PR testsuite/66621
[official-gcc.git] / gcc / gcse.c
blobf1d3af9d03ccf9e1913e56a918add4b62925afef
1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* TODO
21 - reordering of memory allocation and freeing to be more space efficient
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
26 /* References searched while implementing this.
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "tm.h"
139 #include "diagnostic-core.h"
140 #include "toplev.h"
141 #include "hard-reg-set.h"
142 #include "rtl.h"
143 #include "alias.h"
144 #include "symtab.h"
145 #include "tree.h"
146 #include "tm_p.h"
147 #include "regs.h"
148 #include "ira.h"
149 #include "flags.h"
150 #include "insn-config.h"
151 #include "recog.h"
152 #include "predict.h"
153 #include "function.h"
154 #include "dominance.h"
155 #include "cfg.h"
156 #include "cfgrtl.h"
157 #include "cfganal.h"
158 #include "lcm.h"
159 #include "cfgcleanup.h"
160 #include "basic-block.h"
161 #include "expmed.h"
162 #include "dojump.h"
163 #include "explow.h"
164 #include "calls.h"
165 #include "emit-rtl.h"
166 #include "varasm.h"
167 #include "stmt.h"
168 #include "expr.h"
169 #include "except.h"
170 #include "params.h"
171 #include "alloc-pool.h"
172 #include "cselib.h"
173 #include "intl.h"
174 #include "obstack.h"
175 #include "tree-pass.h"
176 #include "df.h"
177 #include "dbgcnt.h"
178 #include "target.h"
179 #include "gcse.h"
180 #include "gcse-common.h"
182 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
183 are a superset of those done by classic GCSE.
185 Two passes of copy/constant propagation are done around PRE or hoisting
186 because the first one enables more GCSE and the second one helps to clean
187 up the copies that PRE and HOIST create. This is needed more for PRE than
188 for HOIST because code hoisting will try to use an existing register
189 containing the common subexpression rather than create a new one. This is
190 harder to do for PRE because of the code motion (which HOIST doesn't do).
192 Expressions we are interested in GCSE-ing are of the form
193 (set (pseudo-reg) (expression)).
194 Function want_to_gcse_p says what these are.
196 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
197 This allows PRE to hoist expressions that are expressed in multiple insns,
198 such as complex address calculations (e.g. for PIC code, or loads with a
199 high part and a low part).
201 PRE handles moving invariant expressions out of loops (by treating them as
202 partially redundant).
204 **********************
206 We used to support multiple passes but there are diminishing returns in
207 doing so. The first pass usually makes 90% of the changes that are doable.
208 A second pass can make a few more changes made possible by the first pass.
209 Experiments show any further passes don't make enough changes to justify
210 the expense.
212 A study of spec92 using an unlimited number of passes:
213 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
214 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
215 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
217 It was found doing copy propagation between each pass enables further
218 substitutions.
220 This study was done before expressions in REG_EQUAL notes were added as
221 candidate expressions for optimization, and before the GIMPLE optimizers
222 were added. Probably, multiple passes is even less efficient now than
223 at the time when the study was conducted.
225 PRE is quite expensive in complicated functions because the DFA can take
226 a while to converge. Hence we only perform one pass.
228 **********************
230 The steps for PRE are:
232 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
234 2) Perform the data flow analysis for PRE.
236 3) Delete the redundant instructions
238 4) Insert the required copies [if any] that make the partially
239 redundant instructions fully redundant.
241 5) For other reaching expressions, insert an instruction to copy the value
242 to a newly created pseudo that will reach the redundant instruction.
244 The deletion is done first so that when we do insertions we
245 know which pseudo reg to use.
247 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
248 argue it is not. The number of iterations for the algorithm to converge
249 is typically 2-4 so I don't view it as that expensive (relatively speaking).
251 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
252 we create. To make an expression reach the place where it's redundant,
253 the result of the expression is copied to a new register, and the redundant
254 expression is deleted by replacing it with this new register. Classic GCSE
255 doesn't have this problem as much as it computes the reaching defs of
256 each register in each block and thus can try to use an existing
257 register. */
259 /* GCSE global vars. */
261 struct target_gcse default_target_gcse;
262 #if SWITCHABLE_TARGET
263 struct target_gcse *this_target_gcse = &default_target_gcse;
264 #endif
266 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
267 int flag_rerun_cse_after_global_opts;
269 /* An obstack for our working variables. */
270 static struct obstack gcse_obstack;
272 /* Hash table of expressions. */
274 struct gcse_expr
276 /* The expression. */
277 rtx expr;
278 /* Index in the available expression bitmaps. */
279 int bitmap_index;
280 /* Next entry with the same hash. */
281 struct gcse_expr *next_same_hash;
282 /* List of anticipatable occurrences in basic blocks in the function.
283 An "anticipatable occurrence" is one that is the first occurrence in the
284 basic block, the operands are not modified in the basic block prior
285 to the occurrence and the output is not used between the start of
286 the block and the occurrence. */
287 struct gcse_occr *antic_occr;
288 /* List of available occurrence in basic blocks in the function.
289 An "available occurrence" is one that is the last occurrence in the
290 basic block and the operands are not modified by following statements in
291 the basic block [including this insn]. */
292 struct gcse_occr *avail_occr;
293 /* Non-null if the computation is PRE redundant.
294 The value is the newly created pseudo-reg to record a copy of the
295 expression in all the places that reach the redundant copy. */
296 rtx reaching_reg;
297 /* Maximum distance in instructions this expression can travel.
298 We avoid moving simple expressions for more than a few instructions
299 to keep register pressure under control.
300 A value of "0" removes restrictions on how far the expression can
301 travel. */
302 int max_distance;
305 /* Occurrence of an expression.
306 There is one per basic block. If a pattern appears more than once the
307 last appearance is used [or first for anticipatable expressions]. */
309 struct gcse_occr
311 /* Next occurrence of this expression. */
312 struct gcse_occr *next;
313 /* The insn that computes the expression. */
314 rtx_insn *insn;
315 /* Nonzero if this [anticipatable] occurrence has been deleted. */
316 char deleted_p;
317 /* Nonzero if this [available] occurrence has been copied to
318 reaching_reg. */
319 /* ??? This is mutually exclusive with deleted_p, so they could share
320 the same byte. */
321 char copied_p;
324 typedef struct gcse_occr *occr_t;
326 /* Expression hash tables.
327 Each hash table is an array of buckets.
328 ??? It is known that if it were an array of entries, structure elements
329 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
330 not clear whether in the final analysis a sufficient amount of memory would
331 be saved as the size of the available expression bitmaps would be larger
332 [one could build a mapping table without holes afterwards though].
333 Someday I'll perform the computation and figure it out. */
335 struct gcse_hash_table_d
337 /* The table itself.
338 This is an array of `expr_hash_table_size' elements. */
339 struct gcse_expr **table;
341 /* Size of the hash table, in elements. */
342 unsigned int size;
344 /* Number of hash table elements. */
345 unsigned int n_elems;
348 /* Expression hash table. */
349 static struct gcse_hash_table_d expr_hash_table;
351 /* This is a list of expressions which are MEMs and will be used by load
352 or store motion.
353 Load motion tracks MEMs which aren't killed by anything except itself,
354 i.e. loads and stores to a single location.
355 We can then allow movement of these MEM refs with a little special
356 allowance. (all stores copy the same value to the reaching reg used
357 for the loads). This means all values used to store into memory must have
358 no side effects so we can re-issue the setter value. */
360 struct ls_expr
362 struct gcse_expr * expr; /* Gcse expression reference for LM. */
363 rtx pattern; /* Pattern of this mem. */
364 rtx pattern_regs; /* List of registers mentioned by the mem. */
365 rtx_insn_list *loads; /* INSN list of loads seen. */
366 rtx_insn_list *stores; /* INSN list of stores seen. */
367 struct ls_expr * next; /* Next in the list. */
368 int invalid; /* Invalid for some reason. */
369 int index; /* If it maps to a bitmap index. */
370 unsigned int hash_index; /* Index when in a hash table. */
371 rtx reaching_reg; /* Register to use when re-writing. */
374 /* Head of the list of load/store memory refs. */
375 static struct ls_expr * pre_ldst_mems = NULL;
377 struct pre_ldst_expr_hasher : typed_noop_remove <ls_expr>
379 typedef ls_expr *value_type;
380 typedef value_type compare_type;
381 static inline hashval_t hash (const ls_expr *);
382 static inline bool equal (const ls_expr *, const ls_expr *);
385 /* Hashtable helpers. */
386 inline hashval_t
387 pre_ldst_expr_hasher::hash (const ls_expr *x)
389 int do_not_record_p = 0;
390 return
391 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
394 static int expr_equiv_p (const_rtx, const_rtx);
396 inline bool
397 pre_ldst_expr_hasher::equal (const ls_expr *ptr1,
398 const ls_expr *ptr2)
400 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
403 /* Hashtable for the load/store memory refs. */
404 static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
406 /* Bitmap containing one bit for each register in the program.
407 Used when performing GCSE to track which registers have been set since
408 the start of the basic block. */
409 static regset reg_set_bitmap;
411 /* Array, indexed by basic block number for a list of insns which modify
412 memory within that block. */
413 static vec<rtx_insn *> *modify_mem_list;
414 static bitmap modify_mem_list_set;
416 /* This array parallels modify_mem_list, except that it stores MEMs
417 being set and their canonicalized memory addresses. */
418 static vec<modify_pair> *canon_modify_mem_list;
420 /* Bitmap indexed by block numbers to record which blocks contain
421 function calls. */
422 static bitmap blocks_with_calls;
424 /* Various variables for statistics gathering. */
426 /* Memory used in a pass.
427 This isn't intended to be absolutely precise. Its intent is only
428 to keep an eye on memory usage. */
429 static int bytes_used;
431 /* GCSE substitutions made. */
432 static int gcse_subst_count;
433 /* Number of copy instructions created. */
434 static int gcse_create_count;
436 /* Doing code hoisting. */
437 static bool doing_code_hoisting_p = false;
439 /* For available exprs */
440 static sbitmap *ae_kill;
442 /* Data stored for each basic block. */
443 struct bb_data
445 /* Maximal register pressure inside basic block for given register class
446 (defined only for the pressure classes). */
447 int max_reg_pressure[N_REG_CLASSES];
448 /* Recorded register pressure of basic block before trying to hoist
449 an expression. Will be used to restore the register pressure
450 if the expression should not be hoisted. */
451 int old_pressure;
452 /* Recorded register live_in info of basic block during code hoisting
453 process. BACKUP is used to record live_in info before trying to
454 hoist an expression, and will be used to restore LIVE_IN if the
455 expression should not be hoisted. */
456 bitmap live_in, backup;
459 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
461 static basic_block curr_bb;
463 /* Current register pressure for each pressure class. */
464 static int curr_reg_pressure[N_REG_CLASSES];
467 static void compute_can_copy (void);
468 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
469 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
470 static void *gcse_alloc (unsigned long);
471 static void alloc_gcse_mem (void);
472 static void free_gcse_mem (void);
473 static void hash_scan_insn (rtx_insn *, struct gcse_hash_table_d *);
474 static void hash_scan_set (rtx, rtx_insn *, struct gcse_hash_table_d *);
475 static void hash_scan_clobber (rtx, rtx_insn *, struct gcse_hash_table_d *);
476 static void hash_scan_call (rtx, rtx_insn *, struct gcse_hash_table_d *);
477 static int want_to_gcse_p (rtx, int *);
478 static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
479 static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
480 static int oprs_available_p (const_rtx, const rtx_insn *);
481 static void insert_expr_in_table (rtx, machine_mode, rtx_insn *, int, int,
482 int, struct gcse_hash_table_d *);
483 static unsigned int hash_expr (const_rtx, machine_mode, int *, int);
484 static void record_last_reg_set_info (rtx_insn *, int);
485 static void record_last_mem_set_info (rtx_insn *);
486 static void record_last_set_info (rtx, const_rtx, void *);
487 static void compute_hash_table (struct gcse_hash_table_d *);
488 static void alloc_hash_table (struct gcse_hash_table_d *);
489 static void free_hash_table (struct gcse_hash_table_d *);
490 static void compute_hash_table_work (struct gcse_hash_table_d *);
491 static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d *);
492 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
493 struct gcse_hash_table_d *);
494 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
495 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
496 static void alloc_pre_mem (int, int);
497 static void free_pre_mem (void);
498 static struct edge_list *compute_pre_data (void);
499 static int pre_expr_reaches_here_p (basic_block, struct gcse_expr *,
500 basic_block);
501 static void insert_insn_end_basic_block (struct gcse_expr *, basic_block);
502 static void pre_insert_copy_insn (struct gcse_expr *, rtx_insn *);
503 static void pre_insert_copies (void);
504 static int pre_delete (void);
505 static int pre_gcse (struct edge_list *);
506 static int one_pre_gcse_pass (void);
507 static void add_label_notes (rtx, rtx_insn *);
508 static void alloc_code_hoist_mem (int, int);
509 static void free_code_hoist_mem (void);
510 static void compute_code_hoist_vbeinout (void);
511 static void compute_code_hoist_data (void);
512 static int should_hoist_expr_to_dom (basic_block, struct gcse_expr *, basic_block,
513 sbitmap, int, int *, enum reg_class,
514 int *, bitmap, rtx_insn *);
515 static int hoist_code (void);
516 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
517 static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
518 static int one_code_hoisting_pass (void);
519 static rtx_insn *process_insert_insn (struct gcse_expr *);
520 static int pre_edge_insert (struct edge_list *, struct gcse_expr **);
521 static int pre_expr_reaches_here_p_work (basic_block, struct gcse_expr *,
522 basic_block, char *);
523 static struct ls_expr * ldst_entry (rtx);
524 static void free_ldst_entry (struct ls_expr *);
525 static void free_ld_motion_mems (void);
526 static void print_ldst_list (FILE *);
527 static struct ls_expr * find_rtx_in_ldst (rtx);
528 static int simple_mem (const_rtx);
529 static void invalidate_any_buried_refs (rtx);
530 static void compute_ld_motion_mems (void);
531 static void trim_ld_motion_mems (void);
532 static void update_ld_motion_stores (struct gcse_expr *);
533 static void clear_modify_mem_tables (void);
534 static void free_modify_mem_tables (void);
535 static bool is_too_expensive (const char *);
537 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
538 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
540 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
541 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
543 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
544 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
546 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
547 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
549 /* Misc. utilities. */
551 #define can_copy \
552 (this_target_gcse->x_can_copy)
553 #define can_copy_init_p \
554 (this_target_gcse->x_can_copy_init_p)
556 /* Compute which modes support reg/reg copy operations. */
558 static void
559 compute_can_copy (void)
561 int i;
562 #ifndef AVOID_CCMODE_COPIES
563 rtx reg;
564 rtx_insn *insn;
565 #endif
566 memset (can_copy, 0, NUM_MACHINE_MODES);
568 start_sequence ();
569 for (i = 0; i < NUM_MACHINE_MODES; i++)
570 if (GET_MODE_CLASS (i) == MODE_CC)
572 #ifdef AVOID_CCMODE_COPIES
573 can_copy[i] = 0;
574 #else
575 reg = gen_rtx_REG ((machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
576 insn = emit_insn (gen_rtx_SET (reg, reg));
577 if (recog (PATTERN (insn), insn, NULL) >= 0)
578 can_copy[i] = 1;
579 #endif
581 else
582 can_copy[i] = 1;
584 end_sequence ();
587 /* Returns whether the mode supports reg/reg copy operations. */
589 bool
590 can_copy_p (machine_mode mode)
592 if (! can_copy_init_p)
594 compute_can_copy ();
595 can_copy_init_p = true;
598 return can_copy[mode] != 0;
601 /* Cover function to xmalloc to record bytes allocated. */
603 static void *
604 gmalloc (size_t size)
606 bytes_used += size;
607 return xmalloc (size);
610 /* Cover function to xcalloc to record bytes allocated. */
612 static void *
613 gcalloc (size_t nelem, size_t elsize)
615 bytes_used += nelem * elsize;
616 return xcalloc (nelem, elsize);
619 /* Cover function to obstack_alloc. */
621 static void *
622 gcse_alloc (unsigned long size)
624 bytes_used += size;
625 return obstack_alloc (&gcse_obstack, size);
628 /* Allocate memory for the reg/memory set tracking tables.
