PR testsuite/66621
[official-gcc.git] / gcc / graphite-scop-detection.c
blobe8ddecdae3bce139133a2a8e281df07ff6141e95
1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009-2015 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
24 #ifdef HAVE_isl
25 #include <isl/set.h>
26 #include <isl/map.h>
27 #include <isl/union_map.h>
28 #endif
30 #include "system.h"
31 #include "coretypes.h"
32 #include "alias.h"
33 #include "symtab.h"
34 #include "options.h"
35 #include "tree.h"
36 #include "fold-const.h"
37 #include "predict.h"
38 #include "tm.h"
39 #include "hard-reg-set.h"
40 #include "function.h"
41 #include "dominance.h"
42 #include "cfg.h"
43 #include "basic-block.h"
44 #include "tree-ssa-alias.h"
45 #include "internal-fn.h"
46 #include "gimple-expr.h"
47 #include "gimple.h"
48 #include "gimple-iterator.h"
49 #include "gimple-ssa.h"
50 #include "tree-phinodes.h"
51 #include "ssa-iterators.h"
52 #include "tree-ssa-loop-manip.h"
53 #include "tree-ssa-loop-niter.h"
54 #include "tree-ssa-loop.h"
55 #include "tree-into-ssa.h"
56 #include "tree-ssa.h"
57 #include "cfgloop.h"
58 #include "tree-chrec.h"
59 #include "tree-data-ref.h"
60 #include "tree-scalar-evolution.h"
61 #include "tree-pass.h"
62 #include "sese.h"
63 #include "tree-ssa-propagate.h"
65 #ifdef HAVE_isl
66 #include "graphite-poly.h"
67 #include "graphite-scop-detection.h"
69 /* Forward declarations. */
70 static void make_close_phi_nodes_unique (basic_block);
72 /* The type of the analyzed basic block. */
74 typedef enum gbb_type {
75 GBB_UNKNOWN,
76 GBB_LOOP_SING_EXIT_HEADER,
77 GBB_LOOP_MULT_EXIT_HEADER,
78 GBB_LOOP_EXIT,
79 GBB_COND_HEADER,
80 GBB_SIMPLE,
81 GBB_LAST
82 } gbb_type;
84 /* Detect the type of BB. Loop headers are only marked, if they are
85 new. This means their loop_father is different to LAST_LOOP.
86 Otherwise they are treated like any other bb and their type can be
87 any other type. */
89 static gbb_type
90 get_bb_type (basic_block bb, struct loop *last_loop)
92 vec<basic_block> dom;
93 int nb_dom;
94 struct loop *loop = bb->loop_father;
96 /* Check, if we entry into a new loop. */
97 if (loop != last_loop)
99 if (single_exit (loop) != NULL)
100 return GBB_LOOP_SING_EXIT_HEADER;
101 else if (loop->num != 0)
102 return GBB_LOOP_MULT_EXIT_HEADER;
103 else
104 return GBB_COND_HEADER;
107 dom = get_dominated_by (CDI_DOMINATORS, bb);
108 nb_dom = dom.length ();
109 dom.release ();
111 if (nb_dom == 0)
112 return GBB_LAST;
114 if (nb_dom == 1 && single_succ_p (bb))
115 return GBB_SIMPLE;
117 return GBB_COND_HEADER;
120 /* A SCoP detection region, defined using bbs as borders.
122 All control flow touching this region, comes in passing basic_block
123 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
124 edges for the borders we are able to represent also regions that do
125 not have a single entry or exit edge.
127 But as they have a single entry basic_block and a single exit
128 basic_block, we are able to generate for every sd_region a single
129 entry and exit edge.
133 3 <- entry
136 / \ This region contains: {3, 4, 5, 6, 7, 8}
141 9 <- exit */
144 typedef struct sd_region_p
146 /* The entry bb dominates all bbs in the sd_region. It is part of
147 the region. */
148 basic_block entry;
150 /* The exit bb postdominates all bbs in the sd_region, but is not
151 part of the region. */
152 basic_block exit;
153 } sd_region;
157 /* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
159 static void
160 move_sd_regions (vec<sd_region> *source, vec<sd_region> *target)
162 sd_region *s;
163 int i;
165 FOR_EACH_VEC_ELT (*source, i, s)
166 target->safe_push (*s);
168 source->release ();
171 /* Something like "n * m" is not allowed. */
173 static bool
174 graphite_can_represent_init (tree e)
176 switch (TREE_CODE (e))
178 case POLYNOMIAL_CHREC:
179 return graphite_can_represent_init (CHREC_LEFT (e))
180 && graphite_can_represent_init (CHREC_RIGHT (e));
182 case MULT_EXPR:
183 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
184 return graphite_can_represent_init (TREE_OPERAND (e, 0))
185 && tree_fits_shwi_p (TREE_OPERAND (e, 1));
186 else
187 return graphite_can_represent_init (TREE_OPERAND (e, 1))
188 && tree_fits_shwi_p (TREE_OPERAND (e, 0));
190 case PLUS_EXPR:
191 case POINTER_PLUS_EXPR:
192 case MINUS_EXPR:
193 return graphite_can_represent_init (TREE_OPERAND (e, 0))
194 && graphite_can_represent_init (TREE_OPERAND (e, 1));
196 case NEGATE_EXPR:
197 case BIT_NOT_EXPR:
198 CASE_CONVERT:
199 case NON_LVALUE_EXPR:
200 return graphite_can_represent_init (TREE_OPERAND (e, 0));
202 default:
203 break;
206 return true;
209 /* Return true when SCEV can be represented in the polyhedral model.
