PR testsuite/66621
[official-gcc.git] / gcc / explow.c
blobadc17a31a3a9d2f0ca50abb56b95b388123f868e
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "rtl.h"
27 #include "alias.h"
28 #include "symtab.h"
29 #include "tree.h"
30 #include "stor-layout.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "except.h"
34 #include "hard-reg-set.h"
35 #include "function.h"
36 #include "insn-config.h"
37 #include "expmed.h"
38 #include "dojump.h"
39 #include "explow.h"
40 #include "calls.h"
41 #include "emit-rtl.h"
42 #include "varasm.h"
43 #include "stmt.h"
44 #include "expr.h"
45 #include "insn-codes.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "recog.h"
49 #include "langhooks.h"
50 #include "target.h"
51 #include "common/common-target.h"
52 #include "output.h"
54 static rtx break_out_memory_refs (rtx);
57 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
59 HOST_WIDE_INT
60 trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
62 int width = GET_MODE_PRECISION (mode);
64 /* You want to truncate to a _what_? */
65 gcc_assert (SCALAR_INT_MODE_P (mode)
66 || POINTER_BOUNDS_MODE_P (mode));
68 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
69 if (mode == BImode)
70 return c & 1 ? STORE_FLAG_VALUE : 0;
72 /* Sign-extend for the requested mode. */
74 if (width < HOST_BITS_PER_WIDE_INT)
76 HOST_WIDE_INT sign = 1;
77 sign <<= width - 1;
78 c &= (sign << 1) - 1;
79 c ^= sign;
80 c -= sign;
83 return c;
86 /* Return an rtx for the sum of X and the integer C, given that X has
87 mode MODE. INPLACE is true if X can be modified inplace or false
88 if it must be treated as immutable. */
90 rtx
91 plus_constant (machine_mode mode, rtx x, HOST_WIDE_INT c,
92 bool inplace)
94 RTX_CODE code;
95 rtx y;
96 rtx tem;
97 int all_constant = 0;
99 gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
101 if (c == 0)
102 return x;
104 restart:
106 code = GET_CODE (x);
107 y = x;
109 switch (code)
111 CASE_CONST_SCALAR_INT:
112 return immed_wide_int_const (wi::add (std::make_pair (x, mode), c),
113 mode);
114 case MEM:
115 /* If this is a reference to the constant pool, try replacing it with
116 a reference to a new constant. If the resulting address isn't
117 valid, don't return it because we have no way to validize it. */
118 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
119 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
121 tem = plus_constant (mode, get_pool_constant (XEXP (x, 0)), c);
122 tem = force_const_mem (GET_MODE (x), tem);
123 /* Targets may disallow some constants in the constant pool, thus
124 force_const_mem may return NULL_RTX. */
125 if (tem && memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
126 return tem;
128 break;
130 case CONST:
131 /* If adding to something entirely constant, set a flag
132 so that we can add a CONST around the result. */
133 if (inplace && shared_const_p (x))
134 inplace = false;
135 x = XEXP (x, 0);
136 all_constant = 1;
137 goto restart;
139 case SYMBOL_REF:
140 case LABEL_REF:
141 all_constant = 1;
142 break;
144 case PLUS:
145 /* The interesting case is adding the integer to a sum. Look
146 for constant term in the sum and combine with C. For an
147 integer constant term or a constant term that is not an
148 explicit integer, we combine or group them together anyway.
150 We may not immediately return from the recursive call here, lest
151 all_constant gets lost. */
153 if (CONSTANT_P (XEXP (x, 1)))
155 rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
156 if (term == const0_rtx)
157 x = XEXP (x, 0);
158 else if (inplace)
159 XEXP (x, 1) = term;
160 else
161 x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
162 c = 0;
164 else if (rtx *const_loc = find_constant_term_loc (&y))
166 if (!inplace)
168 /* We need to be careful since X may be shared and we can't
169 modify it in place. */
170 x = copy_rtx (x);
171 const_loc = find_constant_term_loc (&x);
173 *const_loc = plus_constant (mode, *const_loc, c, true);
174 c = 0;
176 break;
178 default:
179 break;
182 if (c != 0)
183 x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
185 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
186 return x;
187 else if (all_constant)
188 return gen_rtx_CONST (mode, x);
189 else
190 return x;
193 /* If X is a sum, return a new sum like X but lacking any constant terms.
194 Add all the removed constant terms into *CONSTPTR.
195 X itself is not altered. The result != X if and only if
196 it is not isomorphic to X. */
199 eliminate_constant_term (rtx x, rtx *constptr)
201 rtx x0, x1;
202 rtx tem;
204 if (GET_CODE (x) != PLUS)
205 return x;
207 /* First handle constants appearing at this level explicitly. */
208 if (CONST_INT_P (XEXP (x, 1))
209 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
210 XEXP (x, 1)))
211 && CONST_INT_P (tem))
213 *constptr = tem;
214 return eliminate_constant_term (XEXP (x, 0), constptr);
217 tem = const0_rtx;
218 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
219 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
220 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
221 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
222 *constptr, tem))
223 && CONST_INT_P (tem))
225 *constptr = tem;
226 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
229 return x;
233 /* Return a copy of X in which all memory references
234 and all constants that involve symbol refs
235 have been replaced with new temporary registers.
236 Also emit code to load the memory locations and constants
237 into those registers.
239 If X contains no such constants or memory references,
240 X itself (not a copy) is returned.
242 If a constant is found in the address that is not a legitimate constant
243 in an insn, it is left alone in the hope that it might be valid in the
244 address.
