_num[cl] == ira_class_hard_regs_num[cl2])
322 cl = cl2;
323 narrow.classes[narrow.num++] = cl;
326 if (narrow.num == full->num)
327 return full;
329 cost_classes **slot = cost_classes_htab->find_slot (&narrow, INSERT);
330 if (*slot == NULL)
332 cost_classes_t classes = setup_cost_classes (&narrow);
333 /* Map equivalent classes to the representative that we chose above. */
334 for (int i = 0; i < ira_important_classes_num; i++)
336 enum reg_class cl = ira_important_classes[i];
337 int index = full->index[cl];
338 if (index >= 0)
339 classes->index[cl] = map[index];
341 *slot = classes;
343 return *slot;
346 /* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
347 This function is used when we know an initial approximation of
348 allocno class of the pseudo already, e.g. on the second iteration
349 of class cost calculation or after class cost calculation in
350 register-pressure sensitive insn scheduling or register-pressure
351 sensitive loop-invariant motion. */
352 static void
353 setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
355 static struct cost_classes classes;
356 cost_classes_t classes_ptr;
357 enum reg_class cl;
358 int i;
359 cost_classes **slot;
360 HARD_REG_SET temp, temp2;
361 bool exclude_p;
363 if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
365 COPY_HARD_REG_SET (temp, reg_class_contents[aclass]);
366 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
367 /* We exclude classes from consideration which are subsets of
368 ACLASS only if ACLASS is an uniform class. */
369 exclude_p = ira_uniform_class_p[aclass];
370 classes.num = 0;
371 for (i = 0; i < ira_important_classes_num; i++)
373 cl = ira_important_classes[i];
374 if (exclude_p)
376 /* Exclude non-uniform classes which are subsets of
377 ACLASS. */
378 COPY_HARD_REG_SET (temp2, reg_class_contents[cl]);
379 AND_COMPL_HARD_REG_SET (temp2, ira_no_alloc_regs);
380 if (hard_reg_set_subset_p (temp2, temp) && cl != aclass)
381 continue;
383 classes.classes[classes.num++] = cl;
385 slot = cost_classes_htab->find_slot (&classes, INSERT);
386 if (*slot == NULL)
388 classes_ptr = setup_cost_classes (&classes);
389 *slot = classes_ptr;
391 classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
393 if (regno_reg_rtx[regno] != NULL_RTX)
395 /* Restrict the classes to those that are valid for REGNO's mode
396 (which might for example exclude singleton classes if the mode
397 requires two registers). Also restrict the classes to those that
398 are valid for subregs of REGNO. */
399 const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno);
400 if (!valid_regs)
401 valid_regs = &reg_class_contents[ALL_REGS];
402 classes_ptr = restrict_cost_classes (classes_ptr,
403 PSEUDO_REGNO_MODE (regno),
404 *valid_regs);
406 regno_cost_classes[regno] = classes_ptr;
409 /* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
410 decrease number of cost classes for the pseudo, if hard registers
411 of some important classes can not hold a value of MODE. So the
412 pseudo can not get hard register of some important classes and cost
413 calculation for such important classes is only wasting CPU
414 time. */
415 static void
416 setup_regno_cost_classes_by_mode (int regno, machine_mode mode)
418 if (const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno))
419 regno_cost_classes[regno] = restrict_cost_classes (&all_cost_classes,
420 mode, *valid_regs);
421 else
423 if (cost_classes_mode_cache[mode] == NULL)
424 cost_classes_mode_cache[mode]
425 = restrict_cost_classes (&all_cost_classes, mode,
426 reg_class_contents[ALL_REGS]);
427 regno_cost_classes[regno] = cost_classes_mode_cache[mode];
431 /* Finalize info about the cost classes for each pseudo. */
432 static void
433 finish_regno_cost_classes (void)
435 ira_free (regno_cost_classes);
436 delete cost_classes_htab;
437 cost_classes_htab = NULL;
442 /* Compute the cost of loading X into (if TO_P is TRUE) or from (if
443 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
444 be a pseudo register. */
445 static int
446 copy_cost (rtx x, machine_mode mode, reg_class_t rclass, bool to_p,
447 secondary_reload_info *prev_sri)
449 secondary_reload_info sri;
450 reg_class_t secondary_class = NO_REGS;
452 /* If X is a SCRATCH, there is actually nothing to move since we are
453 assuming optimal allocation. */
454 if (GET_CODE (x) == SCRATCH)
455 return 0;
457 /* Get the class we will actually use for a reload. */
458 rclass = targetm.preferred_reload_class (x, rclass);
460 /* If we need a secondary reload for an intermediate, the cost is
461 that to load the input into the intermediate register, then to
462 copy it. */
463 sri.prev_sri = prev_sri;
464 sri.extra_cost = 0;
465 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
467 if (secondary_class != NO_REGS)
469 ira_init_register_move_cost_if_necessary (mode);
470 return (ira_register_move_cost[mode][(int) secondary_class][(int) rclass]
471 + sri.extra_cost
472 + copy_cost (x, mode, secondary_class, to_p, &sri));
475 /* For memory, use the memory move cost, for (hard) registers, use
476 the cost to move between the register classes, and use 2 for
477 everything else (constants). */
478 if (MEM_P (x) || rclass == NO_REGS)
479 return sri.extra_cost
480 + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
481 else if (REG_P (x))
483 reg_class_t x_class = REGNO_REG_CLASS (REGNO (x));
485 ira_init_register_move_cost_if_necessary (mode);
486 return (sri.extra_cost
487 + ira_register_move_cost[mode][(int) x_class][(int) rclass]);
489 else
490 /* If this is a constant, we may eventually want to call rtx_cost
491 here. */
492 return sri.extra_cost + COSTS_N_INSNS (1);
497 /* Record the cost of using memory or hard registers of various
498 classes for the operands in INSN.
500 N_ALTS is the number of alternatives.
501 N_OPS is the number of operands.
502 OPS is an array of the operands.
503 MODES are the modes of the operands, in case any are VOIDmode.
504 CONSTRAINTS are the constraints to use for the operands. This array
505 is modified by this procedure.
507 This procedure works alternative by alternative. For each
508 alternative we assume that we will be able to allocate all allocnos
509 to their ideal register class and calculate the cost of using that
510 alternative. Then we compute, for each operand that is a
511 pseudo-register, the cost of having the allocno allocated to each
512 register class and using it in that alternative. To this cost is
513 added the cost of the alternative.
515 The cost of each class for this insn is its lowest cost among all
516 the alternatives. */
517 static void
518 record_reg_classes (int n_alts, int n_ops, rtx *ops,
519 machine_mode *modes, const char **constraints,
520 rtx_insn *insn, enum reg_class *pref)
522 int alt;
523 int i, j, k;
524 int insn_allows_mem[MAX_RECOG_OPERANDS];
525 move_table *move_in_cost, *move_out_cost;
526 short (*mem_cost)[2];
528 for (i = 0; i < n_ops; i++)
529 insn_allows_mem[i] = 0;
531 /* Process each alternative, each time minimizing an operand's cost
532 with the cost for each operand in that alternative. */
533 alternative_mask preferred = get_preferred_alternatives (insn);
534 for (alt = 0; alt < n_alts; alt++)
536 enum reg_class classes[MAX_RECOG_OPERANDS];
537 int allows_mem[MAX_RECOG_OPERANDS];
538 enum reg_class rclass;
539 int alt_fail = 0;
540 int alt_cost = 0, op_cost_add;
542 if (!TEST_BIT (preferred, alt))
544 for (i = 0; i < recog_data.n_operands; i++)
545 constraints[i] = skip_alternative (constraints[i]);
547 continue;
550 for (i = 0; i < n_ops; i++)
552 unsigned char c;
553 const char *p = constraints[i];
554 rtx op = ops[i];
555 machine_mode mode = modes[i];
556 int allows_addr = 0;
557 int win = 0;
559 /* Initially show we know nothing about the register class. */
560 classes[i] = NO_REGS;
561 allows_mem[i] = 0;
563 /* If this operand has no constraints at all, we can
564 conclude nothing about it since anything is valid. */
565 if (*p == 0)
567 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
568 memset (this_op_costs[i], 0, struct_costs_size);
569 continue;
572 /* If this alternative is only relevant when this operand
573 matches a previous operand, we do different things
574 depending on whether this operand is a allocno-reg or not.