629 This is called at the start of each pass. */
631 static void
632 alloc_gcse_mem (void)
634 /* Allocate vars to track sets of regs. */
635 reg_set_bitmap = ALLOC_REG_SET (NULL);
637 /* Allocate array to keep a list of insns which modify memory in each
638 basic block. The two typedefs are needed to work around the
639 pre-processor limitation with template types in macro arguments. */
640 typedef vec<rtx_insn *> vec_rtx_heap;
641 typedef vec<modify_pair> vec_modify_pair_heap;
642 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
643 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
644 last_basic_block_for_fn (cfun));
645 modify_mem_list_set = BITMAP_ALLOC (NULL);
646 blocks_with_calls = BITMAP_ALLOC (NULL);
649 /* Free memory allocated by alloc_gcse_mem. */
651 static void
652 free_gcse_mem (void)
654 FREE_REG_SET (reg_set_bitmap);
656 free_modify_mem_tables ();
657 BITMAP_FREE (modify_mem_list_set);
658 BITMAP_FREE (blocks_with_calls);
661 /* Compute the local properties of each recorded expression.
663 Local properties are those that are defined by the block, irrespective of
664 other blocks.
666 An expression is transparent in a block if its operands are not modified
667 in the block.
669 An expression is computed (locally available) in a block if it is computed
670 at least once and expression would contain the same value if the
671 computation was moved to the end of the block.
673 An expression is locally anticipatable in a block if it is computed at
674 least once and expression would contain the same value if the computation
675 was moved to the beginning of the block.
677 We call this routine for pre and code hoisting. They all compute
678 basically the same information and thus can easily share this code.
680 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
681 properties. If NULL, then it is not necessary to compute or record that
682 particular property.
684 TABLE controls which hash table to look at. */
686 static void
687 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
688 struct gcse_hash_table_d *table)
690 unsigned int i;
692 /* Initialize any bitmaps that were passed in. */
693 if (transp)
695 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
698 if (comp)
699 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
700 if (antloc)
701 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
703 for (i = 0; i < table->size; i++)
705 struct gcse_expr *expr;
707 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
709 int indx = expr->bitmap_index;
710 struct gcse_occr *occr;
712 /* The expression is transparent in this block if it is not killed.
713 We start by assuming all are transparent [none are killed], and
714 then reset the bits for those that are. */
715 if (transp)
716 compute_transp (expr->expr, indx, transp,
717 blocks_with_calls,
718 modify_mem_list_set,
719 canon_modify_mem_list);
721 /* The occurrences recorded in antic_occr are exactly those that
722 we want to set to nonzero in ANTLOC. */
723 if (antloc)
724 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
726 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
728 /* While we're scanning the table, this is a good place to
729 initialize this. */
730 occr->deleted_p = 0;
733 /* The occurrences recorded in avail_occr are exactly those that
734 we want to set to nonzero in COMP. */
735 if (comp)
736 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
738 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
740 /* While we're scanning the table, this is a good place to
741 initialize this. */
742 occr->copied_p = 0;
745 /* While we're scanning the table, this is a good place to
746 initialize this. */
747 expr->reaching_reg = 0;
752 /* Hash table support. */
754 struct reg_avail_info
756 basic_block last_bb;
757 int first_set;
758 int last_set;
761 static struct reg_avail_info *reg_avail_info;
762 static basic_block current_bb;
764 /* See whether X, the source of a set, is something we want to consider for
765 GCSE. */
767 static int
768 want_to_gcse_p (rtx x, int *max_distance_ptr)
770 #ifdef STACK_REGS
771 /* On register stack architectures, don't GCSE constants from the
772 constant pool, as the benefits are often swamped by the overhead
773 of shuffling the register stack between basic blocks. */
774 if (IS_STACK_MODE (GET_MODE (x)))
775 x = avoid_constant_pool_reference (x);
776 #endif
778 /* GCSE'ing constants:
780 We do not specifically distinguish between constant and non-constant
781 expressions in PRE and Hoist. We use set_src_cost below to limit
782 the maximum distance simple expressions can travel.
784 Nevertheless, constants are much easier to GCSE, and, hence,
785 it is easy to overdo the optimizations. Usually, excessive PRE and
786 Hoisting of constant leads to increased register pressure.
788 RA can deal with this by rematerialing some of the constants.
789 Therefore, it is important that the back-end generates sets of constants
790 in a way that allows reload rematerialize them under high register
791 pressure, i.e., a pseudo register with REG_EQUAL to constant
792 is set only once. Failing to do so will result in IRA/reload
793 spilling such constants under high register pressure instead of
794 rematerializing them. */
796 switch (GET_CODE (x))
798 case REG:
799 case SUBREG:
800 case CALL:
801 return 0;
803 CASE_CONST_ANY:
804 if (!doing_code_hoisting_p)
805 /* Do not PRE constants. */
806 return 0;
808 /* FALLTHRU */
810 default:
811 if (doing_code_hoisting_p)
812 /* PRE doesn't implement max_distance restriction. */
814 int cost;
815 int max_distance;
817 gcc_assert (!optimize_function_for_speed_p (cfun)
818 && optimize_function_for_size_p (cfun));
819 cost = set_src_cost (x, 0);
821 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
823 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
824 if (max_distance == 0)
825 return 0;
827 gcc_assert (max_distance > 0);
829 else
830 max_distance = 0;
832 if (max_distance_ptr)
833 *max_distance_ptr = max_distance;
836 return can_assign_to_reg_without_clobbers_p (x);
840 /* Used internally by can_assign_to_reg_without_clobbers_p. */
842 static GTY(()) rtx_insn *test_insn;
844 /* Return true if we can assign X to a pseudo register such that the
845 resulting insn does not result in clobbering a hard register as a
846 side-effect.
848 Additionally, if the target requires it, check that the resulting insn
849 can be copied. If it cannot, this means that X is special and probably
850 has hidden side-effects we don't want to mess with.
852 This function is typically used by code motion passes, to verify
853 that it is safe to insert an insn without worrying about clobbering
854 maybe live hard regs. */
856 bool
857 can_assign_to_reg_without_clobbers_p (rtx x)
859 int num_clobbers = 0;
860 int icode;
861 bool can_assign = false;
863 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
864 if (general_operand (x, GET_MODE (x)))
865 return 1;
866 else if (GET_MODE (x) == VOIDmode)
867 return 0;
869 /* Otherwise, check if we can make a valid insn from it. First initialize
870 our test insn if we haven't already. */
871 if (test_insn == 0)
873 test_insn
874 = make_insn_raw (gen_rtx_SET (gen_rtx_REG (word_mode,
875 FIRST_PSEUDO_REGISTER * 2),
876 const0_rtx));
877 SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
878 INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
881 /* Now make an insn like the one we would make when GCSE'ing and see if
882 valid. */
883 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
884 SET_SRC (PATTERN (test_insn)) = x;
886 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
888 /* If the test insn is valid and doesn't need clobbers, and the target also
889 has no objections, we're good. */
890 if (icode >= 0
891 && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
892 && ! (targetm.cannot_copy_insn_p
893 && targetm.cannot_copy_insn_p (test_insn)))
894 can_assign = true;
896 /* Make sure test_insn doesn't have any pointers into GC space. */
897 SET_SRC (PATTERN (test_insn)) = NULL_RTX;
899 return can_assign;
902 /* Return nonzero if the operands of expression X are unchanged from the
903 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
904 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
906 static int
907 oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
909 int i, j;
910 enum rtx_code code;
911 const char *fmt;
913 if (x == 0)
914 return 1;
916 code = GET_CODE (x);
917 switch (code)
919 case REG:
921 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
923 if (info->last_bb != current_bb)
924 return 1;
925 if (avail_p)
926 return info->last_set < DF_INSN_LUID (insn);
927 else
928 return info->first_set >= DF_INSN_LUID (insn);
931 case MEM:
932 if (! flag_gcse_lm
933 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
934 x, avail_p))
935 return 0;
936 else
937 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
939 case PRE_DEC:
940 case PRE_INC:
941 case POST_DEC:
942 case POST_INC:
943 case PRE_MODIFY:
944 case POST_MODIFY:
945 return 0;
947 case PC:
948 case CC0: /*FIXME*/
949 case CONST:
950 CASE_CONST_ANY:
951 case SYMBOL_REF:
952 case LABEL_REF:
953 case ADDR_VEC:
954 case ADDR_DIFF_VEC:
955 return 1;
957 default:
958 break;
961 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
963 if (fmt[i] == 'e')
965 /* If we are about to do the last recursive call needed at this
966 level, change it into iteration. This function is called enough
967 to be worth it. */
968 if (i == 0)
969 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
971 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
972 return 0;
974 else if (fmt[i] == 'E')
975 for (j = 0; j < XVECLEN (x, i); j++)
976 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
977 return 0;
980 return 1;
983 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
985 struct mem_conflict_info
987 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
988 see if a memory store conflicts with this memory load. */
989 const_rtx mem;
991 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
992 references. */
993 bool conflict;
996 /* DEST is the output of an instruction. If it is a memory reference and
997 possibly conflicts with the load found in DATA, then communicate this
998 information back through DATA. */
1000 static void
1001 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
1002 void *data)
1004 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
1006 while (GET_CODE (dest) == SUBREG
1007 || GET_CODE (dest) == ZERO_EXTRACT
1008 || GET_CODE (dest) == STRICT_LOW_PART)
1009 dest = XEXP (dest, 0);
1011 /* If DEST is not a MEM, then it will not conflict with the load. Note
1012 that function calls are assumed to clobber memory, but are handled
1013 elsewhere. */
1014 if (! MEM_P (dest))
1015 return;
1017 /* If we are setting a MEM in our list of specially recognized MEMs,
1018 don't mark as killed this time. */
1019 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
1021 if (!find_rtx_in_ldst (dest))
1022 mci->conflict = true;
1023 return;
1026 if (true_dependence (dest, GET_MODE (dest), mci->mem))
1027 mci->conflict = true;
1030 /* Return nonzero if the expression in X (a memory reference) is killed
1031 in block BB before or after the insn with the LUID in UID_LIMIT.
1032 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1033 before UID_LIMIT.
1035 To check the entire block, set UID_LIMIT to max_uid + 1 and
1036 AVAIL_P to 0. */
1038 static int
1039 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1040 int avail_p)
1042 vec<rtx_insn *> list = modify_mem_list[bb->index];
1043 rtx_insn *setter;
1044 unsigned ix;
1046 /* If this is a readonly then we aren't going to be changing it. */
1047 if (MEM_READONLY_P (x))
1048 return 0;
1050 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1052 struct mem_conflict_info mci;
1054 /* Ignore entries in the list that do not apply. */
1055 if ((avail_p
1056 && DF_INSN_LUID (setter) < uid_limit)
1057 || (! avail_p
1058 && DF_INSN_LUID (setter) > uid_limit))
1059 continue;
1061 /* If SETTER is a call everything is clobbered. Note that calls
1062 to pure functions are never put on the list, so we need not
1063 worry about them. */
1064 if (CALL_P (setter))
1065 return 1;
1067 /* SETTER must be an INSN of some kind that sets memory. Call
1068 note_stores to examine each hunk of memory that is modified. */
1069 mci.mem = x;
1070 mci.conflict = false;
1071 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1072 if (mci.conflict)
1073 return 1;
1075 return 0;
1078 /* Return nonzero if the operands of expression X are unchanged from
1079 the start of INSN's basic block up to but not including INSN. */
1081 static int
1082 oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
1084 return oprs_unchanged_p (x, insn, 0);
1087 /* Return nonzero if the operands of expression X are unchanged from
1088 INSN to the end of INSN's basic block. */
1090 static int
1091 oprs_available_p (const_rtx x, const rtx_insn *insn)
1093 return oprs_unchanged_p (x, insn, 1);
1096 /* Hash expression X.
1098 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1099 indicating if a volatile operand is found or if the expression contains
1100 something we don't want to insert in the table. HASH_TABLE_SIZE is
1101 the current size of the hash table to be probed. */
1103 static unsigned int
1104 hash_expr (const_rtx x, machine_mode mode, int *do_not_record_p,
1105 int hash_table_size)
1107 unsigned int hash;
1109 *do_not_record_p = 0;
1111 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1112 return hash % hash_table_size;
1115 /* Return nonzero if exp1 is equivalent to exp2. */
1117 static int
1118 expr_equiv_p (const_rtx x, const_rtx y)
1120 return exp_equiv_p (x, y, 0, true);
1123 /* Insert expression X in INSN in the hash TABLE.