246 X may contain no arithmetic except addition, subtraction and multiplication.
247 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
249 static rtx
250 break_out_memory_refs (rtx x)
252 if (MEM_P (x)
253 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
254 && GET_MODE (x) != VOIDmode))
255 x = force_reg (GET_MODE (x), x);
256 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
257 || GET_CODE (x) == MULT)
259 rtx op0 = break_out_memory_refs (XEXP (x, 0));
260 rtx op1 = break_out_memory_refs (XEXP (x, 1));
262 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
263 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
266 return x;
269 /* Given X, a memory address in address space AS' pointer mode, convert it to
270 an address in the address space's address mode, or vice versa (TO_MODE says
271 which way). We take advantage of the fact that pointers are not allowed to
272 overflow by commuting arithmetic operations over conversions so that address
273 arithmetic insns can be used. IN_CONST is true if this conversion is inside
274 a CONST. */
276 static rtx
277 convert_memory_address_addr_space_1 (machine_mode to_mode ATTRIBUTE_UNUSED,
278 rtx x, addr_space_t as ATTRIBUTE_UNUSED,
279 bool in_const ATTRIBUTE_UNUSED)
281 #ifndef POINTERS_EXTEND_UNSIGNED
282 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
283 return x;
284 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
285 machine_mode pointer_mode, address_mode, from_mode;
286 rtx temp;
287 enum rtx_code code;
289 /* If X already has the right mode, just return it. */
290 if (GET_MODE (x) == to_mode)
291 return x;
293 pointer_mode = targetm.addr_space.pointer_mode (as);
294 address_mode = targetm.addr_space.address_mode (as);
295 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
297 /* Here we handle some special cases. If none of them apply, fall through
298 to the default case. */
299 switch (GET_CODE (x))
301 CASE_CONST_SCALAR_INT:
302 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
303 code = TRUNCATE;
304 else if (POINTERS_EXTEND_UNSIGNED < 0)
305 break;
306 else if (POINTERS_EXTEND_UNSIGNED > 0)
307 code = ZERO_EXTEND;
308 else
309 code = SIGN_EXTEND;
310 temp = simplify_unary_operation (code, to_mode, x, from_mode);
311 if (temp)
312 return temp;
313 break;
315 case SUBREG:
316 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
317 && GET_MODE (SUBREG_REG (x)) == to_mode)
318 return SUBREG_REG (x);
319 break;
321 case LABEL_REF:
322 temp = gen_rtx_LABEL_REF (to_mode, LABEL_REF_LABEL (x));
323 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
324 return temp;
325 break;
327 case SYMBOL_REF:
328 temp = shallow_copy_rtx (x);
329 PUT_MODE (temp, to_mode);
330 return temp;
331 break;
333 case CONST:
334 return gen_rtx_CONST (to_mode,
335 convert_memory_address_addr_space_1
336 (to_mode, XEXP (x, 0), as, true));
337 break;
339 case PLUS:
340 case MULT:
341 /* For addition we can safely permute the conversion and addition
342 operation if one operand is a constant and converting the constant
343 does not change it or if one operand is a constant and we are
344 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
345 We can always safely permute them if we are making the address
346 narrower. Inside a CONST RTL, this is safe for both pointers
347 zero or sign extended as pointers cannot wrap. */
348 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
349 || (GET_CODE (x) == PLUS
350 && CONST_INT_P (XEXP (x, 1))
351 && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
352 || XEXP (x, 1) == convert_memory_address_addr_space_1
353 (to_mode, XEXP (x, 1), as, in_const)
354 || POINTERS_EXTEND_UNSIGNED < 0)))
355 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
356 convert_memory_address_addr_space_1
357 (to_mode, XEXP (x, 0), as, in_const),
358 XEXP (x, 1));
359 break;
361 default:
362 break;
365 return convert_modes (to_mode, from_mode,
366 x, POINTERS_EXTEND_UNSIGNED);
367 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
370 /* Given X, a memory address in address space AS' pointer mode, convert it to
371 an address in the address space's address mode, or vice versa (TO_MODE says
372 which way). We take advantage of the fact that pointers are not allowed to
373 overflow by commuting arithmetic operations over conversions so that address
374 arithmetic insns can be used. */
377 convert_memory_address_addr_space (machine_mode to_mode, rtx x, addr_space_t as)
379 return convert_memory_address_addr_space_1 (to_mode, x, as, false);
383 /* Return something equivalent to X but valid as a memory address for something
384 of mode MODE in the named address space AS. When X is not itself valid,
385 this works by copying X or subexpressions of it into registers. */
388 memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
390 rtx oldx = x;
391 machine_mode address_mode = targetm.addr_space.address_mode (as);
393 x = convert_memory_address_addr_space (address_mode, x, as);
395 /* By passing constant addresses through registers
396 we get a chance to cse them. */
397 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
398 x = force_reg (address_mode, x);
400 /* We get better cse by rejecting indirect addressing at this stage.
401 Let the combiner create indirect addresses where appropriate.
402 For now, generate the code so that the subexpressions useful to share
403 are visible. But not if cse won't be done! */
404 else
406 if (! cse_not_expected && !REG_P (x))
407 x = break_out_memory_refs (x);
409 /* At this point, any valid address is accepted. */
410 if (memory_address_addr_space_p (mode, x, as))
411 goto done;
413 /* If it was valid before but breaking out memory refs invalidated it,
414 use it the old way. */
415 if (memory_address_addr_space_p (mode, oldx, as))
417 x = oldx;
418 goto done;
421 /* Perform machine-dependent transformations on X
422 in certain cases. This is not necessary since the code
423 below can handle all possible cases, but machine-dependent
424 transformations can make better code. */
426 rtx orig_x = x;
427 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
428 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
429 goto done;
432 /* PLUS and MULT can appear in special ways
433 as the result of attempts to make an address usable for indexing.
434 Usually they are dealt with by calling force_operand, below.
435 But a sum containing constant terms is special
436 if removing them makes the sum a valid address:
437 then we generate that address in a register
438 and index off of it. We do this because it often makes
439 shorter code, and because the addresses thus generated
440 in registers often become common subexpressions. */
441 if (GET_CODE (x) == PLUS)
443 rtx constant_term = const0_rtx;
444 rtx y = eliminate_constant_term (x, &constant_term);
445 if (constant_term == const0_rtx
446 || ! memory_address_addr_space_p (mode, y, as))
447 x = force_operand (x, NULL_RTX);
448 else
450 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
451 if (! memory_address_addr_space_p (mode, y, as))
452 x = force_operand (x, NULL_RTX);
453 else
454 x = y;
458 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
459 x = force_operand (x, NULL_RTX);
461 /* If we have a register that's an invalid address,
462 it must be a hard reg of the wrong class. Copy it to a pseudo. */
463 else if (REG_P (x))
464 x = copy_to_reg (x);
466 /* Last resort: copy the value to a register, since
467 the register is a valid address. */
468 else
469 x = force_reg (address_mode, x);
472 done:
474 gcc_assert (memory_address_addr_space_p (mode, x, as));
475 /* If we didn't change the address, we are done. Otherwise, mark
476 a reg as a pointer if we have REG or REG + CONST_INT. */
477 if (oldx == x)
478 return x;
479 else if (REG_P (x))
480 mark_reg_pointer (x, BITS_PER_UNIT);
481 else if (GET_CODE (x) == PLUS
482 && REG_P (XEXP (x, 0))
483 && CONST_INT_P (XEXP (x, 1)))
484 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
486 /* OLDX may have been the address on a temporary. Update the address
487 to indicate that X is now used. */
488 update_temp_slot_address (oldx, x);
490 return x;
493 /* If REF is a MEM with an invalid address, change it into a valid address.