575 We must process any modifiers for the operand before we
576 can make this test. */
577 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
578 p++;
580 if (p[0] >= '0' && p[0] <= '0' + i)
582 /* Copy class and whether memory is allowed from the
583 matching alternative. Then perform any needed cost
584 computations and/or adjustments. */
585 j = p[0] - '0';
586 classes[i] = classes[j];
587 allows_mem[i] = allows_mem[j];
588 if (allows_mem[i])
589 insn_allows_mem[i] = 1;
591 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
593 /* If this matches the other operand, we have no
594 added cost and we win. */
595 if (rtx_equal_p (ops[j], op))
596 win = 1;
597 /* If we can put the other operand into a register,
598 add to the cost of this alternative the cost to
599 copy this operand to the register used for the
600 other operand. */
601 else if (classes[j] != NO_REGS)
603 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
604 win = 1;
607 else if (! REG_P (ops[j])
608 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
610 /* This op is an allocno but the one it matches is
611 not. */
613 /* If we can't put the other operand into a
614 register, this alternative can't be used. */
616 if (classes[j] == NO_REGS)
617 alt_fail = 1;
618 /* Otherwise, add to the cost of this alternative
619 the cost to copy the other operand to the hard
620 register used for this operand. */
621 else
622 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
624 else
626 /* The costs of this operand are not the same as the
627 other operand since move costs are not symmetric.
628 Moreover, if we cannot tie them, this alternative
629 needs to do a copy, which is one insn. */
630 struct costs *pp = this_op_costs[i];
631 int *pp_costs = pp->cost;
632 cost_classes_t cost_classes_ptr
633 = regno_cost_classes[REGNO (op)];
634 enum reg_class *cost_classes = cost_classes_ptr->classes;
635 bool in_p = recog_data.operand_type[i] != OP_OUT;
636 bool out_p = recog_data.operand_type[i] != OP_IN;
637 enum reg_class op_class = classes[i];
639 ira_init_register_move_cost_if_necessary (mode);
640 if (! in_p)
642 ira_assert (out_p);
643 if (op_class == NO_REGS)
645 mem_cost = ira_memory_move_cost[mode];
646 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
648 rclass = cost_classes[k];
649 pp_costs[k] = mem_cost[rclass][0] * frequency;
652 else
654 move_out_cost = ira_may_move_out_cost[mode];
655 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
657 rclass = cost_classes[k];
658 pp_costs[k]
659 = move_out_cost[op_class][rclass] * frequency;
663 else if (! out_p)
665 ira_assert (in_p);
666 if (op_class == NO_REGS)
668 mem_cost = ira_memory_move_cost[mode];
669 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
671 rclass = cost_classes[k];
672 pp_costs[k] = mem_cost[rclass][1] * frequency;
675 else
677 move_in_cost = ira_may_move_in_cost[mode];
678 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
680 rclass = cost_classes[k];
681 pp_costs[k]
682 = move_in_cost[rclass][op_class] * frequency;
686 else
688 if (op_class == NO_REGS)
690 mem_cost = ira_memory_move_cost[mode];
691 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
693 rclass = cost_classes[k];
694 pp_costs[k] = ((mem_cost[rclass][0]
695 + mem_cost[rclass][1])
696 * frequency);
699 else
701 move_in_cost = ira_may_move_in_cost[mode];
702 move_out_cost = ira_may_move_out_cost[mode];
703 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
705 rclass = cost_classes[k];
706 pp_costs[k] = ((move_in_cost[rclass][op_class]
707 + move_out_cost[op_class][rclass])
708 * frequency);
713 /* If the alternative actually allows memory, make
714 things a bit cheaper since we won't need an extra
715 insn to load it. */
716 pp->mem_cost
717 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
718 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
719 - allows_mem[i]) * frequency;
721 /* If we have assigned a class to this allocno in
722 our first pass, add a cost to this alternative
723 corresponding to what we would add if this
724 allocno were not in the appropriate class. */
725 if (pref)
727 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
729 if (pref_class == NO_REGS)
730 alt_cost
731 += ((out_p
732 ? ira_memory_move_cost[mode][op_class][0] : 0)
733 + (in_p
734 ? ira_memory_move_cost[mode][op_class][1]
735 : 0));
736 else if (ira_reg_class_intersect
737 [pref_class][op_class] == NO_REGS)
738 alt_cost
739 += ira_register_move_cost[mode][pref_class][op_class];
741 if (REGNO (ops[i]) != REGNO (ops[j])
742 && ! find_reg_note (insn, REG_DEAD, op))
743 alt_cost += 2;
745 p++;
749 /* Scan all the constraint letters. See if the operand
750 matches any of the constraints. Collect the valid
751 register classes and see if this operand accepts
752 memory. */
753 while ((c = *p))
755 switch (c)
757 case '*':
758 /* Ignore the next letter for this pass. */
759 c = *++p;
760 break;
762 case '^':
763 alt_cost += 2;
764 break;
766 case '?':
767 alt_cost += 2;
768 break;
770 case 'g':
771 if (MEM_P (op)
772 || (CONSTANT_P (op)
773 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
774 win = 1;
775 insn_allows_mem[i] = allows_mem[i] = 1;
776 classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
777 break;
779 default:
780 enum constraint_num cn = lookup_constraint (p);
781 enum reg_class cl;
782 switch (get_constraint_type (cn))
784 case CT_REGISTER:
785 cl = reg_class_for_constraint (cn);
786 if (cl != NO_REGS)
787 classes[i] = ira_reg_class_subunion[classes[i]][cl];
788 break;
790 case CT_CONST_INT:
791 if (CONST_INT_P (op)
792 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
793 win = 1;
794 break;
796 case CT_MEMORY:
797 /* Every MEM can be reloaded to fit. */
798 insn_allows_mem[i] = allows_mem[i] = 1;
799 if (MEM_P (op))
800 win = 1;
801 break;
803 case CT_ADDRESS:
804 /* Every address can be reloaded to fit. */
805 allows_addr = 1;
806 if (address_operand (op, GET_MODE (op))
807 || constraint_satisfied_p (op, cn))
808 win = 1;
809 /* We know this operand is an address, so we
810 want it to be allocated to a hard register
811 that can be the base of an address,
812 i.e. BASE_REG_CLASS. */
813 classes[i]
814 = ira_reg_class_subunion[classes[i]]
815 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
816 ADDRESS, SCRATCH)];
817 break;
819 case CT_FIXED_FORM:
820 if (constraint_satisfied_p (op, cn))
821 win = 1;
822 break;
824 break;
826 p += CONSTRAINT_LEN (c, p);
827 if (c == ',')
828 break;
831 constraints[i] = p;
833 /* How we account for this operand now depends on whether it
834 is a pseudo register or not. If it is, we first check if
835 any register classes are valid. If not, we ignore this
836 alternative, since we want to assume that all allocnos get
837 allocated for register preferencing. If some register
838 class is valid, compute the costs of moving the allocno
839 into that class. */
840 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
842 if (classes[i] == NO_REGS && ! allows_mem[i])
844 /* We must always fail if the operand is a REG, but
845 we did not find a suitable class and memory is
846 not allowed.
