* configure.ac (GCJ_JAVAC): Run false rather than no.
[official-gcc.git] / gcc / combine.c
blob4fe71f334174822cbe9c0a7f7ea1ee4063f7f5bb
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "diagnostic-core.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 /* Include output.h for dump_file. */
101 #include "output.h"
102 #include "params.h"
103 #include "timevar.h"
104 #include "tree-pass.h"
105 #include "df.h"
106 #include "cgraph.h"
108 /* Number of attempts to combine instructions in this function. */
110 static int combine_attempts;
112 /* Number of attempts that got as far as substitution in this function. */
114 static int combine_merges;
116 /* Number of instructions combined with added SETs in this function. */
118 static int combine_extras;
120 /* Number of instructions combined in this function. */
122 static int combine_successes;
124 /* Totals over entire compilation. */
126 static int total_attempts, total_merges, total_extras, total_successes;
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
135 static rtx i2mod;
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139 static rtx i2mod_old_rhs;
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143 static rtx i2mod_new_rhs;
145 typedef struct reg_stat_struct {
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx last_death;
149 /* Record last point of modification of (hard or pseudo) register n. */
150 rtx last_set;
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
158 We use an approach similar to that used by cse, but change it in the
159 following ways:
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
165 Therefore, we maintain the following fields:
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
174 register's value
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
179 table.
181 (The next two parameters are out of date).
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
195 /* Record last value assigned to (hard or pseudo) register n. */
197 rtx last_set_value;
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
202 int last_set_table_tick;
204 /* Record the value of label_tick when the value for register n is placed in
205 last_set_value. */
207 int last_set_label;
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
214 unsigned HOST_WIDE_INT last_set_nonzero_bits;
215 char last_set_sign_bit_copies;
216 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
222 char last_set_invalid;
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
232 zero.
234 If an entry is zero, it means that we don't know anything special. */
236 unsigned char sign_bit_copies;
238 unsigned HOST_WIDE_INT nonzero_bits;
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
244 int truncation_label;
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
249 value. */
251 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
252 } reg_stat_type;
254 DEF_VEC_O(reg_stat_type);
255 DEF_VEC_ALLOC_O(reg_stat_type,heap);
257 static VEC(reg_stat_type,heap) *reg_stat;
259 /* Record the luid of the last insn that invalidated memory
260 (anything that writes memory, and subroutine calls, but not pushes). */
262 static int mem_last_set;
264 /* Record the luid of the last CALL_INSN
265 so we can tell whether a potential combination crosses any calls. */
267 static int last_call_luid;
269 /* When `subst' is called, this is the insn that is being modified
270 (by combining in a previous insn). The PATTERN of this insn
271 is still the old pattern partially modified and it should not be
272 looked at, but this may be used to examine the successors of the insn
273 to judge whether a simplification is valid. */
275 static rtx subst_insn;
277 /* This is the lowest LUID that `subst' is currently dealing with.
278 get_last_value will not return a value if the register was set at or
279 after this LUID. If not for this mechanism, we could get confused if
280 I2 or I1 in try_combine were an insn that used the old value of a register
281 to obtain a new value. In that case, we might erroneously get the
282 new value of the register when we wanted the old one. */
284 static int subst_low_luid;
286 /* This contains any hard registers that are used in newpat; reg_dead_at_p
287 must consider all these registers to be always live. */
289 static HARD_REG_SET newpat_used_regs;
291 /* This is an insn to which a LOG_LINKS entry has been added. If this
292 insn is the earlier than I2 or I3, combine should rescan starting at
293 that location. */
295 static rtx added_links_insn;
297 /* Basic block in which we are performing combines. */
298 static basic_block this_basic_block;
299 static bool optimize_this_for_speed_p;
302 /* Length of the currently allocated uid_insn_cost array. */
304 static int max_uid_known;
306 /* The following array records the insn_rtx_cost for every insn
307 in the instruction stream. */
309 static int *uid_insn_cost;
311 /* The following array records the LOG_LINKS for every insn in the
312 instruction stream as an INSN_LIST rtx. */
314 static rtx *uid_log_links;
316 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
317 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
319 /* Incremented for each basic block. */
321 static int label_tick;
323 /* Reset to label_tick for each extended basic block in scanning order. */
325 static int label_tick_ebb_start;
327 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
328 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
330 static enum machine_mode nonzero_bits_mode;
332 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
333 be safely used. It is zero while computing them and after combine has
334 completed. This former test prevents propagating values based on
335 previously set values, which can be incorrect if a variable is modified
336 in a loop. */
338 static int nonzero_sign_valid;
341 /* Record one modification to rtl structure
342 to be undone by storing old_contents into *where. */
344 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE };
346 struct undo
348 struct undo *next;
349 enum undo_kind kind;
350 union { rtx r; int i; enum machine_mode m; } old_contents;
351 union { rtx *r; int *i; } where;
354 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
355 num_undo says how many are currently recorded.
357 other_insn is nonzero if we have modified some other insn in the process
358 of working on subst_insn. It must be verified too. */
360 struct undobuf
362 struct undo *undos;
363 struct undo *frees;
364 rtx other_insn;
367 static struct undobuf undobuf;
369 /* Number of times the pseudo being substituted for
370 was found and replaced. */
372 static int n_occurrences;
374 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
375 enum machine_mode,
376 unsigned HOST_WIDE_INT,
377 unsigned HOST_WIDE_INT *);
378 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
379 enum machine_mode,
380 unsigned int, unsigned int *);
381 static void do_SUBST (rtx *, rtx);
382 static void do_SUBST_INT (int *, int);
383 static void init_reg_last (void);
384 static void setup_incoming_promotions (rtx);
385 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
386 static int cant_combine_insn_p (rtx);
387 static int can_combine_p (rtx, rtx, rtx, rtx, rtx, rtx, rtx *, rtx *);
388 static int combinable_i3pat (rtx, rtx *, rtx, rtx, rtx, int, int, rtx *);
389 static int contains_muldiv (rtx);
390 static rtx try_combine (rtx, rtx, rtx, rtx, int *);
391 static void undo_all (void);
392 static void undo_commit (void);
393 static rtx *find_split_point (rtx *, rtx, bool);
394 static rtx subst (rtx, rtx, rtx, int, int);
395 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
396 static rtx simplify_if_then_else (rtx);
397 static rtx simplify_set (rtx);
398 static rtx simplify_logical (rtx);
399 static rtx expand_compound_operation (rtx);
400 static const_rtx expand_field_assignment (const_rtx);
401 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
402 rtx, unsigned HOST_WIDE_INT, int, int, int);
403 static rtx extract_left_shift (rtx, int);
404 static rtx make_compound_operation (rtx, enum rtx_code);
405 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
406 unsigned HOST_WIDE_INT *);
407 static rtx canon_reg_for_combine (rtx, rtx);
408 static rtx force_to_mode (rtx, enum machine_mode,
409 unsigned HOST_WIDE_INT, int);
410 static rtx if_then_else_cond (rtx, rtx *, rtx *);
411 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
412 static int rtx_equal_for_field_assignment_p (rtx, rtx);
413 static rtx make_field_assignment (rtx);
414 static rtx apply_distributive_law (rtx);
415 static rtx distribute_and_simplify_rtx (rtx, int);
416 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
417 unsigned HOST_WIDE_INT);
418 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
419 unsigned HOST_WIDE_INT);
420 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
421 HOST_WIDE_INT, enum machine_mode, int *);
422 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
423 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
424 int);
425 static int recog_for_combine (rtx *, rtx, rtx *);
426 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
427 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
428 static void update_table_tick (rtx);
429 static void record_value_for_reg (rtx, rtx, rtx);
430 static void check_promoted_subreg (rtx, rtx);
431 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
432 static void record_dead_and_set_regs (rtx);
433 static int get_last_value_validate (rtx *, rtx, int, int);
434 static rtx get_last_value (const_rtx);
435 static int use_crosses_set_p (const_rtx, int);
436 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
437 static int reg_dead_at_p (rtx, rtx);
438 static void move_deaths (rtx, rtx, int, rtx, rtx *);
439 static int reg_bitfield_target_p (rtx, rtx);
440 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
441 static void distribute_links (rtx);
442 static void mark_used_regs_combine (rtx);
443 static void record_promoted_value (rtx, rtx);
444 static int unmentioned_reg_p_1 (rtx *, void *);
445 static bool unmentioned_reg_p (rtx, rtx);
446 static int record_truncated_value (rtx *, void *);
447 static void record_truncated_values (rtx *, void *);
448 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
449 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
452 /* It is not safe to use ordinary gen_lowpart in combine.
453 See comments in gen_lowpart_for_combine. */
454 #undef RTL_HOOKS_GEN_LOWPART
455 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
457 /* Our implementation of gen_lowpart never emits a new pseudo. */
458 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
459 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
461 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
462 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
464 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
465 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
467 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
468 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
470 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
473 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
474 PATTERN can not be split. Otherwise, it returns an insn sequence.
475 This is a wrapper around split_insns which ensures that the
476 reg_stat vector is made larger if the splitter creates a new
477 register. */
479 static rtx
480 combine_split_insns (rtx pattern, rtx insn)
482 rtx ret;
483 unsigned int nregs;
485 ret = split_insns (pattern, insn);
486 nregs = max_reg_num ();
487 if (nregs > VEC_length (reg_stat_type, reg_stat))
488 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
489 return ret;
492 /* This is used by find_single_use to locate an rtx in LOC that
493 contains exactly one use of DEST, which is typically either a REG
494 or CC0. It returns a pointer to the innermost rtx expression
495 containing DEST. Appearances of DEST that are being used to
496 totally replace it are not counted. */
498 static rtx *
499 find_single_use_1 (rtx dest, rtx *loc)
501 rtx x = *loc;
502 enum rtx_code code = GET_CODE (x);
503 rtx *result = NULL;
504 rtx *this_result;
505 int i;
506 const char *fmt;
508 switch (code)
510 case CONST_INT:
511 case CONST:
512 case LABEL_REF:
513 case SYMBOL_REF:
514 case CONST_DOUBLE:
515 case CONST_VECTOR:
516 case CLOBBER:
517 return 0;
519 case SET:
520 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
521 of a REG that occupies all of the REG, the insn uses DEST if
522 it is mentioned in the destination or the source. Otherwise, we
523 need just check the source. */
524 if (GET_CODE (SET_DEST (x)) != CC0
525 && GET_CODE (SET_DEST (x)) != PC
526 && !REG_P (SET_DEST (x))
527 && ! (GET_CODE (SET_DEST (x)) == SUBREG
528 && REG_P (SUBREG_REG (SET_DEST (x)))
529 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
530 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
531 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
532 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
533 break;
535 return find_single_use_1 (dest, &SET_SRC (x));
537 case MEM:
538 case SUBREG:
539 return find_single_use_1 (dest, &XEXP (x, 0));
541 default:
542 break;
545 /* If it wasn't one of the common cases above, check each expression and
546 vector of this code. Look for a unique usage of DEST. */
548 fmt = GET_RTX_FORMAT (code);
549 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
551 if (fmt[i] == 'e')
553 if (dest == XEXP (x, i)
554 || (REG_P (dest) && REG_P (XEXP (x, i))
555 && REGNO (dest) == REGNO (XEXP (x, i))))
556 this_result = loc;
557 else
558 this_result = find_single_use_1 (dest, &XEXP (x, i));
560 if (result == NULL)
561 result = this_result;
562 else if (this_result)
563 /* Duplicate usage. */
564 return NULL;
566 else if (fmt[i] == 'E')
568 int j;
570 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
572 if (XVECEXP (x, i, j) == dest
573 || (REG_P (dest)
574 && REG_P (XVECEXP (x, i, j))
575 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
576 this_result = loc;
577 else
578 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
580 if (result == NULL)
581 result = this_result;
582 else if (this_result)
583 return NULL;
588 return result;
592 /* See if DEST, produced in INSN, is used only a single time in the
593 sequel. If so, return a pointer to the innermost rtx expression in which
594 it is used.
596 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
598 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
599 care about REG_DEAD notes or LOG_LINKS.
601 Otherwise, we find the single use by finding an insn that has a
602 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
603 only referenced once in that insn, we know that it must be the first
604 and last insn referencing DEST. */
606 static rtx *
607 find_single_use (rtx dest, rtx insn, rtx *ploc)
609 basic_block bb;
610 rtx next;
611 rtx *result;
612 rtx link;
614 #ifdef HAVE_cc0
615 if (dest == cc0_rtx)
617 next = NEXT_INSN (insn);
618 if (next == 0
619 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
620 return 0;
622 result = find_single_use_1 (dest, &PATTERN (next));
623 if (result && ploc)
624 *ploc = next;
625 return result;
627 #endif
629 if (!REG_P (dest))
630 return 0;
632 bb = BLOCK_FOR_INSN (insn);
633 for (next = NEXT_INSN (insn);
634 next && BLOCK_FOR_INSN (next) == bb;
635 next = NEXT_INSN (next))
636 if (INSN_P (next) && dead_or_set_p (next, dest))
638 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
639 if (XEXP (link, 0) == insn)
640 break;
642 if (link)
644 result = find_single_use_1 (dest, &PATTERN (next));
645 if (ploc)
646 *ploc = next;
647 return result;
651 return 0;
654 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
655 insn. The substitution can be undone by undo_all. If INTO is already
656 set to NEWVAL, do not record this change. Because computing NEWVAL might
657 also call SUBST, we have to compute it before we put anything into
658 the undo table. */
660 static void
661 do_SUBST (rtx *into, rtx newval)
663 struct undo *buf;
664 rtx oldval = *into;
666 if (oldval == newval)
667 return;
669 /* We'd like to catch as many invalid transformations here as
670 possible. Unfortunately, there are way too many mode changes
671 that are perfectly valid, so we'd waste too much effort for
672 little gain doing the checks here. Focus on catching invalid
673 transformations involving integer constants. */
674 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
675 && CONST_INT_P (newval))
677 /* Sanity check that we're replacing oldval with a CONST_INT
678 that is a valid sign-extension for the original mode. */
679 gcc_assert (INTVAL (newval)
680 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
682 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
683 CONST_INT is not valid, because after the replacement, the
684 original mode would be gone. Unfortunately, we can't tell
685 when do_SUBST is called to replace the operand thereof, so we
686 perform this test on oldval instead, checking whether an
687 invalid replacement took place before we got here. */
688 gcc_assert (!(GET_CODE (oldval) == SUBREG
689 && CONST_INT_P (SUBREG_REG (oldval))));
690 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
691 && CONST_INT_P (XEXP (oldval, 0))));
694 if (undobuf.frees)
695 buf = undobuf.frees, undobuf.frees = buf->next;
696 else
697 buf = XNEW (struct undo);
699 buf->kind = UNDO_RTX;
700 buf->where.r = into;
701 buf->old_contents.r = oldval;
702 *into = newval;
704 buf->next = undobuf.undos, undobuf.undos = buf;
707 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
709 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
710 for the value of a HOST_WIDE_INT value (including CONST_INT) is
711 not safe. */
713 static void
714 do_SUBST_INT (int *into, int newval)
716 struct undo *buf;
717 int oldval = *into;
719 if (oldval == newval)
720 return;
722 if (undobuf.frees)
723 buf = undobuf.frees, undobuf.frees = buf->next;
724 else
725 buf = XNEW (struct undo);
727 buf->kind = UNDO_INT;
728 buf->where.i = into;
729 buf->old_contents.i = oldval;
730 *into = newval;
732 buf->next = undobuf.undos, undobuf.undos = buf;
735 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
737 /* Similar to SUBST, but just substitute the mode. This is used when
738 changing the mode of a pseudo-register, so that any other
739 references to the entry in the regno_reg_rtx array will change as
740 well. */
742 static void
743 do_SUBST_MODE (rtx *into, enum machine_mode newval)
745 struct undo *buf;
746 enum machine_mode oldval = GET_MODE (*into);
748 if (oldval == newval)
749 return;
751 if (undobuf.frees)
752 buf = undobuf.frees, undobuf.frees = buf->next;
753 else
754 buf = XNEW (struct undo);
756 buf->kind = UNDO_MODE;
757 buf->where.r = into;
758 buf->old_contents.m = oldval;
759 adjust_reg_mode (*into, newval);
761 buf->next = undobuf.undos, undobuf.undos = buf;
764 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
766 /* Subroutine of try_combine. Determine whether the combine replacement
767 patterns NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to
768 insn_rtx_cost that the original instruction sequence I0, I1, I2, I3 and
769 undobuf.other_insn. Note that I1 and/or NEWI2PAT may be NULL_RTX.
770 NEWOTHERPAT and undobuf.other_insn may also both be NULL_RTX. This
771 function returns false, if the costs of all instructions can be
772 estimated, and the replacements are more expensive than the original
773 sequence. */
775 static bool
776 combine_validate_cost (rtx i0, rtx i1, rtx i2, rtx i3, rtx newpat,
777 rtx newi2pat, rtx newotherpat)
779 int i0_cost, i1_cost, i2_cost, i3_cost;
780 int new_i2_cost, new_i3_cost;
781 int old_cost, new_cost;
783 /* Lookup the original insn_rtx_costs. */
784 i2_cost = INSN_COST (i2);
785 i3_cost = INSN_COST (i3);
787 if (i1)
789 i1_cost = INSN_COST (i1);
790 if (i0)
792 i0_cost = INSN_COST (i0);
793 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
794 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
796 else
798 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
799 ? i1_cost + i2_cost + i3_cost : 0);
800 i0_cost = 0;
803 else
805 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
806 i1_cost = i0_cost = 0;
809 /* Calculate the replacement insn_rtx_costs. */
810 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
811 if (newi2pat)
813 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
814 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
815 ? new_i2_cost + new_i3_cost : 0;
817 else
819 new_cost = new_i3_cost;
820 new_i2_cost = 0;
823 if (undobuf.other_insn)
825 int old_other_cost, new_other_cost;
827 old_other_cost = INSN_COST (undobuf.other_insn);
828 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
829 if (old_other_cost > 0 && new_other_cost > 0)
831 old_cost += old_other_cost;
832 new_cost += new_other_cost;
834 else
835 old_cost = 0;
838 /* Disallow this recombination if both new_cost and old_cost are
839 greater than zero, and new_cost is greater than old cost. */
840 if (old_cost > 0
841 && new_cost > old_cost)
843 if (dump_file)
845 if (i0)
847 fprintf (dump_file,
848 "rejecting combination of insns %d, %d, %d and %d\n",
849 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2),
850 INSN_UID (i3));
851 fprintf (dump_file, "original costs %d + %d + %d + %d = %d\n",
852 i0_cost, i1_cost, i2_cost, i3_cost, old_cost);
854 else if (i1)
856 fprintf (dump_file,
857 "rejecting combination of insns %d, %d and %d\n",
858 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
859 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
860 i1_cost, i2_cost, i3_cost, old_cost);
862 else
864 fprintf (dump_file,
865 "rejecting combination of insns %d and %d\n",
866 INSN_UID (i2), INSN_UID (i3));
867 fprintf (dump_file, "original costs %d + %d = %d\n",
868 i2_cost, i3_cost, old_cost);
871 if (newi2pat)
873 fprintf (dump_file, "replacement costs %d + %d = %d\n",
874 new_i2_cost, new_i3_cost, new_cost);
876 else
877 fprintf (dump_file, "replacement cost %d\n", new_cost);
880 return false;
883 /* Update the uid_insn_cost array with the replacement costs. */
884 INSN_COST (i2) = new_i2_cost;
885 INSN_COST (i3) = new_i3_cost;
886 if (i1)
887 INSN_COST (i1) = 0;
889 return true;
893 /* Delete any insns that copy a register to itself. */
895 static void
896 delete_noop_moves (void)
898 rtx insn, next;
899 basic_block bb;
901 FOR_EACH_BB (bb)
903 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
905 next = NEXT_INSN (insn);
906 if (INSN_P (insn) && noop_move_p (insn))
908 if (dump_file)
909 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
911 delete_insn_and_edges (insn);
918 /* Fill in log links field for all insns. */
920 static void
921 create_log_links (void)
923 basic_block bb;
924 rtx *next_use, insn;
925 df_ref *def_vec, *use_vec;
927 next_use = XCNEWVEC (rtx, max_reg_num ());
929 /* Pass through each block from the end, recording the uses of each
930 register and establishing log links when def is encountered.
931 Note that we do not clear next_use array in order to save time,
932 so we have to test whether the use is in the same basic block as def.
934 There are a few cases below when we do not consider the definition or
935 usage -- these are taken from original flow.c did. Don't ask me why it is
936 done this way; I don't know and if it works, I don't want to know. */
938 FOR_EACH_BB (bb)
940 FOR_BB_INSNS_REVERSE (bb, insn)
942 if (!NONDEBUG_INSN_P (insn))
943 continue;
945 /* Log links are created only once. */
946 gcc_assert (!LOG_LINKS (insn));
948 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
950 df_ref def = *def_vec;
951 int regno = DF_REF_REGNO (def);
952 rtx use_insn;
954 if (!next_use[regno])
955 continue;
957 /* Do not consider if it is pre/post modification in MEM. */
958 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
959 continue;
961 /* Do not make the log link for frame pointer. */
962 if ((regno == FRAME_POINTER_REGNUM
963 && (! reload_completed || frame_pointer_needed))
964 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
965 || (regno == HARD_FRAME_POINTER_REGNUM
966 && (! reload_completed || frame_pointer_needed))
967 #endif
968 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
969 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
970 #endif
972 continue;
974 use_insn = next_use[regno];
975 if (BLOCK_FOR_INSN (use_insn) == bb)
977 /* flow.c claimed:
979 We don't build a LOG_LINK for hard registers contained
980 in ASM_OPERANDs. If these registers get replaced,
981 we might wind up changing the semantics of the insn,
982 even if reload can make what appear to be valid
983 assignments later. */
984 if (regno >= FIRST_PSEUDO_REGISTER
985 || asm_noperands (PATTERN (use_insn)) < 0)
987 /* Don't add duplicate links between instructions. */
988 rtx links;
989 for (links = LOG_LINKS (use_insn); links;
990 links = XEXP (links, 1))
991 if (insn == XEXP (links, 0))
992 break;
994 if (!links)
995 LOG_LINKS (use_insn) =
996 alloc_INSN_LIST (insn, LOG_LINKS (use_insn));
999 next_use[regno] = NULL_RTX;
1002 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1004 df_ref use = *use_vec;
1005 int regno = DF_REF_REGNO (use);
1007 /* Do not consider the usage of the stack pointer
1008 by function call. */
1009 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1010 continue;
1012 next_use[regno] = insn;
1017 free (next_use);
1020 /* Clear LOG_LINKS fields of insns. */
1022 static void
1023 clear_log_links (void)
1025 rtx insn;
1027 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1028 if (INSN_P (insn))
1029 free_INSN_LIST_list (&LOG_LINKS (insn));
1032 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1033 true if we found a LOG_LINK that proves that A feeds B. This only works
1034 if there are no instructions between A and B which could have a link
1035 depending on A, since in that case we would not record a link for B.
1036 We also check the implicit dependency created by a cc0 setter/user
1037 pair. */
1039 static bool
1040 insn_a_feeds_b (rtx a, rtx b)
1042 rtx links;
1043 for (links = LOG_LINKS (b); links; links = XEXP (links, 1))
1044 if (XEXP (links, 0) == a)
1045 return true;
1046 #ifdef HAVE_cc0
1047 if (sets_cc0_p (a))
1048 return true;
1049 #endif
1050 return false;
1053 /* Main entry point for combiner. F is the first insn of the function.
1054 NREGS is the first unused pseudo-reg number.
1056 Return nonzero if the combiner has turned an indirect jump
1057 instruction into a direct jump. */
1058 static int
1059 combine_instructions (rtx f, unsigned int nregs)
1061 rtx insn, next;
1062 #ifdef HAVE_cc0
1063 rtx prev;
1064 #endif
1065 rtx links, nextlinks;
1066 rtx first;
1067 basic_block last_bb;
1069 int new_direct_jump_p = 0;
1071 for (first = f; first && !INSN_P (first); )
1072 first = NEXT_INSN (first);
1073 if (!first)
1074 return 0;
1076 combine_attempts = 0;
1077 combine_merges = 0;
1078 combine_extras = 0;
1079 combine_successes = 0;
1081 rtl_hooks = combine_rtl_hooks;
1083 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1085 init_recog_no_volatile ();
1087 /* Allocate array for insn info. */
1088 max_uid_known = get_max_uid ();
1089 uid_log_links = XCNEWVEC (rtx, max_uid_known + 1);
1090 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1092 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1094 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1095 problems when, for example, we have j <<= 1 in a loop. */
1097 nonzero_sign_valid = 0;
1098 label_tick = label_tick_ebb_start = 1;
1100 /* Scan all SETs and see if we can deduce anything about what
1101 bits are known to be zero for some registers and how many copies
1102 of the sign bit are known to exist for those registers.
1104 Also set any known values so that we can use it while searching
1105 for what bits are known to be set. */
1107 setup_incoming_promotions (first);
1108 /* Allow the entry block and the first block to fall into the same EBB.
1109 Conceptually the incoming promotions are assigned to the entry block. */
1110 last_bb = ENTRY_BLOCK_PTR;
1112 create_log_links ();
1113 FOR_EACH_BB (this_basic_block)
1115 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1116 last_call_luid = 0;
1117 mem_last_set = -1;
1119 label_tick++;
1120 if (!single_pred_p (this_basic_block)
1121 || single_pred (this_basic_block) != last_bb)
1122 label_tick_ebb_start = label_tick;
1123 last_bb = this_basic_block;
1125 FOR_BB_INSNS (this_basic_block, insn)
1126 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1128 subst_low_luid = DF_INSN_LUID (insn);
1129 subst_insn = insn;
1131 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1132 insn);
1133 record_dead_and_set_regs (insn);
1135 #ifdef AUTO_INC_DEC
1136 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1137 if (REG_NOTE_KIND (links) == REG_INC)
1138 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1139 insn);
1140 #endif
1142 /* Record the current insn_rtx_cost of this instruction. */
1143 if (NONJUMP_INSN_P (insn))
1144 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1145 optimize_this_for_speed_p);
1146 if (dump_file)
1147 fprintf(dump_file, "insn_cost %d: %d\n",
1148 INSN_UID (insn), INSN_COST (insn));
1152 nonzero_sign_valid = 1;
1154 /* Now scan all the insns in forward order. */
1155 label_tick = label_tick_ebb_start = 1;
1156 init_reg_last ();
1157 setup_incoming_promotions (first);
1158 last_bb = ENTRY_BLOCK_PTR;
1160 FOR_EACH_BB (this_basic_block)
1162 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1163 last_call_luid = 0;
1164 mem_last_set = -1;
1166 label_tick++;
1167 if (!single_pred_p (this_basic_block)
1168 || single_pred (this_basic_block) != last_bb)
1169 label_tick_ebb_start = label_tick;
1170 last_bb = this_basic_block;
1172 rtl_profile_for_bb (this_basic_block);
1173 for (insn = BB_HEAD (this_basic_block);
1174 insn != NEXT_INSN (BB_END (this_basic_block));
1175 insn = next ? next : NEXT_INSN (insn))
1177 next = 0;
1178 if (NONDEBUG_INSN_P (insn))
1180 /* See if we know about function return values before this
1181 insn based upon SUBREG flags. */
1182 check_promoted_subreg (insn, PATTERN (insn));
1184 /* See if we can find hardregs and subreg of pseudos in
1185 narrower modes. This could help turning TRUNCATEs
1186 into SUBREGs. */
1187 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1189 /* Try this insn with each insn it links back to. */
1191 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1192 if ((next = try_combine (insn, XEXP (links, 0), NULL_RTX,
1193 NULL_RTX, &new_direct_jump_p)) != 0)
1194 goto retry;
1196 /* Try each sequence of three linked insns ending with this one. */
1198 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1200 rtx link = XEXP (links, 0);
1202 /* If the linked insn has been replaced by a note, then there
1203 is no point in pursuing this chain any further. */
1204 if (NOTE_P (link))
1205 continue;
1207 for (nextlinks = LOG_LINKS (link);
1208 nextlinks;
1209 nextlinks = XEXP (nextlinks, 1))
1210 if ((next = try_combine (insn, link, XEXP (nextlinks, 0),
1211 NULL_RTX,
1212 &new_direct_jump_p)) != 0)
1213 goto retry;
1216 #ifdef HAVE_cc0
1217 /* Try to combine a jump insn that uses CC0
1218 with a preceding insn that sets CC0, and maybe with its
1219 logical predecessor as well.