494 Pass through anything else unchanged. REF must be an unshared rtx and
495 the function may modify it in-place. */
498 validize_mem (rtx ref)
500 if (!MEM_P (ref))
501 return ref;
502 ref = use_anchored_address (ref);
503 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
504 MEM_ADDR_SPACE (ref)))
505 return ref;
507 return replace_equiv_address (ref, XEXP (ref, 0), true);
510 /* If X is a memory reference to a member of an object block, try rewriting
511 it to use an anchor instead. Return the new memory reference on success
512 and the old one on failure. */
515 use_anchored_address (rtx x)
517 rtx base;
518 HOST_WIDE_INT offset;
519 machine_mode mode;
521 if (!flag_section_anchors)
522 return x;
524 if (!MEM_P (x))
525 return x;
527 /* Split the address into a base and offset. */
528 base = XEXP (x, 0);
529 offset = 0;
530 if (GET_CODE (base) == CONST
531 && GET_CODE (XEXP (base, 0)) == PLUS
532 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
534 offset += INTVAL (XEXP (XEXP (base, 0), 1));
535 base = XEXP (XEXP (base, 0), 0);
538 /* Check whether BASE is suitable for anchors. */
539 if (GET_CODE (base) != SYMBOL_REF
540 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
541 || SYMBOL_REF_ANCHOR_P (base)
542 || SYMBOL_REF_BLOCK (base) == NULL
543 || !targetm.use_anchors_for_symbol_p (base))
544 return x;
546 /* Decide where BASE is going to be. */
547 place_block_symbol (base);
549 /* Get the anchor we need to use. */
550 offset += SYMBOL_REF_BLOCK_OFFSET (base);
551 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
552 SYMBOL_REF_TLS_MODEL (base));
554 /* Work out the offset from the anchor. */
555 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
557 /* If we're going to run a CSE pass, force the anchor into a register.
558 We will then be able to reuse registers for several accesses, if the
559 target costs say that that's worthwhile. */
560 mode = GET_MODE (base);
561 if (!cse_not_expected)
562 base = force_reg (mode, base);
564 return replace_equiv_address (x, plus_constant (mode, base, offset));
567 /* Copy the value or contents of X to a new temp reg and return that reg. */
570 copy_to_reg (rtx x)
572 rtx temp = gen_reg_rtx (GET_MODE (x));
574 /* If not an operand, must be an address with PLUS and MULT so
575 do the computation. */
576 if (! general_operand (x, VOIDmode))
577 x = force_operand (x, temp);
579 if (x != temp)
580 emit_move_insn (temp, x);
582 return temp;
585 /* Like copy_to_reg but always give the new register mode Pmode
586 in case X is a constant. */
589 copy_addr_to_reg (rtx x)
591 return copy_to_mode_reg (Pmode, x);
594 /* Like copy_to_reg but always give the new register mode MODE
595 in case X is a constant. */
598 copy_to_mode_reg (machine_mode mode, rtx x)
600 rtx temp = gen_reg_rtx (mode);
602 /* If not an operand, must be an address with PLUS and MULT so
603 do the computation. */
604 if (! general_operand (x, VOIDmode))
605 x = force_operand (x, temp);
607 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
608 if (x != temp)
609 emit_move_insn (temp, x);
610 return temp;
613 /* Load X into a register if it is not already one.
614 Use mode MODE for the register.
615 X should be valid for mode MODE, but it may be a constant which
616 is valid for all integer modes; that's why caller must specify MODE.
618 The caller must not alter the value in the register we return,
619 since we mark it as a "constant" register. */
622 force_reg (machine_mode mode, rtx x)
624 rtx temp, set;
625 rtx_insn *insn;
627 if (REG_P (x))
628 return x;
630 if (general_operand (x, mode))
632 temp = gen_reg_rtx (mode);
633 insn = emit_move_insn (temp, x);
635 else
637 temp = force_operand (x, NULL_RTX);
638 if (REG_P (temp))
639 insn = get_last_insn ();
640 else
642 rtx temp2 = gen_reg_rtx (mode);
643 insn = emit_move_insn (temp2, temp);
644 temp = temp2;
648 /* Let optimizers know that TEMP's value never changes
649 and that X can be substituted for it. Don't get confused
650 if INSN set something else (such as a SUBREG of TEMP). */
651 if (CONSTANT_P (x)
652 && (set = single_set (insn)) != 0
653 && SET_DEST (set) == temp
654 && ! rtx_equal_p (x, SET_SRC (set)))
655 set_unique_reg_note (insn, REG_EQUAL, x);
657 /* Let optimizers know that TEMP is a pointer, and if so, the
658 known alignment of that pointer. */
660 unsigned align = 0;
661 if (GET_CODE (x) == SYMBOL_REF)
663 align = BITS_PER_UNIT;
664 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
665 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
667 else if (GET_CODE (x) == LABEL_REF)
668 align = BITS_PER_UNIT;
669 else if (GET_CODE (x) == CONST
670 && GET_CODE (XEXP (x, 0)) == PLUS
671 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
672 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
674 rtx s = XEXP (XEXP (x, 0), 0);
675 rtx c = XEXP (XEXP (x, 0), 1);
676 unsigned sa, ca;
678 sa = BITS_PER_UNIT;
679 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
680 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
682 if (INTVAL (c) == 0)
683 align = sa;
684 else
686 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
687 align = MIN (sa, ca);
691 if (align || (MEM_P (x) && MEM_POINTER (x)))
692 mark_reg_pointer (temp, align);
695 return temp;
698 /* If X is a memory ref, copy its contents to a new temp reg and return
699 that reg. Otherwise, return X. */
702 force_not_mem (rtx x)
704 rtx temp;
706 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
707 return x;
709 temp = gen_reg_rtx (GET_MODE (x));
711 if (MEM_POINTER (x))
712 REG_POINTER (temp) = 1;
714 emit_move_insn (temp, x);
715 return temp;
718 /* Copy X to TARGET (if it's nonzero and a reg)
719 or to a new temp reg and return that reg.
720 MODE is the mode to use for X in case it is a constant. */
723 copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
725 rtx temp;
727 if (target && REG_P (target))
728 temp = target;
729 else
730 temp = gen_reg_rtx (mode);
732 emit_move_insn (temp, x);
733 return temp;
736 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
737 PUNSIGNEDP points to the signedness of the type and may be adjusted
738 to show what signedness to use on extension operations.
740 FOR_RETURN is nonzero if the caller is promoting the return value
741 of FNDECL, else it is for promoting args. */
743 machine_mode
744 promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
745 const_tree funtype, int for_return)
747 /* Called without a type node for a libcall. */
748 if (type == NULL_TREE)
750 if (INTEGRAL_MODE_P (mode))
751 return targetm.calls.promote_function_mode (NULL_TREE, mode,
752 punsignedp, funtype,
753 for_return);
754 else
755 return mode;
758 switch (TREE_CODE (type))
760 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
761 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
762 case POINTER_TYPE: case REFERENCE_TYPE:
763 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
764 for_return);
766 default:
767 return mode;
770 /* Return the mode to use to store a scalar of TYPE and MODE.
