1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
28 /* The entry points in this file are fold, size_int_wide and size_binop.
30 fold takes a tree as argument and returns a simplified tree.
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
45 #include "coretypes.h"
51 #include "fold-const.h"
52 #include "stor-layout.h"
54 #include "tree-iterator.h"
57 #include "hard-reg-set.h"
59 #include "insn-config.h"
69 #include "diagnostic-core.h"
71 #include "langhooks.h"
74 #include "basic-block.h"
75 #include "tree-ssa-alias.h"
76 #include "internal-fn.h"
78 #include "gimple-expr.h"
83 #include "plugin-api.h"
86 #include "generic-match.h"
89 /* Nonzero if we are folding constants inside an initializer; zero
91 int folding_initializer
= 0;
93 /* The following constants represent a bit based encoding of GCC's
94 comparison operators. This encoding simplifies transformations
95 on relational comparison operators, such as AND and OR. */
96 enum comparison_code
{
115 static bool negate_mathfn_p (enum built_in_function
);
116 static bool negate_expr_p (tree
);
117 static tree
negate_expr (tree
);
118 static tree
split_tree (tree
, enum tree_code
, tree
*, tree
*, tree
*, int);
119 static tree
associate_trees (location_t
, tree
, tree
, enum tree_code
, tree
);
120 static enum comparison_code
comparison_to_compcode (enum tree_code
);
121 static enum tree_code
compcode_to_comparison (enum comparison_code
);
122 static int operand_equal_for_comparison_p (tree
, tree
, tree
);
123 static int twoval_comparison_p (tree
, tree
*, tree
*, int *);
124 static tree
eval_subst (location_t
, tree
, tree
, tree
, tree
, tree
);
125 static tree
distribute_bit_expr (location_t
, enum tree_code
, tree
, tree
, tree
);
126 static tree
make_bit_field_ref (location_t
, tree
, tree
,
127 HOST_WIDE_INT
, HOST_WIDE_INT
, int);
128 static tree
optimize_bit_field_compare (location_t
, enum tree_code
,
130 static tree
decode_field_reference (location_t
, tree
, HOST_WIDE_INT
*,
132 machine_mode
*, int *, int *,
134 static int simple_operand_p (const_tree
);
135 static bool simple_operand_p_2 (tree
);
136 static tree
range_binop (enum tree_code
, tree
, tree
, int, tree
, int);
137 static tree
range_predecessor (tree
);
138 static tree
range_successor (tree
);
139 static tree
fold_range_test (location_t
, enum tree_code
, tree
, tree
, tree
);
140 static tree
fold_cond_expr_with_comparison (location_t
, tree
, tree
, tree
, tree
);
141 static tree
unextend (tree
, int, int, tree
);
142 static tree
optimize_minmax_comparison (location_t
, enum tree_code
,
144 static tree
extract_muldiv (tree
, tree
, enum tree_code
, tree
, bool *);
145 static tree
extract_muldiv_1 (tree
, tree
, enum tree_code
, tree
, bool *);
146 static tree
fold_binary_op_with_conditional_arg (location_t
,
147 enum tree_code
, tree
,
150 static tree
fold_mathfn_compare (location_t
,
151 enum built_in_function
, enum tree_code
,
153 static tree
fold_inf_compare (location_t
, enum tree_code
, tree
, tree
, tree
);
154 static tree
fold_div_compare (location_t
, enum tree_code
, tree
, tree
, tree
);
155 static bool reorder_operands_p (const_tree
, const_tree
);
156 static tree
fold_negate_const (tree
, tree
);
157 static tree
fold_not_const (const_tree
, tree
);
158 static tree
fold_relational_const (enum tree_code
, tree
, tree
, tree
);
159 static tree
fold_convert_const (enum tree_code
, tree
, tree
);
160 static tree
fold_view_convert_expr (tree
, tree
);
161 static bool vec_cst_ctor_to_array (tree
, tree
*);
164 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
165 Otherwise, return LOC. */
168 expr_location_or (tree t
, location_t loc
)
170 location_t tloc
= EXPR_LOCATION (t
);
171 return tloc
== UNKNOWN_LOCATION
? loc
: tloc
;
174 /* Similar to protected_set_expr_location, but never modify x in place,
175 if location can and needs to be set, unshare it. */
178 protected_set_expr_location_unshare (tree x
, location_t loc
)
180 if (CAN_HAVE_LOCATION_P (x
)
181 && EXPR_LOCATION (x
) != loc
182 && !(TREE_CODE (x
) == SAVE_EXPR
183 || TREE_CODE (x
) == TARGET_EXPR
184 || TREE_CODE (x
) == BIND_EXPR
))
187 SET_EXPR_LOCATION (x
, loc
);
192 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
193 division and returns the quotient. Otherwise returns
197 div_if_zero_remainder (const_tree arg1
, const_tree arg2
)
201 if (wi::multiple_of_p (wi::to_widest (arg1
), wi::to_widest (arg2
),
203 return wide_int_to_tree (TREE_TYPE (arg1
), quo
);
208 /* This is nonzero if we should defer warnings about undefined
209 overflow. This facility exists because these warnings are a
210 special case. The code to estimate loop iterations does not want
211 to issue any warnings, since it works with expressions which do not
212 occur in user code. Various bits of cleanup code call fold(), but
213 only use the result if it has certain characteristics (e.g., is a
214 constant); that code only wants to issue a warning if the result is
217 static int fold_deferring_overflow_warnings
;
219 /* If a warning about undefined overflow is deferred, this is the
220 warning. Note that this may cause us to turn two warnings into
221 one, but that is fine since it is sufficient to only give one
222 warning per expression. */
224 static const char* fold_deferred_overflow_warning
;
226 /* If a warning about undefined overflow is deferred, this is the
227 level at which the warning should be emitted. */
229 static enum warn_strict_overflow_code fold_deferred_overflow_code
;
231 /* Start deferring overflow warnings. We could use a stack here to
232 permit nested calls, but at present it is not necessary. */
235 fold_defer_overflow_warnings (void)
237 ++fold_deferring_overflow_warnings
;
240 /* Stop deferring overflow warnings. If there is a pending warning,
241 and ISSUE is true, then issue the warning if appropriate. STMT is
242 the statement with which the warning should be associated (used for
243 location information); STMT may be NULL. CODE is the level of the
244 warning--a warn_strict_overflow_code value. This function will use
245 the smaller of CODE and the deferred code when deciding whether to
246 issue the warning. CODE may be zero to mean to always use the
250 fold_undefer_overflow_warnings (bool issue
, const_gimple stmt
, int code
)
255 gcc_assert (fold_deferring_overflow_warnings
> 0);
256 --fold_deferring_overflow_warnings
;
257 if (fold_deferring_overflow_warnings
> 0)
259 if (fold_deferred_overflow_warning
!= NULL
261 && code
< (int) fold_deferred_overflow_code
)
262 fold_deferred_overflow_code
= (enum warn_strict_overflow_code
) code
;
266 warnmsg
= fold_deferred_overflow_warning
;
267 fold_deferred_overflow_warning
= NULL
;
269 if (!issue
|| warnmsg
== NULL
)
272 if (gimple_no_warning_p (stmt
))
275 /* Use the smallest code level when deciding to issue the
277 if (code
== 0 || code
> (int) fold_deferred_overflow_code
)
278 code
= fold_deferred_overflow_code
;
280 if (!issue_strict_overflow_warning (code
))
284 locus
= input_location
;
286 locus
= gimple_location (stmt
);
287 warning_at (locus
, OPT_Wstrict_overflow
, "%s", warnmsg
);
290 /* Stop deferring overflow warnings, ignoring any deferred
294 fold_undefer_and_ignore_overflow_warnings (void)
296 fold_undefer_overflow_warnings (false, NULL
, 0);
299 /* Whether we are deferring overflow warnings. */
302 fold_deferring_overflow_warnings_p (void)
304 return fold_deferring_overflow_warnings
> 0;
307 /* This is called when we fold something based on the fact that signed
308 overflow is undefined. */
311 fold_overflow_warning (const char* gmsgid
, enum warn_strict_overflow_code wc
)
313 if (fold_deferring_overflow_warnings
> 0)
315 if (fold_deferred_overflow_warning
== NULL
316 || wc
< fold_deferred_overflow_code
)
318 fold_deferred_overflow_warning
= gmsgid
;
319 fold_deferred_overflow_code
= wc
;
322 else if (issue_strict_overflow_warning (wc
))
323 warning (OPT_Wstrict_overflow
, gmsgid
);
326 /* Return true if the built-in mathematical function specified by CODE
327 is odd, i.e. -f(x) == f(-x). */
330 negate_mathfn_p (enum built_in_function code
)
334 CASE_FLT_FN (BUILT_IN_ASIN
):
335 CASE_FLT_FN (BUILT_IN_ASINH
):
336 CASE_FLT_FN (BUILT_IN_ATAN
):
337 CASE_FLT_FN (BUILT_IN_ATANH
):
338 CASE_FLT_FN (BUILT_IN_CASIN
):
339 CASE_FLT_FN (BUILT_IN_CASINH
):
340 CASE_FLT_FN (BUILT_IN_CATAN
):
341 CASE_FLT_FN (BUILT_IN_CATANH
):
342 CASE_FLT_FN (BUILT_IN_CBRT
):
343 CASE_FLT_FN (BUILT_IN_CPROJ
):
344 CASE_FLT_FN (BUILT_IN_CSIN
):
345 CASE_FLT_FN (BUILT_IN_CSINH
):
346 CASE_FLT_FN (BUILT_IN_CTAN
):
347 CASE_FLT_FN (BUILT_IN_CTANH
):
348 CASE_FLT_FN (BUILT_IN_ERF
):
349 CASE_FLT_FN (BUILT_IN_LLROUND
):
350 CASE_FLT_FN (BUILT_IN_LROUND
):
351 CASE_FLT_FN (BUILT_IN_ROUND
):
352 CASE_FLT_FN (BUILT_IN_SIN
):
353 CASE_FLT_FN (BUILT_IN_SINH
):
354 CASE_FLT_FN (BUILT_IN_TAN
):
355 CASE_FLT_FN (BUILT_IN_TANH
):
356 CASE_FLT_FN (BUILT_IN_TRUNC
):
359 CASE_FLT_FN (BUILT_IN_LLRINT
):
360 CASE_FLT_FN (BUILT_IN_LRINT
):
361 CASE_FLT_FN (BUILT_IN_NEARBYINT
):
362 CASE_FLT_FN (BUILT_IN_RINT
):
363 return !flag_rounding_math
;
371 /* Check whether we may negate an integer constant T without causing
375 may_negate_without_overflow_p (const_tree t
)
379 gcc_assert (TREE_CODE (t
) == INTEGER_CST
);
381 type
= TREE_TYPE (t
);
382 if (TYPE_UNSIGNED (type
))
385 return !wi::only_sign_bit_p (t
);
388 /* Determine whether an expression T can be cheaply negated using
389 the function negate_expr without introducing undefined overflow. */
392 negate_expr_p (tree t
)
399 type
= TREE_TYPE (t
);
402 switch (TREE_CODE (t
))
405 if (INTEGRAL_TYPE_P (type
) && TYPE_OVERFLOW_WRAPS (type
))
408 /* Check that -CST will not overflow type. */
409 return may_negate_without_overflow_p (t
);
411 return (INTEGRAL_TYPE_P (type
)
412 && TYPE_OVERFLOW_WRAPS (type
));
418 return !TYPE_OVERFLOW_SANITIZED (type
);
421 /* We want to canonicalize to positive real constants. Pretend
422 that only negative ones can be easily negated. */
423 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t
));
426 return negate_expr_p (TREE_REALPART (t
))
427 && negate_expr_p (TREE_IMAGPART (t
));
431 if (FLOAT_TYPE_P (TREE_TYPE (type
)) || TYPE_OVERFLOW_WRAPS (type
))
434 int count
= TYPE_VECTOR_SUBPARTS (type
), i
;
436 for (i
= 0; i
< count
; i
++)
437 if (!negate_expr_p (VECTOR_CST_ELT (t
, i
)))
444 return negate_expr_p (TREE_OPERAND (t
, 0))
445 && negate_expr_p (TREE_OPERAND (t
, 1));
448 return negate_expr_p (TREE_OPERAND (t
, 0));
451 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
452 || HONOR_SIGNED_ZEROS (element_mode (type
)))
454 /* -(A + B) -> (-B) - A. */
455 if (negate_expr_p (TREE_OPERAND (t
, 1))
456 && reorder_operands_p (TREE_OPERAND (t
, 0),
457 TREE_OPERAND (t
, 1)))
459 /* -(A + B) -> (-A) - B. */
460 return negate_expr_p (TREE_OPERAND (t
, 0));
463 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
464 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
465 && !HONOR_SIGNED_ZEROS (element_mode (type
))
466 && reorder_operands_p (TREE_OPERAND (t
, 0),
467 TREE_OPERAND (t
, 1));
470 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
476 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t
))))
477 return negate_expr_p (TREE_OPERAND (t
, 1))
478 || negate_expr_p (TREE_OPERAND (t
, 0));
484 /* In general we can't negate A / B, because if A is INT_MIN and
485 B is 1, we may turn this into INT_MIN / -1 which is undefined
486 and actually traps on some architectures. But if overflow is
487 undefined, we can negate, because - (INT_MIN / 1) is an
489 if (INTEGRAL_TYPE_P (TREE_TYPE (t
)))
491 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t
)))
493 /* If overflow is undefined then we have to be careful because
494 we ask whether it's ok to associate the negate with the
495 division which is not ok for example for
496 -((a - b) / c) where (-(a - b)) / c may invoke undefined
497 overflow because of negating INT_MIN. So do not use
498 negate_expr_p here but open-code the two important cases. */
499 if (TREE_CODE (TREE_OPERAND (t
, 0)) == NEGATE_EXPR
500 || (TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
501 && may_negate_without_overflow_p (TREE_OPERAND (t
, 0))))
504 else if (negate_expr_p (TREE_OPERAND (t
, 0)))
506 return negate_expr_p (TREE_OPERAND (t
, 1));
509 /* Negate -((double)float) as (double)(-float). */
510 if (TREE_CODE (type
) == REAL_TYPE
)
512 tree tem
= strip_float_extensions (t
);
514 return negate_expr_p (tem
);
519 /* Negate -f(x) as f(-x). */
520 if (negate_mathfn_p (builtin_mathfn_code (t
)))
521 return negate_expr_p (CALL_EXPR_ARG (t
, 0));
525 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
526 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
528 tree op1
= TREE_OPERAND (t
, 1);
529 if (wi::eq_p (op1
, TYPE_PRECISION (type
) - 1))
540 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
541 simplification is possible.
542 If negate_expr_p would return true for T, NULL_TREE will never be
546 fold_negate_expr (location_t loc
, tree t
)
548 tree type
= TREE_TYPE (t
);
551 switch (TREE_CODE (t
))
553 /* Convert - (~A) to A + 1. */
555 if (INTEGRAL_TYPE_P (type
))
556 return fold_build2_loc (loc
, PLUS_EXPR
, type
, TREE_OPERAND (t
, 0),
557 build_one_cst (type
));
561 tem
= fold_negate_const (t
, type
);
562 if (TREE_OVERFLOW (tem
) == TREE_OVERFLOW (t
)
563 || (ANY_INTEGRAL_TYPE_P (type
)
564 && !TYPE_OVERFLOW_TRAPS (type
)
565 && TYPE_OVERFLOW_WRAPS (type
))
566 || (flag_sanitize
& SANITIZE_SI_OVERFLOW
) == 0)
571 tem
= fold_negate_const (t
, type
);
575 tem
= fold_negate_const (t
, type
);
580 tree rpart
= fold_negate_expr (loc
, TREE_REALPART (t
));
581 tree ipart
= fold_negate_expr (loc
, TREE_IMAGPART (t
));
583 return build_complex (type
, rpart
, ipart
);
589 int count
= TYPE_VECTOR_SUBPARTS (type
), i
;
590 tree
*elts
= XALLOCAVEC (tree
, count
);
592 for (i
= 0; i
< count
; i
++)
594 elts
[i
] = fold_negate_expr (loc
, VECTOR_CST_ELT (t
, i
));
595 if (elts
[i
] == NULL_TREE
)
599 return build_vector (type
, elts
);
603 if (negate_expr_p (t
))
604 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
605 fold_negate_expr (loc
, TREE_OPERAND (t
, 0)),
606 fold_negate_expr (loc
, TREE_OPERAND (t
, 1)));
610 if (negate_expr_p (t
))
611 return fold_build1_loc (loc
, CONJ_EXPR
, type
,
612 fold_negate_expr (loc
, TREE_OPERAND (t
, 0)));
616 if (!TYPE_OVERFLOW_SANITIZED (type
))
617 return TREE_OPERAND (t
, 0);
621 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
622 && !HONOR_SIGNED_ZEROS (element_mode (type
)))
624 /* -(A + B) -> (-B) - A. */
625 if (negate_expr_p (TREE_OPERAND (t
, 1))
626 && reorder_operands_p (TREE_OPERAND (t
, 0),
627 TREE_OPERAND (t
, 1)))
629 tem
= negate_expr (TREE_OPERAND (t
, 1));
630 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
631 tem
, TREE_OPERAND (t
, 0));
634 /* -(A + B) -> (-A) - B. */
635 if (negate_expr_p (TREE_OPERAND (t
, 0)))
637 tem
= negate_expr (TREE_OPERAND (t
, 0));
638 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
639 tem
, TREE_OPERAND (t
, 1));
645 /* - (A - B) -> B - A */
646 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
647 && !HONOR_SIGNED_ZEROS (element_mode (type
))
648 && reorder_operands_p (TREE_OPERAND (t
, 0), TREE_OPERAND (t
, 1)))
649 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
650 TREE_OPERAND (t
, 1), TREE_OPERAND (t
, 0));
654 if (TYPE_UNSIGNED (type
))
660 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
)))
662 tem
= TREE_OPERAND (t
, 1);
663 if (negate_expr_p (tem
))
664 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
665 TREE_OPERAND (t
, 0), negate_expr (tem
));
666 tem
= TREE_OPERAND (t
, 0);
667 if (negate_expr_p (tem
))
668 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
669 negate_expr (tem
), TREE_OPERAND (t
, 1));
676 /* In general we can't negate A / B, because if A is INT_MIN and
677 B is 1, we may turn this into INT_MIN / -1 which is undefined
678 and actually traps on some architectures. But if overflow is
679 undefined, we can negate, because - (INT_MIN / 1) is an
681 if (!INTEGRAL_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
683 const char * const warnmsg
= G_("assuming signed overflow does not "
684 "occur when negating a division");
685 tem
= TREE_OPERAND (t
, 1);
686 if (negate_expr_p (tem
))
688 if (INTEGRAL_TYPE_P (type
)
689 && (TREE_CODE (tem
) != INTEGER_CST
690 || integer_onep (tem
)))
691 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MISC
);
692 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
693 TREE_OPERAND (t
, 0), negate_expr (tem
));
695 /* If overflow is undefined then we have to be careful because
696 we ask whether it's ok to associate the negate with the
697 division which is not ok for example for
698 -((a - b) / c) where (-(a - b)) / c may invoke undefined
699 overflow because of negating INT_MIN. So do not use
700 negate_expr_p here but open-code the two important cases. */
701 tem
= TREE_OPERAND (t
, 0);
702 if ((INTEGRAL_TYPE_P (type
)
703 && (TREE_CODE (tem
) == NEGATE_EXPR
704 || (TREE_CODE (tem
) == INTEGER_CST
705 && may_negate_without_overflow_p (tem
))))
706 || !INTEGRAL_TYPE_P (type
))
707 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
708 negate_expr (tem
), TREE_OPERAND (t
, 1));
713 /* Convert -((double)float) into (double)(-float). */
714 if (TREE_CODE (type
) == REAL_TYPE
)
716 tem
= strip_float_extensions (t
);
717 if (tem
!= t
&& negate_expr_p (tem
))
718 return fold_convert_loc (loc
, type
, negate_expr (tem
));
723 /* Negate -f(x) as f(-x). */
724 if (negate_mathfn_p (builtin_mathfn_code (t
))
725 && negate_expr_p (CALL_EXPR_ARG (t
, 0)))
729 fndecl
= get_callee_fndecl (t
);
730 arg
= negate_expr (CALL_EXPR_ARG (t
, 0));
731 return build_call_expr_loc (loc
, fndecl
, 1, arg
);
736 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
737 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
739 tree op1
= TREE_OPERAND (t
, 1);
740 if (wi::eq_p (op1
, TYPE_PRECISION (type
) - 1))
742 tree ntype
= TYPE_UNSIGNED (type
)
743 ? signed_type_for (type
)
744 : unsigned_type_for (type
);
745 tree temp
= fold_convert_loc (loc
, ntype
, TREE_OPERAND (t
, 0));
746 temp
= fold_build2_loc (loc
, RSHIFT_EXPR
, ntype
, temp
, op1
);
747 return fold_convert_loc (loc
, type
, temp
);
759 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
760 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
772 loc
= EXPR_LOCATION (t
);
773 type
= TREE_TYPE (t
);
776 tem
= fold_negate_expr (loc
, t
);
778 tem
= build1_loc (loc
, NEGATE_EXPR
, TREE_TYPE (t
), t
);
779 return fold_convert_loc (loc
, type
, tem
);
782 /* Split a tree IN into a constant, literal and variable parts that could be
783 combined with CODE to make IN. "constant" means an expression with
784 TREE_CONSTANT but that isn't an actual constant. CODE must be a
785 commutative arithmetic operation. Store the constant part into *CONP,
786 the literal in *LITP and return the variable part. If a part isn't
787 present, set it to null. If the tree does not decompose in this way,
788 return the entire tree as the variable part and the other parts as null.
790 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
791 case, we negate an operand that was subtracted. Except if it is a
792 literal for which we use *MINUS_LITP instead.
794 If NEGATE_P is true, we are negating all of IN, again except a literal
795 for which we use *MINUS_LITP instead.
797 If IN is itself a literal or constant, return it as appropriate.
799 Note that we do not guarantee that any of the three values will be the
800 same type as IN, but they will have the same signedness and mode. */
803 split_tree (tree in
, enum tree_code code
, tree
*conp
, tree
*litp
,
804 tree
*minus_litp
, int negate_p
)
812 /* Strip any conversions that don't change the machine mode or signedness. */
813 STRIP_SIGN_NOPS (in
);
815 if (TREE_CODE (in
) == INTEGER_CST
|| TREE_CODE (in
) == REAL_CST
816 || TREE_CODE (in
) == FIXED_CST
)
818 else if (TREE_CODE (in
) == code
819 || ((! FLOAT_TYPE_P (TREE_TYPE (in
)) || flag_associative_math
)
820 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in
))
821 /* We can associate addition and subtraction together (even
822 though the C standard doesn't say so) for integers because
823 the value is not affected. For reals, the value might be
824 affected, so we can't. */
825 && ((code
== PLUS_EXPR
&& TREE_CODE (in
) == MINUS_EXPR
)
826 || (code
== MINUS_EXPR
&& TREE_CODE (in
) == PLUS_EXPR
))))
828 tree op0
= TREE_OPERAND (in
, 0);
829 tree op1
= TREE_OPERAND (in
, 1);
830 int neg1_p
= TREE_CODE (in
) == MINUS_EXPR
;
831 int neg_litp_p
= 0, neg_conp_p
= 0, neg_var_p
= 0;
833 /* First see if either of the operands is a literal, then a constant. */
834 if (TREE_CODE (op0
) == INTEGER_CST
|| TREE_CODE (op0
) == REAL_CST
835 || TREE_CODE (op0
) == FIXED_CST
)
836 *litp
= op0
, op0
= 0;
837 else if (TREE_CODE (op1
) == INTEGER_CST
|| TREE_CODE (op1
) == REAL_CST
838 || TREE_CODE (op1
) == FIXED_CST
)
839 *litp
= op1
, neg_litp_p
= neg1_p
, op1
= 0;
841 if (op0
!= 0 && TREE_CONSTANT (op0
))
842 *conp
= op0
, op0
= 0;
843 else if (op1
!= 0 && TREE_CONSTANT (op1
))
844 *conp
= op1
, neg_conp_p
= neg1_p
, op1
= 0;
846 /* If we haven't dealt with either operand, this is not a case we can
847 decompose. Otherwise, VAR is either of the ones remaining, if any. */
848 if (op0
!= 0 && op1
!= 0)
853 var
= op1
, neg_var_p
= neg1_p
;
855 /* Now do any needed negations. */
857 *minus_litp
= *litp
, *litp
= 0;
859 *conp
= negate_expr (*conp
);
861 var
= negate_expr (var
);
863 else if (TREE_CODE (in
) == BIT_NOT_EXPR
864 && code
== PLUS_EXPR
)
866 /* -X - 1 is folded to ~X, undo that here. */
867 *minus_litp
= build_one_cst (TREE_TYPE (in
));
868 var
= negate_expr (TREE_OPERAND (in
, 0));
870 else if (TREE_CONSTANT (in
))
878 *minus_litp
= *litp
, *litp
= 0;
879 else if (*minus_litp
)
880 *litp
= *minus_litp
, *minus_litp
= 0;
881 *conp
= negate_expr (*conp
);
882 var
= negate_expr (var
);
888 /* Re-associate trees split by the above function. T1 and T2 are
889 either expressions to associate or null. Return the new
890 expression, if any. LOC is the location of the new expression. If
891 we build an operation, do it in TYPE and with CODE. */
894 associate_trees (location_t loc
, tree t1
, tree t2
, enum tree_code code
, tree type
)
901 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
902 try to fold this since we will have infinite recursion. But do
903 deal with any NEGATE_EXPRs. */
904 if (TREE_CODE (t1
) == code
|| TREE_CODE (t2
) == code
905 || TREE_CODE (t1
) == MINUS_EXPR
|| TREE_CODE (t2
) == MINUS_EXPR
)
907 if (code
== PLUS_EXPR
)
909 if (TREE_CODE (t1
) == NEGATE_EXPR
)
910 return build2_loc (loc
, MINUS_EXPR
, type
,
911 fold_convert_loc (loc
, type
, t2
),
912 fold_convert_loc (loc
, type
,
913 TREE_OPERAND (t1
, 0)));
914 else if (TREE_CODE (t2
) == NEGATE_EXPR
)
915 return build2_loc (loc
, MINUS_EXPR
, type
,
916 fold_convert_loc (loc
, type
, t1
),
917 fold_convert_loc (loc
, type
,
918 TREE_OPERAND (t2
, 0)));
919 else if (integer_zerop (t2
))
920 return fold_convert_loc (loc
, type
, t1
);
922 else if (code
== MINUS_EXPR
)
924 if (integer_zerop (t2
))
925 return fold_convert_loc (loc
, type
, t1
);
928 return build2_loc (loc
, code
, type
, fold_convert_loc (loc
, type
, t1
),
929 fold_convert_loc (loc
, type
, t2
));
932 return fold_build2_loc (loc
, code
, type
, fold_convert_loc (loc
, type
, t1
),
933 fold_convert_loc (loc
, type
, t2
));
936 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
937 for use in int_const_binop, size_binop and size_diffop. */
940 int_binop_types_match_p (enum tree_code code
, const_tree type1
, const_tree type2
)
942 if (!INTEGRAL_TYPE_P (type1
) && !POINTER_TYPE_P (type1
))
944 if (!INTEGRAL_TYPE_P (type2
) && !POINTER_TYPE_P (type2
))
959 return TYPE_UNSIGNED (type1
) == TYPE_UNSIGNED (type2
)
960 && TYPE_PRECISION (type1
) == TYPE_PRECISION (type2
)
961 && TYPE_MODE (type1
) == TYPE_MODE (type2
);
965 /* Combine two integer constants ARG1 and ARG2 under operation CODE
966 to produce a new constant. Return NULL_TREE if we don't know how
967 to evaluate CODE at compile-time. */
970 int_const_binop_1 (enum tree_code code
, const_tree arg1
, const_tree parg2
,
975 tree type
= TREE_TYPE (arg1
);
976 signop sign
= TYPE_SIGN (type
);
977 bool overflow
= false;
979 wide_int arg2
= wide_int::from (parg2
, TYPE_PRECISION (type
),
980 TYPE_SIGN (TREE_TYPE (parg2
)));
985 res
= wi::bit_or (arg1
, arg2
);
989 res
= wi::bit_xor (arg1
, arg2
);
993 res
= wi::bit_and (arg1
, arg2
);
998 if (wi::neg_p (arg2
))
1001 if (code
== RSHIFT_EXPR
)
1007 if (code
== RSHIFT_EXPR
)
1008 /* It's unclear from the C standard whether shifts can overflow.
1009 The following code ignores overflow; perhaps a C standard
1010 interpretation ruling is needed. */
1011 res
= wi::rshift (arg1
, arg2
, sign
);
1013 res
= wi::lshift (arg1
, arg2
);
1018 if (wi::neg_p (arg2
))
1021 if (code
== RROTATE_EXPR
)
1022 code
= LROTATE_EXPR
;
1024 code
= RROTATE_EXPR
;
1027 if (code
== RROTATE_EXPR
)
1028 res
= wi::rrotate (arg1
, arg2
);
1030 res
= wi::lrotate (arg1
, arg2
);
1034 res
= wi::add (arg1
, arg2
, sign
, &overflow
);
1038 res
= wi::sub (arg1
, arg2
, sign
, &overflow
);
1042 res
= wi::mul (arg1
, arg2
, sign
, &overflow
);
1045 case MULT_HIGHPART_EXPR
:
1046 res
= wi::mul_high (arg1
, arg2
, sign
);
1049 case TRUNC_DIV_EXPR
:
1050 case EXACT_DIV_EXPR
:
1053 res
= wi::div_trunc (arg1
, arg2
, sign
, &overflow
);
1056 case FLOOR_DIV_EXPR
:
1059 res
= wi::div_floor (arg1
, arg2
, sign
, &overflow
);
1065 res
= wi::div_ceil (arg1
, arg2
, sign
, &overflow
);
1068 case ROUND_DIV_EXPR
:
1071 res
= wi::div_round (arg1
, arg2
, sign
, &overflow
);
1074 case TRUNC_MOD_EXPR
:
1077 res
= wi::mod_trunc (arg1
, arg2
, sign
, &overflow
);
1080 case FLOOR_MOD_EXPR
:
1083 res
= wi::mod_floor (arg1
, arg2
, sign
, &overflow
);
1089 res
= wi::mod_ceil (arg1
, arg2
, sign
, &overflow
);
1092 case ROUND_MOD_EXPR
:
1095 res
= wi::mod_round (arg1
, arg2
, sign
, &overflow
);
1099 res
= wi::min (arg1
, arg2
, sign
);
1103 res
= wi::max (arg1
, arg2
, sign
);
1110 t
= force_fit_type (type
, res
, overflowable
,
1111 (((sign
== SIGNED
|| overflowable
== -1)
1113 | TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (parg2
)));
1119 int_const_binop (enum tree_code code
, const_tree arg1
, const_tree arg2
)
1121 return int_const_binop_1 (code
, arg1
, arg2
, 1);
1124 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1125 constant. We assume ARG1 and ARG2 have the same data type, or at least
1126 are the same kind of constant and the same machine mode. Return zero if
1127 combining the constants is not allowed in the current operating mode. */
1130 const_binop (enum tree_code code
, tree arg1
, tree arg2
)
1132 /* Sanity check for the recursive cases. */
1139 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg2
) == INTEGER_CST
)
1141 if (code
== POINTER_PLUS_EXPR
)
1142 return int_const_binop (PLUS_EXPR
,
1143 arg1
, fold_convert (TREE_TYPE (arg1
), arg2
));
1145 return int_const_binop (code
, arg1
, arg2
);
1148 if (TREE_CODE (arg1
) == REAL_CST
&& TREE_CODE (arg2
) == REAL_CST
)
1153 REAL_VALUE_TYPE value
;
1154 REAL_VALUE_TYPE result
;
1158 /* The following codes are handled by real_arithmetic. */
1173 d1
= TREE_REAL_CST (arg1
);
1174 d2
= TREE_REAL_CST (arg2
);
1176 type
= TREE_TYPE (arg1
);
1177 mode
= TYPE_MODE (type
);
1179 /* Don't perform operation if we honor signaling NaNs and
1180 either operand is a NaN. */
1181 if (HONOR_SNANS (mode
)
1182 && (REAL_VALUE_ISNAN (d1
) || REAL_VALUE_ISNAN (d2
)))
1185 /* Don't perform operation if it would raise a division
1186 by zero exception. */
1187 if (code
== RDIV_EXPR
1188 && REAL_VALUES_EQUAL (d2
, dconst0
)
1189 && (flag_trapping_math
|| ! MODE_HAS_INFINITIES (mode
)))
1192 /* If either operand is a NaN, just return it. Otherwise, set up
1193 for floating-point trap; we return an overflow. */
1194 if (REAL_VALUE_ISNAN (d1
))
1196 else if (REAL_VALUE_ISNAN (d2
))
1199 inexact
= real_arithmetic (&value
, code
, &d1
, &d2
);
1200 real_convert (&result
, mode
, &value
);
1202 /* Don't constant fold this floating point operation if
1203 the result has overflowed and flag_trapping_math. */
1204 if (flag_trapping_math
1205 && MODE_HAS_INFINITIES (mode
)
1206 && REAL_VALUE_ISINF (result
)
1207 && !REAL_VALUE_ISINF (d1
)
1208 && !REAL_VALUE_ISINF (d2
))
1211 /* Don't constant fold this floating point operation if the
1212 result may dependent upon the run-time rounding mode and
1213 flag_rounding_math is set, or if GCC's software emulation
1214 is unable to accurately represent the result. */
1215 if ((flag_rounding_math
1216 || (MODE_COMPOSITE_P (mode
) && !flag_unsafe_math_optimizations
))
1217 && (inexact
|| !real_identical (&result
, &value
)))
1220 t
= build_real (type
, result
);
1222 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
);
1226 if (TREE_CODE (arg1
) == FIXED_CST
)
1228 FIXED_VALUE_TYPE f1
;
1229 FIXED_VALUE_TYPE f2
;
1230 FIXED_VALUE_TYPE result
;
1235 /* The following codes are handled by fixed_arithmetic. */
1241 case TRUNC_DIV_EXPR
:
1242 if (TREE_CODE (arg2
) != FIXED_CST
)
1244 f2
= TREE_FIXED_CST (arg2
);
1250 if (TREE_CODE (arg2
) != INTEGER_CST
)
1253 f2
.data
.high
= w2
.elt (1);
1254 f2
.data
.low
= w2
.elt (0);
1263 f1
= TREE_FIXED_CST (arg1
);
1264 type
= TREE_TYPE (arg1
);
1265 sat_p
= TYPE_SATURATING (type
);
1266 overflow_p
= fixed_arithmetic (&result
, code
, &f1
, &f2
, sat_p
);
1267 t
= build_fixed (type
, result
);
1268 /* Propagate overflow flags. */
1269 if (overflow_p
| TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
))
1270 TREE_OVERFLOW (t
) = 1;
1274 if (TREE_CODE (arg1
) == COMPLEX_CST
&& TREE_CODE (arg2
) == COMPLEX_CST
)
1276 tree type
= TREE_TYPE (arg1
);
1277 tree r1
= TREE_REALPART (arg1
);
1278 tree i1
= TREE_IMAGPART (arg1
);
1279 tree r2
= TREE_REALPART (arg2
);
1280 tree i2
= TREE_IMAGPART (arg2
);
1287 real
= const_binop (code
, r1
, r2
);
1288 imag
= const_binop (code
, i1
, i2
);
1292 if (COMPLEX_FLOAT_TYPE_P (type
))
1293 return do_mpc_arg2 (arg1
, arg2
, type
,
1294 /* do_nonfinite= */ folding_initializer
,
1297 real
= const_binop (MINUS_EXPR
,
1298 const_binop (MULT_EXPR
, r1
, r2
),
1299 const_binop (MULT_EXPR
, i1
, i2
));
1300 imag
= const_binop (PLUS_EXPR
,
1301 const_binop (MULT_EXPR
, r1
, i2
),
1302 const_binop (MULT_EXPR
, i1
, r2
));
1306 if (COMPLEX_FLOAT_TYPE_P (type
))
1307 return do_mpc_arg2 (arg1
, arg2
, type
,
1308 /* do_nonfinite= */ folding_initializer
,
1311 case TRUNC_DIV_EXPR
:
1313 case FLOOR_DIV_EXPR
:
1314 case ROUND_DIV_EXPR
:
1315 if (flag_complex_method
== 0)
1317 /* Keep this algorithm in sync with
1318 tree-complex.c:expand_complex_div_straight().
1320 Expand complex division to scalars, straightforward algorithm.
1321 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1325 = const_binop (PLUS_EXPR
,
1326 const_binop (MULT_EXPR
, r2
, r2
),
1327 const_binop (MULT_EXPR
, i2
, i2
));
1329 = const_binop (PLUS_EXPR
,
1330 const_binop (MULT_EXPR
, r1
, r2
),
1331 const_binop (MULT_EXPR
, i1
, i2
));
1333 = const_binop (MINUS_EXPR
,
1334 const_binop (MULT_EXPR
, i1
, r2
),
1335 const_binop (MULT_EXPR
, r1
, i2
));
1337 real
= const_binop (code
, t1
, magsquared
);
1338 imag
= const_binop (code
, t2
, magsquared
);
1342 /* Keep this algorithm in sync with
1343 tree-complex.c:expand_complex_div_wide().
1345 Expand complex division to scalars, modified algorithm to minimize
1346 overflow with wide input ranges. */
1347 tree compare
= fold_build2 (LT_EXPR
, boolean_type_node
,
1348 fold_abs_const (r2
, TREE_TYPE (type
)),
1349 fold_abs_const (i2
, TREE_TYPE (type
)));
1351 if (integer_nonzerop (compare
))
1353 /* In the TRUE branch, we compute
1355 div = (br * ratio) + bi;
1356 tr = (ar * ratio) + ai;
1357 ti = (ai * ratio) - ar;
1360 tree ratio
= const_binop (code
, r2
, i2
);
1361 tree div
= const_binop (PLUS_EXPR
, i2
,
1362 const_binop (MULT_EXPR
, r2
, ratio
));
1363 real
= const_binop (MULT_EXPR
, r1
, ratio
);
1364 real
= const_binop (PLUS_EXPR
, real
, i1
);
1365 real
= const_binop (code
, real
, div
);
1367 imag
= const_binop (MULT_EXPR
, i1
, ratio
);
1368 imag
= const_binop (MINUS_EXPR
, imag
, r1
);
1369 imag
= const_binop (code
, imag
, div
);
1373 /* In the FALSE branch, we compute
1375 divisor = (d * ratio) + c;
1376 tr = (b * ratio) + a;
1377 ti = b - (a * ratio);
1380 tree ratio
= const_binop (code
, i2
, r2
);
1381 tree div
= const_binop (PLUS_EXPR
, r2
,
1382 const_binop (MULT_EXPR
, i2
, ratio
));
1384 real
= const_binop (MULT_EXPR
, i1
, ratio
);
1385 real
= const_binop (PLUS_EXPR
, real
, r1
);
1386 real
= const_binop (code
, real
, div
);
1388 imag
= const_binop (MULT_EXPR
, r1
, ratio
);
1389 imag
= const_binop (MINUS_EXPR
, i1
, imag
);
1390 imag
= const_binop (code
, imag
, div
);
1400 return build_complex (type
, real
, imag
);
1403 if (TREE_CODE (arg1
) == VECTOR_CST
1404 && TREE_CODE (arg2
) == VECTOR_CST
)
1406 tree type
= TREE_TYPE (arg1
);
1407 int count
= TYPE_VECTOR_SUBPARTS (type
), i
;
1408 tree
*elts
= XALLOCAVEC (tree
, count
);
1410 for (i
= 0; i
< count
; i
++)
1412 tree elem1
= VECTOR_CST_ELT (arg1
, i
);
1413 tree elem2
= VECTOR_CST_ELT (arg2
, i
);
1415 elts
[i
] = const_binop (code
, elem1
, elem2
);
1417 /* It is possible that const_binop cannot handle the given
1418 code and return NULL_TREE */
1419 if (elts
[i
] == NULL_TREE
)
1423 return build_vector (type
, elts
);
1426 /* Shifts allow a scalar offset for a vector. */
1427 if (TREE_CODE (arg1
) == VECTOR_CST
1428 && TREE_CODE (arg2
) == INTEGER_CST
)
1430 tree type
= TREE_TYPE (arg1
);
1431 int count
= TYPE_VECTOR_SUBPARTS (type
), i
;
1432 tree
*elts
= XALLOCAVEC (tree
, count
);
1434 for (i
= 0; i
< count
; i
++)
1436 tree elem1
= VECTOR_CST_ELT (arg1
, i
);
1438 elts
[i
] = const_binop (code
, elem1
, arg2
);
1440 /* It is possible that const_binop cannot handle the given
1441 code and return NULL_TREE. */
1442 if (elts
[i
] == NULL_TREE
)
1446 return build_vector (type
, elts
);
1451 /* Overload that adds a TYPE parameter to be able to dispatch
1452 to fold_relational_const. */
1455 const_binop (enum tree_code code
, tree type
, tree arg1
, tree arg2
)
1457 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
1458 return fold_relational_const (code
, type
, arg1
, arg2
);
1460 /* ??? Until we make the const_binop worker take the type of the
1461 result as argument put those cases that need it here. */
1465 if ((TREE_CODE (arg1
) == REAL_CST
1466 && TREE_CODE (arg2
) == REAL_CST
)
1467 || (TREE_CODE (arg1
) == INTEGER_CST
1468 && TREE_CODE (arg2
) == INTEGER_CST
))
1469 return build_complex (type
, arg1
, arg2
);
1472 case VEC_PACK_TRUNC_EXPR
:
1473 case VEC_PACK_FIX_TRUNC_EXPR
:
1475 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (type
), i
;
1478 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)) == nelts
/ 2
1479 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2
)) == nelts
/ 2);
1480 if (TREE_CODE (arg1
) != VECTOR_CST
1481 || TREE_CODE (arg2
) != VECTOR_CST
)
1484 elts
= XALLOCAVEC (tree
, nelts
);
1485 if (!vec_cst_ctor_to_array (arg1
, elts
)
1486 || !vec_cst_ctor_to_array (arg2
, elts
+ nelts
/ 2))
1489 for (i
= 0; i
< nelts
; i
++)
1491 elts
[i
] = fold_convert_const (code
== VEC_PACK_TRUNC_EXPR
1492 ? NOP_EXPR
: FIX_TRUNC_EXPR
,
1493 TREE_TYPE (type
), elts
[i
]);
1494 if (elts
[i
] == NULL_TREE
|| !CONSTANT_CLASS_P (elts
[i
]))
1498 return build_vector (type
, elts
);
1501 case VEC_WIDEN_MULT_LO_EXPR
:
1502 case VEC_WIDEN_MULT_HI_EXPR
:
1503 case VEC_WIDEN_MULT_EVEN_EXPR
:
1504 case VEC_WIDEN_MULT_ODD_EXPR
:
1506 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (type
);
1507 unsigned int out
, ofs
, scale
;
1510 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)) == nelts
* 2
1511 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2
)) == nelts
* 2);
1512 if (TREE_CODE (arg1
) != VECTOR_CST
|| TREE_CODE (arg2
) != VECTOR_CST
)
1515 elts
= XALLOCAVEC (tree
, nelts
* 4);
1516 if (!vec_cst_ctor_to_array (arg1
, elts
)
1517 || !vec_cst_ctor_to_array (arg2
, elts
+ nelts
* 2))
1520 if (code
== VEC_WIDEN_MULT_LO_EXPR
)
1521 scale
= 0, ofs
= BYTES_BIG_ENDIAN
? nelts
: 0;
1522 else if (code
== VEC_WIDEN_MULT_HI_EXPR
)
1523 scale
= 0, ofs
= BYTES_BIG_ENDIAN
? 0 : nelts
;
1524 else if (code
== VEC_WIDEN_MULT_EVEN_EXPR
)
1526 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1529 for (out
= 0; out
< nelts
; out
++)
1531 unsigned int in1
= (out
<< scale
) + ofs
;
1532 unsigned int in2
= in1
+ nelts
* 2;
1535 t1
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
), elts
[in1
]);
1536 t2
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
), elts
[in2
]);
1538 if (t1
== NULL_TREE
|| t2
== NULL_TREE
)
1540 elts
[out
] = const_binop (MULT_EXPR
, t1
, t2
);
1541 if (elts
[out
] == NULL_TREE
|| !CONSTANT_CLASS_P (elts
[out
]))
1545 return build_vector (type
, elts
);
1551 if (TREE_CODE_CLASS (code
) != tcc_binary
)
1554 /* Make sure type and arg0 have the same saturating flag. */
1555 gcc_checking_assert (TYPE_SATURATING (type
)
1556 == TYPE_SATURATING (TREE_TYPE (arg1
)));
1558 return const_binop (code
, arg1
, arg2
);
1561 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1562 Return zero if computing the constants is not possible. */
1565 const_unop (enum tree_code code
, tree type
, tree arg0
)
1571 case FIX_TRUNC_EXPR
:
1572 case FIXED_CONVERT_EXPR
:
1573 return fold_convert_const (code
, type
, arg0
);
1575 case ADDR_SPACE_CONVERT_EXPR
:
1576 if (integer_zerop (arg0
))
1577 return fold_convert_const (code
, type
, arg0
);
1580 case VIEW_CONVERT_EXPR
:
1581 return fold_view_convert_expr (type
, arg0
);
1585 /* Can't call fold_negate_const directly here as that doesn't
1586 handle all cases and we might not be able to negate some
1588 tree tem
= fold_negate_expr (UNKNOWN_LOCATION
, arg0
);
1589 if (tem
&& CONSTANT_CLASS_P (tem
))
1595 if (TREE_CODE (arg0
) == INTEGER_CST
|| TREE_CODE (arg0
) == REAL_CST
)
1596 return fold_abs_const (arg0
, type
);
1600 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1602 tree ipart
= fold_negate_const (TREE_IMAGPART (arg0
),
1604 return build_complex (type
, TREE_REALPART (arg0
), ipart
);
1609 if (TREE_CODE (arg0
) == INTEGER_CST
)
1610 return fold_not_const (arg0
, type
);
1611 /* Perform BIT_NOT_EXPR on each element individually. */
1612 else if (TREE_CODE (arg0
) == VECTOR_CST
)
1616 unsigned count
= VECTOR_CST_NELTS (arg0
), i
;
1618 elements
= XALLOCAVEC (tree
, count
);
1619 for (i
= 0; i
< count
; i
++)
1621 elem
= VECTOR_CST_ELT (arg0
, i
);
1622 elem
= const_unop (BIT_NOT_EXPR
, TREE_TYPE (type
), elem
);
1623 if (elem
== NULL_TREE
)
1628 return build_vector (type
, elements
);
1632 case TRUTH_NOT_EXPR
:
1633 if (TREE_CODE (arg0
) == INTEGER_CST
)
1634 return constant_boolean_node (integer_zerop (arg0
), type
);
1638 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1639 return fold_convert (type
, TREE_REALPART (arg0
));
1643 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1644 return fold_convert (type
, TREE_IMAGPART (arg0
));
1647 case VEC_UNPACK_LO_EXPR
:
1648 case VEC_UNPACK_HI_EXPR
:
1649 case VEC_UNPACK_FLOAT_LO_EXPR
:
1650 case VEC_UNPACK_FLOAT_HI_EXPR
:
1652 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (type
), i
;
1654 enum tree_code subcode
;
1656 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)) == nelts
* 2);
1657 if (TREE_CODE (arg0
) != VECTOR_CST
)
1660 elts
= XALLOCAVEC (tree
, nelts
* 2);
1661 if (!vec_cst_ctor_to_array (arg0
, elts
))
1664 if ((!BYTES_BIG_ENDIAN
) ^ (code
== VEC_UNPACK_LO_EXPR
1665 || code
== VEC_UNPACK_FLOAT_LO_EXPR
))
1668 if (code
== VEC_UNPACK_LO_EXPR
|| code
== VEC_UNPACK_HI_EXPR
)
1671 subcode
= FLOAT_EXPR
;
1673 for (i
= 0; i
< nelts
; i
++)
1675 elts
[i
] = fold_convert_const (subcode
, TREE_TYPE (type
), elts
[i
]);
1676 if (elts
[i
] == NULL_TREE
|| !CONSTANT_CLASS_P (elts
[i
]))
1680 return build_vector (type
, elts
);
1683 case REDUC_MIN_EXPR
:
1684 case REDUC_MAX_EXPR
:
1685 case REDUC_PLUS_EXPR
:
1687 unsigned int nelts
, i
;
1689 enum tree_code subcode
;
1691 if (TREE_CODE (arg0
) != VECTOR_CST
)
1693 nelts
= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
));
1695 elts
= XALLOCAVEC (tree
, nelts
);
1696 if (!vec_cst_ctor_to_array (arg0
, elts
))
1701 case REDUC_MIN_EXPR
: subcode
= MIN_EXPR
; break;
1702 case REDUC_MAX_EXPR
: subcode
= MAX_EXPR
; break;
1703 case REDUC_PLUS_EXPR
: subcode
= PLUS_EXPR
; break;
1704 default: gcc_unreachable ();
1707 for (i
= 1; i
< nelts
; i
++)
1709 elts
[0] = const_binop (subcode
, elts
[0], elts
[i
]);
1710 if (elts
[0] == NULL_TREE
|| !CONSTANT_CLASS_P (elts
[0]))
1724 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1725 indicates which particular sizetype to create. */
1728 size_int_kind (HOST_WIDE_INT number
, enum size_type_kind kind
)
1730 return build_int_cst (sizetype_tab
[(int) kind
], number
);
1733 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1734 is a tree code. The type of the result is taken from the operands.
1735 Both must be equivalent integer types, ala int_binop_types_match_p.
1736 If the operands are constant, so is the result. */
1739 size_binop_loc (location_t loc
, enum tree_code code
, tree arg0
, tree arg1
)
1741 tree type
= TREE_TYPE (arg0
);
1743 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
1744 return error_mark_node
;
1746 gcc_assert (int_binop_types_match_p (code
, TREE_TYPE (arg0
),
1749 /* Handle the special case of two integer constants faster. */
1750 if (TREE_CODE (arg0
) == INTEGER_CST
&& TREE_CODE (arg1
) == INTEGER_CST
)
1752 /* And some specific cases even faster than that. */
1753 if (code
== PLUS_EXPR
)
1755 if (integer_zerop (arg0
) && !TREE_OVERFLOW (arg0
))
1757 if (integer_zerop (arg1
) && !TREE_OVERFLOW (arg1
))
1760 else if (code
== MINUS_EXPR
)
1762 if (integer_zerop (arg1
) && !TREE_OVERFLOW (arg1
))
1765 else if (code
== MULT_EXPR
)
1767 if (integer_onep (arg0
) && !TREE_OVERFLOW (arg0
))
1771 /* Handle general case of two integer constants. For sizetype
1772 constant calculations we always want to know about overflow,
1773 even in the unsigned case. */
1774 return int_const_binop_1 (code
, arg0
, arg1
, -1);
1777 return fold_build2_loc (loc
, code
, type
, arg0
, arg1
);
1780 /* Given two values, either both of sizetype or both of bitsizetype,
1781 compute the difference between the two values. Return the value
1782 in signed type corresponding to the type of the operands. */
1785 size_diffop_loc (location_t loc
, tree arg0
, tree arg1
)
1787 tree type
= TREE_TYPE (arg0
);
1790 gcc_assert (int_binop_types_match_p (MINUS_EXPR
, TREE_TYPE (arg0
),
1793 /* If the type is already signed, just do the simple thing. */
1794 if (!TYPE_UNSIGNED (type
))
1795 return size_binop_loc (loc
, MINUS_EXPR
, arg0
, arg1
);
1797 if (type
== sizetype
)
1799 else if (type
== bitsizetype
)
1800 ctype
= sbitsizetype
;
1802 ctype
= signed_type_for (type
);
1804 /* If either operand is not a constant, do the conversions to the signed
1805 type and subtract. The hardware will do the right thing with any
1806 overflow in the subtraction. */
1807 if (TREE_CODE (arg0
) != INTEGER_CST
|| TREE_CODE (arg1
) != INTEGER_CST
)
1808 return size_binop_loc (loc
, MINUS_EXPR
,
1809 fold_convert_loc (loc
, ctype
, arg0
),
1810 fold_convert_loc (loc
, ctype
, arg1
));
1812 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1813 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1814 overflow) and negate (which can't either). Special-case a result
1815 of zero while we're here. */
1816 if (tree_int_cst_equal (arg0
, arg1
))
1817 return build_int_cst (ctype
, 0);
1818 else if (tree_int_cst_lt (arg1
, arg0
))
1819 return fold_convert_loc (loc
, ctype
,
1820 size_binop_loc (loc
, MINUS_EXPR
, arg0
, arg1
));
1822 return size_binop_loc (loc
, MINUS_EXPR
, build_int_cst (ctype
, 0),
1823 fold_convert_loc (loc
, ctype
,
1824 size_binop_loc (loc
,
1829 /* A subroutine of fold_convert_const handling conversions of an
1830 INTEGER_CST to another integer type. */
1833 fold_convert_const_int_from_int (tree type
, const_tree arg1
)
1835 /* Given an integer constant, make new constant with new type,
1836 appropriately sign-extended or truncated. Use widest_int
1837 so that any extension is done according ARG1's type. */
1838 return force_fit_type (type
, wi::to_widest (arg1
),
1839 !POINTER_TYPE_P (TREE_TYPE (arg1
)),
1840 TREE_OVERFLOW (arg1
));
1843 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1844 to an integer type. */
1847 fold_convert_const_int_from_real (enum tree_code code
, tree type
, const_tree arg1
)
1849 bool overflow
= false;
1852 /* The following code implements the floating point to integer
1853 conversion rules required by the Java Language Specification,
1854 that IEEE NaNs are mapped to zero and values that overflow
1855 the target precision saturate, i.e. values greater than
1856 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1857 are mapped to INT_MIN. These semantics are allowed by the
1858 C and C++ standards that simply state that the behavior of
1859 FP-to-integer conversion is unspecified upon overflow. */
1863 REAL_VALUE_TYPE x
= TREE_REAL_CST (arg1
);
1867 case FIX_TRUNC_EXPR
:
1868 real_trunc (&r
, VOIDmode
, &x
);
1875 /* If R is NaN, return zero and show we have an overflow. */
1876 if (REAL_VALUE_ISNAN (r
))
1879 val
= wi::zero (TYPE_PRECISION (type
));
1882 /* See if R is less than the lower bound or greater than the
1887 tree lt
= TYPE_MIN_VALUE (type
);
1888 REAL_VALUE_TYPE l
= real_value_from_int_cst (NULL_TREE
, lt
);
1889 if (REAL_VALUES_LESS (r
, l
))
1898 tree ut
= TYPE_MAX_VALUE (type
);
1901 REAL_VALUE_TYPE u
= real_value_from_int_cst (NULL_TREE
, ut
);
1902 if (REAL_VALUES_LESS (u
, r
))
1911 val
= real_to_integer (&r
, &overflow
, TYPE_PRECISION (type
));
1913 t
= force_fit_type (type
, val
, -1, overflow
| TREE_OVERFLOW (arg1
));
1917 /* A subroutine of fold_convert_const handling conversions of a
1918 FIXED_CST to an integer type. */
1921 fold_convert_const_int_from_fixed (tree type
, const_tree arg1
)
1924 double_int temp
, temp_trunc
;
1927 /* Right shift FIXED_CST to temp by fbit. */
1928 temp
= TREE_FIXED_CST (arg1
).data
;
1929 mode
= TREE_FIXED_CST (arg1
).mode
;
1930 if (GET_MODE_FBIT (mode
) < HOST_BITS_PER_DOUBLE_INT
)
1932 temp
= temp
.rshift (GET_MODE_FBIT (mode
),
1933 HOST_BITS_PER_DOUBLE_INT
,
1934 SIGNED_FIXED_POINT_MODE_P (mode
));
1936 /* Left shift temp to temp_trunc by fbit. */
1937 temp_trunc
= temp
.lshift (GET_MODE_FBIT (mode
),
1938 HOST_BITS_PER_DOUBLE_INT
,
1939 SIGNED_FIXED_POINT_MODE_P (mode
));
1943 temp
= double_int_zero
;
1944 temp_trunc
= double_int_zero
;
1947 /* If FIXED_CST is negative, we need to round the value toward 0.
1948 By checking if the fractional bits are not zero to add 1 to temp. */
1949 if (SIGNED_FIXED_POINT_MODE_P (mode
)
1950 && temp_trunc
.is_negative ()
1951 && TREE_FIXED_CST (arg1
).data
!= temp_trunc
)
1952 temp
+= double_int_one
;
1954 /* Given a fixed-point constant, make new constant with new type,
1955 appropriately sign-extended or truncated. */
1956 t
= force_fit_type (type
, temp
, -1,
1957 (temp
.is_negative ()
1958 && (TYPE_UNSIGNED (type
)
1959 < TYPE_UNSIGNED (TREE_TYPE (arg1
))))
1960 | TREE_OVERFLOW (arg1
));
1965 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1966 to another floating point type. */
1969 fold_convert_const_real_from_real (tree type
, const_tree arg1
)
1971 REAL_VALUE_TYPE value
;
1974 real_convert (&value
, TYPE_MODE (type
), &TREE_REAL_CST (arg1
));
1975 t
= build_real (type
, value
);
1977 /* If converting an infinity or NAN to a representation that doesn't
1978 have one, set the overflow bit so that we can produce some kind of
1979 error message at the appropriate point if necessary. It's not the
1980 most user-friendly message, but it's better than nothing. */
1981 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1
))
1982 && !MODE_HAS_INFINITIES (TYPE_MODE (type
)))
1983 TREE_OVERFLOW (t
) = 1;
1984 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1
))
1985 && !MODE_HAS_NANS (TYPE_MODE (type
)))
1986 TREE_OVERFLOW (t
) = 1;
1987 /* Regular overflow, conversion produced an infinity in a mode that
1988 can't represent them. */
1989 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type
))
1990 && REAL_VALUE_ISINF (value
)
1991 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1
)))
1992 TREE_OVERFLOW (t
) = 1;
1994 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
);
1998 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
1999 to a floating point type. */
2002 fold_convert_const_real_from_fixed (tree type
, const_tree arg1
)
2004 REAL_VALUE_TYPE value
;
2007 real_convert_from_fixed (&value
, TYPE_MODE (type
), &TREE_FIXED_CST (arg1
));
2008 t
= build_real (type
, value
);
2010 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
);
2014 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2015 to another fixed-point type. */
2018 fold_convert_const_fixed_from_fixed (tree type
, const_tree arg1
)
2020 FIXED_VALUE_TYPE value
;
2024 overflow_p
= fixed_convert (&value
, TYPE_MODE (type
), &TREE_FIXED_CST (arg1
),
2025 TYPE_SATURATING (type
));
2026 t
= build_fixed (type
, value
);
2028 /* Propagate overflow flags. */
2029 if (overflow_p
| TREE_OVERFLOW (arg1
))
2030 TREE_OVERFLOW (t
) = 1;
2034 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2035 to a fixed-point type. */
2038 fold_convert_const_fixed_from_int (tree type
, const_tree arg1
)
2040 FIXED_VALUE_TYPE value
;
2045 gcc_assert (TREE_INT_CST_NUNITS (arg1
) <= 2);
2047 di
.low
= TREE_INT_CST_ELT (arg1
, 0);
2048 if (TREE_INT_CST_NUNITS (arg1
) == 1)
2049 di
.high
= (HOST_WIDE_INT
) di
.low
< 0 ? (HOST_WIDE_INT
) -1 : 0;
2051 di
.high
= TREE_INT_CST_ELT (arg1
, 1);
2053 overflow_p
= fixed_convert_from_int (&value
, TYPE_MODE (type
), di
,
2054 TYPE_UNSIGNED (TREE_TYPE (arg1
)),
2055 TYPE_SATURATING (type
));
2056 t
= build_fixed (type
, value
);
2058 /* Propagate overflow flags. */
2059 if (overflow_p
| TREE_OVERFLOW (arg1
))
2060 TREE_OVERFLOW (t
) = 1;
2064 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2065 to a fixed-point type. */
2068 fold_convert_const_fixed_from_real (tree type
, const_tree arg1
)
2070 FIXED_VALUE_TYPE value
;
2074 overflow_p
= fixed_convert_from_real (&value
, TYPE_MODE (type
),
2075 &TREE_REAL_CST (arg1
),
2076 TYPE_SATURATING (type
));
2077 t
= build_fixed (type
, value
);
2079 /* Propagate overflow flags. */
2080 if (overflow_p
| TREE_OVERFLOW (arg1
))
2081 TREE_OVERFLOW (t
) = 1;
2085 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2086 type TYPE. If no simplification can be done return NULL_TREE. */
2089 fold_convert_const (enum tree_code code
, tree type
, tree arg1
)
2091 if (TREE_TYPE (arg1
) == type
)
2094 if (POINTER_TYPE_P (type
) || INTEGRAL_TYPE_P (type
)
2095 || TREE_CODE (type
) == OFFSET_TYPE
)
2097 if (TREE_CODE (arg1
) == INTEGER_CST
)
2098 return fold_convert_const_int_from_int (type
, arg1
);
2099 else if (TREE_CODE (arg1
) == REAL_CST
)
2100 return fold_convert_const_int_from_real (code
, type
, arg1
);
2101 else if (TREE_CODE (arg1
) == FIXED_CST
)
2102 return fold_convert_const_int_from_fixed (type
, arg1
);
2104 else if (TREE_CODE (type
) == REAL_TYPE
)
2106 if (TREE_CODE (arg1
) == INTEGER_CST
)
2107 return build_real_from_int_cst (type
, arg1
);
2108 else if (TREE_CODE (arg1
) == REAL_CST
)
2109 return fold_convert_const_real_from_real (type
, arg1
);
2110 else if (TREE_CODE (arg1
) == FIXED_CST
)
2111 return fold_convert_const_real_from_fixed (type
, arg1
);
2113 else if (TREE_CODE (type
) == FIXED_POINT_TYPE
)
2115 if (TREE_CODE (arg1
) == FIXED_CST
)
2116 return fold_convert_const_fixed_from_fixed (type
, arg1
);
2117 else if (TREE_CODE (arg1
) == INTEGER_CST
)
2118 return fold_convert_const_fixed_from_int (type
, arg1
);
2119 else if (TREE_CODE (arg1
) == REAL_CST
)
2120 return fold_convert_const_fixed_from_real (type
, arg1
);
2125 /* Construct a vector of zero elements of vector type TYPE. */
2128 build_zero_vector (tree type
)
2132 t
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
), integer_zero_node
);
2133 return build_vector_from_val (type
, t
);
2136 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2139 fold_convertible_p (const_tree type
, const_tree arg
)
2141 tree orig
= TREE_TYPE (arg
);
2146 if (TREE_CODE (arg
) == ERROR_MARK
2147 || TREE_CODE (type
) == ERROR_MARK
2148 || TREE_CODE (orig
) == ERROR_MARK
)
2151 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (orig
))
2154 switch (TREE_CODE (type
))
2156 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2157 case POINTER_TYPE
: case REFERENCE_TYPE
:
2159 if (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2160 || TREE_CODE (orig
) == OFFSET_TYPE
)
2162 return (TREE_CODE (orig
) == VECTOR_TYPE
2163 && tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
2166 case FIXED_POINT_TYPE
:
2170 return TREE_CODE (type
) == TREE_CODE (orig
);
2177 /* Convert expression ARG to type TYPE. Used by the middle-end for
2178 simple conversions in preference to calling the front-end's convert. */
2181 fold_convert_loc (location_t loc
, tree type
, tree arg
)
2183 tree orig
= TREE_TYPE (arg
);
2189 if (TREE_CODE (arg
) == ERROR_MARK
2190 || TREE_CODE (type
) == ERROR_MARK
2191 || TREE_CODE (orig
) == ERROR_MARK
)
2192 return error_mark_node
;
2194 switch (TREE_CODE (type
))
2197 case REFERENCE_TYPE
:
2198 /* Handle conversions between pointers to different address spaces. */
2199 if (POINTER_TYPE_P (orig
)
2200 && (TYPE_ADDR_SPACE (TREE_TYPE (type
))
2201 != TYPE_ADDR_SPACE (TREE_TYPE (orig
))))
2202 return fold_build1_loc (loc
, ADDR_SPACE_CONVERT_EXPR
, type
, arg
);
2205 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2207 if (TREE_CODE (arg
) == INTEGER_CST
)
2209 tem
= fold_convert_const (NOP_EXPR
, type
, arg
);
2210 if (tem
!= NULL_TREE
)
2213 if (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2214 || TREE_CODE (orig
) == OFFSET_TYPE
)
2215 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2216 if (TREE_CODE (orig
) == COMPLEX_TYPE
)
2217 return fold_convert_loc (loc
, type
,
2218 fold_build1_loc (loc
, REALPART_EXPR
,
2219 TREE_TYPE (orig
), arg
));
2220 gcc_assert (TREE_CODE (orig
) == VECTOR_TYPE
2221 && tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
2222 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2225 if (TREE_CODE (arg
) == INTEGER_CST
)
2227 tem
= fold_convert_const (FLOAT_EXPR
, type
, arg
);
2228 if (tem
!= NULL_TREE
)
2231 else if (TREE_CODE (arg
) == REAL_CST
)
2233 tem
= fold_convert_const (NOP_EXPR
, type
, arg
);
2234 if (tem
!= NULL_TREE
)
2237 else if (TREE_CODE (arg
) == FIXED_CST
)
2239 tem
= fold_convert_const (FIXED_CONVERT_EXPR
, type
, arg
);
2240 if (tem
!= NULL_TREE
)
2244 switch (TREE_CODE (orig
))
2247 case BOOLEAN_TYPE
: case ENUMERAL_TYPE
:
2248 case POINTER_TYPE
: case REFERENCE_TYPE
:
2249 return fold_build1_loc (loc
, FLOAT_EXPR
, type
, arg
);
2252 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2254 case FIXED_POINT_TYPE
:
2255 return fold_build1_loc (loc
, FIXED_CONVERT_EXPR
, type
, arg
);
2258 tem
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2259 return fold_convert_loc (loc
, type
, tem
);
2265 case FIXED_POINT_TYPE
:
2266 if (TREE_CODE (arg
) == FIXED_CST
|| TREE_CODE (arg
) == INTEGER_CST
2267 || TREE_CODE (arg
) == REAL_CST
)
2269 tem
= fold_convert_const (FIXED_CONVERT_EXPR
, type
, arg
);
2270 if (tem
!= NULL_TREE
)
2271 goto fold_convert_exit
;
2274 switch (TREE_CODE (orig
))
2276 case FIXED_POINT_TYPE
:
2281 return fold_build1_loc (loc
, FIXED_CONVERT_EXPR
, type
, arg
);
2284 tem
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2285 return fold_convert_loc (loc
, type
, tem
);
2292 switch (TREE_CODE (orig
))
2295 case BOOLEAN_TYPE
: case ENUMERAL_TYPE
:
2296 case POINTER_TYPE
: case REFERENCE_TYPE
:
2298 case FIXED_POINT_TYPE
:
2299 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
2300 fold_convert_loc (loc
, TREE_TYPE (type
), arg
),
2301 fold_convert_loc (loc
, TREE_TYPE (type
),
2302 integer_zero_node
));
2307 if (TREE_CODE (arg
) == COMPLEX_EXPR
)
2309 rpart
= fold_convert_loc (loc
, TREE_TYPE (type
),
2310 TREE_OPERAND (arg
, 0));
2311 ipart
= fold_convert_loc (loc
, TREE_TYPE (type
),
2312 TREE_OPERAND (arg
, 1));
2313 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rpart
, ipart
);
2316 arg
= save_expr (arg
);
2317 rpart
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2318 ipart
= fold_build1_loc (loc
, IMAGPART_EXPR
, TREE_TYPE (orig
), arg
);
2319 rpart
= fold_convert_loc (loc
, TREE_TYPE (type
), rpart
);
2320 ipart
= fold_convert_loc (loc
, TREE_TYPE (type
), ipart
);
2321 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rpart
, ipart
);
2329 if (integer_zerop (arg
))
2330 return build_zero_vector (type
);
2331 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
2332 gcc_assert (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2333 || TREE_CODE (orig
) == VECTOR_TYPE
);
2334 return fold_build1_loc (loc
, VIEW_CONVERT_EXPR
, type
, arg
);
2337 tem
= fold_ignored_result (arg
);
2338 return fold_build1_loc (loc
, NOP_EXPR
, type
, tem
);
2341 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (orig
))
2342 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2346 protected_set_expr_location_unshare (tem
, loc
);
2350 /* Return false if expr can be assumed not to be an lvalue, true
2354 maybe_lvalue_p (const_tree x
)
2356 /* We only need to wrap lvalue tree codes. */
2357 switch (TREE_CODE (x
))
2370 case ARRAY_RANGE_REF
:
2376 case PREINCREMENT_EXPR
:
2377 case PREDECREMENT_EXPR
:
2379 case TRY_CATCH_EXPR
:
2380 case WITH_CLEANUP_EXPR
:
2389 /* Assume the worst for front-end tree codes. */
2390 if ((int)TREE_CODE (x
) >= NUM_TREE_CODES
)
2398 /* Return an expr equal to X but certainly not valid as an lvalue. */
2401 non_lvalue_loc (location_t loc
, tree x
)
2403 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2408 if (! maybe_lvalue_p (x
))
2410 return build1_loc (loc
, NON_LVALUE_EXPR
, TREE_TYPE (x
), x
);
2413 /* When pedantic, return an expr equal to X but certainly not valid as a
2414 pedantic lvalue. Otherwise, return X. */
2417 pedantic_non_lvalue_loc (location_t loc
, tree x
)
2419 return protected_set_expr_location_unshare (x
, loc
);
2422 /* Given a tree comparison code, return the code that is the logical inverse.