1220 This is how we make decrement-and-branch insns.
1221 We need this special code because data flow connections
1222 via CC0 do not get entered in LOG_LINKS. */
1224 if (JUMP_P (insn)
1225 && (prev = prev_nonnote_insn (insn)) != 0
1226 && NONJUMP_INSN_P (prev)
1227 && sets_cc0_p (PATTERN (prev)))
1229 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1230 &new_direct_jump_p)) != 0)
1231 goto retry;
1233 for (nextlinks = LOG_LINKS (prev); nextlinks;
1234 nextlinks = XEXP (nextlinks, 1))
1235 if ((next = try_combine (insn, prev, XEXP (nextlinks, 0),
1236 NULL_RTX,
1237 &new_direct_jump_p)) != 0)
1238 goto retry;
1241 /* Do the same for an insn that explicitly references CC0. */
1242 if (NONJUMP_INSN_P (insn)
1243 && (prev = prev_nonnote_insn (insn)) != 0
1244 && NONJUMP_INSN_P (prev)
1245 && sets_cc0_p (PATTERN (prev))
1246 && GET_CODE (PATTERN (insn)) == SET
1247 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1249 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1250 &new_direct_jump_p)) != 0)
1251 goto retry;
1253 for (nextlinks = LOG_LINKS (prev); nextlinks;
1254 nextlinks = XEXP (nextlinks, 1))
1255 if ((next = try_combine (insn, prev, XEXP (nextlinks, 0),
1256 NULL_RTX,
1257 &new_direct_jump_p)) != 0)
1258 goto retry;
1261 /* Finally, see if any of the insns that this insn links to
1262 explicitly references CC0. If so, try this insn, that insn,
1263 and its predecessor if it sets CC0. */
1264 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1265 if (NONJUMP_INSN_P (XEXP (links, 0))
1266 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
1267 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
1268 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
1269 && NONJUMP_INSN_P (prev)
1270 && sets_cc0_p (PATTERN (prev))
1271 && (next = try_combine (insn, XEXP (links, 0),
1272 prev, NULL_RTX,
1273 &new_direct_jump_p)) != 0)
1274 goto retry;
1275 #endif
1277 /* Try combining an insn with two different insns whose results it
1278 uses. */
1279 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1280 for (nextlinks = XEXP (links, 1); nextlinks;
1281 nextlinks = XEXP (nextlinks, 1))
1282 if ((next = try_combine (insn, XEXP (links, 0),
1283 XEXP (nextlinks, 0), NULL_RTX,
1284 &new_direct_jump_p)) != 0)
1285 goto retry;
1287 /* Try four-instruction combinations. */
1288 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1290 rtx next1;
1291 rtx link = XEXP (links, 0);
1293 /* If the linked insn has been replaced by a note, then there
1294 is no point in pursuing this chain any further. */
1295 if (NOTE_P (link))
1296 continue;
1298 for (next1 = LOG_LINKS (link); next1; next1 = XEXP (next1, 1))
1300 rtx link1 = XEXP (next1, 0);
1301 if (NOTE_P (link1))
1302 continue;
1303 /* I0 -> I1 -> I2 -> I3. */
1304 for (nextlinks = LOG_LINKS (link1); nextlinks;
1305 nextlinks = XEXP (nextlinks, 1))
1306 if ((next = try_combine (insn, link, link1,
1307 XEXP (nextlinks, 0),
1308 &new_direct_jump_p)) != 0)
1309 goto retry;
1310 /* I0, I1 -> I2, I2 -> I3. */
1311 for (nextlinks = XEXP (next1, 1); nextlinks;
1312 nextlinks = XEXP (nextlinks, 1))
1313 if ((next = try_combine (insn, link, link1,
1314 XEXP (nextlinks, 0),
1315 &new_direct_jump_p)) != 0)
1316 goto retry;
1319 for (next1 = XEXP (links, 1); next1; next1 = XEXP (next1, 1))
1321 rtx link1 = XEXP (next1, 0);
1322 if (NOTE_P (link1))
1323 continue;
1324 /* I0 -> I2; I1, I2 -> I3. */
1325 for (nextlinks = LOG_LINKS (link); nextlinks;
1326 nextlinks = XEXP (nextlinks, 1))
1327 if ((next = try_combine (insn, link, link1,
1328 XEXP (nextlinks, 0),
1329 &new_direct_jump_p)) != 0)
1330 goto retry;
1331 /* I0 -> I1; I1, I2 -> I3. */
1332 for (nextlinks = LOG_LINKS (link1); nextlinks;
1333 nextlinks = XEXP (nextlinks, 1))
1334 if ((next = try_combine (insn, link, link1,
1335 XEXP (nextlinks, 0),
1336 &new_direct_jump_p)) != 0)
1337 goto retry;
1341 /* Try this insn with each REG_EQUAL note it links back to. */
1342 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1344 rtx set, note;
1345 rtx temp = XEXP (links, 0);
1346 if ((set = single_set (temp)) != 0
1347 && (note = find_reg_equal_equiv_note (temp)) != 0
1348 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1349 /* Avoid using a register that may already been marked
1350 dead by an earlier instruction. */
1351 && ! unmentioned_reg_p (note, SET_SRC (set))
1352 && (GET_MODE (note) == VOIDmode
1353 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1354 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1356 /* Temporarily replace the set's source with the
1357 contents of the REG_EQUAL note. The insn will
1358 be deleted or recognized by try_combine. */
1359 rtx orig = SET_SRC (set);
1360 SET_SRC (set) = note;
1361 i2mod = temp;
1362 i2mod_old_rhs = copy_rtx (orig);
1363 i2mod_new_rhs = copy_rtx (note);
1364 next = try_combine (insn, i2mod, NULL_RTX, NULL_RTX,
1365 &new_direct_jump_p);
1366 i2mod = NULL_RTX;
1367 if (next)
1368 goto retry;
1369 SET_SRC (set) = orig;
1373 if (!NOTE_P (insn))
1374 record_dead_and_set_regs (insn);
1376 retry:
1382 default_rtl_profile ();
1383 clear_log_links ();
1384 clear_bb_flags ();
1385 new_direct_jump_p |= purge_all_dead_edges ();
1386 delete_noop_moves ();
1388 /* Clean up. */
1389 free (uid_log_links);
1390 free (uid_insn_cost);
1391 VEC_free (reg_stat_type, heap, reg_stat);
1394 struct undo *undo, *next;
1395 for (undo = undobuf.frees; undo; undo = next)
1397 next = undo->next;
1398 free (undo);
1400 undobuf.frees = 0;
1403 total_attempts += combine_attempts;
1404 total_merges += combine_merges;
1405 total_extras += combine_extras;
1406 total_successes += combine_successes;
1408 nonzero_sign_valid = 0;
1409 rtl_hooks = general_rtl_hooks;
1411 /* Make recognizer allow volatile MEMs again. */
1412 init_recog ();
1414 return new_direct_jump_p;
1417 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1419 static void
1420 init_reg_last (void)
1422 unsigned int i;
1423 reg_stat_type *p;
1425 FOR_EACH_VEC_ELT (reg_stat_type, reg_stat, i, p)
1426 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1429 /* Set up any promoted values for incoming argument registers. */
1431 static void
1432 setup_incoming_promotions (rtx first)
1434 tree arg;
1435 bool strictly_local = false;
1437 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1438 arg = DECL_CHAIN (arg))
1440 rtx x, reg = DECL_INCOMING_RTL (arg);
1441 int uns1, uns3;
1442 enum machine_mode mode1, mode2, mode3, mode4;
1444 /* Only continue if the incoming argument is in a register. */
1445 if (!REG_P (reg))
1446 continue;
1448 /* Determine, if possible, whether all call sites of the current
1449 function lie within the current compilation unit. (This does
1450 take into account the exporting of a function via taking its
1451 address, and so forth.) */
1452 strictly_local = cgraph_local_info (current_function_decl)->local;
1454 /* The mode and signedness of the argument before any promotions happen
1455 (equal to the mode of the pseudo holding it at that stage). */
1456 mode1 = TYPE_MODE (TREE_TYPE (arg));
1457 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1459 /* The mode and signedness of the argument after any source language and
1460 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1461 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1462 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1464 /* The mode and signedness of the argument as it is actually passed,
1465 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1466 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1467 TREE_TYPE (cfun->decl), 0);
1469 /* The mode of the register in which the argument is being passed. */
1470 mode4 = GET_MODE (reg);
1472 /* Eliminate sign extensions in the callee when:
1473 (a) A mode promotion has occurred; */
1474 if (mode1 == mode3)
1475 continue;
1476 /* (b) The mode of the register is the same as the mode of
1477 the argument as it is passed; */
1478 if (mode3 != mode4)
1479 continue;
1480 /* (c) There's no language level extension; */
1481 if (mode1 == mode2)
1483 /* (c.1) All callers are from the current compilation unit. If that's
1484 the case we don't have to rely on an ABI, we only have to know
1485 what we're generating right now, and we know that we will do the
1486 mode1 to mode2 promotion with the given sign. */
1487 else if (!strictly_local)
1488 continue;
1489 /* (c.2) The combination of the two promotions is useful. This is
1490 true when the signs match, or if the first promotion is unsigned.
1491 In the later case, (sign_extend (zero_extend x)) is the same as
1492 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1493 else if (uns1)
1494 uns3 = true;
1495 else if (uns3)
1496 continue;
1498 /* Record that the value was promoted from mode1 to mode3,
1499 so that any sign extension at the head of the current
1500 function may be eliminated. */
1501 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1502 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1503 record_value_for_reg (reg, first, x);
1507 /* Called via note_stores. If X is a pseudo that is narrower than
1508 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1510 If we are setting only a portion of X and we can't figure out what
1511 portion, assume all bits will be used since we don't know what will
1512 be happening.
1514 Similarly, set how many bits of X are known to be copies of the sign bit
1515 at all locations in the function. This is the smallest number implied
1516 by any set of X. */
1518 static void
1519 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1521 rtx insn = (rtx) data;
1522 unsigned int num;
1524 if (REG_P (x)
1525 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1526 /* If this register is undefined at the start of the file, we can't
1527 say what its contents were. */
1528 && ! REGNO_REG_SET_P
1529 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1530 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1532 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1534 if (set == 0 || GET_CODE (set) == CLOBBER)
1536 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1537 rsp->sign_bit_copies = 1;
1538 return;
1541 /* If this register is being initialized using itself, and the
1542 register is uninitialized in this basic block, and there are
1543 no LOG_LINKS which set the register, then part of the
1544 register is uninitialized. In that case we can't assume
1545 anything about the number of nonzero bits.
1547 ??? We could do better if we checked this in
1548 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1549 could avoid making assumptions about the insn which initially
1550 sets the register, while still using the information in other
1551 insns. We would have to be careful to check every insn
1552 involved in the combination. */
1554 if (insn
1555 && reg_referenced_p (x, PATTERN (insn))
1556 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1557 REGNO (x)))
1559 rtx link;
1561 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1563 if (dead_or_set_p (XEXP (link, 0), x))
1564 break;
1566 if (!link)
1568 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1569 rsp->sign_bit_copies = 1;
1570 return;
1574 /* If this is a complex assignment, see if we can convert it into a
1575 simple assignment. */
1576 set = expand_field_assignment (set);
1578 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1579 set what we know about X. */
1581 if (SET_DEST (set) == x
1582 || (GET_CODE (SET_DEST (set)) == SUBREG
1583 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1584 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1585 && SUBREG_REG (SET_DEST (set)) == x))
1587 rtx src = SET_SRC (set);
1589 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1590 /* If X is narrower than a word and SRC is a non-negative
1591 constant that would appear negative in the mode of X,
1592 sign-extend it for use in reg_stat[].nonzero_bits because some
1593 machines (maybe most) will actually do the sign-extension
1594 and this is the conservative approach.
1596 ??? For 2.5, try to tighten up the MD files in this regard
1597 instead of this kludge. */
1599 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1600 && CONST_INT_P (src)
1601 && INTVAL (src) > 0
1602 && 0 != (UINTVAL (src)
1603 & ((unsigned HOST_WIDE_INT) 1
1604 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1605 src = GEN_INT (UINTVAL (src)
1606 | ((unsigned HOST_WIDE_INT) (-1)
1607 << GET_MODE_BITSIZE (GET_MODE (x))));
1608 #endif
1610 /* Don't call nonzero_bits if it cannot change anything. */
1611 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1612 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1613 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1614 if (rsp->sign_bit_copies == 0
1615 || rsp->sign_bit_copies > num)
1616 rsp->sign_bit_copies = num;
1618 else
1620 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1621 rsp->sign_bit_copies = 1;
1626 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1627 optionally insns that were previously combined into I3 or that will be
1628 combined into the merger of INSN and I3. The order is PRED, PRED2,
1629 INSN, SUCC, SUCC2, I3.
1631 Return 0 if the combination is not allowed for any reason.
1633 If the combination is allowed, *PDEST will be set to the single
1634 destination of INSN and *PSRC to the single source, and this function
1635 will return 1. */
1637 static int
1638 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED,
1639 rtx pred2 ATTRIBUTE_UNUSED, rtx succ, rtx succ2,
1640 rtx *pdest, rtx *psrc)
1642 int i;
1643 const_rtx set = 0;
1644 rtx src, dest;
1645 rtx p;
1646 #ifdef AUTO_INC_DEC
1647 rtx link;
1648 #endif
1649 bool all_adjacent = true;
1651 if (succ)
1653 if (succ2)
1655 if (next_active_insn (succ2) != i3)
1656 all_adjacent = false;
1657 if (next_active_insn (succ) != succ2)
1658 all_adjacent = false;
1660 else if (next_active_insn (succ) != i3)
1661 all_adjacent = false;
1662 if (next_active_insn (insn) != succ)
1663 all_adjacent = false;
1665 else if (next_active_insn (insn) != i3)
1666 all_adjacent = false;
1668 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1669 or a PARALLEL consisting of such a SET and CLOBBERs.
1671 If INSN has CLOBBER parallel parts, ignore them for our processing.
1672 By definition, these happen during the execution of the insn. When it
1673 is merged with another insn, all bets are off. If they are, in fact,
1674 needed and aren't also supplied in I3, they may be added by
1675 recog_for_combine. Otherwise, it won't match.
1677 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1678 note.
1680 Get the source and destination of INSN. If more than one, can't
1681 combine. */
1683 if (GET_CODE (PATTERN (insn)) == SET)
1684 set = PATTERN (insn);
1685 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1686 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1688 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1690 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1692 switch (GET_CODE (elt))
1694 /* This is important to combine floating point insns
1695 for the SH4 port. */
1696 case USE:
1697 /* Combining an isolated USE doesn't make sense.
1698 We depend here on combinable_i3pat to reject them. */
1699 /* The code below this loop only verifies that the inputs of
1700 the SET in INSN do not change. We call reg_set_between_p
1701 to verify that the REG in the USE does not change between
1702 I3 and INSN.
1703 If the USE in INSN was for a pseudo register, the matching
1704 insn pattern will likely match any register; combining this
1705 with any other USE would only be safe if we knew that the
1706 used registers have identical values, or if there was
1707 something to tell them apart, e.g. different modes. For
1708 now, we forgo such complicated tests and simply disallow
1709 combining of USES of pseudo registers with any other USE. */
1710 if (REG_P (XEXP (elt, 0))
1711 && GET_CODE (PATTERN (i3)) == PARALLEL)
1713 rtx i3pat = PATTERN (i3);
1714 int i = XVECLEN (i3pat, 0) - 1;
1715 unsigned int regno = REGNO (XEXP (elt, 0));
1719 rtx i3elt = XVECEXP (i3pat, 0, i);
1721 if (GET_CODE (i3elt) == USE
1722 && REG_P (XEXP (i3elt, 0))
1723 && (REGNO (XEXP (i3elt, 0)) == regno
1724 ? reg_set_between_p (XEXP (elt, 0),
1725 PREV_INSN (insn), i3)
1726 : regno >= FIRST_PSEUDO_REGISTER))
1727 return 0;
1729 while (--i >= 0);
1731 break;
1733 /* We can ignore CLOBBERs. */
1734 case CLOBBER:
1735 break;
1737 case SET:
1738 /* Ignore SETs whose result isn't used but not those that
1739 have side-effects. */
1740 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1741 && insn_nothrow_p (insn)
1742 && !side_effects_p (elt))
1743 break;
1745 /* If we have already found a SET, this is a second one and
1746 so we cannot combine with this insn. */
1747 if (set)
1748 return 0;
1750 set = elt;
1751 break;
1753 default:
1754 /* Anything else means we can't combine. */
1755 return 0;
1759 if (set == 0
1760 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1761 so don't do anything with it. */
1762 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1763 return 0;
1765 else
1766 return 0;
1768 if (set == 0)
1769 return 0;
1771 set = expand_field_assignment (set);
1772 src = SET_SRC (set), dest = SET_DEST (set);
1774 /* Don't eliminate a store in the stack pointer. */
1775 if (dest == stack_pointer_rtx
1776 /* Don't combine with an insn that sets a register to itself if it has
1777 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1778 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1779 /* Can't merge an ASM_OPERANDS. */
1780 || GET_CODE (src) == ASM_OPERANDS
1781 /* Can't merge a function call. */
1782 || GET_CODE (src) == CALL
1783 /* Don't eliminate a function call argument. */
1784 || (CALL_P (i3)
1785 && (find_reg_fusage (i3, USE, dest)
1786 || (REG_P (dest)
1787 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1788 && global_regs[REGNO (dest)])))
1789 /* Don't substitute into an incremented register. */
1790 || FIND_REG_INC_NOTE (i3, dest)
1791 || (succ && FIND_REG_INC_NOTE (succ, dest))
1792 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1793 /* Don't substitute into a non-local goto, this confuses CFG. */
1794 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1795 /* Make sure that DEST is not used after SUCC but before I3. */
1796 || (!all_adjacent
1797 && ((succ2
1798 && (reg_used_between_p (dest, succ2, i3)
1799 || reg_used_between_p (dest, succ, succ2)))
1800 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1801 /* Make sure that the value that is to be substituted for the register
1802 does not use any registers whose values alter in between. However,
1803 If the insns are adjacent, a use can't cross a set even though we
1804 think it might (this can happen for a sequence of insns each setting
1805 the same destination; last_set of that register might point to
1806 a NOTE). If INSN has a REG_EQUIV note, the register is always
1807 equivalent to the memory so the substitution is valid even if there
1808 are intervening stores. Also, don't move a volatile asm or
1809 UNSPEC_VOLATILE across any other insns. */
1810 || (! all_adjacent
1811 && (((!MEM_P (src)
1812 || ! find_reg_note (insn, REG_EQUIV, src))
1813 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1814 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1815 || GET_CODE (src) == UNSPEC_VOLATILE))
1816 /* Don't combine across a CALL_INSN, because that would possibly
1817 change whether the life span of some REGs crosses calls or not,
1818 and it is a pain to update that information.
1819 Exception: if source is a constant, moving it later can't hurt.
1820 Accept that as a special case. */
1821 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1822 return 0;
1824 /* DEST must either be a REG or CC0. */
1825 if (REG_P (dest))
1827 /* If register alignment is being enforced for multi-word items in all
1828 cases except for parameters, it is possible to have a register copy
1829 insn referencing a hard register that is not allowed to contain the
1830 mode being copied and which would not be valid as an operand of most
1831 insns. Eliminate this problem by not combining with such an insn.
1833 Also, on some machines we don't want to extend the life of a hard
1834 register. */
1836 if (REG_P (src)
1837 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1838 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1839 /* Don't extend the life of a hard register unless it is
1840 user variable (if we have few registers) or it can't
1841 fit into the desired register (meaning something special
1842 is going on).
1843 Also avoid substituting a return register into I3, because
1844 reload can't handle a conflict with constraints of other
1845 inputs. */
1846 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1847 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1848 return 0;
1850 else if (GET_CODE (dest) != CC0)
1851 return 0;
1854 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1855 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1856 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1858 /* Don't substitute for a register intended as a clobberable
1859 operand. */
1860 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1861 if (rtx_equal_p (reg, dest))
1862 return 0;
1864 /* If the clobber represents an earlyclobber operand, we must not
1865 substitute an expression containing the clobbered register.
1866 As we do not analyze the constraint strings here, we have to
1867 make the conservative assumption. However, if the register is
1868 a fixed hard reg, the clobber cannot represent any operand;
1869 we leave it up to the machine description to either accept or
1870 reject use-and-clobber patterns. */
1871 if (!REG_P (reg)
1872 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1873 || !fixed_regs[REGNO (reg)])
1874 if (reg_overlap_mentioned_p (reg, src))
1875 return 0;
1878 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1879 or not), reject, unless nothing volatile comes between it and I3 */
1881 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1883 /* Make sure neither succ nor succ2 contains a volatile reference. */
1884 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1885 return 0;
1886 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1887 return 0;
1888 /* We'll check insns between INSN and I3 below. */
1891 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1892 to be an explicit register variable, and was chosen for a reason. */
1894 if (GET_CODE (src) == ASM_OPERANDS
1895 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1896 return 0;
1898 /* If there are any volatile insns between INSN and I3, reject, because
1899 they might affect machine state. */
1901 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1902 if (INSN_P (p) && p != succ && p != succ2 && volatile_insn_p (PATTERN (p)))
1903 return 0;
1905 /* If INSN contains an autoincrement or autodecrement, make sure that
1906 register is not used between there and I3, and not already used in
1907 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1908 Also insist that I3 not be a jump; if it were one
1909 and the incremented register were spilled, we would lose. */
1911 #ifdef AUTO_INC_DEC
1912 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1913 if (REG_NOTE_KIND (link) == REG_INC
1914 && (JUMP_P (i3)
1915 || reg_used_between_p (XEXP (link, 0), insn, i3)
1916 || (pred != NULL_RTX
1917 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1918 || (pred2 != NULL_RTX
1919 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
1920 || (succ != NULL_RTX
1921 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1922 || (succ2 != NULL_RTX
1923 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
1924 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1925 return 0;
1926 #endif
1928 #ifdef HAVE_cc0
1929 /* Don't combine an insn that follows a CC0-setting insn.
1930 An insn that uses CC0 must not be separated from the one that sets it.
1931 We do, however, allow I2 to follow a CC0-setting insn if that insn
1932 is passed as I1; in that case it will be deleted also.
1933 We also allow combining in this case if all the insns are adjacent
1934 because that would leave the two CC0 insns adjacent as well.
1935 It would be more logical to test whether CC0 occurs inside I1 or I2,
1936 but that would be much slower, and this ought to be equivalent. */
1938 p = prev_nonnote_insn (insn);
1939 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1940 && ! all_adjacent)
1941 return 0;
1942 #endif
1944 /* If we get here, we have passed all the tests and the combination is
1945 to be allowed. */
1947 *pdest = dest;
1948 *psrc = src;
1950 return 1;
1953 /* LOC is the location within I3 that contains its pattern or the component
1954 of a PARALLEL of the pattern. We validate that it is valid for combining.
1956 One problem is if I3 modifies its output, as opposed to replacing it
1957 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
1958 doing so would produce an insn that is not equivalent to the original insns.
1960 Consider:
1962 (set (reg:DI 101) (reg:DI 100))
1963 (set (subreg:SI (reg:DI 101) 0) <foo>)
1965 This is NOT equivalent to:
1967 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1968 (set (reg:DI 101) (reg:DI 100))])
1970 Not only does this modify 100 (in which case it might still be valid
1971 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1973 We can also run into a problem if I2 sets a register that I1
1974 uses and I1 gets directly substituted into I3 (not via I2). In that
1975 case, we would be getting the wrong value of I2DEST into I3, so we
1976 must reject the combination. This case occurs when I2 and I1 both
1977 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1978 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1979 of a SET must prevent combination from occurring. The same situation
1980 can occur for I0, in which case I0_NOT_IN_SRC is set.
1982 Before doing the above check, we first try to expand a field assignment
1983 into a set of logical operations.
1985 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1986 we place a register that is both set and used within I3. If more than one
1987 such register is detected, we fail.
1989 Return 1 if the combination is valid, zero otherwise. */
1991 static int
1992 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
1993 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
1995 rtx x = *loc;
1997 if (GET_CODE (x) == SET)
1999 rtx set = x ;
2000 rtx dest = SET_DEST (set);
2001 rtx src = SET_SRC (set);
2002 rtx inner_dest = dest;
2003 rtx subdest;
2005 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2006 || GET_CODE (inner_dest) == SUBREG
2007 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2008 inner_dest = XEXP (inner_dest, 0);
2010 /* Check for the case where I3 modifies its output, as discussed
2011 above. We don't want to prevent pseudos from being combined
2012 into the address of a MEM, so only prevent the combination if
2013 i1 or i2 set the same MEM. */
2014 if ((inner_dest != dest &&
2015 (!MEM_P (inner_dest)
2016 || rtx_equal_p (i2dest, inner_dest)
2017 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2018 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2019 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2020 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2021 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2023 /* This is the same test done in can_combine_p except we can't test
2024 all_adjacent; we don't have to, since this instruction will stay
2025 in place, thus we are not considering increasing the lifetime of
2026 INNER_DEST.
2028 Also, if this insn sets a function argument, combining it with
2029 something that might need a spill could clobber a previous
2030 function argument; the all_adjacent test in can_combine_p also
2031 checks this; here, we do a more specific test for this case. */
2033 || (REG_P (inner_dest)
2034 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2035 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2036 GET_MODE (inner_dest))))
2037 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2038 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2039 return 0;
2041 /* If DEST is used in I3, it is being killed in this insn, so
2042 record that for later. We have to consider paradoxical
2043 subregs here, since they kill the whole register, but we
2044 ignore partial subregs, STRICT_LOW_PART, etc.
2045 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2046 STACK_POINTER_REGNUM, since these are always considered to be
2047 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2048 subdest = dest;
2049 if (GET_CODE (subdest) == SUBREG
2050 && (GET_MODE_SIZE (GET_MODE (subdest))
2051 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2052 subdest = SUBREG_REG (subdest);
2053 if (pi3dest_killed
2054 && REG_P (subdest)
2055 && reg_referenced_p (subdest, PATTERN (i3))
2056 && REGNO (subdest) != FRAME_POINTER_REGNUM
2057 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2058 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2059 #endif
2060 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2061 && (REGNO (subdest) != ARG_POINTER_REGNUM
2062 || ! fixed_regs [REGNO (subdest)])
2063 #endif
2064 && REGNO (subdest) != STACK_POINTER_REGNUM)
2066 if (*pi3dest_killed)
2067 return 0;
2069 *pi3dest_killed = subdest;
2073 else if (GET_CODE (x) == PARALLEL)
2075 int i;
2077 for (i = 0; i < XVECLEN (x, 0); i++)
2078 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2079 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2080 return 0;
2083 return 1;
2086 /* Return 1 if X is an arithmetic expression that contains a multiplication
2087 and division. We don't count multiplications by powers of two here. */
2089 static int
2090 contains_muldiv (rtx x)
2092 switch (GET_CODE (x))
2094 case MOD: case DIV: case UMOD: case UDIV:
2095 return 1;
2097 case MULT:
2098 return ! (CONST_INT_P (XEXP (x, 1))
2099 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2100 default:
2101 if (BINARY_P (x))
2102 return contains_muldiv (XEXP (x, 0))
2103 || contains_muldiv (XEXP (x, 1));
2105 if (UNARY_P (x))
2106 return contains_muldiv (XEXP (x, 0));
2108 return 0;
2112 /* Determine whether INSN can be used in a combination. Return nonzero if
2113 not. This is used in try_combine to detect early some cases where we
2114 can't perform combinations. */
2116 static int
2117 cant_combine_insn_p (rtx insn)
2119 rtx set;
2120 rtx src, dest;
2122 /* If this isn't really an insn, we can't do anything.
2123 This can occur when flow deletes an insn that it has merged into an
2124 auto-increment address. */
2125 if (! INSN_P (insn))
2126 return 1;
2128 /* Never combine loads and stores involving hard regs that are likely
2129 to be spilled. The register allocator can usually handle such
2130 reg-reg moves by tying. If we allow the combiner to make
2131 substitutions of likely-spilled regs, reload might die.