1124 If it is already present, record it as the last occurrence in INSN's
1125 basic block.
1127 MODE is the mode of the value X is being stored into.
1128 It is only used if X is a CONST_INT.
1130 ANTIC_P is nonzero if X is an anticipatable expression.
1131 AVAIL_P is nonzero if X is an available expression.
1133 MAX_DISTANCE is the maximum distance in instructions this expression can
1134 be moved. */
1136 static void
1137 insert_expr_in_table (rtx x, machine_mode mode, rtx_insn *insn,
1138 int antic_p,
1139 int avail_p, int max_distance, struct gcse_hash_table_d *table)
1141 int found, do_not_record_p;
1142 unsigned int hash;
1143 struct gcse_expr *cur_expr, *last_expr = NULL;
1144 struct gcse_occr *antic_occr, *avail_occr;
1146 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1148 /* Do not insert expression in table if it contains volatile operands,
1149 or if hash_expr determines the expression is something we don't want
1150 to or can't handle. */
1151 if (do_not_record_p)
1152 return;
1154 cur_expr = table->table[hash];
1155 found = 0;
1157 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1159 /* If the expression isn't found, save a pointer to the end of
1160 the list. */
1161 last_expr = cur_expr;
1162 cur_expr = cur_expr->next_same_hash;
1165 if (! found)
1167 cur_expr = GOBNEW (struct gcse_expr);
1168 bytes_used += sizeof (struct gcse_expr);
1169 if (table->table[hash] == NULL)
1170 /* This is the first pattern that hashed to this index. */
1171 table->table[hash] = cur_expr;
1172 else
1173 /* Add EXPR to end of this hash chain. */
1174 last_expr->next_same_hash = cur_expr;
1176 /* Set the fields of the expr element. */
1177 cur_expr->expr = x;
1178 cur_expr->bitmap_index = table->n_elems++;
1179 cur_expr->next_same_hash = NULL;
1180 cur_expr->antic_occr = NULL;
1181 cur_expr->avail_occr = NULL;
1182 gcc_assert (max_distance >= 0);
1183 cur_expr->max_distance = max_distance;
1185 else
1186 gcc_assert (cur_expr->max_distance == max_distance);
1188 /* Now record the occurrence(s). */
1189 if (antic_p)
1191 antic_occr = cur_expr->antic_occr;
1193 if (antic_occr
1194 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1195 antic_occr = NULL;
1197 if (antic_occr)
1198 /* Found another instance of the expression in the same basic block.
1199 Prefer the currently recorded one. We want the first one in the
1200 block and the block is scanned from start to end. */
1201 ; /* nothing to do */
1202 else
1204 /* First occurrence of this expression in this basic block. */
1205 antic_occr = GOBNEW (struct gcse_occr);
1206 bytes_used += sizeof (struct gcse_occr);
1207 antic_occr->insn = insn;
1208 antic_occr->next = cur_expr->antic_occr;
1209 antic_occr->deleted_p = 0;
1210 cur_expr->antic_occr = antic_occr;
1214 if (avail_p)
1216 avail_occr = cur_expr->avail_occr;
1218 if (avail_occr
1219 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1221 /* Found another instance of the expression in the same basic block.
1222 Prefer this occurrence to the currently recorded one. We want
1223 the last one in the block and the block is scanned from start
1224 to end. */
1225 avail_occr->insn = insn;
1227 else
1229 /* First occurrence of this expression in this basic block. */
1230 avail_occr = GOBNEW (struct gcse_occr);
1231 bytes_used += sizeof (struct gcse_occr);
1232 avail_occr->insn = insn;
1233 avail_occr->next = cur_expr->avail_occr;
1234 avail_occr->deleted_p = 0;
1235 cur_expr->avail_occr = avail_occr;
1240 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1242 static void
1243 hash_scan_set (rtx set, rtx_insn *insn, struct gcse_hash_table_d *table)
1245 rtx src = SET_SRC (set);
1246 rtx dest = SET_DEST (set);
1247 rtx note;
1249 if (GET_CODE (src) == CALL)
1250 hash_scan_call (src, insn, table);
1252 else if (REG_P (dest))
1254 unsigned int regno = REGNO (dest);
1255 int max_distance = 0;
1257 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1259 This allows us to do a single GCSE pass and still eliminate
1260 redundant constants, addresses or other expressions that are
1261 constructed with multiple instructions.
1263 However, keep the original SRC if INSN is a simple reg-reg move.
1264 In this case, there will almost always be a REG_EQUAL note on the
1265 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1266 for INSN, we miss copy propagation opportunities and we perform the
1267 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1268 do more than one PRE GCSE pass.
1270 Note that this does not impede profitable constant propagations. We
1271 "look through" reg-reg sets in lookup_avail_set. */
1272 note = find_reg_equal_equiv_note (insn);
1273 if (note != 0
1274 && REG_NOTE_KIND (note) == REG_EQUAL
1275 && !REG_P (src)
1276 && want_to_gcse_p (XEXP (note, 0), NULL))
1277 src = XEXP (note, 0), set = gen_rtx_SET (dest, src);
1279 /* Only record sets of pseudo-regs in the hash table. */
1280 if (regno >= FIRST_PSEUDO_REGISTER
1281 /* Don't GCSE something if we can't do a reg/reg copy. */
1282 && can_copy_p (GET_MODE (dest))
1283 /* GCSE commonly inserts instruction after the insn. We can't
1284 do that easily for EH edges so disable GCSE on these for now. */
1285 /* ??? We can now easily create new EH landing pads at the
1286 gimple level, for splitting edges; there's no reason we
1287 can't do the same thing at the rtl level. */
1288 && !can_throw_internal (insn)
1289 /* Is SET_SRC something we want to gcse? */
1290 && want_to_gcse_p (src, &max_distance)
1291 /* Don't CSE a nop. */
1292 && ! set_noop_p (set)
1293 /* Don't GCSE if it has attached REG_EQUIV note.
1294 At this point this only function parameters should have
1295 REG_EQUIV notes and if the argument slot is used somewhere
1296 explicitly, it means address of parameter has been taken,
1297 so we should not extend the lifetime of the pseudo. */
1298 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1300 /* An expression is not anticipatable if its operands are
1301 modified before this insn or if this is not the only SET in
1302 this insn. The latter condition does not have to mean that
1303 SRC itself is not anticipatable, but we just will not be
1304 able to handle code motion of insns with multiple sets. */
1305 int antic_p = oprs_anticipatable_p (src, insn)
1306 && !multiple_sets (insn);
1307 /* An expression is not available if its operands are
1308 subsequently modified, including this insn. It's also not
1309 available if this is a branch, because we can't insert
1310 a set after the branch. */
1311 int avail_p = (oprs_available_p (src, insn)
1312 && ! JUMP_P (insn));
1314 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1315 max_distance, table);
1318 /* In case of store we want to consider the memory value as available in
1319 the REG stored in that memory. This makes it possible to remove
1320 redundant loads from due to stores to the same location. */
1321 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1323 unsigned int regno = REGNO (src);
1324 int max_distance = 0;
1326 /* Only record sets of pseudo-regs in the hash table. */
1327 if (regno >= FIRST_PSEUDO_REGISTER
1328 /* Don't GCSE something if we can't do a reg/reg copy. */
1329 && can_copy_p (GET_MODE (src))
1330 /* GCSE commonly inserts instruction after the insn. We can't
1331 do that easily for EH edges so disable GCSE on these for now. */
1332 && !can_throw_internal (insn)
1333 /* Is SET_DEST something we want to gcse? */
1334 && want_to_gcse_p (dest, &max_distance)
1335 /* Don't CSE a nop. */
1336 && ! set_noop_p (set)
1337 /* Don't GCSE if it has attached REG_EQUIV note.
1338 At this point this only function parameters should have
1339 REG_EQUIV notes and if the argument slot is used somewhere
1340 explicitly, it means address of parameter has been taken,
1341 so we should not extend the lifetime of the pseudo. */
1342 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1343 || ! MEM_P (XEXP (note, 0))))
1345 /* Stores are never anticipatable. */
1346 int antic_p = 0;
1347 /* An expression is not available if its operands are
1348 subsequently modified, including this insn. It's also not
1349 available if this is a branch, because we can't insert
1350 a set after the branch. */
1351 int avail_p = oprs_available_p (dest, insn)
1352 && ! JUMP_P (insn);
1354 /* Record the memory expression (DEST) in the hash table. */
1355 insert_expr_in_table (dest, GET_MODE (dest), insn,
1356 antic_p, avail_p, max_distance, table);
1361 static void
1362 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1363 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1365 /* Currently nothing to do. */
1368 static void
1369 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1370 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1372 /* Currently nothing to do. */
1375 /* Process INSN and add hash table entries as appropriate. */
1377 static void
1378 hash_scan_insn (rtx_insn *insn, struct gcse_hash_table_d *table)
1380 rtx pat = PATTERN (insn);
1381 int i;
1383 /* Pick out the sets of INSN and for other forms of instructions record
1384 what's been modified. */
1386 if (GET_CODE (pat) == SET)
1387 hash_scan_set (pat, insn, table);
1389 else if (GET_CODE (pat) == CLOBBER)
1390 hash_scan_clobber (pat, insn, table);
1392 else if (GET_CODE (pat) == CALL)
1393 hash_scan_call (pat, insn, table);
1395 else if (GET_CODE (pat) == PARALLEL)
1396 for (i = 0; i < XVECLEN (pat, 0); i++)
1398 rtx x = XVECEXP (pat, 0, i);
1400 if (GET_CODE (x) == SET)
1401 hash_scan_set (x, insn, table);
1402 else if (GET_CODE (x) == CLOBBER)
1403 hash_scan_clobber (x, insn, table);
1404 else if (GET_CODE (x) == CALL)
1405 hash_scan_call (x, insn, table);
1409 /* Dump the hash table TABLE to file FILE under the name NAME. */
1411 static void
1412 dump_hash_table (FILE *file, const char *name, struct gcse_hash_table_d *table)
1414 int i;
1415 /* Flattened out table, so it's printed in proper order. */
1416 struct gcse_expr **flat_table;
1417 unsigned int *hash_val;
1418 struct gcse_expr *expr;
1420 flat_table = XCNEWVEC (struct gcse_expr *, table->n_elems);
1421 hash_val = XNEWVEC (unsigned int, table->n_elems);
1423 for (i = 0; i < (int) table->size; i++)
1424 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1426 flat_table[expr->bitmap_index] = expr;
1427 hash_val[expr->bitmap_index] = i;
1430 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1431 name, table->size, table->n_elems);
1433 for (i = 0; i < (int) table->n_elems; i++)
1434 if (flat_table[i] != 0)
1436 expr = flat_table[i];
1437 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1438 expr->bitmap_index, hash_val[i], expr->max_distance);
1439 print_rtl (file, expr->expr);
1440 fprintf (file, "\n");
1443 fprintf (file, "\n");
1445 free (flat_table);
1446 free (hash_val);
1449 /* Record register first/last/block set information for REGNO in INSN.
1451 first_set records the first place in the block where the register
1452 is set and is used to compute "anticipatability".
1454 last_set records the last place in the block where the register
1455 is set and is used to compute "availability".
1457 last_bb records the block for which first_set and last_set are
1458 valid, as a quick test to invalidate them. */
1460 static void
1461 record_last_reg_set_info (rtx_insn *insn, int regno)
1463 struct reg_avail_info *info = &reg_avail_info[regno];
1464 int luid = DF_INSN_LUID (insn);
1466 info->last_set = luid;
1467 if (info->last_bb != current_bb)
1469 info->last_bb = current_bb;
1470 info->first_set = luid;
1474 /* Record memory modification information for INSN. We do not actually care
1475 about the memory location(s) that are set, or even how they are set (consider
1476 a CALL_INSN). We merely need to record which insns modify memory. */
1478 static void
1479 record_last_mem_set_info (rtx_insn *insn)
1481 if (! flag_gcse_lm)
1482 return;
1484 record_last_mem_set_info_common (insn, modify_mem_list,
1485 canon_modify_mem_list,
1486 modify_mem_list_set,
1487 blocks_with_calls);
1490 /* Called from compute_hash_table via note_stores to handle one
1491 SET or CLOBBER in an insn. DATA is really the instruction in which
1492 the SET is taking place. */
1494 static void
1495 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1497 rtx_insn *last_set_insn = (rtx_insn *) data;
1499 if (GET_CODE (dest) == SUBREG)
1500 dest = SUBREG_REG (dest);
1502 if (REG_P (dest))
1503 record_last_reg_set_info (last_set_insn, REGNO (dest));
1504 else if (MEM_P (dest)
1505 /* Ignore pushes, they clobber nothing. */
1506 && ! push_operand (dest, GET_MODE (dest)))
1507 record_last_mem_set_info (last_set_insn);
1510 /* Top level function to create an expression hash table.
1512 Expression entries are placed in the hash table if
1513 - they are of the form (set (pseudo-reg) src),
1514 - src is something we want to perform GCSE on,
1515 - none of the operands are subsequently modified in the block
1517 Currently src must be a pseudo-reg or a const_int.
1519 TABLE is the table computed. */
1521 static void
1522 compute_hash_table_work (struct gcse_hash_table_d *table)
1524 int i;
1526 /* re-Cache any INSN_LIST nodes we have allocated. */
1527 clear_modify_mem_tables ();
1528 /* Some working arrays used to track first and last set in each block. */
1529 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1531 for (i = 0; i < max_reg_num (); ++i)
1532 reg_avail_info[i].last_bb = NULL;
1534 FOR_EACH_BB_FN (current_bb, cfun)
1536 rtx_insn *insn;
1537 unsigned int regno;
1539 /* First pass over the instructions records information used to
1540 determine when registers and memory are first and last set. */
1541 FOR_BB_INSNS (current_bb, insn)
1543 if (!NONDEBUG_INSN_P (insn))
1544 continue;
1546 if (CALL_P (insn))
1548 hard_reg_set_iterator hrsi;
1549 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1550 0, regno, hrsi)
1551 record_last_reg_set_info (insn, regno);
1553 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1554 record_last_mem_set_info (insn);
1557 note_stores (PATTERN (insn), record_last_set_info, insn);
1560 /* The next pass builds the hash table. */
1561 FOR_BB_INSNS (current_bb, insn)
1562 if (NONDEBUG_INSN_P (insn))
1563 hash_scan_insn (insn, table);
1566 free (reg_avail_info);
1567 reg_avail_info = NULL;
1570 /* Allocate space for the set/expr hash TABLE.