2423 It is generally not safe to do this for floating-point comparisons, except
2424 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2425 ERROR_MARK in this case. */
2428 invert_tree_comparison (enum tree_code code
, bool honor_nans
)
2430 if (honor_nans
&& flag_trapping_math
&& code
!= EQ_EXPR
&& code
!= NE_EXPR
2431 && code
!= ORDERED_EXPR
&& code
!= UNORDERED_EXPR
)
2441 return honor_nans
? UNLE_EXPR
: LE_EXPR
;
2443 return honor_nans
? UNLT_EXPR
: LT_EXPR
;
2445 return honor_nans
? UNGE_EXPR
: GE_EXPR
;
2447 return honor_nans
? UNGT_EXPR
: GT_EXPR
;
2461 return UNORDERED_EXPR
;
2462 case UNORDERED_EXPR
:
2463 return ORDERED_EXPR
;
2469 /* Similar, but return the comparison that results if the operands are
2470 swapped. This is safe for floating-point. */
2473 swap_tree_comparison (enum tree_code code
)
2480 case UNORDERED_EXPR
:
2506 /* Convert a comparison tree code from an enum tree_code representation
2507 into a compcode bit-based encoding. This function is the inverse of
2508 compcode_to_comparison. */
2510 static enum comparison_code
2511 comparison_to_compcode (enum tree_code code
)
2528 return COMPCODE_ORD
;
2529 case UNORDERED_EXPR
:
2530 return COMPCODE_UNORD
;
2532 return COMPCODE_UNLT
;
2534 return COMPCODE_UNEQ
;
2536 return COMPCODE_UNLE
;
2538 return COMPCODE_UNGT
;
2540 return COMPCODE_LTGT
;
2542 return COMPCODE_UNGE
;
2548 /* Convert a compcode bit-based encoding of a comparison operator back
2549 to GCC's enum tree_code representation. This function is the
2550 inverse of comparison_to_compcode. */
2552 static enum tree_code
2553 compcode_to_comparison (enum comparison_code code
)
2570 return ORDERED_EXPR
;
2571 case COMPCODE_UNORD
:
2572 return UNORDERED_EXPR
;
2590 /* Return a tree for the comparison which is the combination of
2591 doing the AND or OR (depending on CODE) of the two operations LCODE
2592 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2593 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2594 if this makes the transformation invalid. */
2597 combine_comparisons (location_t loc
,
2598 enum tree_code code
, enum tree_code lcode
,
2599 enum tree_code rcode
, tree truth_type
,
2600 tree ll_arg
, tree lr_arg
)
2602 bool honor_nans
= HONOR_NANS (ll_arg
);
2603 enum comparison_code lcompcode
= comparison_to_compcode (lcode
);
2604 enum comparison_code rcompcode
= comparison_to_compcode (rcode
);
2609 case TRUTH_AND_EXPR
: case TRUTH_ANDIF_EXPR
:
2610 compcode
= lcompcode
& rcompcode
;
2613 case TRUTH_OR_EXPR
: case TRUTH_ORIF_EXPR
:
2614 compcode
= lcompcode
| rcompcode
;
2623 /* Eliminate unordered comparisons, as well as LTGT and ORD
2624 which are not used unless the mode has NaNs. */
2625 compcode
&= ~COMPCODE_UNORD
;
2626 if (compcode
== COMPCODE_LTGT
)
2627 compcode
= COMPCODE_NE
;
2628 else if (compcode
== COMPCODE_ORD
)
2629 compcode
= COMPCODE_TRUE
;
2631 else if (flag_trapping_math
)
2633 /* Check that the original operation and the optimized ones will trap
2634 under the same condition. */
2635 bool ltrap
= (lcompcode
& COMPCODE_UNORD
) == 0
2636 && (lcompcode
!= COMPCODE_EQ
)
2637 && (lcompcode
!= COMPCODE_ORD
);
2638 bool rtrap
= (rcompcode
& COMPCODE_UNORD
) == 0
2639 && (rcompcode
!= COMPCODE_EQ
)
2640 && (rcompcode
!= COMPCODE_ORD
);
2641 bool trap
= (compcode
& COMPCODE_UNORD
) == 0
2642 && (compcode
!= COMPCODE_EQ
)
2643 && (compcode
!= COMPCODE_ORD
);
2645 /* In a short-circuited boolean expression the LHS might be
2646 such that the RHS, if evaluated, will never trap. For
2647 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2648 if neither x nor y is NaN. (This is a mixed blessing: for
2649 example, the expression above will never trap, hence
2650 optimizing it to x < y would be invalid). */
2651 if ((code
== TRUTH_ORIF_EXPR
&& (lcompcode
& COMPCODE_UNORD
))
2652 || (code
== TRUTH_ANDIF_EXPR
&& !(lcompcode
& COMPCODE_UNORD
)))
2655 /* If the comparison was short-circuited, and only the RHS
2656 trapped, we may now generate a spurious trap. */
2658 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
))
2661 /* If we changed the conditions that cause a trap, we lose. */
2662 if ((ltrap
|| rtrap
) != trap
)
2666 if (compcode
== COMPCODE_TRUE
)
2667 return constant_boolean_node (true, truth_type
);
2668 else if (compcode
== COMPCODE_FALSE
)
2669 return constant_boolean_node (false, truth_type
);
2672 enum tree_code tcode
;
2674 tcode
= compcode_to_comparison ((enum comparison_code
) compcode
);
2675 return fold_build2_loc (loc
, tcode
, truth_type
, ll_arg
, lr_arg
);
2679 /* Return nonzero if two operands (typically of the same tree node)
2680 are necessarily equal. If either argument has side-effects this
2681 function returns zero. FLAGS modifies behavior as follows:
2683 If OEP_ONLY_CONST is set, only return nonzero for constants.
2684 This function tests whether the operands are indistinguishable;
2685 it does not test whether they are equal using C's == operation.
2686 The distinction is important for IEEE floating point, because
2687 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2688 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2690 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2691 even though it may hold multiple values during a function.
2692 This is because a GCC tree node guarantees that nothing else is
2693 executed between the evaluation of its "operands" (which may often
2694 be evaluated in arbitrary order). Hence if the operands themselves
2695 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2696 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2697 unset means assuming isochronic (or instantaneous) tree equivalence.
2698 Unless comparing arbitrary expression trees, such as from different
2699 statements, this flag can usually be left unset.
2701 If OEP_PURE_SAME is set, then pure functions with identical arguments
2702 are considered the same. It is used when the caller has other ways
2703 to ensure that global memory is unchanged in between. */
2706 operand_equal_p (const_tree arg0
, const_tree arg1
, unsigned int flags
)
2708 /* If either is ERROR_MARK, they aren't equal. */
2709 if (TREE_CODE (arg0
) == ERROR_MARK
|| TREE_CODE (arg1
) == ERROR_MARK
2710 || TREE_TYPE (arg0
) == error_mark_node
2711 || TREE_TYPE (arg1
) == error_mark_node
)
2714 /* Similar, if either does not have a type (like a released SSA name),
2715 they aren't equal. */
2716 if (!TREE_TYPE (arg0
) || !TREE_TYPE (arg1
))
2719 /* Check equality of integer constants before bailing out due to
2720 precision differences. */
2721 if (TREE_CODE (arg0
) == INTEGER_CST
&& TREE_CODE (arg1
) == INTEGER_CST
)
2722 return tree_int_cst_equal (arg0
, arg1
);
2724 /* If both types don't have the same signedness, then we can't consider
2725 them equal. We must check this before the STRIP_NOPS calls
2726 because they may change the signedness of the arguments. As pointers
2727 strictly don't have a signedness, require either two pointers or
2728 two non-pointers as well. */
2729 if (TYPE_UNSIGNED (TREE_TYPE (arg0
)) != TYPE_UNSIGNED (TREE_TYPE (arg1
))
2730 || POINTER_TYPE_P (TREE_TYPE (arg0
)) != POINTER_TYPE_P (TREE_TYPE (arg1
)))
2733 /* We cannot consider pointers to different address space equal. */
2734 if (POINTER_TYPE_P (TREE_TYPE (arg0
)) && POINTER_TYPE_P (TREE_TYPE (arg1
))
2735 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0
)))
2736 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1
)))))
2739 /* If both types don't have the same precision, then it is not safe
2741 if (element_precision (TREE_TYPE (arg0
))
2742 != element_precision (TREE_TYPE (arg1
)))
2748 /* In case both args are comparisons but with different comparison
2749 code, try to swap the comparison operands of one arg to produce
2750 a match and compare that variant. */
2751 if (TREE_CODE (arg0
) != TREE_CODE (arg1
)
2752 && COMPARISON_CLASS_P (arg0
)
2753 && COMPARISON_CLASS_P (arg1
))
2755 enum tree_code swap_code
= swap_tree_comparison (TREE_CODE (arg1
));
2757 if (TREE_CODE (arg0
) == swap_code
)
2758 return operand_equal_p (TREE_OPERAND (arg0
, 0),
2759 TREE_OPERAND (arg1
, 1), flags
)
2760 && operand_equal_p (TREE_OPERAND (arg0
, 1),
2761 TREE_OPERAND (arg1
, 0), flags
);
2764 if (TREE_CODE (arg0
) != TREE_CODE (arg1
)
2765 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
2766 && !(CONVERT_EXPR_P (arg0
) && CONVERT_EXPR_P (arg1
)))
2769 /* This is needed for conversions and for COMPONENT_REF.
2770 Might as well play it safe and always test this. */
2771 if (TREE_CODE (TREE_TYPE (arg0
)) == ERROR_MARK
2772 || TREE_CODE (TREE_TYPE (arg1
)) == ERROR_MARK
2773 || TYPE_MODE (TREE_TYPE (arg0
)) != TYPE_MODE (TREE_TYPE (arg1
)))
2776 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2777 We don't care about side effects in that case because the SAVE_EXPR
2778 takes care of that for us. In all other cases, two expressions are
2779 equal if they have no side effects. If we have two identical
2780 expressions with side effects that should be treated the same due
2781 to the only side effects being identical SAVE_EXPR's, that will
2782 be detected in the recursive calls below.
2783 If we are taking an invariant address of two identical objects
2784 they are necessarily equal as well. */
2785 if (arg0
== arg1
&& ! (flags
& OEP_ONLY_CONST
)
2786 && (TREE_CODE (arg0
) == SAVE_EXPR
2787 || (flags
& OEP_CONSTANT_ADDRESS_OF
)
2788 || (! TREE_SIDE_EFFECTS (arg0
) && ! TREE_SIDE_EFFECTS (arg1
))))
2791 /* Next handle constant cases, those for which we can return 1 even
2792 if ONLY_CONST is set. */
2793 if (TREE_CONSTANT (arg0
) && TREE_CONSTANT (arg1
))
2794 switch (TREE_CODE (arg0
))
2797 return tree_int_cst_equal (arg0
, arg1
);
2800 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0
),
2801 TREE_FIXED_CST (arg1
));
2804 if (REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0
),
2805 TREE_REAL_CST (arg1
)))
2809 if (!HONOR_SIGNED_ZEROS (arg0
))
2811 /* If we do not distinguish between signed and unsigned zero,
2812 consider them equal. */
2813 if (real_zerop (arg0
) && real_zerop (arg1
))
2822 if (VECTOR_CST_NELTS (arg0
) != VECTOR_CST_NELTS (arg1
))
2825 for (i
= 0; i
< VECTOR_CST_NELTS (arg0
); ++i
)
2827 if (!operand_equal_p (VECTOR_CST_ELT (arg0
, i
),
2828 VECTOR_CST_ELT (arg1
, i
), flags
))
2835 return (operand_equal_p (TREE_REALPART (arg0
), TREE_REALPART (arg1
),
2837 && operand_equal_p (TREE_IMAGPART (arg0
), TREE_IMAGPART (arg1
),
2841 return (TREE_STRING_LENGTH (arg0
) == TREE_STRING_LENGTH (arg1
)
2842 && ! memcmp (TREE_STRING_POINTER (arg0
),
2843 TREE_STRING_POINTER (arg1
),
2844 TREE_STRING_LENGTH (arg0
)));
2847 return operand_equal_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 0),
2848 TREE_CONSTANT (arg0
) && TREE_CONSTANT (arg1
)
2849 ? OEP_CONSTANT_ADDRESS_OF
| OEP_ADDRESS_OF
: 0);
2854 if (flags
& OEP_ONLY_CONST
)
2857 /* Define macros to test an operand from arg0 and arg1 for equality and a
2858 variant that allows null and views null as being different from any
2859 non-null value. In the latter case, if either is null, the both
2860 must be; otherwise, do the normal comparison. */
2861 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2862 TREE_OPERAND (arg1, N), flags)
2864 #define OP_SAME_WITH_NULL(N) \
2865 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2866 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2868 switch (TREE_CODE_CLASS (TREE_CODE (arg0
)))
2871 /* Two conversions are equal only if signedness and modes match. */
2872 switch (TREE_CODE (arg0
))
2875 case FIX_TRUNC_EXPR
:
2876 if (TYPE_UNSIGNED (TREE_TYPE (arg0
))
2877 != TYPE_UNSIGNED (TREE_TYPE (arg1
)))
2887 case tcc_comparison
:
2889 if (OP_SAME (0) && OP_SAME (1))
2892 /* For commutative ops, allow the other order. */
2893 return (commutative_tree_code (TREE_CODE (arg0
))
2894 && operand_equal_p (TREE_OPERAND (arg0
, 0),
2895 TREE_OPERAND (arg1
, 1), flags
)
2896 && operand_equal_p (TREE_OPERAND (arg0
, 1),
2897 TREE_OPERAND (arg1
, 0), flags
));
2900 /* If either of the pointer (or reference) expressions we are
2901 dereferencing contain a side effect, these cannot be equal,
2902 but their addresses can be. */
2903 if ((flags
& OEP_CONSTANT_ADDRESS_OF
) == 0
2904 && (TREE_SIDE_EFFECTS (arg0
)
2905 || TREE_SIDE_EFFECTS (arg1
)))
2908 switch (TREE_CODE (arg0
))
2911 if (!(flags
& OEP_ADDRESS_OF
)
2912 && (TYPE_ALIGN (TREE_TYPE (arg0
))
2913 != TYPE_ALIGN (TREE_TYPE (arg1
))))
2915 flags
&= ~(OEP_CONSTANT_ADDRESS_OF
|OEP_ADDRESS_OF
);
2922 case TARGET_MEM_REF
:
2924 /* Require equal access sizes, and similar pointer types.
2925 We can have incomplete types for array references of
2926 variable-sized arrays from the Fortran frontend
2927 though. Also verify the types are compatible. */
2928 if (!((TYPE_SIZE (TREE_TYPE (arg0
)) == TYPE_SIZE (TREE_TYPE (arg1
))
2929 || (TYPE_SIZE (TREE_TYPE (arg0
))
2930 && TYPE_SIZE (TREE_TYPE (arg1
))
2931 && operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0
)),
2932 TYPE_SIZE (TREE_TYPE (arg1
)), flags
)))
2933 && types_compatible_p (TREE_TYPE (arg0
), TREE_TYPE (arg1
))
2934 && ((flags
& OEP_ADDRESS_OF
)
2935 || (alias_ptr_types_compatible_p
2936 (TREE_TYPE (TREE_OPERAND (arg0
, 1)),
2937 TREE_TYPE (TREE_OPERAND (arg1
, 1)))
2938 && (MR_DEPENDENCE_CLIQUE (arg0
)
2939 == MR_DEPENDENCE_CLIQUE (arg1
))
2940 && (MR_DEPENDENCE_BASE (arg0
)
2941 == MR_DEPENDENCE_BASE (arg1
))
2942 && (TYPE_ALIGN (TREE_TYPE (arg0
))
2943 == TYPE_ALIGN (TREE_TYPE (arg1
)))))))
2945 flags
&= ~(OEP_CONSTANT_ADDRESS_OF
|OEP_ADDRESS_OF
);
2946 return (OP_SAME (0) && OP_SAME (1)
2947 /* TARGET_MEM_REF require equal extra operands. */
2948 && (TREE_CODE (arg0
) != TARGET_MEM_REF
2949 || (OP_SAME_WITH_NULL (2)
2950 && OP_SAME_WITH_NULL (3)
2951 && OP_SAME_WITH_NULL (4))));
2954 case ARRAY_RANGE_REF
:
2955 /* Operands 2 and 3 may be null.
2956 Compare the array index by value if it is constant first as we
2957 may have different types but same value here. */
2960 flags
&= ~(OEP_CONSTANT_ADDRESS_OF
|OEP_ADDRESS_OF
);
2961 return ((tree_int_cst_equal (TREE_OPERAND (arg0
, 1),
2962 TREE_OPERAND (arg1
, 1))
2964 && OP_SAME_WITH_NULL (2)
2965 && OP_SAME_WITH_NULL (3));
2968 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
2969 may be NULL when we're called to compare MEM_EXPRs. */
2970 if (!OP_SAME_WITH_NULL (0)
2973 flags
&= ~(OEP_CONSTANT_ADDRESS_OF
|OEP_ADDRESS_OF
);
2974 return OP_SAME_WITH_NULL (2);
2979 flags
&= ~(OEP_CONSTANT_ADDRESS_OF
|OEP_ADDRESS_OF
);
2980 return OP_SAME (1) && OP_SAME (2);
2986 case tcc_expression
:
2987 switch (TREE_CODE (arg0
))
2990 return operand_equal_p (TREE_OPERAND (arg0
, 0),
2991 TREE_OPERAND (arg1
, 0),
2992 flags
| OEP_ADDRESS_OF
);
2994 case TRUTH_NOT_EXPR
:
2997 case TRUTH_ANDIF_EXPR
:
2998 case TRUTH_ORIF_EXPR
:
2999 return OP_SAME (0) && OP_SAME (1);
3002 case WIDEN_MULT_PLUS_EXPR
:
3003 case WIDEN_MULT_MINUS_EXPR
:
3006 /* The multiplcation operands are commutative. */
3009 case TRUTH_AND_EXPR
:
3011 case TRUTH_XOR_EXPR
:
3012 if (OP_SAME (0) && OP_SAME (1))
3015 /* Otherwise take into account this is a commutative operation. */
3016 return (operand_equal_p (TREE_OPERAND (arg0
, 0),
3017 TREE_OPERAND (arg1
, 1), flags
)
3018 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3019 TREE_OPERAND (arg1
, 0), flags
));
3024 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3031 switch (TREE_CODE (arg0
))
3034 if ((CALL_EXPR_FN (arg0
) == NULL_TREE
)
3035 != (CALL_EXPR_FN (arg1
) == NULL_TREE
))
3036 /* If not both CALL_EXPRs are either internal or normal function
3037 functions, then they are not equal. */
3039 else if (CALL_EXPR_FN (arg0
) == NULL_TREE
)
3041 /* If the CALL_EXPRs call different internal functions, then they
3043 if (CALL_EXPR_IFN (arg0
) != CALL_EXPR_IFN (arg1
))
3048 /* If the CALL_EXPRs call different functions, then they are not
3050 if (! operand_equal_p (CALL_EXPR_FN (arg0
), CALL_EXPR_FN (arg1
),
3056 unsigned int cef
= call_expr_flags (arg0
);
3057 if (flags
& OEP_PURE_SAME
)
3058 cef
&= ECF_CONST
| ECF_PURE
;
3065 /* Now see if all the arguments are the same. */
3067 const_call_expr_arg_iterator iter0
, iter1
;
3069 for (a0
= first_const_call_expr_arg (arg0
, &iter0
),
3070 a1
= first_const_call_expr_arg (arg1
, &iter1
);
3072 a0
= next_const_call_expr_arg (&iter0
),
3073 a1
= next_const_call_expr_arg (&iter1
))
3074 if (! operand_equal_p (a0
, a1
, flags
))
3077 /* If we get here and both argument lists are exhausted
3078 then the CALL_EXPRs are equal. */
3079 return ! (a0
|| a1
);
3085 case tcc_declaration
:
3086 /* Consider __builtin_sqrt equal to sqrt. */
3087 return (TREE_CODE (arg0
) == FUNCTION_DECL
3088 && DECL_BUILT_IN (arg0
) && DECL_BUILT_IN (arg1
)
3089 && DECL_BUILT_IN_CLASS (arg0
) == DECL_BUILT_IN_CLASS (arg1
)
3090 && DECL_FUNCTION_CODE (arg0
) == DECL_FUNCTION_CODE (arg1
));
3097 #undef OP_SAME_WITH_NULL
3100 /* Similar to operand_equal_p, but see if ARG0 might have been made by
3101 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
3103 When in doubt, return 0. */
3106 operand_equal_for_comparison_p (tree arg0
, tree arg1
, tree other
)
3108 int unsignedp1
, unsignedpo
;
3109 tree primarg0
, primarg1
, primother
;
3110 unsigned int correct_width
;
3112 if (operand_equal_p (arg0
, arg1
, 0))
3115 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
3116 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1
)))
3119 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3120 and see if the inner values are the same. This removes any
3121 signedness comparison, which doesn't matter here. */
3122 primarg0
= arg0
, primarg1
= arg1
;
3123 STRIP_NOPS (primarg0
);
3124 STRIP_NOPS (primarg1
);
3125 if (operand_equal_p (primarg0
, primarg1
, 0))
3128 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
3129 actual comparison operand, ARG0.
3131 First throw away any conversions to wider types
3132 already present in the operands. */
3134 primarg1
= get_narrower (arg1
, &unsignedp1
);
3135 primother
= get_narrower (other
, &unsignedpo
);
3137 correct_width
= TYPE_PRECISION (TREE_TYPE (arg1
));
3138 if (unsignedp1
== unsignedpo
3139 && TYPE_PRECISION (TREE_TYPE (primarg1
)) < correct_width
3140 && TYPE_PRECISION (TREE_TYPE (primother
)) < correct_width
)
3142 tree type
= TREE_TYPE (arg0
);
3144 /* Make sure shorter operand is extended the right way
3145 to match the longer operand. */
3146 primarg1
= fold_convert (signed_or_unsigned_type_for
3147 (unsignedp1
, TREE_TYPE (primarg1
)), primarg1
);
3149 if (operand_equal_p (arg0
, fold_convert (type
, primarg1
), 0))
3156 /* See if ARG is an expression that is either a comparison or is performing
3157 arithmetic on comparisons. The comparisons must only be comparing
3158 two different values, which will be stored in *CVAL1 and *CVAL2; if
3159 they are nonzero it means that some operands have already been found.
3160 No variables may be used anywhere else in the expression except in the
3161 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3162 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3164 If this is true, return 1. Otherwise, return zero. */
3167 twoval_comparison_p (tree arg
, tree
*cval1
, tree
*cval2
, int *save_p
)
3169 enum tree_code code
= TREE_CODE (arg
);
3170 enum tree_code_class tclass
= TREE_CODE_CLASS (code
);
3172 /* We can handle some of the tcc_expression cases here. */
3173 if (tclass
== tcc_expression
&& code
== TRUTH_NOT_EXPR
)
3175 else if (tclass
== tcc_expression
3176 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
3177 || code
== COMPOUND_EXPR
))
3178 tclass
= tcc_binary
;
3180 else if (tclass
== tcc_expression
&& code
== SAVE_EXPR
3181 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg
, 0)))
3183 /* If we've already found a CVAL1 or CVAL2, this expression is
3184 two complex to handle. */
3185 if (*cval1
|| *cval2
)
3195 return twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
, save_p
);
3198 return (twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
, save_p
)
3199 && twoval_comparison_p (TREE_OPERAND (arg
, 1),
3200 cval1
, cval2
, save_p
));
3205 case tcc_expression
:
3206 if (code
== COND_EXPR
)
3207 return (twoval_comparison_p (TREE_OPERAND (arg
, 0),
3208 cval1
, cval2
, save_p
)
3209 && twoval_comparison_p (TREE_OPERAND (arg
, 1),
3210 cval1
, cval2
, save_p
)
3211 && twoval_comparison_p (TREE_OPERAND (arg
, 2),
3212 cval1
, cval2
, save_p
));
3215 case tcc_comparison
:
3216 /* First see if we can handle the first operand, then the second. For
3217 the second operand, we know *CVAL1 can't be zero. It must be that
3218 one side of the comparison is each of the values; test for the
3219 case where this isn't true by failing if the two operands
3222 if (operand_equal_p (TREE_OPERAND (arg
, 0),
3223 TREE_OPERAND (arg
, 1), 0))
3227 *cval1
= TREE_OPERAND (arg
, 0);
3228 else if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 0), 0))
3230 else if (*cval2
== 0)
3231 *cval2
= TREE_OPERAND (arg
, 0);
3232 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 0), 0))
3237 if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 1), 0))
3239 else if (*cval2
== 0)
3240 *cval2
= TREE_OPERAND (arg
, 1);
3241 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 1), 0))
3253 /* ARG is a tree that is known to contain just arithmetic operations and
3254 comparisons. Evaluate the operations in the tree substituting NEW0 for
3255 any occurrence of OLD0 as an operand of a comparison and likewise for
3259 eval_subst (location_t loc
, tree arg
, tree old0
, tree new0
,
3260 tree old1
, tree new1
)
3262 tree type
= TREE_TYPE (arg
);
3263 enum tree_code code
= TREE_CODE (arg
);
3264 enum tree_code_class tclass
= TREE_CODE_CLASS (code
);
3266 /* We can handle some of the tcc_expression cases here. */
3267 if (tclass
== tcc_expression
&& code
== TRUTH_NOT_EXPR
)
3269 else if (tclass
== tcc_expression
3270 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
))
3271 tclass
= tcc_binary
;
3276 return fold_build1_loc (loc
, code
, type
,
3277 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3278 old0
, new0
, old1
, new1
));
3281 return fold_build2_loc (loc
, code
, type
,
3282 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3283 old0
, new0
, old1
, new1
),
3284 eval_subst (loc
, TREE_OPERAND (arg
, 1),
3285 old0
, new0
, old1
, new1
));
3287 case tcc_expression
:
3291 return eval_subst (loc
, TREE_OPERAND (arg
, 0), old0
, new0
,
3295 return eval_subst (loc
, TREE_OPERAND (arg
, 1), old0
, new0
,
3299 return fold_build3_loc (loc
, code
, type
,
3300 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3301 old0
, new0
, old1
, new1
),
3302 eval_subst (loc
, TREE_OPERAND (arg
, 1),
3303 old0
, new0
, old1
, new1
),
3304 eval_subst (loc
, TREE_OPERAND (arg
, 2),
3305 old0
, new0
, old1
, new1
));
3309 /* Fall through - ??? */
3311 case tcc_comparison
:
3313 tree arg0
= TREE_OPERAND (arg
, 0);
3314 tree arg1
= TREE_OPERAND (arg
, 1);
3316 /* We need to check both for exact equality and tree equality. The
3317 former will be true if the operand has a side-effect. In that
3318 case, we know the operand occurred exactly once. */
3320 if (arg0
== old0
|| operand_equal_p (arg0
, old0
, 0))
3322 else if (arg0
== old1
|| operand_equal_p (arg0
, old1
, 0))
3325 if (arg1
== old0
|| operand_equal_p (arg1
, old0
, 0))
3327 else if (arg1
== old1
|| operand_equal_p (arg1
, old1
, 0))
3330 return fold_build2_loc (loc
, code
, type
, arg0
, arg1
);
3338 /* Return a tree for the case when the result of an expression is RESULT
3339 converted to TYPE and OMITTED was previously an operand of the expression
3340 but is now not needed (e.g., we folded OMITTED * 0).
3342 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3343 the conversion of RESULT to TYPE. */
3346 omit_one_operand_loc (location_t loc
, tree type
, tree result
, tree omitted
)
3348 tree t
= fold_convert_loc (loc
, type
, result
);
3350 /* If the resulting operand is an empty statement, just return the omitted
3351 statement casted to void. */
3352 if (IS_EMPTY_STMT (t
) && TREE_SIDE_EFFECTS (omitted
))
3353 return build1_loc (loc
, NOP_EXPR
, void_type_node
,
3354 fold_ignored_result (omitted
));
3356 if (TREE_SIDE_EFFECTS (omitted
))
3357 return build2_loc (loc
, COMPOUND_EXPR
, type
,
3358 fold_ignored_result (omitted
), t
);
3360 return non_lvalue_loc (loc
, t
);
3363 /* Return a tree for the case when the result of an expression is RESULT
3364 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3365 of the expression but are now not needed.
3367 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3368 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3369 evaluated before OMITTED2. Otherwise, if neither has side effects,
3370 just do the conversion of RESULT to TYPE. */
3373 omit_two_operands_loc (location_t loc
, tree type
, tree result
,
3374 tree omitted1
, tree omitted2
)
3376 tree t
= fold_convert_loc (loc
, type
, result
);
3378 if (TREE_SIDE_EFFECTS (omitted2
))
3379 t
= build2_loc (loc
, COMPOUND_EXPR
, type
, omitted2
, t
);
3380 if (TREE_SIDE_EFFECTS (omitted1
))
3381 t
= build2_loc (loc
, COMPOUND_EXPR
, type
, omitted1
, t
);
3383 return TREE_CODE (t
) != COMPOUND_EXPR
? non_lvalue_loc (loc
, t
) : t
;
3387 /* Return a simplified tree node for the truth-negation of ARG. This
3388 never alters ARG itself. We assume that ARG is an operation that
3389 returns a truth value (0 or 1).
3391 FIXME: one would think we would fold the result, but it causes
3392 problems with the dominator optimizer. */
3395 fold_truth_not_expr (location_t loc
, tree arg
)
3397 tree type
= TREE_TYPE (arg
);
3398 enum tree_code code
= TREE_CODE (arg
);
3399 location_t loc1
, loc2
;
3401 /* If this is a comparison, we can simply invert it, except for
3402 floating-point non-equality comparisons, in which case we just
3403 enclose a TRUTH_NOT_EXPR around what we have. */
3405 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
3407 tree op_type
= TREE_TYPE (TREE_OPERAND (arg
, 0));
3408 if (FLOAT_TYPE_P (op_type
)
3409 && flag_trapping_math
3410 && code
!= ORDERED_EXPR
&& code
!= UNORDERED_EXPR
3411 && code
!= NE_EXPR
&& code
!= EQ_EXPR
)
3414 code
= invert_tree_comparison (code
, HONOR_NANS (op_type
));
3415 if (code
== ERROR_MARK
)
3418 return build2_loc (loc
, code
, type
, TREE_OPERAND (arg
, 0),
3419 TREE_OPERAND (arg
, 1));
3425 return constant_boolean_node (integer_zerop (arg
), type
);
3427 case TRUTH_AND_EXPR
:
3428 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3429 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3430 return build2_loc (loc
, TRUTH_OR_EXPR
, type
,
3431 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3432 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3435 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3436 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3437 return build2_loc (loc
, TRUTH_AND_EXPR
, type
,
3438 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3439 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3441 case TRUTH_XOR_EXPR
:
3442 /* Here we can invert either operand. We invert the first operand
3443 unless the second operand is a TRUTH_NOT_EXPR in which case our
3444 result is the XOR of the first operand with the inside of the
3445 negation of the second operand. */
3447 if (TREE_CODE (TREE_OPERAND (arg
, 1)) == TRUTH_NOT_EXPR
)
3448 return build2_loc (loc
, TRUTH_XOR_EXPR
, type
, TREE_OPERAND (arg
, 0),
3449 TREE_OPERAND (TREE_OPERAND (arg
, 1), 0));
3451 return build2_loc (loc
, TRUTH_XOR_EXPR
, type
,
3452 invert_truthvalue_loc (loc
, TREE_OPERAND (arg
, 0)),
3453 TREE_OPERAND (arg
, 1));
3455 case TRUTH_ANDIF_EXPR
:
3456 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3457 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3458 return build2_loc (loc
, TRUTH_ORIF_EXPR
, type
,
3459 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3460 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3462 case TRUTH_ORIF_EXPR
:
3463 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3464 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3465 return build2_loc (loc
, TRUTH_ANDIF_EXPR
, type
,
3466 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3467 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3469 case TRUTH_NOT_EXPR
:
3470 return TREE_OPERAND (arg
, 0);
3474 tree arg1
= TREE_OPERAND (arg
, 1);
3475 tree arg2
= TREE_OPERAND (arg
, 2);
3477 loc1
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3478 loc2
= expr_location_or (TREE_OPERAND (arg
, 2), loc
);
3480 /* A COND_EXPR may have a throw as one operand, which
3481 then has void type. Just leave void operands
3483 return build3_loc (loc
, COND_EXPR
, type
, TREE_OPERAND (arg
, 0),
3484 VOID_TYPE_P (TREE_TYPE (arg1
))
3485 ? arg1
: invert_truthvalue_loc (loc1
, arg1
),
3486 VOID_TYPE_P (TREE_TYPE (arg2
))
3487 ? arg2
: invert_truthvalue_loc (loc2
, arg2
));
3491 loc1
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3492 return build2_loc (loc
, COMPOUND_EXPR
, type
,
3493 TREE_OPERAND (arg
, 0),
3494 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 1)));
3496 case NON_LVALUE_EXPR
:
3497 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3498 return invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0));
3501 if (TREE_CODE (TREE_TYPE (arg
)) == BOOLEAN_TYPE
)
3502 return build1_loc (loc
, TRUTH_NOT_EXPR
, type
, arg
);
3504 /* ... fall through ... */
3507 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3508 return build1_loc (loc
, TREE_CODE (arg
), type
,
3509 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)));
3512 if (!integer_onep (TREE_OPERAND (arg
, 1)))
3514 return build2_loc (loc
, EQ_EXPR
, type
, arg
, build_int_cst (type
, 0));
3517 return build1_loc (loc
, TRUTH_NOT_EXPR
, type
, arg
);
3519 case CLEANUP_POINT_EXPR
:
3520 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3521 return build1_loc (loc
, CLEANUP_POINT_EXPR
, type
,
3522 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)));
3529 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3530 assume that ARG is an operation that returns a truth value (0 or 1
3531 for scalars, 0 or -1 for vectors). Return the folded expression if
3532 folding is successful. Otherwise, return NULL_TREE. */
3535 fold_invert_truthvalue (location_t loc
, tree arg
)
3537 tree type
= TREE_TYPE (arg
);
3538 return fold_unary_loc (loc
, VECTOR_TYPE_P (type
)
3544 /* Return a simplified tree node for the truth-negation of ARG. This
3545 never alters ARG itself. We assume that ARG is an operation that
3546 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3549 invert_truthvalue_loc (location_t loc
, tree arg
)
3551 if (TREE_CODE (arg
) == ERROR_MARK
)
3554 tree type
= TREE_TYPE (arg
);
3555 return fold_build1_loc (loc
, VECTOR_TYPE_P (type
)
3561 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
3562 operands are another bit-wise operation with a common input. If so,
3563 distribute the bit operations to save an operation and possibly two if
3564 constants are involved. For example, convert
3565 (A | B) & (A | C) into A | (B & C)
3566 Further simplification will occur if B and C are constants.
3568 If this optimization cannot be done, 0 will be returned. */
3571 distribute_bit_expr (location_t loc
, enum tree_code code
, tree type
,
3572 tree arg0
, tree arg1
)
3577 if (TREE_CODE (arg0
) != TREE_CODE (arg1
)
3578 || TREE_CODE (arg0
) == code
3579 || (TREE_CODE (arg0
) != BIT_AND_EXPR
3580 && TREE_CODE (arg0
) != BIT_IOR_EXPR
))
3583 if (operand_equal_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 0), 0))
3585 common
= TREE_OPERAND (arg0
, 0);
3586 left
= TREE_OPERAND (arg0
, 1);
3587 right
= TREE_OPERAND (arg1
, 1);
3589 else if (operand_equal_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 1), 0))
3591 common
= TREE_OPERAND (arg0
, 0);
3592 left
= TREE_OPERAND (arg0
, 1);
3593 right
= TREE_OPERAND (arg1
, 0);
3595 else if (operand_equal_p (TREE_OPERAND (arg0
, 1), TREE_OPERAND (arg1
, 0), 0))
3597 common
= TREE_OPERAND (arg0
, 1);
3598 left
= TREE_OPERAND (arg0
, 0);
3599 right
= TREE_OPERAND (arg1
, 1);
3601 else if (operand_equal_p (TREE_OPERAND (arg0
, 1), TREE_OPERAND (arg1
, 1), 0))
3603 common
= TREE_OPERAND (arg0
, 1);
3604 left
= TREE_OPERAND (arg0
, 0);
3605 right
= TREE_OPERAND (arg1
, 0);
3610 common
= fold_convert_loc (loc
, type
, common
);
3611 left
= fold_convert_loc (loc
, type
, left
);
3612 right
= fold_convert_loc (loc
, type
, right
);
3613 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, common
,
3614 fold_build2_loc (loc
, code
, type
, left
, right
));
3617 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3618 with code CODE. This optimization is unsafe. */
3620 distribute_real_division (location_t loc
, enum tree_code code
, tree type
,
3621 tree arg0
, tree arg1
)
3623 bool mul0
= TREE_CODE (arg0
) == MULT_EXPR
;
3624 bool mul1
= TREE_CODE (arg1
) == MULT_EXPR
;
3626 /* (A / C) +- (B / C) -> (A +- B) / C. */
3628 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3629 TREE_OPERAND (arg1
, 1), 0))
3630 return fold_build2_loc (loc
, mul0
? MULT_EXPR
: RDIV_EXPR
, type
,
3631 fold_build2_loc (loc
, code
, type
,
3632 TREE_OPERAND (arg0
, 0),
3633 TREE_OPERAND (arg1
, 0)),
3634 TREE_OPERAND (arg0
, 1));
3636 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3637 if (operand_equal_p (TREE_OPERAND (arg0
, 0),
3638 TREE_OPERAND (arg1
, 0), 0)
3639 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == REAL_CST
3640 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == REAL_CST
)
3642 REAL_VALUE_TYPE r0
, r1
;
3643 r0
= TREE_REAL_CST (TREE_OPERAND (arg0
, 1));
3644 r1
= TREE_REAL_CST (TREE_OPERAND (arg1
, 1));
3646 real_arithmetic (&r0
, RDIV_EXPR
, &dconst1
, &r0
);
3648 real_arithmetic (&r1
, RDIV_EXPR
, &dconst1
, &r1
);
3649 real_arithmetic (&r0
, code
, &r0
, &r1
);
3650 return fold_build2_loc (loc
, MULT_EXPR
, type
,
3651 TREE_OPERAND (arg0
, 0),
3652 build_real (type
, r0
));
3658 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3659 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
3662 make_bit_field_ref (location_t loc
, tree inner
, tree type
,
3663 HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
, int unsignedp
)
3665 tree result
, bftype
;
3669 tree size
= TYPE_SIZE (TREE_TYPE (inner
));
3670 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner
))
3671 || POINTER_TYPE_P (TREE_TYPE (inner
)))
3672 && tree_fits_shwi_p (size
)
3673 && tree_to_shwi (size
) == bitsize
)
3674 return fold_convert_loc (loc
, type
, inner
);
3678 if (TYPE_PRECISION (bftype
) != bitsize
3679 || TYPE_UNSIGNED (bftype
) == !unsignedp
)
3680 bftype
= build_nonstandard_integer_type (bitsize
, 0);
3682 result
= build3_loc (loc
, BIT_FIELD_REF
, bftype
, inner
,
3683 size_int (bitsize
), bitsize_int (bitpos
));
3686 result
= fold_convert_loc (loc
, type
, result
);
3691 /* Optimize a bit-field compare.
3693 There are two cases: First is a compare against a constant and the
3694 second is a comparison of two items where the fields are at the same
3695 bit position relative to the start of a chunk (byte, halfword, word)
3696 large enough to contain it. In these cases we can avoid the shift
3697 implicit in bitfield extractions.
3699 For constants, we emit a compare of the shifted constant with the
3700 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3701 compared. For two fields at the same position, we do the ANDs with the
3702 similar mask and compare the result of the ANDs.
3704 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3705 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3706 are the left and right operands of the comparison, respectively.
3708 If the optimization described above can be done, we return the resulting
3709 tree. Otherwise we return zero. */
3712 optimize_bit_field_compare (location_t loc
, enum tree_code code
,
3713 tree compare_type
, tree lhs
, tree rhs
)
3715 HOST_WIDE_INT lbitpos
, lbitsize
, rbitpos
, rbitsize
, nbitpos
, nbitsize
;
3716 tree type
= TREE_TYPE (lhs
);
3718 int const_p
= TREE_CODE (rhs
) == INTEGER_CST
;
3719 machine_mode lmode
, rmode
, nmode
;
3720 int lunsignedp
, runsignedp
;
3721 int lvolatilep
= 0, rvolatilep
= 0;
3722 tree linner
, rinner
= NULL_TREE
;
3726 /* Get all the information about the extractions being done. If the bit size
3727 if the same as the size of the underlying object, we aren't doing an
3728 extraction at all and so can do nothing. We also don't want to
3729 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3730 then will no longer be able to replace it. */
3731 linner
= get_inner_reference (lhs
, &lbitsize
, &lbitpos
, &offset
, &lmode
,
3732 &lunsignedp
, &lvolatilep
, false);
3733 if (linner
== lhs
|| lbitsize
== GET_MODE_BITSIZE (lmode
) || lbitsize
< 0
3734 || offset
!= 0 || TREE_CODE (linner
) == PLACEHOLDER_EXPR
|| lvolatilep
)
3739 /* If this is not a constant, we can only do something if bit positions,
3740 sizes, and signedness are the same. */
3741 rinner
= get_inner_reference (rhs
, &rbitsize
, &rbitpos
, &offset
, &rmode
,
3742 &runsignedp
, &rvolatilep
, false);
3744 if (rinner
== rhs
|| lbitpos
!= rbitpos
|| lbitsize
!= rbitsize
3745 || lunsignedp
!= runsignedp
|| offset
!= 0
3746 || TREE_CODE (rinner
) == PLACEHOLDER_EXPR
|| rvolatilep
)
3750 /* See if we can find a mode to refer to this field. We should be able to,
3751 but fail if we can't. */
3752 nmode
= get_best_mode (lbitsize
, lbitpos
, 0, 0,
3753 const_p
? TYPE_ALIGN (TREE_TYPE (linner
))
3754 : MIN (TYPE_ALIGN (TREE_TYPE (linner
)),
3755 TYPE_ALIGN (TREE_TYPE (rinner
))),
3757 if (nmode
== VOIDmode
)
3760 /* Set signed and unsigned types of the precision of this mode for the
3762 unsigned_type
= lang_hooks
.types
.type_for_mode (nmode
, 1);
3764 /* Compute the bit position and size for the new reference and our offset
3765 within it. If the new reference is the same size as the original, we
3766 won't optimize anything, so return zero. */
3767 nbitsize
= GET_MODE_BITSIZE (nmode
);
3768 nbitpos
= lbitpos
& ~ (nbitsize
- 1);
3770 if (nbitsize
== lbitsize
)
3773 if (BYTES_BIG_ENDIAN
)
3774 lbitpos
= nbitsize
- lbitsize
- lbitpos
;
3776 /* Make the mask to be used against the extracted field. */
3777 mask
= build_int_cst_type (unsigned_type
, -1);
3778 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (nbitsize
- lbitsize
));
3779 mask
= const_binop (RSHIFT_EXPR
, mask
,
3780 size_int (nbitsize
- lbitsize
- lbitpos
));
3783 /* If not comparing with constant, just rework the comparison
3785 return fold_build2_loc (loc
, code
, compare_type
,
3786 fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
,
3787 make_bit_field_ref (loc
, linner
,
3792 fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
,
3793 make_bit_field_ref (loc
, rinner
,
3799 /* Otherwise, we are handling the constant case. See if the constant is too
3800 big for the field. Warn and return a tree of for 0 (false) if so. We do
3801 this not only for its own sake, but to avoid having to test for this
3802 error case below. If we didn't, we might generate wrong code.
3804 For unsigned fields, the constant shifted right by the field length should
3805 be all zero. For signed fields, the high-order bits should agree with
3810 if (wi::lrshift (rhs
, lbitsize
) != 0)
3812 warning (0, "comparison is always %d due to width of bit-field",
3814 return constant_boolean_node (code
== NE_EXPR
, compare_type
);
3819 wide_int tem
= wi::arshift (rhs
, lbitsize
- 1);
3820 if (tem
!= 0 && tem
!= -1)
3822 warning (0, "comparison is always %d due to width of bit-field",
3824 return constant_boolean_node (code
== NE_EXPR
, compare_type
);
3828 /* Single-bit compares should always be against zero. */
3829 if (lbitsize
== 1 && ! integer_zerop (rhs
))
3831 code
= code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
;
3832 rhs
= build_int_cst (type
, 0);
3835 /* Make a new bitfield reference, shift the constant over the
3836 appropriate number of bits and mask it with the computed mask
3837 (in case this was a signed field). If we changed it, make a new one. */
3838 lhs
= make_bit_field_ref (loc
, linner
, unsigned_type
, nbitsize
, nbitpos
, 1);
3840 rhs
= const_binop (BIT_AND_EXPR
,
3841 const_binop (LSHIFT_EXPR
,
3842 fold_convert_loc (loc
, unsigned_type
, rhs
),
3843 size_int (lbitpos
)),
3846 lhs
= build2_loc (loc
, code
, compare_type
,
3847 build2 (BIT_AND_EXPR
, unsigned_type
, lhs
, mask
), rhs
);
3851 /* Subroutine for fold_truth_andor_1: decode a field reference.
3853 If EXP is a comparison reference, we return the innermost reference.
3855 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
3856 set to the starting bit number.
3858 If the innermost field can be completely contained in a mode-sized
3859 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
3861 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
3862 otherwise it is not changed.
3864 *PUNSIGNEDP is set to the signedness of the field.
3866 *PMASK is set to the mask used. This is either contained in a
3867 BIT_AND_EXPR or derived from the width of the field.
3869 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
3871 Return 0 if this is not a component reference or is one that we can't
3872 do anything with. */
3875 decode_field_reference (location_t loc
, tree exp
, HOST_WIDE_INT
*pbitsize
,
3876 HOST_WIDE_INT
*pbitpos
, machine_mode
*pmode
,
3877 int *punsignedp
, int *pvolatilep
,
3878 tree
*pmask
, tree
*pand_mask
)
3880 tree outer_type
= 0;
3882 tree mask
, inner
, offset
;
3884 unsigned int precision
;
3886 /* All the optimizations using this function assume integer fields.
3887 There are problems with FP fields since the type_for_size call
3888 below can fail for, e.g., XFmode. */
3889 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp
)))
3892 /* We are interested in the bare arrangement of bits, so strip everything
3893 that doesn't affect the machine mode. However, record the type of the
3894 outermost expression if it may matter below. */
3895 if (CONVERT_EXPR_P (exp
)
3896 || TREE_CODE (exp
) == NON_LVALUE_EXPR
)
3897 outer_type
= TREE_TYPE (exp
);
3900 if (TREE_CODE (exp
) == BIT_AND_EXPR
)
3902 and_mask
= TREE_OPERAND (exp
, 1);
3903 exp
= TREE_OPERAND (exp
, 0);
3904 STRIP_NOPS (exp
); STRIP_NOPS (and_mask
);
3905 if (TREE_CODE (and_mask
) != INTEGER_CST
)
3909 inner
= get_inner_reference (exp
, pbitsize
, pbitpos
, &offset
, pmode
,
3910 punsignedp
, pvolatilep
, false);
3911 if ((inner
== exp
&& and_mask
== 0)
3912 || *pbitsize
< 0 || offset
!= 0
3913 || TREE_CODE (inner
) == PLACEHOLDER_EXPR
)
3916 /* If the number of bits in the reference is the same as the bitsize of
3917 the outer type, then the outer type gives the signedness. Otherwise
3918 (in case of a small bitfield) the signedness is unchanged. */
3919 if (outer_type
&& *pbitsize
== TYPE_PRECISION (outer_type
))
3920 *punsignedp
= TYPE_UNSIGNED (outer_type
);
3922 /* Compute the mask to access the bitfield. */
3923 unsigned_type
= lang_hooks
.types
.type_for_size (*pbitsize
, 1);
3924 precision
= TYPE_PRECISION (unsigned_type
);
3926 mask
= build_int_cst_type (unsigned_type
, -1);
3928 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
));
3929 mask
= const_binop (RSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
));
3931 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
3933 mask
= fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
,
3934 fold_convert_loc (loc
, unsigned_type
, and_mask
), mask
);
3937 *pand_mask
= and_mask
;
3941 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
3942 bit positions and MASK is SIGNED. */
3945 all_ones_mask_p (const_tree mask
, unsigned int size
)
3947 tree type
= TREE_TYPE (mask
);
3948 unsigned int precision
= TYPE_PRECISION (type
);
3950 /* If this function returns true when the type of the mask is
3951 UNSIGNED, then there will be errors. In particular see
3952 gcc.c-torture/execute/990326-1.c. There does not appear to be
3953 any documentation paper trail as to why this is so. But the pre
3954 wide-int worked with that restriction and it has been preserved
3956 if (size
> precision
|| TYPE_SIGN (type
) == UNSIGNED
)
3959 return wi::mask (size
, false, precision
) == mask
;
3962 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
3963 represents the sign bit of EXP's type. If EXP represents a sign
3964 or zero extension, also test VAL against the unextended type.
3965 The return value is the (sub)expression whose sign bit is VAL,
3966 or NULL_TREE otherwise. */
3969 sign_bit_p (tree exp
, const_tree val
)
3974 /* Tree EXP must have an integral type. */
3975 t
= TREE_TYPE (exp
);
3976 if (! INTEGRAL_TYPE_P (t
))
3979 /* Tree VAL must be an integer constant. */
3980 if (TREE_CODE (val
) != INTEGER_CST
3981 || TREE_OVERFLOW (val
))
3984 width
= TYPE_PRECISION (t
);
3985 if (wi::only_sign_bit_p (val
, width
))
3988 /* Handle extension from a narrower type. */
3989 if (TREE_CODE (exp
) == NOP_EXPR
3990 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))) < width
)
3991 return sign_bit_p (TREE_OPERAND (exp
, 0), val
);
3996 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
3997 to be evaluated unconditionally. */
4000 simple_operand_p (const_tree exp
)
4002 /* Strip any conversions that don't change the machine mode. */
4005 return (CONSTANT_CLASS_P (exp
)
4006 || TREE_CODE (exp
) == SSA_NAME
4008 && ! TREE_ADDRESSABLE (exp
)
4009 && ! TREE_THIS_VOLATILE (exp
)
4010 && ! DECL_NONLOCAL (exp
)
4011 /* Don't regard global variables as simple. They may be
4012 allocated in ways unknown to the compiler (shared memory,
4013 #pragma weak, etc). */
4014 && ! TREE_PUBLIC (exp
)
4015 && ! DECL_EXTERNAL (exp
)
4016 /* Weakrefs are not safe to be read, since they can be NULL.
4017 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4018 have DECL_WEAK flag set. */
4019 && (! VAR_OR_FUNCTION_DECL_P (exp
) || ! DECL_WEAK (exp
))
4020 /* Loading a static variable is unduly expensive, but global
4021 registers aren't expensive. */
4022 && (! TREE_STATIC (exp
) || DECL_REGISTER (exp
))));
4025 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4026 to be evaluated unconditionally.
4027 I addition to simple_operand_p, we assume that comparisons, conversions,
4028 and logic-not operations are simple, if their operands are simple, too. */
4031 simple_operand_p_2 (tree exp
)
4033 enum tree_code code
;
4035 if (TREE_SIDE_EFFECTS (exp
)
4036 || tree_could_trap_p (exp
))
4039 while (CONVERT_EXPR_P (exp
))
4040 exp
= TREE_OPERAND (exp
, 0);
4042 code
= TREE_CODE (exp
);
4044 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
4045 return (simple_operand_p (TREE_OPERAND (exp
, 0))
4046 && simple_operand_p (TREE_OPERAND (exp
, 1)));
4048 if (code
== TRUTH_NOT_EXPR
)
4049 return simple_operand_p_2 (TREE_OPERAND (exp
, 0));
4051 return simple_operand_p (exp
);
4055 /* The following functions are subroutines to fold_range_test and allow it to
4056 try to change a logical combination of comparisons into a range test.
4059 X == 2 || X == 3 || X == 4 || X == 5
4063 (unsigned) (X - 2) <= 3
4065 We describe each set of comparisons as being either inside or outside
4066 a range, using a variable named like IN_P, and then describe the
4067 range with a lower and upper bound. If one of the bounds is omitted,
4068 it represents either the highest or lowest value of the type.
4070 In the comments below, we represent a range by two numbers in brackets
4071 preceded by a "+" to designate being inside that range, or a "-" to
4072 designate being outside that range, so the condition can be inverted by
4073 flipping the prefix. An omitted bound is represented by a "-". For
4074 example, "- [-, 10]" means being outside the range starting at the lowest
4075 possible value and ending at 10, in other words, being greater than 10.
4076 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4079 We set up things so that the missing bounds are handled in a consistent
4080 manner so neither a missing bound nor "true" and "false" need to be
4081 handled using a special case. */
4083 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4084 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4085 and UPPER1_P are nonzero if the respective argument is an upper bound
4086 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4087 must be specified for a comparison. ARG1 will be converted to ARG0's
4088 type if both are specified. */
4091 range_binop (enum tree_code code
, tree type
, tree arg0
, int upper0_p
,
4092 tree arg1
, int upper1_p
)
4098 /* If neither arg represents infinity, do the normal operation.
4099 Else, if not a comparison, return infinity. Else handle the special
4100 comparison rules. Note that most of the cases below won't occur, but
4101 are handled for consistency. */
4103 if (arg0
!= 0 && arg1
!= 0)
4105 tem
= fold_build2 (code
, type
!= 0 ? type
: TREE_TYPE (arg0
),
4106 arg0
, fold_convert (TREE_TYPE (arg0
), arg1
));
4108 return TREE_CODE (tem
) == INTEGER_CST
? tem
: 0;
4111 if (TREE_CODE_CLASS (code
) != tcc_comparison
)
4114 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4115 for neither. In real maths, we cannot assume open ended ranges are
4116 the same. But, this is computer arithmetic, where numbers are finite.
4117 We can therefore make the transformation of any unbounded range with
4118 the value Z, Z being greater than any representable number. This permits
4119 us to treat unbounded ranges as equal. */
4120 sgn0
= arg0
!= 0 ? 0 : (upper0_p
? 1 : -1);
4121 sgn1
= arg1
!= 0 ? 0 : (upper1_p
? 1 : -1);
4125 result
= sgn0
== sgn1
;
4128 result
= sgn0
!= sgn1
;
4131 result
= sgn0
< sgn1
;
4134 result
= sgn0
<= sgn1
;
4137 result
= sgn0
> sgn1
;
4140 result
= sgn0
>= sgn1
;
4146 return constant_boolean_node (result
, type
);
4149 /* Helper routine for make_range. Perform one step for it, return
4150 new expression if the loop should continue or NULL_TREE if it should
4154 make_range_step (location_t loc
, enum tree_code code
, tree arg0
, tree arg1
,
4155 tree exp_type
, tree
*p_low
, tree
*p_high
, int *p_in_p
,
4156 bool *strict_overflow_p
)
4158 tree arg0_type
= TREE_TYPE (arg0
);
4159 tree n_low
, n_high
, low
= *p_low
, high
= *p_high
;
4160 int in_p
= *p_in_p
, n_in_p
;
4164 case TRUTH_NOT_EXPR
:
4165 /* We can only do something if the range is testing for zero. */
4166 if (low
== NULL_TREE
|| high
== NULL_TREE
4167 || ! integer_zerop (low
) || ! integer_zerop (high
))
4172 case EQ_EXPR
: case NE_EXPR
:
4173 case LT_EXPR
: case LE_EXPR
: case GE_EXPR
: case GT_EXPR
:
4174 /* We can only do something if the range is testing for zero
4175 and if the second operand is an integer constant. Note that
4176 saying something is "in" the range we make is done by
4177 complementing IN_P since it will set in the initial case of
4178 being not equal to zero; "out" is leaving it alone. */
4179 if (low
== NULL_TREE
|| high
== NULL_TREE
4180 || ! integer_zerop (low
) || ! integer_zerop (high
)
4181 || TREE_CODE (arg1
) != INTEGER_CST
)
4186 case NE_EXPR
: /* - [c, c] */
4189 case EQ_EXPR
: /* + [c, c] */
4190 in_p
= ! in_p
, low
= high
= arg1
;
4192 case GT_EXPR
: /* - [-, c] */
4193 low
= 0, high
= arg1
;
4195 case GE_EXPR
: /* + [c, -] */
4196 in_p
= ! in_p
, low
= arg1
, high
= 0;
4198 case LT_EXPR
: /* - [c, -] */
4199 low
= arg1
, high
= 0;
4201 case LE_EXPR
: /* + [-, c] */
4202 in_p
= ! in_p
, low
= 0, high
= arg1
;
4208 /* If this is an unsigned comparison, we also know that EXP is
4209 greater than or equal to zero. We base the range tests we make
4210 on that fact, so we record it here so we can parse existing
4211 range tests. We test arg0_type since often the return type
4212 of, e.g. EQ_EXPR, is boolean. */
4213 if (TYPE_UNSIGNED (arg0_type
) && (low
== 0 || high
== 0))
4215 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
,
4217 build_int_cst (arg0_type
, 0),
4221 in_p
= n_in_p
, low
= n_low
, high
= n_high
;
4223 /* If the high bound is missing, but we have a nonzero low
4224 bound, reverse the range so it goes from zero to the low bound
4226 if (high
== 0 && low
&& ! integer_zerop (low
))
4229 high
= range_binop (MINUS_EXPR
, NULL_TREE
, low
, 0,
4230 build_int_cst (TREE_TYPE (low
), 1), 0);
4231 low
= build_int_cst (arg0_type
, 0);
4241 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4242 low and high are non-NULL, then normalize will DTRT. */
4243 if (!TYPE_UNSIGNED (arg0_type
)
4244 && !TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4246 if (low
== NULL_TREE
)
4247 low
= TYPE_MIN_VALUE (arg0_type
);
4248 if (high
== NULL_TREE
)
4249 high
= TYPE_MAX_VALUE (arg0_type
);
4252 /* (-x) IN [a,b] -> x in [-b, -a] */
4253 n_low
= range_binop (MINUS_EXPR
, exp_type
,
4254 build_int_cst (exp_type
, 0),
4256 n_high
= range_binop (MINUS_EXPR
, exp_type
,
4257 build_int_cst (exp_type
, 0),
4259 if (n_high
!= 0 && TREE_OVERFLOW (n_high
))
4265 return build2_loc (loc
, MINUS_EXPR
, exp_type
, negate_expr (arg0
),
4266 build_int_cst (exp_type
, 1));
4270 if (TREE_CODE (arg1
) != INTEGER_CST
)
4273 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4274 move a constant to the other side. */
4275 if (!TYPE_UNSIGNED (arg0_type
)
4276 && !TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4279 /* If EXP is signed, any overflow in the computation is undefined,
4280 so we don't worry about it so long as our computations on
4281 the bounds don't overflow. For unsigned, overflow is defined
4282 and this is exactly the right thing. */
4283 n_low
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
4284 arg0_type
, low
, 0, arg1
, 0);
4285 n_high
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
4286 arg0_type
, high
, 1, arg1
, 0);
4287 if ((n_low
!= 0 && TREE_OVERFLOW (n_low
))
4288 || (n_high
!= 0 && TREE_OVERFLOW (n_high
)))
4291 if (TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4292 *strict_overflow_p
= true;
4295 /* Check for an unsigned range which has wrapped around the maximum
4296 value thus making n_high < n_low, and normalize it. */
4297 if (n_low
&& n_high
&& tree_int_cst_lt (n_high
, n_low
))
4299 low
= range_binop (PLUS_EXPR
, arg0_type
, n_high
, 0,
4300 build_int_cst (TREE_TYPE (n_high
), 1), 0);
4301 high
= range_binop (MINUS_EXPR
, arg0_type
, n_low
, 0,
4302 build_int_cst (TREE_TYPE (n_low
), 1), 0);
4304 /* If the range is of the form +/- [ x+1, x ], we won't
4305 be able to normalize it. But then, it represents the
4306 whole range or the empty set, so make it
4308 if (tree_int_cst_equal (n_low
, low
)
4309 && tree_int_cst_equal (n_high
, high
))
4315 low
= n_low
, high
= n_high
;
4323 case NON_LVALUE_EXPR
:
4324 if (TYPE_PRECISION (arg0_type
) > TYPE_PRECISION (exp_type
))
4327 if (! INTEGRAL_TYPE_P (arg0_type
)
4328 || (low
!= 0 && ! int_fits_type_p (low
, arg0_type
))
4329 || (high
!= 0 && ! int_fits_type_p (high
, arg0_type
)))
4332 n_low
= low
, n_high
= high
;
4335 n_low
= fold_convert_loc (loc
, arg0_type
, n_low
);
4338 n_high
= fold_convert_loc (loc
, arg0_type
, n_high
);
4340 /* If we're converting arg0 from an unsigned type, to exp,
4341 a signed type, we will be doing the comparison as unsigned.
4342 The tests above have already verified that LOW and HIGH
4345 So we have to ensure that we will handle large unsigned
4346 values the same way that the current signed bounds treat
4349 if (!TYPE_UNSIGNED (exp_type
) && TYPE_UNSIGNED (arg0_type
))
4353 /* For fixed-point modes, we need to pass the saturating flag
4354 as the 2nd parameter. */
4355 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type
)))
4357 = lang_hooks
.types
.type_for_mode (TYPE_MODE (arg0_type
),
4358 TYPE_SATURATING (arg0_type
));
4361 = lang_hooks
.types
.type_for_mode (TYPE_MODE (arg0_type
), 1);
4363 /* A range without an upper bound is, naturally, unbounded.
4364 Since convert would have cropped a very large value, use
4365 the max value for the destination type. */
4367 = TYPE_MAX_VALUE (equiv_type
) ? TYPE_MAX_VALUE (equiv_type
)
4368 : TYPE_MAX_VALUE (arg0_type
);
4370 if (TYPE_PRECISION (exp_type
) == TYPE_PRECISION (arg0_type
))
4371 high_positive
= fold_build2_loc (loc
, RSHIFT_EXPR
, arg0_type
,
4372 fold_convert_loc (loc
, arg0_type
,
4374 build_int_cst (arg0_type
, 1));
4376 /* If the low bound is specified, "and" the range with the
4377 range for which the original unsigned value will be
4381 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
, 1, n_low
, n_high
,
4382 1, fold_convert_loc (loc
, arg0_type
,
4387 in_p
= (n_in_p
== in_p
);
4391 /* Otherwise, "or" the range with the range of the input
4392 that will be interpreted as negative. */
4393 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
, 0, n_low
, n_high
,
4394 1, fold_convert_loc (loc
, arg0_type
,
4399 in_p
= (in_p
!= n_in_p
);
4413 /* Given EXP, a logical expression, set the range it is testing into
4414 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4415 actually being tested. *PLOW and *PHIGH will be made of the same
4416 type as the returned expression. If EXP is not a comparison, we
4417 will most likely not be returning a useful value and range. Set
4418 *STRICT_OVERFLOW_P to true if the return value is only valid
4419 because signed overflow is undefined; otherwise, do not change
4420 *STRICT_OVERFLOW_P. */
4423 make_range (tree exp
, int *pin_p
, tree
*plow
, tree
*phigh
,
4424 bool *strict_overflow_p
)
4426 enum tree_code code
;
4427 tree arg0
, arg1
= NULL_TREE
;
4428 tree exp_type
, nexp
;
4431 location_t loc
= EXPR_LOCATION (exp
);
4433 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4434 and see if we can refine the range. Some of the cases below may not
4435 happen, but it doesn't seem worth worrying about this. We "continue"
4436 the outer loop when we've changed something; otherwise we "break"
4437 the switch, which will "break" the while. */
4440 low
= high
= build_int_cst (TREE_TYPE (exp
), 0);
4444 code
= TREE_CODE (exp
);
4445 exp_type
= TREE_TYPE (exp
);
4448 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
4450 if (TREE_OPERAND_LENGTH (exp
) > 0)
4451 arg0
= TREE_OPERAND (exp
, 0);
4452 if (TREE_CODE_CLASS (code
) == tcc_binary
4453 || TREE_CODE_CLASS (code
) == tcc_comparison
4454 || (TREE_CODE_CLASS (code
) == tcc_expression
4455 && TREE_OPERAND_LENGTH (exp
) > 1))
4456 arg1
= TREE_OPERAND (exp
, 1);
4458 if (arg0
== NULL_TREE
)
4461 nexp
= make_range_step (loc
, code
, arg0
, arg1
, exp_type
, &low
,
4462 &high
, &in_p
, strict_overflow_p
);
4463 if (nexp
== NULL_TREE
)
4468 /* If EXP is a constant, we can evaluate whether this is true or false. */
4469 if (TREE_CODE (exp
) == INTEGER_CST
)
4471 in_p
= in_p
== (integer_onep (range_binop (GE_EXPR
, integer_type_node
,
4473 && integer_onep (range_binop (LE_EXPR
, integer_type_node
,
4479 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
4483 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4484 type, TYPE, return an expression to test if EXP is in (or out of, depending
4485 on IN_P) the range. Return 0 if the test couldn't be created. */
4488 build_range_check (location_t loc
, tree type
, tree exp
, int in_p
,
4489 tree low
, tree high
)
4491 tree etype
= TREE_TYPE (exp
), value
;
4493 #ifdef HAVE_canonicalize_funcptr_for_compare
4494 /* Disable this optimization for function pointer expressions
4495 on targets that require function pointer canonicalization. */
4496 if (HAVE_canonicalize_funcptr_for_compare
4497 && TREE_CODE (etype
) == POINTER_TYPE
4498 && TREE_CODE (TREE_TYPE (etype
)) == FUNCTION_TYPE
)
4504 value
= build_range_check (loc
, type
, exp
, 1, low
, high
);
4506 return invert_truthvalue_loc (loc
, value
);
4511 if (low
== 0 && high
== 0)
4512 return omit_one_operand_loc (loc
, type
, build_int_cst (type
, 1), exp
);
4515 return fold_build2_loc (loc
, LE_EXPR
, type
, exp
,
4516 fold_convert_loc (loc
, etype
, high
));
4519 return fold_build2_loc (loc
, GE_EXPR
, type
, exp
,
4520 fold_convert_loc (loc
, etype
, low
));
4522 if (operand_equal_p (low
, high
, 0))
4523 return fold_build2_loc (loc
, EQ_EXPR
, type
, exp
,
4524 fold_convert_loc (loc
, etype
, low
));
4526 if (integer_zerop (low
))
4528 if (! TYPE_UNSIGNED (etype
))
4530 etype
= unsigned_type_for (etype
);
4531 high
= fold_convert_loc (loc
, etype
, high
);
4532 exp
= fold_convert_loc (loc
, etype
, exp
);
4534 return build_range_check (loc
, type
, exp
, 1, 0, high
);
4537 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4538 if (integer_onep (low
) && TREE_CODE (high
) == INTEGER_CST
)
4540 int prec
= TYPE_PRECISION (etype
);
4542 if (wi::mask (prec
- 1, false, prec
) == high
)
4544 if (TYPE_UNSIGNED (etype
))
4546 tree signed_etype
= signed_type_for (etype
);
4547 if (TYPE_PRECISION (signed_etype
) != TYPE_PRECISION (etype
))
4549 = build_nonstandard_integer_type (TYPE_PRECISION (etype
), 0);
4551 etype
= signed_etype
;
4552 exp
= fold_convert_loc (loc
, etype
, exp
);
4554 return fold_build2_loc (loc
, GT_EXPR
, type
, exp
,
4555 build_int_cst (etype
, 0));
4559 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4560 This requires wrap-around arithmetics for the type of the expression.