848 Otherwise we may perform an uninitialized read
849 from this_op_costs after the `continue' statement
850 below. */
851 alt_fail = 1;
853 else
855 unsigned int regno = REGNO (op);
856 struct costs *pp = this_op_costs[i];
857 int *pp_costs = pp->cost;
858 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
859 enum reg_class *cost_classes = cost_classes_ptr->classes;
860 bool in_p = recog_data.operand_type[i] != OP_OUT;
861 bool out_p = recog_data.operand_type[i] != OP_IN;
862 enum reg_class op_class = classes[i];
864 ira_init_register_move_cost_if_necessary (mode);
865 if (! in_p)
867 ira_assert (out_p);
868 if (op_class == NO_REGS)
870 mem_cost = ira_memory_move_cost[mode];
871 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
873 rclass = cost_classes[k];
874 pp_costs[k] = mem_cost[rclass][0] * frequency;
877 else
879 move_out_cost = ira_may_move_out_cost[mode];
880 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
882 rclass = cost_classes[k];
883 pp_costs[k]
884 = move_out_cost[op_class][rclass] * frequency;
888 else if (! out_p)
890 ira_assert (in_p);
891 if (op_class == NO_REGS)
893 mem_cost = ira_memory_move_cost[mode];
894 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
896 rclass = cost_classes[k];
897 pp_costs[k] = mem_cost[rclass][1] * frequency;
900 else
902 move_in_cost = ira_may_move_in_cost[mode];
903 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
905 rclass = cost_classes[k];
906 pp_costs[k]
907 = move_in_cost[rclass][op_class] * frequency;
911 else
913 if (op_class == NO_REGS)
915 mem_cost = ira_memory_move_cost[mode];
916 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
918 rclass = cost_classes[k];
919 pp_costs[k] = ((mem_cost[rclass][0]
920 + mem_cost[rclass][1])
921 * frequency);
924 else
926 move_in_cost = ira_may_move_in_cost[mode];
927 move_out_cost = ira_may_move_out_cost[mode];
928 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
930 rclass = cost_classes[k];
931 pp_costs[k] = ((move_in_cost[rclass][op_class]
932 + move_out_cost[op_class][rclass])
933 * frequency);
938 if (op_class == NO_REGS)
939 /* Although we don't need insn to reload from
940 memory, still accessing memory is usually more
941 expensive than a register. */
942 pp->mem_cost = frequency;
943 else
944 /* If the alternative actually allows memory, make
945 things a bit cheaper since we won't need an
946 extra insn to load it. */
947 pp->mem_cost
948 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
949 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
950 - allows_mem[i]) * frequency;
951 /* If we have assigned a class to this allocno in
952 our first pass, add a cost to this alternative
953 corresponding to what we would add if this
954 allocno were not in the appropriate class. */
955 if (pref)
957 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
959 if (pref_class == NO_REGS)
961 if (op_class != NO_REGS)
962 alt_cost
963 += ((out_p
964 ? ira_memory_move_cost[mode][op_class][0]
965 : 0)
966 + (in_p
967 ? ira_memory_move_cost[mode][op_class][1]
968 : 0));
970 else if (op_class == NO_REGS)
971 alt_cost
972 += ((out_p
973 ? ira_memory_move_cost[mode][pref_class][1]
974 : 0)
975 + (in_p
976 ? ira_memory_move_cost[mode][pref_class][0]
977 : 0));
978 else if (ira_reg_class_intersect[pref_class][op_class]
979 == NO_REGS)
980 alt_cost += (ira_register_move_cost
981 [mode][pref_class][op_class]);
986 /* Otherwise, if this alternative wins, either because we
987 have already determined that or if we have a hard
988 register of the proper class, there is no cost for this
989 alternative. */
990 else if (win || (REG_P (op)
991 && reg_fits_class_p (op, classes[i],
992 0, GET_MODE (op))))
995 /* If registers are valid, the cost of this alternative
996 includes copying the object to and/or from a
997 register. */
998 else if (classes[i] != NO_REGS)
1000 if (recog_data.operand_type[i] != OP_OUT)
1001 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
1003 if (recog_data.operand_type[i] != OP_IN)
1004 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
1006 /* The only other way this alternative can be used is if
1007 this is a constant that could be placed into memory. */
1008 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1009 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
1010 else
1011 alt_fail = 1;
1014 if (alt_fail)
1015 continue;
1017 op_cost_add = alt_cost * frequency;
1018 /* Finally, update the costs with the information we've
1019 calculated about this alternative. */
1020 for (i = 0; i < n_ops; i++)
1021 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1023 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
1024 int *pp_costs = pp->cost, *qq_costs = qq->cost;
1025 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1026 cost_classes_t cost_classes_ptr
1027 = regno_cost_classes[REGNO (ops[i])];
1029 pp->mem_cost = MIN (pp->mem_cost,
1030 (qq->mem_cost + op_cost_add) * scale);
1032 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1033 pp_costs[k]
1034 = MIN (pp_costs[k], (qq_costs[k] + op_cost_add) * scale);
1038 if (allocno_p)
1039 for (i = 0; i < n_ops; i++)
1041 ira_allocno_t a;
1042 rtx op = ops[i];
1044 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1045 continue;
1046 a = ira_curr_regno_allocno_map [REGNO (op)];
1047 if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
1048 ALLOCNO_BAD_SPILL_P (a) = true;
1055 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
1056 static inline bool
1057 ok_for_index_p_nonstrict (rtx reg)
1059 unsigned regno = REGNO (reg);
1061 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
1064 /* A version of regno_ok_for_base_p for use here, when all
1065 pseudo-registers should count as OK. Arguments as for
1066 regno_ok_for_base_p. */
1067 static inline bool
1068 ok_for_base_p_nonstrict (rtx reg, machine_mode mode, addr_space_t as,
1069 enum rtx_code outer_code, enum rtx_code index_code)
1071 unsigned regno = REGNO (reg);
1073 if (regno >= FIRST_PSEUDO_REGISTER)
1074 return true;
1075 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
1078 /* Record the pseudo registers we must reload into hard registers in a
1079 subexpression of a memory address, X.
1081 If CONTEXT is 0, we are looking at the base part of an address,
1082 otherwise we are looking at the index part.
1084 MODE and AS are the mode and address space of the memory reference;
1085 OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
1086 These four arguments are passed down to base_reg_class.
1088 SCALE is twice the amount to multiply the cost by (it is twice so
1089 we can represent half-cost adjustments). */
1090 static void
1091 record_address_regs (machine_mode mode, addr_space_t as, rtx x,
1092 int context, enum rtx_code outer_code,
1093 enum rtx_code index_code, int scale)
1095 enum rtx_code code = GET_CODE (x);
1096 enum reg_class rclass;
1098 if (context == 1)
1099 rclass = INDEX_REG_CLASS;
1100 else
1101 rclass = base_reg_class (mode, as, outer_code, index_code);
1103 switch (code)
1105 case CONST_INT:
1106 case CONST:
1107 case CC0:
1108 case PC:
1109 case SYMBOL_REF:
1110 case LABEL_REF:
1111 return;
1113 case PLUS:
1114 /* When we have an address that is a sum, we must determine
1115 whether registers are "base" or "index" regs. If there is a
1116 sum of two registers, we must choose one to be the "base".
1117 Luckily, we can use the REG_POINTER to make a good choice
1118 most of the time. We only need to do this on machines that
1119 can have two registers in an address and where the base and
1120 index register classes are different.