771 PUNSIGNEDP points to the signedness of the type and may be adjusted
772 to show what signedness to use on extension operations. */
774 machine_mode
775 promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
776 int *punsignedp ATTRIBUTE_UNUSED)
778 #ifdef PROMOTE_MODE
779 enum tree_code code;
780 int unsignedp;
781 #endif
783 /* For libcalls this is invoked without TYPE from the backends
784 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
785 case. */
786 if (type == NULL_TREE)
787 return mode;
789 /* FIXME: this is the same logic that was there until GCC 4.4, but we
790 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
791 is not defined. The affected targets are M32C, S390, SPARC. */
792 #ifdef PROMOTE_MODE
793 code = TREE_CODE (type);
794 unsignedp = *punsignedp;
796 switch (code)
798 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
799 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
800 PROMOTE_MODE (mode, unsignedp, type);
801 *punsignedp = unsignedp;
802 return mode;
803 break;
805 #ifdef POINTERS_EXTEND_UNSIGNED
806 case REFERENCE_TYPE:
807 case POINTER_TYPE:
808 *punsignedp = POINTERS_EXTEND_UNSIGNED;
809 return targetm.addr_space.address_mode
810 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
811 break;
812 #endif
814 default:
815 return mode;
817 #else
818 return mode;
819 #endif
823 /* Use one of promote_mode or promote_function_mode to find the promoted
824 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
825 of DECL after promotion. */
827 machine_mode
828 promote_decl_mode (const_tree decl, int *punsignedp)
830 tree type = TREE_TYPE (decl);
831 int unsignedp = TYPE_UNSIGNED (type);
832 machine_mode mode = DECL_MODE (decl);
833 machine_mode pmode;
835 if (TREE_CODE (decl) == RESULT_DECL
836 || TREE_CODE (decl) == PARM_DECL)
837 pmode = promote_function_mode (type, mode, &unsignedp,
838 TREE_TYPE (current_function_decl), 2);
839 else
840 pmode = promote_mode (type, mode, &unsignedp);
842 if (punsignedp)
843 *punsignedp = unsignedp;
844 return pmode;
848 /* Controls the behaviour of {anti_,}adjust_stack. */
849 static bool suppress_reg_args_size;
851 /* A helper for adjust_stack and anti_adjust_stack. */
853 static void
854 adjust_stack_1 (rtx adjust, bool anti_p)
856 rtx temp;
857 rtx_insn *insn;
859 /* Hereafter anti_p means subtract_p. */
860 if (!STACK_GROWS_DOWNWARD)
861 anti_p = !anti_p;
863 temp = expand_binop (Pmode,
864 anti_p ? sub_optab : add_optab,
865 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
866 OPTAB_LIB_WIDEN);
868 if (temp != stack_pointer_rtx)
869 insn = emit_move_insn (stack_pointer_rtx, temp);
870 else
872 insn = get_last_insn ();
873 temp = single_set (insn);
874 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
877 if (!suppress_reg_args_size)
878 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
881 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
882 This pops when ADJUST is positive. ADJUST need not be constant. */
884 void
885 adjust_stack (rtx adjust)
887 if (adjust == const0_rtx)
888 return;
890 /* We expect all variable sized adjustments to be multiple of
891 PREFERRED_STACK_BOUNDARY. */
892 if (CONST_INT_P (adjust))
893 stack_pointer_delta -= INTVAL (adjust);
895 adjust_stack_1 (adjust, false);
898 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
899 This pushes when ADJUST is positive. ADJUST need not be constant. */
901 void
902 anti_adjust_stack (rtx adjust)
904 if (adjust == const0_rtx)
905 return;
907 /* We expect all variable sized adjustments to be multiple of
908 PREFERRED_STACK_BOUNDARY. */
909 if (CONST_INT_P (adjust))
910 stack_pointer_delta += INTVAL (adjust);
912 adjust_stack_1 (adjust, true);
915 /* Round the size of a block to be pushed up to the boundary required
916 by this machine. SIZE is the desired size, which need not be constant. */
918 static rtx
919 round_push (rtx size)
921 rtx align_rtx, alignm1_rtx;
923 if (!SUPPORTS_STACK_ALIGNMENT
924 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
926 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
928 if (align == 1)
929 return size;
931 if (CONST_INT_P (size))
933 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
935 if (INTVAL (size) != new_size)
936 size = GEN_INT (new_size);
937 return size;
940 align_rtx = GEN_INT (align);
941 alignm1_rtx = GEN_INT (align - 1);
943 else
945 /* If crtl->preferred_stack_boundary might still grow, use
946 virtual_preferred_stack_boundary_rtx instead. This will be
947 substituted by the right value in vregs pass and optimized
948 during combine. */
949 align_rtx = virtual_preferred_stack_boundary_rtx;
950 alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
951 NULL_RTX);
954 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
955 but we know it can't. So add ourselves and then do
956 TRUNC_DIV_EXPR. */
957 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
958 NULL_RTX, 1, OPTAB_LIB_WIDEN);
959 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
960 NULL_RTX, 1);
961 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
963 return size;
966 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
967 to a previously-created save area. If no save area has been allocated,
968 this function will allocate one. If a save area is specified, it
969 must be of the proper mode. */
971 void
972 emit_stack_save (enum save_level save_level, rtx *psave)
974 rtx sa = *psave;
975 /* The default is that we use a move insn and save in a Pmode object. */
976 rtx (*fcn) (rtx, rtx) = gen_move_insn_uncast;
977 machine_mode mode = STACK_SAVEAREA_MODE (save_level);
979 /* See if this machine has anything special to do for this kind of save. */
980 switch (save_level)
982 #ifdef HAVE_save_stack_block
983 case SAVE_BLOCK:
984 if (HAVE_save_stack_block)
985 fcn = gen_save_stack_block;
986 break;
987 #endif
988 #ifdef HAVE_save_stack_function
989 case SAVE_FUNCTION:
990 if (HAVE_save_stack_function)
991 fcn = gen_save_stack_function;
992 break;
993 #endif
994 #ifdef HAVE_save_stack_nonlocal
995 case SAVE_NONLOCAL:
996 if (HAVE_save_stack_nonlocal)
997 fcn = gen_save_stack_nonlocal;
998 break;
999 #endif
1000 default:
1001 break;
1004 /* If there is no save area and we have to allocate one, do so. Otherwise
1005 verify the save area is the proper mode. */
1007 if (sa == 0)
1009 if (mode != VOIDmode)
1011 if (save_level == SAVE_NONLOCAL)
1012 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1013 else
1014 *psave = sa = gen_reg_rtx (mode);
1018 do_pending_stack_adjust ();
1019 if (sa != 0)
1020 sa = validize_mem (sa);
1021 emit_insn (fcn (sa, stack_pointer_rtx));
1024 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1025 area made by emit_stack_save. If it is zero, we have nothing to do. */
1027 void
1028 emit_stack_restore (enum save_level save_level, rtx sa)
1030 /* The default is that we use a move insn. */
1031 rtx (*fcn) (rtx, rtx) = gen_move_insn_uncast;
1033 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1034 STACK_POINTER and HARD_FRAME_POINTER.