4561 First make sure that arithmetics in this type is valid, then make sure
4562 that it wraps around. */
4563 if (TREE_CODE (etype
) == ENUMERAL_TYPE
|| TREE_CODE (etype
) == BOOLEAN_TYPE
)
4564 etype
= lang_hooks
.types
.type_for_size (TYPE_PRECISION (etype
),
4565 TYPE_UNSIGNED (etype
));
4567 if (TREE_CODE (etype
) == INTEGER_TYPE
&& !TYPE_OVERFLOW_WRAPS (etype
))
4569 tree utype
, minv
, maxv
;
4571 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4572 for the type in question, as we rely on this here. */
4573 utype
= unsigned_type_for (etype
);
4574 maxv
= fold_convert_loc (loc
, utype
, TYPE_MAX_VALUE (etype
));
4575 maxv
= range_binop (PLUS_EXPR
, NULL_TREE
, maxv
, 1,
4576 build_int_cst (TREE_TYPE (maxv
), 1), 1);
4577 minv
= fold_convert_loc (loc
, utype
, TYPE_MIN_VALUE (etype
));
4579 if (integer_zerop (range_binop (NE_EXPR
, integer_type_node
,
4586 high
= fold_convert_loc (loc
, etype
, high
);
4587 low
= fold_convert_loc (loc
, etype
, low
);
4588 exp
= fold_convert_loc (loc
, etype
, exp
);
4590 value
= const_binop (MINUS_EXPR
, high
, low
);
4593 if (POINTER_TYPE_P (etype
))
4595 if (value
!= 0 && !TREE_OVERFLOW (value
))
4597 low
= fold_build1_loc (loc
, NEGATE_EXPR
, TREE_TYPE (low
), low
);
4598 return build_range_check (loc
, type
,
4599 fold_build_pointer_plus_loc (loc
, exp
, low
),
4600 1, build_int_cst (etype
, 0), value
);
4605 if (value
!= 0 && !TREE_OVERFLOW (value
))
4606 return build_range_check (loc
, type
,
4607 fold_build2_loc (loc
, MINUS_EXPR
, etype
, exp
, low
),
4608 1, build_int_cst (etype
, 0), value
);
4613 /* Return the predecessor of VAL in its type, handling the infinite case. */
4616 range_predecessor (tree val
)
4618 tree type
= TREE_TYPE (val
);
4620 if (INTEGRAL_TYPE_P (type
)
4621 && operand_equal_p (val
, TYPE_MIN_VALUE (type
), 0))
4624 return range_binop (MINUS_EXPR
, NULL_TREE
, val
, 0,
4625 build_int_cst (TREE_TYPE (val
), 1), 0);
4628 /* Return the successor of VAL in its type, handling the infinite case. */
4631 range_successor (tree val
)
4633 tree type
= TREE_TYPE (val
);
4635 if (INTEGRAL_TYPE_P (type
)
4636 && operand_equal_p (val
, TYPE_MAX_VALUE (type
), 0))
4639 return range_binop (PLUS_EXPR
, NULL_TREE
, val
, 0,
4640 build_int_cst (TREE_TYPE (val
), 1), 0);
4643 /* Given two ranges, see if we can merge them into one. Return 1 if we
4644 can, 0 if we can't. Set the output range into the specified parameters. */
4647 merge_ranges (int *pin_p
, tree
*plow
, tree
*phigh
, int in0_p
, tree low0
,
4648 tree high0
, int in1_p
, tree low1
, tree high1
)
4656 int lowequal
= ((low0
== 0 && low1
== 0)
4657 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
4658 low0
, 0, low1
, 0)));
4659 int highequal
= ((high0
== 0 && high1
== 0)
4660 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
4661 high0
, 1, high1
, 1)));
4663 /* Make range 0 be the range that starts first, or ends last if they
4664 start at the same value. Swap them if it isn't. */
4665 if (integer_onep (range_binop (GT_EXPR
, integer_type_node
,
4668 && integer_onep (range_binop (GT_EXPR
, integer_type_node
,
4669 high1
, 1, high0
, 1))))
4671 temp
= in0_p
, in0_p
= in1_p
, in1_p
= temp
;
4672 tem
= low0
, low0
= low1
, low1
= tem
;
4673 tem
= high0
, high0
= high1
, high1
= tem
;
4676 /* Now flag two cases, whether the ranges are disjoint or whether the
4677 second range is totally subsumed in the first. Note that the tests
4678 below are simplified by the ones above. */
4679 no_overlap
= integer_onep (range_binop (LT_EXPR
, integer_type_node
,
4680 high0
, 1, low1
, 0));
4681 subset
= integer_onep (range_binop (LE_EXPR
, integer_type_node
,
4682 high1
, 1, high0
, 1));
4684 /* We now have four cases, depending on whether we are including or
4685 excluding the two ranges. */
4688 /* If they don't overlap, the result is false. If the second range
4689 is a subset it is the result. Otherwise, the range is from the start
4690 of the second to the end of the first. */
4692 in_p
= 0, low
= high
= 0;
4694 in_p
= 1, low
= low1
, high
= high1
;
4696 in_p
= 1, low
= low1
, high
= high0
;
4699 else if (in0_p
&& ! in1_p
)
4701 /* If they don't overlap, the result is the first range. If they are
4702 equal, the result is false. If the second range is a subset of the
4703 first, and the ranges begin at the same place, we go from just after
4704 the end of the second range to the end of the first. If the second
4705 range is not a subset of the first, or if it is a subset and both
4706 ranges end at the same place, the range starts at the start of the
4707 first range and ends just before the second range.
4708 Otherwise, we can't describe this as a single range. */
4710 in_p
= 1, low
= low0
, high
= high0
;
4711 else if (lowequal
&& highequal
)
4712 in_p
= 0, low
= high
= 0;
4713 else if (subset
&& lowequal
)
4715 low
= range_successor (high1
);
4720 /* We are in the weird situation where high0 > high1 but
4721 high1 has no successor. Punt. */
4725 else if (! subset
|| highequal
)
4728 high
= range_predecessor (low1
);
4732 /* low0 < low1 but low1 has no predecessor. Punt. */
4740 else if (! in0_p
&& in1_p
)
4742 /* If they don't overlap, the result is the second range. If the second
4743 is a subset of the first, the result is false. Otherwise,
4744 the range starts just after the first range and ends at the
4745 end of the second. */
4747 in_p
= 1, low
= low1
, high
= high1
;
4748 else if (subset
|| highequal
)
4749 in_p
= 0, low
= high
= 0;
4752 low
= range_successor (high0
);
4757 /* high1 > high0 but high0 has no successor. Punt. */
4765 /* The case where we are excluding both ranges. Here the complex case
4766 is if they don't overlap. In that case, the only time we have a
4767 range is if they are adjacent. If the second is a subset of the
4768 first, the result is the first. Otherwise, the range to exclude
4769 starts at the beginning of the first range and ends at the end of the
4773 if (integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
4774 range_successor (high0
),
4776 in_p
= 0, low
= low0
, high
= high1
;
4779 /* Canonicalize - [min, x] into - [-, x]. */
4780 if (low0
&& TREE_CODE (low0
) == INTEGER_CST
)
4781 switch (TREE_CODE (TREE_TYPE (low0
)))
4784 if (TYPE_PRECISION (TREE_TYPE (low0
))
4785 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0
))))
4789 if (tree_int_cst_equal (low0
,
4790 TYPE_MIN_VALUE (TREE_TYPE (low0
))))
4794 if (TYPE_UNSIGNED (TREE_TYPE (low0
))
4795 && integer_zerop (low0
))
4802 /* Canonicalize - [x, max] into - [x, -]. */
4803 if (high1
&& TREE_CODE (high1
) == INTEGER_CST
)
4804 switch (TREE_CODE (TREE_TYPE (high1
)))
4807 if (TYPE_PRECISION (TREE_TYPE (high1
))
4808 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1
))))
4812 if (tree_int_cst_equal (high1
,
4813 TYPE_MAX_VALUE (TREE_TYPE (high1
))))
4817 if (TYPE_UNSIGNED (TREE_TYPE (high1
))
4818 && integer_zerop (range_binop (PLUS_EXPR
, NULL_TREE
,
4820 build_int_cst (TREE_TYPE (high1
), 1),
4828 /* The ranges might be also adjacent between the maximum and
4829 minimum values of the given type. For
4830 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4831 return + [x + 1, y - 1]. */
4832 if (low0
== 0 && high1
== 0)
4834 low
= range_successor (high0
);
4835 high
= range_predecessor (low1
);
4836 if (low
== 0 || high
== 0)
4846 in_p
= 0, low
= low0
, high
= high0
;
4848 in_p
= 0, low
= low0
, high
= high1
;
4851 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
4856 /* Subroutine of fold, looking inside expressions of the form
4857 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
4858 of the COND_EXPR. This function is being used also to optimize
4859 A op B ? C : A, by reversing the comparison first.
4861 Return a folded expression whose code is not a COND_EXPR
4862 anymore, or NULL_TREE if no folding opportunity is found. */
4865 fold_cond_expr_with_comparison (location_t loc
, tree type
,
4866 tree arg0
, tree arg1
, tree arg2
)
4868 enum tree_code comp_code
= TREE_CODE (arg0
);
4869 tree arg00
= TREE_OPERAND (arg0
, 0);
4870 tree arg01
= TREE_OPERAND (arg0
, 1);
4871 tree arg1_type
= TREE_TYPE (arg1
);
4877 /* If we have A op 0 ? A : -A, consider applying the following
4880 A == 0? A : -A same as -A
4881 A != 0? A : -A same as A
4882 A >= 0? A : -A same as abs (A)
4883 A > 0? A : -A same as abs (A)
4884 A <= 0? A : -A same as -abs (A)
4885 A < 0? A : -A same as -abs (A)
4887 None of these transformations work for modes with signed
4888 zeros. If A is +/-0, the first two transformations will
4889 change the sign of the result (from +0 to -0, or vice
4890 versa). The last four will fix the sign of the result,
4891 even though the original expressions could be positive or
4892 negative, depending on the sign of A.
4894 Note that all these transformations are correct if A is
4895 NaN, since the two alternatives (A and -A) are also NaNs. */
4896 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
4897 && (FLOAT_TYPE_P (TREE_TYPE (arg01
))
4898 ? real_zerop (arg01
)
4899 : integer_zerop (arg01
))
4900 && ((TREE_CODE (arg2
) == NEGATE_EXPR
4901 && operand_equal_p (TREE_OPERAND (arg2
, 0), arg1
, 0))
4902 /* In the case that A is of the form X-Y, '-A' (arg2) may
4903 have already been folded to Y-X, check for that. */
4904 || (TREE_CODE (arg1
) == MINUS_EXPR
4905 && TREE_CODE (arg2
) == MINUS_EXPR
4906 && operand_equal_p (TREE_OPERAND (arg1
, 0),
4907 TREE_OPERAND (arg2
, 1), 0)
4908 && operand_equal_p (TREE_OPERAND (arg1
, 1),
4909 TREE_OPERAND (arg2
, 0), 0))))
4914 tem
= fold_convert_loc (loc
, arg1_type
, arg1
);
4915 return pedantic_non_lvalue_loc (loc
,
4916 fold_convert_loc (loc
, type
,
4917 negate_expr (tem
)));
4920 return pedantic_non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
4923 if (flag_trapping_math
)
4928 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
4929 arg1
= fold_convert_loc (loc
, signed_type_for
4930 (TREE_TYPE (arg1
)), arg1
);
4931 tem
= fold_build1_loc (loc
, ABS_EXPR
, TREE_TYPE (arg1
), arg1
);
4932 return pedantic_non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, tem
));
4935 if (flag_trapping_math
)
4939 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
4940 arg1
= fold_convert_loc (loc
, signed_type_for
4941 (TREE_TYPE (arg1
)), arg1
);
4942 tem
= fold_build1_loc (loc
, ABS_EXPR
, TREE_TYPE (arg1
), arg1
);
4943 return negate_expr (fold_convert_loc (loc
, type
, tem
));
4945 gcc_assert (TREE_CODE_CLASS (comp_code
) == tcc_comparison
);
4949 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
4950 A == 0 ? A : 0 is always 0 unless A is -0. Note that
4951 both transformations are correct when A is NaN: A != 0
4952 is then true, and A == 0 is false. */
4954 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
4955 && integer_zerop (arg01
) && integer_zerop (arg2
))
4957 if (comp_code
== NE_EXPR
)
4958 return pedantic_non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
4959 else if (comp_code
== EQ_EXPR
)
4960 return build_zero_cst (type
);
4963 /* Try some transformations of A op B ? A : B.
4965 A == B? A : B same as B
4966 A != B? A : B same as A
4967 A >= B? A : B same as max (A, B)
4968 A > B? A : B same as max (B, A)
4969 A <= B? A : B same as min (A, B)
4970 A < B? A : B same as min (B, A)
4972 As above, these transformations don't work in the presence
4973 of signed zeros. For example, if A and B are zeros of
4974 opposite sign, the first two transformations will change
4975 the sign of the result. In the last four, the original
4976 expressions give different results for (A=+0, B=-0) and
4977 (A=-0, B=+0), but the transformed expressions do not.
4979 The first two transformations are correct if either A or B
4980 is a NaN. In the first transformation, the condition will
4981 be false, and B will indeed be chosen. In the case of the
4982 second transformation, the condition A != B will be true,
4983 and A will be chosen.
4985 The conversions to max() and min() are not correct if B is
4986 a number and A is not. The conditions in the original
4987 expressions will be false, so all four give B. The min()
4988 and max() versions would give a NaN instead. */
4989 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
4990 && operand_equal_for_comparison_p (arg01
, arg2
, arg00
)
4991 /* Avoid these transformations if the COND_EXPR may be used
4992 as an lvalue in the C++ front-end. PR c++/19199. */
4994 || VECTOR_TYPE_P (type
)
4995 || (! lang_GNU_CXX ()
4996 && strcmp (lang_hooks
.name
, "GNU Objective-C++") != 0)
4997 || ! maybe_lvalue_p (arg1
)
4998 || ! maybe_lvalue_p (arg2
)))
5000 tree comp_op0
= arg00
;
5001 tree comp_op1
= arg01
;
5002 tree comp_type
= TREE_TYPE (comp_op0
);
5004 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
5005 if (TYPE_MAIN_VARIANT (comp_type
) == TYPE_MAIN_VARIANT (type
))
5015 return pedantic_non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg2
));
5017 return pedantic_non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
5022 /* In C++ a ?: expression can be an lvalue, so put the
5023 operand which will be used if they are equal first
5024 so that we can convert this back to the
5025 corresponding COND_EXPR. */
5026 if (!HONOR_NANS (arg1
))
5028 comp_op0
= fold_convert_loc (loc
, comp_type
, comp_op0
);
5029 comp_op1
= fold_convert_loc (loc
, comp_type
, comp_op1
);
5030 tem
= (comp_code
== LE_EXPR
|| comp_code
== UNLE_EXPR
)
5031 ? fold_build2_loc (loc
, MIN_EXPR
, comp_type
, comp_op0
, comp_op1
)
5032 : fold_build2_loc (loc
, MIN_EXPR
, comp_type
,
5033 comp_op1
, comp_op0
);
5034 return pedantic_non_lvalue_loc (loc
,
5035 fold_convert_loc (loc
, type
, tem
));
5042 if (!HONOR_NANS (arg1
))
5044 comp_op0
= fold_convert_loc (loc
, comp_type
, comp_op0
);
5045 comp_op1
= fold_convert_loc (loc
, comp_type
, comp_op1
);
5046 tem
= (comp_code
== GE_EXPR
|| comp_code
== UNGE_EXPR
)
5047 ? fold_build2_loc (loc
, MAX_EXPR
, comp_type
, comp_op0
, comp_op1
)
5048 : fold_build2_loc (loc
, MAX_EXPR
, comp_type
,
5049 comp_op1
, comp_op0
);
5050 return pedantic_non_lvalue_loc (loc
,
5051 fold_convert_loc (loc
, type
, tem
));
5055 if (!HONOR_NANS (arg1
))
5056 return pedantic_non_lvalue_loc (loc
,
5057 fold_convert_loc (loc
, type
, arg2
));
5060 if (!HONOR_NANS (arg1
))
5061 return pedantic_non_lvalue_loc (loc
,
5062 fold_convert_loc (loc
, type
, arg1
));
5065 gcc_assert (TREE_CODE_CLASS (comp_code
) == tcc_comparison
);
5070 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
5071 we might still be able to simplify this. For example,
5072 if C1 is one less or one more than C2, this might have started
5073 out as a MIN or MAX and been transformed by this function.
5074 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
5076 if (INTEGRAL_TYPE_P (type
)
5077 && TREE_CODE (arg01
) == INTEGER_CST
5078 && TREE_CODE (arg2
) == INTEGER_CST
)
5082 if (TREE_CODE (arg1
) == INTEGER_CST
)
5084 /* We can replace A with C1 in this case. */
5085 arg1
= fold_convert_loc (loc
, type
, arg01
);
5086 return fold_build3_loc (loc
, COND_EXPR
, type
, arg0
, arg1
, arg2
);
5089 /* If C1 is C2 + 1, this is min(A, C2), but use ARG00's type for
5090 MIN_EXPR, to preserve the signedness of the comparison. */
5091 if (! operand_equal_p (arg2
, TYPE_MAX_VALUE (type
),
5093 && operand_equal_p (arg01
,
5094 const_binop (PLUS_EXPR
, arg2
,
5095 build_int_cst (type
, 1)),
5098 tem
= fold_build2_loc (loc
, MIN_EXPR
, TREE_TYPE (arg00
), arg00
,
5099 fold_convert_loc (loc
, TREE_TYPE (arg00
),
5101 return pedantic_non_lvalue_loc (loc
,
5102 fold_convert_loc (loc
, type
, tem
));
5107 /* If C1 is C2 - 1, this is min(A, C2), with the same care
5109 if (! operand_equal_p (arg2
, TYPE_MIN_VALUE (type
),
5111 && operand_equal_p (arg01
,
5112 const_binop (MINUS_EXPR
, arg2
,
5113 build_int_cst (type
, 1)),
5116 tem
= fold_build2_loc (loc
, MIN_EXPR
, TREE_TYPE (arg00
), arg00
,
5117 fold_convert_loc (loc
, TREE_TYPE (arg00
),
5119 return pedantic_non_lvalue_loc (loc
,
5120 fold_convert_loc (loc
, type
, tem
));
5125 /* If C1 is C2 - 1, this is max(A, C2), but use ARG00's type for
5126 MAX_EXPR, to preserve the signedness of the comparison. */
5127 if (! operand_equal_p (arg2
, TYPE_MIN_VALUE (type
),
5129 && operand_equal_p (arg01
,
5130 const_binop (MINUS_EXPR
, arg2
,
5131 build_int_cst (type
, 1)),
5134 tem
= fold_build2_loc (loc
, MAX_EXPR
, TREE_TYPE (arg00
), arg00
,
5135 fold_convert_loc (loc
, TREE_TYPE (arg00
),
5137 return pedantic_non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, tem
));
5142 /* If C1 is C2 + 1, this is max(A, C2), with the same care as above. */
5143 if (! operand_equal_p (arg2
, TYPE_MAX_VALUE (type
),
5145 && operand_equal_p (arg01
,
5146 const_binop (PLUS_EXPR
, arg2
,
5147 build_int_cst (type
, 1)),
5150 tem
= fold_build2_loc (loc
, MAX_EXPR
, TREE_TYPE (arg00
), arg00
,
5151 fold_convert_loc (loc
, TREE_TYPE (arg00
),
5153 return pedantic_non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, tem
));
5167 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5168 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5169 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5173 /* EXP is some logical combination of boolean tests. See if we can
5174 merge it into some range test. Return the new tree if so. */
5177 fold_range_test (location_t loc
, enum tree_code code
, tree type
,
5180 int or_op
= (code
== TRUTH_ORIF_EXPR
5181 || code
== TRUTH_OR_EXPR
);
5182 int in0_p
, in1_p
, in_p
;
5183 tree low0
, low1
, low
, high0
, high1
, high
;
5184 bool strict_overflow_p
= false;
5186 const char * const warnmsg
= G_("assuming signed overflow does not occur "
5187 "when simplifying range test");
5189 if (!INTEGRAL_TYPE_P (type
))
5192 lhs
= make_range (op0
, &in0_p
, &low0
, &high0
, &strict_overflow_p
);
5193 rhs
= make_range (op1
, &in1_p
, &low1
, &high1
, &strict_overflow_p
);
5195 /* If this is an OR operation, invert both sides; we will invert
5196 again at the end. */
5198 in0_p
= ! in0_p
, in1_p
= ! in1_p
;
5200 /* If both expressions are the same, if we can merge the ranges, and we
5201 can build the range test, return it or it inverted. If one of the
5202 ranges is always true or always false, consider it to be the same
5203 expression as the other. */
5204 if ((lhs
== 0 || rhs
== 0 || operand_equal_p (lhs
, rhs
, 0))
5205 && merge_ranges (&in_p
, &low
, &high
, in0_p
, low0
, high0
,
5207 && 0 != (tem
= (build_range_check (loc
, type
,
5209 : rhs
!= 0 ? rhs
: integer_zero_node
,
5212 if (strict_overflow_p
)
5213 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
5214 return or_op
? invert_truthvalue_loc (loc
, tem
) : tem
;
5217 /* On machines where the branch cost is expensive, if this is a
5218 short-circuited branch and the underlying object on both sides
5219 is the same, make a non-short-circuit operation. */
5220 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5221 && lhs
!= 0 && rhs
!= 0
5222 && (code
== TRUTH_ANDIF_EXPR
5223 || code
== TRUTH_ORIF_EXPR
)
5224 && operand_equal_p (lhs
, rhs
, 0))
5226 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5227 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5228 which cases we can't do this. */
5229 if (simple_operand_p (lhs
))
5230 return build2_loc (loc
, code
== TRUTH_ANDIF_EXPR
5231 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
5234 else if (!lang_hooks
.decls
.global_bindings_p ()
5235 && !CONTAINS_PLACEHOLDER_P (lhs
))
5237 tree common
= save_expr (lhs
);
5239 if (0 != (lhs
= build_range_check (loc
, type
, common
,
5240 or_op
? ! in0_p
: in0_p
,
5242 && (0 != (rhs
= build_range_check (loc
, type
, common
,
5243 or_op
? ! in1_p
: in1_p
,
5246 if (strict_overflow_p
)
5247 fold_overflow_warning (warnmsg
,
5248 WARN_STRICT_OVERFLOW_COMPARISON
);
5249 return build2_loc (loc
, code
== TRUTH_ANDIF_EXPR
5250 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
5259 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5260 bit value. Arrange things so the extra bits will be set to zero if and
5261 only if C is signed-extended to its full width. If MASK is nonzero,
5262 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5265 unextend (tree c
, int p
, int unsignedp
, tree mask
)
5267 tree type
= TREE_TYPE (c
);
5268 int modesize
= GET_MODE_BITSIZE (TYPE_MODE (type
));
5271 if (p
== modesize
|| unsignedp
)
5274 /* We work by getting just the sign bit into the low-order bit, then
5275 into the high-order bit, then sign-extend. We then XOR that value
5277 temp
= build_int_cst (TREE_TYPE (c
), wi::extract_uhwi (c
, p
- 1, 1));
5279 /* We must use a signed type in order to get an arithmetic right shift.
5280 However, we must also avoid introducing accidental overflows, so that
5281 a subsequent call to integer_zerop will work. Hence we must
5282 do the type conversion here. At this point, the constant is either
5283 zero or one, and the conversion to a signed type can never overflow.
5284 We could get an overflow if this conversion is done anywhere else. */
5285 if (TYPE_UNSIGNED (type
))
5286 temp
= fold_convert (signed_type_for (type
), temp
);
5288 temp
= const_binop (LSHIFT_EXPR
, temp
, size_int (modesize
- 1));
5289 temp
= const_binop (RSHIFT_EXPR
, temp
, size_int (modesize
- p
- 1));
5291 temp
= const_binop (BIT_AND_EXPR
, temp
,
5292 fold_convert (TREE_TYPE (c
), mask
));
5293 /* If necessary, convert the type back to match the type of C. */
5294 if (TYPE_UNSIGNED (type
))
5295 temp
= fold_convert (type
, temp
);
5297 return fold_convert (type
, const_binop (BIT_XOR_EXPR
, c
, temp
));
5300 /* For an expression that has the form
5304 we can drop one of the inner expressions and simplify to
5308 LOC is the location of the resulting expression. OP is the inner
5309 logical operation; the left-hand side in the examples above, while CMPOP
5310 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5311 removing a condition that guards another, as in
5312 (A != NULL && A->...) || A == NULL
5313 which we must not transform. If RHS_ONLY is true, only eliminate the
5314 right-most operand of the inner logical operation. */
5317 merge_truthop_with_opposite_arm (location_t loc
, tree op
, tree cmpop
,
5320 tree type
= TREE_TYPE (cmpop
);
5321 enum tree_code code
= TREE_CODE (cmpop
);
5322 enum tree_code truthop_code
= TREE_CODE (op
);
5323 tree lhs
= TREE_OPERAND (op
, 0);
5324 tree rhs
= TREE_OPERAND (op
, 1);
5325 tree orig_lhs
= lhs
, orig_rhs
= rhs
;
5326 enum tree_code rhs_code
= TREE_CODE (rhs
);
5327 enum tree_code lhs_code
= TREE_CODE (lhs
);
5328 enum tree_code inv_code
;
5330 if (TREE_SIDE_EFFECTS (op
) || TREE_SIDE_EFFECTS (cmpop
))
5333 if (TREE_CODE_CLASS (code
) != tcc_comparison
)
5336 if (rhs_code
== truthop_code
)
5338 tree newrhs
= merge_truthop_with_opposite_arm (loc
, rhs
, cmpop
, rhs_only
);
5339 if (newrhs
!= NULL_TREE
)
5342 rhs_code
= TREE_CODE (rhs
);
5345 if (lhs_code
== truthop_code
&& !rhs_only
)
5347 tree newlhs
= merge_truthop_with_opposite_arm (loc
, lhs
, cmpop
, false);
5348 if (newlhs
!= NULL_TREE
)
5351 lhs_code
= TREE_CODE (lhs
);
5355 inv_code
= invert_tree_comparison (code
, HONOR_NANS (type
));
5356 if (inv_code
== rhs_code
5357 && operand_equal_p (TREE_OPERAND (rhs
, 0), TREE_OPERAND (cmpop
, 0), 0)
5358 && operand_equal_p (TREE_OPERAND (rhs
, 1), TREE_OPERAND (cmpop
, 1), 0))
5360 if (!rhs_only
&& inv_code
== lhs_code
5361 && operand_equal_p (TREE_OPERAND (lhs
, 0), TREE_OPERAND (cmpop
, 0), 0)
5362 && operand_equal_p (TREE_OPERAND (lhs
, 1), TREE_OPERAND (cmpop
, 1), 0))
5364 if (rhs
!= orig_rhs
|| lhs
!= orig_lhs
)
5365 return fold_build2_loc (loc
, truthop_code
, TREE_TYPE (cmpop
),
5370 /* Find ways of folding logical expressions of LHS and RHS:
5371 Try to merge two comparisons to the same innermost item.
5372 Look for range tests like "ch >= '0' && ch <= '9'".
5373 Look for combinations of simple terms on machines with expensive branches
5374 and evaluate the RHS unconditionally.
5376 For example, if we have p->a == 2 && p->b == 4 and we can make an
5377 object large enough to span both A and B, we can do this with a comparison
5378 against the object ANDed with the a mask.
5380 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5381 operations to do this with one comparison.
5383 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5384 function and the one above.
5386 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5387 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5389 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5392 We return the simplified tree or 0 if no optimization is possible. */
5395 fold_truth_andor_1 (location_t loc
, enum tree_code code
, tree truth_type
,
5398 /* If this is the "or" of two comparisons, we can do something if
5399 the comparisons are NE_EXPR. If this is the "and", we can do something
5400 if the comparisons are EQ_EXPR. I.e.,
5401 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5403 WANTED_CODE is this operation code. For single bit fields, we can
5404 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5405 comparison for one-bit fields. */
5407 enum tree_code wanted_code
;
5408 enum tree_code lcode
, rcode
;
5409 tree ll_arg
, lr_arg
, rl_arg
, rr_arg
;
5410 tree ll_inner
, lr_inner
, rl_inner
, rr_inner
;
5411 HOST_WIDE_INT ll_bitsize
, ll_bitpos
, lr_bitsize
, lr_bitpos
;
5412 HOST_WIDE_INT rl_bitsize
, rl_bitpos
, rr_bitsize
, rr_bitpos
;
5413 HOST_WIDE_INT xll_bitpos
, xlr_bitpos
, xrl_bitpos
, xrr_bitpos
;
5414 HOST_WIDE_INT lnbitsize
, lnbitpos
, rnbitsize
, rnbitpos
;
5415 int ll_unsignedp
, lr_unsignedp
, rl_unsignedp
, rr_unsignedp
;
5416 machine_mode ll_mode
, lr_mode
, rl_mode
, rr_mode
;
5417 machine_mode lnmode
, rnmode
;
5418 tree ll_mask
, lr_mask
, rl_mask
, rr_mask
;
5419 tree ll_and_mask
, lr_and_mask
, rl_and_mask
, rr_and_mask
;
5420 tree l_const
, r_const
;
5421 tree lntype
, rntype
, result
;
5422 HOST_WIDE_INT first_bit
, end_bit
;
5425 /* Start by getting the comparison codes. Fail if anything is volatile.
5426 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5427 it were surrounded with a NE_EXPR. */
5429 if (TREE_SIDE_EFFECTS (lhs
) || TREE_SIDE_EFFECTS (rhs
))
5432 lcode
= TREE_CODE (lhs
);
5433 rcode
= TREE_CODE (rhs
);
5435 if (lcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (lhs
, 1)))
5437 lhs
= build2 (NE_EXPR
, truth_type
, lhs
,
5438 build_int_cst (TREE_TYPE (lhs
), 0));
5442 if (rcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (rhs
, 1)))
5444 rhs
= build2 (NE_EXPR
, truth_type
, rhs
,
5445 build_int_cst (TREE_TYPE (rhs
), 0));
5449 if (TREE_CODE_CLASS (lcode
) != tcc_comparison
5450 || TREE_CODE_CLASS (rcode
) != tcc_comparison
)
5453 ll_arg
= TREE_OPERAND (lhs
, 0);
5454 lr_arg
= TREE_OPERAND (lhs
, 1);
5455 rl_arg
= TREE_OPERAND (rhs
, 0);
5456 rr_arg
= TREE_OPERAND (rhs
, 1);
5458 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5459 if (simple_operand_p (ll_arg
)
5460 && simple_operand_p (lr_arg
))
5462 if (operand_equal_p (ll_arg
, rl_arg
, 0)
5463 && operand_equal_p (lr_arg
, rr_arg
, 0))
5465 result
= combine_comparisons (loc
, code
, lcode
, rcode
,
5466 truth_type
, ll_arg
, lr_arg
);
5470 else if (operand_equal_p (ll_arg
, rr_arg
, 0)
5471 && operand_equal_p (lr_arg
, rl_arg
, 0))
5473 result
= combine_comparisons (loc
, code
, lcode
,
5474 swap_tree_comparison (rcode
),
5475 truth_type
, ll_arg
, lr_arg
);
5481 code
= ((code
== TRUTH_AND_EXPR
|| code
== TRUTH_ANDIF_EXPR
)
5482 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
);
5484 /* If the RHS can be evaluated unconditionally and its operands are
5485 simple, it wins to evaluate the RHS unconditionally on machines
5486 with expensive branches. In this case, this isn't a comparison
5487 that can be merged. */
5489 if (BRANCH_COST (optimize_function_for_speed_p (cfun
),
5491 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg
))
5492 && simple_operand_p (rl_arg
)
5493 && simple_operand_p (rr_arg
))
5495 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5496 if (code
== TRUTH_OR_EXPR
5497 && lcode
== NE_EXPR
&& integer_zerop (lr_arg
)
5498 && rcode
== NE_EXPR
&& integer_zerop (rr_arg
)
5499 && TREE_TYPE (ll_arg
) == TREE_TYPE (rl_arg
)
5500 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg
)))
5501 return build2_loc (loc
, NE_EXPR
, truth_type
,
5502 build2 (BIT_IOR_EXPR
, TREE_TYPE (ll_arg
),
5504 build_int_cst (TREE_TYPE (ll_arg
), 0));
5506 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5507 if (code
== TRUTH_AND_EXPR
5508 && lcode
== EQ_EXPR
&& integer_zerop (lr_arg
)
5509 && rcode
== EQ_EXPR
&& integer_zerop (rr_arg
)
5510 && TREE_TYPE (ll_arg
) == TREE_TYPE (rl_arg
)
5511 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg
)))
5512 return build2_loc (loc
, EQ_EXPR
, truth_type
,
5513 build2 (BIT_IOR_EXPR
, TREE_TYPE (ll_arg
),
5515 build_int_cst (TREE_TYPE (ll_arg
), 0));
5518 /* See if the comparisons can be merged. Then get all the parameters for
5521 if ((lcode
!= EQ_EXPR
&& lcode
!= NE_EXPR
)
5522 || (rcode
!= EQ_EXPR
&& rcode
!= NE_EXPR
))
5526 ll_inner
= decode_field_reference (loc
, ll_arg
,
5527 &ll_bitsize
, &ll_bitpos
, &ll_mode
,
5528 &ll_unsignedp
, &volatilep
, &ll_mask
,
5530 lr_inner
= decode_field_reference (loc
, lr_arg
,
5531 &lr_bitsize
, &lr_bitpos
, &lr_mode
,
5532 &lr_unsignedp
, &volatilep
, &lr_mask
,
5534 rl_inner
= decode_field_reference (loc
, rl_arg
,
5535 &rl_bitsize
, &rl_bitpos
, &rl_mode
,
5536 &rl_unsignedp
, &volatilep
, &rl_mask
,
5538 rr_inner
= decode_field_reference (loc
, rr_arg
,
5539 &rr_bitsize
, &rr_bitpos
, &rr_mode
,
5540 &rr_unsignedp
, &volatilep
, &rr_mask
,
5543 /* It must be true that the inner operation on the lhs of each
5544 comparison must be the same if we are to be able to do anything.
5545 Then see if we have constants. If not, the same must be true for
5547 if (volatilep
|| ll_inner
== 0 || rl_inner
== 0
5548 || ! operand_equal_p (ll_inner
, rl_inner
, 0))
5551 if (TREE_CODE (lr_arg
) == INTEGER_CST
5552 && TREE_CODE (rr_arg
) == INTEGER_CST
)
5553 l_const
= lr_arg
, r_const
= rr_arg
;
5554 else if (lr_inner
== 0 || rr_inner
== 0
5555 || ! operand_equal_p (lr_inner
, rr_inner
, 0))
5558 l_const
= r_const
= 0;
5560 /* If either comparison code is not correct for our logical operation,
5561 fail. However, we can convert a one-bit comparison against zero into
5562 the opposite comparison against that bit being set in the field. */
5564 wanted_code
= (code
== TRUTH_AND_EXPR
? EQ_EXPR
: NE_EXPR
);
5565 if (lcode
!= wanted_code
)
5567 if (l_const
&& integer_zerop (l_const
) && integer_pow2p (ll_mask
))
5569 /* Make the left operand unsigned, since we are only interested
5570 in the value of one bit. Otherwise we are doing the wrong
5579 /* This is analogous to the code for l_const above. */
5580 if (rcode
!= wanted_code
)
5582 if (r_const
&& integer_zerop (r_const
) && integer_pow2p (rl_mask
))
5591 /* See if we can find a mode that contains both fields being compared on
5592 the left. If we can't, fail. Otherwise, update all constants and masks
5593 to be relative to a field of that size. */
5594 first_bit
= MIN (ll_bitpos
, rl_bitpos
);
5595 end_bit
= MAX (ll_bitpos
+ ll_bitsize
, rl_bitpos
+ rl_bitsize
);
5596 lnmode
= get_best_mode (end_bit
- first_bit
, first_bit
, 0, 0,
5597 TYPE_ALIGN (TREE_TYPE (ll_inner
)), word_mode
,
5599 if (lnmode
== VOIDmode
)
5602 lnbitsize
= GET_MODE_BITSIZE (lnmode
);
5603 lnbitpos
= first_bit
& ~ (lnbitsize
- 1);
5604 lntype
= lang_hooks
.types
.type_for_size (lnbitsize
, 1);
5605 xll_bitpos
= ll_bitpos
- lnbitpos
, xrl_bitpos
= rl_bitpos
- lnbitpos
;
5607 if (BYTES_BIG_ENDIAN
)
5609 xll_bitpos
= lnbitsize
- xll_bitpos
- ll_bitsize
;
5610 xrl_bitpos
= lnbitsize
- xrl_bitpos
- rl_bitsize
;
5613 ll_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
, lntype
, ll_mask
),
5614 size_int (xll_bitpos
));
5615 rl_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
, lntype
, rl_mask
),
5616 size_int (xrl_bitpos
));
5620 l_const
= fold_convert_loc (loc
, lntype
, l_const
);
5621 l_const
= unextend (l_const
, ll_bitsize
, ll_unsignedp
, ll_and_mask
);
5622 l_const
= const_binop (LSHIFT_EXPR
, l_const
, size_int (xll_bitpos
));
5623 if (! integer_zerop (const_binop (BIT_AND_EXPR
, l_const
,
5624 fold_build1_loc (loc
, BIT_NOT_EXPR
,
5627 warning (0, "comparison is always %d", wanted_code
== NE_EXPR
);
5629 return constant_boolean_node (wanted_code
== NE_EXPR
, truth_type
);
5634 r_const
= fold_convert_loc (loc
, lntype
, r_const
);
5635 r_const
= unextend (r_const
, rl_bitsize
, rl_unsignedp
, rl_and_mask
);
5636 r_const
= const_binop (LSHIFT_EXPR
, r_const
, size_int (xrl_bitpos
));
5637 if (! integer_zerop (const_binop (BIT_AND_EXPR
, r_const
,
5638 fold_build1_loc (loc
, BIT_NOT_EXPR
,
5641 warning (0, "comparison is always %d", wanted_code
== NE_EXPR
);
5643 return constant_boolean_node (wanted_code
== NE_EXPR
, truth_type
);
5647 /* If the right sides are not constant, do the same for it. Also,
5648 disallow this optimization if a size or signedness mismatch occurs
5649 between the left and right sides. */
5652 if (ll_bitsize
!= lr_bitsize
|| rl_bitsize
!= rr_bitsize
5653 || ll_unsignedp
!= lr_unsignedp
|| rl_unsignedp
!= rr_unsignedp
5654 /* Make sure the two fields on the right
5655 correspond to the left without being swapped. */
5656 || ll_bitpos
- rl_bitpos
!= lr_bitpos
- rr_bitpos
)
5659 first_bit
= MIN (lr_bitpos
, rr_bitpos
);
5660 end_bit
= MAX (lr_bitpos
+ lr_bitsize
, rr_bitpos
+ rr_bitsize
);
5661 rnmode
= get_best_mode (end_bit
- first_bit
, first_bit
, 0, 0,
5662 TYPE_ALIGN (TREE_TYPE (lr_inner
)), word_mode
,
5664 if (rnmode
== VOIDmode
)
5667 rnbitsize
= GET_MODE_BITSIZE (rnmode
);
5668 rnbitpos
= first_bit
& ~ (rnbitsize
- 1);
5669 rntype
= lang_hooks
.types
.type_for_size (rnbitsize
, 1);
5670 xlr_bitpos
= lr_bitpos
- rnbitpos
, xrr_bitpos
= rr_bitpos
- rnbitpos
;
5672 if (BYTES_BIG_ENDIAN
)
5674 xlr_bitpos
= rnbitsize
- xlr_bitpos
- lr_bitsize
;
5675 xrr_bitpos
= rnbitsize
- xrr_bitpos
- rr_bitsize
;
5678 lr_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
,
5680 size_int (xlr_bitpos
));
5681 rr_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
,
5683 size_int (xrr_bitpos
));
5685 /* Make a mask that corresponds to both fields being compared.
5686 Do this for both items being compared. If the operands are the
5687 same size and the bits being compared are in the same position
5688 then we can do this by masking both and comparing the masked
5690 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
);
5691 lr_mask
= const_binop (BIT_IOR_EXPR
, lr_mask
, rr_mask
);
5692 if (lnbitsize
== rnbitsize
&& xll_bitpos
== xlr_bitpos
)
5694 lhs
= make_bit_field_ref (loc
, ll_inner
, lntype
, lnbitsize
, lnbitpos
,
5695 ll_unsignedp
|| rl_unsignedp
);
5696 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
5697 lhs
= build2 (BIT_AND_EXPR
, lntype
, lhs
, ll_mask
);
5699 rhs
= make_bit_field_ref (loc
, lr_inner
, rntype
, rnbitsize
, rnbitpos
,
5700 lr_unsignedp
|| rr_unsignedp
);
5701 if (! all_ones_mask_p (lr_mask
, rnbitsize
))
5702 rhs
= build2 (BIT_AND_EXPR
, rntype
, rhs
, lr_mask
);
5704 return build2_loc (loc
, wanted_code
, truth_type
, lhs
, rhs
);
5707 /* There is still another way we can do something: If both pairs of
5708 fields being compared are adjacent, we may be able to make a wider
5709 field containing them both.
5711 Note that we still must mask the lhs/rhs expressions. Furthermore,
5712 the mask must be shifted to account for the shift done by
5713 make_bit_field_ref. */
5714 if ((ll_bitsize
+ ll_bitpos
== rl_bitpos
5715 && lr_bitsize
+ lr_bitpos
== rr_bitpos
)
5716 || (ll_bitpos
== rl_bitpos
+ rl_bitsize
5717 && lr_bitpos
== rr_bitpos
+ rr_bitsize
))
5721 lhs
= make_bit_field_ref (loc
, ll_inner
, lntype
,
5722 ll_bitsize
+ rl_bitsize
,
5723 MIN (ll_bitpos
, rl_bitpos
), ll_unsignedp
);
5724 rhs
= make_bit_field_ref (loc
, lr_inner
, rntype
,
5725 lr_bitsize
+ rr_bitsize
,
5726 MIN (lr_bitpos
, rr_bitpos
), lr_unsignedp
);
5728 ll_mask
= const_binop (RSHIFT_EXPR
, ll_mask
,
5729 size_int (MIN (xll_bitpos
, xrl_bitpos
)));
5730 lr_mask
= const_binop (RSHIFT_EXPR
, lr_mask
,
5731 size_int (MIN (xlr_bitpos
, xrr_bitpos
)));
5733 /* Convert to the smaller type before masking out unwanted bits. */
5735 if (lntype
!= rntype
)
5737 if (lnbitsize
> rnbitsize
)
5739 lhs
= fold_convert_loc (loc
, rntype
, lhs
);
5740 ll_mask
= fold_convert_loc (loc
, rntype
, ll_mask
);
5743 else if (lnbitsize
< rnbitsize
)
5745 rhs
= fold_convert_loc (loc
, lntype
, rhs
);
5746 lr_mask
= fold_convert_loc (loc
, lntype
, lr_mask
);
5751 if (! all_ones_mask_p (ll_mask
, ll_bitsize
+ rl_bitsize
))
5752 lhs
= build2 (BIT_AND_EXPR
, type
, lhs
, ll_mask
);
5754 if (! all_ones_mask_p (lr_mask
, lr_bitsize
+ rr_bitsize
))
5755 rhs
= build2 (BIT_AND_EXPR
, type
, rhs
, lr_mask
);
5757 return build2_loc (loc
, wanted_code
, truth_type
, lhs
, rhs
);
5763 /* Handle the case of comparisons with constants. If there is something in
5764 common between the masks, those bits of the constants must be the same.
5765 If not, the condition is always false. Test for this to avoid generating
5766 incorrect code below. */
5767 result
= const_binop (BIT_AND_EXPR
, ll_mask
, rl_mask
);
5768 if (! integer_zerop (result
)
5769 && simple_cst_equal (const_binop (BIT_AND_EXPR
, result
, l_const
),
5770 const_binop (BIT_AND_EXPR
, result
, r_const
)) != 1)
5772 if (wanted_code
== NE_EXPR
)
5774 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5775 return constant_boolean_node (true, truth_type
);
5779 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5780 return constant_boolean_node (false, truth_type
);
5784 /* Construct the expression we will return. First get the component
5785 reference we will make. Unless the mask is all ones the width of
5786 that field, perform the mask operation. Then compare with the
5788 result
= make_bit_field_ref (loc
, ll_inner
, lntype
, lnbitsize
, lnbitpos
,
5789 ll_unsignedp
|| rl_unsignedp
);
5791 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
);
5792 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
5793 result
= build2_loc (loc
, BIT_AND_EXPR
, lntype
, result
, ll_mask
);
5795 return build2_loc (loc
, wanted_code
, truth_type
, result
,
5796 const_binop (BIT_IOR_EXPR
, l_const
, r_const
));
5799 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
5803 optimize_minmax_comparison (location_t loc
, enum tree_code code
, tree type
,
5807 enum tree_code op_code
;
5810 int consts_equal
, consts_lt
;
5813 STRIP_SIGN_NOPS (arg0
);
5815 op_code
= TREE_CODE (arg0
);
5816 minmax_const
= TREE_OPERAND (arg0
, 1);
5817 comp_const
= fold_convert_loc (loc
, TREE_TYPE (arg0
), op1
);
5818 consts_equal
= tree_int_cst_equal (minmax_const
, comp_const
);
5819 consts_lt
= tree_int_cst_lt (minmax_const
, comp_const
);
5820 inner
= TREE_OPERAND (arg0
, 0);
5822 /* If something does not permit us to optimize, return the original tree. */
5823 if ((op_code
!= MIN_EXPR
&& op_code
!= MAX_EXPR
)
5824 || TREE_CODE (comp_const
) != INTEGER_CST
5825 || TREE_OVERFLOW (comp_const
)
5826 || TREE_CODE (minmax_const
) != INTEGER_CST
5827 || TREE_OVERFLOW (minmax_const
))
5830 /* Now handle all the various comparison codes. We only handle EQ_EXPR
5831 and GT_EXPR, doing the rest with recursive calls using logical
5835 case NE_EXPR
: case LT_EXPR
: case LE_EXPR
:
5838 = optimize_minmax_comparison (loc
,
5839 invert_tree_comparison (code
, false),
5842 return invert_truthvalue_loc (loc
, tem
);
5848 fold_build2_loc (loc
, TRUTH_ORIF_EXPR
, type
,
5849 optimize_minmax_comparison
5850 (loc
, EQ_EXPR
, type
, arg0
, comp_const
),
5851 optimize_minmax_comparison
5852 (loc
, GT_EXPR
, type
, arg0
, comp_const
));
5855 if (op_code
== MAX_EXPR
&& consts_equal
)
5856 /* MAX (X, 0) == 0 -> X <= 0 */
5857 return fold_build2_loc (loc
, LE_EXPR
, type
, inner
, comp_const
);
5859 else if (op_code
== MAX_EXPR
&& consts_lt
)
5860 /* MAX (X, 0) == 5 -> X == 5 */
5861 return fold_build2_loc (loc
, EQ_EXPR
, type
, inner
, comp_const
);
5863 else if (op_code
== MAX_EXPR
)
5864 /* MAX (X, 0) == -1 -> false */
5865 return omit_one_operand_loc (loc
, type
, integer_zero_node
, inner
);
5867 else if (consts_equal
)
5868 /* MIN (X, 0) == 0 -> X >= 0 */
5869 return fold_build2_loc (loc
, GE_EXPR
, type
, inner
, comp_const
);
5872 /* MIN (X, 0) == 5 -> false */
5873 return omit_one_operand_loc (loc
, type
, integer_zero_node
, inner
);
5876 /* MIN (X, 0) == -1 -> X == -1 */
5877 return fold_build2_loc (loc
, EQ_EXPR
, type
, inner
, comp_const
);
5880 if (op_code
== MAX_EXPR
&& (consts_equal
|| consts_lt
))
5881 /* MAX (X, 0) > 0 -> X > 0
5882 MAX (X, 0) > 5 -> X > 5 */
5883 return fold_build2_loc (loc
, GT_EXPR
, type
, inner
, comp_const
);
5885 else if (op_code
== MAX_EXPR
)
5886 /* MAX (X, 0) > -1 -> true */
5887 return omit_one_operand_loc (loc
, type
, integer_one_node
, inner
);
5889 else if (op_code
== MIN_EXPR
&& (consts_equal
|| consts_lt
))
5890 /* MIN (X, 0) > 0 -> false
5891 MIN (X, 0) > 5 -> false */
5892 return omit_one_operand_loc (loc
, type
, integer_zero_node
, inner
);
5895 /* MIN (X, 0) > -1 -> X > -1 */
5896 return fold_build2_loc (loc
, GT_EXPR
, type
, inner
, comp_const
);
5903 /* T is an integer expression that is being multiplied, divided, or taken a
5904 modulus (CODE says which and what kind of divide or modulus) by a
5905 constant C. See if we can eliminate that operation by folding it with
5906 other operations already in T. WIDE_TYPE, if non-null, is a type that
5907 should be used for the computation if wider than our type.
5909 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5910 (X * 2) + (Y * 4). We must, however, be assured that either the original
5911 expression would not overflow or that overflow is undefined for the type
5912 in the language in question.
5914 If we return a non-null expression, it is an equivalent form of the
5915 original computation, but need not be in the original type.
5917 We set *STRICT_OVERFLOW_P to true if the return values depends on
5918 signed overflow being undefined. Otherwise we do not change
5919 *STRICT_OVERFLOW_P. */
5922 extract_muldiv (tree t
, tree c
, enum tree_code code
, tree wide_type
,
5923 bool *strict_overflow_p
)
5925 /* To avoid exponential search depth, refuse to allow recursion past
5926 three levels. Beyond that (1) it's highly unlikely that we'll find
5927 something interesting and (2) we've probably processed it before
5928 when we built the inner expression. */
5937 ret
= extract_muldiv_1 (t
, c
, code
, wide_type
, strict_overflow_p
);
5944 extract_muldiv_1 (tree t
, tree c
, enum tree_code code
, tree wide_type
,
5945 bool *strict_overflow_p
)
5947 tree type
= TREE_TYPE (t
);
5948 enum tree_code tcode
= TREE_CODE (t
);
5949 tree ctype
= (wide_type
!= 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type
))
5950 > GET_MODE_SIZE (TYPE_MODE (type
)))
5951 ? wide_type
: type
);
5953 int same_p
= tcode
== code
;
5954 tree op0
= NULL_TREE
, op1
= NULL_TREE
;
5955 bool sub_strict_overflow_p
;
5957 /* Don't deal with constants of zero here; they confuse the code below. */
5958 if (integer_zerop (c
))
5961 if (TREE_CODE_CLASS (tcode
) == tcc_unary
)
5962 op0
= TREE_OPERAND (t
, 0);
5964 if (TREE_CODE_CLASS (tcode
) == tcc_binary
)
5965 op0
= TREE_OPERAND (t
, 0), op1
= TREE_OPERAND (t
, 1);
5967 /* Note that we need not handle conditional operations here since fold
5968 already handles those cases. So just do arithmetic here. */
5972 /* For a constant, we can always simplify if we are a multiply
5973 or (for divide and modulus) if it is a multiple of our constant. */
5974 if (code
== MULT_EXPR
5975 || wi::multiple_of_p (t
, c
, TYPE_SIGN (type
)))
5976 return const_binop (code
, fold_convert (ctype
, t
),
5977 fold_convert (ctype
, c
));
5980 CASE_CONVERT
: case NON_LVALUE_EXPR
:
5981 /* If op0 is an expression ... */
5982 if ((COMPARISON_CLASS_P (op0
)
5983 || UNARY_CLASS_P (op0
)
5984 || BINARY_CLASS_P (op0
)
5985 || VL_EXP_CLASS_P (op0
)
5986 || EXPRESSION_CLASS_P (op0
))
5987 /* ... and has wrapping overflow, and its type is smaller
5988 than ctype, then we cannot pass through as widening. */
5989 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0
))
5990 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0
)))
5991 && (TYPE_PRECISION (ctype
)
5992 > TYPE_PRECISION (TREE_TYPE (op0
))))
5993 /* ... or this is a truncation (t is narrower than op0),
5994 then we cannot pass through this narrowing. */
5995 || (TYPE_PRECISION (type
)
5996 < TYPE_PRECISION (TREE_TYPE (op0
)))
5997 /* ... or signedness changes for division or modulus,
5998 then we cannot pass through this conversion. */
5999 || (code
!= MULT_EXPR
6000 && (TYPE_UNSIGNED (ctype
)
6001 != TYPE_UNSIGNED (TREE_TYPE (op0
))))
6002 /* ... or has undefined overflow while the converted to
6003 type has not, we cannot do the operation in the inner type
6004 as that would introduce undefined overflow. */
6005 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0
))
6006 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0
)))
6007 && !TYPE_OVERFLOW_UNDEFINED (type
))))
6010 /* Pass the constant down and see if we can make a simplification. If
6011 we can, replace this expression with the inner simplification for
6012 possible later conversion to our or some other type. */
6013 if ((t2
= fold_convert (TREE_TYPE (op0
), c
)) != 0
6014 && TREE_CODE (t2
) == INTEGER_CST
6015 && !TREE_OVERFLOW (t2
)
6016 && (0 != (t1
= extract_muldiv (op0
, t2
, code
,
6018 ? ctype
: NULL_TREE
,
6019 strict_overflow_p
))))
6024 /* If widening the type changes it from signed to unsigned, then we
6025 must avoid building ABS_EXPR itself as unsigned. */
6026 if (TYPE_UNSIGNED (ctype
) && !TYPE_UNSIGNED (type
))
6028 tree cstype
= (*signed_type_for
) (ctype
);
6029 if ((t1
= extract_muldiv (op0
, c
, code
, cstype
, strict_overflow_p
))
6032 t1
= fold_build1 (tcode
, cstype
, fold_convert (cstype
, t1
));
6033 return fold_convert (ctype
, t1
);
6037 /* If the constant is negative, we cannot simplify this. */
6038 if (tree_int_cst_sgn (c
) == -1)
6042 /* For division and modulus, type can't be unsigned, as e.g.
6043 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6044 For signed types, even with wrapping overflow, this is fine. */
6045 if (code
!= MULT_EXPR
&& TYPE_UNSIGNED (type
))
6047 if ((t1
= extract_muldiv (op0
, c
, code
, wide_type
, strict_overflow_p
))
6049 return fold_build1 (tcode
, ctype
, fold_convert (ctype
, t1
));
6052 case MIN_EXPR
: case MAX_EXPR
:
6053 /* If widening the type changes the signedness, then we can't perform
6054 this optimization as that changes the result. */
6055 if (TYPE_UNSIGNED (ctype
) != TYPE_UNSIGNED (type
))
6058 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6059 sub_strict_overflow_p
= false;
6060 if ((t1
= extract_muldiv (op0
, c
, code
, wide_type
,
6061 &sub_strict_overflow_p
)) != 0
6062 && (t2
= extract_muldiv (op1
, c
, code
, wide_type
,
6063 &sub_strict_overflow_p
)) != 0)
6065 if (tree_int_cst_sgn (c
) < 0)
6066 tcode
= (tcode
== MIN_EXPR
? MAX_EXPR
: MIN_EXPR
);
6067 if (sub_strict_overflow_p
)
6068 *strict_overflow_p
= true;
6069 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6070 fold_convert (ctype
, t2
));
6074 case LSHIFT_EXPR
: case RSHIFT_EXPR
:
6075 /* If the second operand is constant, this is a multiplication
6076 or floor division, by a power of two, so we can treat it that
6077 way unless the multiplier or divisor overflows. Signed
6078 left-shift overflow is implementation-defined rather than
6079 undefined in C90, so do not convert signed left shift into
6081 if (TREE_CODE (op1
) == INTEGER_CST
6082 && (tcode
== RSHIFT_EXPR
|| TYPE_UNSIGNED (TREE_TYPE (op0
)))
6083 /* const_binop may not detect overflow correctly,
6084 so check for it explicitly here. */
6085 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node
)), op1
)
6086 && 0 != (t1
= fold_convert (ctype
,
6087 const_binop (LSHIFT_EXPR
,
6090 && !TREE_OVERFLOW (t1
))
6091 return extract_muldiv (build2 (tcode
== LSHIFT_EXPR
6092 ? MULT_EXPR
: FLOOR_DIV_EXPR
,
6094 fold_convert (ctype
, op0
),
6096 c
, code
, wide_type
, strict_overflow_p
);
6099 case PLUS_EXPR
: case MINUS_EXPR
:
6100 /* See if we can eliminate the operation on both sides. If we can, we
6101 can return a new PLUS or MINUS. If we can't, the only remaining
6102 cases where we can do anything are if the second operand is a
6104 sub_strict_overflow_p
= false;
6105 t1
= extract_muldiv (op0
, c
, code
, wide_type
, &sub_strict_overflow_p
);
6106 t2
= extract_muldiv (op1
, c
, code
, wide_type
, &sub_strict_overflow_p
);
6107 if (t1
!= 0 && t2
!= 0
6108 && (code
== MULT_EXPR
6109 /* If not multiplication, we can only do this if both operands
6110 are divisible by c. */
6111 || (multiple_of_p (ctype
, op0
, c
)
6112 && multiple_of_p (ctype
, op1
, c
))))
6114 if (sub_strict_overflow_p
)
6115 *strict_overflow_p
= true;
6116 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6117 fold_convert (ctype
, t2
));
6120 /* If this was a subtraction, negate OP1 and set it to be an addition.
6121 This simplifies the logic below. */
6122 if (tcode
== MINUS_EXPR
)
6124 tcode
= PLUS_EXPR
, op1
= negate_expr (op1
);
6125 /* If OP1 was not easily negatable, the constant may be OP0. */
6126 if (TREE_CODE (op0
) == INTEGER_CST
)
6128 std::swap (op0
, op1
);
6133 if (TREE_CODE (op1
) != INTEGER_CST
)
6136 /* If either OP1 or C are negative, this optimization is not safe for
6137 some of the division and remainder types while for others we need
6138 to change the code. */
6139 if (tree_int_cst_sgn (op1
) < 0 || tree_int_cst_sgn (c
) < 0)
6141 if (code
== CEIL_DIV_EXPR
)
6142 code
= FLOOR_DIV_EXPR
;
6143 else if (code
== FLOOR_DIV_EXPR
)
6144 code
= CEIL_DIV_EXPR
;
6145 else if (code
!= MULT_EXPR
6146 && code
!= CEIL_MOD_EXPR
&& code
!= FLOOR_MOD_EXPR
)
6150 /* If it's a multiply or a division/modulus operation of a multiple
6151 of our constant, do the operation and verify it doesn't overflow. */
6152 if (code
== MULT_EXPR
6153 || wi::multiple_of_p (op1
, c
, TYPE_SIGN (type
)))
6155 op1
= const_binop (code
, fold_convert (ctype
, op1
),
6156 fold_convert (ctype
, c
));
6157 /* We allow the constant to overflow with wrapping semantics. */
6159 || (TREE_OVERFLOW (op1
) && !TYPE_OVERFLOW_WRAPS (ctype
)))
6165 /* If we have an unsigned type, we cannot widen the operation since it
6166 will change the result if the original computation overflowed. */
6167 if (TYPE_UNSIGNED (ctype
) && ctype
!= type
)
6170 /* If we were able to eliminate our operation from the first side,
6171 apply our operation to the second side and reform the PLUS. */
6172 if (t1
!= 0 && (TREE_CODE (t1
) != code
|| code
== MULT_EXPR
))
6173 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
), op1
);
6175 /* The last case is if we are a multiply. In that case, we can
6176 apply the distributive law to commute the multiply and addition
6177 if the multiplication of the constants doesn't overflow
6178 and overflow is defined. With undefined overflow
6179 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6180 if (code
== MULT_EXPR
&& TYPE_OVERFLOW_WRAPS (ctype
))
6181 return fold_build2 (tcode
, ctype
,
6182 fold_build2 (code
, ctype
,
6183 fold_convert (ctype
, op0
),
6184 fold_convert (ctype
, c
)),
6190 /* We have a special case here if we are doing something like
6191 (C * 8) % 4 since we know that's zero. */
6192 if ((code
== TRUNC_MOD_EXPR
|| code
== CEIL_MOD_EXPR
6193 || code
== FLOOR_MOD_EXPR
|| code
== ROUND_MOD_EXPR
)
6194 /* If the multiplication can overflow we cannot optimize this. */
6195 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t
))
6196 && TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
6197 && wi::multiple_of_p (op1
, c
, TYPE_SIGN (type
)))
6199 *strict_overflow_p
= true;
6200 return omit_one_operand (type
, integer_zero_node
, op0
);
6203 /* ... fall through ... */
6205 case TRUNC_DIV_EXPR
: case CEIL_DIV_EXPR
: case FLOOR_DIV_EXPR
:
6206 case ROUND_DIV_EXPR
: case EXACT_DIV_EXPR
:
6207 /* If we can extract our operation from the LHS, do so and return a
6208 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6209 do something only if the second operand is a constant. */
6211 && (t1
= extract_muldiv (op0
, c
, code
, wide_type
,
6212 strict_overflow_p
)) != 0)
6213 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6214 fold_convert (ctype
, op1
));
6215 else if (tcode
== MULT_EXPR
&& code
== MULT_EXPR
6216 && (t1
= extract_muldiv (op1
, c
, code
, wide_type
,
6217 strict_overflow_p
)) != 0)
6218 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6219 fold_convert (ctype
, t1
));
6220 else if (TREE_CODE (op1
) != INTEGER_CST
)
6223 /* If these are the same operation types, we can associate them
6224 assuming no overflow. */
6227 bool overflow_p
= false;
6228 bool overflow_mul_p
;
6229 signop sign
= TYPE_SIGN (ctype
);
6230 wide_int mul
= wi::mul (op1
, c
, sign
, &overflow_mul_p
);
6231 overflow_p
= TREE_OVERFLOW (c
) | TREE_OVERFLOW (op1
);
6233 && ((sign
== UNSIGNED
&& tcode
!= MULT_EXPR
) || sign
== SIGNED
))
6236 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6237 wide_int_to_tree (ctype
, mul
));
6240 /* If these operations "cancel" each other, we have the main
6241 optimizations of this pass, which occur when either constant is a
6242 multiple of the other, in which case we replace this with either an
6243 operation or CODE or TCODE.
6245 If we have an unsigned type, we cannot do this since it will change
6246 the result if the original computation overflowed. */
6247 if (TYPE_OVERFLOW_UNDEFINED (ctype
)
6248 && ((code
== MULT_EXPR
&& tcode
== EXACT_DIV_EXPR
)
6249 || (tcode
== MULT_EXPR
6250 && code
!= TRUNC_MOD_EXPR
&& code
!= CEIL_MOD_EXPR
6251 && code
!= FLOOR_MOD_EXPR
&& code
!= ROUND_MOD_EXPR
6252 && code
!= MULT_EXPR
)))
6254 if (wi::multiple_of_p (op1
, c
, TYPE_SIGN (type
)))
6256 if (TYPE_OVERFLOW_UNDEFINED (ctype
))
6257 *strict_overflow_p
= true;
6258 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6259 fold_convert (ctype
,
6260 const_binop (TRUNC_DIV_EXPR
,
6263 else if (wi::multiple_of_p (c
, op1
, TYPE_SIGN (type
)))
6265 if (TYPE_OVERFLOW_UNDEFINED (ctype
))
6266 *strict_overflow_p
= true;
6267 return fold_build2 (code
, ctype
, fold_convert (ctype
, op0
),
6268 fold_convert (ctype
,
6269 const_binop (TRUNC_DIV_EXPR
,
6282 /* Return a node which has the indicated constant VALUE (either 0 or
6283 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6284 and is of the indicated TYPE. */
6287 constant_boolean_node (bool value
, tree type
)
6289 if (type
== integer_type_node
)
6290 return value
? integer_one_node
: integer_zero_node
;
6291 else if (type
== boolean_type_node
)
6292 return value
? boolean_true_node
: boolean_false_node
;
6293 else if (TREE_CODE (type
) == VECTOR_TYPE
)
6294 return build_vector_from_val (type
,
6295 build_int_cst (TREE_TYPE (type
),
6298 return fold_convert (type
, value
? integer_one_node
: integer_zero_node
);
6302 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6303 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6304 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6305 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6306 COND is the first argument to CODE; otherwise (as in the example
6307 given here), it is the second argument. TYPE is the type of the
6308 original expression. Return NULL_TREE if no simplification is
6312 fold_binary_op_with_conditional_arg (location_t loc
,
6313 enum tree_code code
,
6314 tree type
, tree op0
, tree op1
,
6315 tree cond
, tree arg
, int cond_first_p
)
6317 tree cond_type
= cond_first_p
? TREE_TYPE (op0
) : TREE_TYPE (op1
);
6318 tree arg_type
= cond_first_p
? TREE_TYPE (op1
) : TREE_TYPE (op0
);
6319 tree test
, true_value
, false_value
;
6320 tree lhs
= NULL_TREE
;
6321 tree rhs
= NULL_TREE
;
6322 enum tree_code cond_code
= COND_EXPR
;
6324 if (TREE_CODE (cond
) == COND_EXPR
6325 || TREE_CODE (cond
) == VEC_COND_EXPR
)
6327 test
= TREE_OPERAND (cond
, 0);
6328 true_value
= TREE_OPERAND (cond
, 1);
6329 false_value
= TREE_OPERAND (cond
, 2);
6330 /* If this operand throws an expression, then it does not make
6331 sense to try to perform a logical or arithmetic operation
6333 if (VOID_TYPE_P (TREE_TYPE (true_value
)))
6335 if (VOID_TYPE_P (TREE_TYPE (false_value
)))
6340 tree testtype
= TREE_TYPE (cond
);
6342 true_value
= constant_boolean_node (true, testtype
);
6343 false_value
= constant_boolean_node (false, testtype
);
6346 if (TREE_CODE (TREE_TYPE (test
)) == VECTOR_TYPE
)
6347 cond_code
= VEC_COND_EXPR
;
6349 /* This transformation is only worthwhile if we don't have to wrap ARG
6350 in a SAVE_EXPR and the operation can be simplified without recursing
6351 on at least one of the branches once its pushed inside the COND_EXPR. */
6352 if (!TREE_CONSTANT (arg
)
6353 && (TREE_SIDE_EFFECTS (arg
)
6354 || TREE_CODE (arg
) == COND_EXPR
|| TREE_CODE (arg
) == VEC_COND_EXPR
6355 || TREE_CONSTANT (true_value
) || TREE_CONSTANT (false_value
)))
6358 arg
= fold_convert_loc (loc
, arg_type
, arg
);
6361 true_value
= fold_convert_loc (loc
, cond_type
, true_value
);
6363 lhs
= fold_build2_loc (loc
, code
, type
, true_value
, arg
);
6365 lhs
= fold_build2_loc (loc
, code
, type
, arg
, true_value
);
6369 false_value
= fold_convert_loc (loc
, cond_type
, false_value
);
6371 rhs
= fold_build2_loc (loc
, code
, type
, false_value
, arg
);
6373 rhs
= fold_build2_loc (loc
, code
, type
, arg
, false_value
);
6376 /* Check that we have simplified at least one of the branches. */
6377 if (!TREE_CONSTANT (arg
) && !TREE_CONSTANT (lhs
) && !TREE_CONSTANT (rhs
))
6380 return fold_build3_loc (loc
, cond_code
, type
, test
, lhs
, rhs
);
6384 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6386 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6387 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6388 ADDEND is the same as X.
6390 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6391 and finite. The problematic cases are when X is zero, and its mode
6392 has signed zeros. In the case of rounding towards -infinity,
6393 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6394 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6397 fold_real_zero_addition_p (const_tree type
, const_tree addend
, int negate
)
6399 if (!real_zerop (addend
))
6402 /* Don't allow the fold with -fsignaling-nans. */
6403 if (HONOR_SNANS (element_mode (type
)))
6406 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6407 if (!HONOR_SIGNED_ZEROS (element_mode (type
)))
6410 /* In a vector or complex, we would need to check the sign of all zeros. */
6411 if (TREE_CODE (addend
) != REAL_CST
)
6414 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6415 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend
)))
6418 /* The mode has signed zeros, and we have to honor their sign.
6419 In this situation, there is only one case we can return true for.
6420 X - 0 is the same as X unless rounding towards -infinity is
6422 return negate
&& !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
));
6425 /* Subroutine of fold() that checks comparisons of built-in math
6426 functions against real constants.
6428 FCODE is the DECL_FUNCTION_CODE of the built-in, CODE is the comparison
6429 operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, GE_EXPR or LE_EXPR. TYPE
6430 is the type of the result and ARG0 and ARG1 are the operands of the
6431 comparison. ARG1 must be a TREE_REAL_CST.