2132 As an exception, we allow combinations involving fixed regs; these are
2133 not available to the register allocator so there's no risk involved. */
2135 set = single_set (insn);
2136 if (! set)
2137 return 0;
2138 src = SET_SRC (set);
2139 dest = SET_DEST (set);
2140 if (GET_CODE (src) == SUBREG)
2141 src = SUBREG_REG (src);
2142 if (GET_CODE (dest) == SUBREG)
2143 dest = SUBREG_REG (dest);
2144 if (REG_P (src) && REG_P (dest)
2145 && ((HARD_REGISTER_P (src)
2146 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2147 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2148 || (HARD_REGISTER_P (dest)
2149 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2150 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2151 return 1;
2153 return 0;
2156 struct likely_spilled_retval_info
2158 unsigned regno, nregs;
2159 unsigned mask;
2162 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2163 hard registers that are known to be written to / clobbered in full. */
2164 static void
2165 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2167 struct likely_spilled_retval_info *const info =
2168 (struct likely_spilled_retval_info *) data;
2169 unsigned regno, nregs;
2170 unsigned new_mask;
2172 if (!REG_P (XEXP (set, 0)))
2173 return;
2174 regno = REGNO (x);
2175 if (regno >= info->regno + info->nregs)
2176 return;
2177 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2178 if (regno + nregs <= info->regno)
2179 return;
2180 new_mask = (2U << (nregs - 1)) - 1;
2181 if (regno < info->regno)
2182 new_mask >>= info->regno - regno;
2183 else
2184 new_mask <<= regno - info->regno;
2185 info->mask &= ~new_mask;
2188 /* Return nonzero iff part of the return value is live during INSN, and
2189 it is likely spilled. This can happen when more than one insn is needed
2190 to copy the return value, e.g. when we consider to combine into the
2191 second copy insn for a complex value. */
2193 static int
2194 likely_spilled_retval_p (rtx insn)
2196 rtx use = BB_END (this_basic_block);
2197 rtx reg, p;
2198 unsigned regno, nregs;
2199 /* We assume here that no machine mode needs more than
2200 32 hard registers when the value overlaps with a register
2201 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2202 unsigned mask;
2203 struct likely_spilled_retval_info info;
2205 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2206 return 0;
2207 reg = XEXP (PATTERN (use), 0);
2208 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2209 return 0;
2210 regno = REGNO (reg);
2211 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2212 if (nregs == 1)
2213 return 0;
2214 mask = (2U << (nregs - 1)) - 1;
2216 /* Disregard parts of the return value that are set later. */
2217 info.regno = regno;
2218 info.nregs = nregs;
2219 info.mask = mask;
2220 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2221 if (INSN_P (p))
2222 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2223 mask = info.mask;
2225 /* Check if any of the (probably) live return value registers is
2226 likely spilled. */
2227 nregs --;
2230 if ((mask & 1 << nregs)
2231 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2232 return 1;
2233 } while (nregs--);
2234 return 0;
2237 /* Adjust INSN after we made a change to its destination.
2239 Changing the destination can invalidate notes that say something about
2240 the results of the insn and a LOG_LINK pointing to the insn. */
2242 static void
2243 adjust_for_new_dest (rtx insn)
2245 /* For notes, be conservative and simply remove them. */
2246 remove_reg_equal_equiv_notes (insn);
2248 /* The new insn will have a destination that was previously the destination
2249 of an insn just above it. Call distribute_links to make a LOG_LINK from
2250 the next use of that destination. */
2251 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
2253 df_insn_rescan (insn);
2256 /* Return TRUE if combine can reuse reg X in mode MODE.
2257 ADDED_SETS is nonzero if the original set is still required. */
2258 static bool
2259 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2261 unsigned int regno;
2263 if (!REG_P(x))
2264 return false;
2266 regno = REGNO (x);
2267 /* Allow hard registers if the new mode is legal, and occupies no more
2268 registers than the old mode. */
2269 if (regno < FIRST_PSEUDO_REGISTER)
2270 return (HARD_REGNO_MODE_OK (regno, mode)
2271 && (hard_regno_nregs[regno][GET_MODE (x)]
2272 >= hard_regno_nregs[regno][mode]));
2274 /* Or a pseudo that is only used once. */
2275 return (REG_N_SETS (regno) == 1 && !added_sets
2276 && !REG_USERVAR_P (x));
2280 /* Check whether X, the destination of a set, refers to part of
2281 the register specified by REG. */
2283 static bool
2284 reg_subword_p (rtx x, rtx reg)
2286 /* Check that reg is an integer mode register. */
2287 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2288 return false;
2290 if (GET_CODE (x) == STRICT_LOW_PART
2291 || GET_CODE (x) == ZERO_EXTRACT)
2292 x = XEXP (x, 0);
2294 return GET_CODE (x) == SUBREG
2295 && SUBREG_REG (x) == reg
2296 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2299 #ifdef AUTO_INC_DEC
2300 /* Replace auto-increment addressing modes with explicit operations to access
2301 the same addresses without modifying the corresponding registers. */
2303 static rtx
2304 cleanup_auto_inc_dec (rtx src, enum machine_mode mem_mode)
2306 rtx x = src;
2307 const RTX_CODE code = GET_CODE (x);
2308 int i;
2309 const char *fmt;
2311 switch (code)
2313 case REG:
2314 case CONST_INT:
2315 case CONST_DOUBLE:
2316 case CONST_FIXED:
2317 case CONST_VECTOR:
2318 case SYMBOL_REF:
2319 case CODE_LABEL:
2320 case PC:
2321 case CC0:
2322 case SCRATCH:
2323 /* SCRATCH must be shared because they represent distinct values. */
2324 return x;
2325 case CLOBBER:
2326 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2327 return x;
2328 break;
2330 case CONST:
2331 if (shared_const_p (x))
2332 return x;
2333 break;
2335 case MEM:
2336 mem_mode = GET_MODE (x);
2337 break;
2339 case PRE_INC:
2340 case PRE_DEC:
2341 gcc_assert (mem_mode != VOIDmode && mem_mode != BLKmode);
2342 return gen_rtx_PLUS (GET_MODE (x),
2343 cleanup_auto_inc_dec (XEXP (x, 0), mem_mode),
2344 GEN_INT (code == PRE_INC
2345 ? GET_MODE_SIZE (mem_mode)
2346 : -GET_MODE_SIZE (mem_mode)));
2348 case POST_INC:
2349 case POST_DEC:
2350 case PRE_MODIFY:
2351 case POST_MODIFY:
2352 return cleanup_auto_inc_dec (code == PRE_MODIFY
2353 ? XEXP (x, 1) : XEXP (x, 0),
2354 mem_mode);
2356 default:
2357 break;
2360 /* Copy the various flags, fields, and other information. We assume
2361 that all fields need copying, and then clear the fields that should
2362 not be copied. That is the sensible default behavior, and forces
2363 us to explicitly document why we are *not* copying a flag. */
2364 x = shallow_copy_rtx (x);
2366 /* We do not copy the USED flag, which is used as a mark bit during
2367 walks over the RTL. */
2368 RTX_FLAG (x, used) = 0;
2370 /* We do not copy FRAME_RELATED for INSNs. */
2371 if (INSN_P (x))
2372 RTX_FLAG (x, frame_related) = 0;
2374 fmt = GET_RTX_FORMAT (code);
2375 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2376 if (fmt[i] == 'e')
2377 XEXP (x, i) = cleanup_auto_inc_dec (XEXP (x, i), mem_mode);
2378 else if (fmt[i] == 'E' || fmt[i] == 'V')
2380 int j;
2381 XVEC (x, i) = rtvec_alloc (XVECLEN (x, i));
2382 for (j = 0; j < XVECLEN (x, i); j++)
2383 XVECEXP (x, i, j)
2384 = cleanup_auto_inc_dec (XVECEXP (src, i, j), mem_mode);
2387 return x;
2389 #endif
2391 /* Auxiliary data structure for propagate_for_debug_stmt. */
2393 struct rtx_subst_pair
2395 rtx to;
2396 bool adjusted;
2399 /* DATA points to an rtx_subst_pair. Return the value that should be
2400 substituted. */
2402 static rtx
2403 propagate_for_debug_subst (rtx from, const_rtx old_rtx, void *data)
2405 struct rtx_subst_pair *pair = (struct rtx_subst_pair *)data;
2407 if (!rtx_equal_p (from, old_rtx))
2408 return NULL_RTX;
2409 if (!pair->adjusted)
2411 pair->adjusted = true;
2412 #ifdef AUTO_INC_DEC
2413 pair->to = cleanup_auto_inc_dec (pair->to, VOIDmode);
2414 #else
2415 pair->to = copy_rtx (pair->to);
2416 #endif
2417 pair->to = make_compound_operation (pair->to, SET);
2418 return pair->to;
2420 return copy_rtx (pair->to);
2423 /* Replace all the occurrences of DEST with SRC in DEBUG_INSNs between INSN
2424 and LAST. */
2426 static void
2427 propagate_for_debug (rtx insn, rtx last, rtx dest, rtx src)
2429 rtx next, loc;
2431 struct rtx_subst_pair p;
2432 p.to = src;
2433 p.adjusted = false;
2435 next = NEXT_INSN (insn);
2436 while (next != last)
2438 insn = next;
2439 next = NEXT_INSN (insn);
2440 if (DEBUG_INSN_P (insn))
2442 loc = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
2443 dest, propagate_for_debug_subst, &p);
2444 if (loc == INSN_VAR_LOCATION_LOC (insn))
2445 continue;
2446 INSN_VAR_LOCATION_LOC (insn) = loc;
2447 df_insn_rescan (insn);
2452 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2453 Note that the INSN should be deleted *after* removing dead edges, so
2454 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2455 but not for a (set (pc) (label_ref FOO)). */
2457 static void
2458 update_cfg_for_uncondjump (rtx insn)
2460 basic_block bb = BLOCK_FOR_INSN (insn);
2461 bool at_end = (BB_END (bb) == insn);
2463 if (at_end)
2464 purge_dead_edges (bb);
2466 delete_insn (insn);
2467 if (at_end && EDGE_COUNT (bb->succs) == 1)
2469 rtx insn;
2471 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2473 /* Remove barriers from the footer if there are any. */
2474 for (insn = bb->il.rtl->footer; insn; insn = NEXT_INSN (insn))
2475 if (BARRIER_P (insn))
2477 if (PREV_INSN (insn))
2478 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2479 else
2480 bb->il.rtl->footer = NEXT_INSN (insn);
2481 if (NEXT_INSN (insn))
2482 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2484 else if (LABEL_P (insn))
2485 break;
2489 /* Try to combine the insns I0, I1 and I2 into I3.
2490 Here I0, I1 and I2 appear earlier than I3.
2491 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2494 If we are combining more than two insns and the resulting insn is not
2495 recognized, try splitting it into two insns. If that happens, I2 and I3
2496 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2497 Otherwise, I0, I1 and I2 are pseudo-deleted.
2499 Return 0 if the combination does not work. Then nothing is changed.
2500 If we did the combination, return the insn at which combine should
2501 resume scanning.
2503 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2504 new direct jump instruction. */
2506 static rtx
2507 try_combine (rtx i3, rtx i2, rtx i1, rtx i0, int *new_direct_jump_p)
2509 /* New patterns for I3 and I2, respectively. */
2510 rtx newpat, newi2pat = 0;
2511 rtvec newpat_vec_with_clobbers = 0;
2512 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2513 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2514 dead. */
2515 int added_sets_0, added_sets_1, added_sets_2;
2516 /* Total number of SETs to put into I3. */
2517 int total_sets;
2518 /* Nonzero if I2's or I1's body now appears in I3. */
2519 int i2_is_used = 0, i1_is_used = 0;
2520 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2521 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2522 /* Contains I3 if the destination of I3 is used in its source, which means
2523 that the old life of I3 is being killed. If that usage is placed into
2524 I2 and not in I3, a REG_DEAD note must be made. */
2525 rtx i3dest_killed = 0;
2526 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2527 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2528 /* Copy of SET_SRC of I1, if needed. */
2529 rtx i1src_copy = 0;
2530 /* Set if I2DEST was reused as a scratch register. */
2531 bool i2scratch = false;
2532 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2533 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2534 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2535 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2536 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2537 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2538 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2539 /* Notes that must be added to REG_NOTES in I3 and I2. */
2540 rtx new_i3_notes, new_i2_notes;
2541 /* Notes that we substituted I3 into I2 instead of the normal case. */
2542 int i3_subst_into_i2 = 0;
2543 /* Notes that I1, I2 or I3 is a MULT operation. */
2544 int have_mult = 0;
2545 int swap_i2i3 = 0;
2546 int changed_i3_dest = 0;
2548 int maxreg;
2549 rtx temp;
2550 rtx link;
2551 rtx other_pat = 0;
2552 rtx new_other_notes;
2553 int i;
2555 /* Only try four-insn combinations when there's high likelihood of
2556 success. Look for simple insns, such as loads of constants or
2557 binary operations involving a constant. */
2558 if (i0)
2560 int i;
2561 int ngood = 0;
2562 int nshift = 0;
2564 if (!flag_expensive_optimizations)
2565 return 0;
2567 for (i = 0; i < 4; i++)
2569 rtx insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2570 rtx set = single_set (insn);
2571 rtx src;
2572 if (!set)
2573 continue;
2574 src = SET_SRC (set);
2575 if (CONSTANT_P (src))
2577 ngood += 2;
2578 break;
2580 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2581 ngood++;
2582 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2583 || GET_CODE (src) == LSHIFTRT)
2584 nshift++;
2586 if (ngood < 2 && nshift < 2)
2587 return 0;
2590 /* Exit early if one of the insns involved can't be used for
2591 combinations. */
2592 if (cant_combine_insn_p (i3)
2593 || cant_combine_insn_p (i2)
2594 || (i1 && cant_combine_insn_p (i1))
2595 || (i0 && cant_combine_insn_p (i0))
2596 || likely_spilled_retval_p (i3))
2597 return 0;
2599 combine_attempts++;
2600 undobuf.other_insn = 0;
2602 /* Reset the hard register usage information. */
2603 CLEAR_HARD_REG_SET (newpat_used_regs);
2605 if (dump_file && (dump_flags & TDF_DETAILS))
2607 if (i0)
2608 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2609 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2610 else if (i1)
2611 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2612 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2613 else
2614 fprintf (dump_file, "\nTrying %d -> %d:\n",
2615 INSN_UID (i2), INSN_UID (i3));
2618 /* If multiple insns feed into one of I2 or I3, they can be in any
2619 order. To simplify the code below, reorder them in sequence. */
2620 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2621 temp = i2, i2 = i0, i0 = temp;
2622 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2623 temp = i1, i1 = i0, i0 = temp;
2624 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2625 temp = i1, i1 = i2, i2 = temp;
2627 added_links_insn = 0;
2629 /* First check for one important special case that the code below will
2630 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2631 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2632 we may be able to replace that destination with the destination of I3.
2633 This occurs in the common code where we compute both a quotient and
2634 remainder into a structure, in which case we want to do the computation
2635 directly into the structure to avoid register-register copies.
2637 Note that this case handles both multiple sets in I2 and also cases
2638 where I2 has a number of CLOBBERs inside the PARALLEL.
2640 We make very conservative checks below and only try to handle the
2641 most common cases of this. For example, we only handle the case
2642 where I2 and I3 are adjacent to avoid making difficult register
2643 usage tests. */
2645 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2646 && REG_P (SET_SRC (PATTERN (i3)))
2647 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2648 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2649 && GET_CODE (PATTERN (i2)) == PARALLEL
2650 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2651 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2652 below would need to check what is inside (and reg_overlap_mentioned_p
2653 doesn't support those codes anyway). Don't allow those destinations;
2654 the resulting insn isn't likely to be recognized anyway. */
2655 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2656 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2657 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2658 SET_DEST (PATTERN (i3)))
2659 && next_active_insn (i2) == i3)
2661 rtx p2 = PATTERN (i2);
2663 /* Make sure that the destination of I3,
2664 which we are going to substitute into one output of I2,
2665 is not used within another output of I2. We must avoid making this:
2666 (parallel [(set (mem (reg 69)) ...)
2667 (set (reg 69) ...)])
2668 which is not well-defined as to order of actions.
2669 (Besides, reload can't handle output reloads for this.)
2671 The problem can also happen if the dest of I3 is a memory ref,
2672 if another dest in I2 is an indirect memory ref. */
2673 for (i = 0; i < XVECLEN (p2, 0); i++)
2674 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2675 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2676 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2677 SET_DEST (XVECEXP (p2, 0, i))))
2678 break;
2680 if (i == XVECLEN (p2, 0))
2681 for (i = 0; i < XVECLEN (p2, 0); i++)
2682 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2683 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2685 combine_merges++;
2687 subst_insn = i3;
2688 subst_low_luid = DF_INSN_LUID (i2);
2690 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2691 i2src = SET_SRC (XVECEXP (p2, 0, i));
2692 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2693 i2dest_killed = dead_or_set_p (i2, i2dest);
2695 /* Replace the dest in I2 with our dest and make the resulting
2696 insn the new pattern for I3. Then skip to where we validate
2697 the pattern. Everything was set up above. */
2698 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2699 newpat = p2;
2700 i3_subst_into_i2 = 1;
2701 goto validate_replacement;
2705 /* If I2 is setting a pseudo to a constant and I3 is setting some
2706 sub-part of it to another constant, merge them by making a new
2707 constant. */
2708 if (i1 == 0
2709 && (temp = single_set (i2)) != 0
2710 && (CONST_INT_P (SET_SRC (temp))
2711 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2712 && GET_CODE (PATTERN (i3)) == SET
2713 && (CONST_INT_P (SET_SRC (PATTERN (i3)))
2714 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2715 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2717 rtx dest = SET_DEST (PATTERN (i3));
2718 int offset = -1;
2719 int width = 0;
2721 if (GET_CODE (dest) == ZERO_EXTRACT)
2723 if (CONST_INT_P (XEXP (dest, 1))
2724 && CONST_INT_P (XEXP (dest, 2)))
2726 width = INTVAL (XEXP (dest, 1));
2727 offset = INTVAL (XEXP (dest, 2));
2728 dest = XEXP (dest, 0);
2729 if (BITS_BIG_ENDIAN)
2730 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
2733 else
2735 if (GET_CODE (dest) == STRICT_LOW_PART)
2736 dest = XEXP (dest, 0);
2737 width = GET_MODE_BITSIZE (GET_MODE (dest));
2738 offset = 0;
2741 if (offset >= 0)
2743 /* If this is the low part, we're done. */
2744 if (subreg_lowpart_p (dest))
2746 /* Handle the case where inner is twice the size of outer. */
2747 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2748 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
2749 offset += GET_MODE_BITSIZE (GET_MODE (dest));
2750 /* Otherwise give up for now. */
2751 else
2752 offset = -1;
2755 if (offset >= 0
2756 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2757 <= HOST_BITS_PER_DOUBLE_INT))
2759 double_int m, o, i;
2760 rtx inner = SET_SRC (PATTERN (i3));
2761 rtx outer = SET_SRC (temp);
2763 o = rtx_to_double_int (outer);
2764 i = rtx_to_double_int (inner);
2766 m = double_int_mask (width);
2767 i = double_int_and (i, m);
2768 m = double_int_lshift (m, offset, HOST_BITS_PER_DOUBLE_INT, false);
2769 i = double_int_lshift (i, offset, HOST_BITS_PER_DOUBLE_INT, false);
2770 o = double_int_ior (double_int_and_not (o, m), i);
2772 combine_merges++;
2773 subst_insn = i3;
2774 subst_low_luid = DF_INSN_LUID (i2);
2775 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2776 i2dest = SET_DEST (temp);
2777 i2dest_killed = dead_or_set_p (i2, i2dest);
2779 /* Replace the source in I2 with the new constant and make the
2780 resulting insn the new pattern for I3. Then skip to where we
2781 validate the pattern. Everything was set up above. */
2782 SUBST (SET_SRC (temp),
2783 immed_double_int_const (o, GET_MODE (SET_DEST (temp))));
2785 newpat = PATTERN (i2);
2787 /* The dest of I3 has been replaced with the dest of I2. */
2788 changed_i3_dest = 1;
2789 goto validate_replacement;
2793 #ifndef HAVE_cc0
2794 /* If we have no I1 and I2 looks like:
2795 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2796 (set Y OP)])
2797 make up a dummy I1 that is
2798 (set Y OP)
2799 and change I2 to be
2800 (set (reg:CC X) (compare:CC Y (const_int 0)))
2802 (We can ignore any trailing CLOBBERs.)
2804 This undoes a previous combination and allows us to match a branch-and-
2805 decrement insn. */
2807 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2808 && XVECLEN (PATTERN (i2), 0) >= 2
2809 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2810 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2811 == MODE_CC)
2812 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2813 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2814 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2815 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2816 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2817 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2819 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2820 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2821 break;
2823 if (i == 1)
2825 /* We make I1 with the same INSN_UID as I2. This gives it
2826 the same DF_INSN_LUID for value tracking. Our fake I1 will
2827 never appear in the insn stream so giving it the same INSN_UID
2828 as I2 will not cause a problem. */
2830 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2831 BLOCK_FOR_INSN (i2), XVECEXP (PATTERN (i2), 0, 1),
2832 INSN_LOCATOR (i2), -1, NULL_RTX);
2834 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2835 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2836 SET_DEST (PATTERN (i1)));
2839 #endif
2841 /* Verify that I2 and I1 are valid for combining. */
2842 if (! can_combine_p (i2, i3, i0, i1, NULL_RTX, NULL_RTX, &i2dest, &i2src)
2843 || (i1 && ! can_combine_p (i1, i3, i0, NULL_RTX, i2, NULL_RTX,
2844 &i1dest, &i1src))
2845 || (i0 && ! can_combine_p (i0, i3, NULL_RTX, NULL_RTX, i1, i2,
2846 &i0dest, &i0src)))
2848 undo_all ();
2849 return 0;
2852 /* Record whether I2DEST is used in I2SRC and similarly for the other
2853 cases. Knowing this will help in register status updating below. */
2854 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2855 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2856 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2857 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2858 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2859 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2860 i2dest_killed = dead_or_set_p (i2, i2dest);
2861 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2862 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2864 /* For the earlier insns, determine which of the subsequent ones they
2865 feed. */
2866 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2867 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2868 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2869 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2870 && reg_overlap_mentioned_p (i0dest, i2src))));
2872 /* Ensure that I3's pattern can be the destination of combines. */
2873 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2874 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2875 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2876 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2877 &i3dest_killed))
2879 undo_all ();
2880 return 0;
2883 /* See if any of the insns is a MULT operation. Unless one is, we will
2884 reject a combination that is, since it must be slower. Be conservative
2885 here. */
2886 if (GET_CODE (i2src) == MULT
2887 || (i1 != 0 && GET_CODE (i1src) == MULT)
2888 || (i0 != 0 && GET_CODE (i0src) == MULT)
2889 || (GET_CODE (PATTERN (i3)) == SET
2890 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2891 have_mult = 1;
2893 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2894 We used to do this EXCEPT in one case: I3 has a post-inc in an
2895 output operand. However, that exception can give rise to insns like
2896 mov r3,(r3)+
2897 which is a famous insn on the PDP-11 where the value of r3 used as the
2898 source was model-dependent. Avoid this sort of thing. */
2900 #if 0
2901 if (!(GET_CODE (PATTERN (i3)) == SET
2902 && REG_P (SET_SRC (PATTERN (i3)))
2903 && MEM_P (SET_DEST (PATTERN (i3)))
2904 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2905 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2906 /* It's not the exception. */
2907 #endif
2908 #ifdef AUTO_INC_DEC
2909 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2910 if (REG_NOTE_KIND (link) == REG_INC
2911 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2912 || (i1 != 0
2913 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2915 undo_all ();
2916 return 0;
2918 #endif
2920 /* See if the SETs in I1 or I2 need to be kept around in the merged
2921 instruction: whenever the value set there is still needed past I3.
2922 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2924 For the SET in I1, we have two cases: If I1 and I2 independently
2925 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2926 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2927 in I1 needs to be kept around unless I1DEST dies or is set in either
2928 I2 or I3. The same consideration applies to I0. */
2930 added_sets_2 = !dead_or_set_p (i3, i2dest);
2932 if (i1)
2933 added_sets_1 = !(dead_or_set_p (i3, i1dest)
2934 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
2935 else
2936 added_sets_1 = 0;
2938 if (i0)
2939 added_sets_0 = !(dead_or_set_p (i3, i0dest)
2940 || (i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
2941 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)));
2942 else
2943 added_sets_0 = 0;
2945 /* We are about to copy insns for the case where they need to be kept
2946 around. Check that they can be copied in the merged instruction. */
2948 if (targetm.cannot_copy_insn_p
2949 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
2950 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
2951 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
2953 undo_all ();
2954 return 0;
2957 /* If the set in I2 needs to be kept around, we must make a copy of
2958 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2959 PATTERN (I2), we are only substituting for the original I1DEST, not into
2960 an already-substituted copy. This also prevents making self-referential
2961 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2962 I2DEST. */
2964 if (added_sets_2)
2966 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2967 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2968 else
2969 i2pat = copy_rtx (PATTERN (i2));
2972 if (added_sets_1)
2974 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2975 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2976 else
2977 i1pat = copy_rtx (PATTERN (i1));
2980 if (added_sets_0)
2982 if (GET_CODE (PATTERN (i0)) == PARALLEL)
2983 i0pat = gen_rtx_SET (VOIDmode, i0dest, copy_rtx (i0src));
2984 else
2985 i0pat = copy_rtx (PATTERN (i0));
2988 combine_merges++;
2990 /* Substitute in the latest insn for the regs set by the earlier ones. */
2992 maxreg = max_reg_num ();
2994 subst_insn = i3;
2996 #ifndef HAVE_cc0
2997 /* Many machines that don't use CC0 have insns that can both perform an
2998 arithmetic operation and set the condition code. These operations will
2999 be represented as a PARALLEL with the first element of the vector
3000 being a COMPARE of an arithmetic operation with the constant zero.
3001 The second element of the vector will set some pseudo to the result
3002 of the same arithmetic operation. If we simplify the COMPARE, we won't
3003 match such a pattern and so will generate an extra insn. Here we test
3004 for this case, where both the comparison and the operation result are
3005 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3006 I2SRC. Later we will make the PARALLEL that contains I2. */
3008 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3009 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3010 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
3011 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3013 #ifdef SELECT_CC_MODE
3014 rtx *cc_use;
3015 enum machine_mode compare_mode;
3016 #endif
3018 newpat = PATTERN (i3);
3019 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
3021 i2_is_used = 1;
3023 #ifdef SELECT_CC_MODE
3024 /* See if a COMPARE with the operand we substituted in should be done
3025 with the mode that is currently being used. If not, do the same
3026 processing we do in `subst' for a SET; namely, if the destination
3027 is used only once, try to replace it with a register of the proper
3028 mode and also replace the COMPARE. */
3029 if (undobuf.other_insn == 0
3030 && (cc_use = find_single_use (SET_DEST (newpat), i3,
3031 &undobuf.other_insn))
3032 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
3033 i2src, const0_rtx))
3034 != GET_MODE (SET_DEST (newpat))))
3036 if (can_change_dest_mode (SET_DEST (newpat), added_sets_2,
3037 compare_mode))
3039 unsigned int regno = REGNO (SET_DEST (newpat));
3040 rtx new_dest;
3042 if (regno < FIRST_PSEUDO_REGISTER)
3043 new_dest = gen_rtx_REG (compare_mode, regno);
3044 else
3046 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3047 new_dest = regno_reg_rtx[regno];
3050 SUBST (SET_DEST (newpat), new_dest);
3051 SUBST (XEXP (*cc_use, 0), new_dest);
3052 SUBST (SET_SRC (newpat),
3053 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
3055 else
3056 undobuf.other_insn = 0;
3058 #endif
3060 else
3061 #endif
3063 /* It is possible that the source of I2 or I1 may be performing
3064 an unneeded operation, such as a ZERO_EXTEND of something
3065 that is known to have the high part zero. Handle that case
3066 by letting subst look at the innermost one of them.
3068 Another way to do this would be to have a function that tries
3069 to simplify a single insn instead of merging two or more
3070 insns. We don't do this because of the potential of infinite
3071 loops and because of the potential extra memory required.
3072 However, doing it the way we are is a bit of a kludge and
3073 doesn't catch all cases.
3075 But only do this if -fexpensive-optimizations since it slows
3076 things down and doesn't usually win.
3078 This is not done in the COMPARE case above because the
3079 unmodified I2PAT is used in the PARALLEL and so a pattern
3080 with a modified I2SRC would not match. */
3082 if (flag_expensive_optimizations)
3084 /* Pass pc_rtx so no substitutions are done, just
3085 simplifications. */
3086 if (i1)
3088 subst_low_luid = DF_INSN_LUID (i1);
3089 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
3091 else
3093 subst_low_luid = DF_INSN_LUID (i2);
3094 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
3098 n_occurrences = 0; /* `subst' counts here */
3099 subst_low_luid = DF_INSN_LUID (i2);
3101 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3102 copy of I2SRC each time we substitute it, in order to avoid creating
3103 self-referential RTL when we will be substituting I1SRC for I1DEST
3104 later. Likewise if I0 feeds into I2, either directly or indirectly
3105 through I1, and I0DEST is in I0SRC. */
3106 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
3107 (i1_feeds_i2_n && i1dest_in_i1src)
3108 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3109 && i0dest_in_i0src));
3110 substed_i2 = 1;
3112 /* Record whether I2's body now appears within I3's body. */
3113 i2_is_used = n_occurrences;
3116 /* If we already got a failure, don't try to do more. Otherwise, try to
3117 substitute I1 if we have it. */
3119 if (i1 && GET_CODE (newpat) != CLOBBER)
3121 /* Check that an autoincrement side-effect on I1 has not been lost.