211 An expression can be represented, if it can be expressed as an
212 affine expression. For loops (i, j) and parameters (m, n) all
213 affine expressions are of the form:
215 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
217 1 i + 20 j + (-2) m + 25
219 Something like "i * n" or "n * m" is not allowed. */
221 static bool
222 graphite_can_represent_scev (tree scev)
224 if (chrec_contains_undetermined (scev))
225 return false;
227 /* We disable the handling of pointer types, because it’s currently not
228 supported by Graphite with the ISL AST generator. SSA_NAME nodes are
229 the only nodes, which are disabled in case they are pointers to object
230 types, but this can be changed. */
232 if (POINTER_TYPE_P (TREE_TYPE (scev)) && TREE_CODE (scev) == SSA_NAME)
233 return false;
235 switch (TREE_CODE (scev))
237 case NEGATE_EXPR:
238 case BIT_NOT_EXPR:
239 CASE_CONVERT:
240 case NON_LVALUE_EXPR:
241 return graphite_can_represent_scev (TREE_OPERAND (scev, 0));
243 case PLUS_EXPR:
244 case POINTER_PLUS_EXPR:
245 case MINUS_EXPR:
246 return graphite_can_represent_scev (TREE_OPERAND (scev, 0))
247 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
249 case MULT_EXPR:
250 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
251 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
252 && !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
253 && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
254 && graphite_can_represent_init (scev)
255 && graphite_can_represent_scev (TREE_OPERAND (scev, 0))
256 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
258 case POLYNOMIAL_CHREC:
259 /* Check for constant strides. With a non constant stride of
260 'n' we would have a value of 'iv * n'. Also check that the
261 initial value can represented: for example 'n * m' cannot be
262 represented. */
263 if (!evolution_function_right_is_integer_cst (scev)
264 || !graphite_can_represent_init (scev))
265 return false;
266 return graphite_can_represent_scev (CHREC_LEFT (scev));
268 default:
269 break;
272 /* Only affine functions can be represented. */
273 if (tree_contains_chrecs (scev, NULL)
274 || !scev_is_linear_expression (scev))
275 return false;
277 return true;
281 /* Return true when EXPR can be represented in the polyhedral model.
283 This means an expression can be represented, if it is linear with
284 respect to the loops and the strides are non parametric.
285 LOOP is the place where the expr will be evaluated. SCOP_ENTRY defines the
286 entry of the region we analyse. */
288 static bool
289 graphite_can_represent_expr (basic_block scop_entry, loop_p loop,
290 tree expr)
292 tree scev = analyze_scalar_evolution (loop, expr);
294 scev = instantiate_scev (scop_entry, loop, scev);
296 return graphite_can_represent_scev (scev);
299 /* Return true if the data references of STMT can be represented by
300 Graphite. */
302 static bool
303 stmt_has_simple_data_refs_p (loop_p outermost_loop ATTRIBUTE_UNUSED,
304 gimple stmt)
306 data_reference_p dr;
307 unsigned i;
308 int j;
309 bool res = true;
310 vec<data_reference_p> drs = vNULL;
311 loop_p outer;
313 for (outer = loop_containing_stmt (stmt); outer; outer = loop_outer (outer))
315 graphite_find_data_references_in_stmt (outer,
316 loop_containing_stmt (stmt),
317 stmt, &drs);
319 FOR_EACH_VEC_ELT (drs, j, dr)
320 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
321 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr, i)))
323 res = false;
324 goto done;
327 free_data_refs (drs);
328 drs.create (0);
331 done:
332 free_data_refs (drs);
333 return res;
336 /* Return true only when STMT is simple enough for being handled by
337 Graphite. This depends on SCOP_ENTRY, as the parameters are
338 initialized relatively to this basic block, the linear functions
339 are initialized to OUTERMOST_LOOP and BB is the place where we try
340 to evaluate the STMT. */
342 static bool
343 stmt_simple_for_scop_p (basic_block scop_entry, loop_p outermost_loop,
344 gimple stmt, basic_block bb)
346 loop_p loop = bb->loop_father;
348 gcc_assert (scop_entry);
350 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
351 Calls have side-effects, except those to const or pure
352 functions. */
353 if (gimple_has_volatile_ops (stmt)
354 || (gimple_code (stmt) == GIMPLE_CALL
355 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
356 || (gimple_code (stmt) == GIMPLE_ASM))
357 return false;
359 if (is_gimple_debug (stmt))
360 return true;
362 if (!stmt_has_simple_data_refs_p (outermost_loop, stmt))
363 return false;
365 switch (gimple_code (stmt))
367 case GIMPLE_RETURN:
368 case GIMPLE_LABEL:
369 return true;
371 case GIMPLE_COND:
373 /* We can handle all binary comparisons. Inequalities are
374 also supported as they can be represented with union of
375 polyhedra. */
376 enum tree_code code = gimple_cond_code (stmt);
377 if (!(code == LT_EXPR
378 || code == GT_EXPR
379 || code == LE_EXPR
380 || code == GE_EXPR
381 || code == EQ_EXPR
382 || code == NE_EXPR))
383 return false;
385 for (unsigned i = 0; i < 2; ++i)
387 tree op = gimple_op (stmt, i);
388 if (!graphite_can_represent_expr (scop_entry, loop, op)
389 /* We can not handle REAL_TYPE. Failed for pr39260. */
390 || TREE_CODE (TREE_TYPE (op)) == REAL_TYPE)
391 return false;
394 return true;
397 case GIMPLE_ASSIGN:
398 case GIMPLE_CALL:
399 return true;
401 default:
402 /* These nodes cut a new scope. */
403 return false;
406 return false;
409 /* Returns the statement of BB that contains a harmful operation: that
410 can be a function call with side effects, the induction variables
411 are not linear with respect to SCOP_ENTRY, etc. The current open
412 scop should end before this statement. The evaluation is limited using
413 OUTERMOST_LOOP as outermost loop that may change. */
415 static gimple
416 harmful_stmt_in_bb (basic_block scop_entry, loop_p outer_loop, basic_block bb)
418 gimple_stmt_iterator gsi;
420 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
421 if (!stmt_simple_for_scop_p (scop_entry, outer_loop, gsi_stmt (gsi), bb))
422 return gsi_stmt (gsi);
424 return NULL;
427 /* Return true if LOOP can be represented in the polyhedral
428 representation. This is evaluated taking SCOP_ENTRY and
429 OUTERMOST_LOOP in mind. */
431 static bool
432 graphite_can_represent_loop (basic_block scop_entry, loop_p loop)
434 tree niter;
435 struct tree_niter_desc niter_desc;
437 /* FIXME: For the moment, graphite cannot be used on loops that
438 iterate using induction variables that wrap. */
440 return number_of_iterations_exit (loop, single_exit (loop), &niter_desc, false)
441 && niter_desc.control.no_overflow
442 && (niter = number_of_latch_executions (loop))
443 && !chrec_contains_undetermined (niter)
444 && graphite_can_represent_expr (scop_entry, loop, niter);
447 /* Store information needed by scopdet_* functions. */
449 struct scopdet_info
451 /* Exit of the open scop would stop if the current BB is harmful. */
452 basic_block exit;
454 /* Where the next scop would start if the current BB is harmful. */
455 basic_block next;
457 /* The bb or one of its children contains open loop exits. That means
458 loop exit nodes that are not surrounded by a loop dominated by bb. */
459 bool exits;
461 /* The bb or one of its children contains only structures we can handle. */
462 bool difficult;
465 static struct scopdet_info build_scops_1 (basic_block, loop_p,
466 vec<sd_region> *, loop_p);
468 /* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
469 to SCOPS. TYPE is the gbb_type of BB. */
471 static struct scopdet_info
472 scopdet_basic_block_info (basic_block bb, loop_p outermost_loop,
473 vec<sd_region> *scops, gbb_type type)
475 loop_p loop = bb->loop_father;
476 struct scopdet_info result;
477 gimple stmt;
479 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
480 basic_block entry_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
481 stmt = harmful_stmt_in_bb (entry_block, outermost_loop, bb);
482 result.difficult = (stmt != NULL);
483 result.exit = NULL;
485 switch (type)
487 case GBB_LAST:
488 result.next = NULL;
489 result.exits = false;
491 /* Mark bbs terminating a SESE region difficult, if they start
492 a condition or if the block it exits to cannot be split
493 with make_forwarder_block. */
494 if (!single_succ_p (bb)
495 || bb_has_abnormal_pred (single_succ (bb)))
496 result.difficult = true;
497 else
498 result.exit = single_succ (bb);
500 break;
502 case GBB_SIMPLE:
503 result.next = single_succ (bb);
504 result.exits = false;
505 result.exit = single_succ (bb);
506 break;
508 case GBB_LOOP_SING_EXIT_HEADER:
510 auto_vec<sd_region, 3> regions;
511 struct scopdet_info sinfo;
512 edge exit_e = single_exit (loop);
514 sinfo = build_scops_1 (bb, outermost_loop, &regions, loop);
516 if (!graphite_can_represent_loop (entry_block, loop))
517 result.difficult = true;
519 result.difficult |= sinfo.difficult;
521 /* Try again with another loop level. */
522 if (result.difficult
523 && loop_depth (outermost_loop) + 1 == loop_depth (loop))
525 outermost_loop = loop;
527 regions.release ();
528 regions.create (3);
530 sinfo = scopdet_basic_block_info (bb, outermost_loop, scops, type);
532 result = sinfo;
533 result.difficult = true;
535 if (sinfo.difficult)
536 move_sd_regions (&regions, scops);
537 else
539 sd_region open_scop;
540 open_scop.entry = bb;
541 open_scop.exit = exit_e->dest;
542 scops->safe_push (open_scop);
543 regions.release ();
546 else
548 result.exit = exit_e->dest;
549 result.next = exit_e->dest;
551 /* If we do not dominate result.next, remove it. It's either
552 the exit block, or another bb dominates it and will
553 call the scop detection for this bb. */
554 if (!dominated_by_p (CDI_DOMINATORS, result.next, bb))
555 result.next = NULL;
557 if (exit_e->src->loop_father != loop)
558 result.next = NULL;
560 result.exits = false;
562 if (result.difficult)
563 move_sd_regions (&regions, scops);
564 else
565 regions.release ();
568 break;
571 case GBB_LOOP_MULT_EXIT_HEADER:
573 /* XXX: For now we just do not join loops with multiple exits. If the
574 exits lead to the same bb it may be possible to join the loop. */
575 auto_vec<sd_region, 3> regions;
576 vec<edge> exits = get_loop_exit_edges (loop);
577 edge e;
578 int i;
579 build_scops_1 (bb, loop, &regions, loop);
581 /* Scan the code dominated by this loop. This means all bbs, that are
582 are dominated by a bb in this loop, but are not part of this loop.
584 The easiest case:
585 - The loop exit destination is dominated by the exit sources.
587 TODO: We miss here the more complex cases:
588 - The exit destinations are dominated by another bb inside
589 the loop.