6433 The function returns the constant folded tree if a simplification
6434 can be made, and NULL_TREE otherwise. */
6437 fold_mathfn_compare (location_t loc
,
6438 enum built_in_function fcode
, enum tree_code code
,
6439 tree type
, tree arg0
, tree arg1
)
6443 if (BUILTIN_SQRT_P (fcode
))
6445 tree arg
= CALL_EXPR_ARG (arg0
, 0);
6446 machine_mode mode
= TYPE_MODE (TREE_TYPE (arg0
));
6448 c
= TREE_REAL_CST (arg1
);
6449 if (REAL_VALUE_NEGATIVE (c
))
6451 /* sqrt(x) < y is always false, if y is negative. */
6452 if (code
== EQ_EXPR
|| code
== LT_EXPR
|| code
== LE_EXPR
)
6453 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg
);
6455 /* sqrt(x) > y is always true, if y is negative and we
6456 don't care about NaNs, i.e. negative values of x. */
6457 if (code
== NE_EXPR
|| !HONOR_NANS (mode
))
6458 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg
);
6460 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
6461 return fold_build2_loc (loc
, GE_EXPR
, type
, arg
,
6462 build_real (TREE_TYPE (arg
), dconst0
));
6464 else if (code
== GT_EXPR
|| code
== GE_EXPR
)
6468 REAL_ARITHMETIC (c2
, MULT_EXPR
, c
, c
);
6469 real_convert (&c2
, mode
, &c2
);
6471 if (REAL_VALUE_ISINF (c2
))
6473 /* sqrt(x) > y is x == +Inf, when y is very large. */
6474 if (HONOR_INFINITIES (mode
))
6475 return fold_build2_loc (loc
, EQ_EXPR
, type
, arg
,
6476 build_real (TREE_TYPE (arg
), c2
));
6478 /* sqrt(x) > y is always false, when y is very large
6479 and we don't care about infinities. */
6480 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg
);
6483 /* sqrt(x) > c is the same as x > c*c. */
6484 return fold_build2_loc (loc
, code
, type
, arg
,
6485 build_real (TREE_TYPE (arg
), c2
));
6487 else if (code
== LT_EXPR
|| code
== LE_EXPR
)
6491 REAL_ARITHMETIC (c2
, MULT_EXPR
, c
, c
);
6492 real_convert (&c2
, mode
, &c2
);
6494 if (REAL_VALUE_ISINF (c2
))
6496 /* sqrt(x) < y is always true, when y is a very large
6497 value and we don't care about NaNs or Infinities. */
6498 if (! HONOR_NANS (mode
) && ! HONOR_INFINITIES (mode
))
6499 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg
);
6501 /* sqrt(x) < y is x != +Inf when y is very large and we
6502 don't care about NaNs. */
6503 if (! HONOR_NANS (mode
))
6504 return fold_build2_loc (loc
, NE_EXPR
, type
, arg
,
6505 build_real (TREE_TYPE (arg
), c2
));
6507 /* sqrt(x) < y is x >= 0 when y is very large and we
6508 don't care about Infinities. */
6509 if (! HONOR_INFINITIES (mode
))
6510 return fold_build2_loc (loc
, GE_EXPR
, type
, arg
,
6511 build_real (TREE_TYPE (arg
), dconst0
));
6513 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
6514 arg
= save_expr (arg
);
6515 return fold_build2_loc (loc
, TRUTH_ANDIF_EXPR
, type
,
6516 fold_build2_loc (loc
, GE_EXPR
, type
, arg
,
6517 build_real (TREE_TYPE (arg
),
6519 fold_build2_loc (loc
, NE_EXPR
, type
, arg
,
6520 build_real (TREE_TYPE (arg
),
6524 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
6525 if (! HONOR_NANS (mode
))
6526 return fold_build2_loc (loc
, code
, type
, arg
,
6527 build_real (TREE_TYPE (arg
), c2
));
6529 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
6530 arg
= save_expr (arg
);
6531 return fold_build2_loc (loc
, TRUTH_ANDIF_EXPR
, type
,
6532 fold_build2_loc (loc
, GE_EXPR
, type
, arg
,
6533 build_real (TREE_TYPE (arg
),
6535 fold_build2_loc (loc
, code
, type
, arg
,
6536 build_real (TREE_TYPE (arg
),
6544 /* Subroutine of fold() that optimizes comparisons against Infinities,
6545 either +Inf or -Inf.
6547 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6548 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6549 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6551 The function returns the constant folded tree if a simplification
6552 can be made, and NULL_TREE otherwise. */
6555 fold_inf_compare (location_t loc
, enum tree_code code
, tree type
,
6556 tree arg0
, tree arg1
)
6559 REAL_VALUE_TYPE max
;
6563 mode
= TYPE_MODE (TREE_TYPE (arg0
));
6565 /* For negative infinity swap the sense of the comparison. */
6566 neg
= REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1
));
6568 code
= swap_tree_comparison (code
);
6573 /* x > +Inf is always false, if with ignore sNANs. */
6574 if (HONOR_SNANS (mode
))
6576 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
6579 /* x <= +Inf is always true, if we don't case about NaNs. */
6580 if (! HONOR_NANS (mode
))
6581 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
6583 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
6584 arg0
= save_expr (arg0
);
6585 return fold_build2_loc (loc
, EQ_EXPR
, type
, arg0
, arg0
);
6589 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
6590 real_maxval (&max
, neg
, mode
);
6591 return fold_build2_loc (loc
, neg
? LT_EXPR
: GT_EXPR
, type
,
6592 arg0
, build_real (TREE_TYPE (arg0
), max
));
6595 /* x < +Inf is always equal to x <= DBL_MAX. */
6596 real_maxval (&max
, neg
, mode
);
6597 return fold_build2_loc (loc
, neg
? GE_EXPR
: LE_EXPR
, type
,
6598 arg0
, build_real (TREE_TYPE (arg0
), max
));
6601 /* x != +Inf is always equal to !(x > DBL_MAX). */
6602 real_maxval (&max
, neg
, mode
);
6603 if (! HONOR_NANS (mode
))
6604 return fold_build2_loc (loc
, neg
? GE_EXPR
: LE_EXPR
, type
,
6605 arg0
, build_real (TREE_TYPE (arg0
), max
));
6607 temp
= fold_build2_loc (loc
, neg
? LT_EXPR
: GT_EXPR
, type
,
6608 arg0
, build_real (TREE_TYPE (arg0
), max
));
6609 return fold_build1_loc (loc
, TRUTH_NOT_EXPR
, type
, temp
);
6618 /* Subroutine of fold() that optimizes comparisons of a division by
6619 a nonzero integer constant against an integer constant, i.e.
6622 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6623 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6624 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6626 The function returns the constant folded tree if a simplification
6627 can be made, and NULL_TREE otherwise. */
6630 fold_div_compare (location_t loc
,
6631 enum tree_code code
, tree type
, tree arg0
, tree arg1
)
6633 tree prod
, tmp
, hi
, lo
;
6634 tree arg00
= TREE_OPERAND (arg0
, 0);
6635 tree arg01
= TREE_OPERAND (arg0
, 1);
6636 signop sign
= TYPE_SIGN (TREE_TYPE (arg0
));
6637 bool neg_overflow
= false;
6640 /* We have to do this the hard way to detect unsigned overflow.
6641 prod = int_const_binop (MULT_EXPR, arg01, arg1); */
6642 wide_int val
= wi::mul (arg01
, arg1
, sign
, &overflow
);
6643 prod
= force_fit_type (TREE_TYPE (arg00
), val
, -1, overflow
);
6644 neg_overflow
= false;
6646 if (sign
== UNSIGNED
)
6648 tmp
= int_const_binop (MINUS_EXPR
, arg01
,
6649 build_int_cst (TREE_TYPE (arg01
), 1));
6652 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6653 val
= wi::add (prod
, tmp
, sign
, &overflow
);
6654 hi
= force_fit_type (TREE_TYPE (arg00
), val
,
6655 -1, overflow
| TREE_OVERFLOW (prod
));
6657 else if (tree_int_cst_sgn (arg01
) >= 0)
6659 tmp
= int_const_binop (MINUS_EXPR
, arg01
,
6660 build_int_cst (TREE_TYPE (arg01
), 1));
6661 switch (tree_int_cst_sgn (arg1
))
6664 neg_overflow
= true;
6665 lo
= int_const_binop (MINUS_EXPR
, prod
, tmp
);
6670 lo
= fold_negate_const (tmp
, TREE_TYPE (arg0
));
6675 hi
= int_const_binop (PLUS_EXPR
, prod
, tmp
);
6685 /* A negative divisor reverses the relational operators. */
6686 code
= swap_tree_comparison (code
);
6688 tmp
= int_const_binop (PLUS_EXPR
, arg01
,
6689 build_int_cst (TREE_TYPE (arg01
), 1));
6690 switch (tree_int_cst_sgn (arg1
))
6693 hi
= int_const_binop (MINUS_EXPR
, prod
, tmp
);
6698 hi
= fold_negate_const (tmp
, TREE_TYPE (arg0
));
6703 neg_overflow
= true;
6704 lo
= int_const_binop (PLUS_EXPR
, prod
, tmp
);
6716 if (TREE_OVERFLOW (lo
) && TREE_OVERFLOW (hi
))
6717 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg00
);
6718 if (TREE_OVERFLOW (hi
))
6719 return fold_build2_loc (loc
, GE_EXPR
, type
, arg00
, lo
);
6720 if (TREE_OVERFLOW (lo
))
6721 return fold_build2_loc (loc
, LE_EXPR
, type
, arg00
, hi
);
6722 return build_range_check (loc
, type
, arg00
, 1, lo
, hi
);
6725 if (TREE_OVERFLOW (lo
) && TREE_OVERFLOW (hi
))
6726 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg00
);
6727 if (TREE_OVERFLOW (hi
))
6728 return fold_build2_loc (loc
, LT_EXPR
, type
, arg00
, lo
);
6729 if (TREE_OVERFLOW (lo
))
6730 return fold_build2_loc (loc
, GT_EXPR
, type
, arg00
, hi
);
6731 return build_range_check (loc
, type
, arg00
, 0, lo
, hi
);
6734 if (TREE_OVERFLOW (lo
))
6736 tmp
= neg_overflow
? integer_zero_node
: integer_one_node
;
6737 return omit_one_operand_loc (loc
, type
, tmp
, arg00
);
6739 return fold_build2_loc (loc
, LT_EXPR
, type
, arg00
, lo
);
6742 if (TREE_OVERFLOW (hi
))
6744 tmp
= neg_overflow
? integer_zero_node
: integer_one_node
;
6745 return omit_one_operand_loc (loc
, type
, tmp
, arg00
);
6747 return fold_build2_loc (loc
, LE_EXPR
, type
, arg00
, hi
);
6750 if (TREE_OVERFLOW (hi
))
6752 tmp
= neg_overflow
? integer_one_node
: integer_zero_node
;
6753 return omit_one_operand_loc (loc
, type
, tmp
, arg00
);
6755 return fold_build2_loc (loc
, GT_EXPR
, type
, arg00
, hi
);
6758 if (TREE_OVERFLOW (lo
))
6760 tmp
= neg_overflow
? integer_one_node
: integer_zero_node
;
6761 return omit_one_operand_loc (loc
, type
, tmp
, arg00
);
6763 return fold_build2_loc (loc
, GE_EXPR
, type
, arg00
, lo
);
6773 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6774 equality/inequality test, then return a simplified form of the test
6775 using a sign testing. Otherwise return NULL. TYPE is the desired
6779 fold_single_bit_test_into_sign_test (location_t loc
,
6780 enum tree_code code
, tree arg0
, tree arg1
,
6783 /* If this is testing a single bit, we can optimize the test. */
6784 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
6785 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
6786 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
6788 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6789 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6790 tree arg00
= sign_bit_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg0
, 1));
6792 if (arg00
!= NULL_TREE
6793 /* This is only a win if casting to a signed type is cheap,
6794 i.e. when arg00's type is not a partial mode. */
6795 && TYPE_PRECISION (TREE_TYPE (arg00
))
6796 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (arg00
))))
6798 tree stype
= signed_type_for (TREE_TYPE (arg00
));
6799 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
,
6801 fold_convert_loc (loc
, stype
, arg00
),
6802 build_int_cst (stype
, 0));
6809 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6810 equality/inequality test, then return a simplified form of
6811 the test using shifts and logical operations. Otherwise return
6812 NULL. TYPE is the desired result type. */
6815 fold_single_bit_test (location_t loc
, enum tree_code code
,
6816 tree arg0
, tree arg1
, tree result_type
)
6818 /* If this is testing a single bit, we can optimize the test. */
6819 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
6820 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
6821 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
6823 tree inner
= TREE_OPERAND (arg0
, 0);
6824 tree type
= TREE_TYPE (arg0
);
6825 int bitnum
= tree_log2 (TREE_OPERAND (arg0
, 1));
6826 machine_mode operand_mode
= TYPE_MODE (type
);
6828 tree signed_type
, unsigned_type
, intermediate_type
;
6831 /* First, see if we can fold the single bit test into a sign-bit
6833 tem
= fold_single_bit_test_into_sign_test (loc
, code
, arg0
, arg1
,
6838 /* Otherwise we have (A & C) != 0 where C is a single bit,
6839 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6840 Similarly for (A & C) == 0. */
6842 /* If INNER is a right shift of a constant and it plus BITNUM does
6843 not overflow, adjust BITNUM and INNER. */
6844 if (TREE_CODE (inner
) == RSHIFT_EXPR
6845 && TREE_CODE (TREE_OPERAND (inner
, 1)) == INTEGER_CST
6846 && bitnum
< TYPE_PRECISION (type
)
6847 && wi::ltu_p (TREE_OPERAND (inner
, 1),
6848 TYPE_PRECISION (type
) - bitnum
))
6850 bitnum
+= tree_to_uhwi (TREE_OPERAND (inner
, 1));
6851 inner
= TREE_OPERAND (inner
, 0);
6854 /* If we are going to be able to omit the AND below, we must do our
6855 operations as unsigned. If we must use the AND, we have a choice.
6856 Normally unsigned is faster, but for some machines signed is. */
6857 #ifdef LOAD_EXTEND_OP
6858 ops_unsigned
= (LOAD_EXTEND_OP (operand_mode
) == SIGN_EXTEND
6859 && !flag_syntax_only
) ? 0 : 1;
6864 signed_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 0);
6865 unsigned_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 1);
6866 intermediate_type
= ops_unsigned
? unsigned_type
: signed_type
;
6867 inner
= fold_convert_loc (loc
, intermediate_type
, inner
);
6870 inner
= build2 (RSHIFT_EXPR
, intermediate_type
,
6871 inner
, size_int (bitnum
));
6873 one
= build_int_cst (intermediate_type
, 1);
6875 if (code
== EQ_EXPR
)
6876 inner
= fold_build2_loc (loc
, BIT_XOR_EXPR
, intermediate_type
, inner
, one
);
6878 /* Put the AND last so it can combine with more things. */
6879 inner
= build2 (BIT_AND_EXPR
, intermediate_type
, inner
, one
);
6881 /* Make sure to return the proper type. */
6882 inner
= fold_convert_loc (loc
, result_type
, inner
);
6889 /* Check whether we are allowed to reorder operands arg0 and arg1,
6890 such that the evaluation of arg1 occurs before arg0. */
6893 reorder_operands_p (const_tree arg0
, const_tree arg1
)
6895 if (! flag_evaluation_order
)
6897 if (TREE_CONSTANT (arg0
) || TREE_CONSTANT (arg1
))
6899 return ! TREE_SIDE_EFFECTS (arg0
)
6900 && ! TREE_SIDE_EFFECTS (arg1
);
6903 /* Test whether it is preferable two swap two operands, ARG0 and
6904 ARG1, for example because ARG0 is an integer constant and ARG1
6905 isn't. If REORDER is true, only recommend swapping if we can
6906 evaluate the operands in reverse order. */
6909 tree_swap_operands_p (const_tree arg0
, const_tree arg1
, bool reorder
)
6911 if (CONSTANT_CLASS_P (arg1
))
6913 if (CONSTANT_CLASS_P (arg0
))
6919 if (TREE_CONSTANT (arg1
))
6921 if (TREE_CONSTANT (arg0
))
6924 if (reorder
&& flag_evaluation_order
6925 && (TREE_SIDE_EFFECTS (arg0
) || TREE_SIDE_EFFECTS (arg1
)))
6928 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6929 for commutative and comparison operators. Ensuring a canonical
6930 form allows the optimizers to find additional redundancies without
6931 having to explicitly check for both orderings. */
6932 if (TREE_CODE (arg0
) == SSA_NAME
6933 && TREE_CODE (arg1
) == SSA_NAME
6934 && SSA_NAME_VERSION (arg0
) > SSA_NAME_VERSION (arg1
))
6937 /* Put SSA_NAMEs last. */
6938 if (TREE_CODE (arg1
) == SSA_NAME
)
6940 if (TREE_CODE (arg0
) == SSA_NAME
)
6943 /* Put variables last. */
6952 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where
6953 ARG0 is extended to a wider type. */
6956 fold_widened_comparison (location_t loc
, enum tree_code code
,
6957 tree type
, tree arg0
, tree arg1
)
6959 tree arg0_unw
= get_unwidened (arg0
, NULL_TREE
);
6961 tree shorter_type
, outer_type
;
6965 if (arg0_unw
== arg0
)
6967 shorter_type
= TREE_TYPE (arg0_unw
);
6969 #ifdef HAVE_canonicalize_funcptr_for_compare
6970 /* Disable this optimization if we're casting a function pointer
6971 type on targets that require function pointer canonicalization. */
6972 if (HAVE_canonicalize_funcptr_for_compare
6973 && TREE_CODE (shorter_type
) == POINTER_TYPE
6974 && TREE_CODE (TREE_TYPE (shorter_type
)) == FUNCTION_TYPE
)
6978 if (TYPE_PRECISION (TREE_TYPE (arg0
)) <= TYPE_PRECISION (shorter_type
))
6981 arg1_unw
= get_unwidened (arg1
, NULL_TREE
);
6983 /* If possible, express the comparison in the shorter mode. */
6984 if ((code
== EQ_EXPR
|| code
== NE_EXPR
6985 || TYPE_UNSIGNED (TREE_TYPE (arg0
)) == TYPE_UNSIGNED (shorter_type
))
6986 && (TREE_TYPE (arg1_unw
) == shorter_type
6987 || ((TYPE_PRECISION (shorter_type
)
6988 >= TYPE_PRECISION (TREE_TYPE (arg1_unw
)))
6989 && (TYPE_UNSIGNED (shorter_type
)
6990 == TYPE_UNSIGNED (TREE_TYPE (arg1_unw
))))
6991 || (TREE_CODE (arg1_unw
) == INTEGER_CST
6992 && (TREE_CODE (shorter_type
) == INTEGER_TYPE
6993 || TREE_CODE (shorter_type
) == BOOLEAN_TYPE
)
6994 && int_fits_type_p (arg1_unw
, shorter_type
))))
6995 return fold_build2_loc (loc
, code
, type
, arg0_unw
,
6996 fold_convert_loc (loc
, shorter_type
, arg1_unw
));
6998 if (TREE_CODE (arg1_unw
) != INTEGER_CST
6999 || TREE_CODE (shorter_type
) != INTEGER_TYPE
7000 || !int_fits_type_p (arg1_unw
, shorter_type
))
7003 /* If we are comparing with the integer that does not fit into the range
7004 of the shorter type, the result is known. */
7005 outer_type
= TREE_TYPE (arg1_unw
);
7006 min
= lower_bound_in_type (outer_type
, shorter_type
);
7007 max
= upper_bound_in_type (outer_type
, shorter_type
);
7009 above
= integer_nonzerop (fold_relational_const (LT_EXPR
, type
,
7011 below
= integer_nonzerop (fold_relational_const (LT_EXPR
, type
,
7018 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
7023 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
7029 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
7031 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
7036 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
7038 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
7047 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where for
7048 ARG0 just the signedness is changed. */
7051 fold_sign_changed_comparison (location_t loc
, enum tree_code code
, tree type
,
7052 tree arg0
, tree arg1
)
7055 tree inner_type
, outer_type
;
7057 if (!CONVERT_EXPR_P (arg0
))
7060 outer_type
= TREE_TYPE (arg0
);
7061 arg0_inner
= TREE_OPERAND (arg0
, 0);
7062 inner_type
= TREE_TYPE (arg0_inner
);
7064 #ifdef HAVE_canonicalize_funcptr_for_compare
7065 /* Disable this optimization if we're casting a function pointer
7066 type on targets that require function pointer canonicalization. */
7067 if (HAVE_canonicalize_funcptr_for_compare
7068 && TREE_CODE (inner_type
) == POINTER_TYPE
7069 && TREE_CODE (TREE_TYPE (inner_type
)) == FUNCTION_TYPE
)
7073 if (TYPE_PRECISION (inner_type
) != TYPE_PRECISION (outer_type
))
7076 if (TREE_CODE (arg1
) != INTEGER_CST
7077 && !(CONVERT_EXPR_P (arg1
)
7078 && TREE_TYPE (TREE_OPERAND (arg1
, 0)) == inner_type
))
7081 if (TYPE_UNSIGNED (inner_type
) != TYPE_UNSIGNED (outer_type
)
7086 if (POINTER_TYPE_P (inner_type
) != POINTER_TYPE_P (outer_type
))
7089 if (TREE_CODE (arg1
) == INTEGER_CST
)
7090 arg1
= force_fit_type (inner_type
, wi::to_widest (arg1
), 0,
7091 TREE_OVERFLOW (arg1
));
7093 arg1
= fold_convert_loc (loc
, inner_type
, arg1
);
7095 return fold_build2_loc (loc
, code
, type
, arg0_inner
, arg1
);
7099 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
7100 means A >= Y && A != MAX, but in this case we know that
7101 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
7104 fold_to_nonsharp_ineq_using_bound (location_t loc
, tree ineq
, tree bound
)
7106 tree a
, typea
, type
= TREE_TYPE (ineq
), a1
, diff
, y
;
7108 if (TREE_CODE (bound
) == LT_EXPR
)
7109 a
= TREE_OPERAND (bound
, 0);
7110 else if (TREE_CODE (bound
) == GT_EXPR
)
7111 a
= TREE_OPERAND (bound
, 1);
7115 typea
= TREE_TYPE (a
);
7116 if (!INTEGRAL_TYPE_P (typea
)
7117 && !POINTER_TYPE_P (typea
))
7120 if (TREE_CODE (ineq
) == LT_EXPR
)
7122 a1
= TREE_OPERAND (ineq
, 1);
7123 y
= TREE_OPERAND (ineq
, 0);
7125 else if (TREE_CODE (ineq
) == GT_EXPR
)
7127 a1
= TREE_OPERAND (ineq
, 0);
7128 y
= TREE_OPERAND (ineq
, 1);
7133 if (TREE_TYPE (a1
) != typea
)
7136 if (POINTER_TYPE_P (typea
))
7138 /* Convert the pointer types into integer before taking the difference. */
7139 tree ta
= fold_convert_loc (loc
, ssizetype
, a
);
7140 tree ta1
= fold_convert_loc (loc
, ssizetype
, a1
);
7141 diff
= fold_binary_loc (loc
, MINUS_EXPR
, ssizetype
, ta1
, ta
);
7144 diff
= fold_binary_loc (loc
, MINUS_EXPR
, typea
, a1
, a
);
7146 if (!diff
|| !integer_onep (diff
))
7149 return fold_build2_loc (loc
, GE_EXPR
, type
, a
, y
);
7152 /* Fold a sum or difference of at least one multiplication.
7153 Returns the folded tree or NULL if no simplification could be made. */
7156 fold_plusminus_mult_expr (location_t loc
, enum tree_code code
, tree type
,
7157 tree arg0
, tree arg1
)
7159 tree arg00
, arg01
, arg10
, arg11
;
7160 tree alt0
= NULL_TREE
, alt1
= NULL_TREE
, same
;
7162 /* (A * C) +- (B * C) -> (A+-B) * C.
7163 (A * C) +- A -> A * (C+-1).
7164 We are most concerned about the case where C is a constant,
7165 but other combinations show up during loop reduction. Since
7166 it is not difficult, try all four possibilities. */
7168 if (TREE_CODE (arg0
) == MULT_EXPR
)
7170 arg00
= TREE_OPERAND (arg0
, 0);
7171 arg01
= TREE_OPERAND (arg0
, 1);
7173 else if (TREE_CODE (arg0
) == INTEGER_CST
)
7175 arg00
= build_one_cst (type
);
7180 /* We cannot generate constant 1 for fract. */
7181 if (ALL_FRACT_MODE_P (TYPE_MODE (type
)))
7184 arg01
= build_one_cst (type
);
7186 if (TREE_CODE (arg1
) == MULT_EXPR
)
7188 arg10
= TREE_OPERAND (arg1
, 0);
7189 arg11
= TREE_OPERAND (arg1
, 1);
7191 else if (TREE_CODE (arg1
) == INTEGER_CST
)
7193 arg10
= build_one_cst (type
);
7194 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
7195 the purpose of this canonicalization. */
7196 if (wi::neg_p (arg1
, TYPE_SIGN (TREE_TYPE (arg1
)))
7197 && negate_expr_p (arg1
)
7198 && code
== PLUS_EXPR
)
7200 arg11
= negate_expr (arg1
);
7208 /* We cannot generate constant 1 for fract. */
7209 if (ALL_FRACT_MODE_P (TYPE_MODE (type
)))
7212 arg11
= build_one_cst (type
);
7216 if (operand_equal_p (arg01
, arg11
, 0))
7217 same
= arg01
, alt0
= arg00
, alt1
= arg10
;
7218 else if (operand_equal_p (arg00
, arg10
, 0))
7219 same
= arg00
, alt0
= arg01
, alt1
= arg11
;
7220 else if (operand_equal_p (arg00
, arg11
, 0))
7221 same
= arg00
, alt0
= arg01
, alt1
= arg10
;
7222 else if (operand_equal_p (arg01
, arg10
, 0))
7223 same
= arg01
, alt0
= arg00
, alt1
= arg11
;
7225 /* No identical multiplicands; see if we can find a common
7226 power-of-two factor in non-power-of-two multiplies. This
7227 can help in multi-dimensional array access. */
7228 else if (tree_fits_shwi_p (arg01
)
7229 && tree_fits_shwi_p (arg11
))
7231 HOST_WIDE_INT int01
, int11
, tmp
;
7234 int01
= tree_to_shwi (arg01
);
7235 int11
= tree_to_shwi (arg11
);
7237 /* Move min of absolute values to int11. */
7238 if (absu_hwi (int01
) < absu_hwi (int11
))
7240 tmp
= int01
, int01
= int11
, int11
= tmp
;
7241 alt0
= arg00
, arg00
= arg10
, arg10
= alt0
;
7248 if (exact_log2 (absu_hwi (int11
)) > 0 && int01
% int11
== 0
7249 /* The remainder should not be a constant, otherwise we
7250 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
7251 increased the number of multiplications necessary. */
7252 && TREE_CODE (arg10
) != INTEGER_CST
)
7254 alt0
= fold_build2_loc (loc
, MULT_EXPR
, TREE_TYPE (arg00
), arg00
,
7255 build_int_cst (TREE_TYPE (arg00
),
7260 maybe_same
= alt0
, alt0
= alt1
, alt1
= maybe_same
;
7265 return fold_build2_loc (loc
, MULT_EXPR
, type
,
7266 fold_build2_loc (loc
, code
, type
,
7267 fold_convert_loc (loc
, type
, alt0
),
7268 fold_convert_loc (loc
, type
, alt1
)),
7269 fold_convert_loc (loc
, type
, same
));
7274 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7275 specified by EXPR into the buffer PTR of length LEN bytes.
7276 Return the number of bytes placed in the buffer, or zero
7280 native_encode_int (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7282 tree type
= TREE_TYPE (expr
);
7283 int total_bytes
= GET_MODE_SIZE (TYPE_MODE (type
));
7284 int byte
, offset
, word
, words
;
7285 unsigned char value
;
7287 if ((off
== -1 && total_bytes
> len
)
7288 || off
>= total_bytes
)
7292 words
= total_bytes
/ UNITS_PER_WORD
;
7294 for (byte
= 0; byte
< total_bytes
; byte
++)
7296 int bitpos
= byte
* BITS_PER_UNIT
;
7297 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
7299 value
= wi::extract_uhwi (wi::to_widest (expr
), bitpos
, BITS_PER_UNIT
);
7301 if (total_bytes
> UNITS_PER_WORD
)
7303 word
= byte
/ UNITS_PER_WORD
;
7304 if (WORDS_BIG_ENDIAN
)
7305 word
= (words
- 1) - word
;
7306 offset
= word
* UNITS_PER_WORD
;
7307 if (BYTES_BIG_ENDIAN
)
7308 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7310 offset
+= byte
% UNITS_PER_WORD
;
7313 offset
= BYTES_BIG_ENDIAN
? (total_bytes
- 1) - byte
: byte
;
7315 && offset
- off
< len
)
7316 ptr
[offset
- off
] = value
;
7318 return MIN (len
, total_bytes
- off
);
7322 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7323 specified by EXPR into the buffer PTR of length LEN bytes.
7324 Return the number of bytes placed in the buffer, or zero
7328 native_encode_fixed (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7330 tree type
= TREE_TYPE (expr
);
7331 machine_mode mode
= TYPE_MODE (type
);
7332 int total_bytes
= GET_MODE_SIZE (mode
);
7333 FIXED_VALUE_TYPE value
;
7334 tree i_value
, i_type
;
7336 if (total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7339 i_type
= lang_hooks
.types
.type_for_size (GET_MODE_BITSIZE (mode
), 1);
7341 if (NULL_TREE
== i_type
7342 || TYPE_PRECISION (i_type
) != total_bytes
)
7345 value
= TREE_FIXED_CST (expr
);
7346 i_value
= double_int_to_tree (i_type
, value
.data
);
7348 return native_encode_int (i_value
, ptr
, len
, off
);
7352 /* Subroutine of native_encode_expr. Encode the REAL_CST
7353 specified by EXPR into the buffer PTR of length LEN bytes.
7354 Return the number of bytes placed in the buffer, or zero
7358 native_encode_real (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7360 tree type
= TREE_TYPE (expr
);
7361 int total_bytes
= GET_MODE_SIZE (TYPE_MODE (type
));
7362 int byte
, offset
, word
, words
, bitpos
;
7363 unsigned char value
;
7365 /* There are always 32 bits in each long, no matter the size of
7366 the hosts long. We handle floating point representations with
7370 if ((off
== -1 && total_bytes
> len
)
7371 || off
>= total_bytes
)
7375 words
= (32 / BITS_PER_UNIT
) / UNITS_PER_WORD
;
7377 real_to_target (tmp
, TREE_REAL_CST_PTR (expr
), TYPE_MODE (type
));
7379 for (bitpos
= 0; bitpos
< total_bytes
* BITS_PER_UNIT
;
7380 bitpos
+= BITS_PER_UNIT
)
7382 byte
= (bitpos
/ BITS_PER_UNIT
) & 3;
7383 value
= (unsigned char) (tmp
[bitpos
/ 32] >> (bitpos
& 31));
7385 if (UNITS_PER_WORD
< 4)
7387 word
= byte
/ UNITS_PER_WORD
;
7388 if (WORDS_BIG_ENDIAN
)
7389 word
= (words
- 1) - word
;
7390 offset
= word
* UNITS_PER_WORD
;
7391 if (BYTES_BIG_ENDIAN
)
7392 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7394 offset
+= byte
% UNITS_PER_WORD
;
7397 offset
= BYTES_BIG_ENDIAN
? 3 - byte
: byte
;
7398 offset
= offset
+ ((bitpos
/ BITS_PER_UNIT
) & ~3);
7400 && offset
- off
< len
)
7401 ptr
[offset
- off
] = value
;
7403 return MIN (len
, total_bytes
- off
);
7406 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7407 specified by EXPR into the buffer PTR of length LEN bytes.
7408 Return the number of bytes placed in the buffer, or zero
7412 native_encode_complex (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7417 part
= TREE_REALPART (expr
);
7418 rsize
= native_encode_expr (part
, ptr
, len
, off
);
7422 part
= TREE_IMAGPART (expr
);
7424 off
= MAX (0, off
- GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (part
))));
7425 isize
= native_encode_expr (part
, ptr
+rsize
, len
-rsize
, off
);
7429 return rsize
+ isize
;
7433 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7434 specified by EXPR into the buffer PTR of length LEN bytes.
7435 Return the number of bytes placed in the buffer, or zero
7439 native_encode_vector (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7446 count
= VECTOR_CST_NELTS (expr
);
7447 itype
= TREE_TYPE (TREE_TYPE (expr
));
7448 size
= GET_MODE_SIZE (TYPE_MODE (itype
));
7449 for (i
= 0; i
< count
; i
++)
7456 elem
= VECTOR_CST_ELT (expr
, i
);
7457 int res
= native_encode_expr (elem
, ptr
+offset
, len
-offset
, off
);
7458 if ((off
== -1 && res
!= size
)
7471 /* Subroutine of native_encode_expr. Encode the STRING_CST
7472 specified by EXPR into the buffer PTR of length LEN bytes.
7473 Return the number of bytes placed in the buffer, or zero
7477 native_encode_string (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7479 tree type
= TREE_TYPE (expr
);
7480 HOST_WIDE_INT total_bytes
;
7482 if (TREE_CODE (type
) != ARRAY_TYPE
7483 || TREE_CODE (TREE_TYPE (type
)) != INTEGER_TYPE
7484 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type
))) != BITS_PER_UNIT
7485 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type
)))
7487 total_bytes
= tree_to_shwi (TYPE_SIZE_UNIT (type
));
7488 if ((off
== -1 && total_bytes
> len
)
7489 || off
>= total_bytes
)
7493 if (TREE_STRING_LENGTH (expr
) - off
< MIN (total_bytes
, len
))
7496 if (off
< TREE_STRING_LENGTH (expr
))
7498 written
= MIN (len
, TREE_STRING_LENGTH (expr
) - off
);
7499 memcpy (ptr
, TREE_STRING_POINTER (expr
) + off
, written
);
7501 memset (ptr
+ written
, 0,
7502 MIN (total_bytes
- written
, len
- written
));
7505 memcpy (ptr
, TREE_STRING_POINTER (expr
) + off
, MIN (total_bytes
, len
));
7506 return MIN (total_bytes
- off
, len
);
7510 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7511 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7512 buffer PTR of length LEN bytes. If OFF is not -1 then start
7513 the encoding at byte offset OFF and encode at most LEN bytes.
7514 Return the number of bytes placed in the buffer, or zero upon failure. */
7517 native_encode_expr (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7519 switch (TREE_CODE (expr
))
7522 return native_encode_int (expr
, ptr
, len
, off
);
7525 return native_encode_real (expr
, ptr
, len
, off
);
7528 return native_encode_fixed (expr
, ptr
, len
, off
);
7531 return native_encode_complex (expr
, ptr
, len
, off
);
7534 return native_encode_vector (expr
, ptr
, len
, off
);
7537 return native_encode_string (expr
, ptr
, len
, off
);
7545 /* Subroutine of native_interpret_expr. Interpret the contents of
7546 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7547 If the buffer cannot be interpreted, return NULL_TREE. */
7550 native_interpret_int (tree type
, const unsigned char *ptr
, int len
)
7552 int total_bytes
= GET_MODE_SIZE (TYPE_MODE (type
));
7554 if (total_bytes
> len
7555 || total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7558 wide_int result
= wi::from_buffer (ptr
, total_bytes
);
7560 return wide_int_to_tree (type
, result
);
7564 /* Subroutine of native_interpret_expr. Interpret the contents of
7565 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7566 If the buffer cannot be interpreted, return NULL_TREE. */
7569 native_interpret_fixed (tree type
, const unsigned char *ptr
, int len
)
7571 int total_bytes
= GET_MODE_SIZE (TYPE_MODE (type
));
7573 FIXED_VALUE_TYPE fixed_value
;
7575 if (total_bytes
> len
7576 || total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7579 result
= double_int::from_buffer (ptr
, total_bytes
);
7580 fixed_value
= fixed_from_double_int (result
, TYPE_MODE (type
));
7582 return build_fixed (type
, fixed_value
);
7586 /* Subroutine of native_interpret_expr. Interpret the contents of
7587 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7588 If the buffer cannot be interpreted, return NULL_TREE. */
7591 native_interpret_real (tree type
, const unsigned char *ptr
, int len
)
7593 machine_mode mode
= TYPE_MODE (type
);
7594 int total_bytes
= GET_MODE_SIZE (mode
);
7595 int byte
, offset
, word
, words
, bitpos
;
7596 unsigned char value
;
7597 /* There are always 32 bits in each long, no matter the size of
7598 the hosts long. We handle floating point representations with
7603 total_bytes
= GET_MODE_SIZE (TYPE_MODE (type
));
7604 if (total_bytes
> len
|| total_bytes
> 24)
7606 words
= (32 / BITS_PER_UNIT
) / UNITS_PER_WORD
;
7608 memset (tmp
, 0, sizeof (tmp
));
7609 for (bitpos
= 0; bitpos
< total_bytes
* BITS_PER_UNIT
;
7610 bitpos
+= BITS_PER_UNIT
)
7612 byte
= (bitpos
/ BITS_PER_UNIT
) & 3;
7613 if (UNITS_PER_WORD
< 4)
7615 word
= byte
/ UNITS_PER_WORD
;
7616 if (WORDS_BIG_ENDIAN
)
7617 word
= (words
- 1) - word
;
7618 offset
= word
* UNITS_PER_WORD
;
7619 if (BYTES_BIG_ENDIAN
)
7620 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7622 offset
+= byte
% UNITS_PER_WORD
;
7625 offset
= BYTES_BIG_ENDIAN
? 3 - byte
: byte
;
7626 value
= ptr
[offset
+ ((bitpos
/ BITS_PER_UNIT
) & ~3)];
7628 tmp
[bitpos
/ 32] |= (unsigned long)value
<< (bitpos
& 31);
7631 real_from_target (&r
, tmp
, mode
);
7632 return build_real (type
, r
);
7636 /* Subroutine of native_interpret_expr. Interpret the contents of
7637 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7638 If the buffer cannot be interpreted, return NULL_TREE. */
7641 native_interpret_complex (tree type
, const unsigned char *ptr
, int len
)
7643 tree etype
, rpart
, ipart
;
7646 etype
= TREE_TYPE (type
);
7647 size
= GET_MODE_SIZE (TYPE_MODE (etype
));
7650 rpart
= native_interpret_expr (etype
, ptr
, size
);
7653 ipart
= native_interpret_expr (etype
, ptr
+size
, size
);
7656 return build_complex (type
, rpart
, ipart
);
7660 /* Subroutine of native_interpret_expr. Interpret the contents of
7661 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7662 If the buffer cannot be interpreted, return NULL_TREE. */
7665 native_interpret_vector (tree type
, const unsigned char *ptr
, int len
)
7671 etype
= TREE_TYPE (type
);
7672 size
= GET_MODE_SIZE (TYPE_MODE (etype
));
7673 count
= TYPE_VECTOR_SUBPARTS (type
);
7674 if (size
* count
> len
)
7677 elements
= XALLOCAVEC (tree
, count
);
7678 for (i
= count
- 1; i
>= 0; i
--)
7680 elem
= native_interpret_expr (etype
, ptr
+(i
*size
), size
);
7685 return build_vector (type
, elements
);
7689 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7690 the buffer PTR of length LEN as a constant of type TYPE. For
7691 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7692 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7693 return NULL_TREE. */
7696 native_interpret_expr (tree type
, const unsigned char *ptr
, int len
)
7698 switch (TREE_CODE (type
))
7704 case REFERENCE_TYPE
:
7705 return native_interpret_int (type
, ptr
, len
);
7708 return native_interpret_real (type
, ptr
, len
);
7710 case FIXED_POINT_TYPE
:
7711 return native_interpret_fixed (type
, ptr
, len
);
7714 return native_interpret_complex (type
, ptr
, len
);
7717 return native_interpret_vector (type
, ptr
, len
);
7724 /* Returns true if we can interpret the contents of a native encoding
7728 can_native_interpret_type_p (tree type
)
7730 switch (TREE_CODE (type
))
7736 case REFERENCE_TYPE
:
7737 case FIXED_POINT_TYPE
:
7747 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7748 TYPE at compile-time. If we're unable to perform the conversion
7749 return NULL_TREE. */
7752 fold_view_convert_expr (tree type
, tree expr
)
7754 /* We support up to 512-bit values (for V8DFmode). */
7755 unsigned char buffer
[64];
7758 /* Check that the host and target are sane. */
7759 if (CHAR_BIT
!= 8 || BITS_PER_UNIT
!= 8)
7762 len
= native_encode_expr (expr
, buffer
, sizeof (buffer
));
7766 return native_interpret_expr (type
, buffer
, len
);
7769 /* Build an expression for the address of T. Folds away INDIRECT_REF
7770 to avoid confusing the gimplify process. */
7773 build_fold_addr_expr_with_type_loc (location_t loc
, tree t
, tree ptrtype
)
7775 /* The size of the object is not relevant when talking about its address. */
7776 if (TREE_CODE (t
) == WITH_SIZE_EXPR
)
7777 t
= TREE_OPERAND (t
, 0);
7779 if (TREE_CODE (t
) == INDIRECT_REF
)
7781 t
= TREE_OPERAND (t
, 0);
7783 if (TREE_TYPE (t
) != ptrtype
)
7784 t
= build1_loc (loc
, NOP_EXPR
, ptrtype
, t
);
7786 else if (TREE_CODE (t
) == MEM_REF
7787 && integer_zerop (TREE_OPERAND (t
, 1)))
7788 return TREE_OPERAND (t
, 0);
7789 else if (TREE_CODE (t
) == MEM_REF
7790 && TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
)
7791 return fold_binary (POINTER_PLUS_EXPR
, ptrtype
,
7792 TREE_OPERAND (t
, 0),
7793 convert_to_ptrofftype (TREE_OPERAND (t
, 1)));
7794 else if (TREE_CODE (t
) == VIEW_CONVERT_EXPR
)
7796 t
= build_fold_addr_expr_loc (loc
, TREE_OPERAND (t
, 0));
7798 if (TREE_TYPE (t
) != ptrtype
)
7799 t
= fold_convert_loc (loc
, ptrtype
, t
);
7802 t
= build1_loc (loc
, ADDR_EXPR
, ptrtype
, t
);
7807 /* Build an expression for the address of T. */
7810 build_fold_addr_expr_loc (location_t loc
, tree t
)
7812 tree ptrtype
= build_pointer_type (TREE_TYPE (t
));
7814 return build_fold_addr_expr_with_type_loc (loc
, t
, ptrtype
);
7817 /* Fold a unary expression of code CODE and type TYPE with operand
7818 OP0. Return the folded expression if folding is successful.
7819 Otherwise, return NULL_TREE. */
7822 fold_unary_loc (location_t loc
, enum tree_code code
, tree type
, tree op0
)
7826 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
7828 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
7829 && TREE_CODE_LENGTH (code
) == 1);
7834 if (CONVERT_EXPR_CODE_P (code
)
7835 || code
== FLOAT_EXPR
|| code
== ABS_EXPR
|| code
== NEGATE_EXPR
)
7837 /* Don't use STRIP_NOPS, because signedness of argument type
7839 STRIP_SIGN_NOPS (arg0
);
7843 /* Strip any conversions that don't change the mode. This
7844 is safe for every expression, except for a comparison
7845 expression because its signedness is derived from its
7848 Note that this is done as an internal manipulation within
7849 the constant folder, in order to find the simplest
7850 representation of the arguments so that their form can be
7851 studied. In any cases, the appropriate type conversions
7852 should be put back in the tree that will get out of the
7857 if (CONSTANT_CLASS_P (arg0
))
7859 tree tem
= const_unop (code
, type
, arg0
);
7862 if (TREE_TYPE (tem
) != type
)
7863 tem
= fold_convert_loc (loc
, type
, tem
);
7869 tem
= generic_simplify (loc
, code
, type
, op0
);
7873 if (TREE_CODE_CLASS (code
) == tcc_unary
)
7875 if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
7876 return build2 (COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
7877 fold_build1_loc (loc
, code
, type
,
7878 fold_convert_loc (loc
, TREE_TYPE (op0
),
7879 TREE_OPERAND (arg0
, 1))));
7880 else if (TREE_CODE (arg0
) == COND_EXPR
)
7882 tree arg01
= TREE_OPERAND (arg0
, 1);
7883 tree arg02
= TREE_OPERAND (arg0
, 2);
7884 if (! VOID_TYPE_P (TREE_TYPE (arg01
)))
7885 arg01
= fold_build1_loc (loc
, code
, type
,
7886 fold_convert_loc (loc
,
7887 TREE_TYPE (op0
), arg01
));
7888 if (! VOID_TYPE_P (TREE_TYPE (arg02
)))
7889 arg02
= fold_build1_loc (loc
, code
, type
,
7890 fold_convert_loc (loc
,
7891 TREE_TYPE (op0
), arg02
));
7892 tem
= fold_build3_loc (loc
, COND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
7895 /* If this was a conversion, and all we did was to move into
7896 inside the COND_EXPR, bring it back out. But leave it if
7897 it is a conversion from integer to integer and the
7898 result precision is no wider than a word since such a
7899 conversion is cheap and may be optimized away by combine,
7900 while it couldn't if it were outside the COND_EXPR. Then return
7901 so we don't get into an infinite recursion loop taking the
7902 conversion out and then back in. */
7904 if ((CONVERT_EXPR_CODE_P (code
)
7905 || code
== NON_LVALUE_EXPR
)
7906 && TREE_CODE (tem
) == COND_EXPR
7907 && TREE_CODE (TREE_OPERAND (tem
, 1)) == code
7908 && TREE_CODE (TREE_OPERAND (tem
, 2)) == code
7909 && ! VOID_TYPE_P (TREE_OPERAND (tem
, 1))
7910 && ! VOID_TYPE_P (TREE_OPERAND (tem
, 2))
7911 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 1), 0))
7912 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 2), 0)))
7913 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem
))
7915 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 1), 0))))
7916 && TYPE_PRECISION (TREE_TYPE (tem
)) <= BITS_PER_WORD
)
7917 || flag_syntax_only
))
7918 tem
= build1_loc (loc
, code
, type
,
7920 TREE_TYPE (TREE_OPERAND
7921 (TREE_OPERAND (tem
, 1), 0)),
7922 TREE_OPERAND (tem
, 0),
7923 TREE_OPERAND (TREE_OPERAND (tem
, 1), 0),
7924 TREE_OPERAND (TREE_OPERAND (tem
, 2),
7932 case NON_LVALUE_EXPR
:
7933 if (!maybe_lvalue_p (op0
))
7934 return fold_convert_loc (loc
, type
, op0
);
7939 case FIX_TRUNC_EXPR
:
7940 if (COMPARISON_CLASS_P (op0
))
7942 /* If we have (type) (a CMP b) and type is an integral type, return
7943 new expression involving the new type. Canonicalize
7944 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7946 Do not fold the result as that would not simplify further, also
7947 folding again results in recursions. */
7948 if (TREE_CODE (type
) == BOOLEAN_TYPE
)
7949 return build2_loc (loc
, TREE_CODE (op0
), type
,
7950 TREE_OPERAND (op0
, 0),
7951 TREE_OPERAND (op0
, 1));
7952 else if (!INTEGRAL_TYPE_P (type
) && !VOID_TYPE_P (type
)
7953 && TREE_CODE (type
) != VECTOR_TYPE
)
7954 return build3_loc (loc
, COND_EXPR
, type
, op0
,
7955 constant_boolean_node (true, type
),
7956 constant_boolean_node (false, type
));
7959 /* Handle (T *)&A.B.C for A being of type T and B and C
7960 living at offset zero. This occurs frequently in
7961 C++ upcasting and then accessing the base. */
7962 if (TREE_CODE (op0
) == ADDR_EXPR
7963 && POINTER_TYPE_P (type
)
7964 && handled_component_p (TREE_OPERAND (op0
, 0)))
7966 HOST_WIDE_INT bitsize
, bitpos
;
7969 int unsignedp
, volatilep
;
7970 tree base
= TREE_OPERAND (op0
, 0);
7971 base
= get_inner_reference (base
, &bitsize
, &bitpos
, &offset
,
7972 &mode
, &unsignedp
, &volatilep
, false);
7973 /* If the reference was to a (constant) zero offset, we can use
7974 the address of the base if it has the same base type
7975 as the result type and the pointer type is unqualified. */
7976 if (! offset
&& bitpos
== 0
7977 && (TYPE_MAIN_VARIANT (TREE_TYPE (type
))
7978 == TYPE_MAIN_VARIANT (TREE_TYPE (base
)))
7979 && TYPE_QUALS (type
) == TYPE_UNQUALIFIED
)
7980 return fold_convert_loc (loc
, type
,
7981 build_fold_addr_expr_loc (loc
, base
));
7984 if (TREE_CODE (op0
) == MODIFY_EXPR
7985 && TREE_CONSTANT (TREE_OPERAND (op0
, 1))
7986 /* Detect assigning a bitfield. */
7987 && !(TREE_CODE (TREE_OPERAND (op0
, 0)) == COMPONENT_REF
7989 (TREE_OPERAND (TREE_OPERAND (op0
, 0), 1))))
7991 /* Don't leave an assignment inside a conversion
7992 unless assigning a bitfield. */
7993 tem
= fold_build1_loc (loc
, code
, type
, TREE_OPERAND (op0
, 1));
7994 /* First do the assignment, then return converted constant. */
7995 tem
= build2_loc (loc
, COMPOUND_EXPR
, TREE_TYPE (tem
), op0
, tem
);
7996 TREE_NO_WARNING (tem
) = 1;
7997 TREE_USED (tem
) = 1;
8001 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
8002 constants (if x has signed type, the sign bit cannot be set
8003 in c). This folds extension into the BIT_AND_EXPR.
8004 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
8005 very likely don't have maximal range for their precision and this
8006 transformation effectively doesn't preserve non-maximal ranges. */
8007 if (TREE_CODE (type
) == INTEGER_TYPE
8008 && TREE_CODE (op0
) == BIT_AND_EXPR
8009 && TREE_CODE (TREE_OPERAND (op0
, 1)) == INTEGER_CST
)
8011 tree and_expr
= op0
;
8012 tree and0
= TREE_OPERAND (and_expr
, 0);
8013 tree and1
= TREE_OPERAND (and_expr
, 1);
8016 if (TYPE_UNSIGNED (TREE_TYPE (and_expr
))
8017 || (TYPE_PRECISION (type
)
8018 <= TYPE_PRECISION (TREE_TYPE (and_expr
))))
8020 else if (TYPE_PRECISION (TREE_TYPE (and1
))
8021 <= HOST_BITS_PER_WIDE_INT
8022 && tree_fits_uhwi_p (and1
))
8024 unsigned HOST_WIDE_INT cst
;
8026 cst
= tree_to_uhwi (and1
);
8027 cst
&= HOST_WIDE_INT_M1U
8028 << (TYPE_PRECISION (TREE_TYPE (and1
)) - 1);
8029 change
= (cst
== 0);
8030 #ifdef LOAD_EXTEND_OP
8032 && !flag_syntax_only
8033 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0
)))
8036 tree uns
= unsigned_type_for (TREE_TYPE (and0
));
8037 and0
= fold_convert_loc (loc
, uns
, and0
);
8038 and1
= fold_convert_loc (loc
, uns
, and1
);
8044 tem
= force_fit_type (type
, wi::to_widest (and1
), 0,
8045 TREE_OVERFLOW (and1
));
8046 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
8047 fold_convert_loc (loc
, type
, and0
), tem
);
8051 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type,
8052 when one of the new casts will fold away. Conservatively we assume
8053 that this happens when X or Y is NOP_EXPR or Y is INTEGER_CST. */
8054 if (POINTER_TYPE_P (type
)
8055 && TREE_CODE (arg0
) == POINTER_PLUS_EXPR
8056 && (!TYPE_RESTRICT (type
) || TYPE_RESTRICT (TREE_TYPE (arg0
)))
8057 && (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
8058 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == NOP_EXPR
8059 || TREE_CODE (TREE_OPERAND (arg0
, 1)) == NOP_EXPR
))
8061 tree arg00
= TREE_OPERAND (arg0
, 0);
8062 tree arg01
= TREE_OPERAND (arg0
, 1);
8064 return fold_build_pointer_plus_loc
8065 (loc
, fold_convert_loc (loc
, type
, arg00
), arg01
);
8068 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
8069 of the same precision, and X is an integer type not narrower than
8070 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
8071 if (INTEGRAL_TYPE_P (type
)
8072 && TREE_CODE (op0
) == BIT_NOT_EXPR
8073 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
8074 && CONVERT_EXPR_P (TREE_OPERAND (op0
, 0))
8075 && TYPE_PRECISION (type
) == TYPE_PRECISION (TREE_TYPE (op0
)))
8077 tem
= TREE_OPERAND (TREE_OPERAND (op0
, 0), 0);
8078 if (INTEGRAL_TYPE_P (TREE_TYPE (tem
))
8079 && TYPE_PRECISION (type
) <= TYPE_PRECISION (TREE_TYPE (tem
)))
8080 return fold_build1_loc (loc
, BIT_NOT_EXPR
, type
,
8081 fold_convert_loc (loc
, type
, tem
));
8084 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
8085 type of X and Y (integer types only). */
8086 if (INTEGRAL_TYPE_P (type
)
8087 && TREE_CODE (op0
) == MULT_EXPR
8088 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
8089 && TYPE_PRECISION (type
) < TYPE_PRECISION (TREE_TYPE (op0
)))
8091 /* Be careful not to introduce new overflows. */
8093 if (TYPE_OVERFLOW_WRAPS (type
))
8096 mult_type
= unsigned_type_for (type
);
8098 if (TYPE_PRECISION (mult_type
) < TYPE_PRECISION (TREE_TYPE (op0
)))
8100 tem
= fold_build2_loc (loc
, MULT_EXPR
, mult_type
,
8101 fold_convert_loc (loc
, mult_type
,
8102 TREE_OPERAND (op0
, 0)),
8103 fold_convert_loc (loc
, mult_type
,
8104 TREE_OPERAND (op0
, 1)));
8105 return fold_convert_loc (loc
, type
, tem
);
8111 case VIEW_CONVERT_EXPR
:
8112 if (TREE_CODE (op0
) == MEM_REF
)
8113 return fold_build2_loc (loc
, MEM_REF
, type
,
8114 TREE_OPERAND (op0
, 0), TREE_OPERAND (op0
, 1));
8119 tem
= fold_negate_expr (loc
, arg0
);
8121 return fold_convert_loc (loc
, type
, tem
);
8125 /* Convert fabs((double)float) into (double)fabsf(float). */
8126 if (TREE_CODE (arg0
) == NOP_EXPR
8127 && TREE_CODE (type
) == REAL_TYPE
)
8129 tree targ0
= strip_float_extensions (arg0
);
8131 return fold_convert_loc (loc
, type
,
8132 fold_build1_loc (loc
, ABS_EXPR
,
8136 /* ABS_EXPR<ABS_EXPR<x>> = ABS_EXPR<x> even if flag_wrapv is on. */
8137 else if (TREE_CODE (arg0
) == ABS_EXPR
)
8140 /* Strip sign ops from argument. */
8141 if (TREE_CODE (type
) == REAL_TYPE
)
8143 tem
= fold_strip_sign_ops (arg0
);
8145 return fold_build1_loc (loc
, ABS_EXPR
, type
,
8146 fold_convert_loc (loc
, type
, tem
));
8151 if (TREE_CODE (TREE_TYPE (arg0
)) != COMPLEX_TYPE
)
8152 return fold_convert_loc (loc
, type
, arg0
);
8153 if (TREE_CODE (arg0
) == COMPLEX_EXPR
)
8155 tree itype
= TREE_TYPE (type
);
8156 tree rpart
= fold_convert_loc (loc
, itype
, TREE_OPERAND (arg0
, 0));
8157 tree ipart
= fold_convert_loc (loc
, itype
, TREE_OPERAND (arg0
, 1));
8158 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rpart
,
8159 negate_expr (ipart
));
8161 if (TREE_CODE (arg0
) == CONJ_EXPR
)
8162 return fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
8166 /* Convert ~ (-A) to A - 1. */
8167 if (INTEGRAL_TYPE_P (type
) && TREE_CODE (arg0
) == NEGATE_EXPR
)
8168 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
8169 fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0)),
8170 build_int_cst (type
, 1));
8171 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
8172 else if (INTEGRAL_TYPE_P (type
)
8173 && ((TREE_CODE (arg0
) == MINUS_EXPR
8174 && integer_onep (TREE_OPERAND (arg0
, 1)))
8175 || (TREE_CODE (arg0
) == PLUS_EXPR
8176 && integer_all_onesp (TREE_OPERAND (arg0
, 1)))))
8178 /* Perform the negation in ARG0's type and only then convert
8179 to TYPE as to avoid introducing undefined behavior. */
8180 tree t
= fold_build1_loc (loc
, NEGATE_EXPR
,
8181 TREE_TYPE (TREE_OPERAND (arg0
, 0)),
8182 TREE_OPERAND (arg0
, 0));
8183 return fold_convert_loc (loc
, type
, t
);
8185 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
8186 else if (TREE_CODE (arg0
) == BIT_XOR_EXPR
8187 && (tem
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
,
8188 fold_convert_loc (loc
, type
,
8189 TREE_OPERAND (arg0
, 0)))))
8190 return fold_build2_loc (loc
, BIT_XOR_EXPR
, type
, tem
,
8191 fold_convert_loc (loc
, type
,
8192 TREE_OPERAND (arg0
, 1)));
8193 else if (TREE_CODE (arg0
) == BIT_XOR_EXPR
8194 && (tem
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
,
8195 fold_convert_loc (loc
, type
,
8196 TREE_OPERAND (arg0
, 1)))))
8197 return fold_build2_loc (loc
, BIT_XOR_EXPR
, type
,
8198 fold_convert_loc (loc
, type
,
8199 TREE_OPERAND (arg0
, 0)), tem
);
8203 case TRUTH_NOT_EXPR
:
8204 /* Note that the operand of this must be an int
8205 and its values must be 0 or 1.
8206 ("true" is a fixed value perhaps depending on the language,
8207 but we don't handle values other than 1 correctly yet.) */
8208 tem
= fold_truth_not_expr (loc
, arg0
);
8211 return fold_convert_loc (loc
, type
, tem
);
8214 if (TREE_CODE (TREE_TYPE (arg0
)) != COMPLEX_TYPE
)
8215 return fold_convert_loc (loc
, type
, arg0
);
8216 if (TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
8218 tree itype
= TREE_TYPE (TREE_TYPE (arg0
));
8219 tem
= fold_build2_loc (loc
, TREE_CODE (arg0
), itype
,
8220 fold_build1_loc (loc
, REALPART_EXPR
, itype
,
8221 TREE_OPERAND (arg0
, 0)),
8222 fold_build1_loc (loc
, REALPART_EXPR
, itype
,
8223 TREE_OPERAND (arg0
, 1)));
8224 return fold_convert_loc (loc
, type
, tem
);
8226 if (TREE_CODE (arg0
) == CONJ_EXPR
)
8228 tree itype
= TREE_TYPE (TREE_TYPE (arg0
));
8229 tem
= fold_build1_loc (loc
, REALPART_EXPR
, itype
,
8230 TREE_OPERAND (arg0
, 0));
8231 return fold_convert_loc (loc
, type
, tem
);
8233 if (TREE_CODE (arg0
) == CALL_EXPR
)
8235 tree fn
= get_callee_fndecl (arg0
);
8236 if (fn
&& DECL_BUILT_IN_CLASS (fn
) == BUILT_IN_NORMAL
)
8237 switch (DECL_FUNCTION_CODE (fn
))
8239 CASE_FLT_FN (BUILT_IN_CEXPI
):
8240 fn
= mathfn_built_in (type
, BUILT_IN_COS
);
8242 return build_call_expr_loc (loc
, fn
, 1, CALL_EXPR_ARG (arg0
, 0));
8252 if (TREE_CODE (TREE_TYPE (arg0
)) != COMPLEX_TYPE
)
8253 return build_zero_cst (type
);
8254 if (TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
8256 tree itype
= TREE_TYPE (TREE_TYPE (arg0
));
8257 tem
= fold_build2_loc (loc
, TREE_CODE (arg0
), itype
,
8258 fold_build1_loc (loc
, IMAGPART_EXPR
, itype
,
8259 TREE_OPERAND (arg0
, 0)),
8260 fold_build1_loc (loc
, IMAGPART_EXPR
, itype
,
8261 TREE_OPERAND (arg0
, 1)));
8262 return fold_convert_loc (loc
, type
, tem
);
8264 if (TREE_CODE (arg0
) == CONJ_EXPR
)
8266 tree itype
= TREE_TYPE (TREE_TYPE (arg0
));
8267 tem
= fold_build1_loc (loc
, IMAGPART_EXPR
, itype
, TREE_OPERAND (arg0
, 0));
8268 return fold_convert_loc (loc
, type
, negate_expr (tem
));
8270 if (TREE_CODE (arg0
) == CALL_EXPR
)
8272 tree fn
= get_callee_fndecl (arg0
);
8273 if (fn
&& DECL_BUILT_IN_CLASS (fn
) == BUILT_IN_NORMAL
)
8274 switch (DECL_FUNCTION_CODE (fn
))
8276 CASE_FLT_FN (BUILT_IN_CEXPI
):
8277 fn
= mathfn_built_in (type
, BUILT_IN_SIN
);
8279 return build_call_expr_loc (loc
, fn
, 1, CALL_EXPR_ARG (arg0
, 0));
8289 /* Fold *&X to X if X is an lvalue. */
8290 if (TREE_CODE (op0
) == ADDR_EXPR
)
8292 tree op00
= TREE_OPERAND (op0
, 0);
8293 if ((TREE_CODE (op00
) == VAR_DECL
8294 || TREE_CODE (op00
) == PARM_DECL
8295 || TREE_CODE (op00
) == RESULT_DECL
)
8296 && !TREE_READONLY (op00
))
8303 } /* switch (code) */
8307 /* If the operation was a conversion do _not_ mark a resulting constant
8308 with TREE_OVERFLOW if the original constant was not. These conversions
8309 have implementation defined behavior and retaining the TREE_OVERFLOW
8310 flag here would confuse later passes such as VRP. */
8312 fold_unary_ignore_overflow_loc (location_t loc
, enum tree_code code
,
8313 tree type
, tree op0
)
8315 tree res
= fold_unary_loc (loc
, code
, type
, op0
);
8317 && TREE_CODE (res
) == INTEGER_CST
8318 && TREE_CODE (op0
) == INTEGER_CST
8319 && CONVERT_EXPR_CODE_P (code
))
8320 TREE_OVERFLOW (res
) = TREE_OVERFLOW (op0
);
8325 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
8326 operands OP0 and OP1. LOC is the location of the resulting expression.
8327 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
8328 Return the folded expression if folding is successful. Otherwise,
8329 return NULL_TREE. */
8331 fold_truth_andor (location_t loc
, enum tree_code code
, tree type
,
8332 tree arg0
, tree arg1
, tree op0
, tree op1
)
8336 /* We only do these simplifications if we are optimizing. */
8340 /* Check for things like (A || B) && (A || C). We can convert this
8341 to A || (B && C). Note that either operator can be any of the four
8342 truth and/or operations and the transformation will still be
8343 valid. Also note that we only care about order for the
8344 ANDIF and ORIF operators. If B contains side effects, this
8345 might change the truth-value of A. */
8346 if (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8347 && (TREE_CODE (arg0
) == TRUTH_ANDIF_EXPR
8348 || TREE_CODE (arg0
) == TRUTH_ORIF_EXPR
8349 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
8350 || TREE_CODE (arg0
) == TRUTH_OR_EXPR
)
8351 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0
, 1)))
8353 tree a00
= TREE_OPERAND (arg0
, 0);
8354 tree a01
= TREE_OPERAND (arg0
, 1);
8355 tree a10
= TREE_OPERAND (arg1
, 0);
8356 tree a11
= TREE_OPERAND (arg1
, 1);
8357 int commutative
= ((TREE_CODE (arg0
) == TRUTH_OR_EXPR
8358 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
)
8359 && (code
== TRUTH_AND_EXPR
8360 || code
== TRUTH_OR_EXPR
));
8362 if (operand_equal_p (a00
, a10
, 0))
8363 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a00
,
8364 fold_build2_loc (loc
, code
, type
, a01
, a11
));
8365 else if (commutative
&& operand_equal_p (a00
, a11
, 0))
8366 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a00
,
8367 fold_build2_loc (loc
, code
, type
, a01
, a10
));
8368 else if (commutative
&& operand_equal_p (a01
, a10
, 0))
8369 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a01
,
8370 fold_build2_loc (loc
, code
, type
, a00
, a11
));
8372 /* This case if tricky because we must either have commutative
8373 operators or else A10 must not have side-effects. */
8375 else if ((commutative
|| ! TREE_SIDE_EFFECTS (a10
))
8376 && operand_equal_p (a01
, a11
, 0))
8377 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
,
8378 fold_build2_loc (loc
, code
, type
, a00
, a10
),
8382 /* See if we can build a range comparison. */
8383 if (0 != (tem
= fold_range_test (loc
, code
, type
, op0
, op1
)))
8386 if ((code
== TRUTH_ANDIF_EXPR
&& TREE_CODE (arg0
) == TRUTH_ORIF_EXPR
)
8387 || (code
== TRUTH_ORIF_EXPR
&& TREE_CODE (arg0
) == TRUTH_ANDIF_EXPR
))
8389 tem
= merge_truthop_with_opposite_arm (loc
, arg0
, arg1
, true);
8391 return fold_build2_loc (loc
, code
, type
, tem
, arg1
);
8394 if ((code
== TRUTH_ANDIF_EXPR
&& TREE_CODE (arg1
) == TRUTH_ORIF_EXPR
)
8395 || (code
== TRUTH_ORIF_EXPR
&& TREE_CODE (arg1
) == TRUTH_ANDIF_EXPR
))
8397 tem
= merge_truthop_with_opposite_arm (loc
, arg1
, arg0
, false);
8399 return fold_build2_loc (loc
, code
, type
, arg0
, tem
);
8402 /* Check for the possibility of merging component references. If our
8403 lhs is another similar operation, try to merge its rhs with our
8404 rhs. Then try to merge our lhs and rhs. */
8405 if (TREE_CODE (arg0
) == code
8406 && 0 != (tem
= fold_truth_andor_1 (loc
, code
, type
,
8407 TREE_OPERAND (arg0
, 1), arg1
)))
8408 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0), tem
);
8410 if ((tem
= fold_truth_andor_1 (loc
, code
, type
, arg0
, arg1
)) != 0)
8413 if (LOGICAL_OP_NON_SHORT_CIRCUIT
8414 && (code
== TRUTH_AND_EXPR
8415 || code
== TRUTH_ANDIF_EXPR
8416 || code
== TRUTH_OR_EXPR
8417 || code
== TRUTH_ORIF_EXPR
))
8419 enum tree_code ncode
, icode
;
8421 ncode
= (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_AND_EXPR
)
8422 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
;
8423 icode
= ncode
== TRUTH_AND_EXPR
? TRUTH_ANDIF_EXPR
: TRUTH_ORIF_EXPR
;
8425 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8426 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8427 We don't want to pack more than two leafs to a non-IF AND/OR
8429 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8430 equal to IF-CODE, then we don't want to add right-hand operand.
8431 If the inner right-hand side of left-hand operand has
8432 side-effects, or isn't simple, then we can't add to it,
8433 as otherwise we might destroy if-sequence. */
8434 if (TREE_CODE (arg0
) == icode
8435 && simple_operand_p_2 (arg1
)
8436 /* Needed for sequence points to handle trappings, and
8438 && simple_operand_p_2 (TREE_OPERAND (arg0
, 1)))
8440 tem
= fold_build2_loc (loc
, ncode
, type
, TREE_OPERAND (arg0
, 1),
8442 return fold_build2_loc (loc
, icode
, type
, TREE_OPERAND (arg0
, 0),
8445 /* Same as abouve but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8446 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8447 else if (TREE_CODE (arg1
) == icode
8448 && simple_operand_p_2 (arg0
)
8449 /* Needed for sequence points to handle trappings, and
8451 && simple_operand_p_2 (TREE_OPERAND (arg1
, 0)))
8453 tem
= fold_build2_loc (loc
, ncode
, type
,
8454 arg0
, TREE_OPERAND (arg1
, 0));
8455 return fold_build2_loc (loc
, icode
, type
, tem
,
8456 TREE_OPERAND (arg1
, 1));
8458 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8460 For sequence point consistancy, we need to check for trapping,
8461 and side-effects. */
8462 else if (code
== icode
&& simple_operand_p_2 (arg0
)
8463 && simple_operand_p_2 (arg1
))
8464 return fold_build2_loc (loc
, ncode
, type
, arg0
, arg1
);
8470 /* Fold a binary expression of code CODE and type TYPE with operands
8471 OP0 and OP1, containing either a MIN-MAX or a MAX-MIN combination.
8472 Return the folded expression if folding is successful. Otherwise,
8473 return NULL_TREE. */
8476 fold_minmax (location_t loc
, enum tree_code code
, tree type
, tree op0
, tree op1
)
8478 enum tree_code compl_code
;
8480 if (code
== MIN_EXPR
)
8481 compl_code
= MAX_EXPR
;
8482 else if (code
== MAX_EXPR
)
8483 compl_code
= MIN_EXPR
;
8487 /* MIN (MAX (a, b), b) == b. */
8488 if (TREE_CODE (op0
) == compl_code
8489 && operand_equal_p (TREE_OPERAND (op0
, 1), op1
, 0))
8490 return omit_one_operand_loc (loc
, type
, op1
, TREE_OPERAND (op0
, 0));
8492 /* MIN (MAX (b, a), b) == b. */
8493 if (TREE_CODE (op0
) == compl_code
8494 && operand_equal_p (TREE_OPERAND (op0
, 0), op1
, 0)
8495 && reorder_operands_p (TREE_OPERAND (op0
, 1), op1
))
8496 return omit_one_operand_loc (loc
, type
, op1
, TREE_OPERAND (op0
, 1));
8498 /* MIN (a, MAX (a, b)) == a. */
8499 if (TREE_CODE (op1
) == compl_code
8500 && operand_equal_p (op0
, TREE_OPERAND (op1
, 0), 0)
8501 && reorder_operands_p (op0
, TREE_OPERAND (op1
, 1)))
8502 return omit_one_operand_loc (loc
, type
, op0
, TREE_OPERAND (op1
, 1));
8504 /* MIN (a, MAX (b, a)) == a. */
8505 if (TREE_CODE (op1
) == compl_code
8506 && operand_equal_p (op0
, TREE_OPERAND (op1
, 1), 0)
8507 && reorder_operands_p (op0
, TREE_OPERAND (op1
, 0)))
8508 return omit_one_operand_loc (loc
, type
, op0
, TREE_OPERAND (op1
, 0));
8513 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8514 by changing CODE to reduce the magnitude of constants involved in
8515 ARG0 of the comparison.
8516 Returns a canonicalized comparison tree if a simplification was
8517 possible, otherwise returns NULL_TREE.