1571 It is used to determine the number of buckets to use. */
1573 static void
1574 alloc_hash_table (struct gcse_hash_table_d *table)
1576 int n;
1578 n = get_max_insn_count ();
1580 table->size = n / 4;
1581 if (table->size < 11)
1582 table->size = 11;
1584 /* Attempt to maintain efficient use of hash table.
1585 Making it an odd number is simplest for now.
1586 ??? Later take some measurements. */
1587 table->size |= 1;
1588 n = table->size * sizeof (struct gcse_expr *);
1589 table->table = GNEWVAR (struct gcse_expr *, n);
1592 /* Free things allocated by alloc_hash_table. */
1594 static void
1595 free_hash_table (struct gcse_hash_table_d *table)
1597 free (table->table);
1600 /* Compute the expression hash table TABLE. */
1602 static void
1603 compute_hash_table (struct gcse_hash_table_d *table)
1605 /* Initialize count of number of entries in hash table. */
1606 table->n_elems = 0;
1607 memset (table->table, 0, table->size * sizeof (struct gcse_expr *));
1609 compute_hash_table_work (table);
1612 /* Expression tracking support. */
1614 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1615 static void
1616 clear_modify_mem_tables (void)
1618 unsigned i;
1619 bitmap_iterator bi;
1621 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1623 modify_mem_list[i].release ();
1624 canon_modify_mem_list[i].release ();
1626 bitmap_clear (modify_mem_list_set);
1627 bitmap_clear (blocks_with_calls);
1630 /* Release memory used by modify_mem_list_set. */
1632 static void
1633 free_modify_mem_tables (void)
1635 clear_modify_mem_tables ();
1636 free (modify_mem_list);
1637 free (canon_modify_mem_list);
1638 modify_mem_list = 0;
1639 canon_modify_mem_list = 0;
1642 /* Compute PRE+LCM working variables. */
1644 /* Local properties of expressions. */
1646 /* Nonzero for expressions that are transparent in the block. */
1647 static sbitmap *transp;
1649 /* Nonzero for expressions that are computed (available) in the block. */
1650 static sbitmap *comp;
1652 /* Nonzero for expressions that are locally anticipatable in the block. */
1653 static sbitmap *antloc;
1655 /* Nonzero for expressions where this block is an optimal computation
1656 point. */
1657 static sbitmap *pre_optimal;
1659 /* Nonzero for expressions which are redundant in a particular block. */
1660 static sbitmap *pre_redundant;
1662 /* Nonzero for expressions which should be inserted on a specific edge. */
1663 static sbitmap *pre_insert_map;
1665 /* Nonzero for expressions which should be deleted in a specific block. */
1666 static sbitmap *pre_delete_map;
1668 /* Allocate vars used for PRE analysis. */
1670 static void
1671 alloc_pre_mem (int n_blocks, int n_exprs)
1673 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1674 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1675 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1677 pre_optimal = NULL;
1678 pre_redundant = NULL;
1679 pre_insert_map = NULL;
1680 pre_delete_map = NULL;
1681 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1683 /* pre_insert and pre_delete are allocated later. */
1686 /* Free vars used for PRE analysis. */
1688 static void
1689 free_pre_mem (void)
1691 sbitmap_vector_free (transp);
1692 sbitmap_vector_free (comp);
1694 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1696 if (pre_optimal)
1697 sbitmap_vector_free (pre_optimal);
1698 if (pre_redundant)
1699 sbitmap_vector_free (pre_redundant);
1700 if (pre_insert_map)
1701 sbitmap_vector_free (pre_insert_map);
1702 if (pre_delete_map)
1703 sbitmap_vector_free (pre_delete_map);
1705 transp = comp = NULL;
1706 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1709 /* Remove certain expressions from anticipatable and transparent
1710 sets of basic blocks that have incoming abnormal edge.
1711 For PRE remove potentially trapping expressions to avoid placing
1712 them on abnormal edges. For hoisting remove memory references that
1713 can be clobbered by calls. */
1715 static void
1716 prune_expressions (bool pre_p)
1718 sbitmap prune_exprs;
1719 struct gcse_expr *expr;
1720 unsigned int ui;
1721 basic_block bb;
1723 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
1724 bitmap_clear (prune_exprs);
1725 for (ui = 0; ui < expr_hash_table.size; ui++)
1727 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1729 /* Note potentially trapping expressions. */
1730 if (may_trap_p (expr->expr))
1732 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1733 continue;
1736 if (!pre_p && MEM_P (expr->expr))
1737 /* Note memory references that can be clobbered by a call.
1738 We do not split abnormal edges in hoisting, so would
1739 a memory reference get hoisted along an abnormal edge,
1740 it would be placed /before/ the call. Therefore, only
1741 constant memory references can be hoisted along abnormal
1742 edges. */
1744 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1745 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1746 continue;
1748 if (MEM_READONLY_P (expr->expr)
1749 && !MEM_VOLATILE_P (expr->expr)
1750 && MEM_NOTRAP_P (expr->expr))
1751 /* Constant memory reference, e.g., a PIC address. */
1752 continue;
1754 /* ??? Optimally, we would use interprocedural alias
1755 analysis to determine if this mem is actually killed
1756 by this call. */
1758 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1763 FOR_EACH_BB_FN (bb, cfun)
1765 edge e;
1766 edge_iterator ei;
1768 /* If the current block is the destination of an abnormal edge, we
1769 kill all trapping (for PRE) and memory (for hoist) expressions
1770 because we won't be able to properly place the instruction on
1771 the edge. So make them neither anticipatable nor transparent.
1772 This is fairly conservative.
1774 ??? For hoisting it may be necessary to check for set-and-jump
1775 instructions here, not just for abnormal edges. The general problem
1776 is that when an expression cannot not be placed right at the end of
1777 a basic block we should account for any side-effects of a subsequent
1778 jump instructions that could clobber the expression. It would
1779 be best to implement this check along the lines of
1780 should_hoist_expr_to_dom where the target block is already known
1781 and, hence, there's no need to conservatively prune expressions on
1782 "intermediate" set-and-jump instructions. */
1783 FOR_EACH_EDGE (e, ei, bb->preds)
1784 if ((e->flags & EDGE_ABNORMAL)
1785 && (pre_p || CALL_P (BB_END (e->src))))
1787 bitmap_and_compl (antloc[bb->index],
1788 antloc[bb->index], prune_exprs);
1789 bitmap_and_compl (transp[bb->index],
1790 transp[bb->index], prune_exprs);
1791 break;
1795 sbitmap_free (prune_exprs);
1798 /* It may be necessary to insert a large number of insns on edges to
1799 make the existing occurrences of expressions fully redundant. This
1800 routine examines the set of insertions and deletions and if the ratio
1801 of insertions to deletions is too high for a particular expression, then
1802 the expression is removed from the insertion/deletion sets.
1804 N_ELEMS is the number of elements in the hash table. */
1806 static void
1807 prune_insertions_deletions (int n_elems)
1809 sbitmap_iterator sbi;
1810 sbitmap prune_exprs;
1812 /* We always use I to iterate over blocks/edges and J to iterate over
1813 expressions. */
1814 unsigned int i, j;
1816 /* Counts for the number of times an expression needs to be inserted and
1817 number of times an expression can be removed as a result. */
1818 int *insertions = GCNEWVEC (int, n_elems);
1819 int *deletions = GCNEWVEC (int, n_elems);
1821 /* Set of expressions which require too many insertions relative to
1822 the number of deletions achieved. We will prune these out of the
1823 insertion/deletion sets. */
1824 prune_exprs = sbitmap_alloc (n_elems);
1825 bitmap_clear (prune_exprs);
1827 /* Iterate over the edges counting the number of times each expression
1828 needs to be inserted. */
1829 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1831 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1832 insertions[j]++;
1835 /* Similarly for deletions, but those occur in blocks rather than on
1836 edges. */
1837 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1839 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1840 deletions[j]++;
1843 /* Now that we have accurate counts, iterate over the elements in the
1844 hash table and see if any need too many insertions relative to the
1845 number of evaluations that can be removed. If so, mark them in
1846 PRUNE_EXPRS. */
1847 for (j = 0; j < (unsigned) n_elems; j++)
1848 if (deletions[j]
1849 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1850 bitmap_set_bit (prune_exprs, j);
1852 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
1853 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1855 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1856 bitmap_clear_bit (pre_insert_map[i], j);
1858 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1859 bitmap_clear_bit (pre_delete_map[i], j);
1862 sbitmap_free (prune_exprs);
1863 free (insertions);
1864 free (deletions);
1867 /* Top level routine to do the dataflow analysis needed by PRE. */
1869 static struct edge_list *
1870 compute_pre_data (void)
1872 struct edge_list *edge_list;
1873 basic_block bb;
1875 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1876 prune_expressions (true);
1877 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
1879 /* Compute ae_kill for each basic block using:
1881 ~(TRANSP | COMP)
1884 FOR_EACH_BB_FN (bb, cfun)
1886 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1887 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
1890 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
1891 ae_kill, &pre_insert_map, &pre_delete_map);
1892 sbitmap_vector_free (antloc);
1893 antloc = NULL;
1894 sbitmap_vector_free (ae_kill);
1895 ae_kill = NULL;
1897 prune_insertions_deletions (expr_hash_table.n_elems);
1899 return edge_list;
1902 /* PRE utilities */
1904 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
1905 block BB.
1907 VISITED is a pointer to a working buffer for tracking which BB's have
1908 been visited. It is NULL for the top-level call.
1910 We treat reaching expressions that go through blocks containing the same
1911 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
1912 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
1913 2 as not reaching. The intent is to improve the probability of finding
1914 only one reaching expression and to reduce register lifetimes by picking
1915 the closest such expression. */
1917 static int
1918 pre_expr_reaches_here_p_work (basic_block occr_bb, struct gcse_expr *expr,
1919 basic_block bb, char *visited)
1921 edge pred;
1922 edge_iterator ei;
1924 FOR_EACH_EDGE (pred, ei, bb->preds)
1926 basic_block pred_bb = pred->src;
1928 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1929 /* Has predecessor has already been visited? */
1930 || visited[pred_bb->index])
1931 ;/* Nothing to do. */
1933 /* Does this predecessor generate this expression? */
1934 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
1936 /* Is this the occurrence we're looking for?
1937 Note that there's only one generating occurrence per block
1938 so we just need to check the block number. */
1939 if (occr_bb == pred_bb)
1940 return 1;
1942 visited[pred_bb->index] = 1;
1944 /* Ignore this predecessor if it kills the expression. */
1945 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
1946 visited[pred_bb->index] = 1;
1948 /* Neither gen nor kill. */
1949 else
1951 visited[pred_bb->index] = 1;
1952 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
1953 return 1;
1957 /* All paths have been checked. */
1958 return 0;
1961 /* The wrapper for pre_expr_reaches_here_work that ensures that any
1962 memory allocated for that function is returned. */
1964 static int
1965 pre_expr_reaches_here_p (basic_block occr_bb, struct gcse_expr *expr, basic_block bb)
1967 int rval;
1968 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
1970 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
1972 free (visited);
1973 return rval;
1976 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
1978 static rtx_insn *
1979 process_insert_insn (struct gcse_expr *expr)
1981 rtx reg = expr->reaching_reg;
1982 /* Copy the expression to make sure we don't have any sharing issues. */
1983 rtx exp = copy_rtx (expr->expr);
1984 rtx_insn *pat;
1986 start_sequence ();
1988 /* If the expression is something that's an operand, like a constant,
1989 just copy it to a register. */
1990 if (general_operand (exp, GET_MODE (reg)))
1991 emit_move_insn (reg, exp);
1993 /* Otherwise, make a new insn to compute this expression and make sure the
1994 insn will be recognized (this also adds any needed CLOBBERs). */
1995 else
1997 rtx_insn *insn = emit_insn (gen_rtx_SET (reg, exp));
1999 if (insn_invalid_p (insn, false))
2000 gcc_unreachable ();
2003 pat = get_insns ();
2004 end_sequence ();
2006 return pat;
2009 /* Add EXPR to the end of basic block BB.
2011 This is used by both the PRE and code hoisting. */
2013 static void
2014 insert_insn_end_basic_block (struct gcse_expr *expr, basic_block bb)
2016 rtx_insn *insn = BB_END (bb);
2017 rtx_insn *new_insn;
2018 rtx reg = expr->reaching_reg;
2019 int regno = REGNO (reg);
2020 rtx_insn *pat, *pat_end;
2022 pat = process_insert_insn (expr);
2023 gcc_assert (pat && INSN_P (pat));
2025 pat_end = pat;
2026 while (NEXT_INSN (pat_end) != NULL_RTX)
2027 pat_end = NEXT_INSN (pat_end);
2029 /* If the last insn is a jump, insert EXPR in front [taking care to
2030 handle cc0, etc. properly]. Similarly we need to care trapping
2031 instructions in presence of non-call exceptions. */
2033 if (JUMP_P (insn)
2034 || (NONJUMP_INSN_P (insn)
2035 && (!single_succ_p (bb)
2036 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2038 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2039 if cc0 isn't set. */
2040 if (HAVE_cc0)
2042 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2043 if (note)
2044 insn = safe_as_a <rtx_insn *> (XEXP (note, 0));
2045 else
2047 rtx_insn *maybe_cc0_setter = prev_nonnote_insn (insn);
2048 if (maybe_cc0_setter
2049 && INSN_P (maybe_cc0_setter)
2050 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2051 insn = maybe_cc0_setter;
2055 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2056 new_insn = emit_insn_before_noloc (pat, insn, bb);
2059 /* Likewise if the last insn is a call, as will happen in the presence
2060 of exception handling. */
2061 else if (CALL_P (insn)
2062 && (!single_succ_p (bb)
2063 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2065 /* Keeping in mind targets with small register classes and parameters
2066 in registers, we search backward and place the instructions before
2067 the first parameter is loaded. Do this for everyone for consistency
2068 and a presumption that we'll get better code elsewhere as well. */
2070 /* Since different machines initialize their parameter registers
2071 in different orders, assume nothing. Collect the set of all
2072 parameter registers. */
2073 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2075 /* If we found all the parameter loads, then we want to insert
2076 before the first parameter load.
2078 If we did not find all the parameter loads, then we might have
2079 stopped on the head of the block, which could be a CODE_LABEL.