3122 This happens if I1DEST is mentioned in I2 and dies there, and
3123 has disappeared from the new pattern. */
3124 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3125 && i1_feeds_i2_n
3126 && dead_or_set_p (i2, i1dest)
3127 && !reg_overlap_mentioned_p (i1dest, newpat))
3128 /* Before we can do this substitution, we must redo the test done
3129 above (see detailed comments there) that ensures I1DEST isn't
3130 mentioned in any SETs in NEWPAT that are field assignments. */
3131 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, NULL_RTX,
3132 0, 0, 0))
3134 undo_all ();
3135 return 0;
3138 n_occurrences = 0;
3139 subst_low_luid = DF_INSN_LUID (i1);
3141 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3142 copy of I1SRC each time we substitute it, in order to avoid creating
3143 self-referential RTL when we will be substituting I0SRC for I0DEST
3144 later. */
3145 newpat = subst (newpat, i1dest, i1src, 0,
3146 i0_feeds_i1_n && i0dest_in_i0src);
3147 substed_i1 = 1;
3149 /* Record whether I1's body now appears within I3's body. */
3150 i1_is_used = n_occurrences;
3153 /* Likewise for I0 if we have it. */
3155 if (i0 && GET_CODE (newpat) != CLOBBER)
3157 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3158 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3159 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3160 && !reg_overlap_mentioned_p (i0dest, newpat))
3161 || !combinable_i3pat (NULL_RTX, &newpat, i0dest, NULL_RTX, NULL_RTX,
3162 0, 0, 0))
3164 undo_all ();
3165 return 0;
3168 /* If the following substitution will modify I1SRC, make a copy of it
3169 for the case where it is substituted for I1DEST in I2PAT later. */
3170 if (i0_feeds_i1_n && added_sets_2 && i1_feeds_i2_n)
3171 i1src_copy = copy_rtx (i1src);
3173 n_occurrences = 0;
3174 subst_low_luid = DF_INSN_LUID (i0);
3175 newpat = subst (newpat, i0dest, i0src, 0, 0);
3176 substed_i0 = 1;
3179 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3180 to count all the ways that I2SRC and I1SRC can be used. */
3181 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3182 && i2_is_used + added_sets_2 > 1)
3183 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3184 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3185 > 1))
3186 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3187 && (n_occurrences + added_sets_0
3188 + (added_sets_1 && i0_feeds_i1_n)
3189 + (added_sets_2 && i0_feeds_i2_n)
3190 > 1))
3191 /* Fail if we tried to make a new register. */
3192 || max_reg_num () != maxreg
3193 /* Fail if we couldn't do something and have a CLOBBER. */
3194 || GET_CODE (newpat) == CLOBBER
3195 /* Fail if this new pattern is a MULT and we didn't have one before
3196 at the outer level. */
3197 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3198 && ! have_mult))
3200 undo_all ();
3201 return 0;
3204 /* If the actions of the earlier insns must be kept
3205 in addition to substituting them into the latest one,
3206 we must make a new PARALLEL for the latest insn
3207 to hold additional the SETs. */
3209 if (added_sets_0 || added_sets_1 || added_sets_2)
3211 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3212 combine_extras++;
3214 if (GET_CODE (newpat) == PARALLEL)
3216 rtvec old = XVEC (newpat, 0);
3217 total_sets = XVECLEN (newpat, 0) + extra_sets;
3218 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3219 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3220 sizeof (old->elem[0]) * old->num_elem);
3222 else
3224 rtx old = newpat;
3225 total_sets = 1 + extra_sets;
3226 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3227 XVECEXP (newpat, 0, 0) = old;
3230 if (added_sets_0)
3231 XVECEXP (newpat, 0, --total_sets) = i0pat;
3233 if (added_sets_1)
3235 rtx t = i1pat;
3236 if (i0_feeds_i1_n)
3237 t = subst (t, i0dest, i0src, 0, 0);
3239 XVECEXP (newpat, 0, --total_sets) = t;
3241 if (added_sets_2)
3243 rtx t = i2pat;
3244 if (i1_feeds_i2_n)
3245 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0,
3246 i0_feeds_i1_n && i0dest_in_i0src);
3247 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3248 t = subst (t, i0dest, i0src, 0, 0);
3250 XVECEXP (newpat, 0, --total_sets) = t;
3254 validate_replacement:
3256 /* Note which hard regs this insn has as inputs. */
3257 mark_used_regs_combine (newpat);
3259 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3260 consider splitting this pattern, we might need these clobbers. */
3261 if (i1 && GET_CODE (newpat) == PARALLEL
3262 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3264 int len = XVECLEN (newpat, 0);
3266 newpat_vec_with_clobbers = rtvec_alloc (len);
3267 for (i = 0; i < len; i++)
3268 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3271 /* Is the result of combination a valid instruction? */
3272 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3274 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3275 the second SET's destination is a register that is unused and isn't
3276 marked as an instruction that might trap in an EH region. In that case,
3277 we just need the first SET. This can occur when simplifying a divmod
3278 insn. We *must* test for this case here because the code below that
3279 splits two independent SETs doesn't handle this case correctly when it
3280 updates the register status.
3282 It's pointless doing this if we originally had two sets, one from
3283 i3, and one from i2. Combining then splitting the parallel results
3284 in the original i2 again plus an invalid insn (which we delete).
3285 The net effect is only to move instructions around, which makes
3286 debug info less accurate.
3288 Also check the case where the first SET's destination is unused.
3289 That would not cause incorrect code, but does cause an unneeded
3290 insn to remain. */
3292 if (insn_code_number < 0
3293 && !(added_sets_2 && i1 == 0)
3294 && GET_CODE (newpat) == PARALLEL
3295 && XVECLEN (newpat, 0) == 2
3296 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3297 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3298 && asm_noperands (newpat) < 0)
3300 rtx set0 = XVECEXP (newpat, 0, 0);
3301 rtx set1 = XVECEXP (newpat, 0, 1);
3303 if (((REG_P (SET_DEST (set1))
3304 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3305 || (GET_CODE (SET_DEST (set1)) == SUBREG
3306 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3307 && insn_nothrow_p (i3)
3308 && !side_effects_p (SET_SRC (set1)))
3310 newpat = set0;
3311 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3314 else if (((REG_P (SET_DEST (set0))
3315 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3316 || (GET_CODE (SET_DEST (set0)) == SUBREG
3317 && find_reg_note (i3, REG_UNUSED,
3318 SUBREG_REG (SET_DEST (set0)))))
3319 && insn_nothrow_p (i3)
3320 && !side_effects_p (SET_SRC (set0)))
3322 newpat = set1;
3323 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3325 if (insn_code_number >= 0)
3326 changed_i3_dest = 1;
3330 /* If we were combining three insns and the result is a simple SET
3331 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3332 insns. There are two ways to do this. It can be split using a
3333 machine-specific method (like when you have an addition of a large
3334 constant) or by combine in the function find_split_point. */
3336 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3337 && asm_noperands (newpat) < 0)
3339 rtx parallel, m_split, *split;
3341 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3342 use I2DEST as a scratch register will help. In the latter case,
3343 convert I2DEST to the mode of the source of NEWPAT if we can. */
3345 m_split = combine_split_insns (newpat, i3);
3347 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3348 inputs of NEWPAT. */
3350 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3351 possible to try that as a scratch reg. This would require adding
3352 more code to make it work though. */
3354 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3356 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3358 /* First try to split using the original register as a
3359 scratch register. */
3360 parallel = gen_rtx_PARALLEL (VOIDmode,
3361 gen_rtvec (2, newpat,
3362 gen_rtx_CLOBBER (VOIDmode,
3363 i2dest)));
3364 m_split = combine_split_insns (parallel, i3);
3366 /* If that didn't work, try changing the mode of I2DEST if
3367 we can. */
3368 if (m_split == 0
3369 && new_mode != GET_MODE (i2dest)
3370 && new_mode != VOIDmode
3371 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3373 enum machine_mode old_mode = GET_MODE (i2dest);
3374 rtx ni2dest;
3376 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3377 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3378 else
3380 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3381 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3384 parallel = (gen_rtx_PARALLEL
3385 (VOIDmode,
3386 gen_rtvec (2, newpat,
3387 gen_rtx_CLOBBER (VOIDmode,
3388 ni2dest))));
3389 m_split = combine_split_insns (parallel, i3);
3391 if (m_split == 0
3392 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3394 struct undo *buf;
3396 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3397 buf = undobuf.undos;
3398 undobuf.undos = buf->next;
3399 buf->next = undobuf.frees;
3400 undobuf.frees = buf;
3404 i2scratch = m_split != 0;
3407 /* If recog_for_combine has discarded clobbers, try to use them
3408 again for the split. */
3409 if (m_split == 0 && newpat_vec_with_clobbers)
3411 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3412 m_split = combine_split_insns (parallel, i3);
3415 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3417 m_split = PATTERN (m_split);
3418 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3419 if (insn_code_number >= 0)
3420 newpat = m_split;
3422 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3423 && (next_real_insn (i2) == i3
3424 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3426 rtx i2set, i3set;
3427 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3428 newi2pat = PATTERN (m_split);
3430 i3set = single_set (NEXT_INSN (m_split));
3431 i2set = single_set (m_split);
3433 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3435 /* If I2 or I3 has multiple SETs, we won't know how to track
3436 register status, so don't use these insns. If I2's destination
3437 is used between I2 and I3, we also can't use these insns. */
3439 if (i2_code_number >= 0 && i2set && i3set
3440 && (next_real_insn (i2) == i3
3441 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3442 insn_code_number = recog_for_combine (&newi3pat, i3,
3443 &new_i3_notes);
3444 if (insn_code_number >= 0)
3445 newpat = newi3pat;
3447 /* It is possible that both insns now set the destination of I3.
3448 If so, we must show an extra use of it. */
3450 if (insn_code_number >= 0)
3452 rtx new_i3_dest = SET_DEST (i3set);
3453 rtx new_i2_dest = SET_DEST (i2set);
3455 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3456 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3457 || GET_CODE (new_i3_dest) == SUBREG)
3458 new_i3_dest = XEXP (new_i3_dest, 0);
3460 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3461 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3462 || GET_CODE (new_i2_dest) == SUBREG)
3463 new_i2_dest = XEXP (new_i2_dest, 0);
3465 if (REG_P (new_i3_dest)
3466 && REG_P (new_i2_dest)
3467 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3468 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3472 /* If we can split it and use I2DEST, go ahead and see if that
3473 helps things be recognized. Verify that none of the registers
3474 are set between I2 and I3. */
3475 if (insn_code_number < 0
3476 && (split = find_split_point (&newpat, i3, false)) != 0
3477 #ifdef HAVE_cc0
3478 && REG_P (i2dest)
3479 #endif
3480 /* We need I2DEST in the proper mode. If it is a hard register
3481 or the only use of a pseudo, we can change its mode.
3482 Make sure we don't change a hard register to have a mode that
3483 isn't valid for it, or change the number of registers. */
3484 && (GET_MODE (*split) == GET_MODE (i2dest)
3485 || GET_MODE (*split) == VOIDmode
3486 || can_change_dest_mode (i2dest, added_sets_2,
3487 GET_MODE (*split)))
3488 && (next_real_insn (i2) == i3
3489 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3490 /* We can't overwrite I2DEST if its value is still used by
3491 NEWPAT. */
3492 && ! reg_referenced_p (i2dest, newpat))
3494 rtx newdest = i2dest;
3495 enum rtx_code split_code = GET_CODE (*split);
3496 enum machine_mode split_mode = GET_MODE (*split);
3497 bool subst_done = false;
3498 newi2pat = NULL_RTX;
3500 i2scratch = true;
3502 /* *SPLIT may be part of I2SRC, so make sure we have the
3503 original expression around for later debug processing.
3504 We should not need I2SRC any more in other cases. */
3505 if (MAY_HAVE_DEBUG_INSNS)
3506 i2src = copy_rtx (i2src);
3507 else
3508 i2src = NULL;
3510 /* Get NEWDEST as a register in the proper mode. We have already
3511 validated that we can do this. */
3512 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3514 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3515 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3516 else
3518 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3519 newdest = regno_reg_rtx[REGNO (i2dest)];
3523 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3524 an ASHIFT. This can occur if it was inside a PLUS and hence
3525 appeared to be a memory address. This is a kludge. */
3526 if (split_code == MULT
3527 && CONST_INT_P (XEXP (*split, 1))
3528 && INTVAL (XEXP (*split, 1)) > 0
3529 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3531 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3532 XEXP (*split, 0), GEN_INT (i)));
3533 /* Update split_code because we may not have a multiply
3534 anymore. */
3535 split_code = GET_CODE (*split);
3538 #ifdef INSN_SCHEDULING
3539 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3540 be written as a ZERO_EXTEND. */
3541 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3543 #ifdef LOAD_EXTEND_OP
3544 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3545 what it really is. */
3546 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3547 == SIGN_EXTEND)
3548 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3549 SUBREG_REG (*split)));
3550 else
3551 #endif
3552 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3553 SUBREG_REG (*split)));
3555 #endif
3557 /* Attempt to split binary operators using arithmetic identities. */
3558 if (BINARY_P (SET_SRC (newpat))
3559 && split_mode == GET_MODE (SET_SRC (newpat))
3560 && ! side_effects_p (SET_SRC (newpat)))
3562 rtx setsrc = SET_SRC (newpat);
3563 enum machine_mode mode = GET_MODE (setsrc);
3564 enum rtx_code code = GET_CODE (setsrc);
3565 rtx src_op0 = XEXP (setsrc, 0);
3566 rtx src_op1 = XEXP (setsrc, 1);
3568 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3569 if (rtx_equal_p (src_op0, src_op1))
3571 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3572 SUBST (XEXP (setsrc, 0), newdest);
3573 SUBST (XEXP (setsrc, 1), newdest);
3574 subst_done = true;
3576 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3577 else if ((code == PLUS || code == MULT)
3578 && GET_CODE (src_op0) == code
3579 && GET_CODE (XEXP (src_op0, 0)) == code
3580 && (INTEGRAL_MODE_P (mode)
3581 || (FLOAT_MODE_P (mode)
3582 && flag_unsafe_math_optimizations)))
3584 rtx p = XEXP (XEXP (src_op0, 0), 0);
3585 rtx q = XEXP (XEXP (src_op0, 0), 1);
3586 rtx r = XEXP (src_op0, 1);
3587 rtx s = src_op1;
3589 /* Split both "((X op Y) op X) op Y" and
3590 "((X op Y) op Y) op X" as "T op T" where T is
3591 "X op Y". */
3592 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3593 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3595 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3596 XEXP (src_op0, 0));
3597 SUBST (XEXP (setsrc, 0), newdest);
3598 SUBST (XEXP (setsrc, 1), newdest);
3599 subst_done = true;
3601 /* Split "((X op X) op Y) op Y)" as "T op T" where
3602 T is "X op Y". */
3603 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3605 rtx tmp = simplify_gen_binary (code, mode, p, r);
3606 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3607 SUBST (XEXP (setsrc, 0), newdest);
3608 SUBST (XEXP (setsrc, 1), newdest);
3609 subst_done = true;
3614 if (!subst_done)
3616 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3617 SUBST (*split, newdest);
3620 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3622 /* recog_for_combine might have added CLOBBERs to newi2pat.
3623 Make sure NEWPAT does not depend on the clobbered regs. */
3624 if (GET_CODE (newi2pat) == PARALLEL)
3625 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3626 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3628 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3629 if (reg_overlap_mentioned_p (reg, newpat))
3631 undo_all ();
3632 return 0;
3636 /* If the split point was a MULT and we didn't have one before,
3637 don't use one now. */
3638 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3639 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3643 /* Check for a case where we loaded from memory in a narrow mode and
3644 then sign extended it, but we need both registers. In that case,
3645 we have a PARALLEL with both loads from the same memory location.
3646 We can split this into a load from memory followed by a register-register
3647 copy. This saves at least one insn, more if register allocation can
3648 eliminate the copy.
3650 We cannot do this if the destination of the first assignment is a
3651 condition code register or cc0. We eliminate this case by making sure
3652 the SET_DEST and SET_SRC have the same mode.
3654 We cannot do this if the destination of the second assignment is
3655 a register that we have already assumed is zero-extended. Similarly
3656 for a SUBREG of such a register. */
3658 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3659 && GET_CODE (newpat) == PARALLEL
3660 && XVECLEN (newpat, 0) == 2
3661 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3662 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3663 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3664 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3665 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3666 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3667 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3668 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3669 DF_INSN_LUID (i2))
3670 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3671 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3672 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3673 (REG_P (temp)
3674 && VEC_index (reg_stat_type, reg_stat,
3675 REGNO (temp))->nonzero_bits != 0
3676 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3677 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3678 && (VEC_index (reg_stat_type, reg_stat,
3679 REGNO (temp))->nonzero_bits
3680 != GET_MODE_MASK (word_mode))))
3681 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3682 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3683 (REG_P (temp)
3684 && VEC_index (reg_stat_type, reg_stat,
3685 REGNO (temp))->nonzero_bits != 0
3686 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3687 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3688 && (VEC_index (reg_stat_type, reg_stat,
3689 REGNO (temp))->nonzero_bits
3690 != GET_MODE_MASK (word_mode)))))
3691 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3692 SET_SRC (XVECEXP (newpat, 0, 1)))
3693 && ! find_reg_note (i3, REG_UNUSED,
3694 SET_DEST (XVECEXP (newpat, 0, 0))))
3696 rtx ni2dest;
3698 newi2pat = XVECEXP (newpat, 0, 0);
3699 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3700 newpat = XVECEXP (newpat, 0, 1);
3701 SUBST (SET_SRC (newpat),
3702 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3703 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3705 if (i2_code_number >= 0)
3706 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3708 if (insn_code_number >= 0)
3709 swap_i2i3 = 1;
3712 /* Similarly, check for a case where we have a PARALLEL of two independent
3713 SETs but we started with three insns. In this case, we can do the sets
3714 as two separate insns. This case occurs when some SET allows two
3715 other insns to combine, but the destination of that SET is still live. */
3717 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3718 && GET_CODE (newpat) == PARALLEL
3719 && XVECLEN (newpat, 0) == 2
3720 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3721 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3722 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3723 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3724 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3725 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3726 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3727 XVECEXP (newpat, 0, 0))
3728 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3729 XVECEXP (newpat, 0, 1))
3730 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3731 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3733 /* Normally, it doesn't matter which of the two is done first,
3734 but the one that references cc0 can't be the second, and
3735 one which uses any regs/memory set in between i2 and i3 can't
3736 be first. */
3737 if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3738 DF_INSN_LUID (i2))
3739 #ifdef HAVE_cc0
3740 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3741 #endif
3744 newi2pat = XVECEXP (newpat, 0, 1);
3745 newpat = XVECEXP (newpat, 0, 0);
3747 else if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 0)),
3748 DF_INSN_LUID (i2))
3749 #ifdef HAVE_cc0
3750 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1))
3751 #endif
3754 newi2pat = XVECEXP (newpat, 0, 0);
3755 newpat = XVECEXP (newpat, 0, 1);
3757 else
3759 undo_all ();
3760 return 0;
3763 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3765 if (i2_code_number >= 0)
3767 /* recog_for_combine might have added CLOBBERs to newi2pat.
3768 Make sure NEWPAT does not depend on the clobbered regs. */
3769 if (GET_CODE (newi2pat) == PARALLEL)
3771 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3772 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3774 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3775 if (reg_overlap_mentioned_p (reg, newpat))
3777 undo_all ();
3778 return 0;
3783 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3787 /* If it still isn't recognized, fail and change things back the way they
3788 were. */
3789 if ((insn_code_number < 0
3790 /* Is the result a reasonable ASM_OPERANDS? */
3791 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3793 undo_all ();
3794 return 0;
3797 /* If we had to change another insn, make sure it is valid also. */
3798 if (undobuf.other_insn)
3800 CLEAR_HARD_REG_SET (newpat_used_regs);
3802 other_pat = PATTERN (undobuf.other_insn);
3803 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3804 &new_other_notes);
3806 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3808 undo_all ();
3809 return 0;
3813 #ifdef HAVE_cc0
3814 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3815 they are adjacent to each other or not. */
3817 rtx p = prev_nonnote_insn (i3);
3818 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3819 && sets_cc0_p (newi2pat))
3821 undo_all ();
3822 return 0;
3825 #endif
3827 /* Only allow this combination if insn_rtx_costs reports that the
3828 replacement instructions are cheaper than the originals. */
3829 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
3831 undo_all ();
3832 return 0;
3835 if (MAY_HAVE_DEBUG_INSNS)
3837 struct undo *undo;
3839 for (undo = undobuf.undos; undo; undo = undo->next)
3840 if (undo->kind == UNDO_MODE)
3842 rtx reg = *undo->where.r;
3843 enum machine_mode new_mode = GET_MODE (reg);
3844 enum machine_mode old_mode = undo->old_contents.m;
3846 /* Temporarily revert mode back. */
3847 adjust_reg_mode (reg, old_mode);
3849 if (reg == i2dest && i2scratch)
3851 /* If we used i2dest as a scratch register with a
3852 different mode, substitute it for the original
3853 i2src while its original mode is temporarily
3854 restored, and then clear i2scratch so that we don't
3855 do it again later. */
3856 propagate_for_debug (i2, i3, reg, i2src);
3857 i2scratch = false;
3858 /* Put back the new mode. */
3859 adjust_reg_mode (reg, new_mode);
3861 else
3863 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3864 rtx first, last;
3866 if (reg == i2dest)
3868 first = i2;
3869 last = i3;
3871 else
3873 first = i3;
3874 last = undobuf.other_insn;
3875 gcc_assert (last);
3878 /* We're dealing with a reg that changed mode but not
3879 meaning, so we want to turn it into a subreg for
3880 the new mode. However, because of REG sharing and
3881 because its mode had already changed, we have to do
3882 it in two steps. First, replace any debug uses of
3883 reg, with its original mode temporarily restored,
3884 with this copy we have created; then, replace the
3885 copy with the SUBREG of the original shared reg,
3886 once again changed to the new mode. */
3887 propagate_for_debug (first, last, reg, tempreg);
3888 adjust_reg_mode (reg, new_mode);
3889 propagate_for_debug (first, last, tempreg,
3890 lowpart_subreg (old_mode, reg, new_mode));
3895 /* If we will be able to accept this, we have made a
3896 change to the destination of I3. This requires us to
3897 do a few adjustments. */
3899 if (changed_i3_dest)
3901 PATTERN (i3) = newpat;
3902 adjust_for_new_dest (i3);
3905 /* We now know that we can do this combination. Merge the insns and
3906 update the status of registers and LOG_LINKS. */
3908 if (undobuf.other_insn)
3910 rtx note, next;
3912 PATTERN (undobuf.other_insn) = other_pat;
3914 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3915 are still valid. Then add any non-duplicate notes added by
3916 recog_for_combine. */
3917 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3919 next = XEXP (note, 1);
3921 if (REG_NOTE_KIND (note) == REG_UNUSED
3922 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3923 remove_note (undobuf.other_insn, note);
3926 distribute_notes (new_other_notes, undobuf.other_insn,
3927 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX,
3928 NULL_RTX);
3931 if (swap_i2i3)
3933 rtx insn;
3934 rtx link;
3935 rtx ni2dest;
3937 /* I3 now uses what used to be its destination and which is now
3938 I2's destination. This requires us to do a few adjustments. */
3939 PATTERN (i3) = newpat;
3940 adjust_for_new_dest (i3);
3942 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3943 so we still will.
3945 However, some later insn might be using I2's dest and have
3946 a LOG_LINK pointing at I3. We must remove this link.
3947 The simplest way to remove the link is to point it at I1,
3948 which we know will be a NOTE. */
3950 /* newi2pat is usually a SET here; however, recog_for_combine might
3951 have added some clobbers. */
3952 if (GET_CODE (newi2pat) == PARALLEL)
3953 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3954 else
3955 ni2dest = SET_DEST (newi2pat);
3957 for (insn = NEXT_INSN (i3);
3958 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3959 || insn != BB_HEAD (this_basic_block->next_bb));
3960 insn = NEXT_INSN (insn))
3962 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3964 for (link = LOG_LINKS (insn); link;
3965 link = XEXP (link, 1))
3966 if (XEXP (link, 0) == i3)
3967 XEXP (link, 0) = i1;
3969 break;
3975 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
3976 rtx i3links, i2links, i1links = 0, i0links = 0;
3977 rtx midnotes = 0;
3978 int from_luid;
3979 unsigned int regno;
3980 /* Compute which registers we expect to eliminate. newi2pat may be setting
3981 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3982 same as i3dest, in which case newi2pat may be setting i1dest. */
3983 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3984 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
3985 || !i2dest_killed
3986 ? 0 : i2dest);
3987 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
3988 || (newi2pat && reg_set_p (i1dest, newi2pat))
3989 || !i1dest_killed
3990 ? 0 : i1dest);
3991 rtx elim_i0 = (i0 == 0 || i0dest_in_i0src
3992 || (newi2pat && reg_set_p (i0dest, newi2pat))
3993 || !i0dest_killed
3994 ? 0 : i0dest);
3996 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3997 clear them. */
3998 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3999 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4000 if (i1)
4001 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4002 if (i0)
4003 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4005 /* Ensure that we do not have something that should not be shared but
4006 occurs multiple times in the new insns. Check this by first
4007 resetting all the `used' flags and then copying anything is shared. */
4009 reset_used_flags (i3notes);
4010 reset_used_flags (i2notes);
4011 reset_used_flags (i1notes);
4012 reset_used_flags (i0notes);
4013 reset_used_flags (newpat);
4014 reset_used_flags (newi2pat);
4015 if (undobuf.other_insn)
4016 reset_used_flags (PATTERN (undobuf.other_insn));
4018 i3notes = copy_rtx_if_shared (i3notes);
4019 i2notes = copy_rtx_if_shared (i2notes);
4020 i1notes = copy_rtx_if_shared (i1notes);
4021 i0notes = copy_rtx_if_shared (i0notes);
4022 newpat = copy_rtx_if_shared (newpat);
4023 newi2pat = copy_rtx_if_shared (newi2pat);
4024 if (undobuf.other_insn)
4025 reset_used_flags (PATTERN (undobuf.other_insn));
4027 INSN_CODE (i3) = insn_code_number;
4028 PATTERN (i3) = newpat;
4030 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4032 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4034 reset_used_flags (call_usage);
4035 call_usage = copy_rtx (call_usage);
4037 if (substed_i2)
4039 /* I2SRC must still be meaningful at this point. Some splitting
4040 operations can invalidate I2SRC, but those operations do not
4041 apply to calls. */
4042 gcc_assert (i2src);
4043 replace_rtx (call_usage, i2dest, i2src);
4046 if (substed_i1)
4047 replace_rtx (call_usage, i1dest, i1src);
4048 if (substed_i0)
4049 replace_rtx (call_usage, i0dest, i0src);
4051 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4054 if (undobuf.other_insn)
4055 INSN_CODE (undobuf.other_insn) = other_code_number;
4057 /* We had one special case above where I2 had more than one set and
4058 we replaced a destination of one of those sets with the destination
4059 of I3. In that case, we have to update LOG_LINKS of insns later
4060 in this basic block. Note that this (expensive) case is rare.