8518 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8519 valid if signed overflow is undefined. */
8522 maybe_canonicalize_comparison_1 (location_t loc
, enum tree_code code
, tree type
,
8523 tree arg0
, tree arg1
,
8524 bool *strict_overflow_p
)
8526 enum tree_code code0
= TREE_CODE (arg0
);
8527 tree t
, cst0
= NULL_TREE
;
8531 /* Match A +- CST code arg1 and CST code arg1. We can change the
8532 first form only if overflow is undefined. */
8533 if (!(((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
8534 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
)))
8535 /* In principle pointers also have undefined overflow behavior,
8536 but that causes problems elsewhere. */
8537 && !POINTER_TYPE_P (TREE_TYPE (arg0
))
8538 && (code0
== MINUS_EXPR
8539 || code0
== PLUS_EXPR
)
8540 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
8541 || code0
== INTEGER_CST
))
8544 /* Identify the constant in arg0 and its sign. */
8545 if (code0
== INTEGER_CST
)
8548 cst0
= TREE_OPERAND (arg0
, 1);
8549 sgn0
= tree_int_cst_sgn (cst0
);
8551 /* Overflowed constants and zero will cause problems. */
8552 if (integer_zerop (cst0
)
8553 || TREE_OVERFLOW (cst0
))
8556 /* See if we can reduce the magnitude of the constant in
8557 arg0 by changing the comparison code. */
8558 if (code0
== INTEGER_CST
)
8560 /* CST <= arg1 -> CST-1 < arg1. */
8561 if (code
== LE_EXPR
&& sgn0
== 1)
8563 /* -CST < arg1 -> -CST-1 <= arg1. */
8564 else if (code
== LT_EXPR
&& sgn0
== -1)
8566 /* CST > arg1 -> CST-1 >= arg1. */
8567 else if (code
== GT_EXPR
&& sgn0
== 1)
8569 /* -CST >= arg1 -> -CST-1 > arg1. */
8570 else if (code
== GE_EXPR
&& sgn0
== -1)
8574 /* arg1 code' CST' might be more canonical. */
8579 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8581 && code0
== ((sgn0
== -1) ? PLUS_EXPR
: MINUS_EXPR
))
8583 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8584 else if (code
== GT_EXPR
8585 && code0
== ((sgn0
== -1) ? MINUS_EXPR
: PLUS_EXPR
))
8587 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8588 else if (code
== LE_EXPR
8589 && code0
== ((sgn0
== -1) ? MINUS_EXPR
: PLUS_EXPR
))
8591 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8592 else if (code
== GE_EXPR
8593 && code0
== ((sgn0
== -1) ? PLUS_EXPR
: MINUS_EXPR
))
8597 *strict_overflow_p
= true;
8600 /* Now build the constant reduced in magnitude. But not if that
8601 would produce one outside of its types range. */
8602 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0
))
8604 && TYPE_MIN_VALUE (TREE_TYPE (cst0
))
8605 && tree_int_cst_equal (cst0
, TYPE_MIN_VALUE (TREE_TYPE (cst0
))))
8607 && TYPE_MAX_VALUE (TREE_TYPE (cst0
))
8608 && tree_int_cst_equal (cst0
, TYPE_MAX_VALUE (TREE_TYPE (cst0
))))))
8609 /* We cannot swap the comparison here as that would cause us to
8610 endlessly recurse. */
8613 t
= int_const_binop (sgn0
== -1 ? PLUS_EXPR
: MINUS_EXPR
,
8614 cst0
, build_int_cst (TREE_TYPE (cst0
), 1));
8615 if (code0
!= INTEGER_CST
)
8616 t
= fold_build2_loc (loc
, code0
, TREE_TYPE (arg0
), TREE_OPERAND (arg0
, 0), t
);
8617 t
= fold_convert (TREE_TYPE (arg1
), t
);
8619 /* If swapping might yield to a more canonical form, do so. */
8621 return fold_build2_loc (loc
, swap_tree_comparison (code
), type
, arg1
, t
);
8623 return fold_build2_loc (loc
, code
, type
, t
, arg1
);
8626 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8627 overflow further. Try to decrease the magnitude of constants involved
8628 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8629 and put sole constants at the second argument position.
8630 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8633 maybe_canonicalize_comparison (location_t loc
, enum tree_code code
, tree type
,
8634 tree arg0
, tree arg1
)
8637 bool strict_overflow_p
;
8638 const char * const warnmsg
= G_("assuming signed overflow does not occur "
8639 "when reducing constant in comparison");
8641 /* Try canonicalization by simplifying arg0. */
8642 strict_overflow_p
= false;
8643 t
= maybe_canonicalize_comparison_1 (loc
, code
, type
, arg0
, arg1
,
8644 &strict_overflow_p
);
8647 if (strict_overflow_p
)
8648 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MAGNITUDE
);
8652 /* Try canonicalization by simplifying arg1 using the swapped
8654 code
= swap_tree_comparison (code
);
8655 strict_overflow_p
= false;
8656 t
= maybe_canonicalize_comparison_1 (loc
, code
, type
, arg1
, arg0
,
8657 &strict_overflow_p
);
8658 if (t
&& strict_overflow_p
)
8659 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MAGNITUDE
);
8663 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8664 space. This is used to avoid issuing overflow warnings for
8665 expressions like &p->x which can not wrap. */
8668 pointer_may_wrap_p (tree base
, tree offset
, HOST_WIDE_INT bitpos
)
8670 if (!POINTER_TYPE_P (TREE_TYPE (base
)))
8677 int precision
= TYPE_PRECISION (TREE_TYPE (base
));
8678 if (offset
== NULL_TREE
)
8679 wi_offset
= wi::zero (precision
);
8680 else if (TREE_CODE (offset
) != INTEGER_CST
|| TREE_OVERFLOW (offset
))
8686 wide_int units
= wi::shwi (bitpos
/ BITS_PER_UNIT
, precision
);
8687 wide_int total
= wi::add (wi_offset
, units
, UNSIGNED
, &overflow
);
8691 if (!wi::fits_uhwi_p (total
))
8694 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (TREE_TYPE (base
)));
8698 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8700 if (TREE_CODE (base
) == ADDR_EXPR
)
8702 HOST_WIDE_INT base_size
;
8704 base_size
= int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base
, 0)));
8705 if (base_size
> 0 && size
< base_size
)
8709 return total
.to_uhwi () > (unsigned HOST_WIDE_INT
) size
;
8712 /* Return the HOST_WIDE_INT least significant bits of T, a sizetype
8713 kind INTEGER_CST. This makes sure to properly sign-extend the
8716 static HOST_WIDE_INT
8717 size_low_cst (const_tree t
)
8719 HOST_WIDE_INT w
= TREE_INT_CST_ELT (t
, 0);
8720 int prec
= TYPE_PRECISION (TREE_TYPE (t
));
8721 if (prec
< HOST_BITS_PER_WIDE_INT
)
8722 return sext_hwi (w
, prec
);
8726 /* Subroutine of fold_binary. This routine performs all of the
8727 transformations that are common to the equality/inequality
8728 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8729 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8730 fold_binary should call fold_binary. Fold a comparison with
8731 tree code CODE and type TYPE with operands OP0 and OP1. Return
8732 the folded comparison or NULL_TREE. */
8735 fold_comparison (location_t loc
, enum tree_code code
, tree type
,
8738 const bool equality_code
= (code
== EQ_EXPR
|| code
== NE_EXPR
);
8739 tree arg0
, arg1
, tem
;
8744 STRIP_SIGN_NOPS (arg0
);
8745 STRIP_SIGN_NOPS (arg1
);
8747 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
8748 if ((TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
8750 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
8751 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))))
8752 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
8753 && !TREE_OVERFLOW (TREE_OPERAND (arg0
, 1))
8754 && TREE_CODE (arg1
) == INTEGER_CST
8755 && !TREE_OVERFLOW (arg1
))
8757 const enum tree_code
8758 reverse_op
= TREE_CODE (arg0
) == PLUS_EXPR
? MINUS_EXPR
: PLUS_EXPR
;
8759 tree const1
= TREE_OPERAND (arg0
, 1);
8760 tree const2
= fold_convert_loc (loc
, TREE_TYPE (const1
), arg1
);
8761 tree variable
= TREE_OPERAND (arg0
, 0);
8762 tree new_const
= int_const_binop (reverse_op
, const2
, const1
);
8764 /* If the constant operation overflowed this can be
8765 simplified as a comparison against INT_MAX/INT_MIN. */
8766 if (TREE_OVERFLOW (new_const
)
8767 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
)))
8769 int const1_sgn
= tree_int_cst_sgn (const1
);
8770 enum tree_code code2
= code
;
8772 /* Get the sign of the constant on the lhs if the
8773 operation were VARIABLE + CONST1. */
8774 if (TREE_CODE (arg0
) == MINUS_EXPR
)
8775 const1_sgn
= -const1_sgn
;
8777 /* The sign of the constant determines if we overflowed
8778 INT_MAX (const1_sgn == -1) or INT_MIN (const1_sgn == 1).
8779 Canonicalize to the INT_MIN overflow by swapping the comparison
8781 if (const1_sgn
== -1)
8782 code2
= swap_tree_comparison (code
);
8784 /* We now can look at the canonicalized case
8785 VARIABLE + 1 CODE2 INT_MIN
8786 and decide on the result. */
8793 omit_one_operand_loc (loc
, type
, boolean_false_node
, variable
);
8799 omit_one_operand_loc (loc
, type
, boolean_true_node
, variable
);
8808 fold_overflow_warning ("assuming signed overflow does not occur "
8809 "when changing X +- C1 cmp C2 to "
8811 WARN_STRICT_OVERFLOW_COMPARISON
);
8812 return fold_build2_loc (loc
, code
, type
, variable
, new_const
);
8816 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y. */
8817 if (TREE_CODE (arg0
) == MINUS_EXPR
8819 && integer_zerop (arg1
))
8821 /* ??? The transformation is valid for the other operators if overflow
8822 is undefined for the type, but performing it here badly interacts
8823 with the transformation in fold_cond_expr_with_comparison which
8824 attempts to synthetize ABS_EXPR. */
8826 fold_overflow_warning ("assuming signed overflow does not occur "
8827 "when changing X - Y cmp 0 to X cmp Y",
8828 WARN_STRICT_OVERFLOW_COMPARISON
);
8829 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0),
8830 TREE_OPERAND (arg0
, 1));
8833 /* For comparisons of pointers we can decompose it to a compile time
8834 comparison of the base objects and the offsets into the object.
8835 This requires at least one operand being an ADDR_EXPR or a
8836 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8837 if (POINTER_TYPE_P (TREE_TYPE (arg0
))
8838 && (TREE_CODE (arg0
) == ADDR_EXPR
8839 || TREE_CODE (arg1
) == ADDR_EXPR
8840 || TREE_CODE (arg0
) == POINTER_PLUS_EXPR
8841 || TREE_CODE (arg1
) == POINTER_PLUS_EXPR
))
8843 tree base0
, base1
, offset0
= NULL_TREE
, offset1
= NULL_TREE
;
8844 HOST_WIDE_INT bitsize
, bitpos0
= 0, bitpos1
= 0;
8846 int volatilep
, unsignedp
;
8847 bool indirect_base0
= false, indirect_base1
= false;
8849 /* Get base and offset for the access. Strip ADDR_EXPR for
8850 get_inner_reference, but put it back by stripping INDIRECT_REF
8851 off the base object if possible. indirect_baseN will be true
8852 if baseN is not an address but refers to the object itself. */
8854 if (TREE_CODE (arg0
) == ADDR_EXPR
)
8856 base0
= get_inner_reference (TREE_OPERAND (arg0
, 0),
8857 &bitsize
, &bitpos0
, &offset0
, &mode
,
8858 &unsignedp
, &volatilep
, false);
8859 if (TREE_CODE (base0
) == INDIRECT_REF
)
8860 base0
= TREE_OPERAND (base0
, 0);
8862 indirect_base0
= true;
8864 else if (TREE_CODE (arg0
) == POINTER_PLUS_EXPR
)
8866 base0
= TREE_OPERAND (arg0
, 0);
8867 STRIP_SIGN_NOPS (base0
);
8868 if (TREE_CODE (base0
) == ADDR_EXPR
)
8870 base0
= TREE_OPERAND (base0
, 0);
8871 indirect_base0
= true;
8873 offset0
= TREE_OPERAND (arg0
, 1);
8874 if (tree_fits_shwi_p (offset0
))
8876 HOST_WIDE_INT off
= size_low_cst (offset0
);
8877 if ((HOST_WIDE_INT
) (((unsigned HOST_WIDE_INT
) off
)
8879 / BITS_PER_UNIT
== (HOST_WIDE_INT
) off
)
8881 bitpos0
= off
* BITS_PER_UNIT
;
8882 offset0
= NULL_TREE
;
8888 if (TREE_CODE (arg1
) == ADDR_EXPR
)
8890 base1
= get_inner_reference (TREE_OPERAND (arg1
, 0),
8891 &bitsize
, &bitpos1
, &offset1
, &mode
,
8892 &unsignedp
, &volatilep
, false);
8893 if (TREE_CODE (base1
) == INDIRECT_REF
)
8894 base1
= TREE_OPERAND (base1
, 0);
8896 indirect_base1
= true;
8898 else if (TREE_CODE (arg1
) == POINTER_PLUS_EXPR
)
8900 base1
= TREE_OPERAND (arg1
, 0);
8901 STRIP_SIGN_NOPS (base1
);
8902 if (TREE_CODE (base1
) == ADDR_EXPR
)
8904 base1
= TREE_OPERAND (base1
, 0);
8905 indirect_base1
= true;
8907 offset1
= TREE_OPERAND (arg1
, 1);
8908 if (tree_fits_shwi_p (offset1
))
8910 HOST_WIDE_INT off
= size_low_cst (offset1
);
8911 if ((HOST_WIDE_INT
) (((unsigned HOST_WIDE_INT
) off
)
8913 / BITS_PER_UNIT
== (HOST_WIDE_INT
) off
)
8915 bitpos1
= off
* BITS_PER_UNIT
;
8916 offset1
= NULL_TREE
;
8921 /* A local variable can never be pointed to by
8922 the default SSA name of an incoming parameter. */
8923 if ((TREE_CODE (arg0
) == ADDR_EXPR
8925 && TREE_CODE (base0
) == VAR_DECL
8926 && auto_var_in_fn_p (base0
, current_function_decl
)
8928 && TREE_CODE (base1
) == SSA_NAME
8929 && SSA_NAME_IS_DEFAULT_DEF (base1
)
8930 && TREE_CODE (SSA_NAME_VAR (base1
)) == PARM_DECL
)
8931 || (TREE_CODE (arg1
) == ADDR_EXPR
8933 && TREE_CODE (base1
) == VAR_DECL
8934 && auto_var_in_fn_p (base1
, current_function_decl
)
8936 && TREE_CODE (base0
) == SSA_NAME
8937 && SSA_NAME_IS_DEFAULT_DEF (base0
)
8938 && TREE_CODE (SSA_NAME_VAR (base0
)) == PARM_DECL
))
8940 if (code
== NE_EXPR
)
8941 return constant_boolean_node (1, type
);
8942 else if (code
== EQ_EXPR
)
8943 return constant_boolean_node (0, type
);
8945 /* If we have equivalent bases we might be able to simplify. */
8946 else if (indirect_base0
== indirect_base1
8947 && operand_equal_p (base0
, base1
, 0))
8949 /* We can fold this expression to a constant if the non-constant
8950 offset parts are equal. */
8951 if ((offset0
== offset1
8952 || (offset0
&& offset1
8953 && operand_equal_p (offset0
, offset1
, 0)))
8956 || (indirect_base0
&& DECL_P (base0
))
8957 || POINTER_TYPE_OVERFLOW_UNDEFINED
))
8961 && bitpos0
!= bitpos1
8962 && (pointer_may_wrap_p (base0
, offset0
, bitpos0
)
8963 || pointer_may_wrap_p (base1
, offset1
, bitpos1
)))
8964 fold_overflow_warning (("assuming pointer wraparound does not "
8965 "occur when comparing P +- C1 with "
8967 WARN_STRICT_OVERFLOW_CONDITIONAL
);
8972 return constant_boolean_node (bitpos0
== bitpos1
, type
);
8974 return constant_boolean_node (bitpos0
!= bitpos1
, type
);
8976 return constant_boolean_node (bitpos0
< bitpos1
, type
);
8978 return constant_boolean_node (bitpos0
<= bitpos1
, type
);
8980 return constant_boolean_node (bitpos0
>= bitpos1
, type
);
8982 return constant_boolean_node (bitpos0
> bitpos1
, type
);
8986 /* We can simplify the comparison to a comparison of the variable
8987 offset parts if the constant offset parts are equal.
8988 Be careful to use signed sizetype here because otherwise we
8989 mess with array offsets in the wrong way. This is possible
8990 because pointer arithmetic is restricted to retain within an
8991 object and overflow on pointer differences is undefined as of
8992 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8993 else if (bitpos0
== bitpos1
8995 || (indirect_base0
&& DECL_P (base0
))
8996 || POINTER_TYPE_OVERFLOW_UNDEFINED
))
8998 /* By converting to signed sizetype we cover middle-end pointer
8999 arithmetic which operates on unsigned pointer types of size
9000 type size and ARRAY_REF offsets which are properly sign or
9001 zero extended from their type in case it is narrower than
9003 if (offset0
== NULL_TREE
)
9004 offset0
= build_int_cst (ssizetype
, 0);
9006 offset0
= fold_convert_loc (loc
, ssizetype
, offset0
);
9007 if (offset1
== NULL_TREE
)
9008 offset1
= build_int_cst (ssizetype
, 0);
9010 offset1
= fold_convert_loc (loc
, ssizetype
, offset1
);
9013 && (pointer_may_wrap_p (base0
, offset0
, bitpos0
)
9014 || pointer_may_wrap_p (base1
, offset1
, bitpos1
)))
9015 fold_overflow_warning (("assuming pointer wraparound does not "
9016 "occur when comparing P +- C1 with "
9018 WARN_STRICT_OVERFLOW_COMPARISON
);
9020 return fold_build2_loc (loc
, code
, type
, offset0
, offset1
);
9023 /* For non-equal bases we can simplify if they are addresses
9024 declarations with different addresses. */
9025 else if (indirect_base0
&& indirect_base1
9026 /* We know that !operand_equal_p (base0, base1, 0)
9027 because the if condition was false. But make
9028 sure two decls are not the same. */
9030 && TREE_CODE (arg0
) == ADDR_EXPR
9031 && TREE_CODE (arg1
) == ADDR_EXPR
9034 /* Watch for aliases. */
9035 && (!decl_in_symtab_p (base0
)
9036 || !decl_in_symtab_p (base1
)
9037 || !symtab_node::get_create (base0
)->equal_address_to
9038 (symtab_node::get_create (base1
))))
9040 if (code
== EQ_EXPR
)
9041 return omit_two_operands_loc (loc
, type
, boolean_false_node
,
9043 else if (code
== NE_EXPR
)
9044 return omit_two_operands_loc (loc
, type
, boolean_true_node
,
9047 /* For equal offsets we can simplify to a comparison of the
9049 else if (bitpos0
== bitpos1
9051 ? base0
!= TREE_OPERAND (arg0
, 0) : base0
!= arg0
)
9053 ? base1
!= TREE_OPERAND (arg1
, 0) : base1
!= arg1
)
9054 && ((offset0
== offset1
)
9055 || (offset0
&& offset1
9056 && operand_equal_p (offset0
, offset1
, 0))))
9059 base0
= build_fold_addr_expr_loc (loc
, base0
);
9061 base1
= build_fold_addr_expr_loc (loc
, base1
);
9062 return fold_build2_loc (loc
, code
, type
, base0
, base1
);
9066 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
9067 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
9068 the resulting offset is smaller in absolute value than the
9069 original one and has the same sign. */
9070 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
9071 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))
9072 && (TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
9073 && (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
9074 && !TREE_OVERFLOW (TREE_OPERAND (arg0
, 1)))
9075 && (TREE_CODE (arg1
) == PLUS_EXPR
|| TREE_CODE (arg1
) == MINUS_EXPR
)
9076 && (TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
9077 && !TREE_OVERFLOW (TREE_OPERAND (arg1
, 1))))
9079 tree const1
= TREE_OPERAND (arg0
, 1);
9080 tree const2
= TREE_OPERAND (arg1
, 1);
9081 tree variable1
= TREE_OPERAND (arg0
, 0);
9082 tree variable2
= TREE_OPERAND (arg1
, 0);
9084 const char * const warnmsg
= G_("assuming signed overflow does not "
9085 "occur when combining constants around "
9088 /* Put the constant on the side where it doesn't overflow and is
9089 of lower absolute value and of same sign than before. */
9090 cst
= int_const_binop (TREE_CODE (arg0
) == TREE_CODE (arg1
)
9091 ? MINUS_EXPR
: PLUS_EXPR
,
9093 if (!TREE_OVERFLOW (cst
)
9094 && tree_int_cst_compare (const2
, cst
) == tree_int_cst_sgn (const2
)
9095 && tree_int_cst_sgn (cst
) == tree_int_cst_sgn (const2
))
9097 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
9098 return fold_build2_loc (loc
, code
, type
,
9100 fold_build2_loc (loc
, TREE_CODE (arg1
),
9105 cst
= int_const_binop (TREE_CODE (arg0
) == TREE_CODE (arg1
)
9106 ? MINUS_EXPR
: PLUS_EXPR
,
9108 if (!TREE_OVERFLOW (cst
)
9109 && tree_int_cst_compare (const1
, cst
) == tree_int_cst_sgn (const1
)
9110 && tree_int_cst_sgn (cst
) == tree_int_cst_sgn (const1
))
9112 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
9113 return fold_build2_loc (loc
, code
, type
,
9114 fold_build2_loc (loc
, TREE_CODE (arg0
),
9121 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
9122 signed arithmetic case. That form is created by the compiler
9123 often enough for folding it to be of value. One example is in
9124 computing loop trip counts after Operator Strength Reduction. */
9125 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
9126 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))
9127 && TREE_CODE (arg0
) == MULT_EXPR
9128 && (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
9129 && !TREE_OVERFLOW (TREE_OPERAND (arg0
, 1)))
9130 && integer_zerop (arg1
))
9132 tree const1
= TREE_OPERAND (arg0
, 1);
9133 tree const2
= arg1
; /* zero */
9134 tree variable1
= TREE_OPERAND (arg0
, 0);
9135 enum tree_code cmp_code
= code
;
9137 /* Handle unfolded multiplication by zero. */
9138 if (integer_zerop (const1
))
9139 return fold_build2_loc (loc
, cmp_code
, type
, const1
, const2
);
9141 fold_overflow_warning (("assuming signed overflow does not occur when "
9142 "eliminating multiplication in comparison "
9144 WARN_STRICT_OVERFLOW_COMPARISON
);
9146 /* If const1 is negative we swap the sense of the comparison. */
9147 if (tree_int_cst_sgn (const1
) < 0)
9148 cmp_code
= swap_tree_comparison (cmp_code
);
9150 return fold_build2_loc (loc
, cmp_code
, type
, variable1
, const2
);
9153 tem
= maybe_canonicalize_comparison (loc
, code
, type
, arg0
, arg1
);
9157 if (FLOAT_TYPE_P (TREE_TYPE (arg0
)))
9159 tree targ0
= strip_float_extensions (arg0
);
9160 tree targ1
= strip_float_extensions (arg1
);
9161 tree newtype
= TREE_TYPE (targ0
);
9163 if (TYPE_PRECISION (TREE_TYPE (targ1
)) > TYPE_PRECISION (newtype
))
9164 newtype
= TREE_TYPE (targ1
);
9166 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
9167 if (TYPE_PRECISION (newtype
) < TYPE_PRECISION (TREE_TYPE (arg0
)))
9168 return fold_build2_loc (loc
, code
, type
,
9169 fold_convert_loc (loc
, newtype
, targ0
),
9170 fold_convert_loc (loc
, newtype
, targ1
));
9172 if (TREE_CODE (arg1
) == REAL_CST
)
9174 REAL_VALUE_TYPE cst
;
9175 cst
= TREE_REAL_CST (arg1
);
9177 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
9178 /* a CMP (-0) -> a CMP 0 */
9179 if (REAL_VALUE_MINUS_ZERO (cst
))
9180 return fold_build2_loc (loc
, code
, type
, arg0
,
9181 build_real (TREE_TYPE (arg1
), dconst0
));
9183 /* x != NaN is always true, other ops are always false. */
9184 if (REAL_VALUE_ISNAN (cst
)
9185 && ! HONOR_SNANS (arg1
))
9187 tem
= (code
== NE_EXPR
) ? integer_one_node
: integer_zero_node
;
9188 return omit_one_operand_loc (loc
, type
, tem
, arg0
);
9191 /* Fold comparisons against infinity. */
9192 if (REAL_VALUE_ISINF (cst
)
9193 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1
))))
9195 tem
= fold_inf_compare (loc
, code
, type
, arg0
, arg1
);
9196 if (tem
!= NULL_TREE
)
9201 /* If this is a comparison of a real constant with a PLUS_EXPR
9202 or a MINUS_EXPR of a real constant, we can convert it into a
9203 comparison with a revised real constant as long as no overflow
9204 occurs when unsafe_math_optimizations are enabled. */
9205 if (flag_unsafe_math_optimizations
9206 && TREE_CODE (arg1
) == REAL_CST
9207 && (TREE_CODE (arg0
) == PLUS_EXPR
9208 || TREE_CODE (arg0
) == MINUS_EXPR
)
9209 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == REAL_CST
9210 && 0 != (tem
= const_binop (TREE_CODE (arg0
) == PLUS_EXPR
9211 ? MINUS_EXPR
: PLUS_EXPR
,
9212 arg1
, TREE_OPERAND (arg0
, 1)))
9213 && !TREE_OVERFLOW (tem
))
9214 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0), tem
);
9216 /* Likewise, we can simplify a comparison of a real constant with
9217 a MINUS_EXPR whose first operand is also a real constant, i.e.
9218 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
9219 floating-point types only if -fassociative-math is set. */
9220 if (flag_associative_math
9221 && TREE_CODE (arg1
) == REAL_CST
9222 && TREE_CODE (arg0
) == MINUS_EXPR
9223 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == REAL_CST
9224 && 0 != (tem
= const_binop (MINUS_EXPR
, TREE_OPERAND (arg0
, 0),
9226 && !TREE_OVERFLOW (tem
))
9227 return fold_build2_loc (loc
, swap_tree_comparison (code
), type
,
9228 TREE_OPERAND (arg0
, 1), tem
);
9230 /* Fold comparisons against built-in math functions. */
9231 if (TREE_CODE (arg1
) == REAL_CST
9232 && flag_unsafe_math_optimizations
9233 && ! flag_errno_math
)
9235 enum built_in_function fcode
= builtin_mathfn_code (arg0
);
9237 if (fcode
!= END_BUILTINS
)
9239 tem
= fold_mathfn_compare (loc
, fcode
, code
, type
, arg0
, arg1
);
9240 if (tem
!= NULL_TREE
)
9246 if (TREE_CODE (TREE_TYPE (arg0
)) == INTEGER_TYPE
9247 && CONVERT_EXPR_P (arg0
))
9249 /* If we are widening one operand of an integer comparison,
9250 see if the other operand is similarly being widened. Perhaps we
9251 can do the comparison in the narrower type. */
9252 tem
= fold_widened_comparison (loc
, code
, type
, arg0
, arg1
);
9256 /* Or if we are changing signedness. */
9257 tem
= fold_sign_changed_comparison (loc
, code
, type
, arg0
, arg1
);
9262 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
9263 constant, we can simplify it. */
9264 if (TREE_CODE (arg1
) == INTEGER_CST
9265 && (TREE_CODE (arg0
) == MIN_EXPR
9266 || TREE_CODE (arg0
) == MAX_EXPR
)
9267 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
9269 tem
= optimize_minmax_comparison (loc
, code
, type
, op0
, op1
);
9274 /* Simplify comparison of something with itself. (For IEEE
9275 floating-point, we can only do some of these simplifications.) */
9276 if (operand_equal_p (arg0
, arg1
, 0))
9281 if (! FLOAT_TYPE_P (TREE_TYPE (arg0
))
9282 || ! HONOR_NANS (arg0
))
9283 return constant_boolean_node (1, type
);
9288 if (! FLOAT_TYPE_P (TREE_TYPE (arg0
))
9289 || ! HONOR_NANS (arg0
))
9290 return constant_boolean_node (1, type
);
9291 return fold_build2_loc (loc
, EQ_EXPR
, type
, arg0
, arg1
);
9294 /* For NE, we can only do this simplification if integer
9295 or we don't honor IEEE floating point NaNs. */
9296 if (FLOAT_TYPE_P (TREE_TYPE (arg0
))
9297 && HONOR_NANS (arg0
))
9299 /* ... fall through ... */
9302 return constant_boolean_node (0, type
);
9308 /* If we are comparing an expression that just has comparisons
9309 of two integer values, arithmetic expressions of those comparisons,
9310 and constants, we can simplify it. There are only three cases
9311 to check: the two values can either be equal, the first can be
9312 greater, or the second can be greater. Fold the expression for
9313 those three values. Since each value must be 0 or 1, we have
9314 eight possibilities, each of which corresponds to the constant 0
9315 or 1 or one of the six possible comparisons.
9317 This handles common cases like (a > b) == 0 but also handles
9318 expressions like ((x > y) - (y > x)) > 0, which supposedly
9319 occur in macroized code. */
9321 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) != INTEGER_CST
)
9323 tree cval1
= 0, cval2
= 0;
9326 if (twoval_comparison_p (arg0
, &cval1
, &cval2
, &save_p
)
9327 /* Don't handle degenerate cases here; they should already
9328 have been handled anyway. */
9329 && cval1
!= 0 && cval2
!= 0
9330 && ! (TREE_CONSTANT (cval1
) && TREE_CONSTANT (cval2
))
9331 && TREE_TYPE (cval1
) == TREE_TYPE (cval2
)
9332 && INTEGRAL_TYPE_P (TREE_TYPE (cval1
))
9333 && TYPE_MAX_VALUE (TREE_TYPE (cval1
))
9334 && TYPE_MAX_VALUE (TREE_TYPE (cval2
))
9335 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1
)),
9336 TYPE_MAX_VALUE (TREE_TYPE (cval2
)), 0))
9338 tree maxval
= TYPE_MAX_VALUE (TREE_TYPE (cval1
));
9339 tree minval
= TYPE_MIN_VALUE (TREE_TYPE (cval1
));
9341 /* We can't just pass T to eval_subst in case cval1 or cval2
9342 was the same as ARG1. */
9345 = fold_build2_loc (loc
, code
, type
,
9346 eval_subst (loc
, arg0
, cval1
, maxval
,
9350 = fold_build2_loc (loc
, code
, type
,
9351 eval_subst (loc
, arg0
, cval1
, maxval
,
9355 = fold_build2_loc (loc
, code
, type
,
9356 eval_subst (loc
, arg0
, cval1
, minval
,
9360 /* All three of these results should be 0 or 1. Confirm they are.
9361 Then use those values to select the proper code to use. */
9363 if (TREE_CODE (high_result
) == INTEGER_CST
9364 && TREE_CODE (equal_result
) == INTEGER_CST
9365 && TREE_CODE (low_result
) == INTEGER_CST
)
9367 /* Make a 3-bit mask with the high-order bit being the
9368 value for `>', the next for '=', and the low for '<'. */
9369 switch ((integer_onep (high_result
) * 4)
9370 + (integer_onep (equal_result
) * 2)
9371 + integer_onep (low_result
))
9375 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
9396 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
9401 tem
= save_expr (build2 (code
, type
, cval1
, cval2
));
9402 SET_EXPR_LOCATION (tem
, loc
);
9405 return fold_build2_loc (loc
, code
, type
, cval1
, cval2
);
9410 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
9411 into a single range test. */
9412 if ((TREE_CODE (arg0
) == TRUNC_DIV_EXPR
9413 || TREE_CODE (arg0
) == EXACT_DIV_EXPR
)
9414 && TREE_CODE (arg1
) == INTEGER_CST
9415 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
9416 && !integer_zerop (TREE_OPERAND (arg0
, 1))
9417 && !TREE_OVERFLOW (TREE_OPERAND (arg0
, 1))
9418 && !TREE_OVERFLOW (arg1
))
9420 tem
= fold_div_compare (loc
, code
, type
, arg0
, arg1
);
9421 if (tem
!= NULL_TREE
)
9425 /* Fold ~X op ~Y as Y op X. */
9426 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
9427 && TREE_CODE (arg1
) == BIT_NOT_EXPR
)
9429 tree cmp_type
= TREE_TYPE (TREE_OPERAND (arg0
, 0));
9430 return fold_build2_loc (loc
, code
, type
,
9431 fold_convert_loc (loc
, cmp_type
,
9432 TREE_OPERAND (arg1
, 0)),
9433 TREE_OPERAND (arg0
, 0));
9436 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
9437 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
9438 && (TREE_CODE (arg1
) == INTEGER_CST
|| TREE_CODE (arg1
) == VECTOR_CST
))
9440 tree cmp_type
= TREE_TYPE (TREE_OPERAND (arg0
, 0));
9441 return fold_build2_loc (loc
, swap_tree_comparison (code
), type
,
9442 TREE_OPERAND (arg0
, 0),
9443 fold_build1_loc (loc
, BIT_NOT_EXPR
, cmp_type
,
9444 fold_convert_loc (loc
, cmp_type
, arg1
)));
9451 /* Subroutine of fold_binary. Optimize complex multiplications of the
9452 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
9453 argument EXPR represents the expression "z" of type TYPE. */
9456 fold_mult_zconjz (location_t loc
, tree type
, tree expr
)
9458 tree itype
= TREE_TYPE (type
);
9459 tree rpart
, ipart
, tem
;
9461 if (TREE_CODE (expr
) == COMPLEX_EXPR
)
9463 rpart
= TREE_OPERAND (expr
, 0);
9464 ipart
= TREE_OPERAND (expr
, 1);
9466 else if (TREE_CODE (expr
) == COMPLEX_CST
)
9468 rpart
= TREE_REALPART (expr
);
9469 ipart
= TREE_IMAGPART (expr
);
9473 expr
= save_expr (expr
);
9474 rpart
= fold_build1_loc (loc
, REALPART_EXPR
, itype
, expr
);
9475 ipart
= fold_build1_loc (loc
, IMAGPART_EXPR
, itype
, expr
);
9478 rpart
= save_expr (rpart
);
9479 ipart
= save_expr (ipart
);
9480 tem
= fold_build2_loc (loc
, PLUS_EXPR
, itype
,
9481 fold_build2_loc (loc
, MULT_EXPR
, itype
, rpart
, rpart
),
9482 fold_build2_loc (loc
, MULT_EXPR
, itype
, ipart
, ipart
));
9483 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, tem
,
9484 build_zero_cst (itype
));
9488 /* Subroutine of fold_binary. If P is the value of EXPR, computes
9489 power-of-two M and (arbitrary) N such that M divides (P-N). This condition
9490 guarantees that P and N have the same least significant log2(M) bits.
9491 N is not otherwise constrained. In particular, N is not normalized to
9492 0 <= N < M as is common. In general, the precise value of P is unknown.
9493 M is chosen as large as possible such that constant N can be determined.
9495 Returns M and sets *RESIDUE to N.
9497 If ALLOW_FUNC_ALIGN is true, do take functions' DECL_ALIGN_UNIT into
9498 account. This is not always possible due to PR 35705.
9501 static unsigned HOST_WIDE_INT
9502 get_pointer_modulus_and_residue (tree expr
, unsigned HOST_WIDE_INT
*residue
,
9503 bool allow_func_align
)
9505 enum tree_code code
;
9509 code
= TREE_CODE (expr
);
9510 if (code
== ADDR_EXPR
)
9512 unsigned int bitalign
;
9513 get_object_alignment_1 (TREE_OPERAND (expr
, 0), &bitalign
, residue
);
9514 *residue
/= BITS_PER_UNIT
;
9515 return bitalign
/ BITS_PER_UNIT
;
9517 else if (code
== POINTER_PLUS_EXPR
)
9520 unsigned HOST_WIDE_INT modulus
;
9521 enum tree_code inner_code
;
9523 op0
= TREE_OPERAND (expr
, 0);
9525 modulus
= get_pointer_modulus_and_residue (op0
, residue
,
9528 op1
= TREE_OPERAND (expr
, 1);
9530 inner_code
= TREE_CODE (op1
);
9531 if (inner_code
== INTEGER_CST
)
9533 *residue
+= TREE_INT_CST_LOW (op1
);
9536 else if (inner_code
== MULT_EXPR
)
9538 op1
= TREE_OPERAND (op1
, 1);
9539 if (TREE_CODE (op1
) == INTEGER_CST
)
9541 unsigned HOST_WIDE_INT align
;
9543 /* Compute the greatest power-of-2 divisor of op1. */
9544 align
= TREE_INT_CST_LOW (op1
);
9547 /* If align is non-zero and less than *modulus, replace
9548 *modulus with align., If align is 0, then either op1 is 0
9549 or the greatest power-of-2 divisor of op1 doesn't fit in an
9550 unsigned HOST_WIDE_INT. In either case, no additional
9551 constraint is imposed. */
9553 modulus
= MIN (modulus
, align
);
9560 /* If we get here, we were unable to determine anything useful about the
9565 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
9566 CONSTRUCTOR ARG into array ELTS and return true if successful. */
9569 vec_cst_ctor_to_array (tree arg
, tree
*elts
)
9571 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg
)), i
;
9573 if (TREE_CODE (arg
) == VECTOR_CST
)
9575 for (i
= 0; i
< VECTOR_CST_NELTS (arg
); ++i
)
9576 elts
[i
] = VECTOR_CST_ELT (arg
, i
);
9578 else if (TREE_CODE (arg
) == CONSTRUCTOR
)
9580 constructor_elt
*elt
;
9582 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg
), i
, elt
)
9583 if (i
>= nelts
|| TREE_CODE (TREE_TYPE (elt
->value
)) == VECTOR_TYPE
)
9586 elts
[i
] = elt
->value
;
9590 for (; i
< nelts
; i
++)
9592 = fold_convert (TREE_TYPE (TREE_TYPE (arg
)), integer_zero_node
);
9596 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
9597 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
9598 NULL_TREE otherwise. */
9601 fold_vec_perm (tree type
, tree arg0
, tree arg1
, const unsigned char *sel
)
9603 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (type
), i
;
9605 bool need_ctor
= false;
9607 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)) == nelts
9608 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)) == nelts
);
9609 if (TREE_TYPE (TREE_TYPE (arg0
)) != TREE_TYPE (type
)
9610 || TREE_TYPE (TREE_TYPE (arg1
)) != TREE_TYPE (type
))
9613 elts
= XALLOCAVEC (tree
, nelts
* 3);
9614 if (!vec_cst_ctor_to_array (arg0
, elts
)
9615 || !vec_cst_ctor_to_array (arg1
, elts
+ nelts
))
9618 for (i
= 0; i
< nelts
; i
++)
9620 if (!CONSTANT_CLASS_P (elts
[sel
[i
]]))
9622 elts
[i
+ 2 * nelts
] = unshare_expr (elts
[sel
[i
]]);
9627 vec
<constructor_elt
, va_gc
> *v
;
9628 vec_alloc (v
, nelts
);
9629 for (i
= 0; i
< nelts
; i
++)
9630 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, elts
[2 * nelts
+ i
]);
9631 return build_constructor (type
, v
);
9634 return build_vector (type
, &elts
[2 * nelts
]);
9637 /* Try to fold a pointer difference of type TYPE two address expressions of
9638 array references AREF0 and AREF1 using location LOC. Return a
9639 simplified expression for the difference or NULL_TREE. */
9642 fold_addr_of_array_ref_difference (location_t loc
, tree type
,
9643 tree aref0
, tree aref1
)
9645 tree base0
= TREE_OPERAND (aref0
, 0);
9646 tree base1
= TREE_OPERAND (aref1
, 0);
9647 tree base_offset
= build_int_cst (type
, 0);
9649 /* If the bases are array references as well, recurse. If the bases
9650 are pointer indirections compute the difference of the pointers.
9651 If the bases are equal, we are set. */
9652 if ((TREE_CODE (base0
) == ARRAY_REF
9653 && TREE_CODE (base1
) == ARRAY_REF
9655 = fold_addr_of_array_ref_difference (loc
, type
, base0
, base1
)))
9656 || (INDIRECT_REF_P (base0
)
9657 && INDIRECT_REF_P (base1
)
9658 && (base_offset
= fold_binary_loc (loc
, MINUS_EXPR
, type
,
9659 TREE_OPERAND (base0
, 0),
9660 TREE_OPERAND (base1
, 0))))
9661 || operand_equal_p (base0
, base1
, 0))
9663 tree op0
= fold_convert_loc (loc
, type
, TREE_OPERAND (aref0
, 1));
9664 tree op1
= fold_convert_loc (loc
, type
, TREE_OPERAND (aref1
, 1));
9665 tree esz
= fold_convert_loc (loc
, type
, array_ref_element_size (aref0
));
9666 tree diff
= build2 (MINUS_EXPR
, type
, op0
, op1
);
9667 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
9669 fold_build2_loc (loc
, MULT_EXPR
, type
,
9675 /* If the real or vector real constant CST of type TYPE has an exact
9676 inverse, return it, else return NULL. */
9679 exact_inverse (tree type
, tree cst
)
9682 tree unit_type
, *elts
;
9684 unsigned vec_nelts
, i
;
9686 switch (TREE_CODE (cst
))
9689 r
= TREE_REAL_CST (cst
);
9691 if (exact_real_inverse (TYPE_MODE (type
), &r
))
9692 return build_real (type
, r
);
9697 vec_nelts
= VECTOR_CST_NELTS (cst
);
9698 elts
= XALLOCAVEC (tree
, vec_nelts
);
9699 unit_type
= TREE_TYPE (type
);
9700 mode
= TYPE_MODE (unit_type
);
9702 for (i
= 0; i
< vec_nelts
; i
++)
9704 r
= TREE_REAL_CST (VECTOR_CST_ELT (cst
, i
));
9705 if (!exact_real_inverse (mode
, &r
))
9707 elts
[i
] = build_real (unit_type
, r
);
9710 return build_vector (type
, elts
);
9717 /* Mask out the tz least significant bits of X of type TYPE where
9718 tz is the number of trailing zeroes in Y. */
9720 mask_with_tz (tree type
, const wide_int
&x
, const wide_int
&y
)
9722 int tz
= wi::ctz (y
);
9724 return wi::mask (tz
, true, TYPE_PRECISION (type
)) & x
;
9728 /* Return true when T is an address and is known to be nonzero.
9729 For floating point we further ensure that T is not denormal.
9730 Similar logic is present in nonzero_address in rtlanal.h.
9732 If the return value is based on the assumption that signed overflow
9733 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
9734 change *STRICT_OVERFLOW_P. */
9737 tree_expr_nonzero_warnv_p (tree t
, bool *strict_overflow_p
)
9739 tree type
= TREE_TYPE (t
);
9740 enum tree_code code
;
9742 /* Doing something useful for floating point would need more work. */
9743 if (!INTEGRAL_TYPE_P (type
) && !POINTER_TYPE_P (type
))
9746 code
= TREE_CODE (t
);
9747 switch (TREE_CODE_CLASS (code
))
9750 return tree_unary_nonzero_warnv_p (code
, type
, TREE_OPERAND (t
, 0),
9753 case tcc_comparison
:
9754 return tree_binary_nonzero_warnv_p (code
, type
,
9755 TREE_OPERAND (t
, 0),
9756 TREE_OPERAND (t
, 1),
9759 case tcc_declaration
:
9761 return tree_single_nonzero_warnv_p (t
, strict_overflow_p
);
9769 case TRUTH_NOT_EXPR
:
9770 return tree_unary_nonzero_warnv_p (code
, type
, TREE_OPERAND (t
, 0),
9773 case TRUTH_AND_EXPR
:
9775 case TRUTH_XOR_EXPR
:
9776 return tree_binary_nonzero_warnv_p (code
, type
,
9777 TREE_OPERAND (t
, 0),
9778 TREE_OPERAND (t
, 1),
9786 case WITH_SIZE_EXPR
:
9788 return tree_single_nonzero_warnv_p (t
, strict_overflow_p
);
9793 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
9797 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 0),
9802 tree fndecl
= get_callee_fndecl (t
);
9803 if (!fndecl
) return false;
9804 if (flag_delete_null_pointer_checks
&& !flag_check_new
9805 && DECL_IS_OPERATOR_NEW (fndecl
)
9806 && !TREE_NOTHROW (fndecl
))
9808 if (flag_delete_null_pointer_checks
9809 && lookup_attribute ("returns_nonnull",
9810 TYPE_ATTRIBUTES (TREE_TYPE (fndecl
))))
9812 return alloca_call_p (t
);
9821 /* Return true when T is an address and is known to be nonzero.
9822 Handle warnings about undefined signed overflow. */
9825 tree_expr_nonzero_p (tree t
)
9827 bool ret
, strict_overflow_p
;
9829 strict_overflow_p
= false;
9830 ret
= tree_expr_nonzero_warnv_p (t
, &strict_overflow_p
);
9831 if (strict_overflow_p
)
9832 fold_overflow_warning (("assuming signed overflow does not occur when "
9833 "determining that expression is always "
9835 WARN_STRICT_OVERFLOW_MISC
);
9839 /* Fold a binary expression of code CODE and type TYPE with operands
9840 OP0 and OP1. LOC is the location of the resulting expression.
9841 Return the folded expression if folding is successful. Otherwise,
9842 return NULL_TREE. */
9845 fold_binary_loc (location_t loc
,
9846 enum tree_code code
, tree type
, tree op0
, tree op1
)
9848 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
9849 tree arg0
, arg1
, tem
;
9850 tree t1
= NULL_TREE
;
9851 bool strict_overflow_p
;
9854 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
9855 && TREE_CODE_LENGTH (code
) == 2
9857 && op1
!= NULL_TREE
);
9862 /* Strip any conversions that don't change the mode. This is
9863 safe for every expression, except for a comparison expression
9864 because its signedness is derived from its operands. So, in
9865 the latter case, only strip conversions that don't change the
9866 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9869 Note that this is done as an internal manipulation within the
9870 constant folder, in order to find the simplest representation
9871 of the arguments so that their form can be studied. In any
9872 cases, the appropriate type conversions should be put back in
9873 the tree that will get out of the constant folder. */
9875 if (kind
== tcc_comparison
|| code
== MIN_EXPR
|| code
== MAX_EXPR
)
9877 STRIP_SIGN_NOPS (arg0
);
9878 STRIP_SIGN_NOPS (arg1
);
9886 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9887 constant but we can't do arithmetic on them. */
9888 if (CONSTANT_CLASS_P (arg0
) && CONSTANT_CLASS_P (arg1
))
9890 tem
= const_binop (code
, type
, arg0
, arg1
);
9891 if (tem
!= NULL_TREE
)
9893 if (TREE_TYPE (tem
) != type
)
9894 tem
= fold_convert_loc (loc
, type
, tem
);
9899 /* If this is a commutative operation, and ARG0 is a constant, move it
9900 to ARG1 to reduce the number of tests below. */
9901 if (commutative_tree_code (code
)
9902 && tree_swap_operands_p (arg0
, arg1
, true))
9903 return fold_build2_loc (loc
, code
, type
, op1
, op0
);
9905 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9906 to ARG1 to reduce the number of tests below. */
9907 if (kind
== tcc_comparison
9908 && tree_swap_operands_p (arg0
, arg1
, true))
9909 return fold_build2_loc (loc
, swap_tree_comparison (code
), type
, op1
, op0
);
9911 tem
= generic_simplify (loc
, code
, type
, op0
, op1
);
9915 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9917 First check for cases where an arithmetic operation is applied to a
9918 compound, conditional, or comparison operation. Push the arithmetic
9919 operation inside the compound or conditional to see if any folding
9920 can then be done. Convert comparison to conditional for this purpose.
9921 The also optimizes non-constant cases that used to be done in
9924 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9925 one of the operands is a comparison and the other is a comparison, a
9926 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9927 code below would make the expression more complex. Change it to a
9928 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9929 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9931 if ((code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
9932 || code
== EQ_EXPR
|| code
== NE_EXPR
)
9933 && TREE_CODE (type
) != VECTOR_TYPE
9934 && ((truth_value_p (TREE_CODE (arg0
))
9935 && (truth_value_p (TREE_CODE (arg1
))
9936 || (TREE_CODE (arg1
) == BIT_AND_EXPR
9937 && integer_onep (TREE_OPERAND (arg1
, 1)))))
9938 || (truth_value_p (TREE_CODE (arg1
))
9939 && (truth_value_p (TREE_CODE (arg0
))
9940 || (TREE_CODE (arg0
) == BIT_AND_EXPR
9941 && integer_onep (TREE_OPERAND (arg0
, 1)))))))
9943 tem
= fold_build2_loc (loc
, code
== BIT_AND_EXPR
? TRUTH_AND_EXPR
9944 : code
== BIT_IOR_EXPR
? TRUTH_OR_EXPR
9947 fold_convert_loc (loc
, boolean_type_node
, arg0
),
9948 fold_convert_loc (loc
, boolean_type_node
, arg1
));
9950 if (code
== EQ_EXPR
)
9951 tem
= invert_truthvalue_loc (loc
, tem
);
9953 return fold_convert_loc (loc
, type
, tem
);
9956 if (TREE_CODE_CLASS (code
) == tcc_binary
9957 || TREE_CODE_CLASS (code
) == tcc_comparison
)
9959 if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
9961 tem
= fold_build2_loc (loc
, code
, type
,
9962 fold_convert_loc (loc
, TREE_TYPE (op0
),
9963 TREE_OPERAND (arg0
, 1)), op1
);
9964 return build2_loc (loc
, COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
9967 if (TREE_CODE (arg1
) == COMPOUND_EXPR
9968 && reorder_operands_p (arg0
, TREE_OPERAND (arg1
, 0)))
9970 tem
= fold_build2_loc (loc
, code
, type
, op0
,
9971 fold_convert_loc (loc
, TREE_TYPE (op1
),
9972 TREE_OPERAND (arg1
, 1)));
9973 return build2_loc (loc
, COMPOUND_EXPR
, type
, TREE_OPERAND (arg1
, 0),
9977 if (TREE_CODE (arg0
) == COND_EXPR
9978 || TREE_CODE (arg0
) == VEC_COND_EXPR
9979 || COMPARISON_CLASS_P (arg0
))
9981 tem
= fold_binary_op_with_conditional_arg (loc
, code
, type
, op0
, op1
,
9983 /*cond_first_p=*/1);
9984 if (tem
!= NULL_TREE
)
9988 if (TREE_CODE (arg1
) == COND_EXPR
9989 || TREE_CODE (arg1
) == VEC_COND_EXPR
9990 || COMPARISON_CLASS_P (arg1
))
9992 tem
= fold_binary_op_with_conditional_arg (loc
, code
, type
, op0
, op1
,
9994 /*cond_first_p=*/0);
9995 if (tem
!= NULL_TREE
)
10003 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
10004 if (TREE_CODE (arg0
) == ADDR_EXPR
10005 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == MEM_REF
)
10007 tree iref
= TREE_OPERAND (arg0
, 0);
10008 return fold_build2 (MEM_REF
, type
,
10009 TREE_OPERAND (iref
, 0),
10010 int_const_binop (PLUS_EXPR
, arg1
,
10011 TREE_OPERAND (iref
, 1)));
10014 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
10015 if (TREE_CODE (arg0
) == ADDR_EXPR
10016 && handled_component_p (TREE_OPERAND (arg0
, 0)))
10019 HOST_WIDE_INT coffset
;
10020 base
= get_addr_base_and_unit_offset (TREE_OPERAND (arg0
, 0),
10024 return fold_build2 (MEM_REF
, type
,
10025 build_fold_addr_expr (base
),
10026 int_const_binop (PLUS_EXPR
, arg1
,
10027 size_int (coffset
)));
10032 case POINTER_PLUS_EXPR
:
10033 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
10034 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
10035 && INTEGRAL_TYPE_P (TREE_TYPE (arg0
)))
10036 return fold_convert_loc (loc
, type
,
10037 fold_build2_loc (loc
, PLUS_EXPR
, sizetype
,
10038 fold_convert_loc (loc
, sizetype
,
10040 fold_convert_loc (loc
, sizetype
,
10046 if (INTEGRAL_TYPE_P (type
) || VECTOR_INTEGER_TYPE_P (type
))
10048 /* X + (X / CST) * -CST is X % CST. */
10049 if (TREE_CODE (arg1
) == MULT_EXPR
10050 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == TRUNC_DIV_EXPR
10051 && operand_equal_p (arg0
,
10052 TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0), 0))
10054 tree cst0
= TREE_OPERAND (TREE_OPERAND (arg1
, 0), 1);
10055 tree cst1
= TREE_OPERAND (arg1
, 1);
10056 tree sum
= fold_binary_loc (loc
, PLUS_EXPR
, TREE_TYPE (cst1
),
10058 if (sum
&& integer_zerop (sum
))
10059 return fold_convert_loc (loc
, type
,
10060 fold_build2_loc (loc
, TRUNC_MOD_EXPR
,
10061 TREE_TYPE (arg0
), arg0
,
10066 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
10067 one. Make sure the type is not saturating and has the signedness of
10068 the stripped operands, as fold_plusminus_mult_expr will re-associate.
10069 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
10070 if ((TREE_CODE (arg0
) == MULT_EXPR
10071 || TREE_CODE (arg1
) == MULT_EXPR
)
10072 && !TYPE_SATURATING (type
)
10073 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg0
))
10074 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg1
))
10075 && (!FLOAT_TYPE_P (type
) || flag_associative_math
))
10077 tree tem
= fold_plusminus_mult_expr (loc
, code
, type
, arg0
, arg1
);
10082 if (! FLOAT_TYPE_P (type
))
10084 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
10085 with a constant, and the two constants have no bits in common,
10086 we should treat this as a BIT_IOR_EXPR since this may produce more
10087 simplifications. */
10088 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10089 && TREE_CODE (arg1
) == BIT_AND_EXPR
10090 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
10091 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
10092 && wi::bit_and (TREE_OPERAND (arg0
, 1),
10093 TREE_OPERAND (arg1
, 1)) == 0)
10095 code
= BIT_IOR_EXPR
;
10099 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
10100 (plus (plus (mult) (mult)) (foo)) so that we can
10101 take advantage of the factoring cases below. */
10102 if (ANY_INTEGRAL_TYPE_P (type
)
10103 && TYPE_OVERFLOW_WRAPS (type
)
10104 && (((TREE_CODE (arg0
) == PLUS_EXPR
10105 || TREE_CODE (arg0
) == MINUS_EXPR
)
10106 && TREE_CODE (arg1
) == MULT_EXPR
)
10107 || ((TREE_CODE (arg1
) == PLUS_EXPR
10108 || TREE_CODE (arg1
) == MINUS_EXPR
)
10109 && TREE_CODE (arg0
) == MULT_EXPR
)))
10111 tree parg0
, parg1
, parg
, marg
;
10112 enum tree_code pcode
;
10114 if (TREE_CODE (arg1
) == MULT_EXPR
)
10115 parg
= arg0
, marg
= arg1
;
10117 parg
= arg1
, marg
= arg0
;
10118 pcode
= TREE_CODE (parg
);
10119 parg0
= TREE_OPERAND (parg
, 0);
10120 parg1
= TREE_OPERAND (parg
, 1);
10121 STRIP_NOPS (parg0
);
10122 STRIP_NOPS (parg1
);
10124 if (TREE_CODE (parg0
) == MULT_EXPR
10125 && TREE_CODE (parg1
) != MULT_EXPR
)
10126 return fold_build2_loc (loc
, pcode
, type
,
10127 fold_build2_loc (loc
, PLUS_EXPR
, type
,
10128 fold_convert_loc (loc
, type
,
10130 fold_convert_loc (loc
, type
,
10132 fold_convert_loc (loc
, type
, parg1
));
10133 if (TREE_CODE (parg0
) != MULT_EXPR
10134 && TREE_CODE (parg1
) == MULT_EXPR
)
10136 fold_build2_loc (loc
, PLUS_EXPR
, type
,
10137 fold_convert_loc (loc
, type
, parg0
),
10138 fold_build2_loc (loc
, pcode
, type
,
10139 fold_convert_loc (loc
, type
, marg
),
10140 fold_convert_loc (loc
, type
,
10146 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
10147 to __complex__ ( x, y ). This is not the same for SNaNs or
10148 if signed zeros are involved. */
10149 if (!HONOR_SNANS (element_mode (arg0
))
10150 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
10151 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
)))
10153 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
10154 tree arg0r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg0
);
10155 tree arg0i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
);
10156 bool arg0rz
= false, arg0iz
= false;
10157 if ((arg0r
&& (arg0rz
= real_zerop (arg0r
)))
10158 || (arg0i
&& (arg0iz
= real_zerop (arg0i
))))
10160 tree arg1r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg1
);
10161 tree arg1i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg1
);
10162 if (arg0rz
&& arg1i
&& real_zerop (arg1i
))
10164 tree rp
= arg1r
? arg1r
10165 : build1 (REALPART_EXPR
, rtype
, arg1
);
10166 tree ip
= arg0i
? arg0i
10167 : build1 (IMAGPART_EXPR
, rtype
, arg0
);
10168 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
10170 else if (arg0iz
&& arg1r
&& real_zerop (arg1r
))
10172 tree rp
= arg0r
? arg0r
10173 : build1 (REALPART_EXPR
, rtype
, arg0
);
10174 tree ip
= arg1i
? arg1i
10175 : build1 (IMAGPART_EXPR
, rtype
, arg1
);
10176 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
10181 if (flag_unsafe_math_optimizations
10182 && (TREE_CODE (arg0
) == RDIV_EXPR
|| TREE_CODE (arg0
) == MULT_EXPR
)
10183 && (TREE_CODE (arg1
) == RDIV_EXPR
|| TREE_CODE (arg1
) == MULT_EXPR
)
10184 && (tem
= distribute_real_division (loc
, code
, type
, arg0
, arg1
)))
10187 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
10188 We associate floats only if the user has specified
10189 -fassociative-math. */
10190 if (flag_associative_math
10191 && TREE_CODE (arg1
) == PLUS_EXPR
10192 && TREE_CODE (arg0
) != MULT_EXPR
)
10194 tree tree10
= TREE_OPERAND (arg1
, 0);
10195 tree tree11
= TREE_OPERAND (arg1
, 1);
10196 if (TREE_CODE (tree11
) == MULT_EXPR
10197 && TREE_CODE (tree10
) == MULT_EXPR
)
10200 tree0
= fold_build2_loc (loc
, PLUS_EXPR
, type
, arg0
, tree10
);
10201 return fold_build2_loc (loc
, PLUS_EXPR
, type
, tree0
, tree11
);
10204 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
10205 We associate floats only if the user has specified
10206 -fassociative-math. */
10207 if (flag_associative_math
10208 && TREE_CODE (arg0
) == PLUS_EXPR
10209 && TREE_CODE (arg1
) != MULT_EXPR
)
10211 tree tree00
= TREE_OPERAND (arg0
, 0);
10212 tree tree01
= TREE_OPERAND (arg0
, 1);
10213 if (TREE_CODE (tree01
) == MULT_EXPR
10214 && TREE_CODE (tree00
) == MULT_EXPR
)
10217 tree0
= fold_build2_loc (loc
, PLUS_EXPR
, type
, tree01
, arg1
);
10218 return fold_build2_loc (loc
, PLUS_EXPR
, type
, tree00
, tree0
);
10224 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
10225 is a rotate of A by C1 bits. */
10226 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
10227 is a rotate of A by B bits. */
10229 enum tree_code code0
, code1
;
10231 code0
= TREE_CODE (arg0
);
10232 code1
= TREE_CODE (arg1
);
10233 if (((code0
== RSHIFT_EXPR
&& code1
== LSHIFT_EXPR
)
10234 || (code1
== RSHIFT_EXPR
&& code0
== LSHIFT_EXPR
))
10235 && operand_equal_p (TREE_OPERAND (arg0
, 0),
10236 TREE_OPERAND (arg1
, 0), 0)
10237 && (rtype
= TREE_TYPE (TREE_OPERAND (arg0
, 0)),
10238 TYPE_UNSIGNED (rtype
))
10239 /* Only create rotates in complete modes. Other cases are not
10240 expanded properly. */
10241 && (element_precision (rtype
)
10242 == element_precision (TYPE_MODE (rtype
))))
10244 tree tree01
, tree11
;
10245 enum tree_code code01
, code11
;
10247 tree01
= TREE_OPERAND (arg0
, 1);
10248 tree11
= TREE_OPERAND (arg1
, 1);
10249 STRIP_NOPS (tree01
);
10250 STRIP_NOPS (tree11
);
10251 code01
= TREE_CODE (tree01
);
10252 code11
= TREE_CODE (tree11
);
10253 if (code01
== INTEGER_CST
10254 && code11
== INTEGER_CST
10255 && (wi::to_widest (tree01
) + wi::to_widest (tree11
)
10256 == element_precision (TREE_TYPE (TREE_OPERAND (arg0
, 0)))))
10258 tem
= build2_loc (loc
, LROTATE_EXPR
,
10259 TREE_TYPE (TREE_OPERAND (arg0
, 0)),
10260 TREE_OPERAND (arg0
, 0),
10261 code0
== LSHIFT_EXPR
10262 ? TREE_OPERAND (arg0
, 1)
10263 : TREE_OPERAND (arg1
, 1));
10264 return fold_convert_loc (loc
, type
, tem
);
10266 else if (code11
== MINUS_EXPR
)
10268 tree tree110
, tree111
;
10269 tree110
= TREE_OPERAND (tree11
, 0);
10270 tree111
= TREE_OPERAND (tree11
, 1);
10271 STRIP_NOPS (tree110
);
10272 STRIP_NOPS (tree111
);
10273 if (TREE_CODE (tree110
) == INTEGER_CST
10274 && 0 == compare_tree_int (tree110
,
10276 (TREE_TYPE (TREE_OPERAND
10278 && operand_equal_p (tree01
, tree111
, 0))
10280 fold_convert_loc (loc
, type
,
10281 build2 ((code0
== LSHIFT_EXPR
10284 TREE_TYPE (TREE_OPERAND (arg0
, 0)),
10285 TREE_OPERAND (arg0
, 0),
10286 TREE_OPERAND (arg0
, 1)));
10288 else if (code01
== MINUS_EXPR
)
10290 tree tree010
, tree011
;
10291 tree010
= TREE_OPERAND (tree01
, 0);
10292 tree011
= TREE_OPERAND (tree01
, 1);
10293 STRIP_NOPS (tree010
);
10294 STRIP_NOPS (tree011
);
10295 if (TREE_CODE (tree010
) == INTEGER_CST
10296 && 0 == compare_tree_int (tree010
,
10298 (TREE_TYPE (TREE_OPERAND
10300 && operand_equal_p (tree11
, tree011
, 0))
10301 return fold_convert_loc
10303 build2 ((code0
!= LSHIFT_EXPR
10306 TREE_TYPE (TREE_OPERAND (arg0
, 0)),
10307 TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 1)));
10313 /* In most languages, can't associate operations on floats through
10314 parentheses. Rather than remember where the parentheses were, we
10315 don't associate floats at all, unless the user has specified
10316 -fassociative-math.