590 - The loop dominates bbs, that are not exit destinations. */
591 FOR_EACH_VEC_ELT (exits, i, e)
592 if (e->src->loop_father == loop
593 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src))
595 if (loop_outer (outermost_loop))
596 outermost_loop = loop_outer (outermost_loop);
598 /* Pass loop_outer to recognize e->dest as loop header in
599 build_scops_1. */
600 if (e->dest->loop_father->header == e->dest)
601 build_scops_1 (e->dest, outermost_loop, &regions,
602 loop_outer (e->dest->loop_father));
603 else
604 build_scops_1 (e->dest, outermost_loop, &regions,
605 e->dest->loop_father);
608 result.next = NULL;
609 result.exit = NULL;
610 result.difficult = true;
611 result.exits = false;
612 move_sd_regions (&regions, scops);
613 exits.release ();
614 break;
616 case GBB_COND_HEADER:
618 auto_vec<sd_region, 3> regions;
619 struct scopdet_info sinfo;
620 vec<basic_block> dominated;
621 int i;
622 basic_block dom_bb;
623 basic_block last_exit = NULL;
624 edge e;
625 result.exits = false;
627 /* First check the successors of BB, and check if it is
628 possible to join the different branches. */
629 FOR_EACH_VEC_SAFE_ELT (bb->succs, i, e)
631 /* Ignore loop exits. They will be handled after the loop
632 body. */
633 if (loop_exits_to_bb_p (loop, e->dest))
635 result.exits = true;
636 continue;
639 /* Do not follow edges that lead to the end of the
640 conditions block. For example, in
643 | /|\
644 | 1 2 |
645 | | | |
646 | 3 4 |
647 | \|/
650 the edge from 0 => 6. Only check if all paths lead to
651 the same node 6. */
653 if (!single_pred_p (e->dest))
655 /* Check, if edge leads directly to the end of this
656 condition. */
657 if (!last_exit)
658 last_exit = e->dest;
660 if (e->dest != last_exit)
661 result.difficult = true;
663 continue;
666 if (!dominated_by_p (CDI_DOMINATORS, e->dest, bb))
668 result.difficult = true;
669 continue;
672 sinfo = build_scops_1 (e->dest, outermost_loop, &regions, loop);
674 result.exits |= sinfo.exits;
675 result.difficult |= sinfo.difficult;
677 /* Checks, if all branches end at the same point.
678 If that is true, the condition stays joinable.
679 Have a look at the example above. */
680 if (sinfo.exit)
682 if (!last_exit)
683 last_exit = sinfo.exit;
685 if (sinfo.exit != last_exit)
686 result.difficult = true;
688 else
689 result.difficult = true;
692 if (!last_exit)
693 result.difficult = true;
695 /* Join the branches of the condition if possible. */
696 if (!result.exits && !result.difficult)
698 /* Only return a next pointer if we dominate this pointer.
699 Otherwise it will be handled by the bb dominating it. */
700 if (dominated_by_p (CDI_DOMINATORS, last_exit, bb)
701 && last_exit != bb)
702 result.next = last_exit;
703 else
704 result.next = NULL;
706 result.exit = last_exit;
708 regions.release ();
709 break;
712 /* Scan remaining bbs dominated by BB. */
713 dominated = get_dominated_by (CDI_DOMINATORS, bb);
715 FOR_EACH_VEC_ELT (dominated, i, dom_bb)
717 /* Ignore loop exits: they will be handled after the loop body. */
718 if (loop_depth (find_common_loop (loop, dom_bb->loop_father))
719 < loop_depth (loop))
721 result.exits = true;
722 continue;
725 /* Ignore the bbs processed above. */
726 if (single_pred_p (dom_bb) && single_pred (dom_bb) == bb)
727 continue;
729 if (loop_depth (loop) > loop_depth (dom_bb->loop_father))
730 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions,
731 loop_outer (loop));
732 else
733 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions, loop);
735 result.exits |= sinfo.exits;
736 result.difficult = true;
737 result.exit = NULL;
740 dominated.release ();
742 result.next = NULL;
743 move_sd_regions (&regions, scops);
745 break;
748 default:
749 gcc_unreachable ();
752 return result;
755 /* Starting from CURRENT we walk the dominance tree and add new sd_regions to
756 SCOPS. The analyse if a sd_region can be handled is based on the value
757 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
758 is the loop in which CURRENT is handled.