4062 Also, in this case, we must pretend that all REG_NOTEs for I2
4063 actually came from I3, so that REG_UNUSED notes from I2 will be
4064 properly handled. */
4066 if (i3_subst_into_i2)
4068 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4069 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4070 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4071 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4072 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4073 && ! find_reg_note (i2, REG_UNUSED,
4074 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4075 for (temp = NEXT_INSN (i2);
4076 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4077 || BB_HEAD (this_basic_block) != temp);
4078 temp = NEXT_INSN (temp))
4079 if (temp != i3 && INSN_P (temp))
4080 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
4081 if (XEXP (link, 0) == i2)
4082 XEXP (link, 0) = i3;
4084 if (i3notes)
4086 rtx link = i3notes;
4087 while (XEXP (link, 1))
4088 link = XEXP (link, 1);
4089 XEXP (link, 1) = i2notes;
4091 else
4092 i3notes = i2notes;
4093 i2notes = 0;
4096 LOG_LINKS (i3) = 0;
4097 REG_NOTES (i3) = 0;
4098 LOG_LINKS (i2) = 0;
4099 REG_NOTES (i2) = 0;
4101 if (newi2pat)
4103 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4104 propagate_for_debug (i2, i3, i2dest, i2src);
4105 INSN_CODE (i2) = i2_code_number;
4106 PATTERN (i2) = newi2pat;
4108 else
4110 if (MAY_HAVE_DEBUG_INSNS && i2src)
4111 propagate_for_debug (i2, i3, i2dest, i2src);
4112 SET_INSN_DELETED (i2);
4115 if (i1)
4117 LOG_LINKS (i1) = 0;
4118 REG_NOTES (i1) = 0;
4119 if (MAY_HAVE_DEBUG_INSNS)
4120 propagate_for_debug (i1, i3, i1dest, i1src);
4121 SET_INSN_DELETED (i1);
4124 if (i0)
4126 LOG_LINKS (i0) = 0;
4127 REG_NOTES (i0) = 0;
4128 if (MAY_HAVE_DEBUG_INSNS)
4129 propagate_for_debug (i0, i3, i0dest, i0src);
4130 SET_INSN_DELETED (i0);
4133 /* Get death notes for everything that is now used in either I3 or
4134 I2 and used to die in a previous insn. If we built two new
4135 patterns, move from I1 to I2 then I2 to I3 so that we get the
4136 proper movement on registers that I2 modifies. */
4138 if (i0)
4139 from_luid = DF_INSN_LUID (i0);
4140 else if (i1)
4141 from_luid = DF_INSN_LUID (i1);
4142 else
4143 from_luid = DF_INSN_LUID (i2);
4144 if (newi2pat)
4145 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4146 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4148 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4149 if (i3notes)
4150 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
4151 elim_i2, elim_i1, elim_i0);
4152 if (i2notes)
4153 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
4154 elim_i2, elim_i1, elim_i0);
4155 if (i1notes)
4156 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
4157 elim_i2, elim_i1, elim_i0);
4158 if (i0notes)
4159 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL_RTX,
4160 elim_i2, elim_i1, elim_i0);
4161 if (midnotes)
4162 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4163 elim_i2, elim_i1, elim_i0);
4165 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4166 know these are REG_UNUSED and want them to go to the desired insn,
4167 so we always pass it as i3. */
4169 if (newi2pat && new_i2_notes)
4170 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX,
4171 NULL_RTX);
4173 if (new_i3_notes)
4174 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX,
4175 NULL_RTX);
4177 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4178 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4179 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4180 in that case, it might delete I2. Similarly for I2 and I1.
4181 Show an additional death due to the REG_DEAD note we make here. If
4182 we discard it in distribute_notes, we will decrement it again. */
4184 if (i3dest_killed)
4186 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4187 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4188 NULL_RTX),
4189 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1, elim_i0);
4190 else
4191 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4192 NULL_RTX),
4193 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4194 elim_i2, elim_i1, elim_i0);
4197 if (i2dest_in_i2src)
4199 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4200 if (newi2pat && reg_set_p (i2dest, newi2pat))
4201 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4202 NULL_RTX, NULL_RTX);
4203 else
4204 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4205 NULL_RTX, NULL_RTX, NULL_RTX);
4208 if (i1dest_in_i1src)
4210 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4211 if (newi2pat && reg_set_p (i1dest, newi2pat))
4212 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4213 NULL_RTX, NULL_RTX);
4214 else
4215 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4216 NULL_RTX, NULL_RTX, NULL_RTX);
4219 if (i0dest_in_i0src)
4221 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4222 if (newi2pat && reg_set_p (i0dest, newi2pat))
4223 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4224 NULL_RTX, NULL_RTX);
4225 else
4226 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4227 NULL_RTX, NULL_RTX, NULL_RTX);
4230 distribute_links (i3links);
4231 distribute_links (i2links);
4232 distribute_links (i1links);
4233 distribute_links (i0links);
4235 if (REG_P (i2dest))
4237 rtx link;
4238 rtx i2_insn = 0, i2_val = 0, set;
4240 /* The insn that used to set this register doesn't exist, and
4241 this life of the register may not exist either. See if one of
4242 I3's links points to an insn that sets I2DEST. If it does,
4243 that is now the last known value for I2DEST. If we don't update
4244 this and I2 set the register to a value that depended on its old
4245 contents, we will get confused. If this insn is used, thing
4246 will be set correctly in combine_instructions. */
4248 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
4249 if ((set = single_set (XEXP (link, 0))) != 0
4250 && rtx_equal_p (i2dest, SET_DEST (set)))
4251 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
4253 record_value_for_reg (i2dest, i2_insn, i2_val);
4255 /* If the reg formerly set in I2 died only once and that was in I3,
4256 zero its use count so it won't make `reload' do any work. */
4257 if (! added_sets_2
4258 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4259 && ! i2dest_in_i2src)
4261 regno = REGNO (i2dest);
4262 INC_REG_N_SETS (regno, -1);
4266 if (i1 && REG_P (i1dest))
4268 rtx link;
4269 rtx i1_insn = 0, i1_val = 0, set;
4271 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
4272 if ((set = single_set (XEXP (link, 0))) != 0
4273 && rtx_equal_p (i1dest, SET_DEST (set)))
4274 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
4276 record_value_for_reg (i1dest, i1_insn, i1_val);
4278 regno = REGNO (i1dest);
4279 if (! added_sets_1 && ! i1dest_in_i1src)
4280 INC_REG_N_SETS (regno, -1);
4283 if (i0 && REG_P (i0dest))
4285 rtx link;
4286 rtx i0_insn = 0, i0_val = 0, set;
4288 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
4289 if ((set = single_set (XEXP (link, 0))) != 0
4290 && rtx_equal_p (i0dest, SET_DEST (set)))
4291 i0_insn = XEXP (link, 0), i0_val = SET_SRC (set);
4293 record_value_for_reg (i0dest, i0_insn, i0_val);
4295 regno = REGNO (i0dest);
4296 if (! added_sets_0 && ! i0dest_in_i0src)
4297 INC_REG_N_SETS (regno, -1);
4300 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4301 been made to this insn. The order of
4302 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
4303 can affect nonzero_bits of newpat */
4304 if (newi2pat)
4305 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4306 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4309 if (undobuf.other_insn != NULL_RTX)
4311 if (dump_file)
4313 fprintf (dump_file, "modifying other_insn ");
4314 dump_insn_slim (dump_file, undobuf.other_insn);
4316 df_insn_rescan (undobuf.other_insn);
4319 if (i0 && !(NOTE_P(i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4321 if (dump_file)
4323 fprintf (dump_file, "modifying insn i1 ");
4324 dump_insn_slim (dump_file, i0);
4326 df_insn_rescan (i0);
4329 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4331 if (dump_file)
4333 fprintf (dump_file, "modifying insn i1 ");
4334 dump_insn_slim (dump_file, i1);
4336 df_insn_rescan (i1);
4339 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4341 if (dump_file)
4343 fprintf (dump_file, "modifying insn i2 ");
4344 dump_insn_slim (dump_file, i2);
4346 df_insn_rescan (i2);
4349 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4351 if (dump_file)
4353 fprintf (dump_file, "modifying insn i3 ");
4354 dump_insn_slim (dump_file, i3);
4356 df_insn_rescan (i3);
4359 /* Set new_direct_jump_p if a new return or simple jump instruction
4360 has been created. Adjust the CFG accordingly. */
4362 if (returnjump_p (i3) || any_uncondjump_p (i3))
4364 *new_direct_jump_p = 1;
4365 mark_jump_label (PATTERN (i3), i3, 0);
4366 update_cfg_for_uncondjump (i3);
4369 if (undobuf.other_insn != NULL_RTX
4370 && (returnjump_p (undobuf.other_insn)
4371 || any_uncondjump_p (undobuf.other_insn)))
4373 *new_direct_jump_p = 1;
4374 update_cfg_for_uncondjump (undobuf.other_insn);
4377 /* A noop might also need cleaning up of CFG, if it comes from the
4378 simplification of a jump. */
4379 if (GET_CODE (newpat) == SET
4380 && SET_SRC (newpat) == pc_rtx
4381 && SET_DEST (newpat) == pc_rtx)
4383 *new_direct_jump_p = 1;
4384 update_cfg_for_uncondjump (i3);
4387 if (undobuf.other_insn != NULL_RTX
4388 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4389 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4390 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4392 *new_direct_jump_p = 1;
4393 update_cfg_for_uncondjump (undobuf.other_insn);
4396 combine_successes++;
4397 undo_commit ();
4399 if (added_links_insn
4400 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4401 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4402 return added_links_insn;
4403 else
4404 return newi2pat ? i2 : i3;
4407 /* Undo all the modifications recorded in undobuf. */
4409 static void
4410 undo_all (void)
4412 struct undo *undo, *next;
4414 for (undo = undobuf.undos; undo; undo = next)
4416 next = undo->next;
4417 switch (undo->kind)
4419 case UNDO_RTX:
4420 *undo->where.r = undo->old_contents.r;
4421 break;
4422 case UNDO_INT:
4423 *undo->where.i = undo->old_contents.i;
4424 break;
4425 case UNDO_MODE:
4426 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4427 break;
4428 default:
4429 gcc_unreachable ();
4432 undo->next = undobuf.frees;
4433 undobuf.frees = undo;
4436 undobuf.undos = 0;
4439 /* We've committed to accepting the changes we made. Move all
4440 of the undos to the free list. */
4442 static void
4443 undo_commit (void)
4445 struct undo *undo, *next;
4447 for (undo = undobuf.undos; undo; undo = next)
4449 next = undo->next;
4450 undo->next = undobuf.frees;
4451 undobuf.frees = undo;
4453 undobuf.undos = 0;
4456 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4457 where we have an arithmetic expression and return that point. LOC will
4458 be inside INSN.
4460 try_combine will call this function to see if an insn can be split into
4461 two insns. */
4463 static rtx *
4464 find_split_point (rtx *loc, rtx insn, bool set_src)
4466 rtx x = *loc;
4467 enum rtx_code code = GET_CODE (x);
4468 rtx *split;
4469 unsigned HOST_WIDE_INT len = 0;
4470 HOST_WIDE_INT pos = 0;
4471 int unsignedp = 0;
4472 rtx inner = NULL_RTX;
4474 /* First special-case some codes. */
4475 switch (code)
4477 case SUBREG:
4478 #ifdef INSN_SCHEDULING
4479 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4480 point. */
4481 if (MEM_P (SUBREG_REG (x)))
4482 return loc;
4483 #endif
4484 return find_split_point (&SUBREG_REG (x), insn, false);
4486 case MEM:
4487 #ifdef HAVE_lo_sum
4488 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4489 using LO_SUM and HIGH. */
4490 if (GET_CODE (XEXP (x, 0)) == CONST
4491 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4493 enum machine_mode address_mode
4494 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
4496 SUBST (XEXP (x, 0),
4497 gen_rtx_LO_SUM (address_mode,
4498 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4499 XEXP (x, 0)));
4500 return &XEXP (XEXP (x, 0), 0);
4502 #endif
4504 /* If we have a PLUS whose second operand is a constant and the
4505 address is not valid, perhaps will can split it up using
4506 the machine-specific way to split large constants. We use
4507 the first pseudo-reg (one of the virtual regs) as a placeholder;
4508 it will not remain in the result. */
4509 if (GET_CODE (XEXP (x, 0)) == PLUS
4510 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4511 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4512 MEM_ADDR_SPACE (x)))
4514 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4515 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4516 XEXP (x, 0)),
4517 subst_insn);
4519 /* This should have produced two insns, each of which sets our
4520 placeholder. If the source of the second is a valid address,
4521 we can make put both sources together and make a split point
4522 in the middle. */
4524 if (seq
4525 && NEXT_INSN (seq) != NULL_RTX
4526 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4527 && NONJUMP_INSN_P (seq)
4528 && GET_CODE (PATTERN (seq)) == SET
4529 && SET_DEST (PATTERN (seq)) == reg
4530 && ! reg_mentioned_p (reg,
4531 SET_SRC (PATTERN (seq)))
4532 && NONJUMP_INSN_P (NEXT_INSN (seq))
4533 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4534 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4535 && memory_address_addr_space_p
4536 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4537 MEM_ADDR_SPACE (x)))
4539 rtx src1 = SET_SRC (PATTERN (seq));
4540 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4542 /* Replace the placeholder in SRC2 with SRC1. If we can
4543 find where in SRC2 it was placed, that can become our
4544 split point and we can replace this address with SRC2.
4545 Just try two obvious places. */
4547 src2 = replace_rtx (src2, reg, src1);
4548 split = 0;
4549 if (XEXP (src2, 0) == src1)
4550 split = &XEXP (src2, 0);
4551 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4552 && XEXP (XEXP (src2, 0), 0) == src1)
4553 split = &XEXP (XEXP (src2, 0), 0);
4555 if (split)
4557 SUBST (XEXP (x, 0), src2);
4558 return split;
4562 /* If that didn't work, perhaps the first operand is complex and
4563 needs to be computed separately, so make a split point there.
4564 This will occur on machines that just support REG + CONST
4565 and have a constant moved through some previous computation. */
4567 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4568 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4569 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4570 return &XEXP (XEXP (x, 0), 0);
4573 /* If we have a PLUS whose first operand is complex, try computing it
4574 separately by making a split there. */
4575 if (GET_CODE (XEXP (x, 0)) == PLUS
4576 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4577 MEM_ADDR_SPACE (x))
4578 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4579 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4580 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4581 return &XEXP (XEXP (x, 0), 0);
4582 break;
4584 case SET:
4585 #ifdef HAVE_cc0
4586 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4587 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4588 we need to put the operand into a register. So split at that
4589 point. */
4591 if (SET_DEST (x) == cc0_rtx
4592 && GET_CODE (SET_SRC (x)) != COMPARE
4593 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4594 && !OBJECT_P (SET_SRC (x))
4595 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4596 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4597 return &SET_SRC (x);
4598 #endif
4600 /* See if we can split SET_SRC as it stands. */
4601 split = find_split_point (&SET_SRC (x), insn, true);
4602 if (split && split != &SET_SRC (x))
4603 return split;
4605 /* See if we can split SET_DEST as it stands. */
4606 split = find_split_point (&SET_DEST (x), insn, false);
4607 if (split && split != &SET_DEST (x))
4608 return split;
4610 /* See if this is a bitfield assignment with everything constant. If
4611 so, this is an IOR of an AND, so split it into that. */
4612 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4613 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
4614 <= HOST_BITS_PER_WIDE_INT)
4615 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4616 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4617 && CONST_INT_P (SET_SRC (x))
4618 && ((INTVAL (XEXP (SET_DEST (x), 1))
4619 + INTVAL (XEXP (SET_DEST (x), 2)))
4620 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
4621 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4623 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4624 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4625 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4626 rtx dest = XEXP (SET_DEST (x), 0);
4627 enum machine_mode mode = GET_MODE (dest);
4628 unsigned HOST_WIDE_INT mask
4629 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4630 rtx or_mask;
4632 if (BITS_BIG_ENDIAN)
4633 pos = GET_MODE_BITSIZE (mode) - len - pos;
4635 or_mask = gen_int_mode (src << pos, mode);
4636 if (src == mask)
4637 SUBST (SET_SRC (x),
4638 simplify_gen_binary (IOR, mode, dest, or_mask));
4639 else
4641 rtx negmask = gen_int_mode (~(mask << pos), mode);
4642 SUBST (SET_SRC (x),
4643 simplify_gen_binary (IOR, mode,
4644 simplify_gen_binary (AND, mode,
4645 dest, negmask),
4646 or_mask));
4649 SUBST (SET_DEST (x), dest);
4651 split = find_split_point (&SET_SRC (x), insn, true);
4652 if (split && split != &SET_SRC (x))
4653 return split;
4656 /* Otherwise, see if this is an operation that we can split into two.
4657 If so, try to split that. */
4658 code = GET_CODE (SET_SRC (x));
4660 switch (code)
4662 case AND:
4663 /* If we are AND'ing with a large constant that is only a single
4664 bit and the result is only being used in a context where we
4665 need to know if it is zero or nonzero, replace it with a bit
4666 extraction. This will avoid the large constant, which might
4667 have taken more than one insn to make. If the constant were
4668 not a valid argument to the AND but took only one insn to make,
4669 this is no worse, but if it took more than one insn, it will
4670 be better. */
4672 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4673 && REG_P (XEXP (SET_SRC (x), 0))
4674 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4675 && REG_P (SET_DEST (x))
4676 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4677 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4678 && XEXP (*split, 0) == SET_DEST (x)
4679 && XEXP (*split, 1) == const0_rtx)
4681 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4682 XEXP (SET_SRC (x), 0),
4683 pos, NULL_RTX, 1, 1, 0, 0);
4684 if (extraction != 0)
4686 SUBST (SET_SRC (x), extraction);
4687 return find_split_point (loc, insn, false);
4690 break;
4692 case NE:
4693 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4694 is known to be on, this can be converted into a NEG of a shift. */
4695 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4696 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4697 && 1 <= (pos = exact_log2
4698 (nonzero_bits (XEXP (SET_SRC (x), 0),
4699 GET_MODE (XEXP (SET_SRC (x), 0))))))
4701 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4703 SUBST (SET_SRC (x),
4704 gen_rtx_NEG (mode,
4705 gen_rtx_LSHIFTRT (mode,
4706 XEXP (SET_SRC (x), 0),
4707 GEN_INT (pos))));
4709 split = find_split_point (&SET_SRC (x), insn, true);
4710 if (split && split != &SET_SRC (x))
4711 return split;
4713 break;
4715 case SIGN_EXTEND:
4716 inner = XEXP (SET_SRC (x), 0);
4718 /* We can't optimize if either mode is a partial integer
4719 mode as we don't know how many bits are significant
4720 in those modes. */
4721 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4722 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4723 break;
4725 pos = 0;
4726 len = GET_MODE_BITSIZE (GET_MODE (inner));
4727 unsignedp = 0;
4728 break;
4730 case SIGN_EXTRACT:
4731 case ZERO_EXTRACT:
4732 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4733 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4735 inner = XEXP (SET_SRC (x), 0);
4736 len = INTVAL (XEXP (SET_SRC (x), 1));
4737 pos = INTVAL (XEXP (SET_SRC (x), 2));
4739 if (BITS_BIG_ENDIAN)
4740 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
4741 unsignedp = (code == ZERO_EXTRACT);
4743 break;
4745 default:
4746 break;
4749 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
4751 enum machine_mode mode = GET_MODE (SET_SRC (x));
4753 /* For unsigned, we have a choice of a shift followed by an
4754 AND or two shifts. Use two shifts for field sizes where the
4755 constant might be too large. We assume here that we can
4756 always at least get 8-bit constants in an AND insn, which is
4757 true for every current RISC. */
4759 if (unsignedp && len <= 8)
4761 SUBST (SET_SRC (x),
4762 gen_rtx_AND (mode,
4763 gen_rtx_LSHIFTRT
4764 (mode, gen_lowpart (mode, inner),
4765 GEN_INT (pos)),
4766 GEN_INT (((unsigned HOST_WIDE_INT) 1 << len)
4767 - 1)));
4769 split = find_split_point (&SET_SRC (x), insn, true);
4770 if (split && split != &SET_SRC (x))
4771 return split;
4773 else
4775 SUBST (SET_SRC (x),
4776 gen_rtx_fmt_ee
4777 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4778 gen_rtx_ASHIFT (mode,
4779 gen_lowpart (mode, inner),
4780 GEN_INT (GET_MODE_BITSIZE (mode)
4781 - len - pos)),
4782 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
4784 split = find_split_point (&SET_SRC (x), insn, true);
4785 if (split && split != &SET_SRC (x))
4786 return split;
4790 /* See if this is a simple operation with a constant as the second
4791 operand. It might be that this constant is out of range and hence
4792 could be used as a split point. */
4793 if (BINARY_P (SET_SRC (x))
4794 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4795 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4796 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4797 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4798 return &XEXP (SET_SRC (x), 1);
4800 /* Finally, see if this is a simple operation with its first operand
4801 not in a register. The operation might require this operand in a
4802 register, so return it as a split point. We can always do this
4803 because if the first operand were another operation, we would have
4804 already found it as a split point. */
4805 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4806 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4807 return &XEXP (SET_SRC (x), 0);
4809 return 0;
4811 case AND:
4812 case IOR:
4813 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4814 it is better to write this as (not (ior A B)) so we can split it.
4815 Similarly for IOR. */
4816 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4818 SUBST (*loc,
4819 gen_rtx_NOT (GET_MODE (x),
4820 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4821 GET_MODE (x),
4822 XEXP (XEXP (x, 0), 0),
4823 XEXP (XEXP (x, 1), 0))));
4824 return find_split_point (loc, insn, set_src);
4827 /* Many RISC machines have a large set of logical insns. If the
4828 second operand is a NOT, put it first so we will try to split the
4829 other operand first. */
4830 if (GET_CODE (XEXP (x, 1)) == NOT)
4832 rtx tem = XEXP (x, 0);
4833 SUBST (XEXP (x, 0), XEXP (x, 1));
4834 SUBST (XEXP (x, 1), tem);
4836 break;
4838 case PLUS:
4839 case MINUS:
4840 /* Canonicalization can produce (minus A (mult B C)), where C is a
4841 constant. It may be better to try splitting (plus (mult B -C) A)
4842 instead if this isn't a multiply by a power of two. */
4843 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
4844 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4845 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
4847 enum machine_mode mode = GET_MODE (x);
4848 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
4849 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
4850 SUBST (*loc, gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
4851 XEXP (XEXP (x, 1), 0),
4852 GEN_INT (other_int)),
4853 XEXP (x, 0)));
4854 return find_split_point (loc, insn, set_src);
4857 /* Split at a multiply-accumulate instruction. However if this is
4858 the SET_SRC, we likely do not have such an instruction and it's
4859 worthless to try this split. */
4860 if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
4861 return loc;
4863 default:
4864 break;
4867 /* Otherwise, select our actions depending on our rtx class. */
4868 switch (GET_RTX_CLASS (code))
4870 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4871 case RTX_TERNARY:
4872 split = find_split_point (&XEXP (x, 2), insn, false);
4873 if (split)
4874 return split;
4875 /* ... fall through ... */
4876 case RTX_BIN_ARITH:
4877 case RTX_COMM_ARITH:
4878 case RTX_COMPARE:
4879 case RTX_COMM_COMPARE:
4880 split = find_split_point (&XEXP (x, 1), insn, false);
4881 if (split)
4882 return split;
4883 /* ... fall through ... */
4884 case RTX_UNARY:
4885 /* Some machines have (and (shift ...) ...) insns. If X is not
4886 an AND, but XEXP (X, 0) is, use it as our split point. */
4887 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4888 return &XEXP (x, 0);
4890 split = find_split_point (&XEXP (x, 0), insn, false);
4891 if (split)
4892 return split;
4893 return loc;
4895 default:
4896 /* Otherwise, we don't have a split point. */
4897 return 0;
4901 /* Throughout X, replace FROM with TO, and return the result.
4902 The result is TO if X is FROM;
4903 otherwise the result is X, but its contents may have been modified.
4904 If they were modified, a record was made in undobuf so that
4905 undo_all will (among other things) return X to its original state.
4907 If the number of changes necessary is too much to record to undo,
4908 the excess changes are not made, so the result is invalid.
4909 The changes already made can still be undone.
4910 undobuf.num_undo is incremented for such changes, so by testing that
4911 the caller can tell whether the result is valid.
4913 `n_occurrences' is incremented each time FROM is replaced.
4915 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4917 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4918 by copying if `n_occurrences' is nonzero. */
4920 static rtx
4921 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
4923 enum rtx_code code = GET_CODE (x);
4924 enum machine_mode op0_mode = VOIDmode;
4925 const char *fmt;
4926 int len, i;
4927 rtx new_rtx;
4929 /* Two expressions are equal if they are identical copies of a shared
4930 RTX or if they are both registers with the same register number
4931 and mode. */
4933 #define COMBINE_RTX_EQUAL_P(X,Y) \
4934 ((X) == (Y) \
4935 || (REG_P (X) && REG_P (Y) \
4936 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4938 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4940 n_occurrences++;
4941 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4944 /* If X and FROM are the same register but different modes, they
4945 will not have been seen as equal above. However, the log links code
4946 will make a LOG_LINKS entry for that case. If we do nothing, we
4947 will try to rerecognize our original insn and, when it succeeds,
4948 we will delete the feeding insn, which is incorrect.
4950 So force this insn not to match in this (rare) case. */
4951 if (! in_dest && code == REG && REG_P (from)
4952 && reg_overlap_mentioned_p (x, from))
4953 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4955 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4956 of which may contain things that can be combined. */
4957 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4958 return x;
4960 /* It is possible to have a subexpression appear twice in the insn.
4961 Suppose that FROM is a register that appears within TO.
4962 Then, after that subexpression has been scanned once by `subst',
4963 the second time it is scanned, TO may be found. If we were
4964 to scan TO here, we would find FROM within it and create a
4965 self-referent rtl structure which is completely wrong. */
4966 if (COMBINE_RTX_EQUAL_P (x, to))
4967 return to;
4969 /* Parallel asm_operands need special attention because all of the
4970 inputs are shared across the arms. Furthermore, unsharing the
4971 rtl results in recognition failures. Failure to handle this case
4972 specially can result in circular rtl.
4974 Solve this by doing a normal pass across the first entry of the
4975 parallel, and only processing the SET_DESTs of the subsequent
4976 entries. Ug. */
4978 if (code == PARALLEL
4979 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4980 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4982 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
4984 /* If this substitution failed, this whole thing fails. */
4985 if (GET_CODE (new_rtx) == CLOBBER
4986 && XEXP (new_rtx, 0) == const0_rtx)
4987 return new_rtx;
4989 SUBST (XVECEXP (x, 0, 0), new_rtx);
4991 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4993 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4995 if (!REG_P (dest)
4996 && GET_CODE (dest) != CC0
4997 && GET_CODE (dest) != PC)
4999 new_rtx = subst (dest, from, to, 0, unique_copy);
5001 /* If this substitution failed, this whole thing fails. */
5002 if (GET_CODE (new_rtx) == CLOBBER
5003 && XEXP (new_rtx, 0) == const0_rtx)
5004 return new_rtx;
5006 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5010 else
5012 len = GET_RTX_LENGTH (code);
5013 fmt = GET_RTX_FORMAT (code);
5015 /* We don't need to process a SET_DEST that is a register, CC0,
5016 or PC, so set up to skip this common case. All other cases
5017 where we want to suppress replacing something inside a
5018 SET_SRC are handled via the IN_DEST operand. */
5019 if (code == SET
5020 && (REG_P (SET_DEST (x))
5021 || GET_CODE (SET_DEST (x)) == CC0
5022 || GET_CODE (SET_DEST (x)) == PC))
5023 fmt = "ie";
5025 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5026 constant. */
5027 if (fmt[0] == 'e')
5028 op0_mode = GET_MODE (XEXP (x, 0));
5030 for (i = 0; i < len; i++)
5032 if (fmt[i] == 'E')
5034 int j;
5035 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5037 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5039 new_rtx = (unique_copy && n_occurrences
5040 ? copy_rtx (to) : to);
5041 n_occurrences++;
5043 else
5045 new_rtx = subst (XVECEXP (x, i, j), from, to, 0,
5046 unique_copy);
5048 /* If this substitution failed, this whole thing
5049 fails. */
5050 if (GET_CODE (new_rtx) == CLOBBER
5051 && XEXP (new_rtx, 0) == const0_rtx)
5052 return new_rtx;
5055 SUBST (XVECEXP (x, i, j), new_rtx);
5058 else if (fmt[i] == 'e')
5060 /* If this is a register being set, ignore it. */
5061 new_rtx = XEXP (x, i);
5062 if (in_dest
5063 && i == 0
5064 && (((code == SUBREG || code == ZERO_EXTRACT)
5065 && REG_P (new_rtx))
5066 || code == STRICT_LOW_PART))
5069 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5071 /* In general, don't install a subreg involving two
5072 modes not tieable. It can worsen register
5073 allocation, and can even make invalid reload
5074 insns, since the reg inside may need to be copied
5075 from in the outside mode, and that may be invalid
5076 if it is an fp reg copied in integer mode.