1122 ??? This code used to set REGNO_POINTER_FLAG in some cases,
1123 but that seems bogus since it should only be set when we are
1124 sure the register is being used as a pointer. */
1126 rtx arg0 = XEXP (x, 0);
1127 rtx arg1 = XEXP (x, 1);
1128 enum rtx_code code0 = GET_CODE (arg0);
1129 enum rtx_code code1 = GET_CODE (arg1);
1131 /* Look inside subregs. */
1132 if (code0 == SUBREG)
1133 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1134 if (code1 == SUBREG)
1135 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1137 /* If this machine only allows one register per address, it
1138 must be in the first operand. */
1139 if (MAX_REGS_PER_ADDRESS == 1)
1140 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1142 /* If index and base registers are the same on this machine,
1143 just record registers in any non-constant operands. We
1144 assume here, as well as in the tests below, that all
1145 addresses are in canonical form. */
1146 else if (INDEX_REG_CLASS
1147 == base_reg_class (VOIDmode, as, PLUS, SCRATCH))
1149 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1150 if (! CONSTANT_P (arg1))
1151 record_address_regs (mode, as, arg1, context, PLUS, code0, scale);
1154 /* If the second operand is a constant integer, it doesn't
1155 change what class the first operand must be. */
1156 else if (CONST_SCALAR_INT_P (arg1))
1157 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1158 /* If the second operand is a symbolic constant, the first
1159 operand must be an index register. */
1160 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1161 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1162 /* If both operands are registers but one is already a hard
1163 register of index or reg-base class, give the other the
1164 class that the hard register is not. */
1165 else if (code0 == REG && code1 == REG
1166 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1167 && (ok_for_base_p_nonstrict (arg0, mode, as, PLUS, REG)
1168 || ok_for_index_p_nonstrict (arg0)))
1169 record_address_regs (mode, as, arg1,
1170 ok_for_base_p_nonstrict (arg0, mode, as,
1171 PLUS, REG) ? 1 : 0,
1172 PLUS, REG, scale);
1173 else if (code0 == REG && code1 == REG
1174 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1175 && (ok_for_base_p_nonstrict (arg1, mode, as, PLUS, REG)
1176 || ok_for_index_p_nonstrict (arg1)))
1177 record_address_regs (mode, as, arg0,
1178 ok_for_base_p_nonstrict (arg1, mode, as,
1179 PLUS, REG) ? 1 : 0,
1180 PLUS, REG, scale);
1181 /* If one operand is known to be a pointer, it must be the
1182 base with the other operand the index. Likewise if the
1183 other operand is a MULT. */
1184 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1186 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1187 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale);
1189 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1191 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1192 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale);
1194 /* Otherwise, count equal chances that each might be a base or
1195 index register. This case should be rare. */
1196 else
1198 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale / 2);
1199 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale / 2);
1200 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale / 2);
1201 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale / 2);
1204 break;
1206 /* Double the importance of an allocno that is incremented or
1207 decremented, since it would take two extra insns if it ends
1208 up in the wrong place. */
1209 case POST_MODIFY:
1210 case PRE_MODIFY:
1211 record_address_regs (mode, as, XEXP (x, 0), 0, code,
1212 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
1213 if (REG_P (XEXP (XEXP (x, 1), 1)))
1214 record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), 1, code, REG,
1215 2 * scale);
1216 break;
1218 case POST_INC:
1219 case PRE_INC:
1220 case POST_DEC:
1221 case PRE_DEC:
1222 /* Double the importance of an allocno that is incremented or
1223 decremented, since it would take two extra insns if it ends
1224 up in the wrong place. */
1225 record_address_regs (mode, as, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
1226 break;
1228 case REG:
1230 struct costs *pp;
1231 int *pp_costs;
1232 enum reg_class i;
1233 int k, regno, add_cost;
1234 cost_classes_t cost_classes_ptr;
1235 enum reg_class *cost_classes;
1236 move_table *move_in_cost;
1238 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1239 break;
1241 regno = REGNO (x);
1242 if (allocno_p)
1243 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1244 pp = COSTS (costs, COST_INDEX (regno));
1245 add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1246 if (INT_MAX - add_cost < pp->mem_cost)
1247 pp->mem_cost = INT_MAX;
1248 else
1249 pp->mem_cost += add_cost;
1250 cost_classes_ptr = regno_cost_classes[regno];
1251 cost_classes = cost_classes_ptr->classes;
1252 pp_costs = pp->cost;
1253 ira_init_register_move_cost_if_necessary (Pmode);
1254 move_in_cost = ira_may_move_in_cost[Pmode];
1255 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1257 i = cost_classes[k];
1258 add_cost = (move_in_cost[i][rclass] * scale) / 2;
1259 if (INT_MAX - add_cost < pp_costs[k])
1260 pp_costs[k] = INT_MAX;
1261 else
1262 pp_costs[k] += add_cost;
1265 break;
1267 default:
1269 const char *fmt = GET_RTX_FORMAT (code);
1270 int i;
1271 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1272 if (fmt[i] == 'e')
1273 record_address_regs (mode, as, XEXP (x, i), context, code, SCRATCH,
1274 scale);
1281 /* Calculate the costs of insn operands. */
1282 static void
1283 record_operand_costs (rtx_insn *insn, enum reg_class *pref)
1285 const char *constraints[MAX_RECOG_OPERANDS];
1286 machine_mode modes[MAX_RECOG_OPERANDS];
1287 rtx ops[MAX_RECOG_OPERANDS];
1288 rtx set;
1289 int i;
1291 for (i = 0; i < recog_data.n_operands; i++)
1293 constraints[i] = recog_data.constraints[i];
1294 modes[i] = recog_data.operand_mode[i];
1297 /* If we get here, we are set up to record the costs of all the
1298 operands for this insn. Start by initializing the costs. Then
1299 handle any address registers. Finally record the desired classes
1300 for any allocnos, doing it twice if some pair of operands are
1301 commutative. */
1302 for (i = 0; i < recog_data.n_operands; i++)
1304 memcpy (op_costs[i], init_cost, struct_costs_size);
1306 ops[i] = recog_data.operand[i];
1307 if (GET_CODE (recog_data.operand[i]) == SUBREG)
1308 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1310 if (MEM_P (recog_data.operand[i]))
1311 record_address_regs (GET_MODE (recog_data.operand[i]),
1312 MEM_ADDR_SPACE (recog_data.operand[i]),
1313 XEXP (recog_data.operand[i], 0),
1314 0, MEM, SCRATCH, frequency * 2);
1315 else if (constraints[i][0] == 'p'
1316 || (insn_extra_address_constraint
1317 (lookup_constraint (constraints[i]))))
1318 record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1319 recog_data.operand[i], 0, ADDRESS, SCRATCH,
1320 frequency * 2);
1323 /* Check for commutative in a separate loop so everything will have
1324 been initialized. We must do this even if one operand is a
1325 constant--see addsi3 in m68k.md. */
1326 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1327 if (constraints[i][0] == '%')
1329 const char *xconstraints[MAX_RECOG_OPERANDS];
1330 int j;
1332 /* Handle commutative operands by swapping the constraints.
1333 We assume the modes are the same. */
1334 for (j = 0; j < recog_data.n_operands; j++)
1335 xconstraints[j] = constraints[j];
1337 xconstraints[i] = constraints[i+1];
1338 xconstraints[i+1] = constraints[i];
1339 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1340 recog_data.operand, modes,
1341 xconstraints, insn, pref);
1343 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1344 recog_data.operand, modes,
1345 constraints, insn, pref);
1347 /* If this insn is a single set copying operand 1 to operand 0 and
1348 one operand is an allocno with the other a hard reg or an allocno
1349 that prefers a hard register that is in its own register class
1350 then we may want to adjust the cost of that register class to -1.
1352 Avoid the adjustment if the source does not die to avoid
1353 stressing of register allocator by preferencing two colliding
1354 registers into single class.