1035 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1036 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1037 aligned variables, which is reflected in ix86_can_eliminate.
1038 We normally still have the realigned STACK_POINTER that we can use.
1039 But if there is a stack restore still present at reload, it can trigger
1040 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1041 FRAME_POINTER into a hard reg.
1042 To prevent this situation, we force need_drap if we emit a stack
1043 restore. */
1044 if (SUPPORTS_STACK_ALIGNMENT)
1045 crtl->need_drap = true;
1047 /* See if this machine has anything special to do for this kind of save. */
1048 switch (save_level)
1050 #ifdef HAVE_restore_stack_block
1051 case SAVE_BLOCK:
1052 if (HAVE_restore_stack_block)
1053 fcn = gen_restore_stack_block;
1054 break;
1055 #endif
1056 #ifdef HAVE_restore_stack_function
1057 case SAVE_FUNCTION:
1058 if (HAVE_restore_stack_function)
1059 fcn = gen_restore_stack_function;
1060 break;
1061 #endif
1062 #ifdef HAVE_restore_stack_nonlocal
1063 case SAVE_NONLOCAL:
1064 if (HAVE_restore_stack_nonlocal)
1065 fcn = gen_restore_stack_nonlocal;
1066 break;
1067 #endif
1068 default:
1069 break;
1072 if (sa != 0)
1074 sa = validize_mem (sa);
1075 /* These clobbers prevent the scheduler from moving
1076 references to variable arrays below the code
1077 that deletes (pops) the arrays. */
1078 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1079 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1082 discard_pending_stack_adjust ();
1084 emit_insn (fcn (stack_pointer_rtx, sa));
1087 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1088 function. This should be called whenever we allocate or deallocate
1089 dynamic stack space. */
1091 void
1092 update_nonlocal_goto_save_area (void)
1094 tree t_save;
1095 rtx r_save;
1097 /* The nonlocal_goto_save_area object is an array of N pointers. The
1098 first one is used for the frame pointer save; the rest are sized by
1099 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1100 of the stack save area slots. */
1101 t_save = build4 (ARRAY_REF,
1102 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1103 cfun->nonlocal_goto_save_area,
1104 integer_one_node, NULL_TREE, NULL_TREE);
1105 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1107 emit_stack_save (SAVE_NONLOCAL, &r_save);
1110 /* Record a new stack level for the current function. This should be called
1111 whenever we allocate or deallocate dynamic stack space. */
1113 void
1114 record_new_stack_level (void)
1116 /* Record the new stack level for nonlocal gotos. */
1117 if (cfun->nonlocal_goto_save_area)
1118 update_nonlocal_goto_save_area ();
1120 /* Record the new stack level for SJLJ exceptions. */
1121 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
1122 update_sjlj_context ();
1125 /* Return an rtx representing the address of an area of memory dynamically
1126 pushed on the stack.
1128 Any required stack pointer alignment is preserved.
1130 SIZE is an rtx representing the size of the area.
1132 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1133 parameter may be zero. If so, a proper value will be extracted
1134 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1136 REQUIRED_ALIGN is the alignment (in bits) required for the region
1137 of memory.
1139 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1140 stack space allocated by the generated code cannot be added with itself
1141 in the course of the execution of the function. It is always safe to
1142 pass FALSE here and the following criterion is sufficient in order to
1143 pass TRUE: every path in the CFG that starts at the allocation point and
1144 loops to it executes the associated deallocation code. */
1147 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1148 unsigned required_align, bool cannot_accumulate)
1150 HOST_WIDE_INT stack_usage_size = -1;
1151 rtx_code_label *final_label;
1152 rtx final_target, target;
1153 unsigned extra_align = 0;
1154 bool must_align;
1156 /* If we're asking for zero bytes, it doesn't matter what we point
1157 to since we can't dereference it. But return a reasonable
1158 address anyway. */
1159 if (size == const0_rtx)
1160 return virtual_stack_dynamic_rtx;
1162 /* Otherwise, show we're calling alloca or equivalent. */
1163 cfun->calls_alloca = 1;
1165 /* If stack usage info is requested, look into the size we are passed.
1166 We need to do so this early to avoid the obfuscation that may be
1167 introduced later by the various alignment operations. */
1168 if (flag_stack_usage_info)
1170 if (CONST_INT_P (size))
1171 stack_usage_size = INTVAL (size);
1172 else if (REG_P (size))
1174 /* Look into the last emitted insn and see if we can deduce
1175 something for the register. */
1176 rtx_insn *insn;
1177 rtx set, note;
1178 insn = get_last_insn ();
1179 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1181 if (CONST_INT_P (SET_SRC (set)))
1182 stack_usage_size = INTVAL (SET_SRC (set));
1183 else if ((note = find_reg_equal_equiv_note (insn))
1184 && CONST_INT_P (XEXP (note, 0)))
1185 stack_usage_size = INTVAL (XEXP (note, 0));
1189 /* If the size is not constant, we can't say anything. */
1190 if (stack_usage_size == -1)
1192 current_function_has_unbounded_dynamic_stack_size = 1;
1193 stack_usage_size = 0;
1197 /* Ensure the size is in the proper mode. */
1198 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1199 size = convert_to_mode (Pmode, size, 1);
1201 /* Adjust SIZE_ALIGN, if needed. */
1202 if (CONST_INT_P (size))
1204 unsigned HOST_WIDE_INT lsb;
1206 lsb = INTVAL (size);
1207 lsb &= -lsb;
1209 /* Watch out for overflow truncating to "unsigned". */
1210 if (lsb > UINT_MAX / BITS_PER_UNIT)
1211 size_align = 1u << (HOST_BITS_PER_INT - 1);
1212 else
1213 size_align = (unsigned)lsb * BITS_PER_UNIT;
1215 else if (size_align < BITS_PER_UNIT)
1216 size_align = BITS_PER_UNIT;
1218 /* We can't attempt to minimize alignment necessary, because we don't
1219 know the final value of preferred_stack_boundary yet while executing
1220 this code. */
1221 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1222 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1224 /* We will need to ensure that the address we return is aligned to
1225 REQUIRED_ALIGN. If STACK_DYNAMIC_OFFSET is defined, we don't
1226 always know its final value at this point in the compilation (it
1227 might depend on the size of the outgoing parameter lists, for
1228 example), so we must align the value to be returned in that case.