5078 We allow two exceptions to this: It is valid if
5079 it is inside another SUBREG and the mode of that
5080 SUBREG and the mode of the inside of TO is
5081 tieable and it is valid if X is a SET that copies
5082 FROM to CC0. */
5084 if (GET_CODE (to) == SUBREG
5085 && ! MODES_TIEABLE_P (GET_MODE (to),
5086 GET_MODE (SUBREG_REG (to)))
5087 && ! (code == SUBREG
5088 && MODES_TIEABLE_P (GET_MODE (x),
5089 GET_MODE (SUBREG_REG (to))))
5090 #ifdef HAVE_cc0
5091 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5092 #endif
5094 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5096 #ifdef CANNOT_CHANGE_MODE_CLASS
5097 if (code == SUBREG
5098 && REG_P (to)
5099 && REGNO (to) < FIRST_PSEUDO_REGISTER
5100 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
5101 GET_MODE (to),
5102 GET_MODE (x)))
5103 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5104 #endif
5106 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5107 n_occurrences++;
5109 else
5110 /* If we are in a SET_DEST, suppress most cases unless we
5111 have gone inside a MEM, in which case we want to
5112 simplify the address. We assume here that things that
5113 are actually part of the destination have their inner
5114 parts in the first expression. This is true for SUBREG,
5115 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5116 things aside from REG and MEM that should appear in a
5117 SET_DEST. */
5118 new_rtx = subst (XEXP (x, i), from, to,
5119 (((in_dest
5120 && (code == SUBREG || code == STRICT_LOW_PART
5121 || code == ZERO_EXTRACT))
5122 || code == SET)
5123 && i == 0), unique_copy);
5125 /* If we found that we will have to reject this combination,
5126 indicate that by returning the CLOBBER ourselves, rather than
5127 an expression containing it. This will speed things up as
5128 well as prevent accidents where two CLOBBERs are considered
5129 to be equal, thus producing an incorrect simplification. */
5131 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5132 return new_rtx;
5134 if (GET_CODE (x) == SUBREG
5135 && (CONST_INT_P (new_rtx)
5136 || GET_CODE (new_rtx) == CONST_DOUBLE))
5138 enum machine_mode mode = GET_MODE (x);
5140 x = simplify_subreg (GET_MODE (x), new_rtx,
5141 GET_MODE (SUBREG_REG (x)),
5142 SUBREG_BYTE (x));
5143 if (! x)
5144 x = gen_rtx_CLOBBER (mode, const0_rtx);
5146 else if (CONST_INT_P (new_rtx)
5147 && GET_CODE (x) == ZERO_EXTEND)
5149 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5150 new_rtx, GET_MODE (XEXP (x, 0)));
5151 gcc_assert (x);
5153 else
5154 SUBST (XEXP (x, i), new_rtx);
5159 /* Check if we are loading something from the constant pool via float
5160 extension; in this case we would undo compress_float_constant
5161 optimization and degenerate constant load to an immediate value. */
5162 if (GET_CODE (x) == FLOAT_EXTEND
5163 && MEM_P (XEXP (x, 0))
5164 && MEM_READONLY_P (XEXP (x, 0)))
5166 rtx tmp = avoid_constant_pool_reference (x);
5167 if (x != tmp)
5168 return x;
5171 /* Try to simplify X. If the simplification changed the code, it is likely
5172 that further simplification will help, so loop, but limit the number
5173 of repetitions that will be performed. */
5175 for (i = 0; i < 4; i++)
5177 /* If X is sufficiently simple, don't bother trying to do anything
5178 with it. */
5179 if (code != CONST_INT && code != REG && code != CLOBBER)
5180 x = combine_simplify_rtx (x, op0_mode, in_dest);
5182 if (GET_CODE (x) == code)
5183 break;
5185 code = GET_CODE (x);
5187 /* We no longer know the original mode of operand 0 since we
5188 have changed the form of X) */
5189 op0_mode = VOIDmode;
5192 return x;
5195 /* Simplify X, a piece of RTL. We just operate on the expression at the
5196 outer level; call `subst' to simplify recursively. Return the new
5197 expression.
5199 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5200 if we are inside a SET_DEST. */
5202 static rtx
5203 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
5205 enum rtx_code code = GET_CODE (x);
5206 enum machine_mode mode = GET_MODE (x);
5207 rtx temp;
5208 int i;
5210 /* If this is a commutative operation, put a constant last and a complex
5211 expression first. We don't need to do this for comparisons here. */
5212 if (COMMUTATIVE_ARITH_P (x)
5213 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5215 temp = XEXP (x, 0);
5216 SUBST (XEXP (x, 0), XEXP (x, 1));
5217 SUBST (XEXP (x, 1), temp);
5220 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5221 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5222 things. Check for cases where both arms are testing the same
5223 condition.
5225 Don't do anything if all operands are very simple. */
5227 if ((BINARY_P (x)
5228 && ((!OBJECT_P (XEXP (x, 0))
5229 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5230 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5231 || (!OBJECT_P (XEXP (x, 1))
5232 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5233 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5234 || (UNARY_P (x)
5235 && (!OBJECT_P (XEXP (x, 0))
5236 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5237 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5239 rtx cond, true_rtx, false_rtx;
5241 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5242 if (cond != 0
5243 /* If everything is a comparison, what we have is highly unlikely
5244 to be simpler, so don't use it. */
5245 && ! (COMPARISON_P (x)
5246 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5248 rtx cop1 = const0_rtx;
5249 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5251 if (cond_code == NE && COMPARISON_P (cond))
5252 return x;
5254 /* Simplify the alternative arms; this may collapse the true and
5255 false arms to store-flag values. Be careful to use copy_rtx
5256 here since true_rtx or false_rtx might share RTL with x as a
5257 result of the if_then_else_cond call above. */
5258 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
5259 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
5261 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5262 is unlikely to be simpler. */
5263 if (general_operand (true_rtx, VOIDmode)
5264 && general_operand (false_rtx, VOIDmode))
5266 enum rtx_code reversed;
5268 /* Restarting if we generate a store-flag expression will cause
5269 us to loop. Just drop through in this case. */
5271 /* If the result values are STORE_FLAG_VALUE and zero, we can
5272 just make the comparison operation. */
5273 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5274 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5275 cond, cop1);
5276 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5277 && ((reversed = reversed_comparison_code_parts
5278 (cond_code, cond, cop1, NULL))
5279 != UNKNOWN))
5280 x = simplify_gen_relational (reversed, mode, VOIDmode,
5281 cond, cop1);
5283 /* Likewise, we can make the negate of a comparison operation
5284 if the result values are - STORE_FLAG_VALUE and zero. */
5285 else if (CONST_INT_P (true_rtx)
5286 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5287 && false_rtx == const0_rtx)
5288 x = simplify_gen_unary (NEG, mode,
5289 simplify_gen_relational (cond_code,
5290 mode, VOIDmode,
5291 cond, cop1),
5292 mode);
5293 else if (CONST_INT_P (false_rtx)
5294 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5295 && true_rtx == const0_rtx
5296 && ((reversed = reversed_comparison_code_parts
5297 (cond_code, cond, cop1, NULL))
5298 != UNKNOWN))
5299 x = simplify_gen_unary (NEG, mode,
5300 simplify_gen_relational (reversed,
5301 mode, VOIDmode,
5302 cond, cop1),
5303 mode);
5304 else
5305 return gen_rtx_IF_THEN_ELSE (mode,
5306 simplify_gen_relational (cond_code,
5307 mode,
5308 VOIDmode,
5309 cond,
5310 cop1),
5311 true_rtx, false_rtx);
5313 code = GET_CODE (x);
5314 op0_mode = VOIDmode;
5319 /* Try to fold this expression in case we have constants that weren't
5320 present before. */
5321 temp = 0;
5322 switch (GET_RTX_CLASS (code))
5324 case RTX_UNARY:
5325 if (op0_mode == VOIDmode)
5326 op0_mode = GET_MODE (XEXP (x, 0));
5327 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5328 break;
5329 case RTX_COMPARE:
5330 case RTX_COMM_COMPARE:
5332 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5333 if (cmp_mode == VOIDmode)
5335 cmp_mode = GET_MODE (XEXP (x, 1));
5336 if (cmp_mode == VOIDmode)
5337 cmp_mode = op0_mode;
5339 temp = simplify_relational_operation (code, mode, cmp_mode,
5340 XEXP (x, 0), XEXP (x, 1));
5342 break;
5343 case RTX_COMM_ARITH:
5344 case RTX_BIN_ARITH:
5345 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5346 break;
5347 case RTX_BITFIELD_OPS:
5348 case RTX_TERNARY:
5349 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5350 XEXP (x, 1), XEXP (x, 2));
5351 break;
5352 default:
5353 break;
5356 if (temp)
5358 x = temp;
5359 code = GET_CODE (temp);
5360 op0_mode = VOIDmode;
5361 mode = GET_MODE (temp);
5364 /* First see if we can apply the inverse distributive law. */
5365 if (code == PLUS || code == MINUS
5366 || code == AND || code == IOR || code == XOR)
5368 x = apply_distributive_law (x);
5369 code = GET_CODE (x);
5370 op0_mode = VOIDmode;
5373 /* If CODE is an associative operation not otherwise handled, see if we
5374 can associate some operands. This can win if they are constants or
5375 if they are logically related (i.e. (a & b) & a). */
5376 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5377 || code == AND || code == IOR || code == XOR
5378 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5379 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5380 || (flag_associative_math && FLOAT_MODE_P (mode))))
5382 if (GET_CODE (XEXP (x, 0)) == code)
5384 rtx other = XEXP (XEXP (x, 0), 0);
5385 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5386 rtx inner_op1 = XEXP (x, 1);
5387 rtx inner;
5389 /* Make sure we pass the constant operand if any as the second
5390 one if this is a commutative operation. */
5391 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5393 rtx tem = inner_op0;
5394 inner_op0 = inner_op1;
5395 inner_op1 = tem;
5397 inner = simplify_binary_operation (code == MINUS ? PLUS
5398 : code == DIV ? MULT
5399 : code,
5400 mode, inner_op0, inner_op1);
5402 /* For commutative operations, try the other pair if that one
5403 didn't simplify. */
5404 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5406 other = XEXP (XEXP (x, 0), 1);
5407 inner = simplify_binary_operation (code, mode,
5408 XEXP (XEXP (x, 0), 0),
5409 XEXP (x, 1));
5412 if (inner)
5413 return simplify_gen_binary (code, mode, other, inner);
5417 /* A little bit of algebraic simplification here. */
5418 switch (code)
5420 case MEM:
5421 /* Ensure that our address has any ASHIFTs converted to MULT in case
5422 address-recognizing predicates are called later. */
5423 temp = make_compound_operation (XEXP (x, 0), MEM);
5424 SUBST (XEXP (x, 0), temp);
5425 break;
5427 case SUBREG:
5428 if (op0_mode == VOIDmode)
5429 op0_mode = GET_MODE (SUBREG_REG (x));
5431 /* See if this can be moved to simplify_subreg. */
5432 if (CONSTANT_P (SUBREG_REG (x))
5433 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5434 /* Don't call gen_lowpart if the inner mode
5435 is VOIDmode and we cannot simplify it, as SUBREG without
5436 inner mode is invalid. */
5437 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5438 || gen_lowpart_common (mode, SUBREG_REG (x))))
5439 return gen_lowpart (mode, SUBREG_REG (x));
5441 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5442 break;
5444 rtx temp;
5445 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5446 SUBREG_BYTE (x));
5447 if (temp)
5448 return temp;
5451 /* Don't change the mode of the MEM if that would change the meaning
5452 of the address. */
5453 if (MEM_P (SUBREG_REG (x))
5454 && (MEM_VOLATILE_P (SUBREG_REG (x))
5455 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
5456 return gen_rtx_CLOBBER (mode, const0_rtx);
5458 /* Note that we cannot do any narrowing for non-constants since
5459 we might have been counting on using the fact that some bits were
5460 zero. We now do this in the SET. */
5462 break;
5464 case NEG:
5465 temp = expand_compound_operation (XEXP (x, 0));
5467 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5468 replaced by (lshiftrt X C). This will convert
5469 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5471 if (GET_CODE (temp) == ASHIFTRT
5472 && CONST_INT_P (XEXP (temp, 1))
5473 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
5474 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5475 INTVAL (XEXP (temp, 1)));
5477 /* If X has only a single bit that might be nonzero, say, bit I, convert
5478 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5479 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5480 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5481 or a SUBREG of one since we'd be making the expression more
5482 complex if it was just a register. */
5484 if (!REG_P (temp)
5485 && ! (GET_CODE (temp) == SUBREG
5486 && REG_P (SUBREG_REG (temp)))
5487 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5489 rtx temp1 = simplify_shift_const
5490 (NULL_RTX, ASHIFTRT, mode,
5491 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5492 GET_MODE_BITSIZE (mode) - 1 - i),
5493 GET_MODE_BITSIZE (mode) - 1 - i);
5495 /* If all we did was surround TEMP with the two shifts, we
5496 haven't improved anything, so don't use it. Otherwise,
5497 we are better off with TEMP1. */
5498 if (GET_CODE (temp1) != ASHIFTRT
5499 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5500 || XEXP (XEXP (temp1, 0), 0) != temp)
5501 return temp1;
5503 break;
5505 case TRUNCATE:
5506 /* We can't handle truncation to a partial integer mode here
5507 because we don't know the real bitsize of the partial
5508 integer mode. */
5509 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5510 break;
5512 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5513 SUBST (XEXP (x, 0),
5514 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5515 GET_MODE_MASK (mode), 0));
5517 /* We can truncate a constant value and return it. */
5518 if (CONST_INT_P (XEXP (x, 0)))
5519 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5521 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5522 whose value is a comparison can be replaced with a subreg if
5523 STORE_FLAG_VALUE permits. */
5524 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5525 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5526 && (temp = get_last_value (XEXP (x, 0)))
5527 && COMPARISON_P (temp))
5528 return gen_lowpart (mode, XEXP (x, 0));
5529 break;
5531 case CONST:
5532 /* (const (const X)) can become (const X). Do it this way rather than
5533 returning the inner CONST since CONST can be shared with a
5534 REG_EQUAL note. */
5535 if (GET_CODE (XEXP (x, 0)) == CONST)
5536 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5537 break;
5539 #ifdef HAVE_lo_sum
5540 case LO_SUM:
5541 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5542 can add in an offset. find_split_point will split this address up
5543 again if it doesn't match. */
5544 if (GET_CODE (XEXP (x, 0)) == HIGH
5545 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5546 return XEXP (x, 1);
5547 break;
5548 #endif
5550 case PLUS:
5551 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5552 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5553 bit-field and can be replaced by either a sign_extend or a
5554 sign_extract. The `and' may be a zero_extend and the two
5555 <c>, -<c> constants may be reversed. */
5556 if (GET_CODE (XEXP (x, 0)) == XOR
5557 && CONST_INT_P (XEXP (x, 1))
5558 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5559 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5560 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5561 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5562 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5563 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5564 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5565 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5566 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5567 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5568 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5569 == (unsigned int) i + 1))))
5570 return simplify_shift_const
5571 (NULL_RTX, ASHIFTRT, mode,
5572 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5573 XEXP (XEXP (XEXP (x, 0), 0), 0),
5574 GET_MODE_BITSIZE (mode) - (i + 1)),
5575 GET_MODE_BITSIZE (mode) - (i + 1));
5577 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5578 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5579 the bitsize of the mode - 1. This allows simplification of
5580 "a = (b & 8) == 0;" */
5581 if (XEXP (x, 1) == constm1_rtx
5582 && !REG_P (XEXP (x, 0))
5583 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5584 && REG_P (SUBREG_REG (XEXP (x, 0))))
5585 && nonzero_bits (XEXP (x, 0), mode) == 1)
5586 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5587 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5588 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5589 GET_MODE_BITSIZE (mode) - 1),
5590 GET_MODE_BITSIZE (mode) - 1);
5592 /* If we are adding two things that have no bits in common, convert
5593 the addition into an IOR. This will often be further simplified,
5594 for example in cases like ((a & 1) + (a & 2)), which can
5595 become a & 3. */
5597 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5598 && (nonzero_bits (XEXP (x, 0), mode)
5599 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5601 /* Try to simplify the expression further. */
5602 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5603 temp = combine_simplify_rtx (tor, mode, in_dest);
5605 /* If we could, great. If not, do not go ahead with the IOR
5606 replacement, since PLUS appears in many special purpose
5607 address arithmetic instructions. */
5608 if (GET_CODE (temp) != CLOBBER && temp != tor)
5609 return temp;
5611 break;
5613 case MINUS:
5614 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5615 (and <foo> (const_int pow2-1)) */
5616 if (GET_CODE (XEXP (x, 1)) == AND
5617 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5618 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5619 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5620 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5621 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5622 break;
5624 case MULT:
5625 /* If we have (mult (plus A B) C), apply the distributive law and then
5626 the inverse distributive law to see if things simplify. This
5627 occurs mostly in addresses, often when unrolling loops. */
5629 if (GET_CODE (XEXP (x, 0)) == PLUS)
5631 rtx result = distribute_and_simplify_rtx (x, 0);
5632 if (result)
5633 return result;
5636 /* Try simplify a*(b/c) as (a*b)/c. */
5637 if (FLOAT_MODE_P (mode) && flag_associative_math
5638 && GET_CODE (XEXP (x, 0)) == DIV)
5640 rtx tem = simplify_binary_operation (MULT, mode,
5641 XEXP (XEXP (x, 0), 0),
5642 XEXP (x, 1));
5643 if (tem)
5644 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5646 break;
5648 case UDIV:
5649 /* If this is a divide by a power of two, treat it as a shift if
5650 its first operand is a shift. */
5651 if (CONST_INT_P (XEXP (x, 1))
5652 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5653 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5654 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5655 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5656 || GET_CODE (XEXP (x, 0)) == ROTATE
5657 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5658 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5659 break;
5661 case EQ: case NE:
5662 case GT: case GTU: case GE: case GEU:
5663 case LT: case LTU: case LE: case LEU:
5664 case UNEQ: case LTGT:
5665 case UNGT: case UNGE:
5666 case UNLT: case UNLE:
5667 case UNORDERED: case ORDERED:
5668 /* If the first operand is a condition code, we can't do anything
5669 with it. */
5670 if (GET_CODE (XEXP (x, 0)) == COMPARE
5671 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5672 && ! CC0_P (XEXP (x, 0))))
5674 rtx op0 = XEXP (x, 0);
5675 rtx op1 = XEXP (x, 1);
5676 enum rtx_code new_code;
5678 if (GET_CODE (op0) == COMPARE)
5679 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5681 /* Simplify our comparison, if possible. */
5682 new_code = simplify_comparison (code, &op0, &op1);
5684 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5685 if only the low-order bit is possibly nonzero in X (such as when
5686 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5687 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5688 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5689 (plus X 1).
5691 Remove any ZERO_EXTRACT we made when thinking this was a
5692 comparison. It may now be simpler to use, e.g., an AND. If a
5693 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5694 the call to make_compound_operation in the SET case. */
5696 if (STORE_FLAG_VALUE == 1
5697 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5698 && op1 == const0_rtx
5699 && mode == GET_MODE (op0)
5700 && nonzero_bits (op0, mode) == 1)
5701 return gen_lowpart (mode,
5702 expand_compound_operation (op0));
5704 else if (STORE_FLAG_VALUE == 1
5705 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5706 && op1 == const0_rtx
5707 && mode == GET_MODE (op0)
5708 && (num_sign_bit_copies (op0, mode)
5709 == GET_MODE_BITSIZE (mode)))
5711 op0 = expand_compound_operation (op0);
5712 return simplify_gen_unary (NEG, mode,
5713 gen_lowpart (mode, op0),
5714 mode);
5717 else if (STORE_FLAG_VALUE == 1
5718 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5719 && op1 == const0_rtx
5720 && mode == GET_MODE (op0)
5721 && nonzero_bits (op0, mode) == 1)
5723 op0 = expand_compound_operation (op0);
5724 return simplify_gen_binary (XOR, mode,
5725 gen_lowpart (mode, op0),
5726 const1_rtx);
5729 else if (STORE_FLAG_VALUE == 1
5730 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5731 && op1 == const0_rtx
5732 && mode == GET_MODE (op0)
5733 && (num_sign_bit_copies (op0, mode)
5734 == GET_MODE_BITSIZE (mode)))
5736 op0 = expand_compound_operation (op0);
5737 return plus_constant (gen_lowpart (mode, op0), 1);
5740 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5741 those above. */
5742 if (STORE_FLAG_VALUE == -1
5743 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5744 && op1 == const0_rtx
5745 && (num_sign_bit_copies (op0, mode)
5746 == GET_MODE_BITSIZE (mode)))
5747 return gen_lowpart (mode,
5748 expand_compound_operation (op0));
5750 else if (STORE_FLAG_VALUE == -1
5751 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5752 && op1 == const0_rtx
5753 && mode == GET_MODE (op0)
5754 && nonzero_bits (op0, mode) == 1)
5756 op0 = expand_compound_operation (op0);
5757 return simplify_gen_unary (NEG, mode,
5758 gen_lowpart (mode, op0),
5759 mode);
5762 else if (STORE_FLAG_VALUE == -1
5763 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5764 && op1 == const0_rtx
5765 && mode == GET_MODE (op0)
5766 && (num_sign_bit_copies (op0, mode)
5767 == GET_MODE_BITSIZE (mode)))
5769 op0 = expand_compound_operation (op0);
5770 return simplify_gen_unary (NOT, mode,
5771 gen_lowpart (mode, op0),
5772 mode);
5775 /* If X is 0/1, (eq X 0) is X-1. */
5776 else if (STORE_FLAG_VALUE == -1
5777 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5778 && op1 == const0_rtx
5779 && mode == GET_MODE (op0)
5780 && nonzero_bits (op0, mode) == 1)
5782 op0 = expand_compound_operation (op0);
5783 return plus_constant (gen_lowpart (mode, op0), -1);
5786 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5787 one bit that might be nonzero, we can convert (ne x 0) to
5788 (ashift x c) where C puts the bit in the sign bit. Remove any
5789 AND with STORE_FLAG_VALUE when we are done, since we are only
5790 going to test the sign bit. */
5791 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5792 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5793 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5794 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5795 && op1 == const0_rtx
5796 && mode == GET_MODE (op0)
5797 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5799 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5800 expand_compound_operation (op0),
5801 GET_MODE_BITSIZE (mode) - 1 - i);
5802 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5803 return XEXP (x, 0);
5804 else
5805 return x;
5808 /* If the code changed, return a whole new comparison. */
5809 if (new_code != code)
5810 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5812 /* Otherwise, keep this operation, but maybe change its operands.