1356 Also avoid the adjustment if a copy between hard registers of the
1357 class is expensive (ten times the cost of a default copy is
1358 considered arbitrarily expensive). This avoids losing when the
1359 preferred class is very expensive as the source of a copy
1360 instruction. */
1361 if ((set = single_set (insn)) != NULL_RTX
1362 /* In rare cases the single set insn might have less 2 operands
1363 as the source can be a fixed special reg. */
1364 && recog_data.n_operands > 1
1365 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set))
1367 int regno, other_regno;
1368 rtx dest = SET_DEST (set);
1369 rtx src = SET_SRC (set);
1371 if (GET_CODE (dest) == SUBREG
1372 && (GET_MODE_SIZE (GET_MODE (dest))
1373 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))))
1374 dest = SUBREG_REG (dest);
1375 if (GET_CODE (src) == SUBREG
1376 && (GET_MODE_SIZE (GET_MODE (src))
1377 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
1378 src = SUBREG_REG (src);
1379 if (REG_P (src) && REG_P (dest)
1380 && find_regno_note (insn, REG_DEAD, REGNO (src))
1381 && (((regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1382 && (other_regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER)
1383 || ((regno = REGNO (dest)) >= FIRST_PSEUDO_REGISTER
1384 && (other_regno = REGNO (src)) < FIRST_PSEUDO_REGISTER)))
1386 machine_mode mode = GET_MODE (src);
1387 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1388 enum reg_class *cost_classes = cost_classes_ptr->classes;
1389 reg_class_t rclass;
1390 int k, nr;
1392 i = regno == (int) REGNO (src) ? 1 : 0;
1393 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1395 rclass = cost_classes[k];
1396 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
1397 && (reg_class_size[(int) rclass]
1398 == ira_reg_class_max_nregs [(int) rclass][(int) mode]))
1400 if (reg_class_size[rclass] == 1)
1401 op_costs[i]->cost[k] = -frequency;
1402 else
1404 for (nr = 0;
1405 nr < hard_regno_nregs[other_regno][mode];
1406 nr++)
1407 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass],
1408 other_regno + nr))
1409 break;
1411 if (nr == hard_regno_nregs[other_regno][mode])
1412 op_costs[i]->cost[k] = -frequency;
1422 /* Process one insn INSN. Scan it and record each time it would save
1423 code to put a certain allocnos in a certain class. Return the last
1424 insn processed, so that the scan can be continued from there. */
1425 static rtx_insn *
1426 scan_one_insn (rtx_insn *insn)
1428 enum rtx_code pat_code;
1429 rtx set, note;
1430 int i, k;
1431 bool counted_mem;
1433 if (!NONDEBUG_INSN_P (insn))
1434 return insn;
1436 pat_code = GET_CODE (PATTERN (insn));
1437 if (pat_code == USE || pat_code == CLOBBER || pat_code == ASM_INPUT)
1438 return insn;
1440 counted_mem = false;
1441 set = single_set (insn);
1442 extract_insn (insn);
1444 /* If this insn loads a parameter from its stack slot, then it
1445 represents a savings, rather than a cost, if the parameter is
1446 stored in memory. Record this fact.
1448 Similarly if we're loading other constants from memory (constant
1449 pool, TOC references, small data areas, etc) and this is the only
1450 assignment to the destination pseudo.
1452 Don't do this if SET_SRC (set) isn't a general operand, if it is
1453 a memory requiring special instructions to load it, decreasing
1454 mem_cost might result in it being loaded using the specialized
1455 instruction into a register, then stored into stack and loaded
1456 again from the stack. See PR52208.
1458 Don't do this if SET_SRC (set) has side effect. See PR56124. */
1459 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1460 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1461 && ((MEM_P (XEXP (note, 0))
1462 && !side_effects_p (SET_SRC (set)))
1463 || (CONSTANT_P (XEXP (note, 0))
1464 && targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
1465 XEXP (note, 0))
1466 && REG_N_SETS (REGNO (SET_DEST (set))) == 1))
1467 && general_operand (SET_SRC (set), GET_MODE (SET_SRC (set))))
1469 enum reg_class cl = GENERAL_REGS;
1470 rtx reg = SET_DEST (set);
1471 int num = COST_INDEX (REGNO (reg));
1473 COSTS (costs, num)->mem_cost
1474 -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1475 record_address_regs (GET_MODE (SET_SRC (set)),
1476 MEM_ADDR_SPACE (SET_SRC (set)),
1477 XEXP (SET_SRC (set), 0), 0, MEM, SCRATCH,
1478 frequency * 2);
1479 counted_mem = true;
1482 record_operand_costs (insn, pref);
1484 /* Now add the cost for each operand to the total costs for its
1485 allocno. */
1486 for (i = 0; i < recog_data.n_operands; i++)
1487 if (REG_P (recog_data.operand[i])
1488 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1490 int regno = REGNO (recog_data.operand[i]);
1491 struct costs *p = COSTS (costs, COST_INDEX (regno));
1492 struct costs *q = op_costs[i];
1493 int *p_costs = p->cost, *q_costs = q->cost;
1494 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1495 int add_cost;
1497 /* If the already accounted for the memory "cost" above, don't
1498 do so again. */
1499 if (!counted_mem)
1501 add_cost = q->mem_cost;
1502 if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1503 p->mem_cost = INT_MAX;
1504 else
1505 p->mem_cost += add_cost;
1507 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1509 add_cost = q_costs[k];
1510 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1511 p_costs[k] = INT_MAX;
1512 else
1513 p_costs[k] += add_cost;
1517 return insn;
1522 /* Print allocnos costs to file F. */
1523 static void
1524 print_allocno_costs (FILE *f)
1526 int k;
1527 ira_allocno_t a;
1528 ira_allocno_iterator ai;
1530 ira_assert (allocno_p);
1531 fprintf (f, "\n");
1532 FOR_EACH_ALLOCNO (a, ai)
1534 int i, rclass;
1535 basic_block bb;
1536 int regno = ALLOCNO_REGNO (a);
1537 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1538 enum reg_class *cost_classes = cost_classes_ptr->classes;
1540 i = ALLOCNO_NUM (a);
1541 fprintf (f, " a%d(r%d,", i, regno);
1542 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1543 fprintf (f, "b%d", bb->index);
1544 else
1545 fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1546 fprintf (f, ") costs:");
1547 for (k = 0; k < cost_classes_ptr->num; k++)
1549 rclass = cost_classes[k];
1550 fprintf (f, " %s:%d", reg_class_names[rclass],
1551 COSTS (costs, i)->cost[k]);
1552 if (flag_ira_region == IRA_REGION_ALL
1553 || flag_ira_region == IRA_REGION_MIXED)
1554 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->cost[k]);
1556 fprintf (f, " MEM:%i", COSTS (costs, i)->mem_cost);
1557 if (flag_ira_region == IRA_REGION_ALL
1558 || flag_ira_region == IRA_REGION_MIXED)
1559 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->mem_cost);
1560 fprintf (f, "\n");
1564 /* Print pseudo costs to file F. */
1565 static void
1566 print_pseudo_costs (FILE *f)
1568 int regno, k;
1569 int rclass;
1570 cost_classes_t cost_classes_ptr;
1571 enum reg_class *cost_classes;
1573 ira_assert (! allocno_p);
1574 fprintf (f, "\n");
1575 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1577 if (REG_N_REFS (regno) <= 0)
1578 continue;
1579 cost_classes_ptr = regno_cost_classes[regno];
1580 cost_classes = cost_classes_ptr->classes;
1581 fprintf (f, " r%d costs:", regno);
1582 for (k = 0; k < cost_classes_ptr->num; k++)
1584 rclass = cost_classes[k];
1585 fprintf (f, " %s:%d", reg_class_names[rclass],
1586 COSTS (costs, regno)->cost[k]);
1588 fprintf (f, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
1592 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1593 costs. */
1594 static void
1595 process_bb_for_costs (basic_block bb)
1597 rtx_insn *insn;
1599 frequency = REG_FREQ_FROM_BB (bb);
1600 if (frequency == 0)
1601 frequency = 1;
1602 FOR_BB_INSNS (bb, insn)
1603 insn = scan_one_insn (insn);
1606 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1607 costs. */
1608 static void
1609 process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1611 basic_block bb;
1613 bb = loop_tree_node->bb;
1614 if (bb != NULL)