760 TODO: These functions got a little bit big. They definitely should be cleaned
761 up. */
763 static struct scopdet_info
764 build_scops_1 (basic_block current, loop_p outermost_loop,
765 vec<sd_region> *scops, loop_p loop)
767 bool in_scop = false;
768 sd_region open_scop;
769 struct scopdet_info sinfo;
771 /* Initialize result. */
772 struct scopdet_info result;
773 result.exits = false;
774 result.difficult = false;
775 result.next = NULL;
776 result.exit = NULL;
777 open_scop.entry = NULL;
778 open_scop.exit = NULL;
779 sinfo.exit = NULL;
781 /* Loop over the dominance tree. If we meet a difficult bb, close
782 the current SCoP. Loop and condition header start a new layer,
783 and can only be added if all bbs in deeper layers are simple. */
784 while (current != NULL)
786 sinfo = scopdet_basic_block_info (current, outermost_loop, scops,
787 get_bb_type (current, loop));
789 if (!in_scop && !(sinfo.exits || sinfo.difficult))
791 open_scop.entry = current;
792 open_scop.exit = NULL;
793 in_scop = true;
795 else if (in_scop && (sinfo.exits || sinfo.difficult))
797 open_scop.exit = current;
798 scops->safe_push (open_scop);
799 in_scop = false;
802 result.difficult |= sinfo.difficult;
803 result.exits |= sinfo.exits;
805 current = sinfo.next;
808 /* Try to close open_scop, if we are still in an open SCoP. */
809 if (in_scop)
811 open_scop.exit = sinfo.exit;
812 gcc_assert (open_scop.exit);
813 scops->safe_push (open_scop);
816 result.exit = sinfo.exit;
817 return result;
820 /* Checks if a bb is contained in REGION. */
822 static bool
823 bb_in_sd_region (basic_block bb, sd_region *region)
825 return bb_in_region (bb, region->entry, region->exit);
828 /* Returns the single entry edge of REGION, if it does not exits NULL. */
830 static edge
831 find_single_entry_edge (sd_region *region)
833 edge e;
834 edge_iterator ei;
835 edge entry = NULL;
837 FOR_EACH_EDGE (e, ei, region->entry->preds)
838 if (!bb_in_sd_region (e->src, region))
840 if (entry)
842 entry = NULL;
843 break;
846 else
847 entry = e;
850 return entry;
853 /* Returns the single exit edge of REGION, if it does not exits NULL. */
855 static edge
856 find_single_exit_edge (sd_region *region)
858 edge e;
859 edge_iterator ei;
860 edge exit = NULL;
862 FOR_EACH_EDGE (e, ei, region->exit->preds)
863 if (bb_in_sd_region (e->src, region))
865 if (exit)
867 exit = NULL;
868 break;
871 else
872 exit = e;
875 return exit;
878 /* Create a single entry edge for REGION. */
880 static void
881 create_single_entry_edge (sd_region *region)
883 if (find_single_entry_edge (region))
884 return;
886 /* There are multiple predecessors for bb_3
888 | 1 2
889 | | /
890 | |/
891 | 3 <- entry
892 | |\
893 | | |
894 | 4 ^
895 | | |
896 | |/
899 There are two edges (1->3, 2->3), that point from outside into the region,
900 and another one (5->3), a loop latch, lead to bb_3.
902 We split bb_3.
904 | 1 2
905 | | /
906 | |/
907 |3.0
908 | |\ (3.0 -> 3.1) = single entry edge
909 |3.1 | <- entry
910 | | |
911 | | |
912 | 4 ^
913 | | |
914 | |/
917 If the loop is part of the SCoP, we have to redirect the loop latches.
919 | 1 2
920 | | /
921 | |/
922 |3.0
923 | | (3.0 -> 3.1) = entry edge
924 |3.1 <- entry
925 | |\
926 | | |
927 | 4 ^
928 | | |
929 | |/
930 | 5 */
932 if (region->entry->loop_father->header != region->entry
933 || dominated_by_p (CDI_DOMINATORS,
934 loop_latch_edge (region->entry->loop_father)->src,
935 region->exit))
937 edge forwarder = split_block_after_labels (region->entry);
938 region->entry = forwarder->dest;
940 else
941 /* This case is never executed, as the loop headers seem always to have a
942 single edge pointing from outside into the loop. */
943 gcc_unreachable ();
945 gcc_checking_assert (find_single_entry_edge (region));
948 /* Check if the sd_region, mentioned in EDGE, has no exit bb. */
950 static bool
951 sd_region_without_exit (edge e)
953 sd_region *r = (sd_region *) e->aux;
955 if (r)
956 return r->exit == NULL;
957 else
958 return false;
961 /* Create a single exit edge for REGION. */
963 static void
964 create_single_exit_edge (sd_region *region)
966 edge e;
967 edge_iterator ei;
968 edge forwarder = NULL;
969 basic_block exit;
971 /* We create a forwarder bb (5) for all edges leaving this region
972 (3->5, 4->5). All other edges leading to the same bb, are moved
973 to a new bb (6). If these edges where part of another region (2->5)
974 we update the region->exit pointer, of this region.
976 To identify which edge belongs to which region we depend on the e->aux
977 pointer in every edge. It points to the region of the edge or to NULL,
978 if the edge is not part of any region.
980 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
981 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
982 5 <- exit
984 changes to
986 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
987 | | \/ 3->5 no region, 4->5 no region,
988 | | 5
989 \| / 5->6 region->exit = 6
992 Now there is only a single exit edge (5->6). */
993 exit = region->exit;
994 region->exit = NULL;
995 forwarder = make_forwarder_block (exit, &sd_region_without_exit, NULL);
997 /* Unmark the edges, that are no longer exit edges. */
998 FOR_EACH_EDGE (e, ei, forwarder->src->preds)
999 if (e->aux)
1000 e->aux = NULL;
1002 /* Mark the new exit edge. */
1003 single_succ_edge (forwarder->src)->aux = region;
1005 /* Update the exit bb of all regions, where exit edges lead to
1006 forwarder->dest. */
1007 FOR_EACH_EDGE (e, ei, forwarder->dest->preds)
1008 if (e->aux)
1009 ((sd_region *) e->aux)->exit = forwarder->dest;
1011 gcc_checking_assert (find_single_exit_edge (region));
1014 /* Unmark the exit edges of all REGIONS.
1015 See comment in "create_single_exit_edge". */
1017 static void
1018 unmark_exit_edges (vec<sd_region> regions)
1020 int i;
1021 sd_region *s;
1022 edge e;
1023 edge_iterator ei;
1025 FOR_EACH_VEC_ELT (regions, i, s)
1026 FOR_EACH_EDGE (e, ei, s->exit->preds)
1027 e->aux = NULL;
1031 /* Mark the exit edges of all REGIONS.