1229 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1230 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1231 We must also do an alignment operation on the returned value if
1232 the stack pointer alignment is less strict than REQUIRED_ALIGN.
1234 If we have to align, we must leave space in SIZE for the hole
1235 that might result from the alignment operation. */
1237 must_align = (crtl->preferred_stack_boundary < required_align);
1238 if (must_align)
1240 if (required_align > PREFERRED_STACK_BOUNDARY)
1241 extra_align = PREFERRED_STACK_BOUNDARY;
1242 else if (required_align > STACK_BOUNDARY)
1243 extra_align = STACK_BOUNDARY;
1244 else
1245 extra_align = BITS_PER_UNIT;
1248 /* ??? STACK_POINTER_OFFSET is always defined now. */
1249 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1250 must_align = true;
1251 extra_align = BITS_PER_UNIT;
1252 #endif
1254 if (must_align)
1256 unsigned extra = (required_align - extra_align) / BITS_PER_UNIT;
1258 size = plus_constant (Pmode, size, extra);
1259 size = force_operand (size, NULL_RTX);
1261 if (flag_stack_usage_info)
1262 stack_usage_size += extra;
1264 if (extra && size_align > extra_align)
1265 size_align = extra_align;
1268 /* Round the size to a multiple of the required stack alignment.
1269 Since the stack if presumed to be rounded before this allocation,
1270 this will maintain the required alignment.
1272 If the stack grows downward, we could save an insn by subtracting
1273 SIZE from the stack pointer and then aligning the stack pointer.
1274 The problem with this is that the stack pointer may be unaligned
1275 between the execution of the subtraction and alignment insns and
1276 some machines do not allow this. Even on those that do, some
1277 signal handlers malfunction if a signal should occur between those
1278 insns. Since this is an extremely rare event, we have no reliable
1279 way of knowing which systems have this problem. So we avoid even
1280 momentarily mis-aligning the stack. */
1281 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1283 size = round_push (size);
1285 if (flag_stack_usage_info)
1287 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1288 stack_usage_size = (stack_usage_size + align - 1) / align * align;
1292 target = gen_reg_rtx (Pmode);
1294 /* The size is supposed to be fully adjusted at this point so record it
1295 if stack usage info is requested. */
1296 if (flag_stack_usage_info)
1298 current_function_dynamic_stack_size += stack_usage_size;
1300 /* ??? This is gross but the only safe stance in the absence
1301 of stack usage oriented flow analysis. */
1302 if (!cannot_accumulate)
1303 current_function_has_unbounded_dynamic_stack_size = 1;
1306 final_label = NULL;
1307 final_target = NULL_RTX;
1309 /* If we are splitting the stack, we need to ask the backend whether
1310 there is enough room on the current stack. If there isn't, or if
1311 the backend doesn't know how to tell is, then we need to call a
1312 function to allocate memory in some other way. This memory will
1313 be released when we release the current stack segment. The
1314 effect is that stack allocation becomes less efficient, but at
1315 least it doesn't cause a stack overflow. */
1316 if (flag_split_stack)
1318 rtx_code_label *available_label;
1319 rtx ask, space, func;
1321 available_label = NULL;
1323 #ifdef HAVE_split_stack_space_check
1324 if (HAVE_split_stack_space_check)
1326 available_label = gen_label_rtx ();
1328 /* This instruction will branch to AVAILABLE_LABEL if there
1329 are SIZE bytes available on the stack. */
1330 emit_insn (gen_split_stack_space_check (size, available_label));
1332 #endif
1334 /* The __morestack_allocate_stack_space function will allocate
1335 memory using malloc. If the alignment of the memory returned
1336 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1337 make sure we allocate enough space. */
1338 if (MALLOC_ABI_ALIGNMENT >= required_align)
1339 ask = size;
1340 else
1342 ask = expand_binop (Pmode, add_optab, size,
1343 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1344 Pmode),
1345 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1346 must_align = true;
1349 func = init_one_libfunc ("__morestack_allocate_stack_space");
1351 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1352 1, ask, Pmode);
1354 if (available_label == NULL_RTX)
1355 return space;
1357 final_target = gen_reg_rtx (Pmode);
1359 emit_move_insn (final_target, space);
1361 final_label = gen_label_rtx ();
1362 emit_jump (final_label);
1364 emit_label (available_label);
1367 do_pending_stack_adjust ();
1369 /* We ought to be called always on the toplevel and stack ought to be aligned
1370 properly. */
1371 gcc_assert (!(stack_pointer_delta
1372 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1374 /* If needed, check that we have the required amount of stack. Take into
1375 account what has already been checked. */
1376 if (STACK_CHECK_MOVING_SP)
1378 else if (flag_stack_check == GENERIC_STACK_CHECK)
1379 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1380 size);
1381 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1382 probe_stack_range (STACK_CHECK_PROTECT, size);
1384 /* Don't let anti_adjust_stack emit notes. */
1385 suppress_reg_args_size = true;
1387 /* Perform the required allocation from the stack. Some systems do
1388 this differently than simply incrementing/decrementing from the
1389 stack pointer, such as acquiring the space by calling malloc(). */
1390 #ifdef HAVE_allocate_stack
1391 if (HAVE_allocate_stack)
1393 struct expand_operand ops[2];
1394 /* We don't have to check against the predicate for operand 0 since
1395 TARGET is known to be a pseudo of the proper mode, which must
1396 be valid for the operand. */
1397 create_fixed_operand (&ops[0], target);
1398 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1399 expand_insn (CODE_FOR_allocate_stack, 2, ops);
1401 else
1402 #endif
1404 int saved_stack_pointer_delta;
1406 if (!STACK_GROWS_DOWNWARD)
1407 emit_move_insn (target, virtual_stack_dynamic_rtx);
1409 /* Check stack bounds if necessary. */
1410 if (crtl->limit_stack)
1412 rtx available;
1413 rtx_code_label *space_available = gen_label_rtx ();
1414 if (STACK_GROWS_DOWNWARD)
1415 available = expand_binop (Pmode, sub_optab,
1416 stack_pointer_rtx, stack_limit_rtx,
1417 NULL_RTX, 1, OPTAB_WIDEN);
1418 else
1419 available = expand_binop (Pmode, sub_optab,
1420 stack_limit_rtx, stack_pointer_rtx,
1421 NULL_RTX, 1, OPTAB_WIDEN);
1423 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1424 space_available);
1425 #ifdef HAVE_trap
1426 if (HAVE_trap)
1427 emit_insn (gen_trap ());
1428 else
1429 #endif
1430 error ("stack limits not supported on this target");
1431 emit_barrier ();
1432 emit_label (space_available);
1435 saved_stack_pointer_delta = stack_pointer_delta;
1437 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1438 anti_adjust_stack_and_probe (size, false);
1439 else
1440 anti_adjust_stack (size);
1442 /* Even if size is constant, don't modify stack_pointer_delta.