1615 process_bb_for_costs (bb);
1618 /* Find costs of register classes and memory for allocnos or pseudos
1619 and their best costs. Set up preferred, alternative and allocno
1620 classes for pseudos. */
1621 static void
1622 find_costs_and_classes (FILE *dump_file)
1624 int i, k, start, max_cost_classes_num;
1625 int pass;
1626 basic_block bb;
1627 enum reg_class *regno_best_class, new_class;
1629 init_recog ();
1630 regno_best_class
1631 = (enum reg_class *) ira_allocate (max_reg_num ()
1632 * sizeof (enum reg_class));
1633 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1634 regno_best_class[i] = NO_REGS;
1635 if (!resize_reg_info () && allocno_p
1636 && pseudo_classes_defined_p && flag_expensive_optimizations)
1638 ira_allocno_t a;
1639 ira_allocno_iterator ai;
1641 pref = pref_buffer;
1642 max_cost_classes_num = 1;
1643 FOR_EACH_ALLOCNO (a, ai)
1645 pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1646 setup_regno_cost_classes_by_aclass
1647 (ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
1648 max_cost_classes_num
1649 = MAX (max_cost_classes_num,
1650 regno_cost_classes[ALLOCNO_REGNO (a)]->num);
1652 start = 1;
1654 else
1656 pref = NULL;
1657 max_cost_classes_num = ira_important_classes_num;
1658 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1659 if (regno_reg_rtx[i] != NULL_RTX)
1660 setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
1661 else
1662 setup_regno_cost_classes_by_aclass (i, ALL_REGS);
1663 start = 0;
1665 if (allocno_p)
1666 /* Clear the flag for the next compiled function. */
1667 pseudo_classes_defined_p = false;
1668 /* Normally we scan the insns once and determine the best class to
1669 use for each allocno. However, if -fexpensive-optimizations are
1670 on, we do so twice, the second time using the tentative best
1671 classes to guide the selection. */
1672 for (pass = start; pass <= flag_expensive_optimizations; pass++)
1674 if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
1675 fprintf (dump_file,
1676 "\nPass %i for finding pseudo/allocno costs\n\n", pass);
1678 if (pass != start)
1680 max_cost_classes_num = 1;
1681 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1683 setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
1684 max_cost_classes_num
1685 = MAX (max_cost_classes_num, regno_cost_classes[i]->num);
1689 struct_costs_size
1690 = sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
1691 /* Zero out our accumulation of the cost of each class for each
1692 allocno. */
1693 memset (costs, 0, cost_elements_num * struct_costs_size);
1695 if (allocno_p)
1697 /* Scan the instructions and record each time it would save code
1698 to put a certain allocno in a certain class. */
1699 ira_traverse_loop_tree (true, ira_loop_tree_root,
1700 process_bb_node_for_costs, NULL);
1702 memcpy (total_allocno_costs, costs,
1703 max_struct_costs_size * ira_allocnos_num);
1705 else
1707 basic_block bb;
1709 FOR_EACH_BB_FN (bb, cfun)
1710 process_bb_for_costs (bb);
1713 if (pass == 0)
1714 pref = pref_buffer;
1716 /* Now for each allocno look at how desirable each class is and
1717 find which class is preferred. */
1718 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1720 ira_allocno_t a, parent_a;
1721 int rclass, a_num, parent_a_num, add_cost;
1722 ira_loop_tree_node_t parent;
1723 int best_cost, allocno_cost;
1724 enum reg_class best, alt_class;
1725 cost_classes_t cost_classes_ptr = regno_cost_classes[i];
1726 enum reg_class *cost_classes = cost_classes_ptr->classes;
1727 int *i_costs = temp_costs->cost;
1728 int i_mem_cost;
1729 int equiv_savings = regno_equiv_gains[i];
1731 if (! allocno_p)
1733 if (regno_reg_rtx[i] == NULL_RTX)
1734 continue;
1735 memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
1736 i_mem_cost = temp_costs->mem_cost;
1738 else
1740 if (ira_regno_allocno_map[i] == NULL)
1741 continue;
1742 memset (temp_costs, 0, struct_costs_size);
1743 i_mem_cost = 0;
1744 /* Find cost of all allocnos with the same regno. */
1745 for (a = ira_regno_allocno_map[i];
1746 a != NULL;
1747 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1749 int *a_costs, *p_costs;
1751 a_num = ALLOCNO_NUM (a);
1752 if ((flag_ira_region == IRA_REGION_ALL
1753 || flag_ira_region == IRA_REGION_MIXED)
1754 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
1755 && (parent_a = parent->regno_allocno_map[i]) != NULL
1756 /* There are no caps yet. */
1757 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
1758 (a)->border_allocnos,
1759 ALLOCNO_NUM (a)))
1761 /* Propagate costs to upper levels in the region
1762 tree. */
1763 parent_a_num = ALLOCNO_NUM (parent_a);
1764 a_costs = COSTS (total_allocno_costs, a_num)->cost;
1765 p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
1766 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1768 add_cost = a_costs[k];
1769 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1770 p_costs[k] = INT_MAX;
1771 else
1772 p_costs[k] += add_cost;
1774 add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
1775 if (add_cost > 0
1776 && (INT_MAX - add_cost
1777 < COSTS (total_allocno_costs,
1778 parent_a_num)->mem_cost))
1779 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1780 = INT_MAX;
1781 else
1782 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1783 += add_cost;
1785 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1786 COSTS (total_allocno_costs, parent_a_num)->mem_cost = 0;
1788 a_costs = COSTS (costs, a_num)->cost;
1789 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1791 add_cost = a_costs[k];
1792 if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
1793 i_costs[k] = INT_MAX;
1794 else
1795 i_costs[k] += add_cost;
1797 add_cost = COSTS (costs, a_num)->mem_cost;
1798 if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
1799 i_mem_cost = INT_MAX;
1800 else
1801 i_mem_cost += add_cost;
1804 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1805 i_mem_cost = 0;
1806 else if (equiv_savings < 0)
1807 i_mem_cost = -equiv_savings;
1808 else if (equiv_savings > 0)
1810 i_mem_cost = 0;
1811 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1812 i_costs[k] += equiv_savings;
1815 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1816 best = ALL_REGS;
1817 alt_class = NO_REGS;
1818 /* Find best common class for all allocnos with the same
1819 regno. */
1820 for (k = 0; k < cost_classes_ptr->num; k++)
1822 rclass = cost_classes[k];
1823 if (i_costs[k] < best_cost)
1825 best_cost = i_costs[k];
1826 best = (enum reg_class) rclass;
1828 else if (i_costs[k] == best_cost)
1829 best = ira_reg_class_subunion[best][rclass];
1830 if (pass == flag_expensive_optimizations
1831 /* We still prefer registers to memory even at this
1832 stage if their costs are the same. We will make
1833 a final decision during assigning hard registers
1834 when we have all info including more accurate
1835 costs which might be affected by assigning hard
1836 registers to other pseudos because the pseudos
1837 involved in moves can be coalesced. */
1838 && i_costs[k] <= i_mem_cost
1839 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
1840 > reg_class_size[alt_class]))
1841 alt_class = reg_class_subunion[alt_class][rclass];
1843 alt_class = ira_allocno_class_translate[alt_class];
1844 if (best_cost > i_mem_cost)
1845 regno_aclass[i] = NO_REGS;
1846 else if (!optimize && !targetm.class_likely_spilled_p (best))
1847 /* Registers in the alternative class are likely to need
1848 longer or slower sequences than registers in the best class.
1849 When optimizing we make some effort to use the best class
1850 over the alternative class where possible, but at -O0 we
1851 effectively give the alternative class equal weight.
1852 We then run the risk of using slower alternative registers
1853 when plenty of registers from the best class are still free.
1854 This is especially true because live ranges tend to be very
1855 short in -O0 code and so register pressure tends to be low.