1032 See comment in "create_single_exit_edge". */
1034 static void
1035 mark_exit_edges (vec<sd_region> regions)
1037 int i;
1038 sd_region *s;
1039 edge e;
1040 edge_iterator ei;
1042 FOR_EACH_VEC_ELT (regions, i, s)
1043 FOR_EACH_EDGE (e, ei, s->exit->preds)
1044 if (bb_in_sd_region (e->src, s))
1045 e->aux = s;
1048 /* Create for all scop regions a single entry and a single exit edge. */
1050 static void
1051 create_sese_edges (vec<sd_region> regions)
1053 int i;
1054 sd_region *s;
1056 FOR_EACH_VEC_ELT (regions, i, s)
1057 create_single_entry_edge (s);
1059 mark_exit_edges (regions);
1061 FOR_EACH_VEC_ELT (regions, i, s)
1062 /* Don't handle multiple edges exiting the function. */
1063 if (!find_single_exit_edge (s)
1064 && s->exit != EXIT_BLOCK_PTR_FOR_FN (cfun))
1065 create_single_exit_edge (s);
1067 unmark_exit_edges (regions);
1069 calculate_dominance_info (CDI_DOMINATORS);
1070 fix_loop_structure (NULL);
1072 #ifdef ENABLE_CHECKING
1073 verify_loop_structure ();
1074 verify_ssa (false, true);
1075 #endif
1078 /* Create graphite SCoPs from an array of scop detection REGIONS. */
1080 static void
1081 build_graphite_scops (vec<sd_region> regions,
1082 vec<scop_p> *scops)
1084 int i;
1085 sd_region *s;
1087 FOR_EACH_VEC_ELT (regions, i, s)
1089 edge entry = find_single_entry_edge (s);
1090 edge exit = find_single_exit_edge (s);
1091 scop_p scop;
1093 if (!exit)
1094 continue;
1096 scop = new_scop (new_sese (entry, exit));
1097 scops->safe_push (scop);
1099 /* Are there overlapping SCoPs? */
1100 #ifdef ENABLE_CHECKING
1102 int j;
1103 sd_region *s2;
1105 FOR_EACH_VEC_ELT (regions, j, s2)
1106 if (s != s2)
1107 gcc_assert (!bb_in_sd_region (s->entry, s2));
1109 #endif
1113 /* Returns true when BB contains only close phi nodes. */
1115 static bool
1116 contains_only_close_phi_nodes (basic_block bb)
1118 gimple_stmt_iterator gsi;
1120 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1121 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
1122 return false;
1124 return true;
1127 /* Print statistics for SCOP to FILE. */
1129 static void
1130 print_graphite_scop_statistics (FILE* file, scop_p scop)
1132 long n_bbs = 0;
1133 long n_loops = 0;
1134 long n_stmts = 0;
1135 long n_conditions = 0;
1136 long n_p_bbs = 0;
1137 long n_p_loops = 0;
1138 long n_p_stmts = 0;
1139 long n_p_conditions = 0;
1141 basic_block bb;
1143 FOR_ALL_BB_FN (bb, cfun)
1145 gimple_stmt_iterator psi;
1146 loop_p loop = bb->loop_father;
1148 if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
1149 continue;
1151 n_bbs++;
1152 n_p_bbs += bb->count;
1154 if (EDGE_COUNT (bb->succs) > 1)
1156 n_conditions++;
1157 n_p_conditions += bb->count;
1160 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
1162 n_stmts++;
1163 n_p_stmts += bb->count;
1166 if (loop->header == bb && loop_in_sese_p (loop, SCOP_REGION (scop)))
1168 n_loops++;
1169 n_p_loops += bb->count;
1174 fprintf (file, "\nBefore limit_scops SCoP statistics (");
1175 fprintf (file, "BBS:%ld, ", n_bbs);
1176 fprintf (file, "LOOPS:%ld, ", n_loops);
1177 fprintf (file, "CONDITIONS:%ld, ", n_conditions);
1178 fprintf (file, "STMTS:%ld)\n", n_stmts);
1179 fprintf (file, "\nBefore limit_scops SCoP profiling statistics (");
1180 fprintf (file, "BBS:%ld, ", n_p_bbs);
1181 fprintf (file, "LOOPS:%ld, ", n_p_loops);
1182 fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
1183 fprintf (file, "STMTS:%ld)\n", n_p_stmts);
1186 /* Print statistics for SCOPS to FILE. */
1188 static void
1189 print_graphite_statistics (FILE* file, vec<scop_p> scops)
1191 int i;
1192 scop_p scop;
1194 FOR_EACH_VEC_ELT (scops, i, scop)
1195 print_graphite_scop_statistics (file, scop);
1198 /* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1200 Example:
1202 for (i |
1204 for (j | SCoP 1
1205 for (k |
1208 * SCoP frontier, as this line is not surrounded by any loop. *
1210 for (l | SCoP 2
1212 This is necessary as scalar evolution and parameter detection need a
1213 outermost loop to initialize parameters correctly.