5813 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5814 SUBST (XEXP (x, 0), op0);
5815 SUBST (XEXP (x, 1), op1);
5817 break;
5819 case IF_THEN_ELSE:
5820 return simplify_if_then_else (x);
5822 case ZERO_EXTRACT:
5823 case SIGN_EXTRACT:
5824 case ZERO_EXTEND:
5825 case SIGN_EXTEND:
5826 /* If we are processing SET_DEST, we are done. */
5827 if (in_dest)
5828 return x;
5830 return expand_compound_operation (x);
5832 case SET:
5833 return simplify_set (x);
5835 case AND:
5836 case IOR:
5837 return simplify_logical (x);
5839 case ASHIFT:
5840 case LSHIFTRT:
5841 case ASHIFTRT:
5842 case ROTATE:
5843 case ROTATERT:
5844 /* If this is a shift by a constant amount, simplify it. */
5845 if (CONST_INT_P (XEXP (x, 1)))
5846 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5847 INTVAL (XEXP (x, 1)));
5849 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5850 SUBST (XEXP (x, 1),
5851 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5852 ((unsigned HOST_WIDE_INT) 1
5853 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5854 - 1,
5855 0));
5856 break;
5858 default:
5859 break;
5862 return x;
5865 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5867 static rtx
5868 simplify_if_then_else (rtx x)
5870 enum machine_mode mode = GET_MODE (x);
5871 rtx cond = XEXP (x, 0);
5872 rtx true_rtx = XEXP (x, 1);
5873 rtx false_rtx = XEXP (x, 2);
5874 enum rtx_code true_code = GET_CODE (cond);
5875 int comparison_p = COMPARISON_P (cond);
5876 rtx temp;
5877 int i;
5878 enum rtx_code false_code;
5879 rtx reversed;
5881 /* Simplify storing of the truth value. */
5882 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5883 return simplify_gen_relational (true_code, mode, VOIDmode,
5884 XEXP (cond, 0), XEXP (cond, 1));
5886 /* Also when the truth value has to be reversed. */
5887 if (comparison_p
5888 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5889 && (reversed = reversed_comparison (cond, mode)))
5890 return reversed;
5892 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5893 in it is being compared against certain values. Get the true and false
5894 comparisons and see if that says anything about the value of each arm. */
5896 if (comparison_p
5897 && ((false_code = reversed_comparison_code (cond, NULL))
5898 != UNKNOWN)
5899 && REG_P (XEXP (cond, 0)))
5901 HOST_WIDE_INT nzb;
5902 rtx from = XEXP (cond, 0);
5903 rtx true_val = XEXP (cond, 1);
5904 rtx false_val = true_val;
5905 int swapped = 0;
5907 /* If FALSE_CODE is EQ, swap the codes and arms. */
5909 if (false_code == EQ)
5911 swapped = 1, true_code = EQ, false_code = NE;
5912 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5915 /* If we are comparing against zero and the expression being tested has
5916 only a single bit that might be nonzero, that is its value when it is
5917 not equal to zero. Similarly if it is known to be -1 or 0. */
5919 if (true_code == EQ && true_val == const0_rtx
5920 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5922 false_code = EQ;
5923 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
5925 else if (true_code == EQ && true_val == const0_rtx
5926 && (num_sign_bit_copies (from, GET_MODE (from))
5927 == GET_MODE_BITSIZE (GET_MODE (from))))
5929 false_code = EQ;
5930 false_val = constm1_rtx;
5933 /* Now simplify an arm if we know the value of the register in the
5934 branch and it is used in the arm. Be careful due to the potential
5935 of locally-shared RTL. */
5937 if (reg_mentioned_p (from, true_rtx))
5938 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5939 from, true_val),
5940 pc_rtx, pc_rtx, 0, 0);
5941 if (reg_mentioned_p (from, false_rtx))
5942 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5943 from, false_val),
5944 pc_rtx, pc_rtx, 0, 0);
5946 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5947 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5949 true_rtx = XEXP (x, 1);
5950 false_rtx = XEXP (x, 2);
5951 true_code = GET_CODE (cond);
5954 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5955 reversed, do so to avoid needing two sets of patterns for
5956 subtract-and-branch insns. Similarly if we have a constant in the true
5957 arm, the false arm is the same as the first operand of the comparison, or
5958 the false arm is more complicated than the true arm. */
5960 if (comparison_p
5961 && reversed_comparison_code (cond, NULL) != UNKNOWN
5962 && (true_rtx == pc_rtx
5963 || (CONSTANT_P (true_rtx)
5964 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
5965 || true_rtx == const0_rtx
5966 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5967 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5968 && !OBJECT_P (false_rtx))
5969 || reg_mentioned_p (true_rtx, false_rtx)
5970 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5972 true_code = reversed_comparison_code (cond, NULL);
5973 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5974 SUBST (XEXP (x, 1), false_rtx);
5975 SUBST (XEXP (x, 2), true_rtx);
5977 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5978 cond = XEXP (x, 0);
5980 /* It is possible that the conditional has been simplified out. */
5981 true_code = GET_CODE (cond);
5982 comparison_p = COMPARISON_P (cond);
5985 /* If the two arms are identical, we don't need the comparison. */
5987 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5988 return true_rtx;
5990 /* Convert a == b ? b : a to "a". */
5991 if (true_code == EQ && ! side_effects_p (cond)
5992 && !HONOR_NANS (mode)
5993 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5994 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5995 return false_rtx;
5996 else if (true_code == NE && ! side_effects_p (cond)
5997 && !HONOR_NANS (mode)
5998 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5999 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6000 return true_rtx;
6002 /* Look for cases where we have (abs x) or (neg (abs X)). */
6004 if (GET_MODE_CLASS (mode) == MODE_INT
6005 && comparison_p
6006 && XEXP (cond, 1) == const0_rtx
6007 && GET_CODE (false_rtx) == NEG
6008 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6009 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6010 && ! side_effects_p (true_rtx))
6011 switch (true_code)
6013 case GT:
6014 case GE:
6015 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6016 case LT:
6017 case LE:
6018 return
6019 simplify_gen_unary (NEG, mode,
6020 simplify_gen_unary (ABS, mode, true_rtx, mode),
6021 mode);
6022 default:
6023 break;
6026 /* Look for MIN or MAX. */
6028 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6029 && comparison_p
6030 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6031 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6032 && ! side_effects_p (cond))
6033 switch (true_code)
6035 case GE:
6036 case GT:
6037 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6038 case LE:
6039 case LT:
6040 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6041 case GEU:
6042 case GTU:
6043 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6044 case LEU:
6045 case LTU:
6046 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6047 default:
6048 break;
6051 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6052 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6053 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6054 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6055 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6056 neither 1 or -1, but it isn't worth checking for. */
6058 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6059 && comparison_p
6060 && GET_MODE_CLASS (mode) == MODE_INT
6061 && ! side_effects_p (x))
6063 rtx t = make_compound_operation (true_rtx, SET);
6064 rtx f = make_compound_operation (false_rtx, SET);
6065 rtx cond_op0 = XEXP (cond, 0);
6066 rtx cond_op1 = XEXP (cond, 1);
6067 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6068 enum machine_mode m = mode;
6069 rtx z = 0, c1 = NULL_RTX;
6071 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6072 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6073 || GET_CODE (t) == ASHIFT
6074 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6075 && rtx_equal_p (XEXP (t, 0), f))
6076 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6078 /* If an identity-zero op is commutative, check whether there
6079 would be a match if we swapped the operands. */
6080 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6081 || GET_CODE (t) == XOR)
6082 && rtx_equal_p (XEXP (t, 1), f))
6083 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6084 else if (GET_CODE (t) == SIGN_EXTEND
6085 && (GET_CODE (XEXP (t, 0)) == PLUS
6086 || GET_CODE (XEXP (t, 0)) == MINUS
6087 || GET_CODE (XEXP (t, 0)) == IOR
6088 || GET_CODE (XEXP (t, 0)) == XOR
6089 || GET_CODE (XEXP (t, 0)) == ASHIFT
6090 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6091 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6092 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6093 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6094 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6095 && (num_sign_bit_copies (f, GET_MODE (f))
6096 > (unsigned int)
6097 (GET_MODE_BITSIZE (mode)
6098 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6100 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6101 extend_op = SIGN_EXTEND;
6102 m = GET_MODE (XEXP (t, 0));
6104 else if (GET_CODE (t) == SIGN_EXTEND
6105 && (GET_CODE (XEXP (t, 0)) == PLUS
6106 || GET_CODE (XEXP (t, 0)) == IOR
6107 || GET_CODE (XEXP (t, 0)) == XOR)
6108 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6109 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6110 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6111 && (num_sign_bit_copies (f, GET_MODE (f))
6112 > (unsigned int)
6113 (GET_MODE_BITSIZE (mode)
6114 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6116 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6117 extend_op = SIGN_EXTEND;
6118 m = GET_MODE (XEXP (t, 0));
6120 else if (GET_CODE (t) == ZERO_EXTEND
6121 && (GET_CODE (XEXP (t, 0)) == PLUS
6122 || GET_CODE (XEXP (t, 0)) == MINUS
6123 || GET_CODE (XEXP (t, 0)) == IOR
6124 || GET_CODE (XEXP (t, 0)) == XOR
6125 || GET_CODE (XEXP (t, 0)) == ASHIFT
6126 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6127 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6128 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6129 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6130 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6131 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6132 && ((nonzero_bits (f, GET_MODE (f))
6133 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6134 == 0))
6136 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6137 extend_op = ZERO_EXTEND;
6138 m = GET_MODE (XEXP (t, 0));
6140 else if (GET_CODE (t) == ZERO_EXTEND
6141 && (GET_CODE (XEXP (t, 0)) == PLUS
6142 || GET_CODE (XEXP (t, 0)) == IOR
6143 || GET_CODE (XEXP (t, 0)) == XOR)
6144 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6145 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6146 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6147 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6148 && ((nonzero_bits (f, GET_MODE (f))
6149 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6150 == 0))
6152 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6153 extend_op = ZERO_EXTEND;
6154 m = GET_MODE (XEXP (t, 0));
6157 if (z)
6159 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6160 cond_op0, cond_op1),
6161 pc_rtx, pc_rtx, 0, 0);
6162 temp = simplify_gen_binary (MULT, m, temp,
6163 simplify_gen_binary (MULT, m, c1,
6164 const_true_rtx));
6165 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
6166 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6168 if (extend_op != UNKNOWN)
6169 temp = simplify_gen_unary (extend_op, mode, temp, m);
6171 return temp;
6175 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6176 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6177 negation of a single bit, we can convert this operation to a shift. We
6178 can actually do this more generally, but it doesn't seem worth it. */
6180 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6181 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6182 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6183 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6184 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6185 == GET_MODE_BITSIZE (mode))
6186 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6187 return
6188 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6189 gen_lowpart (mode, XEXP (cond, 0)), i);
6191 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6192 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6193 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6194 && GET_MODE (XEXP (cond, 0)) == mode
6195 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6196 == nonzero_bits (XEXP (cond, 0), mode)
6197 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6198 return XEXP (cond, 0);
6200 return x;
6203 /* Simplify X, a SET expression. Return the new expression. */
6205 static rtx
6206 simplify_set (rtx x)
6208 rtx src = SET_SRC (x);
6209 rtx dest = SET_DEST (x);
6210 enum machine_mode mode
6211 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6212 rtx other_insn;
6213 rtx *cc_use;
6215 /* (set (pc) (return)) gets written as (return). */
6216 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
6217 return src;
6219 /* Now that we know for sure which bits of SRC we are using, see if we can
6220 simplify the expression for the object knowing that we only need the
6221 low-order bits. */
6223 if (GET_MODE_CLASS (mode) == MODE_INT
6224 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
6226 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6227 SUBST (SET_SRC (x), src);
6230 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6231 the comparison result and try to simplify it unless we already have used
6232 undobuf.other_insn. */
6233 if ((GET_MODE_CLASS (mode) == MODE_CC
6234 || GET_CODE (src) == COMPARE
6235 || CC0_P (dest))
6236 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6237 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6238 && COMPARISON_P (*cc_use)
6239 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6241 enum rtx_code old_code = GET_CODE (*cc_use);
6242 enum rtx_code new_code;
6243 rtx op0, op1, tmp;
6244 int other_changed = 0;
6245 enum machine_mode compare_mode = GET_MODE (dest);
6247 if (GET_CODE (src) == COMPARE)
6248 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6249 else
6250 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6252 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6253 op0, op1);
6254 if (!tmp)
6255 new_code = old_code;
6256 else if (!CONSTANT_P (tmp))
6258 new_code = GET_CODE (tmp);
6259 op0 = XEXP (tmp, 0);
6260 op1 = XEXP (tmp, 1);
6262 else
6264 rtx pat = PATTERN (other_insn);
6265 undobuf.other_insn = other_insn;
6266 SUBST (*cc_use, tmp);
6268 /* Attempt to simplify CC user. */
6269 if (GET_CODE (pat) == SET)
6271 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6272 if (new_rtx != NULL_RTX)
6273 SUBST (SET_SRC (pat), new_rtx);
6276 /* Convert X into a no-op move. */
6277 SUBST (SET_DEST (x), pc_rtx);
6278 SUBST (SET_SRC (x), pc_rtx);
6279 return x;
6282 /* Simplify our comparison, if possible. */
6283 new_code = simplify_comparison (new_code, &op0, &op1);
6285 #ifdef SELECT_CC_MODE
6286 /* If this machine has CC modes other than CCmode, check to see if we
6287 need to use a different CC mode here. */
6288 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6289 compare_mode = GET_MODE (op0);
6290 else
6291 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6293 #ifndef HAVE_cc0
6294 /* If the mode changed, we have to change SET_DEST, the mode in the
6295 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6296 a hard register, just build new versions with the proper mode. If it
6297 is a pseudo, we lose unless it is only time we set the pseudo, in
6298 which case we can safely change its mode. */
6299 if (compare_mode != GET_MODE (dest))
6301 if (can_change_dest_mode (dest, 0, compare_mode))
6303 unsigned int regno = REGNO (dest);
6304 rtx new_dest;
6306 if (regno < FIRST_PSEUDO_REGISTER)
6307 new_dest = gen_rtx_REG (compare_mode, regno);
6308 else
6310 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6311 new_dest = regno_reg_rtx[regno];
6314 SUBST (SET_DEST (x), new_dest);
6315 SUBST (XEXP (*cc_use, 0), new_dest);
6316 other_changed = 1;
6318 dest = new_dest;
6321 #endif /* cc0 */
6322 #endif /* SELECT_CC_MODE */
6324 /* If the code changed, we have to build a new comparison in
6325 undobuf.other_insn. */
6326 if (new_code != old_code)
6328 int other_changed_previously = other_changed;
6329 unsigned HOST_WIDE_INT mask;
6330 rtx old_cc_use = *cc_use;
6332 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6333 dest, const0_rtx));
6334 other_changed = 1;
6336 /* If the only change we made was to change an EQ into an NE or
6337 vice versa, OP0 has only one bit that might be nonzero, and OP1
6338 is zero, check if changing the user of the condition code will
6339 produce a valid insn. If it won't, we can keep the original code
6340 in that insn by surrounding our operation with an XOR. */
6342 if (((old_code == NE && new_code == EQ)
6343 || (old_code == EQ && new_code == NE))
6344 && ! other_changed_previously && op1 == const0_rtx
6345 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
6346 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6348 rtx pat = PATTERN (other_insn), note = 0;
6350 if ((recog_for_combine (&pat, other_insn, &note) < 0
6351 && ! check_asm_operands (pat)))
6353 *cc_use = old_cc_use;
6354 other_changed = 0;
6356 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
6357 op0, GEN_INT (mask));
6362 if (other_changed)
6363 undobuf.other_insn = other_insn;
6365 /* Otherwise, if we didn't previously have a COMPARE in the
6366 correct mode, we need one. */
6367 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6369 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6370 src = SET_SRC (x);
6372 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6374 SUBST (SET_SRC (x), op0);
6375 src = SET_SRC (x);
6377 /* Otherwise, update the COMPARE if needed. */
6378 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6380 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6381 src = SET_SRC (x);
6384 else
6386 /* Get SET_SRC in a form where we have placed back any
6387 compound expressions. Then do the checks below. */
6388 src = make_compound_operation (src, SET);
6389 SUBST (SET_SRC (x), src);
6392 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6393 and X being a REG or (subreg (reg)), we may be able to convert this to
6394 (set (subreg:m2 x) (op)).
6396 We can always do this if M1 is narrower than M2 because that means that
6397 we only care about the low bits of the result.
6399 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6400 perform a narrower operation than requested since the high-order bits will
6401 be undefined. On machine where it is defined, this transformation is safe
6402 as long as M1 and M2 have the same number of words. */
6404 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6405 && !OBJECT_P (SUBREG_REG (src))
6406 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6407 / UNITS_PER_WORD)
6408 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6409 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6410 #ifndef WORD_REGISTER_OPERATIONS
6411 && (GET_MODE_SIZE (GET_MODE (src))
6412 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6413 #endif
6414 #ifdef CANNOT_CHANGE_MODE_CLASS
6415 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6416 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6417 GET_MODE (SUBREG_REG (src)),
6418 GET_MODE (src)))
6419 #endif
6420 && (REG_P (dest)
6421 || (GET_CODE (dest) == SUBREG
6422 && REG_P (SUBREG_REG (dest)))))
6424 SUBST (SET_DEST (x),
6425 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6426 dest));
6427 SUBST (SET_SRC (x), SUBREG_REG (src));
6429 src = SET_SRC (x), dest = SET_DEST (x);
6432 #ifdef HAVE_cc0
6433 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6434 in SRC. */
6435 if (dest == cc0_rtx
6436 && GET_CODE (src) == SUBREG
6437 && subreg_lowpart_p (src)
6438 && (GET_MODE_BITSIZE (GET_MODE (src))
6439 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
6441 rtx inner = SUBREG_REG (src);
6442 enum machine_mode inner_mode = GET_MODE (inner);
6444 /* Here we make sure that we don't have a sign bit on. */
6445 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
6446 && (nonzero_bits (inner, inner_mode)
6447 < ((unsigned HOST_WIDE_INT) 1
6448 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
6450 SUBST (SET_SRC (x), inner);
6451 src = SET_SRC (x);
6454 #endif
6456 #ifdef LOAD_EXTEND_OP
6457 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6458 would require a paradoxical subreg. Replace the subreg with a
6459 zero_extend to avoid the reload that would otherwise be required. */
6461 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6462 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6463 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6464 && SUBREG_BYTE (src) == 0
6465 && (GET_MODE_SIZE (GET_MODE (src))
6466 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6467 && MEM_P (SUBREG_REG (src)))
6469 SUBST (SET_SRC (x),
6470 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6471 GET_MODE (src), SUBREG_REG (src)));
6473 src = SET_SRC (x);
6475 #endif
6477 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6478 are comparing an item known to be 0 or -1 against 0, use a logical
6479 operation instead. Check for one of the arms being an IOR of the other
6480 arm with some value. We compute three terms to be IOR'ed together. In
6481 practice, at most two will be nonzero. Then we do the IOR's. */
6483 if (GET_CODE (dest) != PC
6484 && GET_CODE (src) == IF_THEN_ELSE
6485 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6486 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6487 && XEXP (XEXP (src, 0), 1) == const0_rtx
6488 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6489 #ifdef HAVE_conditional_move
6490 && ! can_conditionally_move_p (GET_MODE (src))
6491 #endif
6492 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6493 GET_MODE (XEXP (XEXP (src, 0), 0)))
6494 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
6495 && ! side_effects_p (src))
6497 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6498 ? XEXP (src, 1) : XEXP (src, 2));
6499 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6500 ? XEXP (src, 2) : XEXP (src, 1));
6501 rtx term1 = const0_rtx, term2, term3;
6503 if (GET_CODE (true_rtx) == IOR
6504 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6505 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6506 else if (GET_CODE (true_rtx) == IOR
6507 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6508 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6509 else if (GET_CODE (false_rtx) == IOR
6510 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6511 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6512 else if (GET_CODE (false_rtx) == IOR
6513 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6514 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6516 term2 = simplify_gen_binary (AND, GET_MODE (src),
6517 XEXP (XEXP (src, 0), 0), true_rtx);
6518 term3 = simplify_gen_binary (AND, GET_MODE (src),
6519 simplify_gen_unary (NOT, GET_MODE (src),
6520 XEXP (XEXP (src, 0), 0),
6521 GET_MODE (src)),
6522 false_rtx);
6524 SUBST (SET_SRC (x),
6525 simplify_gen_binary (IOR, GET_MODE (src),
6526 simplify_gen_binary (IOR, GET_MODE (src),
6527 term1, term2),
6528 term3));
6530 src = SET_SRC (x);
6533 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6534 whole thing fail. */
6535 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6536 return src;
6537 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6538 return dest;
6539 else
6540 /* Convert this into a field assignment operation, if possible. */
6541 return make_field_assignment (x);
6544 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6545 result. */
6547 static rtx
6548 simplify_logical (rtx x)
6550 enum machine_mode mode = GET_MODE (x);
6551 rtx op0 = XEXP (x, 0);
6552 rtx op1 = XEXP (x, 1);
6554 switch (GET_CODE (x))
6556 case AND:
6557 /* We can call simplify_and_const_int only if we don't lose
6558 any (sign) bits when converting INTVAL (op1) to
6559 "unsigned HOST_WIDE_INT". */
6560 if (CONST_INT_P (op1)
6561 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
6562 || INTVAL (op1) > 0))
6564 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6565 if (GET_CODE (x) != AND)
6566 return x;
6568 op0 = XEXP (x, 0);
6569 op1 = XEXP (x, 1);
6572 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6573 apply the distributive law and then the inverse distributive
6574 law to see if things simplify. */
6575 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6577 rtx result = distribute_and_simplify_rtx (x, 0);
6578 if (result)
6579 return result;
6581 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6583 rtx result = distribute_and_simplify_rtx (x, 1);
6584 if (result)
6585 return result;
6587 break;
6589 case IOR:
6590 /* If we have (ior (and A B) C), apply the distributive law and then
6591 the inverse distributive law to see if things simplify. */
6593 if (GET_CODE (op0) == AND)
6595 rtx result = distribute_and_simplify_rtx (x, 0);
6596 if (result)
6597 return result;
6600 if (GET_CODE (op1) == AND)
6602 rtx result = distribute_and_simplify_rtx (x, 1);
6603 if (result)
6604 return result;
6606 break;
6608 default:
6609 gcc_unreachable ();
6612 return x;
6615 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6616 operations" because they can be replaced with two more basic operations.
6617 ZERO_EXTEND is also considered "compound" because it can be replaced with
6618 an AND operation, which is simpler, though only one operation.
6620 The function expand_compound_operation is called with an rtx expression
6621 and will convert it to the appropriate shifts and AND operations,
6622 simplifying at each stage.
6624 The function make_compound_operation is called to convert an expression
6625 consisting of shifts and ANDs into the equivalent compound expression.
6626 It is the inverse of this function, loosely speaking. */
6628 static rtx
6629 expand_compound_operation (rtx x)
6631 unsigned HOST_WIDE_INT pos = 0, len;
6632 int unsignedp = 0;
6633 unsigned int modewidth;
6634 rtx tem;
6636 switch (GET_CODE (x))
6638 case ZERO_EXTEND:
6639 unsignedp = 1;
6640 case SIGN_EXTEND:
6641 /* We can't necessarily use a const_int for a multiword mode;
6642 it depends on implicitly extending the value.
6643 Since we don't know the right way to extend it,
6644 we can't tell whether the implicit way is right.
6646 Even for a mode that is no wider than a const_int,
6647 we can't win, because we need to sign extend one of its bits through
6648 the rest of it, and we don't know which bit. */
6649 if (CONST_INT_P (XEXP (x, 0)))
6650 return x;
6652 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6653 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6654 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6655 reloaded. If not for that, MEM's would very rarely be safe.
6657 Reject MODEs bigger than a word, because we might not be able
6658 to reference a two-register group starting with an arbitrary register
6659 (and currently gen_lowpart might crash for a SUBREG). */
6661 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6662 return x;
6664 /* Reject MODEs that aren't scalar integers because turning vector
6665 or complex modes into shifts causes problems. */
6667 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6668 return x;
6670 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
6671 /* If the inner object has VOIDmode (the only way this can happen
6672 is if it is an ASM_OPERANDS), we can't do anything since we don't
6673 know how much masking to do. */
6674 if (len == 0)
6675 return x;
6677 break;
6679 case ZERO_EXTRACT:
6680 unsignedp = 1;
6682 /* ... fall through ... */
6684 case SIGN_EXTRACT:
6685 /* If the operand is a CLOBBER, just return it. */
6686 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6687 return XEXP (x, 0);
6689 if (!CONST_INT_P (XEXP (x, 1))
6690 || !CONST_INT_P (XEXP (x, 2))
6691 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6692 return x;
6694 /* Reject MODEs that aren't scalar integers because turning vector
6695 or complex modes into shifts causes problems. */
6697 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6698 return x;
6700 len = INTVAL (XEXP (x, 1));
6701 pos = INTVAL (XEXP (x, 2));
6703 /* This should stay within the object being extracted, fail otherwise. */
6704 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
6705 return x;
6707 if (BITS_BIG_ENDIAN)
6708 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
6710 break;
6712 default:
6713 return x;
6715 /* Convert sign extension to zero extension, if we know that the high
6716 bit is not set, as this is easier to optimize. It will be converted
6717 back to cheaper alternative in make_extraction. */
6718 if (GET_CODE (x) == SIGN_EXTEND
6719 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6720 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6721 & ~(((unsigned HOST_WIDE_INT)
6722 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6723 >> 1))
6724 == 0)))
6726 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6727 rtx temp2 = expand_compound_operation (temp);
6729 /* Make sure this is a profitable operation. */
6730 if (rtx_cost (x, SET, optimize_this_for_speed_p)
6731 > rtx_cost (temp2, SET, optimize_this_for_speed_p))
6732 return temp2;
6733 else if (rtx_cost (x, SET, optimize_this_for_speed_p)
6734 > rtx_cost (temp, SET, optimize_this_for_speed_p))
6735 return temp;
6736 else
6737 return x;
6740 /* We can optimize some special cases of ZERO_EXTEND. */
6741 if (GET_CODE (x) == ZERO_EXTEND)
6743 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6744 know that the last value didn't have any inappropriate bits
6745 set. */
6746 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6747 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6748 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6749 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6750 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6751 return XEXP (XEXP (x, 0), 0);
6753 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6754 if (GET_CODE (XEXP (x, 0)) == SUBREG
6755 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6756 && subreg_lowpart_p (XEXP (x, 0))
6757 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6758 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6759 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6760 return SUBREG_REG (XEXP (x, 0));
6762 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6763 is a comparison and STORE_FLAG_VALUE permits. This is like
6764 the first case, but it works even when GET_MODE (x) is larger
6765 than HOST_WIDE_INT. */
6766 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6767 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6768 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6769 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6770 <= HOST_BITS_PER_WIDE_INT)
6771 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6772 return XEXP (XEXP (x, 0), 0);
6774 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6775 if (GET_CODE (XEXP (x, 0)) == SUBREG
6776 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6777 && subreg_lowpart_p (XEXP (x, 0))
6778 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6779 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6780 <= HOST_BITS_PER_WIDE_INT)
6781 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6782 return SUBREG_REG (XEXP (x, 0));
6786 /* If we reach here, we want to return a pair of shifts. The inner
6787 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6788 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6789 logical depending on the value of UNSIGNEDP.
6791 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6792 converted into an AND of a shift.
6794 We must check for the case where the left shift would have a negative
6795 count. This can happen in a case like (x >> 31) & 255 on machines
6796 that can't shift by a constant. On those machines, we would first
6797 combine the shift with the AND to produce a variable-position
6798 extraction. Then the constant of 31 would be substituted in
6799 to produce such a position. */
6801 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6802 if (modewidth >= pos + len)
6804 enum machine_mode mode = GET_MODE (x);
6805 tem = gen_lowpart (mode, XEXP (x, 0));
6806 if (!tem || GET_CODE (tem) == CLOBBER)
6807 return x;
6808 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6809 tem, modewidth - pos - len);
6810 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6811 mode, tem, modewidth - len);
6813 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6814 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6815 simplify_shift_const (NULL_RTX, LSHIFTRT,
6816 GET_MODE (x),
6817 XEXP (x, 0), pos),
6818 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
6819 else
6820 /* Any other cases we can't handle. */
6821 return x;
6823 /* If we couldn't do this for some reason, return the original
6824 expression. */
6825 if (GET_CODE (tem) == CLOBBER)
6826 return x;
6828 return tem;
6831 /* X is a SET which contains an assignment of one object into
6832 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6833 or certain SUBREGS). If possible, convert it into a series of
6834 logical operations.
6836 We half-heartedly support variable positions, but do not at all
6837 support variable lengths. */
6839 static const_rtx
6840 expand_field_assignment (const_rtx x)
6842 rtx inner;
6843 rtx pos; /* Always counts from low bit. */
6844 int len;
6845 rtx mask, cleared, masked;
6846 enum machine_mode compute_mode;
6848 /* Loop until we find something we can't simplify. */
6849 while (1)
6851 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6852 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6854 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6855 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6856 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6858 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6859 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6861 inner = XEXP (SET_DEST (x), 0);
6862 len = INTVAL (XEXP (SET_DEST (x), 1));
6863 pos = XEXP (SET_DEST (x), 2);
6865 /* A constant position should stay within the width of INNER. */
6866 if (CONST_INT_P (pos)
6867 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6868 break;
6870 if (BITS_BIG_ENDIAN)
6872 if (CONST_INT_P (pos))
6873 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6874 - INTVAL (pos));
6875 else if (GET_CODE (pos) == MINUS
6876 && CONST_INT_P (XEXP (pos, 1))
6877 && (INTVAL (XEXP (pos, 1))
6878 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6879 /* If position is ADJUST - X, new position is X. */
6880 pos = XEXP (pos, 0);
6881 else
6882 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6883 GEN_INT (GET_MODE_BITSIZE (
6884 GET_MODE (inner))
6885 - len),
6886 pos);
6890 /* A SUBREG between two modes that occupy the same numbers of words
6891 can be done by moving the SUBREG to the source. */
6892 else if (GET_CODE (SET_DEST (x)) == SUBREG
6893 /* We need SUBREGs to compute nonzero_bits properly. */
6894 && nonzero_sign_valid
6895 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6896 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6897 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6898 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6900 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6901 gen_lowpart
6902 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6903 SET_SRC (x)));
6904 continue;
6906 else
6907 break;
6909 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6910 inner = SUBREG_REG (inner);
6912 compute_mode = GET_MODE (inner);
6914 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6915 if (! SCALAR_INT_MODE_P (compute_mode))
6917 enum machine_mode imode;
6919 /* Don't do anything for vector or complex integral types. */
6920 if (! FLOAT_MODE_P (compute_mode))
6921 break;
6923 /* Try to find an integral mode to pun with. */
6924 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6925 if (imode == BLKmode)
6926 break;
6928 compute_mode = imode;
6929 inner = gen_lowpart (imode, inner);
6932 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6933 if (len >= HOST_BITS_PER_WIDE_INT)
6934 break;
6936 /* Now compute the equivalent expression. Make a copy of INNER
6937 for the SET_DEST in case it is a MEM into which we will substitute;
6938 we don't want shared RTL in that case. */
6939 mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << len) - 1);
6940 cleared = simplify_gen_binary (AND, compute_mode,
6941 simplify_gen_unary (NOT, compute_mode,
6942 simplify_gen_binary (ASHIFT,
6943 compute_mode,
6944 mask, pos),
6945 compute_mode),
6946 inner);
6947 masked = simplify_gen_binary (ASHIFT, compute_mode,
6948 simplify_gen_binary (
6949 AND, compute_mode,
6950 gen_lowpart (compute_mode, SET_SRC (x)),
6951 mask),
6952 pos);
6954 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6955 simplify_gen_binary (IOR, compute_mode,
6956 cleared, masked));
6959 return x;
6962 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6963 it is an RTX that represents a variable starting position; otherwise,
6964 POS is the (constant) starting bit position (counted from the LSB).
6966 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6967 signed reference.
6969 IN_DEST is nonzero if this is a reference in the destination of a
6970 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6971 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6972 be used.
6974 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6975 ZERO_EXTRACT should be built even for bits starting at bit 0.
6977 MODE is the desired mode of the result (if IN_DEST == 0).
6979 The result is an RTX for the extraction or NULL_RTX if the target
6980 can't handle it. */
6982 static rtx
6983 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6984 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6985 int in_dest, int in_compare)
6987 /* This mode describes the size of the storage area
6988 to fetch the overall value from. Within that, we
6989 ignore the POS lowest bits, etc. */
6990 enum machine_mode is_mode = GET_MODE (inner);
6991 enum machine_mode inner_mode;
6992 enum machine_mode wanted_inner_mode;
6993 enum machine_mode wanted_inner_reg_mode = word_mode;
6994 enum machine_mode pos_mode = word_mode;
6995 enum machine_mode extraction_mode = word_mode;
6996 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6997 rtx new_rtx = 0;
6998 rtx orig_pos_rtx = pos_rtx;
6999 HOST_WIDE_INT orig_pos;
7001 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7003 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7004 consider just the QI as the memory to extract from.
7005 The subreg adds or removes high bits; its mode is
7006 irrelevant to the meaning of this extraction,
7007 since POS and LEN count from the lsb. */
7008 if (MEM_P (SUBREG_REG (inner)))
7009 is_mode = GET_MODE (SUBREG_REG (inner));
7010 inner = SUBREG_REG (inner);
7012 else if (GET_CODE (inner) == ASHIFT
7013 && CONST_INT_P (XEXP (inner, 1))
7014 && pos_rtx == 0 && pos == 0
7015 && len > UINTVAL (XEXP (inner, 1)))
7017 /* We're extracting the least significant bits of an rtx
7018 (ashift X (const_int C)), where LEN > C. Extract the
7019 least significant (LEN - C) bits of X, giving an rtx
7020 whose mode is MODE, then shift it left C times. */
7021 new_rtx = make_extraction (mode, XEXP (inner, 0),
7022 0, 0, len - INTVAL (XEXP (inner, 1)),
7023 unsignedp, in_dest, in_compare);
7024 if (new_rtx != 0)
7025 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7028 inner_mode = GET_MODE (inner);
7030 if (pos_rtx && CONST_INT_P (pos_rtx))
7031 pos = INTVAL (pos_rtx), pos_rtx = 0;
7033 /* See if this can be done without an extraction. We never can if the
7034 width of the field is not the same as that of some integer mode. For
7035 registers, we can only avoid the extraction if the position is at the
7036 low-order bit and this is either not in the destination or we have the
7037 appropriate STRICT_LOW_PART operation available.
7039 For MEM, we can avoid an extract if the field starts on an appropriate
7040 boundary and we can change the mode of the memory reference. */
7042 if (tmode != BLKmode
7043 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7044 && !MEM_P (inner)
7045 && (inner_mode == tmode
7046 || !REG_P (inner)
7047 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
7048 GET_MODE_BITSIZE (inner_mode))
7049 || reg_truncated_to_mode (tmode, inner))
7050 && (! in_dest
7051 || (REG_P (inner)
7052 && have_insn_for (STRICT_LOW_PART, tmode))))
7053 || (MEM_P (inner) && pos_rtx == 0
7054 && (pos
7055 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7056 : BITS_PER_UNIT)) == 0
7057 /* We can't do this if we are widening INNER_MODE (it
7058 may not be aligned, for one thing). */
7059 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
7060 && (inner_mode == tmode
7061 || (! mode_dependent_address_p (XEXP (inner, 0))
7062 && ! MEM_VOLATILE_P (inner))))))
7064 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7065 field. If the original and current mode are the same, we need not
7066 adjust the offset. Otherwise, we do if bytes big endian.