2080 If we inserted before the CODE_LABEL, then we would be putting
2081 the insn in the wrong basic block. In that case, put the insn
2082 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2083 while (LABEL_P (insn)
2084 || NOTE_INSN_BASIC_BLOCK_P (insn))
2085 insn = NEXT_INSN (insn);
2087 new_insn = emit_insn_before_noloc (pat, insn, bb);
2089 else
2090 new_insn = emit_insn_after_noloc (pat, insn, bb);
2092 while (1)
2094 if (INSN_P (pat))
2095 add_label_notes (PATTERN (pat), new_insn);
2096 if (pat == pat_end)
2097 break;
2098 pat = NEXT_INSN (pat);
2101 gcse_create_count++;
2103 if (dump_file)
2105 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2106 bb->index, INSN_UID (new_insn));
2107 fprintf (dump_file, "copying expression %d to reg %d\n",
2108 expr->bitmap_index, regno);
2112 /* Insert partially redundant expressions on edges in the CFG to make
2113 the expressions fully redundant. */
2115 static int
2116 pre_edge_insert (struct edge_list *edge_list, struct gcse_expr **index_map)
2118 int e, i, j, num_edges, set_size, did_insert = 0;
2119 sbitmap *inserted;
2121 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2122 if it reaches any of the deleted expressions. */
2124 set_size = pre_insert_map[0]->size;
2125 num_edges = NUM_EDGES (edge_list);
2126 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2127 bitmap_vector_clear (inserted, num_edges);
2129 for (e = 0; e < num_edges; e++)
2131 int indx;
2132 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2134 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2136 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2138 for (j = indx;
2139 insert && j < (int) expr_hash_table.n_elems;
2140 j++, insert >>= 1)
2141 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2143 struct gcse_expr *expr = index_map[j];
2144 struct gcse_occr *occr;
2146 /* Now look at each deleted occurrence of this expression. */
2147 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2149 if (! occr->deleted_p)
2150 continue;
2152 /* Insert this expression on this edge if it would
2153 reach the deleted occurrence in BB. */
2154 if (!bitmap_bit_p (inserted[e], j))
2156 rtx_insn *insn;
2157 edge eg = INDEX_EDGE (edge_list, e);
2159 /* We can't insert anything on an abnormal and
2160 critical edge, so we insert the insn at the end of
2161 the previous block. There are several alternatives
2162 detailed in Morgans book P277 (sec 10.5) for
2163 handling this situation. This one is easiest for
2164 now. */
2166 if (eg->flags & EDGE_ABNORMAL)
2167 insert_insn_end_basic_block (index_map[j], bb);
2168 else
2170 insn = process_insert_insn (index_map[j]);
2171 insert_insn_on_edge (insn, eg);
2174 if (dump_file)
2176 fprintf (dump_file, "PRE: edge (%d,%d), ",
2177 bb->index,
2178 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2179 fprintf (dump_file, "copy expression %d\n",
2180 expr->bitmap_index);
2183 update_ld_motion_stores (expr);
2184 bitmap_set_bit (inserted[e], j);
2185 did_insert = 1;
2186 gcse_create_count++;
2193 sbitmap_vector_free (inserted);
2194 return did_insert;
2197 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2198 Given "old_reg <- expr" (INSN), instead of adding after it
2199 reaching_reg <- old_reg
2200 it's better to do the following:
2201 reaching_reg <- expr
2202 old_reg <- reaching_reg
2203 because this way copy propagation can discover additional PRE
2204 opportunities. But if this fails, we try the old way.
2205 When "expr" is a store, i.e.
2206 given "MEM <- old_reg", instead of adding after it
2207 reaching_reg <- old_reg
2208 it's better to add it before as follows:
2209 reaching_reg <- old_reg
2210 MEM <- reaching_reg. */
2212 static void
2213 pre_insert_copy_insn (struct gcse_expr *expr, rtx_insn *insn)
2215 rtx reg = expr->reaching_reg;
2216 int regno = REGNO (reg);
2217 int indx = expr->bitmap_index;
2218 rtx pat = PATTERN (insn);
2219 rtx set, first_set;
2220 rtx_insn *new_insn;
2221 rtx old_reg;
2222 int i;
2224 /* This block matches the logic in hash_scan_insn. */
2225 switch (GET_CODE (pat))
2227 case SET:
2228 set = pat;
2229 break;
2231 case PARALLEL:
2232 /* Search through the parallel looking for the set whose
2233 source was the expression that we're interested in. */
2234 first_set = NULL_RTX;
2235 set = NULL_RTX;
2236 for (i = 0; i < XVECLEN (pat, 0); i++)
2238 rtx x = XVECEXP (pat, 0, i);
2239 if (GET_CODE (x) == SET)
2241 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2242 may not find an equivalent expression, but in this
2243 case the PARALLEL will have a single set. */
2244 if (first_set == NULL_RTX)
2245 first_set = x;
2246 if (expr_equiv_p (SET_SRC (x), expr->expr))
2248 set = x;
2249 break;
2254 gcc_assert (first_set);
2255 if (set == NULL_RTX)
2256 set = first_set;
2257 break;
2259 default:
2260 gcc_unreachable ();
2263 if (REG_P (SET_DEST (set)))
2265 old_reg = SET_DEST (set);
2266 /* Check if we can modify the set destination in the original insn. */
2267 if (validate_change (insn, &SET_DEST (set), reg, 0))
2269 new_insn = gen_move_insn (old_reg, reg);
2270 new_insn = emit_insn_after (new_insn, insn);
2272 else
2274 new_insn = gen_move_insn (reg, old_reg);
2275 new_insn = emit_insn_after (new_insn, insn);
2278 else /* This is possible only in case of a store to memory. */
2280 old_reg = SET_SRC (set);
2281 new_insn = gen_move_insn (reg, old_reg);
2283 /* Check if we can modify the set source in the original insn. */
2284 if (validate_change (insn, &SET_SRC (set), reg, 0))
2285 new_insn = emit_insn_before (new_insn, insn);
2286 else
2287 new_insn = emit_insn_after (new_insn, insn);
2290 gcse_create_count++;
2292 if (dump_file)
2293 fprintf (dump_file,
2294 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2295 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2296 INSN_UID (insn), regno);
2299 /* Copy available expressions that reach the redundant expression
2300 to `reaching_reg'. */
2302 static void
2303 pre_insert_copies (void)
2305 unsigned int i, added_copy;
2306 struct gcse_expr *expr;
2307 struct gcse_occr *occr;
2308 struct gcse_occr *avail;
2310 /* For each available expression in the table, copy the result to
2311 `reaching_reg' if the expression reaches a deleted one.
2313 ??? The current algorithm is rather brute force.
2314 Need to do some profiling. */
2316 for (i = 0; i < expr_hash_table.size; i++)
2317 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2319 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2320 we don't want to insert a copy here because the expression may not
2321 really be redundant. So only insert an insn if the expression was
2322 deleted. This test also avoids further processing if the
2323 expression wasn't deleted anywhere. */
2324 if (expr->reaching_reg == NULL)
2325 continue;
2327 /* Set when we add a copy for that expression. */
2328 added_copy = 0;
2330 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2332 if (! occr->deleted_p)
2333 continue;
2335 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2337 rtx_insn *insn = avail->insn;
2339 /* No need to handle this one if handled already. */
2340 if (avail->copied_p)
2341 continue;
2343 /* Don't handle this one if it's a redundant one. */
2344 if (insn->deleted ())
2345 continue;
2347 /* Or if the expression doesn't reach the deleted one. */
2348 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2349 expr,
2350 BLOCK_FOR_INSN (occr->insn)))
2351 continue;
2353 added_copy = 1;
2355 /* Copy the result of avail to reaching_reg. */
2356 pre_insert_copy_insn (expr, insn);
2357 avail->copied_p = 1;
2361 if (added_copy)
2362 update_ld_motion_stores (expr);
2366 struct set_data
2368 rtx_insn *insn;
2369 const_rtx set;
2370 int nsets;
2373 /* Increment number of sets and record set in DATA. */
2375 static void
2376 record_set_data (rtx dest, const_rtx set, void *data)
2378 struct set_data *s = (struct set_data *)data;
2380 if (GET_CODE (set) == SET)
2382 /* We allow insns having multiple sets, where all but one are
2383 dead as single set insns. In the common case only a single
2384 set is present, so we want to avoid checking for REG_UNUSED
2385 notes unless necessary. */
2386 if (s->nsets == 1
2387 && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2388 && !side_effects_p (s->set))
2389 s->nsets = 0;
2391 if (!s->nsets)
2393 /* Record this set. */
2394 s->nsets += 1;
2395 s->set = set;
2397 else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2398 || side_effects_p (set))
2399 s->nsets += 1;
2403 static const_rtx
2404 single_set_gcse (rtx_insn *insn)
2406 struct set_data s;
2407 rtx pattern;
2409 gcc_assert (INSN_P (insn));
2411 /* Optimize common case. */
2412 pattern = PATTERN (insn);
2413 if (GET_CODE (pattern) == SET)
2414 return pattern;
2416 s.insn = insn;
2417 s.nsets = 0;
2418 note_stores (pattern, record_set_data, &s);
2420 /* Considered invariant insns have exactly one set. */
2421 gcc_assert (s.nsets == 1);
2422 return s.set;
2425 /* Emit move from SRC to DEST noting the equivalence with expression computed
2426 in INSN. */
2428 static rtx_insn *
2429 gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
2431 rtx_insn *new_rtx;
2432 const_rtx set = single_set_gcse (insn);
2433 rtx set2;
2434 rtx note;
2435 rtx eqv = NULL_RTX;
2437 /* This should never fail since we're creating a reg->reg copy
2438 we've verified to be valid. */
2440 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2442 /* Note the equivalence for local CSE pass. Take the note from the old
2443 set if there was one. Otherwise record the SET_SRC from the old set
2444 unless DEST is also an operand of the SET_SRC. */
2445 set2 = single_set (new_rtx);
2446 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2447 return new_rtx;
2448 if ((note = find_reg_equal_equiv_note (insn)))
2449 eqv = XEXP (note, 0);
2450 else if (! REG_P (dest)
2451 || ! reg_mentioned_p (dest, SET_SRC (set)))
2452 eqv = SET_SRC (set);
2454 if (eqv != NULL_RTX)
2455 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2457 return new_rtx;
2460 /* Delete redundant computations.
2461 Deletion is done by changing the insn to copy the `reaching_reg' of
2462 the expression into the result of the SET. It is left to later passes
2463 to propagate the copy or eliminate it.
2465 Return nonzero if a change is made. */
2467 static int
2468 pre_delete (void)
2470 unsigned int i;
2471 int changed;
2472 struct gcse_expr *expr;
2473 struct gcse_occr *occr;
2475 changed = 0;
2476 for (i = 0; i < expr_hash_table.size; i++)
2477 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2479 int indx = expr->bitmap_index;
2481 /* We only need to search antic_occr since we require ANTLOC != 0. */
2482 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2484 rtx_insn *insn = occr->insn;
2485 rtx set;
2486 basic_block bb = BLOCK_FOR_INSN (insn);
2488 /* We only delete insns that have a single_set. */
2489 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2490 && (set = single_set (insn)) != 0
2491 && dbg_cnt (pre_insn))
2493 /* Create a pseudo-reg to store the result of reaching
2494 expressions into. Get the mode for the new pseudo from
2495 the mode of the original destination pseudo. */
2496 if (expr->reaching_reg == NULL)
2497 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2499 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2500 delete_insn (insn);
2501 occr->deleted_p = 1;
2502 changed = 1;
2503 gcse_subst_count++;
2505 if (dump_file)
2507 fprintf (dump_file,
2508 "PRE: redundant insn %d (expression %d) in ",
2509 INSN_UID (insn), indx);
2510 fprintf (dump_file, "bb %d, reaching reg is %d\n",
2511 bb->index, REGNO (expr->reaching_reg));
2517 return changed;
2520 /* Perform GCSE optimizations using PRE.
2521 This is called by one_pre_gcse_pass after all the dataflow analysis
2522 has been done.
2524 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2525 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2526 Compiler Design and Implementation.
2528 ??? A new pseudo reg is created to hold the reaching expression. The nice
2529 thing about the classical approach is that it would try to use an existing
2530 reg. If the register can't be adequately optimized [i.e. we introduce
2531 reload problems], one could add a pass here to propagate the new register
2532 through the block.
2534 ??? We don't handle single sets in PARALLELs because we're [currently] not
2535 able to copy the rest of the parallel when we insert copies to create full
2536 redundancies from partial redundancies. However, there's no reason why we
2537 can't handle PARALLELs in the cases where there are no partial
2538 redundancies. */
2540 static int
2541 pre_gcse (struct edge_list *edge_list)
2543 unsigned int i;
2544 int did_insert, changed;
2545 struct gcse_expr **index_map;
2546 struct gcse_expr *expr;
2548 /* Compute a mapping from expression number (`bitmap_index') to
2549 hash table entry. */
2551 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
2552 for (i = 0; i < expr_hash_table.size; i++)
2553 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2554 index_map[expr->bitmap_index] = expr;
2556 /* Delete the redundant insns first so that
2557 - we know what register to use for the new insns and for the other
2558 ones with reaching expressions
2559 - we know which insns are redundant when we go to create copies */
2561 changed = pre_delete ();
2562 did_insert = pre_edge_insert (edge_list, index_map);
2564 /* In other places with reaching expressions, copy the expression to the
2565 specially allocated pseudo-reg that reaches the redundant expr. */
2566 pre_insert_copies ();
2567 if (did_insert)
2569 commit_edge_insertions ();
2570 changed = 1;
2573 free (index_map);
2574 return changed;
2577 /* Top level routine to perform one PRE GCSE pass.