1215 TODO: FIX scalar evolution and parameter detection to allow more flexible
1216 SCoP frontiers. */
1218 static void
1219 limit_scops (vec<scop_p> *scops)
1221 auto_vec<sd_region, 3> regions;
1223 int i;
1224 scop_p scop;
1226 FOR_EACH_VEC_ELT (*scops, i, scop)
1228 int j;
1229 loop_p loop;
1230 sese region = SCOP_REGION (scop);
1231 build_sese_loop_nests (region);
1233 FOR_EACH_VEC_ELT (SESE_LOOP_NEST (region), j, loop)
1234 if (!loop_in_sese_p (loop_outer (loop), region)
1235 && single_exit (loop))
1237 sd_region open_scop;
1238 open_scop.entry = loop->header;
1239 open_scop.exit = single_exit (loop)->dest;
1241 /* This is a hack on top of the limit_scops hack. The
1242 limit_scops hack should disappear all together. */
1243 if (single_succ_p (open_scop.exit)
1244 && contains_only_close_phi_nodes (open_scop.exit))
1245 open_scop.exit = single_succ_edge (open_scop.exit)->dest;
1247 regions.safe_push (open_scop);
1251 free_scops (*scops);
1252 scops->create (3);
1254 create_sese_edges (regions);
1255 build_graphite_scops (regions, scops);
1258 /* Returns true when P1 and P2 are close phis with the same
1259 argument. */
1261 static inline bool
1262 same_close_phi_node (gphi *p1, gphi *p2)
1264 return operand_equal_p (gimple_phi_arg_def (p1, 0),
1265 gimple_phi_arg_def (p2, 0), 0);
1268 /* Remove the close phi node at GSI and replace its rhs with the rhs
1269 of PHI. */
1271 static void
1272 remove_duplicate_close_phi (gphi *phi, gphi_iterator *gsi)
1274 gimple use_stmt;
1275 use_operand_p use_p;
1276 imm_use_iterator imm_iter;
1277 tree res = gimple_phi_result (phi);
1278 tree def = gimple_phi_result (gsi->phi ());
1280 gcc_assert (same_close_phi_node (phi, gsi->phi ()));
1282 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
1284 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1285 SET_USE (use_p, res);
1287 update_stmt (use_stmt);
1289 /* It is possible that we just created a duplicate close-phi
1290 for an already-processed containing loop. Check for this
1291 case and clean it up. */
1292 if (gimple_code (use_stmt) == GIMPLE_PHI
1293 && gimple_phi_num_args (use_stmt) == 1)
1294 make_close_phi_nodes_unique (gimple_bb (use_stmt));
1297 remove_phi_node (gsi, true);
1300 /* Removes all the close phi duplicates from BB. */
1302 static void
1303 make_close_phi_nodes_unique (basic_block bb)
1305 gphi_iterator psi;
1307 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1309 gphi_iterator gsi = psi;
1310 gphi *phi = psi.phi ();
1312 /* At this point, PHI should be a close phi in normal form. */
1313 gcc_assert (gimple_phi_num_args (phi) == 1);
1315 /* Iterate over the next phis and remove duplicates. */
1316 gsi_next (&gsi);
1317 while (!gsi_end_p (gsi))
1318 if (same_close_phi_node (phi, gsi.phi ()))
1319 remove_duplicate_close_phi (phi, &gsi);
1320 else
1321 gsi_next (&gsi);
1325 /* Transforms LOOP to the canonical loop closed SSA form. */
1327 static void
1328 canonicalize_loop_closed_ssa (loop_p loop)
1330 edge e = single_exit (loop);
1331 basic_block bb;
1333 if (!e || e->flags & EDGE_ABNORMAL)
1334 return;
1336 bb = e->dest;
1338 if (single_pred_p (bb))
1340 e = split_block_after_labels (bb);
1341 make_close_phi_nodes_unique (e->src);
1343 else
1345 gphi_iterator psi;
1346 basic_block close = split_edge (e);
1348 e = single_succ_edge (close);
1350 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1352 gphi *phi = psi.phi ();
1353 unsigned i;
1355 for (i = 0; i < gimple_phi_num_args (phi); i++)
1356 if (gimple_phi_arg_edge (phi, i) == e)
1358 tree res, arg = gimple_phi_arg_def (phi, i);
1359 use_operand_p use_p;
1360 gphi *close_phi;
1362 if (TREE_CODE (arg) != SSA_NAME)
1363 continue;
1365 close_phi = create_phi_node (NULL_TREE, close);
1366 res = create_new_def_for (arg, close_phi,
1367 gimple_phi_result_ptr (close_phi));
1368 add_phi_arg (close_phi, arg,
1369 gimple_phi_arg_edge (close_phi, 0),
1370 UNKNOWN_LOCATION);
1371 use_p = gimple_phi_arg_imm_use_ptr (phi, i);
1372 replace_exp (use_p, res);
1373 update_stmt (phi);
1377 make_close_phi_nodes_unique (close);
1380 /* The code above does not properly handle changes in the post dominance
1381 information (yet). */
1382 free_dominance_info (CDI_POST_DOMINATORS);
1385 /* Converts the current loop closed SSA form to a canonical form
1386 expected by the Graphite code generation.
1388 The loop closed SSA form has the following invariant: a variable
1389 defined in a loop that is used outside the loop appears only in the
1390 phi nodes in the destination of the loop exit. These phi nodes are
1391 called close phi nodes.
1393 The canonical loop closed SSA form contains the extra invariants:
1395 - when the loop contains only one exit, the close phi nodes contain
1396 only one argument. That implies that the basic block that contains
1397 the close phi nodes has only one predecessor, that is a basic block
1398 in the loop.
1400 - the basic block containing the close phi nodes does not contain
1401 other statements.
1403 - there exist only one phi node per definition in the loop.
1406 static void
1407 canonicalize_loop_closed_ssa_form (void)
1409 loop_p loop;
1411 #ifdef ENABLE_CHECKING
1412 verify_loop_closed_ssa (true);
1413 #endif
1415 FOR_EACH_LOOP (loop, 0)
1416 canonicalize_loop_closed_ssa (loop);
1418 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1419 update_ssa (TODO_update_ssa);
1421 #ifdef ENABLE_CHECKING
1422 verify_loop_closed_ssa (true);
1423 #endif
1426 /* Find Static Control Parts (SCoP) in the current function and pushes
1427 them to SCOPS. */
1429 void
1430 build_scops (vec<scop_p> *scops)
1432 struct loop *loop = current_loops->tree_root;
1433 auto_vec<sd_region, 3> regions;
1435 canonicalize_loop_closed_ssa_form ();
1436 build_scops_1 (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1437 ENTRY_BLOCK_PTR_FOR_FN (cfun)->loop_father,
1438 &regions, loop);
1439 create_sese_edges (regions);
1440 build_graphite_scops (regions, scops);
1442 if (dump_file && (dump_flags & TDF_DETAILS))
1443 print_graphite_statistics (dump_file, *scops);
1445 limit_scops (scops);
1446 regions.release ();
1448 if (dump_file && (dump_flags & TDF_DETAILS))
1449 fprintf (dump_file, "\nnumber of SCoPs: %d\n",
1450 scops ? scops->length () : 0);
1453 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
1454 different colors. If there are not enough colors, paint the
1455 remaining SCoPs in gray.