1443 The constant size alloca should preserve
1444 crtl->preferred_stack_boundary alignment. */
1445 stack_pointer_delta = saved_stack_pointer_delta;
1447 if (STACK_GROWS_DOWNWARD)
1448 emit_move_insn (target, virtual_stack_dynamic_rtx);
1451 suppress_reg_args_size = false;
1453 /* Finish up the split stack handling. */
1454 if (final_label != NULL_RTX)
1456 gcc_assert (flag_split_stack);
1457 emit_move_insn (final_target, target);
1458 emit_label (final_label);
1459 target = final_target;
1462 if (must_align)
1464 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1465 but we know it can't. So add ourselves and then do
1466 TRUNC_DIV_EXPR. */
1467 target = expand_binop (Pmode, add_optab, target,
1468 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1469 Pmode),
1470 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1471 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1472 gen_int_mode (required_align / BITS_PER_UNIT,
1473 Pmode),
1474 NULL_RTX, 1);
1475 target = expand_mult (Pmode, target,
1476 gen_int_mode (required_align / BITS_PER_UNIT,
1477 Pmode),
1478 NULL_RTX, 1);
1481 /* Now that we've committed to a return value, mark its alignment. */
1482 mark_reg_pointer (target, required_align);
1484 /* Record the new stack level. */
1485 record_new_stack_level ();
1487 return target;
1490 /* A front end may want to override GCC's stack checking by providing a
1491 run-time routine to call to check the stack, so provide a mechanism for
1492 calling that routine. */
1494 static GTY(()) rtx stack_check_libfunc;
1496 void
1497 set_stack_check_libfunc (const char *libfunc_name)
1499 gcc_assert (stack_check_libfunc == NULL_RTX);
1500 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1503 /* Emit one stack probe at ADDRESS, an address within the stack. */
1505 void
1506 emit_stack_probe (rtx address)
1508 #ifdef HAVE_probe_stack_address
1509 if (HAVE_probe_stack_address)
1510 emit_insn (gen_probe_stack_address (address));
1511 else
1512 #endif
1514 rtx memref = gen_rtx_MEM (word_mode, address);
1516 MEM_VOLATILE_P (memref) = 1;
1518 /* See if we have an insn to probe the stack. */
1519 #ifdef HAVE_probe_stack
1520 if (HAVE_probe_stack)
1521 emit_insn (gen_probe_stack (memref));
1522 else
1523 #endif
1524 emit_move_insn (memref, const0_rtx);
1528 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1529 FIRST is a constant and size is a Pmode RTX. These are offsets from
1530 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1531 or subtract them from the stack pointer. */
1533 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1535 #if STACK_GROWS_DOWNWARD
1536 #define STACK_GROW_OP MINUS
1537 #define STACK_GROW_OPTAB sub_optab
1538 #define STACK_GROW_OFF(off) -(off)
1539 #else
1540 #define STACK_GROW_OP PLUS
1541 #define STACK_GROW_OPTAB add_optab
1542 #define STACK_GROW_OFF(off) (off)
1543 #endif
1545 void
1546 probe_stack_range (HOST_WIDE_INT first, rtx size)
1548 /* First ensure SIZE is Pmode. */
1549 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1550 size = convert_to_mode (Pmode, size, 1);
1552 /* Next see if we have a function to check the stack. */
1553 if (stack_check_libfunc)
1555 rtx addr = memory_address (Pmode,
1556 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1557 stack_pointer_rtx,
1558 plus_constant (Pmode,
1559 size, first)));
1560 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1561 Pmode);
1564 /* Next see if we have an insn to check the stack. */
1565 #ifdef HAVE_check_stack
1566 else if (HAVE_check_stack)
1568 struct expand_operand ops[1];
1569 rtx addr = memory_address (Pmode,
1570 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1571 stack_pointer_rtx,
1572 plus_constant (Pmode,
1573 size, first)));
1574 bool success;
1575 create_input_operand (&ops[0], addr, Pmode);
1576 success = maybe_expand_insn (CODE_FOR_check_stack, 1, ops);
1577 gcc_assert (success);
1579 #endif
1581 /* Otherwise we have to generate explicit probes. If we have a constant
1582 small number of them to generate, that's the easy case. */
1583 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1585 HOST_WIDE_INT isize = INTVAL (size), i;
1586 rtx addr;
1588 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1589 it exceeds SIZE. If only one probe is needed, this will not
1590 generate any code. Then probe at FIRST + SIZE. */
1591 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1593 addr = memory_address (Pmode,
1594 plus_constant (Pmode, stack_pointer_rtx,
1595 STACK_GROW_OFF (first + i)));
1596 emit_stack_probe (addr);
1599 addr = memory_address (Pmode,
1600 plus_constant (Pmode, stack_pointer_rtx,
1601 STACK_GROW_OFF (first + isize)));
1602 emit_stack_probe (addr);
1605 /* In the variable case, do the same as above, but in a loop. Note that we
1606 must be extra careful with variables wrapping around because we might be
1607 at the very top (or the very bottom) of the address space and we have to
1608 be able to handle this case properly; in particular, we use an equality
1609 test for the loop condition. */
1610 else
1612 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1613 rtx_code_label *loop_lab = gen_label_rtx ();
1614 rtx_code_label *end_lab = gen_label_rtx ();
1616 /* Step 1: round SIZE to the previous multiple of the interval. */
1618 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1619 rounded_size
1620 = simplify_gen_binary (AND, Pmode, size,
1621 gen_int_mode (-PROBE_INTERVAL, Pmode));
1622 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1625 /* Step 2: compute initial and final value of the loop counter. */
1627 /* TEST_ADDR = SP + FIRST. */
1628 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1629 stack_pointer_rtx,
1630 gen_int_mode (first, Pmode)),
1631 NULL_RTX);
1633 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1634 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1635 test_addr,
1636 rounded_size_op), NULL_RTX);
1639 /* Step 3: the loop
1641 while (TEST_ADDR != LAST_ADDR)
1643 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1644 probe at TEST_ADDR
1647 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1648 until it is equal to ROUNDED_SIZE. */
1650 emit_label (loop_lab);
1652 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1653 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1654 end_lab);
1656 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1657 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1658 gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
1659 1, OPTAB_WIDEN);
1661 gcc_assert (temp == test_addr);
1663 /* Probe at TEST_ADDR. */
1664 emit_stack_probe (test_addr);
1666 emit_jump (loop_lab);
1668 emit_label (end_lab);
1671 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1672 that SIZE is equal to ROUNDED_SIZE. */
1674 /* TEMP = SIZE - ROUNDED_SIZE. */
1675 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1676 if (temp != const0_rtx)
1678 rtx addr;