2579 Return nonzero if a change was made. */
2581 static int
2582 one_pre_gcse_pass (void)
2584 int changed = 0;
2586 gcse_subst_count = 0;
2587 gcse_create_count = 0;
2589 /* Return if there's nothing to do, or it is too expensive. */
2590 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
2591 || is_too_expensive (_("PRE disabled")))
2592 return 0;
2594 /* We need alias. */
2595 init_alias_analysis ();
2597 bytes_used = 0;
2598 gcc_obstack_init (&gcse_obstack);
2599 alloc_gcse_mem ();
2601 alloc_hash_table (&expr_hash_table);
2602 add_noreturn_fake_exit_edges ();
2603 if (flag_gcse_lm)
2604 compute_ld_motion_mems ();
2606 compute_hash_table (&expr_hash_table);
2607 if (flag_gcse_lm)
2608 trim_ld_motion_mems ();
2609 if (dump_file)
2610 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2612 if (expr_hash_table.n_elems > 0)
2614 struct edge_list *edge_list;
2615 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
2616 edge_list = compute_pre_data ();
2617 changed |= pre_gcse (edge_list);
2618 free_edge_list (edge_list);
2619 free_pre_mem ();
2622 if (flag_gcse_lm)
2623 free_ld_motion_mems ();
2624 remove_fake_exit_edges ();
2625 free_hash_table (&expr_hash_table);
2627 free_gcse_mem ();
2628 obstack_free (&gcse_obstack, NULL);
2630 /* We are finished with alias. */
2631 end_alias_analysis ();
2633 if (dump_file)
2635 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2636 current_function_name (), n_basic_blocks_for_fn (cfun),
2637 bytes_used);
2638 fprintf (dump_file, "%d substs, %d insns created\n",
2639 gcse_subst_count, gcse_create_count);
2642 return changed;
2645 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2646 to INSN. If such notes are added to an insn which references a
2647 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2648 that note, because the following loop optimization pass requires
2649 them. */
2651 /* ??? If there was a jump optimization pass after gcse and before loop,
2652 then we would not need to do this here, because jump would add the
2653 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2655 static void
2656 add_label_notes (rtx x, rtx_insn *insn)
2658 enum rtx_code code = GET_CODE (x);
2659 int i, j;
2660 const char *fmt;
2662 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2664 /* This code used to ignore labels that referred to dispatch tables to
2665 avoid flow generating (slightly) worse code.
2667 We no longer ignore such label references (see LABEL_REF handling in
2668 mark_jump_label for additional information). */
2670 /* There's no reason for current users to emit jump-insns with
2671 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2672 notes. */
2673 gcc_assert (!JUMP_P (insn));
2674 add_reg_note (insn, REG_LABEL_OPERAND, LABEL_REF_LABEL (x));
2676 if (LABEL_P (LABEL_REF_LABEL (x)))
2677 LABEL_NUSES (LABEL_REF_LABEL (x))++;
2679 return;
2682 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2684 if (fmt[i] == 'e')
2685 add_label_notes (XEXP (x, i), insn);
2686 else if (fmt[i] == 'E')
2687 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2688 add_label_notes (XVECEXP (x, i, j), insn);
2692 /* Code Hoisting variables and subroutines. */
2694 /* Very busy expressions. */
2695 static sbitmap *hoist_vbein;
2696 static sbitmap *hoist_vbeout;
2698 /* ??? We could compute post dominators and run this algorithm in
2699 reverse to perform tail merging, doing so would probably be
2700 more effective than the tail merging code in jump.c.
2702 It's unclear if tail merging could be run in parallel with
2703 code hoisting. It would be nice. */
2705 /* Allocate vars used for code hoisting analysis. */
2707 static void
2708 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2710 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2711 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2712 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2714 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2715 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2718 /* Free vars used for code hoisting analysis. */
2720 static void
2721 free_code_hoist_mem (void)
2723 sbitmap_vector_free (antloc);
2724 sbitmap_vector_free (transp);
2725 sbitmap_vector_free (comp);
2727 sbitmap_vector_free (hoist_vbein);
2728 sbitmap_vector_free (hoist_vbeout);
2730 free_dominance_info (CDI_DOMINATORS);
2733 /* Compute the very busy expressions at entry/exit from each block.
2735 An expression is very busy if all paths from a given point
2736 compute the expression. */
2738 static void
2739 compute_code_hoist_vbeinout (void)
2741 int changed, passes;
2742 basic_block bb;
2744 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2745 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
2747 passes = 0;
2748 changed = 1;
2750 while (changed)
2752 changed = 0;
2754 /* We scan the blocks in the reverse order to speed up
2755 the convergence. */
2756 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2758 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2760 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2761 hoist_vbein, bb);
2763 /* Include expressions in VBEout that are calculated
2764 in BB and available at its end. */
2765 bitmap_ior (hoist_vbeout[bb->index],
2766 hoist_vbeout[bb->index], comp[bb->index]);
2769 changed |= bitmap_or_and (hoist_vbein[bb->index],
2770 antloc[bb->index],
2771 hoist_vbeout[bb->index],
2772 transp[bb->index]);
2775 passes++;
2778 if (dump_file)
2780 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2782 FOR_EACH_BB_FN (bb, cfun)
2784 fprintf (dump_file, "vbein (%d): ", bb->index);
2785 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2786 fprintf (dump_file, "vbeout(%d): ", bb->index);
2787 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2792 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2794 static void
2795 compute_code_hoist_data (void)
2797 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2798 prune_expressions (false);
2799 compute_code_hoist_vbeinout ();
2800 calculate_dominance_info (CDI_DOMINATORS);
2801 if (dump_file)
2802 fprintf (dump_file, "\n");
2805 /* Update register pressure for BB when hoisting an expression from
2806 instruction FROM, if live ranges of inputs are shrunk. Also
2807 maintain live_in information if live range of register referred
2808 in FROM is shrunk.
2810 Return 0 if register pressure doesn't change, otherwise return
2811 the number by which register pressure is decreased.
2813 NOTE: Register pressure won't be increased in this function. */
2815 static int
2816 update_bb_reg_pressure (basic_block bb, rtx_insn *from)
2818 rtx dreg;
2819 rtx_insn *insn;
2820 basic_block succ_bb;
2821 df_ref use, op_ref;
2822 edge succ;
2823 edge_iterator ei;
2824 int decreased_pressure = 0;
2825 int nregs;
2826 enum reg_class pressure_class;
2828 FOR_EACH_INSN_USE (use, from)
2830 dreg = DF_REF_REAL_REG (use);
2831 /* The live range of register is shrunk only if it isn't:
2832 1. referred on any path from the end of this block to EXIT, or
2833 2. referred by insns other than FROM in this block. */
2834 FOR_EACH_EDGE (succ, ei, bb->succs)
2836 succ_bb = succ->dest;
2837 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2838 continue;
2840 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2841 break;
2843 if (succ != NULL)
2844 continue;
2846 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2847 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2849 if (!DF_REF_INSN_INFO (op_ref))
2850 continue;
2852 insn = DF_REF_INSN (op_ref);
2853 if (BLOCK_FOR_INSN (insn) == bb
2854 && NONDEBUG_INSN_P (insn) && insn != from)
2855 break;
2858 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2859 /* Decrease register pressure and update live_in information for
2860 this block. */
2861 if (!op_ref && pressure_class != NO_REGS)
2863 decreased_pressure += nregs;
2864 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2865 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2868 return decreased_pressure;
2871 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2872 flow graph, if it can reach BB unimpared. Stop the search if the
2873 expression would need to be moved more than DISTANCE instructions.
2875 DISTANCE is the number of instructions through which EXPR can be
2876 hoisted up in flow graph.
2878 BB_SIZE points to an array which contains the number of instructions
2879 for each basic block.
2881 PRESSURE_CLASS and NREGS are register class and number of hard registers
2882 for storing EXPR.
2884 HOISTED_BBS points to a bitmap indicating basic blocks through which
2885 EXPR is hoisted.
2887 FROM is the instruction from which EXPR is hoisted.
2889 It's unclear exactly what Muchnick meant by "unimpared". It seems
2890 to me that the expression must either be computed or transparent in
2891 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2892 would allow the expression to be hoisted out of loops, even if
2893 the expression wasn't a loop invariant.
2895 Contrast this to reachability for PRE where an expression is
2896 considered reachable if *any* path reaches instead of *all*
2897 paths. */
2899 static int
2900 should_hoist_expr_to_dom (basic_block expr_bb, struct gcse_expr *expr,
2901 basic_block bb, sbitmap visited, int distance,
2902 int *bb_size, enum reg_class pressure_class,
2903 int *nregs, bitmap hoisted_bbs, rtx_insn *from)
2905 unsigned int i;
2906 edge pred;
2907 edge_iterator ei;
2908 sbitmap_iterator sbi;
2909 int visited_allocated_locally = 0;
2910 int decreased_pressure = 0;
2912 if (flag_ira_hoist_pressure)
2914 /* Record old information of basic block BB when it is visited
2915 at the first time. */
2916 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2918 struct bb_data *data = BB_DATA (bb);
2919 bitmap_copy (data->backup, data->live_in);
2920 data->old_pressure = data->max_reg_pressure[pressure_class];
2922 decreased_pressure = update_bb_reg_pressure (bb, from);
2924 /* Terminate the search if distance, for which EXPR is allowed to move,
2925 is exhausted. */
2926 if (distance > 0)
2928 if (flag_ira_hoist_pressure)
2930 /* Prefer to hoist EXPR if register pressure is decreased. */
2931 if (decreased_pressure > *nregs)
2932 distance += bb_size[bb->index];
2933 /* Let EXPR be hoisted through basic block at no cost if one
2934 of following conditions is satisfied:
2936 1. The basic block has low register pressure.
2937 2. Register pressure won't be increases after hoisting EXPR.
2939 Constant expressions is handled conservatively, because
2940 hoisting constant expression aggressively results in worse
2941 code. This decision is made by the observation of CSiBE
2942 on ARM target, while it has no obvious effect on other
2943 targets like x86, x86_64, mips and powerpc. */
2944 else if (CONST_INT_P (expr->expr)
2945 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2946 >= ira_class_hard_regs_num[pressure_class]
2947 && decreased_pressure < *nregs))
2948 distance -= bb_size[bb->index];
2950 else
2951 distance -= bb_size[bb->index];
2953 if (distance <= 0)
2954 return 0;
2956 else
2957 gcc_assert (distance == 0);
2959 if (visited == NULL)
2961 visited_allocated_locally = 1;
2962 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
2963 bitmap_clear (visited);
2966 FOR_EACH_EDGE (pred, ei, bb->preds)
2968 basic_block pred_bb = pred->src;
2970 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2971 break;
2972 else if (pred_bb == expr_bb)
2973 continue;
2974 else if (bitmap_bit_p (visited, pred_bb->index))
2975 continue;
2976 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2977 break;
2978 /* Not killed. */
2979 else
2981 bitmap_set_bit (visited, pred_bb->index);
2982 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
2983 visited, distance, bb_size,
2984 pressure_class, nregs,
2985 hoisted_bbs, from))
2986 break;
2989 if (visited_allocated_locally)
2991 /* If EXPR can be hoisted to expr_bb, record basic blocks through
2992 which EXPR is hoisted in hoisted_bbs. */
2993 if (flag_ira_hoist_pressure && !pred)
2995 /* Record the basic block from which EXPR is hoisted. */
2996 bitmap_set_bit (visited, bb->index);
2997 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
2998 bitmap_set_bit (hoisted_bbs, i);
3000 sbitmap_free (visited);
3003 return (pred == NULL);
3006 /* Find occurrence in BB. */
3008 static struct gcse_occr *
3009 find_occr_in_bb (struct gcse_occr *occr, basic_block bb)
3011 /* Find the right occurrence of this expression. */
3012 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3013 occr = occr->next;
3015 return occr;
3018 /* Actually perform code hoisting.
3020 The code hoisting pass can hoist multiple computations of the same
3021 expression along dominated path to a dominating basic block, like
3022 from b2/b3 to b1 as depicted below:
3024 b1 ------
3025 /\ |
3026 / \ |
3027 bx by distance
3028 / \ |
3029 / \ |
3030 b2 b3 ------
3032 Unfortunately code hoisting generally extends the live range of an
3033 output pseudo register, which increases register pressure and hurts
3034 register allocation. To address this issue, an attribute MAX_DISTANCE
3035 is computed and attached to each expression. The attribute is computed
3036 from rtx cost of the corresponding expression and it's used to control
3037 how long the expression can be hoisted up in flow graph. As the
3038 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3039 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3040 register pressure if live ranges of inputs are shrunk.
3042 Option "-fira-hoist-pressure" implements register pressure directed
3043 hoist based on upper method. The rationale is:
3044 1. Calculate register pressure for each basic block by reusing IRA
3045 facility.
3046 2. When expression is hoisted through one basic block, GCC checks
3047 the change of live ranges for inputs/output. The basic block's
3048 register pressure will be increased because of extended live
3049 range of output. However, register pressure will be decreased
3050 if the live ranges of inputs are shrunk.
3051 3. After knowing how hoisting affects register pressure, GCC prefers
3052 to hoist the expression if it can decrease register pressure, by
3053 increasing DISTANCE of the corresponding expression.
3054 4. If hoisting the expression increases register pressure, GCC checks
3055 register pressure of the basic block and decrease DISTANCE only if
3056 the register pressure is high. In other words, expression will be
3057 hoisted through at no cost if the basic block has low register
3058 pressure.