1857 Avoid that by ignoring the alternative class if the best
1858 class has plenty of registers. */
1859 regno_aclass[i] = best;
1860 else
1862 /* Make the common class the biggest class of best and
1863 alt_class. */
1864 regno_aclass[i]
1865 = ira_reg_class_superunion[best][alt_class];
1866 ira_assert (regno_aclass[i] != NO_REGS
1867 && ira_reg_allocno_class_p[regno_aclass[i]]);
1869 if ((new_class
1870 = (reg_class) (targetm.ira_change_pseudo_allocno_class
1871 (i, regno_aclass[i]))) != regno_aclass[i])
1873 regno_aclass[i] = new_class;
1874 if (hard_reg_set_subset_p (reg_class_contents[new_class],
1875 reg_class_contents[best]))
1876 best = new_class;
1877 if (hard_reg_set_subset_p (reg_class_contents[new_class],
1878 reg_class_contents[alt_class]))
1879 alt_class = new_class;
1881 if (pass == flag_expensive_optimizations)
1883 if (best_cost > i_mem_cost)
1884 best = alt_class = NO_REGS;
1885 else if (best == alt_class)
1886 alt_class = NO_REGS;
1887 setup_reg_classes (i, best, alt_class, regno_aclass[i]);
1888 if ((!allocno_p || internal_flag_ira_verbose > 2)
1889 && dump_file != NULL)
1890 fprintf (dump_file,
1891 " r%d: preferred %s, alternative %s, allocno %s\n",
1892 i, reg_class_names[best], reg_class_names[alt_class],
1893 reg_class_names[regno_aclass[i]]);
1895 regno_best_class[i] = best;
1896 if (! allocno_p)
1898 pref[i] = best_cost > i_mem_cost ? NO_REGS : best;
1899 continue;
1901 for (a = ira_regno_allocno_map[i];
1902 a != NULL;
1903 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1905 enum reg_class aclass = regno_aclass[i];
1906 int a_num = ALLOCNO_NUM (a);
1907 int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
1908 int *a_costs = COSTS (costs, a_num)->cost;
1910 if (aclass == NO_REGS)
1911 best = NO_REGS;
1912 else
1914 /* Finding best class which is subset of the common
1915 class. */
1916 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1917 allocno_cost = best_cost;
1918 best = ALL_REGS;
1919 for (k = 0; k < cost_classes_ptr->num; k++)
1921 rclass = cost_classes[k];
1922 if (! ira_class_subset_p[rclass][aclass])
1923 continue;
1924 if (total_a_costs[k] < best_cost)
1926 best_cost = total_a_costs[k];
1927 allocno_cost = a_costs[k];
1928 best = (enum reg_class) rclass;
1930 else if (total_a_costs[k] == best_cost)
1932 best = ira_reg_class_subunion[best][rclass];
1933 allocno_cost = MAX (allocno_cost, a_costs[k]);
1936 ALLOCNO_CLASS_COST (a) = allocno_cost;
1938 if (internal_flag_ira_verbose > 2 && dump_file != NULL
1939 && (pass == 0 || pref[a_num] != best))
1941 fprintf (dump_file, " a%d (r%d,", a_num, i);
1942 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1943 fprintf (dump_file, "b%d", bb->index);
1944 else
1945 fprintf (dump_file, "l%d",
1946 ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1947 fprintf (dump_file, ") best %s, allocno %s\n",
1948 reg_class_names[best],
1949 reg_class_names[aclass]);
1951 pref[a_num] = best;
1952 if (pass == flag_expensive_optimizations && best != aclass
1953 && ira_class_hard_regs_num[best] > 0
1954 && (ira_reg_class_max_nregs[best][ALLOCNO_MODE (a)]
1955 >= ira_class_hard_regs_num[best]))
1957 int ind = cost_classes_ptr->index[aclass];
1959 ira_assert (ind >= 0);
1960 ira_init_register_move_cost_if_necessary (ALLOCNO_MODE (a));
1961 ira_add_allocno_pref (a, ira_class_hard_regs[best][0],
1962 (a_costs[ind] - ALLOCNO_CLASS_COST (a))
1963 / (ira_register_move_cost
1964 [ALLOCNO_MODE (a)][best][aclass]));
1965 for (k = 0; k < cost_classes_ptr->num; k++)
1966 if (ira_class_subset_p[cost_classes[k]][best])
1967 a_costs[k] = a_costs[ind];
1972 if (internal_flag_ira_verbose > 4 && dump_file)
1974 if (allocno_p)
1975 print_allocno_costs (dump_file);
1976 else
1977 print_pseudo_costs (dump_file);
1978 fprintf (dump_file,"\n");
1981 ira_free (regno_best_class);
1986 /* Process moves involving hard regs to modify allocno hard register
1987 costs. We can do this only after determining allocno class. If a
1988 hard register forms a register class, then moves with the hard
1989 register are already taken into account in class costs for the
1990 allocno. */
1991 static void
1992 process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
1994 int i, freq, src_regno, dst_regno, hard_regno, a_regno;
1995 bool to_p;
1996 ira_allocno_t a, curr_a;
1997 ira_loop_tree_node_t curr_loop_tree_node;
1998 enum reg_class rclass;
1999 basic_block bb;
2000 rtx_insn *insn;
2001 rtx set, src, dst;
2003 bb = loop_tree_node->bb;
2004 if (bb == NULL)
2005 return;
2006 freq = REG_FREQ_FROM_BB (bb);
2007 if (freq == 0)
2008 freq = 1;
2009 FOR_BB_INSNS (bb, insn)
2011 if (!NONDEBUG_INSN_P (insn))
2012 continue;
2013 set = single_set (insn);
2014 if (set == NULL_RTX)
2015 continue;
2016 dst = SET_DEST (set);
2017 src = SET_SRC (set);
2018 if (! REG_P (dst) || ! REG_P (src))
2019 continue;
2020 dst_regno = REGNO (dst);
2021 src_regno = REGNO (src);
2022 if (dst_regno >= FIRST_PSEUDO_REGISTER
2023 && src_regno < FIRST_PSEUDO_REGISTER)
2025 hard_regno = src_regno;
2026 a = ira_curr_regno_allocno_map[dst_regno];
2027 to_p = true;
2029 else if (src_regno >= FIRST_PSEUDO_REGISTER
2030 && dst_regno < FIRST_PSEUDO_REGISTER)
2032 hard_regno = dst_regno;
2033 a = ira_curr_regno_allocno_map[src_regno];
2034 to_p = false;
2036 else
2037 continue;
2038 rclass = ALLOCNO_CLASS (a);
2039 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
2040 continue;
2041 i = ira_class_hard_reg_index[rclass][hard_regno];
2042 if (i < 0)
2043 continue;
2044 a_regno = ALLOCNO_REGNO (a);
2045 for (curr_loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
2046 curr_loop_tree_node != NULL;
2047 curr_loop_tree_node = curr_loop_tree_node->parent)
2048 if ((curr_a = curr_loop_tree_node->regno_allocno_map[a_regno]) != NULL)
2049 ira_add_allocno_pref (curr_a, hard_regno, freq);
2051 int cost;
2052 enum reg_class hard_reg_class;
2053 machine_mode mode;
2055 mode = ALLOCNO_MODE (a);
2056 hard_reg_class = REGNO_REG_CLASS (hard_regno);
2057 ira_init_register_move_cost_if_necessary (mode);
2058 cost = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
2059 : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
2060 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
2061 ALLOCNO_CLASS_COST (a));
2062 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
2063 rclass, 0);
2064 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
2065 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
2066 ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
2067 ALLOCNO_HARD_REG_COSTS (a)[i]);
2072 /* After we find hard register and memory costs for allocnos, define
2073 its class and modify hard register cost because insns moving
2074 allocno to/from hard registers. */
2075 static void
2076 setup_allocno_class_and_costs (void)
2078 int i, j, n, regno, hard_regno, num;
2079 int *reg_costs;
2080 enum reg_class aclass, rclass;
2081 ira_allocno_t a;
2082 ira_allocno_iterator ai;
2083 cost_classes_t cost_classes_ptr;
2085 ira_assert (allocno_p);
2086 FOR_EACH_ALLOCNO (a, ai)
2088 i = ALLOCNO_NUM (a);
2089 regno = ALLOCNO_REGNO (a);
2090 aclass = regno_aclass[regno];
2091 cost_classes_ptr = regno_cost_classes[regno];
2092 ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
2093 ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
2094 ira_set_allocno_class (a, aclass);
2095 if (aclass == NO_REGS)
2096 continue;
2097 if (optimize && ALLOCNO_CLASS (a) != pref[i])
2099 n = ira_class_hard_regs_num[aclass];
2100 ALLOCNO_HARD_REG_COSTS (a)