1680 if (CONST_INT_P (temp))
1682 /* Use [base + disp} addressing mode if supported. */
1683 HOST_WIDE_INT offset = INTVAL (temp);
1684 addr = memory_address (Pmode,
1685 plus_constant (Pmode, last_addr,
1686 STACK_GROW_OFF (offset)));
1688 else
1690 /* Manual CSE if the difference is not known at compile-time. */
1691 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1692 addr = memory_address (Pmode,
1693 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1694 last_addr, temp));
1697 emit_stack_probe (addr);
1701 /* Make sure nothing is scheduled before we are done. */
1702 emit_insn (gen_blockage ());
1705 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1706 while probing it. This pushes when SIZE is positive. SIZE need not
1707 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1708 by plus SIZE at the end. */
1710 void
1711 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1713 /* We skip the probe for the first interval + a small dope of 4 words and
1714 probe that many bytes past the specified size to maintain a protection
1715 area at the botton of the stack. */
1716 const int dope = 4 * UNITS_PER_WORD;
1718 /* First ensure SIZE is Pmode. */
1719 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1720 size = convert_to_mode (Pmode, size, 1);
1722 /* If we have a constant small number of probes to generate, that's the
1723 easy case. */
1724 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1726 HOST_WIDE_INT isize = INTVAL (size), i;
1727 bool first_probe = true;
1729 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1730 values of N from 1 until it exceeds SIZE. If only one probe is
1731 needed, this will not generate any code. Then adjust and probe
1732 to PROBE_INTERVAL + SIZE. */
1733 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1735 if (first_probe)
1737 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1738 first_probe = false;
1740 else
1741 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1742 emit_stack_probe (stack_pointer_rtx);
1745 if (first_probe)
1746 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1747 else
1748 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
1749 emit_stack_probe (stack_pointer_rtx);
1752 /* In the variable case, do the same as above, but in a loop. Note that we
1753 must be extra careful with variables wrapping around because we might be
1754 at the very top (or the very bottom) of the address space and we have to
1755 be able to handle this case properly; in particular, we use an equality
1756 test for the loop condition. */
1757 else
1759 rtx rounded_size, rounded_size_op, last_addr, temp;
1760 rtx_code_label *loop_lab = gen_label_rtx ();
1761 rtx_code_label *end_lab = gen_label_rtx ();
1764 /* Step 1: round SIZE to the previous multiple of the interval. */
1766 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1767 rounded_size
1768 = simplify_gen_binary (AND, Pmode, size,
1769 gen_int_mode (-PROBE_INTERVAL, Pmode));
1770 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1773 /* Step 2: compute initial and final value of the loop counter. */
1775 /* SP = SP_0 + PROBE_INTERVAL. */
1776 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1778 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1779 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1780 stack_pointer_rtx,
1781 rounded_size_op), NULL_RTX);
1784 /* Step 3: the loop
1786 while (SP != LAST_ADDR)
1788 SP = SP + PROBE_INTERVAL
1789 probe at SP
1792 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1793 values of N from 1 until it is equal to ROUNDED_SIZE. */
1795 emit_label (loop_lab);
1797 /* Jump to END_LAB if SP == LAST_ADDR. */
1798 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1799 Pmode, 1, end_lab);
1801 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1802 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1803 emit_stack_probe (stack_pointer_rtx);
1805 emit_jump (loop_lab);
1807 emit_label (end_lab);
1810 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1811 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1813 /* TEMP = SIZE - ROUNDED_SIZE. */
1814 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1815 if (temp != const0_rtx)
1817 /* Manual CSE if the difference is not known at compile-time. */
1818 if (GET_CODE (temp) != CONST_INT)
1819 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1820 anti_adjust_stack (temp);
1821 emit_stack_probe (stack_pointer_rtx);
1825 /* Adjust back and account for the additional first interval. */
1826 if (adjust_back)
1827 adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1828 else
1829 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1832 /* Return an rtx representing the register or memory location
1833 in which a scalar value of data type VALTYPE
1834 was returned by a function call to function FUNC.
1835 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1836 function is known, otherwise 0.
1837 OUTGOING is 1 if on a machine with register windows this function
1838 should return the register in which the function will put its result
1839 and 0 otherwise. */
1842 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1843 int outgoing ATTRIBUTE_UNUSED)
1845 rtx val;
1847 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1849 if (REG_P (val)
1850 && GET_MODE (val) == BLKmode)
1852 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1853 machine_mode tmpmode;
1855 /* int_size_in_bytes can return -1. We don't need a check here
1856 since the value of bytes will then be large enough that no
1857 mode will match anyway. */
1859 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1860 tmpmode != VOIDmode;
1861 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1863 /* Have we found a large enough mode? */
1864 if (GET_MODE_SIZE (tmpmode) >= bytes)
1865 break;
1868 /* No suitable mode found. */
1869 gcc_assert (tmpmode != VOIDmode);
1871 PUT_MODE (val, tmpmode);
1873 return val;
1876 /* Return an rtx representing the register or memory location
1877 in which a scalar value of mode MODE was returned by a library call. */
1880 hard_libcall_value (machine_mode mode, rtx fun)
1882 return targetm.calls.libcall_value (mode, fun);
1885 /* Look up the tree code for a given rtx code
1886 to provide the arithmetic operation for REAL_ARITHMETIC.
1887 The function returns an int because the caller may not know
1888 what `enum tree_code' means. */
1891 rtx_to_tree_code (enum rtx_code code)
1893 enum tree_code tcode;
1895 switch (code)
1897 case PLUS:
1898 tcode = PLUS_EXPR;
1899 break;
1900 case MINUS:
1901 tcode = MINUS_EXPR;
1902 break;
1903 case MULT:
1904 tcode = MULT_EXPR;
1905 break;
1906 case DIV:
1907 tcode = RDIV_EXPR;
1908 break;
1909 case SMIN:
1910 tcode = MIN_EXPR;
1911 break;
1912 case SMAX:
1913 tcode = MAX_EXPR;
1914 break;
1915 default:
1916 tcode = LAST_AND_UNUSED_TREE_CODE;
1917 break;
1919 return ((int) tcode);
1922 #include "gt-explow.h"