3059 5. Update register pressure information for basic blocks through
3060 which expression is hoisted. */
3062 static int
3063 hoist_code (void)
3065 basic_block bb, dominated;
3066 vec<basic_block> dom_tree_walk;
3067 unsigned int dom_tree_walk_index;
3068 vec<basic_block> domby;
3069 unsigned int i, j, k;
3070 struct gcse_expr **index_map;
3071 struct gcse_expr *expr;
3072 int *to_bb_head;
3073 int *bb_size;
3074 int changed = 0;
3075 struct bb_data *data;
3076 /* Basic blocks that have occurrences reachable from BB. */
3077 bitmap from_bbs;
3078 /* Basic blocks through which expr is hoisted. */
3079 bitmap hoisted_bbs = NULL;
3080 bitmap_iterator bi;
3082 /* Compute a mapping from expression number (`bitmap_index') to
3083 hash table entry. */
3085 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
3086 for (i = 0; i < expr_hash_table.size; i++)
3087 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3088 index_map[expr->bitmap_index] = expr;
3090 /* Calculate sizes of basic blocks and note how far
3091 each instruction is from the start of its block. We then use this
3092 data to restrict distance an expression can travel. */
3094 to_bb_head = XCNEWVEC (int, get_max_uid ());
3095 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3097 FOR_EACH_BB_FN (bb, cfun)
3099 rtx_insn *insn;
3100 int to_head;
3102 to_head = 0;
3103 FOR_BB_INSNS (bb, insn)
3105 /* Don't count debug instructions to avoid them affecting
3106 decision choices. */
3107 if (NONDEBUG_INSN_P (insn))
3108 to_bb_head[INSN_UID (insn)] = to_head++;
3111 bb_size[bb->index] = to_head;
3114 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3115 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3116 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
3118 from_bbs = BITMAP_ALLOC (NULL);
3119 if (flag_ira_hoist_pressure)
3120 hoisted_bbs = BITMAP_ALLOC (NULL);
3122 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3123 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
3125 /* Walk over each basic block looking for potentially hoistable
3126 expressions, nothing gets hoisted from the entry block. */
3127 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3129 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3131 if (domby.length () == 0)
3132 continue;
3134 /* Examine each expression that is very busy at the exit of this
3135 block. These are the potentially hoistable expressions. */
3136 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3138 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3140 int nregs = 0;
3141 enum reg_class pressure_class = NO_REGS;
3142 /* Current expression. */
3143 struct gcse_expr *expr = index_map[i];
3144 /* Number of occurrences of EXPR that can be hoisted to BB. */
3145 int hoistable = 0;
3146 /* Occurrences reachable from BB. */
3147 vec<occr_t> occrs_to_hoist = vNULL;
3148 /* We want to insert the expression into BB only once, so
3149 note when we've inserted it. */
3150 int insn_inserted_p;
3151 occr_t occr;
3153 /* If an expression is computed in BB and is available at end of
3154 BB, hoist all occurrences dominated by BB to BB. */
3155 if (bitmap_bit_p (comp[bb->index], i))
3157 occr = find_occr_in_bb (expr->antic_occr, bb);
3159 if (occr)
3161 /* An occurrence might've been already deleted
3162 while processing a dominator of BB. */
3163 if (!occr->deleted_p)
3165 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3166 hoistable++;
3169 else
3170 hoistable++;
3173 /* We've found a potentially hoistable expression, now
3174 we look at every block BB dominates to see if it
3175 computes the expression. */
3176 FOR_EACH_VEC_ELT (domby, j, dominated)
3178 int max_distance;
3180 /* Ignore self dominance. */
3181 if (bb == dominated)
3182 continue;
3183 /* We've found a dominated block, now see if it computes
3184 the busy expression and whether or not moving that
3185 expression to the "beginning" of that block is safe. */
3186 if (!bitmap_bit_p (antloc[dominated->index], i))
3187 continue;
3189 occr = find_occr_in_bb (expr->antic_occr, dominated);
3190 gcc_assert (occr);
3192 /* An occurrence might've been already deleted
3193 while processing a dominator of BB. */
3194 if (occr->deleted_p)
3195 continue;
3196 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3198 max_distance = expr->max_distance;
3199 if (max_distance > 0)
3200 /* Adjust MAX_DISTANCE to account for the fact that
3201 OCCR won't have to travel all of DOMINATED, but
3202 only part of it. */
3203 max_distance += (bb_size[dominated->index]
3204 - to_bb_head[INSN_UID (occr->insn)]);
3206 pressure_class = get_pressure_class_and_nregs (occr->insn,
3207 &nregs);
3209 /* Note if the expression should be hoisted from the dominated
3210 block to BB if it can reach DOMINATED unimpared.
3212 Keep track of how many times this expression is hoistable
3213 from a dominated block into BB. */
3214 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3215 max_distance, bb_size,
3216 pressure_class, &nregs,
3217 hoisted_bbs, occr->insn))
3219 hoistable++;
3220 occrs_to_hoist.safe_push (occr);
3221 bitmap_set_bit (from_bbs, dominated->index);
3225 /* If we found more than one hoistable occurrence of this
3226 expression, then note it in the vector of expressions to
3227 hoist. It makes no sense to hoist things which are computed
3228 in only one BB, and doing so tends to pessimize register
3229 allocation. One could increase this value to try harder
3230 to avoid any possible code expansion due to register
3231 allocation issues; however experiments have shown that
3232 the vast majority of hoistable expressions are only movable
3233 from two successors, so raising this threshold is likely
3234 to nullify any benefit we get from code hoisting. */
3235 if (hoistable > 1 && dbg_cnt (hoist_insn))
3237 /* If (hoistable != vec::length), then there is
3238 an occurrence of EXPR in BB itself. Don't waste
3239 time looking for LCA in this case. */
3240 if ((unsigned) hoistable == occrs_to_hoist.length ())
3242 basic_block lca;
3244 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3245 from_bbs);
3246 if (lca != bb)
3247 /* Punt, it's better to hoist these occurrences to
3248 LCA. */
3249 occrs_to_hoist.release ();
3252 else
3253 /* Punt, no point hoisting a single occurrence. */
3254 occrs_to_hoist.release ();
3256 if (flag_ira_hoist_pressure
3257 && !occrs_to_hoist.is_empty ())
3259 /* Increase register pressure of basic blocks to which
3260 expr is hoisted because of extended live range of
3261 output. */
3262 data = BB_DATA (bb);
3263 data->max_reg_pressure[pressure_class] += nregs;
3264 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3266 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3267 data->max_reg_pressure[pressure_class] += nregs;
3270 else if (flag_ira_hoist_pressure)
3272 /* Restore register pressure and live_in info for basic
3273 blocks recorded in hoisted_bbs when expr will not be
3274 hoisted. */
3275 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3277 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3278 bitmap_copy (data->live_in, data->backup);
3279 data->max_reg_pressure[pressure_class]
3280 = data->old_pressure;
3284 if (flag_ira_hoist_pressure)
3285 bitmap_clear (hoisted_bbs);
3287 insn_inserted_p = 0;
3289 /* Walk through occurrences of I'th expressions we want
3290 to hoist to BB and make the transformations. */
3291 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3293 rtx_insn *insn;
3294 const_rtx set;
3296 gcc_assert (!occr->deleted_p);
3298 insn = occr->insn;
3299 set = single_set_gcse (insn);
3301 /* Create a pseudo-reg to store the result of reaching
3302 expressions into. Get the mode for the new pseudo
3303 from the mode of the original destination pseudo.
3305 It is important to use new pseudos whenever we
3306 emit a set. This will allow reload to use
3307 rematerialization for such registers. */
3308 if (!insn_inserted_p)
3309 expr->reaching_reg
3310 = gen_reg_rtx_and_attrs (SET_DEST (set));
3312 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3313 insn);
3314 delete_insn (insn);
3315 occr->deleted_p = 1;
3316 changed = 1;
3317 gcse_subst_count++;
3319 if (!insn_inserted_p)
3321 insert_insn_end_basic_block (expr, bb);
3322 insn_inserted_p = 1;
3326 occrs_to_hoist.release ();
3327 bitmap_clear (from_bbs);
3330 domby.release ();
3333 dom_tree_walk.release ();
3334 BITMAP_FREE (from_bbs);
3335 if (flag_ira_hoist_pressure)
3336 BITMAP_FREE (hoisted_bbs);
3338 free (bb_size);
3339 free (to_bb_head);
3340 free (index_map);
3342 return changed;
3345 /* Return pressure class and number of needed hard registers (through
3346 *NREGS) of register REGNO. */
3347 static enum reg_class
3348 get_regno_pressure_class (int regno, int *nregs)
3350 if (regno >= FIRST_PSEUDO_REGISTER)
3352 enum reg_class pressure_class;
3354 pressure_class = reg_allocno_class (regno);
3355 pressure_class = ira_pressure_class_translate[pressure_class];
3356 *nregs
3357 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3358 return pressure_class;
3360 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3361 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3363 *nregs = 1;
3364 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3366 else
3368 *nregs = 0;
3369 return NO_REGS;
3373 /* Return pressure class and number of hard registers (through *NREGS)
3374 for destination of INSN. */
3375 static enum reg_class
3376 get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
3378 rtx reg;
3379 enum reg_class pressure_class;
3380 const_rtx set = single_set_gcse (insn);
3382 reg = SET_DEST (set);
3383 if (GET_CODE (reg) == SUBREG)
3384 reg = SUBREG_REG (reg);
3385 if (MEM_P (reg))
3387 *nregs = 0;
3388 pressure_class = NO_REGS;
3390 else
3392 gcc_assert (REG_P (reg));
3393 pressure_class = reg_allocno_class (REGNO (reg));
3394 pressure_class = ira_pressure_class_translate[pressure_class];
3395 *nregs
3396 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3398 return pressure_class;
3401 /* Increase (if INCR_P) or decrease current register pressure for
3402 register REGNO. */
3403 static void
3404 change_pressure (int regno, bool incr_p)
3406 int nregs;
3407 enum reg_class pressure_class;
3409 pressure_class = get_regno_pressure_class (regno, &nregs);
3410 if (! incr_p)
3411 curr_reg_pressure[pressure_class] -= nregs;
3412 else
3414 curr_reg_pressure[pressure_class] += nregs;
3415 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3416 < curr_reg_pressure[pressure_class])
3417 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3418 = curr_reg_pressure[pressure_class];
3422 /* Calculate register pressure for each basic block by walking insns
3423 from last to first. */
3424 static void
3425 calculate_bb_reg_pressure (void)
3427 int i;
3428 unsigned int j;
3429 rtx_insn *insn;
3430 basic_block bb;
3431 bitmap curr_regs_live;
3432 bitmap_iterator bi;
3435 ira_setup_eliminable_regset ();
3436 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3437 FOR_EACH_BB_FN (bb, cfun)
3439 curr_bb = bb;
3440 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3441 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3442 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3443 bitmap_copy (curr_regs_live, df_get_live_out (bb));
3444 for (i = 0; i < ira_pressure_classes_num; i++)
3445 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3446 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3447 change_pressure (j, true);
3449 FOR_BB_INSNS_REVERSE (bb, insn)
3451 rtx dreg;
3452 int regno;
3453 df_ref def, use;
3455 if (! NONDEBUG_INSN_P (insn))
3456 continue;
3458 FOR_EACH_INSN_DEF (def, insn)
3460 dreg = DF_REF_REAL_REG (def);
3461 gcc_assert (REG_P (dreg));
3462 regno = REGNO (dreg);
3463 if (!(DF_REF_FLAGS (def)
3464 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3466 if (bitmap_clear_bit (curr_regs_live, regno))
3467 change_pressure (regno, false);
3471 FOR_EACH_INSN_USE (use, insn)
3473 dreg = DF_REF_REAL_REG (use);
3474 gcc_assert (REG_P (dreg));
3475 regno = REGNO (dreg);
3476 if (bitmap_set_bit (curr_regs_live, regno))
3477 change_pressure (regno, true);
3481 BITMAP_FREE (curr_regs_live);
3483 if (dump_file == NULL)
3484 return;
3486 fprintf (dump_file, "\nRegister Pressure: \n");
3487 FOR_EACH_BB_FN (bb, cfun)
3489 fprintf (dump_file, " Basic block %d: \n", bb->index);
3490 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3492 enum reg_class pressure_class;
3494 pressure_class = ira_pressure_classes[i];
3495 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3496 continue;
3498 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3499 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3502 fprintf (dump_file, "\n");
3505 /* Top level routine to perform one code hoisting (aka unification) pass
3507 Return nonzero if a change was made. */
3509 static int
3510 one_code_hoisting_pass (void)
3512 int changed = 0;
3514 gcse_subst_count = 0;
3515 gcse_create_count = 0;
3517 /* Return if there's nothing to do, or it is too expensive. */
3518 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
3519 || is_too_expensive (_("GCSE disabled")))
3520 return 0;
3522 doing_code_hoisting_p = true;
3524 /* Calculate register pressure for each basic block. */
3525 if (flag_ira_hoist_pressure)
3527 regstat_init_n_sets_and_refs ();
3528 ira_set_pseudo_classes (false, dump_file);
3529 alloc_aux_for_blocks (sizeof (struct bb_data));
3530 calculate_bb_reg_pressure ();
3531 regstat_free_n_sets_and_refs ();
3534 /* We need alias. */
3535 init_alias_analysis ();
3537 bytes_used = 0;
3538 gcc_obstack_init (&gcse_obstack);
3539 alloc_gcse_mem ();
3541 alloc_hash_table (&expr_hash_table);
3542 compute_hash_table (&expr_hash_table);
3543 if (dump_file)
3544 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3546 if (expr_hash_table.n_elems > 0)
3548 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3549 expr_hash_table.n_elems);
3550 compute_code_hoist_data ();
3551 changed = hoist_code ();
3552 free_code_hoist_mem ();
3555 if (flag_ira_hoist_pressure)
3557 free_aux_for_blocks ();
3558 free_reg_info ();
3560 free_hash_table (&expr_hash_table);
3561 free_gcse_mem ();
3562 obstack_free (&gcse_obstack, NULL);
3564 /* We are finished with alias. */
3565 end_alias_analysis ();
3567 if (dump_file)
3569 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3570 current_function_name (), n_basic_blocks_for_fn (cfun),
3571 bytes_used);
3572 fprintf (dump_file, "%d substs, %d insns created\n",
3573 gcse_subst_count, gcse_create_count);
3576 doing_code_hoisting_p = false;
3578 return changed;
3581 /* Here we provide the things required to do store motion towards the exit.
3582 In order for this to be effective, gcse also needed to be taught how to
3583 move a load when it is killed only by a store to itself.
3585 int i;
3586 float a[10];
3588 void foo(float scale)
3590 for (i=0; i<10; i++)
3591 a[i] *= scale;
3594 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3595 the load out since its live around the loop, and stored at the bottom
3596 of the loop.
3598 The 'Load Motion' referred to and implemented in this file is
3599 an enhancement to gcse which when using edge based LCM, recognizes
3600 this situation and allows gcse to move the load out of the loop.