2101 = reg_costs = ira_allocate_cost_vector (aclass);
2102 for (j = n - 1; j >= 0; j--)
2104 hard_regno = ira_class_hard_regs[aclass][j];
2105 if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
2106 reg_costs[j] = ALLOCNO_CLASS_COST (a);
2107 else
2109 rclass = REGNO_REG_CLASS (hard_regno);
2110 num = cost_classes_ptr->index[rclass];
2111 if (num < 0)
2113 num = cost_classes_ptr->hard_regno_index[hard_regno];
2114 ira_assert (num >= 0);
2116 reg_costs[j] = COSTS (costs, i)->cost[num];
2121 if (optimize)
2122 ira_traverse_loop_tree (true, ira_loop_tree_root,
2123 process_bb_node_for_hard_reg_moves, NULL);
2128 /* Function called once during compiler work. */
2129 void
2130 ira_init_costs_once (void)
2132 int i;
2134 init_cost = NULL;
2135 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2137 op_costs[i] = NULL;
2138 this_op_costs[i] = NULL;
2140 temp_costs = NULL;
2143 /* Free allocated temporary cost vectors. */
2144 void
2145 target_ira_int::free_ira_costs ()
2147 int i;
2149 free (x_init_cost);
2150 x_init_cost = NULL;
2151 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2153 free (x_op_costs[i]);
2154 free (x_this_op_costs[i]);
2155 x_op_costs[i] = x_this_op_costs[i] = NULL;
2157 free (x_temp_costs);
2158 x_temp_costs = NULL;
2161 /* This is called each time register related information is
2162 changed. */
2163 void
2164 ira_init_costs (void)
2166 int i;
2168 this_target_ira_int->free_ira_costs ();
2169 max_struct_costs_size
2170 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
2171 /* Don't use ira_allocate because vectors live through several IRA
2172 calls. */
2173 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
2174 init_cost->mem_cost = 1000000;
2175 for (i = 0; i < ira_important_classes_num; i++)
2176 init_cost->cost[i] = 1000000;
2177 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2179 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2180 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2182 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
2187 /* Common initialization function for ira_costs and
2188 ira_set_pseudo_classes. */
2189 static void
2190 init_costs (void)
2192 init_subregs_of_mode ();
2193 costs = (struct costs *) ira_allocate (max_struct_costs_size
2194 * cost_elements_num);
2195 pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2196 * cost_elements_num);
2197 regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2198 * max_reg_num ());
2199 regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2200 memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
2203 /* Common finalization function for ira_costs and
2204 ira_set_pseudo_classes. */
2205 static void
2206 finish_costs (void)
2208 finish_subregs_of_mode ();
2209 ira_free (regno_equiv_gains);
2210 ira_free (regno_aclass);
2211 ira_free (pref_buffer);
2212 ira_free (costs);
2215 /* Entry function which defines register class, memory and hard
2216 register costs for each allocno. */
2217 void
2218 ira_costs (void)
2220 allocno_p = true;
2221 cost_elements_num = ira_allocnos_num;
2222 init_costs ();
2223 total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2224 * ira_allocnos_num);
2225 initiate_regno_cost_classes ();
2226 calculate_elim_costs_all_insns ();
2227 find_costs_and_classes (ira_dump_file);
2228 setup_allocno_class_and_costs ();
2229 finish_regno_cost_classes ();
2230 finish_costs ();
2231 ira_free (total_allocno_costs);
2234 /* Entry function which defines classes for pseudos.
2235 Set pseudo_classes_defined_p only if DEFINE_PSEUDO_CLASSES is true. */
2236 void
2237 ira_set_pseudo_classes (bool define_pseudo_classes, FILE *dump_file)
2239 allocno_p = false;
2240 internal_flag_ira_verbose = flag_ira_verbose;
2241 cost_elements_num = max_reg_num ();
2242 init_costs ();
2243 initiate_regno_cost_classes ();
2244 find_costs_and_classes (dump_file);
2245 finish_regno_cost_classes ();
2246 if (define_pseudo_classes)
2247 pseudo_classes_defined_p = true;
2249 finish_costs ();
2254 /* Change hard register costs for allocnos which lives through
2255 function calls. This is called only when we found all intersected
2256 calls during building allocno live ranges. */
2257 void
2258 ira_tune_allocno_costs (void)
2260 int j, n, regno;
2261 int cost, min_cost, *reg_costs;
2262 enum reg_class aclass, rclass;
2263 machine_mode mode;
2264 ira_allocno_t a;
2265 ira_allocno_iterator ai;
2266 ira_allocno_object_iterator oi;
2267 ira_object_t obj;
2268 bool skip_p;
2269 HARD_REG_SET *crossed_calls_clobber_regs;
2271 FOR_EACH_ALLOCNO (a, ai)
2273 aclass = ALLOCNO_CLASS (a);
2274 if (aclass == NO_REGS)
2275 continue;
2276 mode = ALLOCNO_MODE (a);
2277 n = ira_class_hard_regs_num[aclass];
2278 min_cost = INT_MAX;
2279 if (ALLOCNO_CALLS_CROSSED_NUM (a)
2280 != ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2282 ira_allocate_and_set_costs
2283 (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2284 ALLOCNO_CLASS_COST (a));
2285 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2286 for (j = n - 1; j >= 0; j--)
2288 regno = ira_class_hard_regs[aclass][j];
2289 skip_p = false;
2290 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2292 if (ira_hard_reg_set_intersection_p (regno, mode,
2293 OBJECT_CONFLICT_HARD_REGS
2294 (obj)))
2296 skip_p = true;
2297 break;
2300 if (skip_p)
2301 continue;
2302 rclass = REGNO_REG_CLASS (regno);
2303 cost = 0;
2304 crossed_calls_clobber_regs
2305 = &(ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a));
2306 if (ira_hard_reg_set_intersection_p (regno, mode,
2307 *crossed_calls_clobber_regs)
2308 && (ira_hard_reg_set_intersection_p (regno, mode,
2309 call_used_reg_set)
2310 || HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2311 cost += (ALLOCNO_CALL_FREQ (a)
2312 * (ira_memory_move_cost[mode][rclass][0]
2313 + ira_memory_move_cost[mode][rclass][1]));
2314 #ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2315 cost += ((ira_memory_move_cost[mode][rclass][0]
2316 + ira_memory_move_cost[mode][rclass][1])
2317 * ALLOCNO_FREQ (a)
2318 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2319 #endif
2320 if (INT_MAX - cost < reg_costs[j])
2321 reg_costs[j] = INT_MAX;
2322 else
2323 reg_costs[j] += cost;
2324 if (min_cost > reg_costs[j])
2325 min_cost = reg_costs[j];
2328 if (min_cost != INT_MAX)
2329 ALLOCNO_CLASS_COST (a) = min_cost;
2331 /* Some targets allow pseudos to be allocated to unaligned sequences
2332 of hard registers. However, selecting an unaligned sequence can
2333 unnecessarily restrict later allocations. So increase the cost of
2334 unaligned hard regs to encourage the use of aligned hard regs. */
2336 const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2338 if (nregs > 1)
2340 ira_allocate_and_set_costs
2341 (&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
2342 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2343 for (j = n - 1; j >= 0; j--)
2345 regno = ira_non_ordered_class_hard_regs[aclass][j];
2346 if ((regno % nregs) != 0)
2348 int index = ira_class_hard_reg_index[aclass][regno];
2349 ira_assert (index != -1);
2350 reg_costs[index] += ALLOCNO_FREQ (a);
2358 /* Add COST to the estimated gain for eliminating REGNO with its
2359 equivalence. If COST is zero, record that no such elimination is
2360 possible. */
2362 void
2363 ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2365 if (cost == 0)
2366 regno_equiv_gains[regno] = 0;
2367 else
2368 regno_equiv_gains[regno] += cost;
2371 void
2372 ira_costs_c_finalize (void)
2374 this_target_ira_int->free_ira_costs ();