1457 Special nodes:
1458 - "*" after the node number denotes the entry of a SCoP,
1459 - "#" after the node number denotes the exit of a SCoP,
1460 - "()" around the node number denotes the entry or the
1461 exit nodes of the SCOP. These are not part of SCoP. */
1463 static void
1464 dot_all_scops_1 (FILE *file, vec<scop_p> scops)
1466 basic_block bb;
1467 edge e;
1468 edge_iterator ei;
1469 scop_p scop;
1470 const char* color;
1471 int i;
1473 /* Disable debugging while printing graph. */
1474 int tmp_dump_flags = dump_flags;
1475 dump_flags = 0;
1477 fprintf (file, "digraph all {\n");
1479 FOR_ALL_BB_FN (bb, cfun)
1481 int part_of_scop = false;
1483 /* Use HTML for every bb label. So we are able to print bbs
1484 which are part of two different SCoPs, with two different
1485 background colors. */
1486 fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1487 bb->index);
1488 fprintf (file, "CELLSPACING=\"0\">\n");
1490 /* Select color for SCoP. */
1491 FOR_EACH_VEC_ELT (scops, i, scop)
1493 sese region = SCOP_REGION (scop);
1494 if (bb_in_sese_p (bb, region)
1495 || (SESE_EXIT_BB (region) == bb)
1496 || (SESE_ENTRY_BB (region) == bb))
1498 switch (i % 17)
1500 case 0: /* red */
1501 color = "#e41a1c";
1502 break;
1503 case 1: /* blue */
1504 color = "#377eb8";
1505 break;
1506 case 2: /* green */
1507 color = "#4daf4a";
1508 break;
1509 case 3: /* purple */
1510 color = "#984ea3";
1511 break;
1512 case 4: /* orange */
1513 color = "#ff7f00";
1514 break;
1515 case 5: /* yellow */
1516 color = "#ffff33";
1517 break;
1518 case 6: /* brown */
1519 color = "#a65628";
1520 break;
1521 case 7: /* rose */
1522 color = "#f781bf";
1523 break;
1524 case 8:
1525 color = "#8dd3c7";
1526 break;
1527 case 9:
1528 color = "#ffffb3";
1529 break;
1530 case 10:
1531 color = "#bebada";
1532 break;
1533 case 11:
1534 color = "#fb8072";
1535 break;
1536 case 12:
1537 color = "#80b1d3";
1538 break;
1539 case 13:
1540 color = "#fdb462";
1541 break;
1542 case 14:
1543 color = "#b3de69";
1544 break;
1545 case 15:
1546 color = "#fccde5";
1547 break;
1548 case 16:
1549 color = "#bc80bd";
1550 break;
1551 default: /* gray */
1552 color = "#999999";
1555 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color);
1557 if (!bb_in_sese_p (bb, region))
1558 fprintf (file, " (");
1560 if (bb == SESE_ENTRY_BB (region)
1561 && bb == SESE_EXIT_BB (region))
1562 fprintf (file, " %d*# ", bb->index);
1563 else if (bb == SESE_ENTRY_BB (region))
1564 fprintf (file, " %d* ", bb->index);
1565 else if (bb == SESE_EXIT_BB (region))
1566 fprintf (file, " %d# ", bb->index);
1567 else
1568 fprintf (file, " %d ", bb->index);
1570 if (!bb_in_sese_p (bb,region))
1571 fprintf (file, ")");
1573 fprintf (file, "</TD></TR>\n");
1574 part_of_scop = true;
1578 if (!part_of_scop)
1580 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1581 fprintf (file, " %d </TD></TR>\n", bb->index);
1583 fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1586 FOR_ALL_BB_FN (bb, cfun)
1588 FOR_EACH_EDGE (e, ei, bb->succs)
1589 fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
1592 fputs ("}\n\n", file);
1594 /* Enable debugging again. */
1595 dump_flags = tmp_dump_flags;
1598 /* Display all SCoPs using dotty. */
1600 DEBUG_FUNCTION void
1601 dot_all_scops (vec<scop_p> scops)
1603 /* When debugging, enable the following code. This cannot be used
1604 in production compilers because it calls "system". */
1605 #if 0
1606 int x;
1607 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1608 gcc_assert (stream);
1610 dot_all_scops_1 (stream, scops);
1611 fclose (stream);
1613 x = system ("dotty /tmp/allscops.dot &");
1614 #else
1615 dot_all_scops_1 (stderr, scops);
1616 #endif
1619 /* Display all SCoPs using dotty. */
1621 DEBUG_FUNCTION void
1622 dot_scop (scop_p scop)
1624 auto_vec<scop_p, 1> scops;
1626 if (scop)
1627 scops.safe_push (scop);
1629 /* When debugging, enable the following code. This cannot be used
1630 in production compilers because it calls "system". */
1631 #if 0
1633 int x;
1634 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1635 gcc_assert (stream);
1637 dot_all_scops_1 (stream, scops);
1638 fclose (stream);
1639 x = system ("dotty /tmp/allscops.dot &");
1641 #else
1642 dot_all_scops_1 (stderr, scops);
1643 #endif
1646 #endif