10317 And, we need to make sure type is not saturating. */
10319 if ((! FLOAT_TYPE_P (type
) || flag_associative_math
)
10320 && !TYPE_SATURATING (type
))
10322 tree var0
, con0
, lit0
, minus_lit0
;
10323 tree var1
, con1
, lit1
, minus_lit1
;
10327 /* Split both trees into variables, constants, and literals. Then
10328 associate each group together, the constants with literals,
10329 then the result with variables. This increases the chances of
10330 literals being recombined later and of generating relocatable
10331 expressions for the sum of a constant and literal. */
10332 var0
= split_tree (arg0
, code
, &con0
, &lit0
, &minus_lit0
, 0);
10333 var1
= split_tree (arg1
, code
, &con1
, &lit1
, &minus_lit1
,
10334 code
== MINUS_EXPR
);
10336 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
10337 if (code
== MINUS_EXPR
)
10340 /* With undefined overflow prefer doing association in a type
10341 which wraps on overflow, if that is one of the operand types. */
10342 if ((POINTER_TYPE_P (type
) && POINTER_TYPE_OVERFLOW_UNDEFINED
)
10343 || (INTEGRAL_TYPE_P (type
) && !TYPE_OVERFLOW_WRAPS (type
)))
10345 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
10346 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
)))
10347 atype
= TREE_TYPE (arg0
);
10348 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
10349 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1
)))
10350 atype
= TREE_TYPE (arg1
);
10351 gcc_assert (TYPE_PRECISION (atype
) == TYPE_PRECISION (type
));
10354 /* With undefined overflow we can only associate constants with one
10355 variable, and constants whose association doesn't overflow. */
10356 if ((POINTER_TYPE_P (atype
) && POINTER_TYPE_OVERFLOW_UNDEFINED
)
10357 || (INTEGRAL_TYPE_P (atype
) && !TYPE_OVERFLOW_WRAPS (atype
)))
10364 if (TREE_CODE (tmp0
) == NEGATE_EXPR
)
10365 tmp0
= TREE_OPERAND (tmp0
, 0);
10366 if (CONVERT_EXPR_P (tmp0
)
10367 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0
, 0)))
10368 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0
, 0)))
10369 <= TYPE_PRECISION (atype
)))
10370 tmp0
= TREE_OPERAND (tmp0
, 0);
10371 if (TREE_CODE (tmp1
) == NEGATE_EXPR
)
10372 tmp1
= TREE_OPERAND (tmp1
, 0);
10373 if (CONVERT_EXPR_P (tmp1
)
10374 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1
, 0)))
10375 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1
, 0)))
10376 <= TYPE_PRECISION (atype
)))
10377 tmp1
= TREE_OPERAND (tmp1
, 0);
10378 /* The only case we can still associate with two variables
10379 is if they are the same, modulo negation and bit-pattern
10380 preserving conversions. */
10381 if (!operand_equal_p (tmp0
, tmp1
, 0))
10386 /* Only do something if we found more than two objects. Otherwise,
10387 nothing has changed and we risk infinite recursion. */
10389 && (2 < ((var0
!= 0) + (var1
!= 0)
10390 + (con0
!= 0) + (con1
!= 0)
10391 + (lit0
!= 0) + (lit1
!= 0)
10392 + (minus_lit0
!= 0) + (minus_lit1
!= 0))))
10394 bool any_overflows
= false;
10395 if (lit0
) any_overflows
|= TREE_OVERFLOW (lit0
);
10396 if (lit1
) any_overflows
|= TREE_OVERFLOW (lit1
);
10397 if (minus_lit0
) any_overflows
|= TREE_OVERFLOW (minus_lit0
);
10398 if (minus_lit1
) any_overflows
|= TREE_OVERFLOW (minus_lit1
);
10399 var0
= associate_trees (loc
, var0
, var1
, code
, atype
);
10400 con0
= associate_trees (loc
, con0
, con1
, code
, atype
);
10401 lit0
= associate_trees (loc
, lit0
, lit1
, code
, atype
);
10402 minus_lit0
= associate_trees (loc
, minus_lit0
, minus_lit1
,
10405 /* Preserve the MINUS_EXPR if the negative part of the literal is
10406 greater than the positive part. Otherwise, the multiplicative
10407 folding code (i.e extract_muldiv) may be fooled in case
10408 unsigned constants are subtracted, like in the following
10409 example: ((X*2 + 4) - 8U)/2. */
10410 if (minus_lit0
&& lit0
)
10412 if (TREE_CODE (lit0
) == INTEGER_CST
10413 && TREE_CODE (minus_lit0
) == INTEGER_CST
10414 && tree_int_cst_lt (lit0
, minus_lit0
))
10416 minus_lit0
= associate_trees (loc
, minus_lit0
, lit0
,
10417 MINUS_EXPR
, atype
);
10422 lit0
= associate_trees (loc
, lit0
, minus_lit0
,
10423 MINUS_EXPR
, atype
);
10428 /* Don't introduce overflows through reassociation. */
10430 && ((lit0
&& TREE_OVERFLOW_P (lit0
))
10431 || (minus_lit0
&& TREE_OVERFLOW_P (minus_lit0
))))
10438 fold_convert_loc (loc
, type
,
10439 associate_trees (loc
, var0
, minus_lit0
,
10440 MINUS_EXPR
, atype
));
10443 con0
= associate_trees (loc
, con0
, minus_lit0
,
10444 MINUS_EXPR
, atype
);
10446 fold_convert_loc (loc
, type
,
10447 associate_trees (loc
, var0
, con0
,
10448 PLUS_EXPR
, atype
));
10452 con0
= associate_trees (loc
, con0
, lit0
, code
, atype
);
10454 fold_convert_loc (loc
, type
, associate_trees (loc
, var0
, con0
,
10462 /* Pointer simplifications for subtraction, simple reassociations. */
10463 if (POINTER_TYPE_P (TREE_TYPE (arg1
)) && POINTER_TYPE_P (TREE_TYPE (arg0
)))
10465 /* (PTR0 p+ A) - (PTR1 p+ B) -> (PTR0 - PTR1) + (A - B) */
10466 if (TREE_CODE (arg0
) == POINTER_PLUS_EXPR
10467 && TREE_CODE (arg1
) == POINTER_PLUS_EXPR
)
10469 tree arg00
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10470 tree arg01
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
10471 tree arg10
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 0));
10472 tree arg11
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 1));
10473 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
10474 fold_build2_loc (loc
, MINUS_EXPR
, type
,
10476 fold_build2_loc (loc
, MINUS_EXPR
, type
,
10479 /* (PTR0 p+ A) - PTR1 -> (PTR0 - PTR1) + A, assuming PTR0 - PTR1 simplifies. */
10480 else if (TREE_CODE (arg0
) == POINTER_PLUS_EXPR
)
10482 tree arg00
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10483 tree arg01
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
10484 tree tmp
= fold_binary_loc (loc
, MINUS_EXPR
, type
, arg00
,
10485 fold_convert_loc (loc
, type
, arg1
));
10487 return fold_build2_loc (loc
, PLUS_EXPR
, type
, tmp
, arg01
);
10489 /* PTR0 - (PTR1 p+ A) -> (PTR0 - PTR1) - A, assuming PTR0 - PTR1
10491 else if (TREE_CODE (arg1
) == POINTER_PLUS_EXPR
)
10493 tree arg10
= fold_convert_loc (loc
, type
,
10494 TREE_OPERAND (arg1
, 0));
10495 tree arg11
= fold_convert_loc (loc
, type
,
10496 TREE_OPERAND (arg1
, 1));
10497 tree tmp
= fold_binary_loc (loc
, MINUS_EXPR
, type
,
10498 fold_convert_loc (loc
, type
, arg0
),
10501 return fold_build2_loc (loc
, MINUS_EXPR
, type
, tmp
, arg11
);
10504 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
10505 if (TREE_CODE (arg0
) == NEGATE_EXPR
10506 && negate_expr_p (arg1
)
10507 && reorder_operands_p (arg0
, arg1
))
10508 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
10509 fold_convert_loc (loc
, type
,
10510 negate_expr (arg1
)),
10511 fold_convert_loc (loc
, type
,
10512 TREE_OPERAND (arg0
, 0)));
10514 /* X - (X / Y) * Y is X % Y. */
10515 if ((INTEGRAL_TYPE_P (type
) || VECTOR_INTEGER_TYPE_P (type
))
10516 && TREE_CODE (arg1
) == MULT_EXPR
10517 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == TRUNC_DIV_EXPR
10518 && operand_equal_p (arg0
,
10519 TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0), 0)
10520 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg1
, 0), 1),
10521 TREE_OPERAND (arg1
, 1), 0))
10523 fold_convert_loc (loc
, type
,
10524 fold_build2_loc (loc
, TRUNC_MOD_EXPR
, TREE_TYPE (arg0
),
10525 arg0
, TREE_OPERAND (arg1
, 1)));
10527 if (! FLOAT_TYPE_P (type
))
10529 /* Fold A - (A & B) into ~B & A. */
10530 if (!TREE_SIDE_EFFECTS (arg0
)
10531 && TREE_CODE (arg1
) == BIT_AND_EXPR
)
10533 if (operand_equal_p (arg0
, TREE_OPERAND (arg1
, 1), 0))
10535 tree arg10
= fold_convert_loc (loc
, type
,
10536 TREE_OPERAND (arg1
, 0));
10537 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
10538 fold_build1_loc (loc
, BIT_NOT_EXPR
,
10540 fold_convert_loc (loc
, type
, arg0
));
10542 if (operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10544 tree arg11
= fold_convert_loc (loc
,
10545 type
, TREE_OPERAND (arg1
, 1));
10546 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
10547 fold_build1_loc (loc
, BIT_NOT_EXPR
,
10549 fold_convert_loc (loc
, type
, arg0
));
10553 /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
10554 any power of 2 minus 1. */
10555 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10556 && TREE_CODE (arg1
) == BIT_AND_EXPR
10557 && operand_equal_p (TREE_OPERAND (arg0
, 0),
10558 TREE_OPERAND (arg1
, 0), 0))
10560 tree mask0
= TREE_OPERAND (arg0
, 1);
10561 tree mask1
= TREE_OPERAND (arg1
, 1);
10562 tree tem
= fold_build1_loc (loc
, BIT_NOT_EXPR
, type
, mask0
);
10564 if (operand_equal_p (tem
, mask1
, 0))
10566 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, type
,
10567 TREE_OPERAND (arg0
, 0), mask1
);
10568 return fold_build2_loc (loc
, MINUS_EXPR
, type
, tem
, mask1
);
10573 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
10574 __complex__ ( x, -y ). This is not the same for SNaNs or if
10575 signed zeros are involved. */
10576 if (!HONOR_SNANS (element_mode (arg0
))
10577 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
10578 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
)))
10580 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
10581 tree arg0r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg0
);
10582 tree arg0i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
);
10583 bool arg0rz
= false, arg0iz
= false;
10584 if ((arg0r
&& (arg0rz
= real_zerop (arg0r
)))
10585 || (arg0i
&& (arg0iz
= real_zerop (arg0i
))))
10587 tree arg1r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg1
);
10588 tree arg1i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg1
);
10589 if (arg0rz
&& arg1i
&& real_zerop (arg1i
))
10591 tree rp
= fold_build1_loc (loc
, NEGATE_EXPR
, rtype
,
10593 : build1 (REALPART_EXPR
, rtype
, arg1
));
10594 tree ip
= arg0i
? arg0i
10595 : build1 (IMAGPART_EXPR
, rtype
, arg0
);
10596 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
10598 else if (arg0iz
&& arg1r
&& real_zerop (arg1r
))
10600 tree rp
= arg0r
? arg0r
10601 : build1 (REALPART_EXPR
, rtype
, arg0
);
10602 tree ip
= fold_build1_loc (loc
, NEGATE_EXPR
, rtype
,
10604 : build1 (IMAGPART_EXPR
, rtype
, arg1
));
10605 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
10610 /* A - B -> A + (-B) if B is easily negatable. */
10611 if (negate_expr_p (arg1
)
10612 && !TYPE_OVERFLOW_SANITIZED (type
)
10613 && ((FLOAT_TYPE_P (type
)
10614 /* Avoid this transformation if B is a positive REAL_CST. */
10615 && (TREE_CODE (arg1
) != REAL_CST
10616 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1
))))
10617 || INTEGRAL_TYPE_P (type
)))
10618 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
10619 fold_convert_loc (loc
, type
, arg0
),
10620 fold_convert_loc (loc
, type
,
10621 negate_expr (arg1
)));
10623 /* Try folding difference of addresses. */
10625 HOST_WIDE_INT diff
;
10627 if ((TREE_CODE (arg0
) == ADDR_EXPR
10628 || TREE_CODE (arg1
) == ADDR_EXPR
)
10629 && ptr_difference_const (arg0
, arg1
, &diff
))
10630 return build_int_cst_type (type
, diff
);
10633 /* Fold &a[i] - &a[j] to i-j. */
10634 if (TREE_CODE (arg0
) == ADDR_EXPR
10635 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == ARRAY_REF
10636 && TREE_CODE (arg1
) == ADDR_EXPR
10637 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == ARRAY_REF
)
10639 tree tem
= fold_addr_of_array_ref_difference (loc
, type
,
10640 TREE_OPERAND (arg0
, 0),
10641 TREE_OPERAND (arg1
, 0));
10646 if (FLOAT_TYPE_P (type
)
10647 && flag_unsafe_math_optimizations
10648 && (TREE_CODE (arg0
) == RDIV_EXPR
|| TREE_CODE (arg0
) == MULT_EXPR
)
10649 && (TREE_CODE (arg1
) == RDIV_EXPR
|| TREE_CODE (arg1
) == MULT_EXPR
)
10650 && (tem
= distribute_real_division (loc
, code
, type
, arg0
, arg1
)))
10653 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
10654 one. Make sure the type is not saturating and has the signedness of
10655 the stripped operands, as fold_plusminus_mult_expr will re-associate.
10656 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
10657 if ((TREE_CODE (arg0
) == MULT_EXPR
10658 || TREE_CODE (arg1
) == MULT_EXPR
)
10659 && !TYPE_SATURATING (type
)
10660 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg0
))
10661 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg1
))
10662 && (!FLOAT_TYPE_P (type
) || flag_associative_math
))
10664 tree tem
= fold_plusminus_mult_expr (loc
, code
, type
, arg0
, arg1
);
10672 /* (-A) * (-B) -> A * B */
10673 if (TREE_CODE (arg0
) == NEGATE_EXPR
&& negate_expr_p (arg1
))
10674 return fold_build2_loc (loc
, MULT_EXPR
, type
,
10675 fold_convert_loc (loc
, type
,
10676 TREE_OPERAND (arg0
, 0)),
10677 fold_convert_loc (loc
, type
,
10678 negate_expr (arg1
)));
10679 if (TREE_CODE (arg1
) == NEGATE_EXPR
&& negate_expr_p (arg0
))
10680 return fold_build2_loc (loc
, MULT_EXPR
, type
,
10681 fold_convert_loc (loc
, type
,
10682 negate_expr (arg0
)),
10683 fold_convert_loc (loc
, type
,
10684 TREE_OPERAND (arg1
, 0)));
10686 if (! FLOAT_TYPE_P (type
))
10688 /* Transform x * -C into -x * C if x is easily negatable. */
10689 if (TREE_CODE (arg1
) == INTEGER_CST
10690 && tree_int_cst_sgn (arg1
) == -1
10691 && negate_expr_p (arg0
)
10692 && (tem
= negate_expr (arg1
)) != arg1
10693 && !TREE_OVERFLOW (tem
))
10694 return fold_build2_loc (loc
, MULT_EXPR
, type
,
10695 fold_convert_loc (loc
, type
,
10696 negate_expr (arg0
)),
10699 /* (a * (1 << b)) is (a << b) */
10700 if (TREE_CODE (arg1
) == LSHIFT_EXPR
10701 && integer_onep (TREE_OPERAND (arg1
, 0)))
10702 return fold_build2_loc (loc
, LSHIFT_EXPR
, type
, op0
,
10703 TREE_OPERAND (arg1
, 1));
10704 if (TREE_CODE (arg0
) == LSHIFT_EXPR
10705 && integer_onep (TREE_OPERAND (arg0
, 0)))
10706 return fold_build2_loc (loc
, LSHIFT_EXPR
, type
, op1
,
10707 TREE_OPERAND (arg0
, 1));
10709 /* (A + A) * C -> A * 2 * C */
10710 if (TREE_CODE (arg0
) == PLUS_EXPR
10711 && TREE_CODE (arg1
) == INTEGER_CST
10712 && operand_equal_p (TREE_OPERAND (arg0
, 0),
10713 TREE_OPERAND (arg0
, 1), 0))
10714 return fold_build2_loc (loc
, MULT_EXPR
, type
,
10715 omit_one_operand_loc (loc
, type
,
10716 TREE_OPERAND (arg0
, 0),
10717 TREE_OPERAND (arg0
, 1)),
10718 fold_build2_loc (loc
, MULT_EXPR
, type
,
10719 build_int_cst (type
, 2) , arg1
));
10721 /* ((T) (X /[ex] C)) * C cancels out if the conversion is
10722 sign-changing only. */
10723 if (TREE_CODE (arg1
) == INTEGER_CST
10724 && TREE_CODE (arg0
) == EXACT_DIV_EXPR
10725 && operand_equal_p (arg1
, TREE_OPERAND (arg0
, 1), 0))
10726 return fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10728 strict_overflow_p
= false;
10729 if (TREE_CODE (arg1
) == INTEGER_CST
10730 && 0 != (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
10731 &strict_overflow_p
)))
10733 if (strict_overflow_p
)
10734 fold_overflow_warning (("assuming signed overflow does not "
10735 "occur when simplifying "
10737 WARN_STRICT_OVERFLOW_MISC
);
10738 return fold_convert_loc (loc
, type
, tem
);
10741 /* Optimize z * conj(z) for integer complex numbers. */
10742 if (TREE_CODE (arg0
) == CONJ_EXPR
10743 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10744 return fold_mult_zconjz (loc
, type
, arg1
);
10745 if (TREE_CODE (arg1
) == CONJ_EXPR
10746 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10747 return fold_mult_zconjz (loc
, type
, arg0
);
10751 /* Convert (C1/X)*C2 into (C1*C2)/X. This transformation may change
10752 the result for floating point types due to rounding so it is applied
10753 only if -fassociative-math was specify. */
10754 if (flag_associative_math
10755 && TREE_CODE (arg0
) == RDIV_EXPR
10756 && TREE_CODE (arg1
) == REAL_CST
10757 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == REAL_CST
)
10759 tree tem
= const_binop (MULT_EXPR
, TREE_OPERAND (arg0
, 0),
10762 return fold_build2_loc (loc
, RDIV_EXPR
, type
, tem
,
10763 TREE_OPERAND (arg0
, 1));
10766 /* Strip sign operations from X in X*X, i.e. -Y*-Y -> Y*Y. */
10767 if (operand_equal_p (arg0
, arg1
, 0))
10769 tree tem
= fold_strip_sign_ops (arg0
);
10770 if (tem
!= NULL_TREE
)
10772 tem
= fold_convert_loc (loc
, type
, tem
);
10773 return fold_build2_loc (loc
, MULT_EXPR
, type
, tem
, tem
);
10777 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
10778 This is not the same for NaNs or if signed zeros are
10780 if (!HONOR_NANS (arg0
)
10781 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
10782 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
))
10783 && TREE_CODE (arg1
) == COMPLEX_CST
10784 && real_zerop (TREE_REALPART (arg1
)))
10786 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
10787 if (real_onep (TREE_IMAGPART (arg1
)))
10789 fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
10790 negate_expr (fold_build1_loc (loc
, IMAGPART_EXPR
,
10792 fold_build1_loc (loc
, REALPART_EXPR
, rtype
, arg0
));
10793 else if (real_minus_onep (TREE_IMAGPART (arg1
)))
10795 fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
10796 fold_build1_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
),
10797 negate_expr (fold_build1_loc (loc
, REALPART_EXPR
,
10801 /* Optimize z * conj(z) for floating point complex numbers.
10802 Guarded by flag_unsafe_math_optimizations as non-finite
10803 imaginary components don't produce scalar results. */
10804 if (flag_unsafe_math_optimizations
10805 && TREE_CODE (arg0
) == CONJ_EXPR
10806 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10807 return fold_mult_zconjz (loc
, type
, arg1
);
10808 if (flag_unsafe_math_optimizations
10809 && TREE_CODE (arg1
) == CONJ_EXPR
10810 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10811 return fold_mult_zconjz (loc
, type
, arg0
);
10813 if (flag_unsafe_math_optimizations
)
10815 enum built_in_function fcode0
= builtin_mathfn_code (arg0
);
10816 enum built_in_function fcode1
= builtin_mathfn_code (arg1
);
10818 /* Optimizations of root(...)*root(...). */
10819 if (fcode0
== fcode1
&& BUILTIN_ROOT_P (fcode0
))
10822 tree arg00
= CALL_EXPR_ARG (arg0
, 0);
10823 tree arg10
= CALL_EXPR_ARG (arg1
, 0);
10825 /* Optimize sqrt(x)*sqrt(x) as x. */
10826 if (BUILTIN_SQRT_P (fcode0
)
10827 && operand_equal_p (arg00
, arg10
, 0)
10828 && ! HONOR_SNANS (element_mode (type
)))
10831 /* Optimize root(x)*root(y) as root(x*y). */
10832 rootfn
= TREE_OPERAND (CALL_EXPR_FN (arg0
), 0);
10833 arg
= fold_build2_loc (loc
, MULT_EXPR
, type
, arg00
, arg10
);
10834 return build_call_expr_loc (loc
, rootfn
, 1, arg
);
10837 /* Optimize expN(x)*expN(y) as expN(x+y). */
10838 if (fcode0
== fcode1
&& BUILTIN_EXPONENT_P (fcode0
))
10840 tree expfn
= TREE_OPERAND (CALL_EXPR_FN (arg0
), 0);
10841 tree arg
= fold_build2_loc (loc
, PLUS_EXPR
, type
,
10842 CALL_EXPR_ARG (arg0
, 0),
10843 CALL_EXPR_ARG (arg1
, 0));
10844 return build_call_expr_loc (loc
, expfn
, 1, arg
);
10847 /* Optimizations of pow(...)*pow(...). */
10848 if ((fcode0
== BUILT_IN_POW
&& fcode1
== BUILT_IN_POW
)
10849 || (fcode0
== BUILT_IN_POWF
&& fcode1
== BUILT_IN_POWF
)
10850 || (fcode0
== BUILT_IN_POWL
&& fcode1
== BUILT_IN_POWL
))
10852 tree arg00
= CALL_EXPR_ARG (arg0
, 0);
10853 tree arg01
= CALL_EXPR_ARG (arg0
, 1);
10854 tree arg10
= CALL_EXPR_ARG (arg1
, 0);
10855 tree arg11
= CALL_EXPR_ARG (arg1
, 1);
10857 /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
10858 if (operand_equal_p (arg01
, arg11
, 0))
10860 tree powfn
= TREE_OPERAND (CALL_EXPR_FN (arg0
), 0);
10861 tree arg
= fold_build2_loc (loc
, MULT_EXPR
, type
,
10863 return build_call_expr_loc (loc
, powfn
, 2, arg
, arg01
);
10866 /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
10867 if (operand_equal_p (arg00
, arg10
, 0))
10869 tree powfn
= TREE_OPERAND (CALL_EXPR_FN (arg0
), 0);
10870 tree arg
= fold_build2_loc (loc
, PLUS_EXPR
, type
,
10872 return build_call_expr_loc (loc
, powfn
, 2, arg00
, arg
);
10876 /* Optimize tan(x)*cos(x) as sin(x). */
10877 if (((fcode0
== BUILT_IN_TAN
&& fcode1
== BUILT_IN_COS
)
10878 || (fcode0
== BUILT_IN_TANF
&& fcode1
== BUILT_IN_COSF
)
10879 || (fcode0
== BUILT_IN_TANL
&& fcode1
== BUILT_IN_COSL
)
10880 || (fcode0
== BUILT_IN_COS
&& fcode1
== BUILT_IN_TAN
)
10881 || (fcode0
== BUILT_IN_COSF
&& fcode1
== BUILT_IN_TANF
)
10882 || (fcode0
== BUILT_IN_COSL
&& fcode1
== BUILT_IN_TANL
))
10883 && operand_equal_p (CALL_EXPR_ARG (arg0
, 0),
10884 CALL_EXPR_ARG (arg1
, 0), 0))
10886 tree sinfn
= mathfn_built_in (type
, BUILT_IN_SIN
);
10888 if (sinfn
!= NULL_TREE
)
10889 return build_call_expr_loc (loc
, sinfn
, 1,
10890 CALL_EXPR_ARG (arg0
, 0));
10893 /* Optimize x*pow(x,c) as pow(x,c+1). */
10894 if (fcode1
== BUILT_IN_POW
10895 || fcode1
== BUILT_IN_POWF
10896 || fcode1
== BUILT_IN_POWL
)
10898 tree arg10
= CALL_EXPR_ARG (arg1
, 0);
10899 tree arg11
= CALL_EXPR_ARG (arg1
, 1);
10900 if (TREE_CODE (arg11
) == REAL_CST
10901 && !TREE_OVERFLOW (arg11
)
10902 && operand_equal_p (arg0
, arg10
, 0))
10904 tree powfn
= TREE_OPERAND (CALL_EXPR_FN (arg1
), 0);
10908 c
= TREE_REAL_CST (arg11
);
10909 real_arithmetic (&c
, PLUS_EXPR
, &c
, &dconst1
);
10910 arg
= build_real (type
, c
);
10911 return build_call_expr_loc (loc
, powfn
, 2, arg0
, arg
);
10915 /* Optimize pow(x,c)*x as pow(x,c+1). */
10916 if (fcode0
== BUILT_IN_POW
10917 || fcode0
== BUILT_IN_POWF
10918 || fcode0
== BUILT_IN_POWL
)
10920 tree arg00
= CALL_EXPR_ARG (arg0
, 0);
10921 tree arg01
= CALL_EXPR_ARG (arg0
, 1);
10922 if (TREE_CODE (arg01
) == REAL_CST
10923 && !TREE_OVERFLOW (arg01
)
10924 && operand_equal_p (arg1
, arg00
, 0))
10926 tree powfn
= TREE_OPERAND (CALL_EXPR_FN (arg0
), 0);
10930 c
= TREE_REAL_CST (arg01
);
10931 real_arithmetic (&c
, PLUS_EXPR
, &c
, &dconst1
);
10932 arg
= build_real (type
, c
);
10933 return build_call_expr_loc (loc
, powfn
, 2, arg1
, arg
);
10937 /* Canonicalize x*x as pow(x,2.0), which is expanded as x*x. */
10938 if (!in_gimple_form
10940 && operand_equal_p (arg0
, arg1
, 0))
10942 tree powfn
= mathfn_built_in (type
, BUILT_IN_POW
);
10946 tree arg
= build_real (type
, dconst2
);
10947 return build_call_expr_loc (loc
, powfn
, 2, arg0
, arg
);
10956 /* ~X | X is -1. */
10957 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
10958 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10960 t1
= build_zero_cst (type
);
10961 t1
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
, t1
);
10962 return omit_one_operand_loc (loc
, type
, t1
, arg1
);
10965 /* X | ~X is -1. */
10966 if (TREE_CODE (arg1
) == BIT_NOT_EXPR
10967 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10969 t1
= build_zero_cst (type
);
10970 t1
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
, t1
);
10971 return omit_one_operand_loc (loc
, type
, t1
, arg0
);
10974 /* Canonicalize (X & C1) | C2. */
10975 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10976 && TREE_CODE (arg1
) == INTEGER_CST
10977 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10979 int width
= TYPE_PRECISION (type
), w
;
10980 wide_int c1
= TREE_OPERAND (arg0
, 1);
10981 wide_int c2
= arg1
;
10983 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
10984 if ((c1
& c2
) == c1
)
10985 return omit_one_operand_loc (loc
, type
, arg1
,
10986 TREE_OPERAND (arg0
, 0));
10988 wide_int msk
= wi::mask (width
, false,
10989 TYPE_PRECISION (TREE_TYPE (arg1
)));
10991 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
10992 if (msk
.and_not (c1
| c2
) == 0)
10993 return fold_build2_loc (loc
, BIT_IOR_EXPR
, type
,
10994 TREE_OPERAND (arg0
, 0), arg1
);
10996 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
10997 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
10998 mode which allows further optimizations. */
11001 wide_int c3
= c1
.and_not (c2
);
11002 for (w
= BITS_PER_UNIT
; w
<= width
; w
<<= 1)
11004 wide_int mask
= wi::mask (w
, false,
11005 TYPE_PRECISION (type
));
11006 if (((c1
| c2
) & mask
) == mask
&& c1
.and_not (mask
) == 0)
11014 return fold_build2_loc (loc
, BIT_IOR_EXPR
, type
,
11015 fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11016 TREE_OPERAND (arg0
, 0),
11017 wide_int_to_tree (type
,
11022 /* (X & ~Y) | (~X & Y) is X ^ Y */
11023 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11024 && TREE_CODE (arg1
) == BIT_AND_EXPR
)
11026 tree a0
, a1
, l0
, l1
, n0
, n1
;
11028 a0
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 0));
11029 a1
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 1));
11031 l0
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
11032 l1
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
11034 n0
= fold_build1_loc (loc
, BIT_NOT_EXPR
, type
, l0
);
11035 n1
= fold_build1_loc (loc
, BIT_NOT_EXPR
, type
, l1
);
11037 if ((operand_equal_p (n0
, a0
, 0)
11038 && operand_equal_p (n1
, a1
, 0))
11039 || (operand_equal_p (n0
, a1
, 0)
11040 && operand_equal_p (n1
, a0
, 0)))
11041 return fold_build2_loc (loc
, BIT_XOR_EXPR
, type
, l0
, n1
);
11044 t1
= distribute_bit_expr (loc
, code
, type
, arg0
, arg1
);
11045 if (t1
!= NULL_TREE
)
11048 /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
11050 This results in more efficient code for machines without a NAND
11051 instruction. Combine will canonicalize to the first form
11052 which will allow use of NAND instructions provided by the
11053 backend if they exist. */
11054 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
11055 && TREE_CODE (arg1
) == BIT_NOT_EXPR
)
11058 fold_build1_loc (loc
, BIT_NOT_EXPR
, type
,
11059 build2 (BIT_AND_EXPR
, type
,
11060 fold_convert_loc (loc
, type
,
11061 TREE_OPERAND (arg0
, 0)),
11062 fold_convert_loc (loc
, type
,
11063 TREE_OPERAND (arg1
, 0))));
11066 /* See if this can be simplified into a rotate first. If that
11067 is unsuccessful continue in the association code. */
11071 /* ~X ^ X is -1. */
11072 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
11073 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
11075 t1
= build_zero_cst (type
);
11076 t1
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
, t1
);
11077 return omit_one_operand_loc (loc
, type
, t1
, arg1
);
11080 /* X ^ ~X is -1. */
11081 if (TREE_CODE (arg1
) == BIT_NOT_EXPR
11082 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
11084 t1
= build_zero_cst (type
);
11085 t1
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
, t1
);
11086 return omit_one_operand_loc (loc
, type
, t1
, arg0
);
11089 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
11090 with a constant, and the two constants have no bits in common,
11091 we should treat this as a BIT_IOR_EXPR since this may produce more
11092 simplifications. */
11093 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11094 && TREE_CODE (arg1
) == BIT_AND_EXPR
11095 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
11096 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
11097 && wi::bit_and (TREE_OPERAND (arg0
, 1),
11098 TREE_OPERAND (arg1
, 1)) == 0)
11100 code
= BIT_IOR_EXPR
;
11104 /* (X | Y) ^ X -> Y & ~ X*/
11105 if (TREE_CODE (arg0
) == BIT_IOR_EXPR
11106 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
11108 tree t2
= TREE_OPERAND (arg0
, 1);
11109 t1
= fold_build1_loc (loc
, BIT_NOT_EXPR
, TREE_TYPE (arg1
),
11111 t1
= fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11112 fold_convert_loc (loc
, type
, t2
),
11113 fold_convert_loc (loc
, type
, t1
));
11117 /* (Y | X) ^ X -> Y & ~ X*/
11118 if (TREE_CODE (arg0
) == BIT_IOR_EXPR
11119 && operand_equal_p (TREE_OPERAND (arg0
, 1), arg1
, 0))
11121 tree t2
= TREE_OPERAND (arg0
, 0);
11122 t1
= fold_build1_loc (loc
, BIT_NOT_EXPR
, TREE_TYPE (arg1
),
11124 t1
= fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11125 fold_convert_loc (loc
, type
, t2
),
11126 fold_convert_loc (loc
, type
, t1
));
11130 /* X ^ (X | Y) -> Y & ~ X*/
11131 if (TREE_CODE (arg1
) == BIT_IOR_EXPR
11132 && operand_equal_p (TREE_OPERAND (arg1
, 0), arg0
, 0))
11134 tree t2
= TREE_OPERAND (arg1
, 1);
11135 t1
= fold_build1_loc (loc
, BIT_NOT_EXPR
, TREE_TYPE (arg0
),
11137 t1
= fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11138 fold_convert_loc (loc
, type
, t2
),
11139 fold_convert_loc (loc
, type
, t1
));
11143 /* X ^ (Y | X) -> Y & ~ X*/
11144 if (TREE_CODE (arg1
) == BIT_IOR_EXPR
11145 && operand_equal_p (TREE_OPERAND (arg1
, 1), arg0
, 0))
11147 tree t2
= TREE_OPERAND (arg1
, 0);
11148 t1
= fold_build1_loc (loc
, BIT_NOT_EXPR
, TREE_TYPE (arg0
),
11150 t1
= fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11151 fold_convert_loc (loc
, type
, t2
),
11152 fold_convert_loc (loc
, type
, t1
));
11156 /* Convert ~X ^ ~Y to X ^ Y. */
11157 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
11158 && TREE_CODE (arg1
) == BIT_NOT_EXPR
)
11159 return fold_build2_loc (loc
, code
, type
,
11160 fold_convert_loc (loc
, type
,
11161 TREE_OPERAND (arg0
, 0)),
11162 fold_convert_loc (loc
, type
,
11163 TREE_OPERAND (arg1
, 0)));
11165 /* Convert ~X ^ C to X ^ ~C. */
11166 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
11167 && TREE_CODE (arg1
) == INTEGER_CST
)
11168 return fold_build2_loc (loc
, code
, type
,
11169 fold_convert_loc (loc
, type
,
11170 TREE_OPERAND (arg0
, 0)),
11171 fold_build1_loc (loc
, BIT_NOT_EXPR
, type
, arg1
));
11173 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
11174 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11175 && INTEGRAL_TYPE_P (type
)
11176 && integer_onep (TREE_OPERAND (arg0
, 1))
11177 && integer_onep (arg1
))
11178 return fold_build2_loc (loc
, EQ_EXPR
, type
, arg0
,
11179 build_zero_cst (TREE_TYPE (arg0
)));
11181 /* Fold (X & Y) ^ Y as ~X & Y. */
11182 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11183 && operand_equal_p (TREE_OPERAND (arg0
, 1), arg1
, 0))
11185 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
11186 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11187 fold_build1_loc (loc
, BIT_NOT_EXPR
, type
, tem
),
11188 fold_convert_loc (loc
, type
, arg1
));
11190 /* Fold (X & Y) ^ X as ~Y & X. */
11191 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11192 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0)
11193 && reorder_operands_p (TREE_OPERAND (arg0
, 1), arg1
))
11195 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
11196 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11197 fold_build1_loc (loc
, BIT_NOT_EXPR
, type
, tem
),
11198 fold_convert_loc (loc
, type
, arg1
));
11200 /* Fold X ^ (X & Y) as X & ~Y. */
11201 if (TREE_CODE (arg1
) == BIT_AND_EXPR
11202 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
11204 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 1));
11205 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11206 fold_convert_loc (loc
, type
, arg0
),
11207 fold_build1_loc (loc
, BIT_NOT_EXPR
, type
, tem
));
11209 /* Fold X ^ (Y & X) as ~Y & X. */
11210 if (TREE_CODE (arg1
) == BIT_AND_EXPR
11211 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 1), 0)
11212 && reorder_operands_p (arg0
, TREE_OPERAND (arg1
, 0)))
11214 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 0));
11215 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11216 fold_build1_loc (loc
, BIT_NOT_EXPR
, type
, tem
),
11217 fold_convert_loc (loc
, type
, arg0
));
11220 /* See if this can be simplified into a rotate first. If that
11221 is unsuccessful continue in the association code. */
11225 /* ~X & X, (X == 0) & X, and !X & X are always zero. */
11226 if ((TREE_CODE (arg0
) == BIT_NOT_EXPR
11227 || TREE_CODE (arg0
) == TRUTH_NOT_EXPR
11228 || (TREE_CODE (arg0
) == EQ_EXPR
11229 && integer_zerop (TREE_OPERAND (arg0
, 1))))
11230 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
11231 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg1
);
11233 /* X & ~X , X & (X == 0), and X & !X are always zero. */
11234 if ((TREE_CODE (arg1
) == BIT_NOT_EXPR
11235 || TREE_CODE (arg1
) == TRUTH_NOT_EXPR
11236 || (TREE_CODE (arg1
) == EQ_EXPR
11237 && integer_zerop (TREE_OPERAND (arg1
, 1))))
11238 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
11239 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
11241 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
11242 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
11243 && INTEGRAL_TYPE_P (type
)
11244 && integer_onep (TREE_OPERAND (arg0
, 1))
11245 && integer_onep (arg1
))
11248 tem
= TREE_OPERAND (arg0
, 0);
11249 tem2
= fold_convert_loc (loc
, TREE_TYPE (tem
), arg1
);
11250 tem2
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (tem
),
11252 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem2
,
11253 build_zero_cst (TREE_TYPE (tem
)));
11255 /* Fold ~X & 1 as (X & 1) == 0. */
11256 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
11257 && INTEGRAL_TYPE_P (type
)
11258 && integer_onep (arg1
))
11261 tem
= TREE_OPERAND (arg0
, 0);
11262 tem2
= fold_convert_loc (loc
, TREE_TYPE (tem
), arg1
);
11263 tem2
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (tem
),
11265 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem2
,
11266 build_zero_cst (TREE_TYPE (tem
)));
11268 /* Fold !X & 1 as X == 0. */
11269 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
11270 && integer_onep (arg1
))
11272 tem
= TREE_OPERAND (arg0
, 0);
11273 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem
,
11274 build_zero_cst (TREE_TYPE (tem
)));
11277 /* Fold (X ^ Y) & Y as ~X & Y. */
11278 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
11279 && operand_equal_p (TREE_OPERAND (arg0
, 1), arg1
, 0))
11281 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
11282 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11283 fold_build1_loc (loc
, BIT_NOT_EXPR
, type
, tem
),
11284 fold_convert_loc (loc
, type
, arg1
));
11286 /* Fold (X ^ Y) & X as ~Y & X. */
11287 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
11288 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0)
11289 && reorder_operands_p (TREE_OPERAND (arg0
, 1), arg1
))
11291 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
11292 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11293 fold_build1_loc (loc
, BIT_NOT_EXPR
, type
, tem
),
11294 fold_convert_loc (loc
, type
, arg1
));
11296 /* Fold X & (X ^ Y) as X & ~Y. */
11297 if (TREE_CODE (arg1
) == BIT_XOR_EXPR
11298 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
11300 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 1));
11301 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11302 fold_convert_loc (loc
, type
, arg0
),
11303 fold_build1_loc (loc
, BIT_NOT_EXPR
, type
, tem
));
11305 /* Fold X & (Y ^ X) as ~Y & X. */
11306 if (TREE_CODE (arg1
) == BIT_XOR_EXPR
11307 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 1), 0)
11308 && reorder_operands_p (arg0
, TREE_OPERAND (arg1
, 0)))
11310 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 0));
11311 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11312 fold_build1_loc (loc
, BIT_NOT_EXPR
, type
, tem
),
11313 fold_convert_loc (loc
, type
, arg0
));
11316 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
11317 multiple of 1 << CST. */
11318 if (TREE_CODE (arg1
) == INTEGER_CST
)
11320 wide_int cst1
= arg1
;
11321 wide_int ncst1
= -cst1
;
11322 if ((cst1
& ncst1
) == ncst1
11323 && multiple_of_p (type
, arg0
,
11324 wide_int_to_tree (TREE_TYPE (arg1
), ncst1
)))
11325 return fold_convert_loc (loc
, type
, arg0
);
11328 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
11330 if (TREE_CODE (arg1
) == INTEGER_CST
11331 && TREE_CODE (arg0
) == MULT_EXPR
11332 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
11334 wide_int warg1
= arg1
;
11335 wide_int masked
= mask_with_tz (type
, warg1
, TREE_OPERAND (arg0
, 1));
11338 return omit_two_operands_loc (loc
, type
, build_zero_cst (type
),
11340 else if (masked
!= warg1
)
11342 /* Avoid the transform if arg1 is a mask of some
11343 mode which allows further optimizations. */
11344 int pop
= wi::popcount (warg1
);
11345 if (!(pop
>= BITS_PER_UNIT
11346 && exact_log2 (pop
) != -1
11347 && wi::mask (pop
, false, warg1
.get_precision ()) == warg1
))
11348 return fold_build2_loc (loc
, code
, type
, op0
,
11349 wide_int_to_tree (type
, masked
));
11353 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
11354 ((A & N) + B) & M -> (A + B) & M
11355 Similarly if (N & M) == 0,
11356 ((A | N) + B) & M -> (A + B) & M
11357 and for - instead of + (or unary - instead of +)
11358 and/or ^ instead of |.
11359 If B is constant and (B & M) == 0, fold into A & M. */
11360 if (TREE_CODE (arg1
) == INTEGER_CST
)
11362 wide_int cst1
= arg1
;
11363 if ((~cst1
!= 0) && (cst1
& (cst1
+ 1)) == 0
11364 && INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
11365 && (TREE_CODE (arg0
) == PLUS_EXPR
11366 || TREE_CODE (arg0
) == MINUS_EXPR
11367 || TREE_CODE (arg0
) == NEGATE_EXPR
)
11368 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
))
11369 || TREE_CODE (TREE_TYPE (arg0
)) == INTEGER_TYPE
))
11375 /* Now we know that arg0 is (C + D) or (C - D) or
11376 -C and arg1 (M) is == (1LL << cst) - 1.
11377 Store C into PMOP[0] and D into PMOP[1]. */
11378 pmop
[0] = TREE_OPERAND (arg0
, 0);
11380 if (TREE_CODE (arg0
) != NEGATE_EXPR
)
11382 pmop
[1] = TREE_OPERAND (arg0
, 1);
11386 if ((wi::max_value (TREE_TYPE (arg0
)) & cst1
) != cst1
)
11389 for (; which
>= 0; which
--)
11390 switch (TREE_CODE (pmop
[which
]))
11395 if (TREE_CODE (TREE_OPERAND (pmop
[which
], 1))
11398 cst0
= TREE_OPERAND (pmop
[which
], 1);
11400 if (TREE_CODE (pmop
[which
]) == BIT_AND_EXPR
)
11405 else if (cst0
!= 0)
11407 /* If C or D is of the form (A & N) where
11408 (N & M) == M, or of the form (A | N) or
11409 (A ^ N) where (N & M) == 0, replace it with A. */
11410 pmop
[which
] = TREE_OPERAND (pmop
[which
], 0);
11413 /* If C or D is a N where (N & M) == 0, it can be
11414 omitted (assumed 0). */
11415 if ((TREE_CODE (arg0
) == PLUS_EXPR
11416 || (TREE_CODE (arg0
) == MINUS_EXPR
&& which
== 0))
11417 && (cst1
& pmop
[which
]) == 0)
11418 pmop
[which
] = NULL
;
11424 /* Only build anything new if we optimized one or both arguments
11426 if (pmop
[0] != TREE_OPERAND (arg0
, 0)
11427 || (TREE_CODE (arg0
) != NEGATE_EXPR
11428 && pmop
[1] != TREE_OPERAND (arg0
, 1)))
11430 tree utype
= TREE_TYPE (arg0
);
11431 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
)))
11433 /* Perform the operations in a type that has defined
11434 overflow behavior. */
11435 utype
= unsigned_type_for (TREE_TYPE (arg0
));
11436 if (pmop
[0] != NULL
)
11437 pmop
[0] = fold_convert_loc (loc
, utype
, pmop
[0]);
11438 if (pmop
[1] != NULL
)
11439 pmop
[1] = fold_convert_loc (loc
, utype
, pmop
[1]);
11442 if (TREE_CODE (arg0
) == NEGATE_EXPR
)
11443 tem
= fold_build1_loc (loc
, NEGATE_EXPR
, utype
, pmop
[0]);
11444 else if (TREE_CODE (arg0
) == PLUS_EXPR
)
11446 if (pmop
[0] != NULL
&& pmop
[1] != NULL
)
11447 tem
= fold_build2_loc (loc
, PLUS_EXPR
, utype
,
11449 else if (pmop
[0] != NULL
)
11451 else if (pmop
[1] != NULL
)
11454 return build_int_cst (type
, 0);
11456 else if (pmop
[0] == NULL
)
11457 tem
= fold_build1_loc (loc
, NEGATE_EXPR
, utype
, pmop
[1]);
11459 tem
= fold_build2_loc (loc
, MINUS_EXPR
, utype
,
11461 /* TEM is now the new binary +, - or unary - replacement. */
11462 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, utype
, tem
,
11463 fold_convert_loc (loc
, utype
, arg1
));
11464 return fold_convert_loc (loc
, type
, tem
);
11469 t1
= distribute_bit_expr (loc
, code
, type
, arg0
, arg1
);
11470 if (t1
!= NULL_TREE
)
11472 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
11473 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) == NOP_EXPR
11474 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0
, 0))))
11476 prec
= element_precision (TREE_TYPE (TREE_OPERAND (arg0
, 0)));
11478 wide_int mask
= wide_int::from (arg1
, prec
, UNSIGNED
);
11481 fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
11484 /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
11486 This results in more efficient code for machines without a NOR
11487 instruction. Combine will canonicalize to the first form
11488 which will allow use of NOR instructions provided by the
11489 backend if they exist. */
11490 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
11491 && TREE_CODE (arg1
) == BIT_NOT_EXPR
)
11493 return fold_build1_loc (loc
, BIT_NOT_EXPR
, type
,
11494 build2 (BIT_IOR_EXPR
, type
,
11495 fold_convert_loc (loc
, type
,
11496 TREE_OPERAND (arg0
, 0)),
11497 fold_convert_loc (loc
, type
,
11498 TREE_OPERAND (arg1
, 0))));
11501 /* If arg0 is derived from the address of an object or function, we may
11502 be able to fold this expression using the object or function's
11504 if (POINTER_TYPE_P (TREE_TYPE (arg0
)) && tree_fits_uhwi_p (arg1
))
11506 unsigned HOST_WIDE_INT modulus
, residue
;
11507 unsigned HOST_WIDE_INT low
= tree_to_uhwi (arg1
);
11509 modulus
= get_pointer_modulus_and_residue (arg0
, &residue
,
11510 integer_onep (arg1
));
11512 /* This works because modulus is a power of 2. If this weren't the
11513 case, we'd have to replace it by its greatest power-of-2
11514 divisor: modulus & -modulus. */
11516 return build_int_cst (type
, residue
& low
);
11519 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
11520 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
11521 if the new mask might be further optimized. */
11522 if ((TREE_CODE (arg0
) == LSHIFT_EXPR
11523 || TREE_CODE (arg0
) == RSHIFT_EXPR
)
11524 && TYPE_PRECISION (TREE_TYPE (arg0
)) <= HOST_BITS_PER_WIDE_INT
11525 && TREE_CODE (arg1
) == INTEGER_CST
11526 && tree_fits_uhwi_p (TREE_OPERAND (arg0
, 1))
11527 && tree_to_uhwi (TREE_OPERAND (arg0
, 1)) > 0
11528 && (tree_to_uhwi (TREE_OPERAND (arg0
, 1))
11529 < TYPE_PRECISION (TREE_TYPE (arg0
))))
11531 unsigned int shiftc
= tree_to_uhwi (TREE_OPERAND (arg0
, 1));
11532 unsigned HOST_WIDE_INT mask
= TREE_INT_CST_LOW (arg1
);
11533 unsigned HOST_WIDE_INT newmask
, zerobits
= 0;
11534 tree shift_type
= TREE_TYPE (arg0
);
11536 if (TREE_CODE (arg0
) == LSHIFT_EXPR
)
11537 zerobits
= ((((unsigned HOST_WIDE_INT
) 1) << shiftc
) - 1);
11538 else if (TREE_CODE (arg0
) == RSHIFT_EXPR
11539 && TYPE_PRECISION (TREE_TYPE (arg0
))
11540 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (arg0
))))
11542 prec
= TYPE_PRECISION (TREE_TYPE (arg0
));
11543 tree arg00
= TREE_OPERAND (arg0
, 0);
11544 /* See if more bits can be proven as zero because of
11546 if (TREE_CODE (arg00
) == NOP_EXPR
11547 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg00
, 0))))
11549 tree inner_type
= TREE_TYPE (TREE_OPERAND (arg00
, 0));
11550 if (TYPE_PRECISION (inner_type
)
11551 == GET_MODE_PRECISION (TYPE_MODE (inner_type
))
11552 && TYPE_PRECISION (inner_type
) < prec
)
11554 prec
= TYPE_PRECISION (inner_type
);
11555 /* See if we can shorten the right shift. */
11557 shift_type
= inner_type
;
11558 /* Otherwise X >> C1 is all zeros, so we'll optimize
11559 it into (X, 0) later on by making sure zerobits
11563 zerobits
= ~(unsigned HOST_WIDE_INT
) 0;
11566 zerobits
>>= HOST_BITS_PER_WIDE_INT
- shiftc
;
11567 zerobits
<<= prec
- shiftc
;
11569 /* For arithmetic shift if sign bit could be set, zerobits
11570 can contain actually sign bits, so no transformation is
11571 possible, unless MASK masks them all away. In that
11572 case the shift needs to be converted into logical shift. */
11573 if (!TYPE_UNSIGNED (TREE_TYPE (arg0
))
11574 && prec
== TYPE_PRECISION (TREE_TYPE (arg0
)))
11576 if ((mask
& zerobits
) == 0)
11577 shift_type
= unsigned_type_for (TREE_TYPE (arg0
));
11583 /* ((X << 16) & 0xff00) is (X, 0). */
11584 if ((mask
& zerobits
) == mask
)
11585 return omit_one_operand_loc (loc
, type
,
11586 build_int_cst (type
, 0), arg0
);
11588 newmask
= mask
| zerobits
;
11589 if (newmask
!= mask
&& (newmask
& (newmask
+ 1)) == 0)
11591 /* Only do the transformation if NEWMASK is some integer
11593 for (prec
= BITS_PER_UNIT
;
11594 prec
< HOST_BITS_PER_WIDE_INT
; prec
<<= 1)
11595 if (newmask
== (((unsigned HOST_WIDE_INT
) 1) << prec
) - 1)
11597 if (prec
< HOST_BITS_PER_WIDE_INT
11598 || newmask
== ~(unsigned HOST_WIDE_INT
) 0)
11602 if (shift_type
!= TREE_TYPE (arg0
))
11604 tem
= fold_build2_loc (loc
, TREE_CODE (arg0
), shift_type
,
11605 fold_convert_loc (loc
, shift_type
,
11606 TREE_OPERAND (arg0
, 0)),
11607 TREE_OPERAND (arg0
, 1));
11608 tem
= fold_convert_loc (loc
, type
, tem
);
11612 newmaskt
= build_int_cst_type (TREE_TYPE (op1
), newmask
);
11613 if (!tree_int_cst_equal (newmaskt
, arg1
))
11614 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
, tem
, newmaskt
);
11622 /* Don't touch a floating-point divide by zero unless the mode
11623 of the constant can represent infinity. */
11624 if (TREE_CODE (arg1
) == REAL_CST
11625 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1
)))
11626 && real_zerop (arg1
))
11629 /* (-A) / (-B) -> A / B */
11630 if (TREE_CODE (arg0
) == NEGATE_EXPR
&& negate_expr_p (arg1
))
11631 return fold_build2_loc (loc
, RDIV_EXPR
, type
,
11632 TREE_OPERAND (arg0
, 0),
11633 negate_expr (arg1
));
11634 if (TREE_CODE (arg1
) == NEGATE_EXPR
&& negate_expr_p (arg0
))
11635 return fold_build2_loc (loc
, RDIV_EXPR
, type
,
11636 negate_expr (arg0
),
11637 TREE_OPERAND (arg1
, 0));
11639 /* Convert A/B/C to A/(B*C). */
11640 if (flag_reciprocal_math
11641 && TREE_CODE (arg0
) == RDIV_EXPR
)
11642 return fold_build2_loc (loc
, RDIV_EXPR
, type
, TREE_OPERAND (arg0
, 0),
11643 fold_build2_loc (loc
, MULT_EXPR
, type
,
11644 TREE_OPERAND (arg0
, 1), arg1
));
11646 /* Convert A/(B/C) to (A/B)*C. */
11647 if (flag_reciprocal_math
11648 && TREE_CODE (arg1
) == RDIV_EXPR
)
11649 return fold_build2_loc (loc
, MULT_EXPR
, type
,
11650 fold_build2_loc (loc
, RDIV_EXPR
, type
, arg0
,
11651 TREE_OPERAND (arg1
, 0)),
11652 TREE_OPERAND (arg1
, 1));
11654 /* Convert C1/(X*C2) into (C1/C2)/X. */
11655 if (flag_reciprocal_math
11656 && TREE_CODE (arg1
) == MULT_EXPR
11657 && TREE_CODE (arg0
) == REAL_CST
11658 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == REAL_CST
)
11660 tree tem
= const_binop (RDIV_EXPR
, arg0
,
11661 TREE_OPERAND (arg1
, 1));
11663 return fold_build2_loc (loc
, RDIV_EXPR
, type
, tem
,
11664 TREE_OPERAND (arg1
, 0));
11667 if (flag_unsafe_math_optimizations
)
11669 enum built_in_function fcode0
= builtin_mathfn_code (arg0
);
11670 enum built_in_function fcode1
= builtin_mathfn_code (arg1
);
11672 /* Optimize sin(x)/cos(x) as tan(x). */
11673 if (((fcode0
== BUILT_IN_SIN
&& fcode1
== BUILT_IN_COS
)
11674 || (fcode0
== BUILT_IN_SINF
&& fcode1
== BUILT_IN_COSF
)
11675 || (fcode0
== BUILT_IN_SINL
&& fcode1
== BUILT_IN_COSL
))
11676 && operand_equal_p (CALL_EXPR_ARG (arg0
, 0),
11677 CALL_EXPR_ARG (arg1
, 0), 0))
11679 tree tanfn
= mathfn_built_in (type
, BUILT_IN_TAN
);
11681 if (tanfn
!= NULL_TREE
)
11682 return build_call_expr_loc (loc
, tanfn
, 1, CALL_EXPR_ARG (arg0
, 0));
11685 /* Optimize cos(x)/sin(x) as 1.0/tan(x). */
11686 if (((fcode0
== BUILT_IN_COS
&& fcode1
== BUILT_IN_SIN
)
11687 || (fcode0
== BUILT_IN_COSF
&& fcode1
== BUILT_IN_SINF
)
11688 || (fcode0
== BUILT_IN_COSL
&& fcode1
== BUILT_IN_SINL
))
11689 && operand_equal_p (CALL_EXPR_ARG (arg0
, 0),
11690 CALL_EXPR_ARG (arg1
, 0), 0))
11692 tree tanfn
= mathfn_built_in (type
, BUILT_IN_TAN
);
11694 if (tanfn
!= NULL_TREE
)
11696 tree tmp
= build_call_expr_loc (loc
, tanfn
, 1,
11697 CALL_EXPR_ARG (arg0
, 0));
11698 return fold_build2_loc (loc
, RDIV_EXPR
, type
,
11699 build_real (type
, dconst1
), tmp
);
11703 /* Optimize sin(x)/tan(x) as cos(x) if we don't care about
11704 NaNs or Infinities. */
11705 if (((fcode0
== BUILT_IN_SIN
&& fcode1
== BUILT_IN_TAN
)
11706 || (fcode0
== BUILT_IN_SINF
&& fcode1
== BUILT_IN_TANF
)
11707 || (fcode0
== BUILT_IN_SINL
&& fcode1
== BUILT_IN_TANL
)))
11709 tree arg00
= CALL_EXPR_ARG (arg0
, 0);
11710 tree arg01
= CALL_EXPR_ARG (arg1
, 0);
11712 if (! HONOR_NANS (arg00
)
11713 && ! HONOR_INFINITIES (element_mode (arg00
))
11714 && operand_equal_p (arg00
, arg01
, 0))
11716 tree cosfn
= mathfn_built_in (type
, BUILT_IN_COS
);
11718 if (cosfn
!= NULL_TREE
)
11719 return build_call_expr_loc (loc
, cosfn
, 1, arg00
);
11723 /* Optimize tan(x)/sin(x) as 1.0/cos(x) if we don't care about
11724 NaNs or Infinities. */
11725 if (((fcode0
== BUILT_IN_TAN
&& fcode1
== BUILT_IN_SIN
)
11726 || (fcode0
== BUILT_IN_TANF
&& fcode1
== BUILT_IN_SINF
)
11727 || (fcode0
== BUILT_IN_TANL
&& fcode1
== BUILT_IN_SINL
)))
11729 tree arg00
= CALL_EXPR_ARG (arg0
, 0);
11730 tree arg01
= CALL_EXPR_ARG (arg1
, 0);
11732 if (! HONOR_NANS (arg00
)
11733 && ! HONOR_INFINITIES (element_mode (arg00
))
11734 && operand_equal_p (arg00
, arg01
, 0))
11736 tree cosfn
= mathfn_built_in (type
, BUILT_IN_COS
);
11738 if (cosfn
!= NULL_TREE
)
11740 tree tmp
= build_call_expr_loc (loc
, cosfn
, 1, arg00
);
11741 return fold_build2_loc (loc
, RDIV_EXPR
, type
,
11742 build_real (type
, dconst1
),
11748 /* Optimize pow(x,c)/x as pow(x,c-1). */
11749 if (fcode0
== BUILT_IN_POW
11750 || fcode0
== BUILT_IN_POWF
11751 || fcode0
== BUILT_IN_POWL
)
11753 tree arg00
= CALL_EXPR_ARG (arg0
, 0);
11754 tree arg01
= CALL_EXPR_ARG (arg0
, 1);
11755 if (TREE_CODE (arg01
) == REAL_CST
11756 && !TREE_OVERFLOW (arg01
)
11757 && operand_equal_p (arg1
, arg00
, 0))
11759 tree powfn
= TREE_OPERAND (CALL_EXPR_FN (arg0
), 0);
11763 c
= TREE_REAL_CST (arg01
);
11764 real_arithmetic (&c
, MINUS_EXPR
, &c
, &dconst1
);
11765 arg
= build_real (type
, c
);
11766 return build_call_expr_loc (loc
, powfn
, 2, arg1
, arg
);
11770 /* Optimize a/root(b/c) into a*root(c/b). */
11771 if (BUILTIN_ROOT_P (fcode1
))
11773 tree rootarg
= CALL_EXPR_ARG (arg1
, 0);
11775 if (TREE_CODE (rootarg
) == RDIV_EXPR
)
11777 tree rootfn
= TREE_OPERAND (CALL_EXPR_FN (arg1
), 0);
11778 tree b
= TREE_OPERAND (rootarg
, 0);
11779 tree c
= TREE_OPERAND (rootarg
, 1);
11781 tree tmp
= fold_build2_loc (loc
, RDIV_EXPR
, type
, c
, b
);
11783 tmp
= build_call_expr_loc (loc
, rootfn
, 1, tmp
);
11784 return fold_build2_loc (loc
, MULT_EXPR
, type
, arg0
, tmp
);
11788 /* Optimize x/expN(y) into x*expN(-y). */
11789 if (BUILTIN_EXPONENT_P (fcode1
))
11791 tree expfn
= TREE_OPERAND (CALL_EXPR_FN (arg1
), 0);
11792 tree arg
= negate_expr (CALL_EXPR_ARG (arg1
, 0));
11793 arg1
= build_call_expr_loc (loc
,
11795 fold_convert_loc (loc
, type
, arg
));
11796 return fold_build2_loc (loc
, MULT_EXPR
, type
, arg0
, arg1
);
11799 /* Optimize x/pow(y,z) into x*pow(y,-z). */
11800 if (fcode1
== BUILT_IN_POW
11801 || fcode1
== BUILT_IN_POWF
11802 || fcode1
== BUILT_IN_POWL
)
11804 tree powfn
= TREE_OPERAND (CALL_EXPR_FN (arg1
), 0);
11805 tree arg10
= CALL_EXPR_ARG (arg1
, 0);
11806 tree arg11
= CALL_EXPR_ARG (arg1
, 1);
11807 tree neg11
= fold_convert_loc (loc
, type
,
11808 negate_expr (arg11
));
11809 arg1
= build_call_expr_loc (loc
, powfn
, 2, arg10
, neg11
);
11810 return fold_build2_loc (loc
, MULT_EXPR
, type
, arg0
, arg1
);
11815 case TRUNC_DIV_EXPR
:
11816 /* Optimize (X & (-A)) / A where A is a power of 2,
11818 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11819 && !TYPE_UNSIGNED (type
) && TREE_CODE (arg1
) == INTEGER_CST
11820 && integer_pow2p (arg1
) && tree_int_cst_sgn (arg1
) > 0)
11822 tree sum
= fold_binary_loc (loc
, PLUS_EXPR
, TREE_TYPE (arg1
),
11823 arg1
, TREE_OPERAND (arg0
, 1));
11824 if (sum
&& integer_zerop (sum
)) {
11825 tree pow2
= build_int_cst (integer_type_node
,
11826 wi::exact_log2 (arg1
));
11827 return fold_build2_loc (loc
, RSHIFT_EXPR
, type
,
11828 TREE_OPERAND (arg0
, 0), pow2
);
11834 case FLOOR_DIV_EXPR
:
11835 /* Simplify A / (B << N) where A and B are positive and B is
11836 a power of 2, to A >> (N + log2(B)). */
11837 strict_overflow_p
= false;
11838 if (TREE_CODE (arg1
) == LSHIFT_EXPR
11839 && (TYPE_UNSIGNED (type
)
11840 || tree_expr_nonnegative_warnv_p (op0
, &strict_overflow_p
)))
11842 tree sval
= TREE_OPERAND (arg1
, 0);
11843 if (integer_pow2p (sval
) && tree_int_cst_sgn (sval
) > 0)
11845 tree sh_cnt
= TREE_OPERAND (arg1
, 1);
11846 tree pow2
= build_int_cst (TREE_TYPE (sh_cnt
),
11847 wi::exact_log2 (sval
));
11849 if (strict_overflow_p
)
11850 fold_overflow_warning (("assuming signed overflow does not "
11851 "occur when simplifying A / (B << N)"),
11852 WARN_STRICT_OVERFLOW_MISC
);
11854 sh_cnt
= fold_build2_loc (loc
, PLUS_EXPR
, TREE_TYPE (sh_cnt
),
11856 return fold_build2_loc (loc
, RSHIFT_EXPR
, type
,
11857 fold_convert_loc (loc
, type
, arg0
), sh_cnt
);
11863 case ROUND_DIV_EXPR
:
11864 case CEIL_DIV_EXPR
:
11865 case EXACT_DIV_EXPR
:
11866 if (integer_zerop (arg1
))
11869 /* Convert -A / -B to A / B when the type is signed and overflow is
11871 if ((!INTEGRAL_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
11872 && TREE_CODE (arg0
) == NEGATE_EXPR
11873 && negate_expr_p (arg1
))
11875 if (INTEGRAL_TYPE_P (type
))
11876 fold_overflow_warning (("assuming signed overflow does not occur "
11877 "when distributing negation across "
11879 WARN_STRICT_OVERFLOW_MISC
);
11880 return fold_build2_loc (loc
, code
, type
,
11881 fold_convert_loc (loc
, type
,
11882 TREE_OPERAND (arg0
, 0)),
11883 fold_convert_loc (loc
, type
,
11884 negate_expr (arg1
)));
11886 if ((!INTEGRAL_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
11887 && TREE_CODE (arg1
) == NEGATE_EXPR
11888 && negate_expr_p (arg0
))
11890 if (INTEGRAL_TYPE_P (type
))
11891 fold_overflow_warning (("assuming signed overflow does not occur "
11892 "when distributing negation across "
11894 WARN_STRICT_OVERFLOW_MISC
);
11895 return fold_build2_loc (loc
, code
, type
,
11896 fold_convert_loc (loc
, type
,
11897 negate_expr (arg0
)),
11898 fold_convert_loc (loc
, type
,
11899 TREE_OPERAND (arg1
, 0)));
11902 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
11903 operation, EXACT_DIV_EXPR.
11905 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
11906 At one time others generated faster code, it's not clear if they do
11907 after the last round to changes to the DIV code in expmed.c. */
11908 if ((code
== CEIL_DIV_EXPR
|| code
== FLOOR_DIV_EXPR
)
11909 && multiple_of_p (type
, arg0
, arg1
))
11910 return fold_build2_loc (loc
, EXACT_DIV_EXPR
, type
, arg0
, arg1
);
11912 strict_overflow_p
= false;
11913 if (TREE_CODE (arg1
) == INTEGER_CST
11914 && 0 != (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
11915 &strict_overflow_p
)))
11917 if (strict_overflow_p
)
11918 fold_overflow_warning (("assuming signed overflow does not occur "
11919 "when simplifying division"),
11920 WARN_STRICT_OVERFLOW_MISC
);
11921 return fold_convert_loc (loc
, type
, tem
);
11926 case CEIL_MOD_EXPR
:
11927 case FLOOR_MOD_EXPR
:
11928 case ROUND_MOD_EXPR
:
11929 case TRUNC_MOD_EXPR
:
11930 strict_overflow_p
= false;
11931 if (TREE_CODE (arg1
) == INTEGER_CST
11932 && 0 != (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
11933 &strict_overflow_p
)))
11935 if (strict_overflow_p
)
11936 fold_overflow_warning (("assuming signed overflow does not occur "
11937 "when simplifying modulus"),
11938 WARN_STRICT_OVERFLOW_MISC
);
11939 return fold_convert_loc (loc
, type
, tem
);
11948 /* Since negative shift count is not well-defined,
11949 don't try to compute it in the compiler. */
11950 if (TREE_CODE (arg1
) == INTEGER_CST
&& tree_int_cst_sgn (arg1
) < 0)
11953 prec
= element_precision (type
);
11955 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
11956 if (TREE_CODE (op0
) == code
&& tree_fits_uhwi_p (arg1
)
11957 && tree_to_uhwi (arg1
) < prec
11958 && tree_fits_uhwi_p (TREE_OPERAND (arg0
, 1))
11959 && tree_to_uhwi (TREE_OPERAND (arg0
, 1)) < prec
)
11961 unsigned int low
= (tree_to_uhwi (TREE_OPERAND (arg0
, 1))
11962 + tree_to_uhwi (arg1
));
11964 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
11965 being well defined. */
11968 if (code
== LROTATE_EXPR
|| code
== RROTATE_EXPR
)
11970 else if (TYPE_UNSIGNED (type
) || code
== LSHIFT_EXPR
)
11971 return omit_one_operand_loc (loc
, type
, build_zero_cst (type
),
11972 TREE_OPERAND (arg0
, 0));
11977 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0),
11978 build_int_cst (TREE_TYPE (arg1
), low
));
11981 /* Transform (x >> c) << c into x & (-1<<c), or transform (x << c) >> c
11982 into x & ((unsigned)-1 >> c) for unsigned types. */
11983 if (((code
== LSHIFT_EXPR
&& TREE_CODE (arg0
) == RSHIFT_EXPR
)
11984 || (TYPE_UNSIGNED (type
)
11985 && code
== RSHIFT_EXPR
&& TREE_CODE (arg0
) == LSHIFT_EXPR
))
11986 && tree_fits_uhwi_p (arg1
)
11987 && tree_to_uhwi (arg1
) < prec
11988 && tree_fits_uhwi_p (TREE_OPERAND (arg0
, 1))
11989 && tree_to_uhwi (TREE_OPERAND (arg0
, 1)) < prec
)
11991 HOST_WIDE_INT low0
= tree_to_uhwi (TREE_OPERAND (arg0
, 1));
11992 HOST_WIDE_INT low1
= tree_to_uhwi (arg1
);
11998 arg00
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
12000 lshift
= build_minus_one_cst (type
);
12001 lshift
= const_binop (code
, lshift
, arg1
);
12003 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
, arg00
, lshift
);
12007 /* If we have a rotate of a bit operation with the rotate count and
12008 the second operand of the bit operation both constant,
12009 permute the two operations. */
12010 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
12011 && (TREE_CODE (arg0
) == BIT_AND_EXPR
12012 || TREE_CODE (arg0
) == BIT_IOR_EXPR
12013 || TREE_CODE (arg0
) == BIT_XOR_EXPR
)
12014 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
12015 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
,
12016 fold_build2_loc (loc
, code
, type
,
12017 TREE_OPERAND (arg0
, 0), arg1
),
12018 fold_build2_loc (loc
, code
, type
,
12019 TREE_OPERAND (arg0
, 1), arg1
));
12021 /* Two consecutive rotates adding up to the some integer
12022 multiple of the precision of the type can be ignored. */
12023 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
12024 && TREE_CODE (arg0
) == RROTATE_EXPR
12025 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
12026 && wi::umod_trunc (wi::add (arg1
, TREE_OPERAND (arg0
, 1)),
12028 return TREE_OPERAND (arg0
, 0);
12030 /* Fold (X & C2) << C1 into (X << C1) & (C2 << C1)
12031 (X & C2) >> C1 into (X >> C1) & (C2 >> C1)
12032 if the latter can be further optimized. */
12033 if ((code
== LSHIFT_EXPR
|| code
== RSHIFT_EXPR
)
12034 && TREE_CODE (arg0
) == BIT_AND_EXPR
12035 && TREE_CODE (arg1
) == INTEGER_CST
12036 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
12038 tree mask
= fold_build2_loc (loc
, code
, type
,
12039 fold_convert_loc (loc
, type
,
12040 TREE_OPERAND (arg0
, 1)),
12042 tree shift
= fold_build2_loc (loc
, code
, type
,
12043 fold_convert_loc (loc
, type
,
12044 TREE_OPERAND (arg0
, 0)),
12046 tem
= fold_binary_loc (loc
, BIT_AND_EXPR
, type
, shift
, mask
);
12054 tem
= fold_minmax (loc
, MIN_EXPR
, type
, arg0
, arg1
);
12060 tem
= fold_minmax (loc
, MAX_EXPR
, type
, arg0
, arg1
);
12065 case TRUTH_ANDIF_EXPR
:
12066 /* Note that the operands of this must be ints
12067 and their values must be 0 or 1.
12068 ("true" is a fixed value perhaps depending on the language.) */
12069 /* If first arg is constant zero, return it. */
12070 if (integer_zerop (arg0
))
12071 return fold_convert_loc (loc
, type
, arg0
);
12072 case TRUTH_AND_EXPR
:
12073 /* If either arg is constant true, drop it. */
12074 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
12075 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
12076 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
)
12077 /* Preserve sequence points. */
12078 && (code
!= TRUTH_ANDIF_EXPR
|| ! TREE_SIDE_EFFECTS (arg0
)))
12079 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
12080 /* If second arg is constant zero, result is zero, but first arg
12081 must be evaluated. */
12082 if (integer_zerop (arg1
))
12083 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
12084 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
12085 case will be handled here. */
12086 if (integer_zerop (arg0
))
12087 return omit_one_operand_loc (loc
, type
, arg0
, arg1
);
12089 /* !X && X is always false. */
12090 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
12091 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
12092 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg1
);
12093 /* X && !X is always false. */
12094 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
12095 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
12096 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
12098 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
12099 means A >= Y && A != MAX, but in this case we know that
12102 if (!TREE_SIDE_EFFECTS (arg0
)
12103 && !TREE_SIDE_EFFECTS (arg1
))
12105 tem
= fold_to_nonsharp_ineq_using_bound (loc
, arg0
, arg1
);
12106 if (tem
&& !operand_equal_p (tem
, arg0
, 0))
12107 return fold_build2_loc (loc
, code
, type
, tem
, arg1
);
12109 tem
= fold_to_nonsharp_ineq_using_bound (loc
, arg1
, arg0
);
12110 if (tem
&& !operand_equal_p (tem
, arg1
, 0))
12111 return fold_build2_loc (loc
, code
, type
, arg0
, tem
);
12114 if ((tem
= fold_truth_andor (loc
, code
, type
, arg0
, arg1
, op0
, op1
))
12120 case TRUTH_ORIF_EXPR
:
12121 /* Note that the operands of this must be ints
12122 and their values must be 0 or true.