3602 Once gcse has hoisted the load, store motion can then push this
3603 load towards the exit, and we end up with no loads or stores of 'i'
3604 in the loop. */
3606 /* This will search the ldst list for a matching expression. If it
3607 doesn't find one, we create one and initialize it. */
3609 static struct ls_expr *
3610 ldst_entry (rtx x)
3612 int do_not_record_p = 0;
3613 struct ls_expr * ptr;
3614 unsigned int hash;
3615 ls_expr **slot;
3616 struct ls_expr e;
3618 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3619 NULL, /*have_reg_qty=*/false);
3621 e.pattern = x;
3622 slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
3623 if (*slot)
3624 return *slot;
3626 ptr = XNEW (struct ls_expr);
3628 ptr->next = pre_ldst_mems;
3629 ptr->expr = NULL;
3630 ptr->pattern = x;
3631 ptr->pattern_regs = NULL_RTX;
3632 ptr->loads = NULL;
3633 ptr->stores = NULL;
3634 ptr->reaching_reg = NULL_RTX;
3635 ptr->invalid = 0;
3636 ptr->index = 0;
3637 ptr->hash_index = hash;
3638 pre_ldst_mems = ptr;
3639 *slot = ptr;
3641 return ptr;
3644 /* Free up an individual ldst entry. */
3646 static void
3647 free_ldst_entry (struct ls_expr * ptr)
3649 free_INSN_LIST_list (& ptr->loads);
3650 free_INSN_LIST_list (& ptr->stores);
3652 free (ptr);
3655 /* Free up all memory associated with the ldst list. */
3657 static void
3658 free_ld_motion_mems (void)
3660 delete pre_ldst_table;
3661 pre_ldst_table = NULL;
3663 while (pre_ldst_mems)
3665 struct ls_expr * tmp = pre_ldst_mems;
3667 pre_ldst_mems = pre_ldst_mems->next;
3669 free_ldst_entry (tmp);
3672 pre_ldst_mems = NULL;
3675 /* Dump debugging info about the ldst list. */
3677 static void
3678 print_ldst_list (FILE * file)
3680 struct ls_expr * ptr;
3682 fprintf (file, "LDST list: \n");
3684 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3686 fprintf (file, " Pattern (%3d): ", ptr->index);
3688 print_rtl (file, ptr->pattern);
3690 fprintf (file, "\n Loads : ");
3692 if (ptr->loads)
3693 print_rtl (file, ptr->loads);
3694 else
3695 fprintf (file, "(nil)");
3697 fprintf (file, "\n Stores : ");
3699 if (ptr->stores)
3700 print_rtl (file, ptr->stores);
3701 else
3702 fprintf (file, "(nil)");
3704 fprintf (file, "\n\n");
3707 fprintf (file, "\n");
3710 /* Returns 1 if X is in the list of ldst only expressions. */
3712 static struct ls_expr *
3713 find_rtx_in_ldst (rtx x)
3715 struct ls_expr e;
3716 ls_expr **slot;
3717 if (!pre_ldst_table)
3718 return NULL;
3719 e.pattern = x;
3720 slot = pre_ldst_table->find_slot (&e, NO_INSERT);
3721 if (!slot || (*slot)->invalid)
3722 return NULL;
3723 return *slot;
3726 /* Load Motion for loads which only kill themselves. */
3728 /* Return true if x, a MEM, is a simple access with no side effects.
3729 These are the types of loads we consider for the ld_motion list,
3730 otherwise we let the usual aliasing take care of it. */
3732 static int
3733 simple_mem (const_rtx x)
3735 if (MEM_VOLATILE_P (x))
3736 return 0;
3738 if (GET_MODE (x) == BLKmode)
3739 return 0;
3741 /* If we are handling exceptions, we must be careful with memory references
3742 that may trap. If we are not, the behavior is undefined, so we may just
3743 continue. */
3744 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3745 return 0;
3747 if (side_effects_p (x))
3748 return 0;
3750 /* Do not consider function arguments passed on stack. */
3751 if (reg_mentioned_p (stack_pointer_rtx, x))
3752 return 0;
3754 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3755 return 0;
3757 return 1;
3760 /* Make sure there isn't a buried reference in this pattern anywhere.
3761 If there is, invalidate the entry for it since we're not capable
3762 of fixing it up just yet.. We have to be sure we know about ALL
3763 loads since the aliasing code will allow all entries in the
3764 ld_motion list to not-alias itself. If we miss a load, we will get
3765 the wrong value since gcse might common it and we won't know to
3766 fix it up. */
3768 static void
3769 invalidate_any_buried_refs (rtx x)
3771 const char * fmt;
3772 int i, j;
3773 struct ls_expr * ptr;
3775 /* Invalidate it in the list. */
3776 if (MEM_P (x) && simple_mem (x))
3778 ptr = ldst_entry (x);
3779 ptr->invalid = 1;
3782 /* Recursively process the insn. */
3783 fmt = GET_RTX_FORMAT (GET_CODE (x));
3785 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3787 if (fmt[i] == 'e')
3788 invalidate_any_buried_refs (XEXP (x, i));
3789 else if (fmt[i] == 'E')
3790 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3791 invalidate_any_buried_refs (XVECEXP (x, i, j));
3795 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3796 being defined as MEM loads and stores to symbols, with no side effects
3797 and no registers in the expression. For a MEM destination, we also
3798 check that the insn is still valid if we replace the destination with a
3799 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3800 which don't match this criteria, they are invalidated and trimmed out
3801 later. */
3803 static void
3804 compute_ld_motion_mems (void)
3806 struct ls_expr * ptr;
3807 basic_block bb;
3808 rtx_insn *insn;
3810 pre_ldst_mems = NULL;
3811 pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
3813 FOR_EACH_BB_FN (bb, cfun)
3815 FOR_BB_INSNS (bb, insn)
3817 if (NONDEBUG_INSN_P (insn))
3819 if (GET_CODE (PATTERN (insn)) == SET)
3821 rtx src = SET_SRC (PATTERN (insn));
3822 rtx dest = SET_DEST (PATTERN (insn));
3823 rtx note = find_reg_equal_equiv_note (insn);
3824 rtx src_eq;
3826 /* Check for a simple LOAD... */
3827 if (MEM_P (src) && simple_mem (src))
3829 ptr = ldst_entry (src);
3830 if (REG_P (dest))
3831 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3832 else
3833 ptr->invalid = 1;
3835 else
3837 /* Make sure there isn't a buried load somewhere. */
3838 invalidate_any_buried_refs (src);
3841 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
3842 src_eq = XEXP (note, 0);
3843 else
3844 src_eq = NULL_RTX;
3846 if (src_eq != NULL_RTX
3847 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3848 invalidate_any_buried_refs (src_eq);
3850 /* Check for stores. Don't worry about aliased ones, they
3851 will block any movement we might do later. We only care
3852 about this exact pattern since those are the only
3853 circumstance that we will ignore the aliasing info. */
3854 if (MEM_P (dest) && simple_mem (dest))
3856 ptr = ldst_entry (dest);
3858 if (! MEM_P (src)
3859 && GET_CODE (src) != ASM_OPERANDS
3860 /* Check for REG manually since want_to_gcse_p
3861 returns 0 for all REGs. */
3862 && can_assign_to_reg_without_clobbers_p (src))
3863 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
3864 else
3865 ptr->invalid = 1;
3868 else
3869 invalidate_any_buried_refs (PATTERN (insn));
3875 /* Remove any references that have been either invalidated or are not in the
3876 expression list for pre gcse. */
3878 static void
3879 trim_ld_motion_mems (void)
3881 struct ls_expr * * last = & pre_ldst_mems;
3882 struct ls_expr * ptr = pre_ldst_mems;
3884 while (ptr != NULL)
3886 struct gcse_expr * expr;
3888 /* Delete if entry has been made invalid. */
3889 if (! ptr->invalid)
3891 /* Delete if we cannot find this mem in the expression list. */
3892 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3894 for (expr = expr_hash_table.table[hash];
3895 expr != NULL;
3896 expr = expr->next_same_hash)
3897 if (expr_equiv_p (expr->expr, ptr->pattern))
3898 break;
3900 else
3901 expr = (struct gcse_expr *) 0;
3903 if (expr)
3905 /* Set the expression field if we are keeping it. */
3906 ptr->expr = expr;
3907 last = & ptr->next;
3908 ptr = ptr->next;
3910 else
3912 *last = ptr->next;
3913 pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
3914 free_ldst_entry (ptr);
3915 ptr = * last;
3919 /* Show the world what we've found. */
3920 if (dump_file && pre_ldst_mems != NULL)
3921 print_ldst_list (dump_file);
3924 /* This routine will take an expression which we are replacing with
3925 a reaching register, and update any stores that are needed if
3926 that expression is in the ld_motion list. Stores are updated by
3927 copying their SRC to the reaching register, and then storing
3928 the reaching register into the store location. These keeps the
3929 correct value in the reaching register for the loads. */
3931 static void
3932 update_ld_motion_stores (struct gcse_expr * expr)
3934 struct ls_expr * mem_ptr;
3936 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3938 /* We can try to find just the REACHED stores, but is shouldn't
3939 matter to set the reaching reg everywhere... some might be
3940 dead and should be eliminated later. */
3942 /* We replace (set mem expr) with (set reg expr) (set mem reg)
3943 where reg is the reaching reg used in the load. We checked in
3944 compute_ld_motion_mems that we can replace (set mem expr) with
3945 (set reg expr) in that insn. */
3946 rtx list = mem_ptr->stores;
3948 for ( ; list != NULL_RTX; list = XEXP (list, 1))
3950 rtx_insn *insn = as_a <rtx_insn *> (XEXP (list, 0));
3951 rtx pat = PATTERN (insn);
3952 rtx src = SET_SRC (pat);
3953 rtx reg = expr->reaching_reg;
3955 /* If we've already copied it, continue. */
3956 if (expr->reaching_reg == src)
3957 continue;
3959 if (dump_file)
3961 fprintf (dump_file, "PRE: store updated with reaching reg ");
3962 print_rtl (dump_file, reg);
3963 fprintf (dump_file, ":\n ");
3964 print_inline_rtx (dump_file, insn, 8);
3965 fprintf (dump_file, "\n");
3968 rtx_insn *copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
3969 emit_insn_before (copy, insn);
3970 SET_SRC (pat) = reg;
3971 df_insn_rescan (insn);
3973 /* un-recognize this pattern since it's probably different now. */
3974 INSN_CODE (insn) = -1;
3975 gcse_create_count++;
3980 /* Return true if the graph is too expensive to optimize. PASS is the
3981 optimization about to be performed. */
3983 static bool
3984 is_too_expensive (const char *pass)
3986 /* Trying to perform global optimizations on flow graphs which have
3987 a high connectivity will take a long time and is unlikely to be
3988 particularly useful.
3990 In normal circumstances a cfg should have about twice as many
3991 edges as blocks. But we do not want to punish small functions
3992 which have a couple switch statements. Rather than simply
3993 threshold the number of blocks, uses something with a more
3994 graceful degradation. */
3995 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
3997 warning (OPT_Wdisabled_optimization,
3998 "%s: %d basic blocks and %d edges/basic block",
3999 pass, n_basic_blocks_for_fn (cfun),
4000 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
4002 return true;
4005 /* If allocating memory for the dataflow bitmaps would take up too much
4006 storage it's better just to disable the optimization. */
4007 if ((n_basic_blocks_for_fn (cfun)
4008 * SBITMAP_SET_SIZE (max_reg_num ())
4009 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
4011 warning (OPT_Wdisabled_optimization,
4012 "%s: %d basic blocks and %d registers",
4013 pass, n_basic_blocks_for_fn (cfun), max_reg_num ());
4015 return true;
4018 return false;
4021 static unsigned int
4022 execute_rtl_pre (void)
4024 int changed;
4025 delete_unreachable_blocks ();
4026 df_analyze ();
4027 changed = one_pre_gcse_pass ();
4028 flag_rerun_cse_after_global_opts |= changed;
4029 if (changed)
4030 cleanup_cfg (0);
4031 return 0;
4034 static unsigned int
4035 execute_rtl_hoist (void)
4037 int changed;
4038 delete_unreachable_blocks ();
4039 df_analyze ();
4040 changed = one_code_hoisting_pass ();
4041 flag_rerun_cse_after_global_opts |= changed;
4042 if (changed)
4043 cleanup_cfg (0);
4044 return 0;
4047 namespace {
4049 const pass_data pass_data_rtl_pre =
4051 RTL_PASS, /* type */
4052 "rtl pre", /* name */
4053 OPTGROUP_NONE, /* optinfo_flags */
4054 TV_PRE, /* tv_id */
4055 PROP_cfglayout, /* properties_required */
4056 0, /* properties_provided */
4057 0, /* properties_destroyed */
4058 0, /* todo_flags_start */
4059 TODO_df_finish, /* todo_flags_finish */
4062 class pass_rtl_pre : public rtl_opt_pass
4064 public:
4065 pass_rtl_pre (gcc::context *ctxt)
4066 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
4069 /* opt_pass methods: */
4070 virtual bool gate (function *);
4071 virtual unsigned int execute (function *) { return execute_rtl_pre (); }
4073 }; // class pass_rtl_pre
4075 /* We do not construct an accurate cfg in functions which call
4076 setjmp, so none of these passes runs if the function calls
4077 setjmp.
4078 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4080 bool
4081 pass_rtl_pre::gate (function *fun)
4083 return optimize > 0 && flag_gcse
4084 && !fun->calls_setjmp
4085 && optimize_function_for_speed_p (fun)
4086 && dbg_cnt (pre);
4089 } // anon namespace
4091 rtl_opt_pass *
4092 make_pass_rtl_pre (gcc::context *ctxt)
4094 return new pass_rtl_pre (ctxt);
4097 namespace {
4099 const pass_data pass_data_rtl_hoist =
4101 RTL_PASS, /* type */
4102 "hoist", /* name */
4103 OPTGROUP_NONE, /* optinfo_flags */
4104 TV_HOIST, /* tv_id */
4105 PROP_cfglayout, /* properties_required */
4106 0, /* properties_provided */
4107 0, /* properties_destroyed */
4108 0, /* todo_flags_start */
4109 TODO_df_finish, /* todo_flags_finish */
4112 class pass_rtl_hoist : public rtl_opt_pass
4114 public:
4115 pass_rtl_hoist (gcc::context *ctxt)
4116 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
4119 /* opt_pass methods: */
4120 virtual bool gate (function *);
4121 virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
4123 }; // class pass_rtl_hoist
4125 bool
4126 pass_rtl_hoist::gate (function *)
4128 return optimize > 0 && flag_gcse
4129 && !cfun->calls_setjmp
4130 /* It does not make sense to run code hoisting unless we are optimizing
4131 for code size -- it rarely makes programs faster, and can make then
4132 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4133 && optimize_function_for_size_p (cfun)
4134 && dbg_cnt (hoist);
4137 } // anon namespace
4139 rtl_opt_pass *
4140 make_pass_rtl_hoist (gcc::context *ctxt)
4142 return new pass_rtl_hoist (ctxt);
4145 /* Reset all state within gcse.c so that we can rerun the compiler
4146 within the same process. For use by toplev::finalize. */
4148 void
4149 gcse_c_finalize (void)
4151 test_insn = NULL;
4154 #include "gt-gcse.h"