12123 ("true" is a fixed value perhaps depending on the language.) */
12124 /* If first arg is constant true, return it. */
12125 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
12126 return fold_convert_loc (loc
, type
, arg0
);
12127 case TRUTH_OR_EXPR
:
12128 /* If either arg is constant zero, drop it. */
12129 if (TREE_CODE (arg0
) == INTEGER_CST
&& integer_zerop (arg0
))
12130 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
12131 if (TREE_CODE (arg1
) == INTEGER_CST
&& integer_zerop (arg1
)
12132 /* Preserve sequence points. */
12133 && (code
!= TRUTH_ORIF_EXPR
|| ! TREE_SIDE_EFFECTS (arg0
)))
12134 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
12135 /* If second arg is constant true, result is true, but we must
12136 evaluate first arg. */
12137 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
))
12138 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
12139 /* Likewise for first arg, but note this only occurs here for
12141 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
12142 return omit_one_operand_loc (loc
, type
, arg0
, arg1
);
12144 /* !X || X is always true. */
12145 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
12146 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
12147 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg1
);
12148 /* X || !X is always true. */
12149 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
12150 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
12151 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
12153 /* (X && !Y) || (!X && Y) is X ^ Y */
12154 if (TREE_CODE (arg0
) == TRUTH_AND_EXPR
12155 && TREE_CODE (arg1
) == TRUTH_AND_EXPR
)
12157 tree a0
, a1
, l0
, l1
, n0
, n1
;
12159 a0
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 0));
12160 a1
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 1));
12162 l0
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
12163 l1
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
12165 n0
= fold_build1_loc (loc
, TRUTH_NOT_EXPR
, type
, l0
);
12166 n1
= fold_build1_loc (loc
, TRUTH_NOT_EXPR
, type
, l1
);
12168 if ((operand_equal_p (n0
, a0
, 0)
12169 && operand_equal_p (n1
, a1
, 0))
12170 || (operand_equal_p (n0
, a1
, 0)
12171 && operand_equal_p (n1
, a0
, 0)))
12172 return fold_build2_loc (loc
, TRUTH_XOR_EXPR
, type
, l0
, n1
);
12175 if ((tem
= fold_truth_andor (loc
, code
, type
, arg0
, arg1
, op0
, op1
))
12181 case TRUTH_XOR_EXPR
:
12182 /* If the second arg is constant zero, drop it. */
12183 if (integer_zerop (arg1
))
12184 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
12185 /* If the second arg is constant true, this is a logical inversion. */
12186 if (integer_onep (arg1
))
12188 tem
= invert_truthvalue_loc (loc
, arg0
);
12189 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, tem
));
12191 /* Identical arguments cancel to zero. */
12192 if (operand_equal_p (arg0
, arg1
, 0))
12193 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
12195 /* !X ^ X is always true. */
12196 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
12197 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
12198 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg1
);
12200 /* X ^ !X is always true. */
12201 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
12202 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
12203 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
12212 tem
= fold_comparison (loc
, code
, type
, op0
, op1
);
12213 if (tem
!= NULL_TREE
)
12216 /* bool_var != 0 becomes bool_var. */
12217 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_zerop (arg1
)
12218 && code
== NE_EXPR
)
12219 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
12221 /* bool_var == 1 becomes bool_var. */
12222 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_onep (arg1
)
12223 && code
== EQ_EXPR
)
12224 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
12226 /* bool_var != 1 becomes !bool_var. */
12227 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_onep (arg1
)
12228 && code
== NE_EXPR
)
12229 return fold_convert_loc (loc
, type
,
12230 fold_build1_loc (loc
, TRUTH_NOT_EXPR
,
12231 TREE_TYPE (arg0
), arg0
));
12233 /* bool_var == 0 becomes !bool_var. */
12234 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_zerop (arg1
)
12235 && code
== EQ_EXPR
)
12236 return fold_convert_loc (loc
, type
,
12237 fold_build1_loc (loc
, TRUTH_NOT_EXPR
,
12238 TREE_TYPE (arg0
), arg0
));
12240 /* !exp != 0 becomes !exp */
12241 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
&& integer_zerop (arg1
)
12242 && code
== NE_EXPR
)
12243 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
12245 /* If this is an equality comparison of the address of two non-weak,
12246 unaliased symbols neither of which are extern (since we do not
12247 have access to attributes for externs), then we know the result. */
12248 if (TREE_CODE (arg0
) == ADDR_EXPR
12249 && DECL_P (TREE_OPERAND (arg0
, 0))
12250 && TREE_CODE (arg1
) == ADDR_EXPR
12251 && DECL_P (TREE_OPERAND (arg1
, 0)))
12255 if (decl_in_symtab_p (TREE_OPERAND (arg0
, 0))
12256 && decl_in_symtab_p (TREE_OPERAND (arg1
, 0)))
12257 equal
= symtab_node::get_create (TREE_OPERAND (arg0
, 0))
12258 ->equal_address_to (symtab_node::get_create
12259 (TREE_OPERAND (arg1
, 0)));
12261 equal
= TREE_OPERAND (arg0
, 0) == TREE_OPERAND (arg1
, 0);
12263 return constant_boolean_node (equal
12264 ? code
== EQ_EXPR
: code
!= EQ_EXPR
,
12268 /* Similarly for a NEGATE_EXPR. */
12269 if (TREE_CODE (arg0
) == NEGATE_EXPR
12270 && TREE_CODE (arg1
) == INTEGER_CST
12271 && 0 != (tem
= negate_expr (fold_convert_loc (loc
, TREE_TYPE (arg0
),
12273 && TREE_CODE (tem
) == INTEGER_CST
12274 && !TREE_OVERFLOW (tem
))
12275 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0), tem
);
12277 /* Similarly for a BIT_XOR_EXPR; X ^ C1 == C2 is X == (C1 ^ C2). */
12278 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
12279 && TREE_CODE (arg1
) == INTEGER_CST
12280 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
12281 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0),
12282 fold_build2_loc (loc
, BIT_XOR_EXPR
, TREE_TYPE (arg0
),
12283 fold_convert_loc (loc
,
12286 TREE_OPERAND (arg0
, 1)));
12288 /* Transform comparisons of the form X +- Y CMP X to Y CMP 0. */
12289 if ((TREE_CODE (arg0
) == PLUS_EXPR
12290 || TREE_CODE (arg0
) == POINTER_PLUS_EXPR
12291 || TREE_CODE (arg0
) == MINUS_EXPR
)
12292 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0
,
12295 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
12296 || POINTER_TYPE_P (TREE_TYPE (arg0
))))
12298 tree val
= TREE_OPERAND (arg0
, 1);
12299 return omit_two_operands_loc (loc
, type
,
12300 fold_build2_loc (loc
, code
, type
,
12302 build_int_cst (TREE_TYPE (val
),
12304 TREE_OPERAND (arg0
, 0), arg1
);
12307 /* Transform comparisons of the form C - X CMP X if C % 2 == 1. */
12308 if (TREE_CODE (arg0
) == MINUS_EXPR
12309 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == INTEGER_CST
12310 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0
,
12313 && wi::extract_uhwi (TREE_OPERAND (arg0
, 0), 0, 1) == 1)
12315 return omit_two_operands_loc (loc
, type
,
12317 ? boolean_true_node
: boolean_false_node
,
12318 TREE_OPERAND (arg0
, 1), arg1
);
12321 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
12322 if (TREE_CODE (arg0
) == ABS_EXPR
12323 && (integer_zerop (arg1
) || real_zerop (arg1
)))
12324 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0), arg1
);
12326 /* If this is an EQ or NE comparison with zero and ARG0 is
12327 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
12328 two operations, but the latter can be done in one less insn
12329 on machines that have only two-operand insns or on which a
12330 constant cannot be the first operand. */
12331 if (TREE_CODE (arg0
) == BIT_AND_EXPR
12332 && integer_zerop (arg1
))
12334 tree arg00
= TREE_OPERAND (arg0
, 0);
12335 tree arg01
= TREE_OPERAND (arg0
, 1);
12336 if (TREE_CODE (arg00
) == LSHIFT_EXPR
12337 && integer_onep (TREE_OPERAND (arg00
, 0)))
12339 tree tem
= fold_build2_loc (loc
, RSHIFT_EXPR
, TREE_TYPE (arg00
),
12340 arg01
, TREE_OPERAND (arg00
, 1));
12341 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
), tem
,
12342 build_int_cst (TREE_TYPE (arg0
), 1));
12343 return fold_build2_loc (loc
, code
, type
,
12344 fold_convert_loc (loc
, TREE_TYPE (arg1
), tem
),
12347 else if (TREE_CODE (arg01
) == LSHIFT_EXPR
12348 && integer_onep (TREE_OPERAND (arg01
, 0)))
12350 tree tem
= fold_build2_loc (loc
, RSHIFT_EXPR
, TREE_TYPE (arg01
),
12351 arg00
, TREE_OPERAND (arg01
, 1));
12352 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
), tem
,
12353 build_int_cst (TREE_TYPE (arg0
), 1));
12354 return fold_build2_loc (loc
, code
, type
,
12355 fold_convert_loc (loc
, TREE_TYPE (arg1
), tem
),
12360 /* If this is an NE or EQ comparison of zero against the result of a
12361 signed MOD operation whose second operand is a power of 2, make
12362 the MOD operation unsigned since it is simpler and equivalent. */
12363 if (integer_zerop (arg1
)
12364 && !TYPE_UNSIGNED (TREE_TYPE (arg0
))
12365 && (TREE_CODE (arg0
) == TRUNC_MOD_EXPR
12366 || TREE_CODE (arg0
) == CEIL_MOD_EXPR
12367 || TREE_CODE (arg0
) == FLOOR_MOD_EXPR
12368 || TREE_CODE (arg0
) == ROUND_MOD_EXPR
)
12369 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
12371 tree newtype
= unsigned_type_for (TREE_TYPE (arg0
));
12372 tree newmod
= fold_build2_loc (loc
, TREE_CODE (arg0
), newtype
,
12373 fold_convert_loc (loc
, newtype
,
12374 TREE_OPERAND (arg0
, 0)),
12375 fold_convert_loc (loc
, newtype
,
12376 TREE_OPERAND (arg0
, 1)));
12378 return fold_build2_loc (loc
, code
, type
, newmod
,
12379 fold_convert_loc (loc
, newtype
, arg1
));
12382 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
12383 C1 is a valid shift constant, and C2 is a power of two, i.e.
12385 if (TREE_CODE (arg0
) == BIT_AND_EXPR
12386 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == RSHIFT_EXPR
12387 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1))
12389 && integer_pow2p (TREE_OPERAND (arg0
, 1))
12390 && integer_zerop (arg1
))
12392 tree itype
= TREE_TYPE (arg0
);
12393 tree arg001
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1);
12394 prec
= TYPE_PRECISION (itype
);
12396 /* Check for a valid shift count. */
12397 if (wi::ltu_p (arg001
, prec
))
12399 tree arg01
= TREE_OPERAND (arg0
, 1);
12400 tree arg000
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
12401 unsigned HOST_WIDE_INT log2
= tree_log2 (arg01
);
12402 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
12403 can be rewritten as (X & (C2 << C1)) != 0. */
12404 if ((log2
+ TREE_INT_CST_LOW (arg001
)) < prec
)
12406 tem
= fold_build2_loc (loc
, LSHIFT_EXPR
, itype
, arg01
, arg001
);
12407 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, arg000
, tem
);
12408 return fold_build2_loc (loc
, code
, type
, tem
,
12409 fold_convert_loc (loc
, itype
, arg1
));
12411 /* Otherwise, for signed (arithmetic) shifts,
12412 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
12413 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
12414 else if (!TYPE_UNSIGNED (itype
))
12415 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
, type
,
12416 arg000
, build_int_cst (itype
, 0));
12417 /* Otherwise, of unsigned (logical) shifts,
12418 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
12419 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
12421 return omit_one_operand_loc (loc
, type
,
12422 code
== EQ_EXPR
? integer_one_node
12423 : integer_zero_node
,
12428 /* If we have (A & C) == C where C is a power of 2, convert this into
12429 (A & C) != 0. Similarly for NE_EXPR. */
12430 if (TREE_CODE (arg0
) == BIT_AND_EXPR
12431 && integer_pow2p (TREE_OPERAND (arg0
, 1))
12432 && operand_equal_p (TREE_OPERAND (arg0
, 1), arg1
, 0))
12433 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
12434 arg0
, fold_convert_loc (loc
, TREE_TYPE (arg0
),
12435 integer_zero_node
));
12437 /* If we have (A & C) != 0 or (A & C) == 0 and C is the sign
12438 bit, then fold the expression into A < 0 or A >= 0. */
12439 tem
= fold_single_bit_test_into_sign_test (loc
, code
, arg0
, arg1
, type
);
12443 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
12444 Similarly for NE_EXPR. */
12445 if (TREE_CODE (arg0
) == BIT_AND_EXPR
12446 && TREE_CODE (arg1
) == INTEGER_CST
12447 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
12449 tree notc
= fold_build1_loc (loc
, BIT_NOT_EXPR
,
12450 TREE_TYPE (TREE_OPERAND (arg0
, 1)),
12451 TREE_OPERAND (arg0
, 1));
12453 = fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
),
12454 fold_convert_loc (loc
, TREE_TYPE (arg0
), arg1
),
12456 tree rslt
= code
== EQ_EXPR
? integer_zero_node
: integer_one_node
;
12457 if (integer_nonzerop (dandnotc
))
12458 return omit_one_operand_loc (loc
, type
, rslt
, arg0
);
12461 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
12462 Similarly for NE_EXPR. */
12463 if (TREE_CODE (arg0
) == BIT_IOR_EXPR
12464 && TREE_CODE (arg1
) == INTEGER_CST
12465 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
12467 tree notd
= fold_build1_loc (loc
, BIT_NOT_EXPR
, TREE_TYPE (arg1
), arg1
);
12469 = fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
),
12470 TREE_OPERAND (arg0
, 1),
12471 fold_convert_loc (loc
, TREE_TYPE (arg0
), notd
));
12472 tree rslt
= code
== EQ_EXPR
? integer_zero_node
: integer_one_node
;
12473 if (integer_nonzerop (candnotd
))
12474 return omit_one_operand_loc (loc
, type
, rslt
, arg0
);
12477 /* If this is a comparison of a field, we may be able to simplify it. */
12478 if ((TREE_CODE (arg0
) == COMPONENT_REF
12479 || TREE_CODE (arg0
) == BIT_FIELD_REF
)
12480 /* Handle the constant case even without -O
12481 to make sure the warnings are given. */
12482 && (optimize
|| TREE_CODE (arg1
) == INTEGER_CST
))
12484 t1
= optimize_bit_field_compare (loc
, code
, type
, arg0
, arg1
);
12489 /* Optimize comparisons of strlen vs zero to a compare of the
12490 first character of the string vs zero. To wit,
12491 strlen(ptr) == 0 => *ptr == 0
12492 strlen(ptr) != 0 => *ptr != 0
12493 Other cases should reduce to one of these two (or a constant)
12494 due to the return value of strlen being unsigned. */
12495 if (TREE_CODE (arg0
) == CALL_EXPR
12496 && integer_zerop (arg1
))
12498 tree fndecl
= get_callee_fndecl (arg0
);
12501 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
12502 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_STRLEN
12503 && call_expr_nargs (arg0
) == 1
12504 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0
, 0))) == POINTER_TYPE
)
12506 tree iref
= build_fold_indirect_ref_loc (loc
,
12507 CALL_EXPR_ARG (arg0
, 0));
12508 return fold_build2_loc (loc
, code
, type
, iref
,
12509 build_int_cst (TREE_TYPE (iref
), 0));
12513 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
12514 of X. Similarly fold (X >> C) == 0 into X >= 0. */
12515 if (TREE_CODE (arg0
) == RSHIFT_EXPR
12516 && integer_zerop (arg1
)
12517 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
12519 tree arg00
= TREE_OPERAND (arg0
, 0);
12520 tree arg01
= TREE_OPERAND (arg0
, 1);
12521 tree itype
= TREE_TYPE (arg00
);
12522 if (wi::eq_p (arg01
, element_precision (itype
) - 1))
12524 if (TYPE_UNSIGNED (itype
))
12526 itype
= signed_type_for (itype
);
12527 arg00
= fold_convert_loc (loc
, itype
, arg00
);
12529 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
,
12530 type
, arg00
, build_zero_cst (itype
));
12534 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
12535 if (integer_zerop (arg1
)
12536 && TREE_CODE (arg0
) == BIT_XOR_EXPR
)
12537 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0),
12538 TREE_OPERAND (arg0
, 1));
12540 /* (X ^ Y) == Y becomes X == 0. We know that Y has no side-effects. */
12541 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
12542 && operand_equal_p (TREE_OPERAND (arg0
, 1), arg1
, 0))
12543 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0),
12544 build_zero_cst (TREE_TYPE (arg0
)));
12545 /* Likewise (X ^ Y) == X becomes Y == 0. X has no side-effects. */
12546 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
12547 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0)
12548 && reorder_operands_p (TREE_OPERAND (arg0
, 1), arg1
))
12549 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 1),
12550 build_zero_cst (TREE_TYPE (arg0
)));
12552 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
12553 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
12554 && TREE_CODE (arg1
) == INTEGER_CST
12555 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
12556 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0),
12557 fold_build2_loc (loc
, BIT_XOR_EXPR
, TREE_TYPE (arg1
),
12558 TREE_OPERAND (arg0
, 1), arg1
));
12560 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
12561 (X & C) == 0 when C is a single bit. */
12562 if (TREE_CODE (arg0
) == BIT_AND_EXPR
12563 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_NOT_EXPR
12564 && integer_zerop (arg1
)
12565 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
12567 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
),
12568 TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0),
12569 TREE_OPERAND (arg0
, 1));
12570 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
,
12572 fold_convert_loc (loc
, TREE_TYPE (arg0
),
12576 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
12577 constant C is a power of two, i.e. a single bit. */
12578 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
12579 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_AND_EXPR
12580 && integer_zerop (arg1
)
12581 && integer_pow2p (TREE_OPERAND (arg0
, 1))
12582 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
12583 TREE_OPERAND (arg0
, 1), OEP_ONLY_CONST
))
12585 tree arg00
= TREE_OPERAND (arg0
, 0);
12586 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
12587 arg00
, build_int_cst (TREE_TYPE (arg00
), 0));
12590 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
12591 when is C is a power of two, i.e. a single bit. */
12592 if (TREE_CODE (arg0
) == BIT_AND_EXPR
12593 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_XOR_EXPR
12594 && integer_zerop (arg1
)
12595 && integer_pow2p (TREE_OPERAND (arg0
, 1))
12596 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
12597 TREE_OPERAND (arg0
, 1), OEP_ONLY_CONST
))
12599 tree arg000
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
12600 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg000
),
12601 arg000
, TREE_OPERAND (arg0
, 1));
12602 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
12603 tem
, build_int_cst (TREE_TYPE (tem
), 0));
12606 if (integer_zerop (arg1
)
12607 && tree_expr_nonzero_p (arg0
))
12609 tree res
= constant_boolean_node (code
==NE_EXPR
, type
);
12610 return omit_one_operand_loc (loc
, type
, res
, arg0
);
12613 /* Fold -X op -Y as X op Y, where op is eq/ne. */
12614 if (TREE_CODE (arg0
) == NEGATE_EXPR
12615 && TREE_CODE (arg1
) == NEGATE_EXPR
)
12616 return fold_build2_loc (loc
, code
, type
,
12617 TREE_OPERAND (arg0
, 0),
12618 fold_convert_loc (loc
, TREE_TYPE (arg0
),
12619 TREE_OPERAND (arg1
, 0)));
12621 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
12622 if (TREE_CODE (arg0
) == BIT_AND_EXPR
12623 && TREE_CODE (arg1
) == BIT_AND_EXPR
)
12625 tree arg00
= TREE_OPERAND (arg0
, 0);
12626 tree arg01
= TREE_OPERAND (arg0
, 1);
12627 tree arg10
= TREE_OPERAND (arg1
, 0);
12628 tree arg11
= TREE_OPERAND (arg1
, 1);
12629 tree itype
= TREE_TYPE (arg0
);
12631 if (operand_equal_p (arg01
, arg11
, 0))
12632 return fold_build2_loc (loc
, code
, type
,
12633 fold_build2_loc (loc
, BIT_AND_EXPR
, itype
,
12634 fold_build2_loc (loc
,
12635 BIT_XOR_EXPR
, itype
,
12638 build_zero_cst (itype
));
12640 if (operand_equal_p (arg01
, arg10
, 0))
12641 return fold_build2_loc (loc
, code
, type
,
12642 fold_build2_loc (loc
, BIT_AND_EXPR
, itype
,
12643 fold_build2_loc (loc
,
12644 BIT_XOR_EXPR
, itype
,
12647 build_zero_cst (itype
));
12649 if (operand_equal_p (arg00
, arg11
, 0))
12650 return fold_build2_loc (loc
, code
, type
,
12651 fold_build2_loc (loc
, BIT_AND_EXPR
, itype
,
12652 fold_build2_loc (loc
,
12653 BIT_XOR_EXPR
, itype
,
12656 build_zero_cst (itype
));
12658 if (operand_equal_p (arg00
, arg10
, 0))
12659 return fold_build2_loc (loc
, code
, type
,
12660 fold_build2_loc (loc
, BIT_AND_EXPR
, itype
,
12661 fold_build2_loc (loc
,
12662 BIT_XOR_EXPR
, itype
,
12665 build_zero_cst (itype
));
12668 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
12669 && TREE_CODE (arg1
) == BIT_XOR_EXPR
)
12671 tree arg00
= TREE_OPERAND (arg0
, 0);
12672 tree arg01
= TREE_OPERAND (arg0
, 1);
12673 tree arg10
= TREE_OPERAND (arg1
, 0);
12674 tree arg11
= TREE_OPERAND (arg1
, 1);
12675 tree itype
= TREE_TYPE (arg0
);
12677 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
12678 operand_equal_p guarantees no side-effects so we don't need
12679 to use omit_one_operand on Z. */
12680 if (operand_equal_p (arg01
, arg11
, 0))
12681 return fold_build2_loc (loc
, code
, type
, arg00
,
12682 fold_convert_loc (loc
, TREE_TYPE (arg00
),
12684 if (operand_equal_p (arg01
, arg10
, 0))
12685 return fold_build2_loc (loc
, code
, type
, arg00
,
12686 fold_convert_loc (loc
, TREE_TYPE (arg00
),
12688 if (operand_equal_p (arg00
, arg11
, 0))
12689 return fold_build2_loc (loc
, code
, type
, arg01
,
12690 fold_convert_loc (loc
, TREE_TYPE (arg01
),
12692 if (operand_equal_p (arg00
, arg10
, 0))
12693 return fold_build2_loc (loc
, code
, type
, arg01
,
12694 fold_convert_loc (loc
, TREE_TYPE (arg01
),
12697 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
12698 if (TREE_CODE (arg01
) == INTEGER_CST
12699 && TREE_CODE (arg11
) == INTEGER_CST
)
12701 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg01
,
12702 fold_convert_loc (loc
, itype
, arg11
));
12703 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg00
, tem
);
12704 return fold_build2_loc (loc
, code
, type
, tem
,
12705 fold_convert_loc (loc
, itype
, arg10
));
12709 /* Attempt to simplify equality/inequality comparisons of complex
12710 values. Only lower the comparison if the result is known or
12711 can be simplified to a single scalar comparison. */
12712 if ((TREE_CODE (arg0
) == COMPLEX_EXPR
12713 || TREE_CODE (arg0
) == COMPLEX_CST
)
12714 && (TREE_CODE (arg1
) == COMPLEX_EXPR
12715 || TREE_CODE (arg1
) == COMPLEX_CST
))
12717 tree real0
, imag0
, real1
, imag1
;
12720 if (TREE_CODE (arg0
) == COMPLEX_EXPR
)
12722 real0
= TREE_OPERAND (arg0
, 0);
12723 imag0
= TREE_OPERAND (arg0
, 1);
12727 real0
= TREE_REALPART (arg0
);
12728 imag0
= TREE_IMAGPART (arg0
);
12731 if (TREE_CODE (arg1
) == COMPLEX_EXPR
)
12733 real1
= TREE_OPERAND (arg1
, 0);
12734 imag1
= TREE_OPERAND (arg1
, 1);
12738 real1
= TREE_REALPART (arg1
);
12739 imag1
= TREE_IMAGPART (arg1
);
12742 rcond
= fold_binary_loc (loc
, code
, type
, real0
, real1
);
12743 if (rcond
&& TREE_CODE (rcond
) == INTEGER_CST
)
12745 if (integer_zerop (rcond
))
12747 if (code
== EQ_EXPR
)
12748 return omit_two_operands_loc (loc
, type
, boolean_false_node
,
12750 return fold_build2_loc (loc
, NE_EXPR
, type
, imag0
, imag1
);
12754 if (code
== NE_EXPR
)
12755 return omit_two_operands_loc (loc
, type
, boolean_true_node
,
12757 return fold_build2_loc (loc
, EQ_EXPR
, type
, imag0
, imag1
);
12761 icond
= fold_binary_loc (loc
, code
, type
, imag0
, imag1
);
12762 if (icond
&& TREE_CODE (icond
) == INTEGER_CST
)
12764 if (integer_zerop (icond
))
12766 if (code
== EQ_EXPR
)
12767 return omit_two_operands_loc (loc
, type
, boolean_false_node
,
12769 return fold_build2_loc (loc
, NE_EXPR
, type
, real0
, real1
);
12773 if (code
== NE_EXPR
)
12774 return omit_two_operands_loc (loc
, type
, boolean_true_node
,
12776 return fold_build2_loc (loc
, EQ_EXPR
, type
, real0
, real1
);
12787 tem
= fold_comparison (loc
, code
, type
, op0
, op1
);
12788 if (tem
!= NULL_TREE
)
12791 /* Transform comparisons of the form X +- C CMP X. */
12792 if ((TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
12793 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0)
12794 && ((TREE_CODE (TREE_OPERAND (arg0
, 1)) == REAL_CST
12795 && !HONOR_SNANS (arg0
))
12796 || (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
12797 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))))
12799 tree arg01
= TREE_OPERAND (arg0
, 1);
12800 enum tree_code code0
= TREE_CODE (arg0
);
12803 if (TREE_CODE (arg01
) == REAL_CST
)
12804 is_positive
= REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01
)) ? -1 : 1;
12806 is_positive
= tree_int_cst_sgn (arg01
);
12808 /* (X - c) > X becomes false. */
12809 if (code
== GT_EXPR
12810 && ((code0
== MINUS_EXPR
&& is_positive
>= 0)
12811 || (code0
== PLUS_EXPR
&& is_positive
<= 0)))
12813 if (TREE_CODE (arg01
) == INTEGER_CST
12814 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
12815 fold_overflow_warning (("assuming signed overflow does not "
12816 "occur when assuming that (X - c) > X "
12817 "is always false"),
12818 WARN_STRICT_OVERFLOW_ALL
);
12819 return constant_boolean_node (0, type
);
12822 /* Likewise (X + c) < X becomes false. */
12823 if (code
== LT_EXPR
12824 && ((code0
== PLUS_EXPR
&& is_positive
>= 0)
12825 || (code0
== MINUS_EXPR
&& is_positive
<= 0)))
12827 if (TREE_CODE (arg01
) == INTEGER_CST
12828 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
12829 fold_overflow_warning (("assuming signed overflow does not "
12830 "occur when assuming that "
12831 "(X + c) < X is always false"),
12832 WARN_STRICT_OVERFLOW_ALL
);
12833 return constant_boolean_node (0, type
);
12836 /* Convert (X - c) <= X to true. */
12837 if (!HONOR_NANS (arg1
)
12839 && ((code0
== MINUS_EXPR
&& is_positive
>= 0)
12840 || (code0
== PLUS_EXPR
&& is_positive
<= 0)))
12842 if (TREE_CODE (arg01
) == INTEGER_CST
12843 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
12844 fold_overflow_warning (("assuming signed overflow does not "
12845 "occur when assuming that "
12846 "(X - c) <= X is always true"),
12847 WARN_STRICT_OVERFLOW_ALL
);
12848 return constant_boolean_node (1, type
);
12851 /* Convert (X + c) >= X to true. */
12852 if (!HONOR_NANS (arg1
)
12854 && ((code0
== PLUS_EXPR
&& is_positive
>= 0)
12855 || (code0
== MINUS_EXPR
&& is_positive
<= 0)))
12857 if (TREE_CODE (arg01
) == INTEGER_CST
12858 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
12859 fold_overflow_warning (("assuming signed overflow does not "
12860 "occur when assuming that "
12861 "(X + c) >= X is always true"),
12862 WARN_STRICT_OVERFLOW_ALL
);
12863 return constant_boolean_node (1, type
);
12866 if (TREE_CODE (arg01
) == INTEGER_CST
)
12868 /* Convert X + c > X and X - c < X to true for integers. */
12869 if (code
== GT_EXPR
12870 && ((code0
== PLUS_EXPR
&& is_positive
> 0)
12871 || (code0
== MINUS_EXPR
&& is_positive
< 0)))
12873 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
12874 fold_overflow_warning (("assuming signed overflow does "
12875 "not occur when assuming that "
12876 "(X + c) > X is always true"),
12877 WARN_STRICT_OVERFLOW_ALL
);
12878 return constant_boolean_node (1, type
);
12881 if (code
== LT_EXPR
12882 && ((code0
== MINUS_EXPR
&& is_positive
> 0)
12883 || (code0
== PLUS_EXPR
&& is_positive
< 0)))
12885 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
12886 fold_overflow_warning (("assuming signed overflow does "
12887 "not occur when assuming that "
12888 "(X - c) < X is always true"),
12889 WARN_STRICT_OVERFLOW_ALL
);
12890 return constant_boolean_node (1, type
);
12893 /* Convert X + c <= X and X - c >= X to false for integers. */
12894 if (code
== LE_EXPR
12895 && ((code0
== PLUS_EXPR
&& is_positive
> 0)
12896 || (code0
== MINUS_EXPR
&& is_positive
< 0)))
12898 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
12899 fold_overflow_warning (("assuming signed overflow does "
12900 "not occur when assuming that "
12901 "(X + c) <= X is always false"),
12902 WARN_STRICT_OVERFLOW_ALL
);
12903 return constant_boolean_node (0, type
);
12906 if (code
== GE_EXPR
12907 && ((code0
== MINUS_EXPR
&& is_positive
> 0)
12908 || (code0
== PLUS_EXPR
&& is_positive
< 0)))
12910 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
12911 fold_overflow_warning (("assuming signed overflow does "
12912 "not occur when assuming that "
12913 "(X - c) >= X is always false"),
12914 WARN_STRICT_OVERFLOW_ALL
);
12915 return constant_boolean_node (0, type
);
12920 /* Comparisons with the highest or lowest possible integer of
12921 the specified precision will have known values. */
12923 tree arg1_type
= TREE_TYPE (arg1
);
12924 unsigned int prec
= TYPE_PRECISION (arg1_type
);
12926 if (TREE_CODE (arg1
) == INTEGER_CST
12927 && (INTEGRAL_TYPE_P (arg1_type
) || POINTER_TYPE_P (arg1_type
)))
12929 wide_int max
= wi::max_value (arg1_type
);
12930 wide_int signed_max
= wi::max_value (prec
, SIGNED
);
12931 wide_int min
= wi::min_value (arg1_type
);
12933 if (wi::eq_p (arg1
, max
))
12937 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
12940 return fold_build2_loc (loc
, EQ_EXPR
, type
, op0
, op1
);
12943 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
12946 return fold_build2_loc (loc
, NE_EXPR
, type
, op0
, op1
);
12948 /* The GE_EXPR and LT_EXPR cases above are not normally
12949 reached because of previous transformations. */
12954 else if (wi::eq_p (arg1
, max
- 1))
12958 arg1
= const_binop (PLUS_EXPR
, arg1
,
12959 build_int_cst (TREE_TYPE (arg1
), 1));
12960 return fold_build2_loc (loc
, EQ_EXPR
, type
,
12961 fold_convert_loc (loc
,
12962 TREE_TYPE (arg1
), arg0
),
12965 arg1
= const_binop (PLUS_EXPR
, arg1
,
12966 build_int_cst (TREE_TYPE (arg1
), 1));
12967 return fold_build2_loc (loc
, NE_EXPR
, type
,
12968 fold_convert_loc (loc
, TREE_TYPE (arg1
),
12974 else if (wi::eq_p (arg1
, min
))
12978 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
12981 return fold_build2_loc (loc
, EQ_EXPR
, type
, op0
, op1
);
12984 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
12987 return fold_build2_loc (loc
, NE_EXPR
, type
, op0
, op1
);
12992 else if (wi::eq_p (arg1
, min
+ 1))
12996 arg1
= const_binop (MINUS_EXPR
, arg1
,
12997 build_int_cst (TREE_TYPE (arg1
), 1));
12998 return fold_build2_loc (loc
, NE_EXPR
, type
,
12999 fold_convert_loc (loc
,
13000 TREE_TYPE (arg1
), arg0
),
13003 arg1
= const_binop (MINUS_EXPR
, arg1
,
13004 build_int_cst (TREE_TYPE (arg1
), 1));
13005 return fold_build2_loc (loc
, EQ_EXPR
, type
,
13006 fold_convert_loc (loc
, TREE_TYPE (arg1
),
13013 else if (wi::eq_p (arg1
, signed_max
)
13014 && TYPE_UNSIGNED (arg1_type
)
13015 /* We will flip the signedness of the comparison operator
13016 associated with the mode of arg1, so the sign bit is
13017 specified by this mode. Check that arg1 is the signed
13018 max associated with this sign bit. */
13019 && prec
== GET_MODE_PRECISION (TYPE_MODE (arg1_type
))
13020 /* signed_type does not work on pointer types. */
13021 && INTEGRAL_TYPE_P (arg1_type
))
13023 /* The following case also applies to X < signed_max+1
13024 and X >= signed_max+1 because previous transformations. */
13025 if (code
== LE_EXPR
|| code
== GT_EXPR
)
13027 tree st
= signed_type_for (arg1_type
);
13028 return fold_build2_loc (loc
,
13029 code
== LE_EXPR
? GE_EXPR
: LT_EXPR
,
13030 type
, fold_convert_loc (loc
, st
, arg0
),
13031 build_int_cst (st
, 0));
13037 /* If we are comparing an ABS_EXPR with a constant, we can
13038 convert all the cases into explicit comparisons, but they may
13039 well not be faster than doing the ABS and one comparison.
13040 But ABS (X) <= C is a range comparison, which becomes a subtraction
13041 and a comparison, and is probably faster. */
13042 if (code
== LE_EXPR
13043 && TREE_CODE (arg1
) == INTEGER_CST
13044 && TREE_CODE (arg0
) == ABS_EXPR
13045 && ! TREE_SIDE_EFFECTS (arg0
)
13046 && (0 != (tem
= negate_expr (arg1
)))
13047 && TREE_CODE (tem
) == INTEGER_CST
13048 && !TREE_OVERFLOW (tem
))
13049 return fold_build2_loc (loc
, TRUTH_ANDIF_EXPR
, type
,
13050 build2 (GE_EXPR
, type
,
13051 TREE_OPERAND (arg0
, 0), tem
),
13052 build2 (LE_EXPR
, type
,
13053 TREE_OPERAND (arg0
, 0), arg1
));
13055 /* Convert ABS_EXPR<x> >= 0 to true. */
13056 strict_overflow_p
= false;
13057 if (code
== GE_EXPR
13058 && (integer_zerop (arg1
)
13059 || (! HONOR_NANS (arg0
)
13060 && real_zerop (arg1
)))
13061 && tree_expr_nonnegative_warnv_p (arg0
, &strict_overflow_p
))
13063 if (strict_overflow_p
)
13064 fold_overflow_warning (("assuming signed overflow does not occur "
13065 "when simplifying comparison of "
13066 "absolute value and zero"),
13067 WARN_STRICT_OVERFLOW_CONDITIONAL
);
13068 return omit_one_operand_loc (loc
, type
,
13069 constant_boolean_node (true, type
),
13073 /* Convert ABS_EXPR<x> < 0 to false. */
13074 strict_overflow_p
= false;
13075 if (code
== LT_EXPR
13076 && (integer_zerop (arg1
) || real_zerop (arg1
))
13077 && tree_expr_nonnegative_warnv_p (arg0
, &strict_overflow_p
))
13079 if (strict_overflow_p
)
13080 fold_overflow_warning (("assuming signed overflow does not occur "
13081 "when simplifying comparison of "
13082 "absolute value and zero"),
13083 WARN_STRICT_OVERFLOW_CONDITIONAL
);
13084 return omit_one_operand_loc (loc
, type
,
13085 constant_boolean_node (false, type
),
13089 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
13090 and similarly for >= into !=. */
13091 if ((code
== LT_EXPR
|| code
== GE_EXPR
)
13092 && TYPE_UNSIGNED (TREE_TYPE (arg0
))
13093 && TREE_CODE (arg1
) == LSHIFT_EXPR
13094 && integer_onep (TREE_OPERAND (arg1
, 0)))
13095 return build2_loc (loc
, code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
13096 build2 (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
13097 TREE_OPERAND (arg1
, 1)),
13098 build_zero_cst (TREE_TYPE (arg0
)));
13100 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
13101 otherwise Y might be >= # of bits in X's type and thus e.g.
13102 (unsigned char) (1 << Y) for Y 15 might be 0.
13103 If the cast is widening, then 1 << Y should have unsigned type,
13104 otherwise if Y is number of bits in the signed shift type minus 1,
13105 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
13106 31 might be 0xffffffff80000000. */
13107 if ((code
== LT_EXPR
|| code
== GE_EXPR
)
13108 && TYPE_UNSIGNED (TREE_TYPE (arg0
))
13109 && CONVERT_EXPR_P (arg1
)
13110 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == LSHIFT_EXPR
13111 && (element_precision (TREE_TYPE (arg1
))
13112 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1
, 0))))
13113 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1
, 0)))
13114 || (element_precision (TREE_TYPE (arg1
))
13115 == element_precision (TREE_TYPE (TREE_OPERAND (arg1
, 0)))))
13116 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0)))
13118 tem
= build2 (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
13119 TREE_OPERAND (TREE_OPERAND (arg1
, 0), 1));
13120 return build2_loc (loc
, code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
13121 fold_convert_loc (loc
, TREE_TYPE (arg0
), tem
),
13122 build_zero_cst (TREE_TYPE (arg0
)));
13127 case UNORDERED_EXPR
:
13135 if (TREE_CODE (arg0
) == REAL_CST
&& TREE_CODE (arg1
) == REAL_CST
)
13137 t1
= fold_relational_const (code
, type
, arg0
, arg1
);
13138 if (t1
!= NULL_TREE
)
13142 /* If the first operand is NaN, the result is constant. */
13143 if (TREE_CODE (arg0
) == REAL_CST
13144 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg0
))
13145 && (code
!= LTGT_EXPR
|| ! flag_trapping_math
))
13147 t1
= (code
== ORDERED_EXPR
|| code
== LTGT_EXPR
)
13148 ? integer_zero_node
13149 : integer_one_node
;
13150 return omit_one_operand_loc (loc
, type
, t1
, arg1
);
13153 /* If the second operand is NaN, the result is constant. */
13154 if (TREE_CODE (arg1
) == REAL_CST
13155 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg1
))
13156 && (code
!= LTGT_EXPR
|| ! flag_trapping_math
))
13158 t1
= (code
== ORDERED_EXPR
|| code
== LTGT_EXPR
)
13159 ? integer_zero_node
13160 : integer_one_node
;
13161 return omit_one_operand_loc (loc
, type
, t1
, arg0
);
13164 /* Simplify unordered comparison of something with itself. */
13165 if ((code
== UNLE_EXPR
|| code
== UNGE_EXPR
|| code
== UNEQ_EXPR
)
13166 && operand_equal_p (arg0
, arg1
, 0))
13167 return constant_boolean_node (1, type
);
13169 if (code
== LTGT_EXPR
13170 && !flag_trapping_math
13171 && operand_equal_p (arg0
, arg1
, 0))
13172 return constant_boolean_node (0, type
);
13174 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
13176 tree targ0
= strip_float_extensions (arg0
);
13177 tree targ1
= strip_float_extensions (arg1
);
13178 tree newtype
= TREE_TYPE (targ0
);
13180 if (TYPE_PRECISION (TREE_TYPE (targ1
)) > TYPE_PRECISION (newtype
))
13181 newtype
= TREE_TYPE (targ1
);
13183 if (TYPE_PRECISION (newtype
) < TYPE_PRECISION (TREE_TYPE (arg0
)))
13184 return fold_build2_loc (loc
, code
, type
,
13185 fold_convert_loc (loc
, newtype
, targ0
),
13186 fold_convert_loc (loc
, newtype
, targ1
));
13191 case COMPOUND_EXPR
:
13192 /* When pedantic, a compound expression can be neither an lvalue
13193 nor an integer constant expression. */
13194 if (TREE_SIDE_EFFECTS (arg0
) || TREE_CONSTANT (arg1
))
13196 /* Don't let (0, 0) be null pointer constant. */
13197 tem
= integer_zerop (arg1
) ? build1 (NOP_EXPR
, type
, arg1
)
13198 : fold_convert_loc (loc
, type
, arg1
);
13199 return pedantic_non_lvalue_loc (loc
, tem
);
13202 /* An ASSERT_EXPR should never be passed to fold_binary. */
13203 gcc_unreachable ();
13207 } /* switch (code) */
13210 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
13211 a LABEL_EXPR; otherwise return NULL_TREE. Do not check the subtrees
13215 contains_label_1 (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
13217 switch (TREE_CODE (*tp
))
13223 *walk_subtrees
= 0;
13225 /* ... fall through ... */
13232 /* Return whether the sub-tree ST contains a label which is accessible from
13233 outside the sub-tree. */
13236 contains_label_p (tree st
)
13239 (walk_tree_without_duplicates (&st
, contains_label_1
, NULL
) != NULL_TREE
);
13242 /* Fold a ternary expression of code CODE and type TYPE with operands
13243 OP0, OP1, and OP2. Return the folded expression if folding is
13244 successful. Otherwise, return NULL_TREE. */
13247 fold_ternary_loc (location_t loc
, enum tree_code code
, tree type
,
13248 tree op0
, tree op1
, tree op2
)
13251 tree arg0
= NULL_TREE
, arg1
= NULL_TREE
, arg2
= NULL_TREE
;
13252 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
13254 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
13255 && TREE_CODE_LENGTH (code
) == 3);
13257 /* If this is a commutative operation, and OP0 is a constant, move it
13258 to OP1 to reduce the number of tests below. */
13259 if (commutative_ternary_tree_code (code
)
13260 && tree_swap_operands_p (op0
, op1
, true))
13261 return fold_build3_loc (loc
, code
, type
, op1
, op0
, op2
);
13263 tem
= generic_simplify (loc
, code
, type
, op0
, op1
, op2
);
13267 /* Strip any conversions that don't change the mode. This is safe
13268 for every expression, except for a comparison expression because
13269 its signedness is derived from its operands. So, in the latter
13270 case, only strip conversions that don't change the signedness.
13272 Note that this is done as an internal manipulation within the
13273 constant folder, in order to find the simplest representation of
13274 the arguments so that their form can be studied. In any cases,
13275 the appropriate type conversions should be put back in the tree
13276 that will get out of the constant folder. */
13297 case COMPONENT_REF
:
13298 if (TREE_CODE (arg0
) == CONSTRUCTOR
13299 && ! type_contains_placeholder_p (TREE_TYPE (arg0
)))
13301 unsigned HOST_WIDE_INT idx
;
13303 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0
), idx
, field
, value
)
13310 case VEC_COND_EXPR
:
13311 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
13312 so all simple results must be passed through pedantic_non_lvalue. */
13313 if (TREE_CODE (arg0
) == INTEGER_CST
)
13315 tree unused_op
= integer_zerop (arg0
) ? op1
: op2
;
13316 tem
= integer_zerop (arg0
) ? op2
: op1
;
13317 /* Only optimize constant conditions when the selected branch
13318 has the same type as the COND_EXPR. This avoids optimizing
13319 away "c ? x : throw", where the throw has a void type.
13320 Avoid throwing away that operand which contains label. */
13321 if ((!TREE_SIDE_EFFECTS (unused_op
)
13322 || !contains_label_p (unused_op
))
13323 && (! VOID_TYPE_P (TREE_TYPE (tem
))
13324 || VOID_TYPE_P (type
)))
13325 return pedantic_non_lvalue_loc (loc
, tem
);
13328 else if (TREE_CODE (arg0
) == VECTOR_CST
)
13330 if ((TREE_CODE (arg1
) == VECTOR_CST
13331 || TREE_CODE (arg1
) == CONSTRUCTOR
)
13332 && (TREE_CODE (arg2
) == VECTOR_CST
13333 || TREE_CODE (arg2
) == CONSTRUCTOR
))
13335 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (type
), i
;
13336 unsigned char *sel
= XALLOCAVEC (unsigned char, nelts
);
13337 gcc_assert (nelts
== VECTOR_CST_NELTS (arg0
));
13338 for (i
= 0; i
< nelts
; i
++)
13340 tree val
= VECTOR_CST_ELT (arg0
, i
);
13341 if (integer_all_onesp (val
))
13343 else if (integer_zerop (val
))
13344 sel
[i
] = nelts
+ i
;
13345 else /* Currently unreachable. */
13348 tree t
= fold_vec_perm (type
, arg1
, arg2
, sel
);
13349 if (t
!= NULL_TREE
)
13354 /* If we have A op B ? A : C, we may be able to convert this to a
13355 simpler expression, depending on the operation and the values
13356 of B and C. Signed zeros prevent all of these transformations,
13357 for reasons given above each one.
13359 Also try swapping the arguments and inverting the conditional. */
13360 if (COMPARISON_CLASS_P (arg0
)
13361 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0),
13362 arg1
, TREE_OPERAND (arg0
, 1))
13363 && !HONOR_SIGNED_ZEROS (element_mode (arg1
)))
13365 tem
= fold_cond_expr_with_comparison (loc
, type
, arg0
, op1
, op2
);
13370 if (COMPARISON_CLASS_P (arg0
)
13371 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0),
13373 TREE_OPERAND (arg0
, 1))
13374 && !HONOR_SIGNED_ZEROS (element_mode (op2
)))
13376 location_t loc0
= expr_location_or (arg0
, loc
);
13377 tem
= fold_invert_truthvalue (loc0
, arg0
);
13378 if (tem
&& COMPARISON_CLASS_P (tem
))
13380 tem
= fold_cond_expr_with_comparison (loc
, type
, tem
, op2
, op1
);
13386 /* If the second operand is simpler than the third, swap them
13387 since that produces better jump optimization results. */
13388 if (truth_value_p (TREE_CODE (arg0
))
13389 && tree_swap_operands_p (op1
, op2
, false))
13391 location_t loc0
= expr_location_or (arg0
, loc
);
13392 /* See if this can be inverted. If it can't, possibly because
13393 it was a floating-point inequality comparison, don't do
13395 tem
= fold_invert_truthvalue (loc0
, arg0
);
13397 return fold_build3_loc (loc
, code
, type
, tem
, op2
, op1
);
13400 /* Convert A ? 1 : 0 to simply A. */
13401 if ((code
== VEC_COND_EXPR
? integer_all_onesp (op1
)
13402 : (integer_onep (op1
)
13403 && !VECTOR_TYPE_P (type
)))
13404 && integer_zerop (op2
)
13405 /* If we try to convert OP0 to our type, the
13406 call to fold will try to move the conversion inside
13407 a COND, which will recurse. In that case, the COND_EXPR
13408 is probably the best choice, so leave it alone. */
13409 && type
== TREE_TYPE (arg0
))
13410 return pedantic_non_lvalue_loc (loc
, arg0
);
13412 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
13413 over COND_EXPR in cases such as floating point comparisons. */
13414 if (integer_zerop (op1
)
13415 && (code
== VEC_COND_EXPR
? integer_all_onesp (op2
)
13416 : (integer_onep (op2
)
13417 && !VECTOR_TYPE_P (type
)))
13418 && truth_value_p (TREE_CODE (arg0
)))
13419 return pedantic_non_lvalue_loc (loc
,
13420 fold_convert_loc (loc
, type
,
13421 invert_truthvalue_loc (loc
,
13424 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
13425 if (TREE_CODE (arg0
) == LT_EXPR
13426 && integer_zerop (TREE_OPERAND (arg0
, 1))
13427 && integer_zerop (op2
)
13428 && (tem
= sign_bit_p (TREE_OPERAND (arg0
, 0), arg1
)))
13430 /* sign_bit_p looks through both zero and sign extensions,
13431 but for this optimization only sign extensions are
13433 tree tem2
= TREE_OPERAND (arg0
, 0);
13434 while (tem
!= tem2
)
13436 if (TREE_CODE (tem2
) != NOP_EXPR
13437 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2
, 0))))
13442 tem2
= TREE_OPERAND (tem2
, 0);
13444 /* sign_bit_p only checks ARG1 bits within A's precision.
13445 If <sign bit of A> has wider type than A, bits outside
13446 of A's precision in <sign bit of A> need to be checked.
13447 If they are all 0, this optimization needs to be done
13448 in unsigned A's type, if they are all 1 in signed A's type,
13449 otherwise this can't be done. */
13451 && TYPE_PRECISION (TREE_TYPE (tem
))
13452 < TYPE_PRECISION (TREE_TYPE (arg1
))
13453 && TYPE_PRECISION (TREE_TYPE (tem
))
13454 < TYPE_PRECISION (type
))
13456 int inner_width
, outer_width
;
13459 inner_width
= TYPE_PRECISION (TREE_TYPE (tem
));
13460 outer_width
= TYPE_PRECISION (TREE_TYPE (arg1
));
13461 if (outer_width
> TYPE_PRECISION (type
))
13462 outer_width
= TYPE_PRECISION (type
);
13464 wide_int mask
= wi::shifted_mask
13465 (inner_width
, outer_width
- inner_width
, false,
13466 TYPE_PRECISION (TREE_TYPE (arg1
)));
13468 wide_int common
= mask
& arg1
;
13469 if (common
== mask
)
13471 tem_type
= signed_type_for (TREE_TYPE (tem
));
13472 tem
= fold_convert_loc (loc
, tem_type
, tem
);
13474 else if (common
== 0)
13476 tem_type
= unsigned_type_for (TREE_TYPE (tem
));
13477 tem
= fold_convert_loc (loc
, tem_type
, tem
);
13485 fold_convert_loc (loc
, type
,
13486 fold_build2_loc (loc
, BIT_AND_EXPR
,
13487 TREE_TYPE (tem
), tem
,
13488 fold_convert_loc (loc
,
13493 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
13494 already handled above. */
13495 if (TREE_CODE (arg0
) == BIT_AND_EXPR
13496 && integer_onep (TREE_OPERAND (arg0
, 1))
13497 && integer_zerop (op2
)
13498 && integer_pow2p (arg1
))
13500 tree tem
= TREE_OPERAND (arg0
, 0);
13502 if (TREE_CODE (tem
) == RSHIFT_EXPR
13503 && tree_fits_uhwi_p (TREE_OPERAND (tem
, 1))
13504 && (unsigned HOST_WIDE_INT
) tree_log2 (arg1
) ==
13505 tree_to_uhwi (TREE_OPERAND (tem
, 1)))
13506 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
13507 TREE_OPERAND (tem
, 0), arg1
);
13510 /* A & N ? N : 0 is simply A & N if N is a power of two. This
13511 is probably obsolete because the first operand should be a
13512 truth value (that's why we have the two cases above), but let's
13513 leave it in until we can confirm this for all front-ends. */
13514 if (integer_zerop (op2
)
13515 && TREE_CODE (arg0
) == NE_EXPR
13516 && integer_zerop (TREE_OPERAND (arg0
, 1))
13517 && integer_pow2p (arg1
)
13518 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_AND_EXPR
13519 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
13520 arg1
, OEP_ONLY_CONST
))
13521 return pedantic_non_lvalue_loc (loc
,
13522 fold_convert_loc (loc
, type
,
13523 TREE_OPERAND (arg0
, 0)));
13525 /* Disable the transformations below for vectors, since
13526 fold_binary_op_with_conditional_arg may undo them immediately,
13527 yielding an infinite loop. */
13528 if (code
== VEC_COND_EXPR
)
13531 /* Convert A ? B : 0 into A && B if A and B are truth values. */
13532 if (integer_zerop (op2
)
13533 && truth_value_p (TREE_CODE (arg0
))
13534 && truth_value_p (TREE_CODE (arg1
))
13535 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
13536 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
? BIT_AND_EXPR
13537 : TRUTH_ANDIF_EXPR
,
13538 type
, fold_convert_loc (loc
, type
, arg0
), arg1
);
13540 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
13541 if (code
== VEC_COND_EXPR
? integer_all_onesp (op2
) : integer_onep (op2
)
13542 && truth_value_p (TREE_CODE (arg0
))
13543 && truth_value_p (TREE_CODE (arg1
))
13544 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
13546 location_t loc0
= expr_location_or (arg0
, loc
);
13547 /* Only perform transformation if ARG0 is easily inverted. */
13548 tem
= fold_invert_truthvalue (loc0
, arg0
);
13550 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
13553 type
, fold_convert_loc (loc
, type
, tem
),
13557 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
13558 if (integer_zerop (arg1
)
13559 && truth_value_p (TREE_CODE (arg0
))
13560 && truth_value_p (TREE_CODE (op2
))
13561 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
13563 location_t loc0
= expr_location_or (arg0
, loc
);
13564 /* Only perform transformation if ARG0 is easily inverted. */
13565 tem
= fold_invert_truthvalue (loc0
, arg0
);
13567 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
13568 ? BIT_AND_EXPR
: TRUTH_ANDIF_EXPR
,
13569 type
, fold_convert_loc (loc
, type
, tem
),
13573 /* Convert A ? 1 : B into A || B if A and B are truth values. */
13574 if (code
== VEC_COND_EXPR
? integer_all_onesp (arg1
) : integer_onep (arg1
)
13575 && truth_value_p (TREE_CODE (arg0
))
13576 && truth_value_p (TREE_CODE (op2
))
13577 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
13578 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
13579 ? BIT_IOR_EXPR
: TRUTH_ORIF_EXPR
,
13580 type
, fold_convert_loc (loc
, type
, arg0
), op2
);
13585 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
13586 of fold_ternary on them. */
13587 gcc_unreachable ();
13589 case BIT_FIELD_REF
:
13590 if ((TREE_CODE (arg0
) == VECTOR_CST
13591 || (TREE_CODE (arg0
) == CONSTRUCTOR
13592 && TREE_CODE (TREE_TYPE (arg0
)) == VECTOR_TYPE
))
13593 && (type
== TREE_TYPE (TREE_TYPE (arg0
))
13594 || (TREE_CODE (type
) == VECTOR_TYPE
13595 && TREE_TYPE (type
) == TREE_TYPE (TREE_TYPE (arg0
)))))
13597 tree eltype
= TREE_TYPE (TREE_TYPE (arg0
));
13598 unsigned HOST_WIDE_INT width
= tree_to_uhwi (TYPE_SIZE (eltype
));
13599 unsigned HOST_WIDE_INT n
= tree_to_uhwi (arg1
);
13600 unsigned HOST_WIDE_INT idx
= tree_to_uhwi (op2
);
13603 && (idx
% width
) == 0
13604 && (n
% width
) == 0
13605 && ((idx
+ n
) / width
) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)))
13610 if (TREE_CODE (arg0
) == VECTOR_CST
)
13613 return VECTOR_CST_ELT (arg0
, idx
);
13615 tree
*vals
= XALLOCAVEC (tree
, n
);
13616 for (unsigned i
= 0; i
< n
; ++i
)
13617 vals
[i
] = VECTOR_CST_ELT (arg0
, idx
+ i
);
13618 return build_vector (type
, vals
);
13621 /* Constructor elements can be subvectors. */
13622 unsigned HOST_WIDE_INT k
= 1;
13623 if (CONSTRUCTOR_NELTS (arg0
) != 0)
13625 tree cons_elem
= TREE_TYPE (CONSTRUCTOR_ELT (arg0
, 0)->value
);
13626 if (TREE_CODE (cons_elem
) == VECTOR_TYPE
)
13627 k
= TYPE_VECTOR_SUBPARTS (cons_elem
);
13630 /* We keep an exact subset of the constructor elements. */
13631 if ((idx
% k
) == 0 && (n
% k
) == 0)
13633 if (CONSTRUCTOR_NELTS (arg0
) == 0)
13634 return build_constructor (type
, NULL
);
13639 if (idx
< CONSTRUCTOR_NELTS (arg0
))
13640 return CONSTRUCTOR_ELT (arg0
, idx
)->value
;
13641 return build_zero_cst (type
);
13644 vec
<constructor_elt
, va_gc
> *vals
;
13645 vec_alloc (vals
, n
);
13646 for (unsigned i
= 0;
13647 i
< n
&& idx
+ i
< CONSTRUCTOR_NELTS (arg0
);
13649 CONSTRUCTOR_APPEND_ELT (vals
, NULL_TREE
,
13651 (arg0
, idx
+ i
)->value
);
13652 return build_constructor (type
, vals
);
13654 /* The bitfield references a single constructor element. */
13655 else if (idx
+ n
<= (idx
/ k
+ 1) * k
)
13657 if (CONSTRUCTOR_NELTS (arg0
) <= idx
/ k
)
13658 return build_zero_cst (type
);
13660 return CONSTRUCTOR_ELT (arg0
, idx
/ k
)->value
;
13662 return fold_build3_loc (loc
, code
, type
,
13663 CONSTRUCTOR_ELT (arg0
, idx
/ k
)->value
, op1
,
13664 build_int_cst (TREE_TYPE (op2
), (idx
% k
) * width
));
13669 /* A bit-field-ref that referenced the full argument can be stripped. */
13670 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
13671 && TYPE_PRECISION (TREE_TYPE (arg0
)) == tree_to_uhwi (arg1
)
13672 && integer_zerop (op2
))
13673 return fold_convert_loc (loc
, type
, arg0
);
13675 /* On constants we can use native encode/interpret to constant
13676 fold (nearly) all BIT_FIELD_REFs. */
13677 if (CONSTANT_CLASS_P (arg0
)
13678 && can_native_interpret_type_p (type
)
13679 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (arg0
)))
13680 /* This limitation should not be necessary, we just need to
13681 round this up to mode size. */
13682 && tree_to_uhwi (op1
) % BITS_PER_UNIT
== 0
13683 /* Need bit-shifting of the buffer to relax the following. */
13684 && tree_to_uhwi (op2
) % BITS_PER_UNIT
== 0)
13686 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
13687 unsigned HOST_WIDE_INT bitsize
= tree_to_uhwi (op1
);
13688 unsigned HOST_WIDE_INT clen
;
13689 clen
= tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (arg0
)));
13690 /* ??? We cannot tell native_encode_expr to start at
13691 some random byte only. So limit us to a reasonable amount
13695 unsigned char *b
= XALLOCAVEC (unsigned char, clen
);
13696 unsigned HOST_WIDE_INT len
= native_encode_expr (arg0
, b
, clen
);
13698 && len
* BITS_PER_UNIT
>= bitpos
+ bitsize
)
13700 tree v
= native_interpret_expr (type
,
13701 b
+ bitpos
/ BITS_PER_UNIT
,
13702 bitsize
/ BITS_PER_UNIT
);
13712 /* For integers we can decompose the FMA if possible. */
13713 if (TREE_CODE (arg0
) == INTEGER_CST
13714 && TREE_CODE (arg1
) == INTEGER_CST
)
13715 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
13716 const_binop (MULT_EXPR
, arg0
, arg1
), arg2
);
13717 if (integer_zerop (arg2
))
13718 return fold_build2_loc (loc
, MULT_EXPR
, type
, arg0
, arg1
);
13720 return fold_fma (loc
, type
, arg0
, arg1
, arg2
);
13722 case VEC_PERM_EXPR
:
13723 if (TREE_CODE (arg2
) == VECTOR_CST
)
13725 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (type
), i
, mask
, mask2
;
13726 unsigned char *sel
= XALLOCAVEC (unsigned char, 2 * nelts
);
13727 unsigned char *sel2
= sel
+ nelts
;
13728 bool need_mask_canon
= false;
13729 bool need_mask_canon2
= false;
13730 bool all_in_vec0
= true;
13731 bool all_in_vec1
= true;
13732 bool maybe_identity
= true;
13733 bool single_arg
= (op0
== op1
);
13734 bool changed
= false;
13736 mask2
= 2 * nelts
- 1;
13737 mask
= single_arg
? (nelts
- 1) : mask2
;
13738 gcc_assert (nelts
== VECTOR_CST_NELTS (arg2
));
13739 for (i
= 0; i
< nelts
; i
++)
13741 tree val
= VECTOR_CST_ELT (arg2
, i
);
13742 if (TREE_CODE (val
) != INTEGER_CST
)
13745 /* Make sure that the perm value is in an acceptable
13748 need_mask_canon
|= wi::gtu_p (t
, mask
);
13749 need_mask_canon2
|= wi::gtu_p (t
, mask2
);
13750 sel
[i
] = t
.to_uhwi () & mask
;
13751 sel2
[i
] = t
.to_uhwi () & mask2
;
13753 if (sel
[i
] < nelts
)
13754 all_in_vec1
= false;
13756 all_in_vec0
= false;
13758 if ((sel
[i
] & (nelts
-1)) != i
)
13759 maybe_identity
= false;
13762 if (maybe_identity
)
13772 else if (all_in_vec1
)
13775 for (i
= 0; i
< nelts
; i
++)
13777 need_mask_canon
= true;
13780 if ((TREE_CODE (op0
) == VECTOR_CST
13781 || TREE_CODE (op0
) == CONSTRUCTOR
)
13782 && (TREE_CODE (op1
) == VECTOR_CST
13783 || TREE_CODE (op1
) == CONSTRUCTOR
))
13785 tree t
= fold_vec_perm (type
, op0
, op1
, sel
);
13786 if (t
!= NULL_TREE
)
13790 if (op0
== op1
&& !single_arg
)
13793 /* Some targets are deficient and fail to expand a single
13794 argument permutation while still allowing an equivalent
13795 2-argument version. */
13796 if (need_mask_canon
&& arg2
== op2
13797 && !can_vec_perm_p (TYPE_MODE (type
), false, sel
)
13798 && can_vec_perm_p (TYPE_MODE (type
), false, sel2
))
13800 need_mask_canon
= need_mask_canon2
;
13804 if (need_mask_canon
&& arg2
== op2
)
13806 tree
*tsel
= XALLOCAVEC (tree
, nelts
);
13807 tree eltype
= TREE_TYPE (TREE_TYPE (arg2
));
13808 for (i
= 0; i
< nelts
; i
++)
13809 tsel
[i
] = build_int_cst (eltype
, sel
[i
]);
13810 op2
= build_vector (TREE_TYPE (arg2
), tsel
);
13815 return build3_loc (loc
, VEC_PERM_EXPR
, type
, op0
, op1
, op2
);
13821 } /* switch (code) */
13824 /* Perform constant folding and related simplification of EXPR.
13825 The related simplifications include x*1 => x, x*0 => 0, etc.,
13826 and application of the associative law.
13827 NOP_EXPR conversions may be removed freely (as long as we
13828 are careful not to change the type of the overall expression).
13829 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
13830 but we can constant-fold them if they have constant operands. */
13832 #ifdef ENABLE_FOLD_CHECKING
13833 # define fold(x) fold_1 (x)
13834 static tree
fold_1 (tree
);
13840 const tree t
= expr
;
13841 enum tree_code code
= TREE_CODE (t
);
13842 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
13844 location_t loc
= EXPR_LOCATION (expr
);
13846 /* Return right away if a constant. */
13847 if (kind
== tcc_constant
)
13850 /* CALL_EXPR-like objects with variable numbers of operands are
13851 treated specially. */
13852 if (kind
== tcc_vl_exp
)
13854 if (code
== CALL_EXPR
)
13856 tem
= fold_call_expr (loc
, expr
, false);
13857 return tem
? tem
: expr
;
13862 if (IS_EXPR_CODE_CLASS (kind
))
13864 tree type
= TREE_TYPE (t
);
13865 tree op0
, op1
, op2
;
13867 switch (TREE_CODE_LENGTH (code
))
13870 op0
= TREE_OPERAND (t
, 0);
13871 tem
= fold_unary_loc (loc
, code
, type
, op0
);
13872 return tem
? tem
: expr
;
13874 op0
= TREE_OPERAND (t
, 0);
13875 op1
= TREE_OPERAND (t
, 1);
13876 tem
= fold_binary_loc (loc
, code
, type
, op0
, op1
);
13877 return tem
? tem
: expr
;
13879 op0
= TREE_OPERAND (t
, 0);
13880 op1
= TREE_OPERAND (t
, 1);
13881 op2
= TREE_OPERAND (t
, 2);
13882 tem
= fold_ternary_loc (loc
, code
, type
, op0
, op1
, op2
);
13883 return tem
? tem
: expr
;
13893 tree op0
= TREE_OPERAND (t
, 0);
13894 tree op1
= TREE_OPERAND (t
, 1);
13896 if (TREE_CODE (op1
) == INTEGER_CST
13897 && TREE_CODE (op0
) == CONSTRUCTOR
13898 && ! type_contains_placeholder_p (TREE_TYPE (op0
)))
13900 vec
<constructor_elt
, va_gc
> *elts
= CONSTRUCTOR_ELTS (op0
);
13901 unsigned HOST_WIDE_INT end
= vec_safe_length (elts
);
13902 unsigned HOST_WIDE_INT begin
= 0;
13904 /* Find a matching index by means of a binary search. */
13905 while (begin
!= end
)
13907 unsigned HOST_WIDE_INT middle
= (begin
+ end
) / 2;
13908 tree index
= (*elts
)[middle
].index
;
13910 if (TREE_CODE (index
) == INTEGER_CST
13911 && tree_int_cst_lt (index
, op1
))
13912 begin
= middle
+ 1;
13913 else if (TREE_CODE (index
) == INTEGER_CST
13914 && tree_int_cst_lt (op1
, index
))
13916 else if (TREE_CODE (index
) == RANGE_EXPR
13917 && tree_int_cst_lt (TREE_OPERAND (index
, 1), op1
))
13918 begin
= middle
+ 1;
13919 else if (TREE_CODE (index
) == RANGE_EXPR
13920 && tree_int_cst_lt (op1
, TREE_OPERAND (index
, 0)))
13923 return (*elts
)[middle
].value
;
13930 /* Return a VECTOR_CST if possible. */
13933 tree type
= TREE_TYPE (t
);
13934 if (TREE_CODE (type
) != VECTOR_TYPE
)
13937 tree
*vec
= XALLOCAVEC (tree
, TYPE_VECTOR_SUBPARTS (type
));
13938 unsigned HOST_WIDE_INT idx
, pos
= 0;
13941 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t
), idx
, value
)
13943 if (!CONSTANT_CLASS_P (value
))
13945 if (TREE_CODE (value
) == VECTOR_CST
)
13947 for (unsigned i
= 0; i
< VECTOR_CST_NELTS (value
); ++i
)
13948 vec
[pos
++] = VECTOR_CST_ELT (value
, i
);
13951 vec
[pos
++] = value
;
13953 for (; pos
< TYPE_VECTOR_SUBPARTS (type
); ++pos
)
13954 vec
[pos
] = build_zero_cst (TREE_TYPE (type
));
13956 return build_vector (type
, vec
);
13960 return fold (DECL_INITIAL (t
));
13964 } /* switch (code) */
13967 #ifdef ENABLE_FOLD_CHECKING
13970 static void fold_checksum_tree (const_tree
, struct md5_ctx
*,
13971 hash_table
<pointer_hash
<const tree_node
> > *);
13972 static void fold_check_failed (const_tree
, const_tree
);
13973 void print_fold_checksum (const_tree
);
13975 /* When --enable-checking=fold, compute a digest of expr before
13976 and after actual fold call to see if fold did not accidentally
13977 change original expr. */
13983 struct md5_ctx ctx
;
13984 unsigned char checksum_before
[16], checksum_after
[16];
13985 hash_table
<pointer_hash
<const tree_node
> > ht (32);
13987 md5_init_ctx (&ctx
);
13988 fold_checksum_tree (expr
, &ctx
, &ht
);
13989 md5_finish_ctx (&ctx
, checksum_before
);
13992 ret
= fold_1 (expr
);
13994 md5_init_ctx (&ctx
);
13995 fold_checksum_tree (expr
, &ctx
, &ht
);
13996 md5_finish_ctx (&ctx
, checksum_after
);
13998 if (memcmp (checksum_before
, checksum_after
, 16))
13999 fold_check_failed (expr
, ret
);
14005 print_fold_checksum (const_tree expr
)
14007 struct md5_ctx ctx
;
14008 unsigned char checksum
[16], cnt
;
14009 hash_table
<pointer_hash
<const tree_node
> > ht (32);
14011 md5_init_ctx (&ctx
);
14012 fold_checksum_tree (expr
, &ctx
, &ht
);
14013 md5_finish_ctx (&ctx
, checksum
);
14014 for (cnt
= 0; cnt
< 16; ++cnt
)
14015 fprintf (stderr
, "%02x", checksum
[cnt
]);
14016 putc ('\n', stderr
);
14020 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED
, const_tree ret ATTRIBUTE_UNUSED
)
14022 internal_error ("fold check: original tree changed by fold");
14026 fold_checksum_tree (const_tree expr
, struct md5_ctx
*ctx
,
14027 hash_table
<pointer_hash
<const tree_node
> > *ht
)
14029 const tree_node
**slot
;
14030 enum tree_code code
;
14031 union tree_node buf
;
14037 slot
= ht
->find_slot (expr
, INSERT
);
14041 code
= TREE_CODE (expr
);
14042 if (TREE_CODE_CLASS (code
) == tcc_declaration
14043 && HAS_DECL_ASSEMBLER_NAME_P (expr
))
14045 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
14046 memcpy ((char *) &buf
, expr
, tree_size (expr
));
14047 SET_DECL_ASSEMBLER_NAME ((tree
)&buf
, NULL
);
14048 buf
.decl_with_vis
.symtab_node
= NULL
;
14049 expr
= (tree
) &buf
;
14051 else if (TREE_CODE_CLASS (code
) == tcc_type
14052 && (TYPE_POINTER_TO (expr
)
14053 || TYPE_REFERENCE_TO (expr
)
14054 || TYPE_CACHED_VALUES_P (expr
)
14055 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr
)
14056 || TYPE_NEXT_VARIANT (expr
)))
14058 /* Allow these fields to be modified. */
14060 memcpy ((char *) &buf
, expr
, tree_size (expr
));
14061 expr
= tmp
= (tree
) &buf
;
14062 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp
) = 0;
14063 TYPE_POINTER_TO (tmp
) = NULL
;
14064 TYPE_REFERENCE_TO (tmp
) = NULL
;
14065 TYPE_NEXT_VARIANT (tmp
) = NULL
;
14066 if (TYPE_CACHED_VALUES_P (tmp
))
14068 TYPE_CACHED_VALUES_P (tmp
) = 0;
14069 TYPE_CACHED_VALUES (tmp
) = NULL
;
14072 md5_process_bytes (expr
, tree_size (expr
), ctx
);
14073 if (CODE_CONTAINS_STRUCT (code
, TS_TYPED
))
14074 fold_checksum_tree (TREE_TYPE (expr
), ctx
, ht
);
14075 if (TREE_CODE_CLASS (code
) != tcc_type
14076 && TREE_CODE_CLASS (code
) != tcc_declaration
14077 && code
!= TREE_LIST
14078 && code
!= SSA_NAME
14079 && CODE_CONTAINS_STRUCT (code
, TS_COMMON
))
14080 fold_checksum_tree (TREE_CHAIN (expr
), ctx
, ht
);
14081 switch (TREE_CODE_CLASS (code
))
14087 md5_process_bytes (TREE_STRING_POINTER (expr
),
14088 TREE_STRING_LENGTH (expr
), ctx
);
14091 fold_checksum_tree (TREE_REALPART (expr
), ctx
, ht
);
14092 fold_checksum_tree (TREE_IMAGPART (expr
), ctx
, ht
);
14095 for (i
= 0; i
< (int) VECTOR_CST_NELTS (expr
); ++i
)
14096 fold_checksum_tree (VECTOR_CST_ELT (expr
, i
), ctx
, ht
);
14102 case tcc_exceptional
:
14106 fold_checksum_tree (TREE_PURPOSE (expr
), ctx
, ht
);
14107 fold_checksum_tree (TREE_VALUE (expr
), ctx
, ht
);
14108 expr
= TREE_CHAIN (expr
);
14109 goto recursive_label
;
14112 for (i
= 0; i
< TREE_VEC_LENGTH (expr
); ++i
)
14113 fold_checksum_tree (TREE_VEC_ELT (expr
, i
), ctx
, ht
);
14119 case tcc_expression
:
14120 case tcc_reference
:
14121 case tcc_comparison
:
14124 case tcc_statement
:
14126 len
= TREE_OPERAND_LENGTH (expr
);
14127 for (i
= 0; i
< len
; ++i
)
14128 fold_checksum_tree (TREE_OPERAND (expr
, i
), ctx
, ht
);
14130 case tcc_declaration
:
14131 fold_checksum_tree (DECL_NAME (expr
), ctx
, ht
);
14132 fold_checksum_tree (DECL_CONTEXT (expr
), ctx
, ht
);
14133 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_COMMON
))
14135 fold_checksum_tree (DECL_SIZE (expr
), ctx
, ht
);
14136 fold_checksum_tree (DECL_SIZE_UNIT (expr
), ctx
, ht
);
14137 fold_checksum_tree (DECL_INITIAL (expr
), ctx
, ht
);
14138 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr
), ctx
, ht
);
14139 fold_checksum_tree (DECL_ATTRIBUTES (expr
), ctx
, ht
);
14142 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_NON_COMMON
))
14144 if (TREE_CODE (expr
) == FUNCTION_DECL
)
14146 fold_checksum_tree (DECL_VINDEX (expr
), ctx
, ht
);
14147 fold_checksum_tree (DECL_ARGUMENTS (expr
), ctx
, ht
);
14149 fold_checksum_tree (DECL_RESULT_FLD (expr
), ctx
, ht
);
14153 if (TREE_CODE (expr
) == ENUMERAL_TYPE
)
14154 fold_checksum_tree (TYPE_VALUES (expr
), ctx
, ht
);
14155 fold_checksum_tree (TYPE_SIZE (expr
), ctx
, ht
);
14156 fold_checksum_tree (TYPE_SIZE_UNIT (expr
), ctx
, ht
);
14157 fold_checksum_tree (TYPE_ATTRIBUTES (expr
), ctx
, ht
);
14158 fold_checksum_tree (TYPE_NAME (expr
), ctx
, ht
);
14159 if (INTEGRAL_TYPE_P (expr
)
14160 || SCALAR_FLOAT_TYPE_P (expr
))
14162 fold_checksum_tree (TYPE_MIN_VALUE (expr
), ctx
, ht
);
14163 fold_checksum_tree (TYPE_MAX_VALUE (expr
), ctx
, ht
);
14165 fold_checksum_tree (TYPE_MAIN_VARIANT (expr
), ctx
, ht
);
14166 if (TREE_CODE (expr
) == RECORD_TYPE
14167 || TREE_CODE (expr
) == UNION_TYPE
14168 || TREE_CODE (expr
) == QUAL_UNION_TYPE
)
14169 fold_checksum_tree (TYPE_BINFO (expr
), ctx
, ht
);
14170 fold_checksum_tree (TYPE_CONTEXT (expr
), ctx
, ht
);
14177 /* Helper function for outputting the checksum of a tree T. When
14178 debugging with gdb, you can "define mynext" to be "next" followed
14179 by "call debug_fold_checksum (op0)", then just trace down till the
14182 DEBUG_FUNCTION
void
14183 debug_fold_checksum (const_tree t
)
14186 unsigned char checksum
[16];
14187 struct md5_ctx ctx
;
14188 hash_table
<pointer_hash
<const tree_node
> > ht (32);
14190 md5_init_ctx (&ctx
);
14191 fold_checksum_tree (t
, &ctx
, &ht
);
14192 md5_finish_ctx (&ctx
, checksum
);
14195 for (i
= 0; i
< 16; i
++)
14196 fprintf (stderr
, "%d ", checksum
[i
]);
14198 fprintf (stderr
, "\n");
14203 /* Fold a unary tree expression with code CODE of type TYPE with an
14204 operand OP0. LOC is the location of the resulting expression.
14205 Return a folded expression if successful. Otherwise, return a tree
14206 expression with code CODE of type TYPE with an operand OP0. */
14209 fold_build1_stat_loc (location_t loc
,
14210 enum tree_code code
, tree type
, tree op0 MEM_STAT_DECL
)
14213 #ifdef ENABLE_FOLD_CHECKING
14214 unsigned char checksum_before
[16], checksum_after
[16];
14215 struct md5_ctx ctx
;
14216 hash_table
<pointer_hash
<const tree_node
> > ht (32);
14218 md5_init_ctx (&ctx
);
14219 fold_checksum_tree (op0
, &ctx
, &ht
);
14220 md5_finish_ctx (&ctx
, checksum_before
);
14224 tem
= fold_unary_loc (loc
, code
, type
, op0
);
14226 tem
= build1_stat_loc (loc
, code
, type
, op0 PASS_MEM_STAT
);
14228 #ifdef ENABLE_FOLD_CHECKING
14229 md5_init_ctx (&ctx
);
14230 fold_checksum_tree (op0
, &ctx
, &ht
);
14231 md5_finish_ctx (&ctx
, checksum_after
);
14233 if (memcmp (checksum_before
, checksum_after
, 16))
14234 fold_check_failed (op0
, tem
);
14239 /* Fold a binary tree expression with code CODE of type TYPE with
14240 operands OP0 and OP1. LOC is the location of the resulting
14241 expression. Return a folded expression if successful. Otherwise,
14242 return a tree expression with code CODE of type TYPE with operands
14246 fold_build2_stat_loc (location_t loc
,
14247 enum tree_code code
, tree type
, tree op0
, tree op1
14251 #ifdef ENABLE_FOLD_CHECKING
14252 unsigned char checksum_before_op0
[16],
14253 checksum_before_op1
[16],
14254 checksum_after_op0
[16],
14255 checksum_after_op1
[16];
14256 struct md5_ctx ctx
;
14257 hash_table
<pointer_hash
<const tree_node
> > ht (32);
14259 md5_init_ctx (&ctx
);
14260 fold_checksum_tree (op0
, &ctx
, &ht
);
14261 md5_finish_ctx (&ctx
, checksum_before_op0
);
14264 md5_init_ctx (&ctx
);
14265 fold_checksum_tree (op1
, &ctx
, &ht
);
14266 md5_finish_ctx (&ctx
, checksum_before_op1
);
14270 tem
= fold_binary_loc (loc
, code
, type
, op0
, op1
);
14272 tem
= build2_stat_loc (loc
, code
, type
, op0
, op1 PASS_MEM_STAT
);
14274 #ifdef ENABLE_FOLD_CHECKING
14275 md5_init_ctx (&ctx
);
14276 fold_checksum_tree (op0
, &ctx
, &ht
);
14277 md5_finish_ctx (&ctx
, checksum_after_op0
);
14280 if (memcmp (checksum_before_op0
, checksum_after_op0
, 16))
14281 fold_check_failed (op0
, tem
);
14283 md5_init_ctx (&ctx
);
14284 fold_checksum_tree (op1
, &ctx
, &ht
);
14285 md5_finish_ctx (&ctx
, checksum_after_op1
);
14287 if (memcmp (checksum_before_op1
, checksum_after_op1
, 16))
14288 fold_check_failed (op1
, tem
);
14293 /* Fold a ternary tree expression with code CODE of type TYPE with
14294 operands OP0, OP1, and OP2. Return a folded expression if
14295 successful. Otherwise, return a tree expression with code CODE of
14296 type TYPE with operands OP0, OP1, and OP2. */
14299 fold_build3_stat_loc (location_t loc
, enum tree_code code
, tree type
,
14300 tree op0
, tree op1
, tree op2 MEM_STAT_DECL
)
14303 #ifdef ENABLE_FOLD_CHECKING
14304 unsigned char checksum_before_op0
[16],
14305 checksum_before_op1
[16],
14306 checksum_before_op2
[16],
14307 checksum_after_op0
[16],
14308 checksum_after_op1
[16],
14309 checksum_after_op2
[16];
14310 struct md5_ctx ctx
;
14311 hash_table
<pointer_hash
<const tree_node
> > ht (32);
14313 md5_init_ctx (&ctx
);
14314 fold_checksum_tree (op0
, &ctx
, &ht
);
14315 md5_finish_ctx (&ctx
, checksum_before_op0
);
14318 md5_init_ctx (&ctx
);
14319 fold_checksum_tree (op1
, &ctx
, &ht
);
14320 md5_finish_ctx (&ctx
, checksum_before_op1
);
14323 md5_init_ctx (&ctx
);
14324 fold_checksum_tree (op2
, &ctx
, &ht
);
14325 md5_finish_ctx (&ctx
, checksum_before_op2
);
14329 gcc_assert (TREE_CODE_CLASS (code
) != tcc_vl_exp
);
14330 tem
= fold_ternary_loc (loc
, code
, type
, op0
, op1
, op2
);
14332 tem
= build3_stat_loc (loc
, code
, type
, op0
, op1
, op2 PASS_MEM_STAT
);
14334 #ifdef ENABLE_FOLD_CHECKING
14335 md5_init_ctx (&ctx
);
14336 fold_checksum_tree (op0
, &ctx
, &ht
);
14337 md5_finish_ctx (&ctx
, checksum_after_op0
);
14340 if (memcmp (checksum_before_op0
, checksum_after_op0
, 16))
14341 fold_check_failed (op0
, tem
);
14343 md5_init_ctx (&ctx
);
14344 fold_checksum_tree (op1
, &ctx
, &ht
);
14345 md5_finish_ctx (&ctx
, checksum_after_op1
);
14348 if (memcmp (checksum_before_op1
, checksum_after_op1
, 16))
14349 fold_check_failed (op1
, tem
);
14351 md5_init_ctx (&ctx
);
14352 fold_checksum_tree (op2
, &ctx
, &ht
);
14353 md5_finish_ctx (&ctx
, checksum_after_op2
);
14355 if (memcmp (checksum_before_op2
, checksum_after_op2
, 16))
14356 fold_check_failed (op2
, tem
);
14361 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
14362 arguments in ARGARRAY, and a null static chain.
14363 Return a folded expression if successful. Otherwise, return a CALL_EXPR
14364 of type TYPE from the given operands as constructed by build_call_array. */
14367 fold_build_call_array_loc (location_t loc
, tree type
, tree fn
,
14368 int nargs
, tree
*argarray
)
14371 #ifdef ENABLE_FOLD_CHECKING
14372 unsigned char checksum_before_fn
[16],
14373 checksum_before_arglist
[16],
14374 checksum_after_fn
[16],
14375 checksum_after_arglist
[16];
14376 struct md5_ctx ctx
;
14377 hash_table
<pointer_hash
<const tree_node
> > ht (32);
14380 md5_init_ctx (&ctx
);
14381 fold_checksum_tree (fn
, &ctx
, &ht
);
14382 md5_finish_ctx (&ctx
, checksum_before_fn
);
14385 md5_init_ctx (&ctx
);
14386 for (i
= 0; i
< nargs
; i
++)
14387 fold_checksum_tree (argarray
[i
], &ctx
, &ht
);
14388 md5_finish_ctx (&ctx
, checksum_before_arglist
);
14392 tem
= fold_builtin_call_array (loc
, type
, fn
, nargs
, argarray
);
14394 tem
= build_call_array_loc (loc
, type
, fn
, nargs
, argarray
);
14396 #ifdef ENABLE_FOLD_CHECKING
14397 md5_init_ctx (&ctx
);
14398 fold_checksum_tree (fn
, &ctx
, &ht
);
14399 md5_finish_ctx (&ctx
, checksum_after_fn
);
14402 if (memcmp (checksum_before_fn
, checksum_after_fn
, 16))
14403 fold_check_failed (fn
, tem
);
14405 md5_init_ctx (&ctx
);
14406 for (i
= 0; i
< nargs
; i
++)
14407 fold_checksum_tree (argarray
[i
], &ctx
, &ht
);
14408 md5_finish_ctx (&ctx
, checksum_after_arglist
);
14410 if (memcmp (checksum_before_arglist
, checksum_after_arglist
, 16))
14411 fold_check_failed (NULL_TREE
, tem
);
14416 /* Perform constant folding and related simplification of initializer
14417 expression EXPR. These behave identically to "fold_buildN" but ignore
14418 potential run-time traps and exceptions that fold must preserve. */
14420 #define START_FOLD_INIT \
14421 int saved_signaling_nans = flag_signaling_nans;\
14422 int saved_trapping_math = flag_trapping_math;\
14423 int saved_rounding_math = flag_rounding_math;\
14424 int saved_trapv = flag_trapv;\
14425 int saved_folding_initializer = folding_initializer;\
14426 flag_signaling_nans = 0;\
14427 flag_trapping_math = 0;\
14428 flag_rounding_math = 0;\
14430 folding_initializer = 1;
14432 #define END_FOLD_INIT \
14433 flag_signaling_nans = saved_signaling_nans;\
14434 flag_trapping_math = saved_trapping_math;\
14435 flag_rounding_math = saved_rounding_math;\
14436 flag_trapv = saved_trapv;\
14437 folding_initializer = saved_folding_initializer;
14440 fold_build1_initializer_loc (location_t loc
, enum tree_code code
,
14441 tree type
, tree op
)
14446 result
= fold_build1_loc (loc
, code
, type
, op
);
14453 fold_build2_initializer_loc (location_t loc
, enum tree_code code
,
14454 tree type
, tree op0
, tree op1
)
14459 result
= fold_build2_loc (loc
, code
, type
, op0
, op1
);
14466 fold_build_call_array_initializer_loc (location_t loc
, tree type
, tree fn
,
14467 int nargs
, tree
*argarray
)
14472 result
= fold_build_call_array_loc (loc
, type
, fn
, nargs
, argarray
);
14478 #undef START_FOLD_INIT
14479 #undef END_FOLD_INIT
14481 /* Determine if first argument is a multiple of second argument. Return 0 if
14482 it is not, or we cannot easily determined it to be.
14484 An example of the sort of thing we care about (at this point; this routine
14485 could surely be made more general, and expanded to do what the *_DIV_EXPR's
14486 fold cases do now) is discovering that
14488 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
14494 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
14496 This code also handles discovering that
14498 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
14500 is a multiple of 8 so we don't have to worry about dealing with a
14501 possible remainder.
14503 Note that we *look* inside a SAVE_EXPR only to determine how it was
14504 calculated; it is not safe for fold to do much of anything else with the
14505 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
14506 at run time. For example, the latter example above *cannot* be implemented
14507 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
14508 evaluation time of the original SAVE_EXPR is not necessarily the same at
14509 the time the new expression is evaluated. The only optimization of this
14510 sort that would be valid is changing
14512 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
14516 SAVE_EXPR (I) * SAVE_EXPR (J)
14518 (where the same SAVE_EXPR (J) is used in the original and the
14519 transformed version). */
14522 multiple_of_p (tree type
, const_tree top
, const_tree bottom
)
14524 if (operand_equal_p (top
, bottom
, 0))
14527 if (TREE_CODE (type
) != INTEGER_TYPE
)
14530 switch (TREE_CODE (top
))
14533 /* Bitwise and provides a power of two multiple. If the mask is
14534 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
14535 if (!integer_pow2p (bottom
))
14540 return (multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
)
14541 || multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
));
14545 return (multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
)
14546 && multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
));
14549 if (TREE_CODE (TREE_OPERAND (top
, 1)) == INTEGER_CST
)
14553 op1
= TREE_OPERAND (top
, 1);
14554 /* const_binop may not detect overflow correctly,
14555 so check for it explicitly here. */
14556 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node
)), op1
)
14557 && 0 != (t1
= fold_convert (type
,
14558 const_binop (LSHIFT_EXPR
,
14561 && !TREE_OVERFLOW (t1
))
14562 return multiple_of_p (type
, t1
, bottom
);
14567 /* Can't handle conversions from non-integral or wider integral type. */
14568 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top
, 0))) != INTEGER_TYPE
)
14569 || (TYPE_PRECISION (type
)
14570 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top
, 0)))))
14573 /* .. fall through ... */
14576 return multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
);
14579 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
14580 && multiple_of_p (type
, TREE_OPERAND (top
, 2), bottom
));
14583 if (TREE_CODE (bottom
) != INTEGER_CST
14584 || integer_zerop (bottom
)
14585 || (TYPE_UNSIGNED (type
)
14586 && (tree_int_cst_sgn (top
) < 0
14587 || tree_int_cst_sgn (bottom
) < 0)))
14589 return wi::multiple_of_p (wi::to_widest (top
), wi::to_widest (bottom
),
14597 /* Return true if CODE or TYPE is known to be non-negative. */
14600 tree_simple_nonnegative_warnv_p (enum tree_code code
, tree type
)
14602 if ((TYPE_PRECISION (type
) != 1 || TYPE_UNSIGNED (type
))
14603 && truth_value_p (code
))
14604 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
14605 have a signed:1 type (where the value is -1 and 0). */
14610 /* Return true if (CODE OP0) is known to be non-negative. If the return
14611 value is based on the assumption that signed overflow is undefined,
14612 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14613 *STRICT_OVERFLOW_P. */
14616 tree_unary_nonnegative_warnv_p (enum tree_code code
, tree type
, tree op0
,
14617 bool *strict_overflow_p
)
14619 if (TYPE_UNSIGNED (type
))
14625 /* We can't return 1 if flag_wrapv is set because
14626 ABS_EXPR<INT_MIN> = INT_MIN. */
14627 if (!ANY_INTEGRAL_TYPE_P (type
))
14629 if (TYPE_OVERFLOW_UNDEFINED (type
))
14631 *strict_overflow_p
= true;
14636 case NON_LVALUE_EXPR
:
14638 case FIX_TRUNC_EXPR
:
14639 return tree_expr_nonnegative_warnv_p (op0
,
14640 strict_overflow_p
);
14644 tree inner_type
= TREE_TYPE (op0
);
14645 tree outer_type
= type
;
14647 if (TREE_CODE (outer_type
) == REAL_TYPE
)
14649 if (TREE_CODE (inner_type
) == REAL_TYPE
)
14650 return tree_expr_nonnegative_warnv_p (op0
,
14651 strict_overflow_p
);
14652 if (INTEGRAL_TYPE_P (inner_type
))
14654 if (TYPE_UNSIGNED (inner_type
))
14656 return tree_expr_nonnegative_warnv_p (op0
,
14657 strict_overflow_p
);
14660 else if (INTEGRAL_TYPE_P (outer_type
))
14662 if (TREE_CODE (inner_type
) == REAL_TYPE
)
14663 return tree_expr_nonnegative_warnv_p (op0
,
14664 strict_overflow_p
);
14665 if (INTEGRAL_TYPE_P (inner_type
))
14666 return TYPE_PRECISION (inner_type
) < TYPE_PRECISION (outer_type
)
14667 && TYPE_UNSIGNED (inner_type
);
14673 return tree_simple_nonnegative_warnv_p (code
, type
);
14676 /* We don't know sign of `t', so be conservative and return false. */
14680 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
14681 value is based on the assumption that signed overflow is undefined,
14682 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14683 *STRICT_OVERFLOW_P. */
14686 tree_binary_nonnegative_warnv_p (enum tree_code code
, tree type
, tree op0
,
14687 tree op1
, bool *strict_overflow_p
)
14689 if (TYPE_UNSIGNED (type
))
14694 case POINTER_PLUS_EXPR
:
14696 if (FLOAT_TYPE_P (type
))
14697 return (tree_expr_nonnegative_warnv_p (op0
,
14699 && tree_expr_nonnegative_warnv_p (op1
,
14700 strict_overflow_p
));
14702 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
14703 both unsigned and at least 2 bits shorter than the result. */
14704 if (TREE_CODE (type
) == INTEGER_TYPE
14705 && TREE_CODE (op0
) == NOP_EXPR
14706 && TREE_CODE (op1
) == NOP_EXPR
)
14708 tree inner1
= TREE_TYPE (TREE_OPERAND (op0
, 0));
14709 tree inner2
= TREE_TYPE (TREE_OPERAND (op1
, 0));
14710 if (TREE_CODE (inner1
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner1
)
14711 && TREE_CODE (inner2
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner2
))
14713 unsigned int prec
= MAX (TYPE_PRECISION (inner1
),
14714 TYPE_PRECISION (inner2
)) + 1;
14715 return prec
< TYPE_PRECISION (type
);
14721 if (FLOAT_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
14723 /* x * x is always non-negative for floating point x
14724 or without overflow. */
14725 if (operand_equal_p (op0
, op1
, 0)
14726 || (tree_expr_nonnegative_warnv_p (op0
, strict_overflow_p
)
14727 && tree_expr_nonnegative_warnv_p (op1
, strict_overflow_p
)))
14729 if (ANY_INTEGRAL_TYPE_P (type
)
14730 && TYPE_OVERFLOW_UNDEFINED (type
))
14731 *strict_overflow_p
= true;
14736 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
14737 both unsigned and their total bits is shorter than the result. */
14738 if (TREE_CODE (type
) == INTEGER_TYPE
14739 && (TREE_CODE (op0
) == NOP_EXPR
|| TREE_CODE (op0
) == INTEGER_CST
)
14740 && (TREE_CODE (op1
) == NOP_EXPR
|| TREE_CODE (op1
) == INTEGER_CST
))
14742 tree inner0
= (TREE_CODE (op0
) == NOP_EXPR
)
14743 ? TREE_TYPE (TREE_OPERAND (op0
, 0))
14745 tree inner1
= (TREE_CODE (op1
) == NOP_EXPR
)
14746 ? TREE_TYPE (TREE_OPERAND (op1
, 0))
14749 bool unsigned0
= TYPE_UNSIGNED (inner0
);
14750 bool unsigned1
= TYPE_UNSIGNED (inner1
);
14752 if (TREE_CODE (op0
) == INTEGER_CST
)
14753 unsigned0
= unsigned0
|| tree_int_cst_sgn (op0
) >= 0;
14755 if (TREE_CODE (op1
) == INTEGER_CST
)
14756 unsigned1
= unsigned1
|| tree_int_cst_sgn (op1
) >= 0;
14758 if (TREE_CODE (inner0
) == INTEGER_TYPE
&& unsigned0
14759 && TREE_CODE (inner1
) == INTEGER_TYPE
&& unsigned1
)
14761 unsigned int precision0
= (TREE_CODE (op0
) == INTEGER_CST
)
14762 ? tree_int_cst_min_precision (op0
, UNSIGNED
)
14763 : TYPE_PRECISION (inner0
);
14765 unsigned int precision1
= (TREE_CODE (op1
) == INTEGER_CST
)
14766 ? tree_int_cst_min_precision (op1
, UNSIGNED
)
14767 : TYPE_PRECISION (inner1
);
14769 return precision0
+ precision1
< TYPE_PRECISION (type
);
14776 return (tree_expr_nonnegative_warnv_p (op0
,
14778 || tree_expr_nonnegative_warnv_p (op1
,
14779 strict_overflow_p
));
14785 case TRUNC_DIV_EXPR
:
14786 case CEIL_DIV_EXPR
:
14787 case FLOOR_DIV_EXPR
:
14788 case ROUND_DIV_EXPR
:
14789 return (tree_expr_nonnegative_warnv_p (op0
,
14791 && tree_expr_nonnegative_warnv_p (op1
,
14792 strict_overflow_p
));
14794 case TRUNC_MOD_EXPR
:
14795 case CEIL_MOD_EXPR
:
14796 case FLOOR_MOD_EXPR
:
14797 case ROUND_MOD_EXPR
:
14798 return tree_expr_nonnegative_warnv_p (op0
,
14799 strict_overflow_p
);
14801 return tree_simple_nonnegative_warnv_p (code
, type
);
14804 /* We don't know sign of `t', so be conservative and return false. */
14808 /* Return true if T is known to be non-negative. If the return
14809 value is based on the assumption that signed overflow is undefined,
14810 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14811 *STRICT_OVERFLOW_P. */
14814 tree_single_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
)
14816 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
14819 switch (TREE_CODE (t
))
14822 return tree_int_cst_sgn (t
) >= 0;
14825 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t
));
14828 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t
));
14831 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
, 1),
14833 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
, 2),
14834 strict_overflow_p
));
14836 return tree_simple_nonnegative_warnv_p (TREE_CODE (t
),
14839 /* We don't know sign of `t', so be conservative and return false. */
14843 /* Return true if T is known to be non-negative. If the return
14844 value is based on the assumption that signed overflow is undefined,
14845 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14846 *STRICT_OVERFLOW_P. */
14849 tree_call_nonnegative_warnv_p (tree type
, tree fndecl
,
14850 tree arg0
, tree arg1
, bool *strict_overflow_p
)
14852 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
14853 switch (DECL_FUNCTION_CODE (fndecl
))
14855 CASE_FLT_FN (BUILT_IN_ACOS
):
14856 CASE_FLT_FN (BUILT_IN_ACOSH
):
14857 CASE_FLT_FN (BUILT_IN_CABS
):
14858 CASE_FLT_FN (BUILT_IN_COSH
):
14859 CASE_FLT_FN (BUILT_IN_ERFC
):
14860 CASE_FLT_FN (BUILT_IN_EXP
):
14861 CASE_FLT_FN (BUILT_IN_EXP10
):
14862 CASE_FLT_FN (BUILT_IN_EXP2
):
14863 CASE_FLT_FN (BUILT_IN_FABS
):
14864 CASE_FLT_FN (BUILT_IN_FDIM
):
14865 CASE_FLT_FN (BUILT_IN_HYPOT
):
14866 CASE_FLT_FN (BUILT_IN_POW10
):
14867 CASE_INT_FN (BUILT_IN_FFS
):
14868 CASE_INT_FN (BUILT_IN_PARITY
):
14869 CASE_INT_FN (BUILT_IN_POPCOUNT
):
14870 CASE_INT_FN (BUILT_IN_CLZ
):
14871 CASE_INT_FN (BUILT_IN_CLRSB
):
14872 case BUILT_IN_BSWAP32
:
14873 case BUILT_IN_BSWAP64
:
14877 CASE_FLT_FN (BUILT_IN_SQRT
):
14878 /* sqrt(-0.0) is -0.0. */
14879 if (!HONOR_SIGNED_ZEROS (element_mode (type
)))
14881 return tree_expr_nonnegative_warnv_p (arg0
,
14882 strict_overflow_p
);
14884 CASE_FLT_FN (BUILT_IN_ASINH
):
14885 CASE_FLT_FN (BUILT_IN_ATAN
):
14886 CASE_FLT_FN (BUILT_IN_ATANH
):
14887 CASE_FLT_FN (BUILT_IN_CBRT
):
14888 CASE_FLT_FN (BUILT_IN_CEIL
):
14889 CASE_FLT_FN (BUILT_IN_ERF
):
14890 CASE_FLT_FN (BUILT_IN_EXPM1
):
14891 CASE_FLT_FN (BUILT_IN_FLOOR
):
14892 CASE_FLT_FN (BUILT_IN_FMOD
):
14893 CASE_FLT_FN (BUILT_IN_FREXP
):
14894 CASE_FLT_FN (BUILT_IN_ICEIL
):
14895 CASE_FLT_FN (BUILT_IN_IFLOOR
):
14896 CASE_FLT_FN (BUILT_IN_IRINT
):
14897 CASE_FLT_FN (BUILT_IN_IROUND
):
14898 CASE_FLT_FN (BUILT_IN_LCEIL
):
14899 CASE_FLT_FN (BUILT_IN_LDEXP
):
14900 CASE_FLT_FN (BUILT_IN_LFLOOR
):
14901 CASE_FLT_FN (BUILT_IN_LLCEIL
):
14902 CASE_FLT_FN (BUILT_IN_LLFLOOR
):
14903 CASE_FLT_FN (BUILT_IN_LLRINT
):
14904 CASE_FLT_FN (BUILT_IN_LLROUND
):
14905 CASE_FLT_FN (BUILT_IN_LRINT
):
14906 CASE_FLT_FN (BUILT_IN_LROUND
):
14907 CASE_FLT_FN (BUILT_IN_MODF
):
14908 CASE_FLT_FN (BUILT_IN_NEARBYINT
):
14909 CASE_FLT_FN (BUILT_IN_RINT
):
14910 CASE_FLT_FN (BUILT_IN_ROUND
):
14911 CASE_FLT_FN (BUILT_IN_SCALB
):
14912 CASE_FLT_FN (BUILT_IN_SCALBLN
):
14913 CASE_FLT_FN (BUILT_IN_SCALBN
):
14914 CASE_FLT_FN (BUILT_IN_SIGNBIT
):
14915 CASE_FLT_FN (BUILT_IN_SIGNIFICAND
):
14916 CASE_FLT_FN (BUILT_IN_SINH
):
14917 CASE_FLT_FN (BUILT_IN_TANH
):
14918 CASE_FLT_FN (BUILT_IN_TRUNC
):
14919 /* True if the 1st argument is nonnegative. */
14920 return tree_expr_nonnegative_warnv_p (arg0
,
14921 strict_overflow_p
);
14923 CASE_FLT_FN (BUILT_IN_FMAX
):
14924 /* True if the 1st OR 2nd arguments are nonnegative. */
14925 return (tree_expr_nonnegative_warnv_p (arg0
,
14927 || (tree_expr_nonnegative_warnv_p (arg1
,
14928 strict_overflow_p
)));
14930 CASE_FLT_FN (BUILT_IN_FMIN
):
14931 /* True if the 1st AND 2nd arguments are nonnegative. */
14932 return (tree_expr_nonnegative_warnv_p (arg0
,
14934 && (tree_expr_nonnegative_warnv_p (arg1
,
14935 strict_overflow_p
)));
14937 CASE_FLT_FN (BUILT_IN_COPYSIGN
):
14938 /* True if the 2nd argument is nonnegative. */
14939 return tree_expr_nonnegative_warnv_p (arg1
,
14940 strict_overflow_p
);
14942 CASE_FLT_FN (BUILT_IN_POWI
):
14943 /* True if the 1st argument is nonnegative or the second
14944 argument is an even integer. */
14945 if (TREE_CODE (arg1
) == INTEGER_CST
14946 && (TREE_INT_CST_LOW (arg1
) & 1) == 0)
14948 return tree_expr_nonnegative_warnv_p (arg0
,
14949 strict_overflow_p
);
14951 CASE_FLT_FN (BUILT_IN_POW
):
14952 /* True if the 1st argument is nonnegative or the second
14953 argument is an even integer valued real. */
14954 if (TREE_CODE (arg1
) == REAL_CST
)
14959 c
= TREE_REAL_CST (arg1
);
14960 n
= real_to_integer (&c
);
14963 REAL_VALUE_TYPE cint
;
14964 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
14965 if (real_identical (&c
, &cint
))
14969 return tree_expr_nonnegative_warnv_p (arg0
,
14970 strict_overflow_p
);
14975 return tree_simple_nonnegative_warnv_p (CALL_EXPR
,
14979 /* Return true if T is known to be non-negative. If the return
14980 value is based on the assumption that signed overflow is undefined,
14981 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14982 *STRICT_OVERFLOW_P. */
14985 tree_invalid_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
)
14987 enum tree_code code
= TREE_CODE (t
);
14988 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
14995 tree temp
= TARGET_EXPR_SLOT (t
);
14996 t
= TARGET_EXPR_INITIAL (t
);
14998 /* If the initializer is non-void, then it's a normal expression
14999 that will be assigned to the slot. */
15000 if (!VOID_TYPE_P (t
))
15001 return tree_expr_nonnegative_warnv_p (t
, strict_overflow_p
);
15003 /* Otherwise, the initializer sets the slot in some way. One common
15004 way is an assignment statement at the end of the initializer. */
15007 if (TREE_CODE (t
) == BIND_EXPR
)
15008 t
= expr_last (BIND_EXPR_BODY (t
));
15009 else if (TREE_CODE (t
) == TRY_FINALLY_EXPR
15010 || TREE_CODE (t
) == TRY_CATCH_EXPR
)
15011 t
= expr_last (TREE_OPERAND (t
, 0));
15012 else if (TREE_CODE (t
) == STATEMENT_LIST
)
15017 if (TREE_CODE (t
) == MODIFY_EXPR
15018 && TREE_OPERAND (t
, 0) == temp
)
15019 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
, 1),
15020 strict_overflow_p
);
15027 tree arg0
= call_expr_nargs (t
) > 0 ? CALL_EXPR_ARG (t
, 0) : NULL_TREE
;
15028 tree arg1
= call_expr_nargs (t
) > 1 ? CALL_EXPR_ARG (t
, 1) : NULL_TREE
;
15030 return tree_call_nonnegative_warnv_p (TREE_TYPE (t
),
15031 get_callee_fndecl (t
),
15034 strict_overflow_p
);
15036 case COMPOUND_EXPR
:
15038 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
, 1),
15039 strict_overflow_p
);
15041 return tree_expr_nonnegative_warnv_p (expr_last (TREE_OPERAND (t
, 1)),
15042 strict_overflow_p
);
15044 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t
, 0),
15045 strict_overflow_p
);
15048 return tree_simple_nonnegative_warnv_p (TREE_CODE (t
),
15052 /* We don't know sign of `t', so be conservative and return false. */
15056 /* Return true if T is known to be non-negative. If the return
15057 value is based on the assumption that signed overflow is undefined,
15058 set *STRICT_OVERFLOW_P to true; otherwise, don't change
15059 *STRICT_OVERFLOW_P. */
15062 tree_expr_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
)
15064 enum tree_code code
;
15065 if (t
== error_mark_node
)
15068 code
= TREE_CODE (t
);
15069 switch (TREE_CODE_CLASS (code
))
15072 case tcc_comparison
:
15073 return tree_binary_nonnegative_warnv_p (TREE_CODE (t
),
15075 TREE_OPERAND (t
, 0),
15076 TREE_OPERAND (t
, 1),
15077 strict_overflow_p
);
15080 return tree_unary_nonnegative_warnv_p (TREE_CODE (t
),
15082 TREE_OPERAND (t
, 0),
15083 strict_overflow_p
);
15086 case tcc_declaration
:
15087 case tcc_reference
:
15088 return tree_single_nonnegative_warnv_p (t
, strict_overflow_p
);
15096 case TRUTH_AND_EXPR
:
15097 case TRUTH_OR_EXPR
:
15098 case TRUTH_XOR_EXPR
:
15099 return tree_binary_nonnegative_warnv_p (TREE_CODE (t
),
15101 TREE_OPERAND (t
, 0),
15102 TREE_OPERAND (t
, 1),
15103 strict_overflow_p
);
15104 case TRUTH_NOT_EXPR
:
15105 return tree_unary_nonnegative_warnv_p (TREE_CODE (t
),
15107 TREE_OPERAND (t
, 0),
15108 strict_overflow_p
);
15115 case WITH_SIZE_EXPR
:
15117 return tree_single_nonnegative_warnv_p (t
, strict_overflow_p
);
15120 return tree_invalid_nonnegative_warnv_p (t
, strict_overflow_p
);
15124 /* Return true if `t' is known to be non-negative. Handle warnings
15125 about undefined signed overflow. */
15128 tree_expr_nonnegative_p (tree t
)
15130 bool ret
, strict_overflow_p
;
15132 strict_overflow_p
= false;
15133 ret
= tree_expr_nonnegative_warnv_p (t
, &strict_overflow_p
);
15134 if (strict_overflow_p
)
15135 fold_overflow_warning (("assuming signed overflow does not occur when "
15136 "determining that expression is always "
15138 WARN_STRICT_OVERFLOW_MISC
);
15143 /* Return true when (CODE OP0) is an address and is known to be nonzero.
15144 For floating point we further ensure that T is not denormal.
15145 Similar logic is present in nonzero_address in rtlanal.h.
15147 If the return value is based on the assumption that signed overflow
15148 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
15149 change *STRICT_OVERFLOW_P. */
15152 tree_unary_nonzero_warnv_p (enum tree_code code
, tree type
, tree op0
,
15153 bool *strict_overflow_p
)
15158 return tree_expr_nonzero_warnv_p (op0
,
15159 strict_overflow_p
);
15163 tree inner_type
= TREE_TYPE (op0
);
15164 tree outer_type
= type
;
15166 return (TYPE_PRECISION (outer_type
) >= TYPE_PRECISION (inner_type
)
15167 && tree_expr_nonzero_warnv_p (op0
,
15168 strict_overflow_p
));
15172 case NON_LVALUE_EXPR
:
15173 return tree_expr_nonzero_warnv_p (op0
,
15174 strict_overflow_p
);
15183 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
15184 For floating point we further ensure that T is not denormal.
15185 Similar logic is present in nonzero_address in rtlanal.h.
15187 If the return value is based on the assumption that signed overflow
15188 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
15189 change *STRICT_OVERFLOW_P. */
15192 tree_binary_nonzero_warnv_p (enum tree_code code
,
15195 tree op1
, bool *strict_overflow_p
)
15197 bool sub_strict_overflow_p
;
15200 case POINTER_PLUS_EXPR
:
15202 if (ANY_INTEGRAL_TYPE_P (type
) && TYPE_OVERFLOW_UNDEFINED (type
))
15204 /* With the presence of negative values it is hard
15205 to say something. */
15206 sub_strict_overflow_p
= false;
15207 if (!tree_expr_nonnegative_warnv_p (op0
,
15208 &sub_strict_overflow_p
)
15209 || !tree_expr_nonnegative_warnv_p (op1
,
15210 &sub_strict_overflow_p
))
15212 /* One of operands must be positive and the other non-negative. */
15213 /* We don't set *STRICT_OVERFLOW_P here: even if this value
15214 overflows, on a twos-complement machine the sum of two
15215 nonnegative numbers can never be zero. */
15216 return (tree_expr_nonzero_warnv_p (op0
,
15218 || tree_expr_nonzero_warnv_p (op1
,
15219 strict_overflow_p
));
15224 if (TYPE_OVERFLOW_UNDEFINED (type
))
15226 if (tree_expr_nonzero_warnv_p (op0
,
15228 && tree_expr_nonzero_warnv_p (op1
,
15229 strict_overflow_p
))
15231 *strict_overflow_p
= true;
15238 sub_strict_overflow_p
= false;
15239 if (tree_expr_nonzero_warnv_p (op0
,
15240 &sub_strict_overflow_p
)
15241 && tree_expr_nonzero_warnv_p (op1
,
15242 &sub_strict_overflow_p
))
15244 if (sub_strict_overflow_p
)
15245 *strict_overflow_p
= true;
15250 sub_strict_overflow_p
= false;
15251 if (tree_expr_nonzero_warnv_p (op0
,
15252 &sub_strict_overflow_p
))
15254 if (sub_strict_overflow_p
)
15255 *strict_overflow_p
= true;
15257 /* When both operands are nonzero, then MAX must be too. */
15258 if (tree_expr_nonzero_warnv_p (op1
,
15259 strict_overflow_p
))
15262 /* MAX where operand 0 is positive is positive. */
15263 return tree_expr_nonnegative_warnv_p (op0
,
15264 strict_overflow_p
);
15266 /* MAX where operand 1 is positive is positive. */
15267 else if (tree_expr_nonzero_warnv_p (op1
,
15268 &sub_strict_overflow_p
)
15269 && tree_expr_nonnegative_warnv_p (op1
,
15270 &sub_strict_overflow_p
))
15272 if (sub_strict_overflow_p
)
15273 *strict_overflow_p
= true;
15279 return (tree_expr_nonzero_warnv_p (op1
,
15281 || tree_expr_nonzero_warnv_p (op0
,
15282 strict_overflow_p
));
15291 /* Return true when T is an address and is known to be nonzero.
15292 For floating point we further ensure that T is not denormal.
15293 Similar logic is present in nonzero_address in rtlanal.h.
15295 If the return value is based on the assumption that signed overflow
15296 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
15297 change *STRICT_OVERFLOW_P. */
15300 tree_single_nonzero_warnv_p (tree t
, bool *strict_overflow_p
)
15302 bool sub_strict_overflow_p
;
15303 switch (TREE_CODE (t
))
15306 return !integer_zerop (t
);
15310 tree base
= TREE_OPERAND (t
, 0);
15312 if (!DECL_P (base
))
15313 base
= get_base_address (base
);
15318 /* For objects in symbol table check if we know they are non-zero.
15319 Don't do anything for variables and functions before symtab is built;
15320 it is quite possible that they will be declared weak later. */
15321 if (DECL_P (base
) && decl_in_symtab_p (base
))
15323 struct symtab_node
*symbol
;
15325 symbol
= symtab_node::get_create (base
);
15327 return symbol
->nonzero_address ();
15332 /* Function local objects are never NULL. */
15334 && (DECL_CONTEXT (base
)
15335 && TREE_CODE (DECL_CONTEXT (base
)) == FUNCTION_DECL
15336 && auto_var_in_fn_p (base
, DECL_CONTEXT (base
))))
15339 /* Constants are never weak. */
15340 if (CONSTANT_CLASS_P (base
))
15347 sub_strict_overflow_p
= false;
15348 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
15349 &sub_strict_overflow_p
)
15350 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 2),
15351 &sub_strict_overflow_p
))
15353 if (sub_strict_overflow_p
)
15354 *strict_overflow_p
= true;
15365 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
15366 attempt to fold the expression to a constant without modifying TYPE,
15369 If the expression could be simplified to a constant, then return
15370 the constant. If the expression would not be simplified to a
15371 constant, then return NULL_TREE. */
15374 fold_binary_to_constant (enum tree_code code
, tree type
, tree op0
, tree op1
)
15376 tree tem
= fold_binary (code
, type
, op0
, op1
);
15377 return (tem
&& TREE_CONSTANT (tem
)) ? tem
: NULL_TREE
;
15380 /* Given the components of a unary expression CODE, TYPE and OP0,
15381 attempt to fold the expression to a constant without modifying
15384 If the expression could be simplified to a constant, then return
15385 the constant. If the expression would not be simplified to a
15386 constant, then return NULL_TREE. */
15389 fold_unary_to_constant (enum tree_code code
, tree type
, tree op0
)
15391 tree tem
= fold_unary (code
, type
, op0
);
15392 return (tem
&& TREE_CONSTANT (tem
)) ? tem
: NULL_TREE
;
15395 /* If EXP represents referencing an element in a constant string
15396 (either via pointer arithmetic or array indexing), return the
15397 tree representing the value accessed, otherwise return NULL. */
15400 fold_read_from_constant_string (tree exp
)
15402 if ((TREE_CODE (exp
) == INDIRECT_REF
15403 || TREE_CODE (exp
) == ARRAY_REF
)
15404 && TREE_CODE (TREE_TYPE (exp
)) == INTEGER_TYPE
)
15406 tree exp1
= TREE_OPERAND (exp
, 0);
15409 location_t loc
= EXPR_LOCATION (exp
);
15411 if (TREE_CODE (exp
) == INDIRECT_REF
)
15412 string
= string_constant (exp1
, &index
);
15415 tree low_bound
= array_ref_low_bound (exp
);
15416 index
= fold_convert_loc (loc
, sizetype
, TREE_OPERAND (exp
, 1));
15418 /* Optimize the special-case of a zero lower bound.
15420 We convert the low_bound to sizetype to avoid some problems
15421 with constant folding. (E.g. suppose the lower bound is 1,
15422 and its mode is QI. Without the conversion,l (ARRAY
15423 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
15424 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
15425 if (! integer_zerop (low_bound
))
15426 index
= size_diffop_loc (loc
, index
,
15427 fold_convert_loc (loc
, sizetype
, low_bound
));
15433 && TYPE_MODE (TREE_TYPE (exp
)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string
)))
15434 && TREE_CODE (string
) == STRING_CST
15435 && TREE_CODE (index
) == INTEGER_CST
15436 && compare_tree_int (index
, TREE_STRING_LENGTH (string
)) < 0
15437 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string
))))
15439 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string
)))) == 1))
15440 return build_int_cst_type (TREE_TYPE (exp
),
15441 (TREE_STRING_POINTER (string
)
15442 [TREE_INT_CST_LOW (index
)]));
15447 /* Return the tree for neg (ARG0) when ARG0 is known to be either
15448 an integer constant, real, or fixed-point constant.
15450 TYPE is the type of the result. */
15453 fold_negate_const (tree arg0
, tree type
)
15455 tree t
= NULL_TREE
;
15457 switch (TREE_CODE (arg0
))
15462 wide_int val
= wi::neg (arg0
, &overflow
);
15463 t
= force_fit_type (type
, val
, 1,
15464 (overflow
| TREE_OVERFLOW (arg0
))
15465 && !TYPE_UNSIGNED (type
));
15470 t
= build_real (type
, real_value_negate (&TREE_REAL_CST (arg0
)));
15475 FIXED_VALUE_TYPE f
;
15476 bool overflow_p
= fixed_arithmetic (&f
, NEGATE_EXPR
,
15477 &(TREE_FIXED_CST (arg0
)), NULL
,
15478 TYPE_SATURATING (type
));
15479 t
= build_fixed (type
, f
);
15480 /* Propagate overflow flags. */
15481 if (overflow_p
| TREE_OVERFLOW (arg0
))
15482 TREE_OVERFLOW (t
) = 1;
15487 gcc_unreachable ();
15493 /* Return the tree for abs (ARG0) when ARG0 is known to be either
15494 an integer constant or real constant.
15496 TYPE is the type of the result. */
15499 fold_abs_const (tree arg0
, tree type
)
15501 tree t
= NULL_TREE
;
15503 switch (TREE_CODE (arg0
))
15507 /* If the value is unsigned or non-negative, then the absolute value
15508 is the same as the ordinary value. */
15509 if (!wi::neg_p (arg0
, TYPE_SIGN (type
)))
15512 /* If the value is negative, then the absolute value is
15517 wide_int val
= wi::neg (arg0
, &overflow
);
15518 t
= force_fit_type (type
, val
, -1,
15519 overflow
| TREE_OVERFLOW (arg0
));
15525 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0
)))
15526 t
= build_real (type
, real_value_negate (&TREE_REAL_CST (arg0
)));
15532 gcc_unreachable ();
15538 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
15539 constant. TYPE is the type of the result. */
15542 fold_not_const (const_tree arg0
, tree type
)
15544 gcc_assert (TREE_CODE (arg0
) == INTEGER_CST
);
15546 return force_fit_type (type
, wi::bit_not (arg0
), 0, TREE_OVERFLOW (arg0
));
15549 /* Given CODE, a relational operator, the target type, TYPE and two
15550 constant operands OP0 and OP1, return the result of the
15551 relational operation. If the result is not a compile time
15552 constant, then return NULL_TREE. */
15555 fold_relational_const (enum tree_code code
, tree type
, tree op0
, tree op1
)
15557 int result
, invert
;
15559 /* From here on, the only cases we handle are when the result is
15560 known to be a constant. */
15562 if (TREE_CODE (op0
) == REAL_CST
&& TREE_CODE (op1
) == REAL_CST
)
15564 const REAL_VALUE_TYPE
*c0
= TREE_REAL_CST_PTR (op0
);
15565 const REAL_VALUE_TYPE
*c1
= TREE_REAL_CST_PTR (op1
);
15567 /* Handle the cases where either operand is a NaN. */
15568 if (real_isnan (c0
) || real_isnan (c1
))
15578 case UNORDERED_EXPR
:
15592 if (flag_trapping_math
)
15598 gcc_unreachable ();
15601 return constant_boolean_node (result
, type
);
15604 return constant_boolean_node (real_compare (code
, c0
, c1
), type
);
15607 if (TREE_CODE (op0
) == FIXED_CST
&& TREE_CODE (op1
) == FIXED_CST
)
15609 const FIXED_VALUE_TYPE
*c0
= TREE_FIXED_CST_PTR (op0
);
15610 const FIXED_VALUE_TYPE
*c1
= TREE_FIXED_CST_PTR (op1
);
15611 return constant_boolean_node (fixed_compare (code
, c0
, c1
), type
);
15614 /* Handle equality/inequality of complex constants. */
15615 if (TREE_CODE (op0
) == COMPLEX_CST
&& TREE_CODE (op1
) == COMPLEX_CST
)
15617 tree rcond
= fold_relational_const (code
, type
,
15618 TREE_REALPART (op0
),
15619 TREE_REALPART (op1
));
15620 tree icond
= fold_relational_const (code
, type
,
15621 TREE_IMAGPART (op0
),
15622 TREE_IMAGPART (op1
));
15623 if (code
== EQ_EXPR
)
15624 return fold_build2 (TRUTH_ANDIF_EXPR
, type
, rcond
, icond
);
15625 else if (code
== NE_EXPR
)
15626 return fold_build2 (TRUTH_ORIF_EXPR
, type
, rcond
, icond
);
15631 if (TREE_CODE (op0
) == VECTOR_CST
&& TREE_CODE (op1
) == VECTOR_CST
)
15633 unsigned count
= VECTOR_CST_NELTS (op0
);
15634 tree
*elts
= XALLOCAVEC (tree
, count
);
15635 gcc_assert (VECTOR_CST_NELTS (op1
) == count
15636 && TYPE_VECTOR_SUBPARTS (type
) == count
);
15638 for (unsigned i
= 0; i
< count
; i
++)
15640 tree elem_type
= TREE_TYPE (type
);
15641 tree elem0
= VECTOR_CST_ELT (op0
, i
);
15642 tree elem1
= VECTOR_CST_ELT (op1
, i
);
15644 tree tem
= fold_relational_const (code
, elem_type
,
15647 if (tem
== NULL_TREE
)
15650 elts
[i
] = build_int_cst (elem_type
, integer_zerop (tem
) ? 0 : -1);
15653 return build_vector (type
, elts
);
15656 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
15658 To compute GT, swap the arguments and do LT.
15659 To compute GE, do LT and invert the result.
15660 To compute LE, swap the arguments, do LT and invert the result.
15661 To compute NE, do EQ and invert the result.
15663 Therefore, the code below must handle only EQ and LT. */
15665 if (code
== LE_EXPR
|| code
== GT_EXPR
)
15667 std::swap (op0
, op1
);
15668 code
= swap_tree_comparison (code
);
15671 /* Note that it is safe to invert for real values here because we
15672 have already handled the one case that it matters. */
15675 if (code
== NE_EXPR
|| code
== GE_EXPR
)
15678 code
= invert_tree_comparison (code
, false);
15681 /* Compute a result for LT or EQ if args permit;
15682 Otherwise return T. */
15683 if (TREE_CODE (op0
) == INTEGER_CST
&& TREE_CODE (op1
) == INTEGER_CST
)
15685 if (code
== EQ_EXPR
)
15686 result
= tree_int_cst_equal (op0
, op1
);
15688 result
= tree_int_cst_lt (op0
, op1
);
15695 return constant_boolean_node (result
, type
);
15698 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
15699 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
15703 fold_build_cleanup_point_expr (tree type
, tree expr
)
15705 /* If the expression does not have side effects then we don't have to wrap
15706 it with a cleanup point expression. */
15707 if (!TREE_SIDE_EFFECTS (expr
))
15710 /* If the expression is a return, check to see if the expression inside the
15711 return has no side effects or the right hand side of the modify expression
15712 inside the return. If either don't have side effects set we don't need to
15713 wrap the expression in a cleanup point expression. Note we don't check the
15714 left hand side of the modify because it should always be a return decl. */
15715 if (TREE_CODE (expr
) == RETURN_EXPR
)
15717 tree op
= TREE_OPERAND (expr
, 0);
15718 if (!op
|| !TREE_SIDE_EFFECTS (op
))
15720 op
= TREE_OPERAND (op
, 1);
15721 if (!TREE_SIDE_EFFECTS (op
))
15725 return build1 (CLEANUP_POINT_EXPR
, type
, expr
);
15728 /* Given a pointer value OP0 and a type TYPE, return a simplified version
15729 of an indirection through OP0, or NULL_TREE if no simplification is
15733 fold_indirect_ref_1 (location_t loc
, tree type
, tree op0
)
15739 subtype
= TREE_TYPE (sub
);
15740 if (!POINTER_TYPE_P (subtype
))
15743 if (TREE_CODE (sub
) == ADDR_EXPR
)
15745 tree op
= TREE_OPERAND (sub
, 0);
15746 tree optype
= TREE_TYPE (op
);
15747 /* *&CONST_DECL -> to the value of the const decl. */
15748 if (TREE_CODE (op
) == CONST_DECL
)
15749 return DECL_INITIAL (op
);
15750 /* *&p => p; make sure to handle *&"str"[cst] here. */
15751 if (type
== optype
)
15753 tree fop
= fold_read_from_constant_string (op
);
15759 /* *(foo *)&fooarray => fooarray[0] */
15760 else if (TREE_CODE (optype
) == ARRAY_TYPE
15761 && type
== TREE_TYPE (optype
)
15762 && (!in_gimple_form
15763 || TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
))
15765 tree type_domain
= TYPE_DOMAIN (optype
);
15766 tree min_val
= size_zero_node
;
15767 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
15768 min_val
= TYPE_MIN_VALUE (type_domain
);
15770 && TREE_CODE (min_val
) != INTEGER_CST
)
15772 return build4_loc (loc
, ARRAY_REF
, type
, op
, min_val
,
15773 NULL_TREE
, NULL_TREE
);
15775 /* *(foo *)&complexfoo => __real__ complexfoo */
15776 else if (TREE_CODE (optype
) == COMPLEX_TYPE
15777 && type
== TREE_TYPE (optype
))
15778 return fold_build1_loc (loc
, REALPART_EXPR
, type
, op
);
15779 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
15780 else if (TREE_CODE (optype
) == VECTOR_TYPE
15781 && type
== TREE_TYPE (optype
))
15783 tree part_width
= TYPE_SIZE (type
);
15784 tree index
= bitsize_int (0);
15785 return fold_build3_loc (loc
, BIT_FIELD_REF
, type
, op
, part_width
, index
);
15789 if (TREE_CODE (sub
) == POINTER_PLUS_EXPR
15790 && TREE_CODE (TREE_OPERAND (sub
, 1)) == INTEGER_CST
)
15792 tree op00
= TREE_OPERAND (sub
, 0);
15793 tree op01
= TREE_OPERAND (sub
, 1);
15796 if (TREE_CODE (op00
) == ADDR_EXPR
)
15799 op00
= TREE_OPERAND (op00
, 0);
15800 op00type
= TREE_TYPE (op00
);
15802 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
15803 if (TREE_CODE (op00type
) == VECTOR_TYPE
15804 && type
== TREE_TYPE (op00type
))
15806 HOST_WIDE_INT offset
= tree_to_shwi (op01
);
15807 tree part_width
= TYPE_SIZE (type
);
15808 unsigned HOST_WIDE_INT part_widthi
= tree_to_shwi (part_width
)/BITS_PER_UNIT
;
15809 unsigned HOST_WIDE_INT indexi
= offset
* BITS_PER_UNIT
;
15810 tree index
= bitsize_int (indexi
);
15812 if (offset
/ part_widthi
< TYPE_VECTOR_SUBPARTS (op00type
))
15813 return fold_build3_loc (loc
,
15814 BIT_FIELD_REF
, type
, op00
,
15815 part_width
, index
);
15818 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
15819 else if (TREE_CODE (op00type
) == COMPLEX_TYPE
15820 && type
== TREE_TYPE (op00type
))
15822 tree size
= TYPE_SIZE_UNIT (type
);
15823 if (tree_int_cst_equal (size
, op01
))
15824 return fold_build1_loc (loc
, IMAGPART_EXPR
, type
, op00
);
15826 /* ((foo *)&fooarray)[1] => fooarray[1] */
15827 else if (TREE_CODE (op00type
) == ARRAY_TYPE
15828 && type
== TREE_TYPE (op00type
))
15830 tree type_domain
= TYPE_DOMAIN (op00type
);
15831 tree min_val
= size_zero_node
;
15832 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
15833 min_val
= TYPE_MIN_VALUE (type_domain
);
15834 op01
= size_binop_loc (loc
, EXACT_DIV_EXPR
, op01
,
15835 TYPE_SIZE_UNIT (type
));
15836 op01
= size_binop_loc (loc
, PLUS_EXPR
, op01
, min_val
);
15837 return build4_loc (loc
, ARRAY_REF
, type
, op00
, op01
,
15838 NULL_TREE
, NULL_TREE
);
15843 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
15844 if (TREE_CODE (TREE_TYPE (subtype
)) == ARRAY_TYPE
15845 && type
== TREE_TYPE (TREE_TYPE (subtype
))
15846 && (!in_gimple_form
15847 || TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
))
15850 tree min_val
= size_zero_node
;
15851 sub
= build_fold_indirect_ref_loc (loc
, sub
);
15852 type_domain
= TYPE_DOMAIN (TREE_TYPE (sub
));
15853 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
15854 min_val
= TYPE_MIN_VALUE (type_domain
);
15856 && TREE_CODE (min_val
) != INTEGER_CST
)
15858 return build4_loc (loc
, ARRAY_REF
, type
, sub
, min_val
, NULL_TREE
,
15865 /* Builds an expression for an indirection through T, simplifying some
15869 build_fold_indirect_ref_loc (location_t loc
, tree t
)
15871 tree type
= TREE_TYPE (TREE_TYPE (t
));
15872 tree sub
= fold_indirect_ref_1 (loc
, type
, t
);
15877 return build1_loc (loc
, INDIRECT_REF
, type
, t
);
15880 /* Given an INDIRECT_REF T, return either T or a simplified version. */
15883 fold_indirect_ref_loc (location_t loc
, tree t
)
15885 tree sub
= fold_indirect_ref_1 (loc
, TREE_TYPE (t
), TREE_OPERAND (t
, 0));
15893 /* Strip non-trapping, non-side-effecting tree nodes from an expression
15894 whose result is ignored. The type of the returned tree need not be
15895 the same as the original expression. */
15898 fold_ignored_result (tree t
)
15900 if (!TREE_SIDE_EFFECTS (t
))
15901 return integer_zero_node
;
15904 switch (TREE_CODE_CLASS (TREE_CODE (t
)))
15907 t
= TREE_OPERAND (t
, 0);
15911 case tcc_comparison
:
15912 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1)))
15913 t
= TREE_OPERAND (t
, 0);
15914 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 0)))
15915 t
= TREE_OPERAND (t
, 1);
15920 case tcc_expression
:
15921 switch (TREE_CODE (t
))
15923 case COMPOUND_EXPR
:
15924 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1)))
15926 t
= TREE_OPERAND (t
, 0);
15930 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1))
15931 || TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 2)))
15933 t
= TREE_OPERAND (t
, 0);
15946 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
15949 round_up_loc (location_t loc
, tree value
, unsigned int divisor
)
15951 tree div
= NULL_TREE
;
15956 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
15957 have to do anything. Only do this when we are not given a const,
15958 because in that case, this check is more expensive than just
15960 if (TREE_CODE (value
) != INTEGER_CST
)
15962 div
= build_int_cst (TREE_TYPE (value
), divisor
);
15964 if (multiple_of_p (TREE_TYPE (value
), value
, div
))
15968 /* If divisor is a power of two, simplify this to bit manipulation. */
15969 if (divisor
== (divisor
& -divisor
))
15971 if (TREE_CODE (value
) == INTEGER_CST
)
15973 wide_int val
= value
;
15976 if ((val
& (divisor
- 1)) == 0)
15979 overflow_p
= TREE_OVERFLOW (value
);
15980 val
+= divisor
- 1;
15981 val
&= - (int) divisor
;
15985 return force_fit_type (TREE_TYPE (value
), val
, -1, overflow_p
);
15991 t
= build_int_cst (TREE_TYPE (value
), divisor
- 1);
15992 value
= size_binop_loc (loc
, PLUS_EXPR
, value
, t
);
15993 t
= build_int_cst (TREE_TYPE (value
), - (int) divisor
);
15994 value
= size_binop_loc (loc
, BIT_AND_EXPR
, value
, t
);
16000 div
= build_int_cst (TREE_TYPE (value
), divisor
);
16001 value
= size_binop_loc (loc
, CEIL_DIV_EXPR
, value
, div
);
16002 value
= size_binop_loc (loc
, MULT_EXPR
, value
, div
);
16008 /* Likewise, but round down. */
16011 round_down_loc (location_t loc
, tree value
, int divisor
)
16013 tree div
= NULL_TREE
;
16015 gcc_assert (divisor
> 0);
16019 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
16020 have to do anything. Only do this when we are not given a const,
16021 because in that case, this check is more expensive than just
16023 if (TREE_CODE (value
) != INTEGER_CST
)
16025 div
= build_int_cst (TREE_TYPE (value
), divisor
);
16027 if (multiple_of_p (TREE_TYPE (value
), value
, div
))
16031 /* If divisor is a power of two, simplify this to bit manipulation. */
16032 if (divisor
== (divisor
& -divisor
))
16036 t
= build_int_cst (TREE_TYPE (value
), -divisor
);
16037 value
= size_binop_loc (loc
, BIT_AND_EXPR
, value
, t
);
16042 div
= build_int_cst (TREE_TYPE (value
), divisor
);
16043 value
= size_binop_loc (loc
, FLOOR_DIV_EXPR
, value
, div
);
16044 value
= size_binop_loc (loc
, MULT_EXPR
, value
, div
);
16050 /* Returns the pointer to the base of the object addressed by EXP and
16051 extracts the information about the offset of the access, storing it
16052 to PBITPOS and POFFSET. */
16055 split_address_to_core_and_offset (tree exp
,
16056 HOST_WIDE_INT
*pbitpos
, tree
*poffset
)
16060 int unsignedp
, volatilep
;
16061 HOST_WIDE_INT bitsize
;
16062 location_t loc
= EXPR_LOCATION (exp
);
16064 if (TREE_CODE (exp
) == ADDR_EXPR
)
16066 core
= get_inner_reference (TREE_OPERAND (exp
, 0), &bitsize
, pbitpos
,
16067 poffset
, &mode
, &unsignedp
, &volatilep
,
16069 core
= build_fold_addr_expr_loc (loc
, core
);
16075 *poffset
= NULL_TREE
;
16081 /* Returns true if addresses of E1 and E2 differ by a constant, false
16082 otherwise. If they do, E1 - E2 is stored in *DIFF. */
16085 ptr_difference_const (tree e1
, tree e2
, HOST_WIDE_INT
*diff
)
16088 HOST_WIDE_INT bitpos1
, bitpos2
;
16089 tree toffset1
, toffset2
, tdiff
, type
;
16091 core1
= split_address_to_core_and_offset (e1
, &bitpos1
, &toffset1
);
16092 core2
= split_address_to_core_and_offset (e2
, &bitpos2
, &toffset2
);
16094 if (bitpos1
% BITS_PER_UNIT
!= 0
16095 || bitpos2
% BITS_PER_UNIT
!= 0
16096 || !operand_equal_p (core1
, core2
, 0))
16099 if (toffset1
&& toffset2
)
16101 type
= TREE_TYPE (toffset1
);
16102 if (type
!= TREE_TYPE (toffset2
))
16103 toffset2
= fold_convert (type
, toffset2
);
16105 tdiff
= fold_build2 (MINUS_EXPR
, type
, toffset1
, toffset2
);
16106 if (!cst_and_fits_in_hwi (tdiff
))
16109 *diff
= int_cst_value (tdiff
);
16111 else if (toffset1
|| toffset2
)
16113 /* If only one of the offsets is non-constant, the difference cannot
16120 *diff
+= (bitpos1
- bitpos2
) / BITS_PER_UNIT
;
16124 /* Simplify the floating point expression EXP when the sign of the
16125 result is not significant. Return NULL_TREE if no simplification
16129 fold_strip_sign_ops (tree exp
)
16132 location_t loc
= EXPR_LOCATION (exp
);
16134 switch (TREE_CODE (exp
))
16138 arg0
= fold_strip_sign_ops (TREE_OPERAND (exp
, 0));
16139 return arg0
? arg0
: TREE_OPERAND (exp
, 0);
16143 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (exp
)))
16145 arg0
= fold_strip_sign_ops (TREE_OPERAND (exp
, 0));
16146 arg1
= fold_strip_sign_ops (TREE_OPERAND (exp
, 1));
16147 if (arg0
!= NULL_TREE
|| arg1
!= NULL_TREE
)
16148 return fold_build2_loc (loc
, TREE_CODE (exp
), TREE_TYPE (exp
),
16149 arg0
? arg0
: TREE_OPERAND (exp
, 0),
16150 arg1
? arg1
: TREE_OPERAND (exp
, 1));
16153 case COMPOUND_EXPR
:
16154 arg0
= TREE_OPERAND (exp
, 0);
16155 arg1
= fold_strip_sign_ops (TREE_OPERAND (exp
, 1));
16157 return fold_build2_loc (loc
, COMPOUND_EXPR
, TREE_TYPE (exp
), arg0
, arg1
);
16161 arg0
= fold_strip_sign_ops (TREE_OPERAND (exp
, 1));
16162 arg1
= fold_strip_sign_ops (TREE_OPERAND (exp
, 2));
16164 return fold_build3_loc (loc
,
16165 COND_EXPR
, TREE_TYPE (exp
), TREE_OPERAND (exp
, 0),
16166 arg0
? arg0
: TREE_OPERAND (exp
, 1),
16167 arg1
? arg1
: TREE_OPERAND (exp
, 2));
16172 const enum built_in_function fcode
= builtin_mathfn_code (exp
);
16175 CASE_FLT_FN (BUILT_IN_COPYSIGN
):
16176 /* Strip copysign function call, return the 1st argument. */
16177 arg0
= CALL_EXPR_ARG (exp
, 0);
16178 arg1
= CALL_EXPR_ARG (exp
, 1);
16179 return omit_one_operand_loc (loc
, TREE_TYPE (exp
), arg0
, arg1
);
16182 /* Strip sign ops from the argument of "odd" math functions. */
16183 if (negate_mathfn_p (fcode
))
16185 arg0
= fold_strip_sign_ops (CALL_EXPR_ARG (exp
, 0));
16187 return build_call_expr_loc (loc
, get_callee_fndecl (exp
), 1, arg0
);
16200 /* Return OFF converted to a pointer offset type suitable as offset for
16201 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
16203 convert_to_ptrofftype_loc (location_t loc
, tree off
)
16205 return fold_convert_loc (loc
, sizetype
, off
);
16208 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
16210 fold_build_pointer_plus_loc (location_t loc
, tree ptr
, tree off
)
16212 return fold_build2_loc (loc
, POINTER_PLUS_EXPR
, TREE_TYPE (ptr
),
16213 ptr
, convert_to_ptrofftype_loc (loc
, off
));
16216 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
16218 fold_build_pointer_plus_hwi_loc (location_t loc
, tree ptr
, HOST_WIDE_INT off
)
16220 return fold_build2_loc (loc
, POINTER_PLUS_EXPR
, TREE_TYPE (ptr
),
16221 ptr
, size_int (off
));