7068 If INNER is not a MEM, get a piece consisting of just the field
7069 of interest (in this case POS % BITS_PER_WORD must be 0). */
7071 if (MEM_P (inner))
7073 HOST_WIDE_INT offset;
7075 /* POS counts from lsb, but make OFFSET count in memory order. */
7076 if (BYTES_BIG_ENDIAN)
7077 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
7078 else
7079 offset = pos / BITS_PER_UNIT;
7081 new_rtx = adjust_address_nv (inner, tmode, offset);
7083 else if (REG_P (inner))
7085 if (tmode != inner_mode)
7087 /* We can't call gen_lowpart in a DEST since we
7088 always want a SUBREG (see below) and it would sometimes
7089 return a new hard register. */
7090 if (pos || in_dest)
7092 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7094 if (WORDS_BIG_ENDIAN
7095 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7096 final_word = ((GET_MODE_SIZE (inner_mode)
7097 - GET_MODE_SIZE (tmode))
7098 / UNITS_PER_WORD) - final_word;
7100 final_word *= UNITS_PER_WORD;
7101 if (BYTES_BIG_ENDIAN &&
7102 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7103 final_word += (GET_MODE_SIZE (inner_mode)
7104 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7106 /* Avoid creating invalid subregs, for example when
7107 simplifying (x>>32)&255. */
7108 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7109 return NULL_RTX;
7111 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7113 else
7114 new_rtx = gen_lowpart (tmode, inner);
7116 else
7117 new_rtx = inner;
7119 else
7120 new_rtx = force_to_mode (inner, tmode,
7121 len >= HOST_BITS_PER_WIDE_INT
7122 ? ~(unsigned HOST_WIDE_INT) 0
7123 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7126 /* If this extraction is going into the destination of a SET,
7127 make a STRICT_LOW_PART unless we made a MEM. */
7129 if (in_dest)
7130 return (MEM_P (new_rtx) ? new_rtx
7131 : (GET_CODE (new_rtx) != SUBREG
7132 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7133 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7135 if (mode == tmode)
7136 return new_rtx;
7138 if (CONST_INT_P (new_rtx)
7139 || GET_CODE (new_rtx) == CONST_DOUBLE)
7140 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7141 mode, new_rtx, tmode);
7143 /* If we know that no extraneous bits are set, and that the high
7144 bit is not set, convert the extraction to the cheaper of
7145 sign and zero extension, that are equivalent in these cases. */
7146 if (flag_expensive_optimizations
7147 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
7148 && ((nonzero_bits (new_rtx, tmode)
7149 & ~(((unsigned HOST_WIDE_INT)
7150 GET_MODE_MASK (tmode))
7151 >> 1))
7152 == 0)))
7154 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7155 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7157 /* Prefer ZERO_EXTENSION, since it gives more information to
7158 backends. */
7159 if (rtx_cost (temp, SET, optimize_this_for_speed_p)
7160 <= rtx_cost (temp1, SET, optimize_this_for_speed_p))
7161 return temp;
7162 return temp1;
7165 /* Otherwise, sign- or zero-extend unless we already are in the
7166 proper mode. */
7168 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7169 mode, new_rtx));
7172 /* Unless this is a COMPARE or we have a funny memory reference,
7173 don't do anything with zero-extending field extracts starting at
7174 the low-order bit since they are simple AND operations. */
7175 if (pos_rtx == 0 && pos == 0 && ! in_dest
7176 && ! in_compare && unsignedp)
7177 return 0;
7179 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7180 if the position is not a constant and the length is not 1. In all
7181 other cases, we would only be going outside our object in cases when
7182 an original shift would have been undefined. */
7183 if (MEM_P (inner)
7184 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
7185 || (pos_rtx != 0 && len != 1)))
7186 return 0;
7188 /* Get the mode to use should INNER not be a MEM, the mode for the position,
7189 and the mode for the result. */
7190 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
7192 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
7193 pos_mode = mode_for_extraction (EP_insv, 2);
7194 extraction_mode = mode_for_extraction (EP_insv, 3);
7197 if (! in_dest && unsignedp
7198 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
7200 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
7201 pos_mode = mode_for_extraction (EP_extzv, 3);
7202 extraction_mode = mode_for_extraction (EP_extzv, 0);
7205 if (! in_dest && ! unsignedp
7206 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
7208 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
7209 pos_mode = mode_for_extraction (EP_extv, 3);
7210 extraction_mode = mode_for_extraction (EP_extv, 0);
7213 /* Never narrow an object, since that might not be safe. */
7215 if (mode != VOIDmode
7216 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7217 extraction_mode = mode;
7219 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
7220 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7221 pos_mode = GET_MODE (pos_rtx);
7223 /* If this is not from memory, the desired mode is the preferred mode
7224 for an extraction pattern's first input operand, or word_mode if there
7225 is none. */
7226 if (!MEM_P (inner))
7227 wanted_inner_mode = wanted_inner_reg_mode;
7228 else
7230 /* Be careful not to go beyond the extracted object and maintain the
7231 natural alignment of the memory. */
7232 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7233 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7234 > GET_MODE_BITSIZE (wanted_inner_mode))
7236 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7237 gcc_assert (wanted_inner_mode != VOIDmode);
7240 /* If we have to change the mode of memory and cannot, the desired mode
7241 is EXTRACTION_MODE. */
7242 if (inner_mode != wanted_inner_mode
7243 && (mode_dependent_address_p (XEXP (inner, 0))
7244 || MEM_VOLATILE_P (inner)
7245 || pos_rtx))
7246 wanted_inner_mode = extraction_mode;
7249 orig_pos = pos;
7251 if (BITS_BIG_ENDIAN)
7253 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7254 BITS_BIG_ENDIAN style. If position is constant, compute new
7255 position. Otherwise, build subtraction.
7256 Note that POS is relative to the mode of the original argument.
7257 If it's a MEM we need to recompute POS relative to that.
7258 However, if we're extracting from (or inserting into) a register,
7259 we want to recompute POS relative to wanted_inner_mode. */
7260 int width = (MEM_P (inner)
7261 ? GET_MODE_BITSIZE (is_mode)
7262 : GET_MODE_BITSIZE (wanted_inner_mode));
7264 if (pos_rtx == 0)
7265 pos = width - len - pos;
7266 else
7267 pos_rtx
7268 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
7269 /* POS may be less than 0 now, but we check for that below.
7270 Note that it can only be less than 0 if !MEM_P (inner). */
7273 /* If INNER has a wider mode, and this is a constant extraction, try to
7274 make it smaller and adjust the byte to point to the byte containing
7275 the value. */
7276 if (wanted_inner_mode != VOIDmode
7277 && inner_mode != wanted_inner_mode
7278 && ! pos_rtx
7279 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7280 && MEM_P (inner)
7281 && ! mode_dependent_address_p (XEXP (inner, 0))
7282 && ! MEM_VOLATILE_P (inner))
7284 int offset = 0;
7286 /* The computations below will be correct if the machine is big
7287 endian in both bits and bytes or little endian in bits and bytes.
7288 If it is mixed, we must adjust. */
7290 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7291 adjust OFFSET to compensate. */
7292 if (BYTES_BIG_ENDIAN
7293 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7294 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7296 /* We can now move to the desired byte. */
7297 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7298 * GET_MODE_SIZE (wanted_inner_mode);
7299 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7301 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7302 && is_mode != wanted_inner_mode)
7303 offset = (GET_MODE_SIZE (is_mode)
7304 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7306 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7309 /* If INNER is not memory, get it into the proper mode. If we are changing
7310 its mode, POS must be a constant and smaller than the size of the new
7311 mode. */
7312 else if (!MEM_P (inner))
7314 /* On the LHS, don't create paradoxical subregs implicitely truncating
7315 the register unless TRULY_NOOP_TRUNCATION. */
7316 if (in_dest
7317 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (inner)),
7318 GET_MODE_BITSIZE (wanted_inner_mode)))
7319 return NULL_RTX;
7321 if (GET_MODE (inner) != wanted_inner_mode
7322 && (pos_rtx != 0
7323 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7324 return NULL_RTX;
7326 if (orig_pos < 0)
7327 return NULL_RTX;
7329 inner = force_to_mode (inner, wanted_inner_mode,
7330 pos_rtx
7331 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7332 ? ~(unsigned HOST_WIDE_INT) 0
7333 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7334 << orig_pos),
7338 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7339 have to zero extend. Otherwise, we can just use a SUBREG. */
7340 if (pos_rtx != 0
7341 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7343 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
7345 /* If we know that no extraneous bits are set, and that the high
7346 bit is not set, convert extraction to cheaper one - either
7347 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7348 cases. */
7349 if (flag_expensive_optimizations
7350 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
7351 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7352 & ~(((unsigned HOST_WIDE_INT)
7353 GET_MODE_MASK (GET_MODE (pos_rtx)))
7354 >> 1))
7355 == 0)))
7357 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
7359 /* Prefer ZERO_EXTENSION, since it gives more information to
7360 backends. */
7361 if (rtx_cost (temp1, SET, optimize_this_for_speed_p)
7362 < rtx_cost (temp, SET, optimize_this_for_speed_p))
7363 temp = temp1;
7365 pos_rtx = temp;
7367 else if (pos_rtx != 0
7368 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
7369 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
7371 /* Make POS_RTX unless we already have it and it is correct. If we don't
7372 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7373 be a CONST_INT. */
7374 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7375 pos_rtx = orig_pos_rtx;
7377 else if (pos_rtx == 0)
7378 pos_rtx = GEN_INT (pos);
7380 /* Make the required operation. See if we can use existing rtx. */
7381 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7382 extraction_mode, inner, GEN_INT (len), pos_rtx);
7383 if (! in_dest)
7384 new_rtx = gen_lowpart (mode, new_rtx);
7386 return new_rtx;
7389 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7390 with any other operations in X. Return X without that shift if so. */
7392 static rtx
7393 extract_left_shift (rtx x, int count)
7395 enum rtx_code code = GET_CODE (x);
7396 enum machine_mode mode = GET_MODE (x);
7397 rtx tem;
7399 switch (code)
7401 case ASHIFT:
7402 /* This is the shift itself. If it is wide enough, we will return
7403 either the value being shifted if the shift count is equal to
7404 COUNT or a shift for the difference. */
7405 if (CONST_INT_P (XEXP (x, 1))
7406 && INTVAL (XEXP (x, 1)) >= count)
7407 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7408 INTVAL (XEXP (x, 1)) - count);
7409 break;
7411 case NEG: case NOT:
7412 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7413 return simplify_gen_unary (code, mode, tem, mode);
7415 break;
7417 case PLUS: case IOR: case XOR: case AND:
7418 /* If we can safely shift this constant and we find the inner shift,
7419 make a new operation. */
7420 if (CONST_INT_P (XEXP (x, 1))
7421 && (UINTVAL (XEXP (x, 1))
7422 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7423 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7424 return simplify_gen_binary (code, mode, tem,
7425 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
7427 break;
7429 default:
7430 break;
7433 return 0;
7436 /* Look at the expression rooted at X. Look for expressions
7437 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7438 Form these expressions.
7440 Return the new rtx, usually just X.
7442 Also, for machines like the VAX that don't have logical shift insns,
7443 try to convert logical to arithmetic shift operations in cases where
7444 they are equivalent. This undoes the canonicalizations to logical
7445 shifts done elsewhere.
7447 We try, as much as possible, to re-use rtl expressions to save memory.
7449 IN_CODE says what kind of expression we are processing. Normally, it is
7450 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7451 being kludges), it is MEM. When processing the arguments of a comparison
7452 or a COMPARE against zero, it is COMPARE. */
7454 static rtx
7455 make_compound_operation (rtx x, enum rtx_code in_code)
7457 enum rtx_code code = GET_CODE (x);
7458 enum machine_mode mode = GET_MODE (x);
7459 int mode_width = GET_MODE_BITSIZE (mode);
7460 rtx rhs, lhs;
7461 enum rtx_code next_code;
7462 int i, j;
7463 rtx new_rtx = 0;
7464 rtx tem;
7465 const char *fmt;
7467 /* Select the code to be used in recursive calls. Once we are inside an
7468 address, we stay there. If we have a comparison, set to COMPARE,
7469 but once inside, go back to our default of SET. */
7471 next_code = (code == MEM ? MEM
7472 : ((code == PLUS || code == MINUS)
7473 && SCALAR_INT_MODE_P (mode)) ? MEM
7474 : ((code == COMPARE || COMPARISON_P (x))
7475 && XEXP (x, 1) == const0_rtx) ? COMPARE
7476 : in_code == COMPARE ? SET : in_code);
7478 /* Process depending on the code of this operation. If NEW is set
7479 nonzero, it will be returned. */
7481 switch (code)
7483 case ASHIFT:
7484 /* Convert shifts by constants into multiplications if inside
7485 an address. */
7486 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7487 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7488 && INTVAL (XEXP (x, 1)) >= 0)
7490 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7491 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7493 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7494 if (GET_CODE (new_rtx) == NEG)
7496 new_rtx = XEXP (new_rtx, 0);
7497 multval = -multval;
7499 multval = trunc_int_for_mode (multval, mode);
7500 new_rtx = gen_rtx_MULT (mode, new_rtx, GEN_INT (multval));
7502 break;
7504 case PLUS:
7505 lhs = XEXP (x, 0);
7506 rhs = XEXP (x, 1);
7507 lhs = make_compound_operation (lhs, next_code);
7508 rhs = make_compound_operation (rhs, next_code);
7509 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7510 && SCALAR_INT_MODE_P (mode))
7512 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7513 XEXP (lhs, 1));
7514 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7516 else if (GET_CODE (lhs) == MULT
7517 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7519 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7520 simplify_gen_unary (NEG, mode,
7521 XEXP (lhs, 1),
7522 mode));
7523 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7525 else
7527 SUBST (XEXP (x, 0), lhs);
7528 SUBST (XEXP (x, 1), rhs);
7529 goto maybe_swap;
7531 x = gen_lowpart (mode, new_rtx);
7532 goto maybe_swap;
7534 case MINUS:
7535 lhs = XEXP (x, 0);
7536 rhs = XEXP (x, 1);
7537 lhs = make_compound_operation (lhs, next_code);
7538 rhs = make_compound_operation (rhs, next_code);
7539 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7540 && SCALAR_INT_MODE_P (mode))
7542 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7543 XEXP (rhs, 1));
7544 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7546 else if (GET_CODE (rhs) == MULT
7547 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7549 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7550 simplify_gen_unary (NEG, mode,
7551 XEXP (rhs, 1),
7552 mode));
7553 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7555 else
7557 SUBST (XEXP (x, 0), lhs);
7558 SUBST (XEXP (x, 1), rhs);
7559 return x;
7561 return gen_lowpart (mode, new_rtx);
7563 case AND:
7564 /* If the second operand is not a constant, we can't do anything
7565 with it. */
7566 if (!CONST_INT_P (XEXP (x, 1)))
7567 break;
7569 /* If the constant is a power of two minus one and the first operand
7570 is a logical right shift, make an extraction. */
7571 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7572 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7574 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7575 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7576 0, in_code == COMPARE);
7579 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7580 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7581 && subreg_lowpart_p (XEXP (x, 0))
7582 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7583 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7585 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7586 next_code);
7587 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7588 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7589 0, in_code == COMPARE);
7591 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7592 else if ((GET_CODE (XEXP (x, 0)) == XOR
7593 || GET_CODE (XEXP (x, 0)) == IOR)
7594 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7595 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7596 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7598 /* Apply the distributive law, and then try to make extractions. */
7599 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7600 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7601 XEXP (x, 1)),
7602 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7603 XEXP (x, 1)));
7604 new_rtx = make_compound_operation (new_rtx, in_code);
7607 /* If we are have (and (rotate X C) M) and C is larger than the number
7608 of bits in M, this is an extraction. */
7610 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7611 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7612 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7613 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7615 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7616 new_rtx = make_extraction (mode, new_rtx,
7617 (GET_MODE_BITSIZE (mode)
7618 - INTVAL (XEXP (XEXP (x, 0), 1))),
7619 NULL_RTX, i, 1, 0, in_code == COMPARE);
7622 /* On machines without logical shifts, if the operand of the AND is
7623 a logical shift and our mask turns off all the propagated sign
7624 bits, we can replace the logical shift with an arithmetic shift. */
7625 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7626 && !have_insn_for (LSHIFTRT, mode)
7627 && have_insn_for (ASHIFTRT, mode)
7628 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7629 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7630 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7631 && mode_width <= HOST_BITS_PER_WIDE_INT)
7633 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7635 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7636 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7637 SUBST (XEXP (x, 0),
7638 gen_rtx_ASHIFTRT (mode,
7639 make_compound_operation
7640 (XEXP (XEXP (x, 0), 0), next_code),
7641 XEXP (XEXP (x, 0), 1)));
7644 /* If the constant is one less than a power of two, this might be
7645 representable by an extraction even if no shift is present.
7646 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7647 we are in a COMPARE. */
7648 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7649 new_rtx = make_extraction (mode,
7650 make_compound_operation (XEXP (x, 0),
7651 next_code),
7652 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7654 /* If we are in a comparison and this is an AND with a power of two,
7655 convert this into the appropriate bit extract. */
7656 else if (in_code == COMPARE
7657 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7658 new_rtx = make_extraction (mode,
7659 make_compound_operation (XEXP (x, 0),
7660 next_code),
7661 i, NULL_RTX, 1, 1, 0, 1);
7663 break;
7665 case LSHIFTRT:
7666 /* If the sign bit is known to be zero, replace this with an
7667 arithmetic shift. */
7668 if (have_insn_for (ASHIFTRT, mode)
7669 && ! have_insn_for (LSHIFTRT, mode)
7670 && mode_width <= HOST_BITS_PER_WIDE_INT
7671 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7673 new_rtx = gen_rtx_ASHIFTRT (mode,
7674 make_compound_operation (XEXP (x, 0),
7675 next_code),
7676 XEXP (x, 1));
7677 break;
7680 /* ... fall through ... */
7682 case ASHIFTRT:
7683 lhs = XEXP (x, 0);
7684 rhs = XEXP (x, 1);
7686 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7687 this is a SIGN_EXTRACT. */
7688 if (CONST_INT_P (rhs)
7689 && GET_CODE (lhs) == ASHIFT
7690 && CONST_INT_P (XEXP (lhs, 1))
7691 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7692 && INTVAL (rhs) < mode_width)
7694 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7695 new_rtx = make_extraction (mode, new_rtx,
7696 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7697 NULL_RTX, mode_width - INTVAL (rhs),
7698 code == LSHIFTRT, 0, in_code == COMPARE);
7699 break;
7702 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7703 If so, try to merge the shifts into a SIGN_EXTEND. We could
7704 also do this for some cases of SIGN_EXTRACT, but it doesn't
7705 seem worth the effort; the case checked for occurs on Alpha. */
7707 if (!OBJECT_P (lhs)
7708 && ! (GET_CODE (lhs) == SUBREG
7709 && (OBJECT_P (SUBREG_REG (lhs))))
7710 && CONST_INT_P (rhs)
7711 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7712 && INTVAL (rhs) < mode_width
7713 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7714 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7715 0, NULL_RTX, mode_width - INTVAL (rhs),
7716 code == LSHIFTRT, 0, in_code == COMPARE);
7718 break;
7720 case SUBREG:
7721 /* Call ourselves recursively on the inner expression. If we are
7722 narrowing the object and it has a different RTL code from
7723 what it originally did, do this SUBREG as a force_to_mode. */
7725 rtx inner = SUBREG_REG (x), simplified;
7727 tem = make_compound_operation (inner, in_code);
7729 simplified
7730 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
7731 if (simplified)
7732 tem = simplified;
7734 if (GET_CODE (tem) != GET_CODE (inner)
7735 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7736 && subreg_lowpart_p (x))
7738 rtx newer
7739 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
7741 /* If we have something other than a SUBREG, we might have
7742 done an expansion, so rerun ourselves. */
7743 if (GET_CODE (newer) != SUBREG)
7744 newer = make_compound_operation (newer, in_code);
7746 /* force_to_mode can expand compounds. If it just re-expanded the
7747 compound, use gen_lowpart to convert to the desired mode. */
7748 if (rtx_equal_p (newer, x)
7749 /* Likewise if it re-expanded the compound only partially.
7750 This happens for SUBREG of ZERO_EXTRACT if they extract
7751 the same number of bits. */
7752 || (GET_CODE (newer) == SUBREG
7753 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
7754 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
7755 && GET_CODE (inner) == AND
7756 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
7757 return gen_lowpart (GET_MODE (x), tem);
7759 return newer;
7762 if (simplified)
7763 return tem;
7765 break;
7767 default:
7768 break;
7771 if (new_rtx)
7773 x = gen_lowpart (mode, new_rtx);
7774 code = GET_CODE (x);
7777 /* Now recursively process each operand of this operation. */
7778 fmt = GET_RTX_FORMAT (code);
7779 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7780 if (fmt[i] == 'e')
7782 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7783 SUBST (XEXP (x, i), new_rtx);
7785 else if (fmt[i] == 'E')
7786 for (j = 0; j < XVECLEN (x, i); j++)
7788 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7789 SUBST (XVECEXP (x, i, j), new_rtx);
7792 maybe_swap:
7793 /* If this is a commutative operation, the changes to the operands
7794 may have made it noncanonical. */
7795 if (COMMUTATIVE_ARITH_P (x)
7796 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7798 tem = XEXP (x, 0);
7799 SUBST (XEXP (x, 0), XEXP (x, 1));
7800 SUBST (XEXP (x, 1), tem);
7803 return x;
7806 /* Given M see if it is a value that would select a field of bits
7807 within an item, but not the entire word. Return -1 if not.
7808 Otherwise, return the starting position of the field, where 0 is the
7809 low-order bit.
7811 *PLEN is set to the length of the field. */
7813 static int
7814 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7816 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7817 int pos = m ? ctz_hwi (m) : -1;
7818 int len = 0;
7820 if (pos >= 0)
7821 /* Now shift off the low-order zero bits and see if we have a
7822 power of two minus 1. */
7823 len = exact_log2 ((m >> pos) + 1);
7825 if (len <= 0)
7826 pos = -1;
7828 *plen = len;
7829 return pos;
7832 /* If X refers to a register that equals REG in value, replace these
7833 references with REG. */
7834 static rtx
7835 canon_reg_for_combine (rtx x, rtx reg)
7837 rtx op0, op1, op2;
7838 const char *fmt;
7839 int i;
7840 bool copied;
7842 enum rtx_code code = GET_CODE (x);
7843 switch (GET_RTX_CLASS (code))
7845 case RTX_UNARY:
7846 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7847 if (op0 != XEXP (x, 0))
7848 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7849 GET_MODE (reg));
7850 break;
7852 case RTX_BIN_ARITH:
7853 case RTX_COMM_ARITH:
7854 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7855 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7856 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7857 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7858 break;
7860 case RTX_COMPARE:
7861 case RTX_COMM_COMPARE:
7862 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7863 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7864 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7865 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7866 GET_MODE (op0), op0, op1);
7867 break;
7869 case RTX_TERNARY:
7870 case RTX_BITFIELD_OPS:
7871 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7872 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7873 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7874 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7875 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7876 GET_MODE (op0), op0, op1, op2);
7878 case RTX_OBJ:
7879 if (REG_P (x))
7881 if (rtx_equal_p (get_last_value (reg), x)
7882 || rtx_equal_p (reg, get_last_value (x)))
7883 return reg;
7884 else
7885 break;
7888 /* fall through */
7890 default:
7891 fmt = GET_RTX_FORMAT (code);
7892 copied = false;
7893 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7894 if (fmt[i] == 'e')
7896 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7897 if (op != XEXP (x, i))
7899 if (!copied)
7901 copied = true;
7902 x = copy_rtx (x);
7904 XEXP (x, i) = op;
7907 else if (fmt[i] == 'E')
7909 int j;
7910 for (j = 0; j < XVECLEN (x, i); j++)
7912 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7913 if (op != XVECEXP (x, i, j))
7915 if (!copied)
7917 copied = true;
7918 x = copy_rtx (x);
7920 XVECEXP (x, i, j) = op;
7925 break;
7928 return x;
7931 /* Return X converted to MODE. If the value is already truncated to
7932 MODE we can just return a subreg even though in the general case we
7933 would need an explicit truncation. */
7935 static rtx
7936 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7938 if (!CONST_INT_P (x)
7939 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
7940 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
7941 GET_MODE_BITSIZE (GET_MODE (x)))
7942 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
7944 /* Bit-cast X into an integer mode. */
7945 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
7946 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
7947 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
7948 x, GET_MODE (x));
7951 return gen_lowpart (mode, x);
7954 /* See if X can be simplified knowing that we will only refer to it in
7955 MODE and will only refer to those bits that are nonzero in MASK.
7956 If other bits are being computed or if masking operations are done
7957 that select a superset of the bits in MASK, they can sometimes be
7958 ignored.
7960 Return a possibly simplified expression, but always convert X to
7961 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7963 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7964 are all off in X. This is used when X will be complemented, by either
7965 NOT, NEG, or XOR. */
7967 static rtx
7968 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7969 int just_select)
7971 enum rtx_code code = GET_CODE (x);
7972 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7973 enum machine_mode op_mode;
7974 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7975 rtx op0, op1, temp;
7977 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7978 code below will do the wrong thing since the mode of such an
7979 expression is VOIDmode.
7981 Also do nothing if X is a CLOBBER; this can happen if X was
7982 the return value from a call to gen_lowpart. */
7983 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7984 return x;
7986 /* We want to perform the operation is its present mode unless we know
7987 that the operation is valid in MODE, in which case we do the operation
7988 in MODE. */
7989 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7990 && have_insn_for (code, mode))
7991 ? mode : GET_MODE (x));
7993 /* It is not valid to do a right-shift in a narrower mode
7994 than the one it came in with. */
7995 if ((code == LSHIFTRT || code == ASHIFTRT)
7996 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7997 op_mode = GET_MODE (x);
7999 /* Truncate MASK to fit OP_MODE. */
8000 if (op_mode)
8001 mask &= GET_MODE_MASK (op_mode);
8003 /* When we have an arithmetic operation, or a shift whose count we
8004 do not know, we need to assume that all bits up to the highest-order
8005 bit in MASK will be needed. This is how we form such a mask. */
8006 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8007 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8008 else
8009 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8010 - 1);
8012 /* Determine what bits of X are guaranteed to be (non)zero. */
8013 nonzero = nonzero_bits (x, mode);
8015 /* If none of the bits in X are needed, return a zero. */
8016 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8017 x = const0_rtx;
8019 /* If X is a CONST_INT, return a new one. Do this here since the
8020 test below will fail. */
8021 if (CONST_INT_P (x))
8023 if (SCALAR_INT_MODE_P (mode))
8024 return gen_int_mode (INTVAL (x) & mask, mode);
8025 else
8027 x = GEN_INT (INTVAL (x) & mask);
8028 return gen_lowpart_common (mode, x);
8032 /* If X is narrower than MODE and we want all the bits in X's mode, just
8033 get X in the proper mode. */
8034 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8035 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8036 return gen_lowpart (mode, x);
8038 /* We can ignore the effect of a SUBREG if it narrows the mode or
8039 if the constant masks to zero all the bits the mode doesn't have. */
8040 if (GET_CODE (x) == SUBREG
8041 && subreg_lowpart_p (x)
8042 && ((GET_MODE_SIZE (GET_MODE (x))
8043 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8044 || (0 == (mask
8045 & GET_MODE_MASK (GET_MODE (x))
8046 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8047 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8049 /* The arithmetic simplifications here only work for scalar integer modes. */
8050 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8051 return gen_lowpart_or_truncate (mode, x);
8053 switch (code)
8055 case CLOBBER:
8056 /* If X is a (clobber (const_int)), return it since we know we are
8057 generating something that won't match. */
8058 return x;
8060 case SIGN_EXTEND:
8061 case ZERO_EXTEND:
8062 case ZERO_EXTRACT:
8063 case SIGN_EXTRACT:
8064 x = expand_compound_operation (x);
8065 if (GET_CODE (x) != code)
8066 return force_to_mode (x, mode, mask, next_select);
8067 break;
8069 case TRUNCATE:
8070 /* Similarly for a truncate. */
8071 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8073 case AND:
8074 /* If this is an AND with a constant, convert it into an AND
8075 whose constant is the AND of that constant with MASK. If it
8076 remains an AND of MASK, delete it since it is redundant. */
8078 if (CONST_INT_P (XEXP (x, 1)))
8080 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8081 mask & INTVAL (XEXP (x, 1)));
8083 /* If X is still an AND, see if it is an AND with a mask that
8084 is just some low-order bits. If so, and it is MASK, we don't
8085 need it. */
8087 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8088 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8089 == mask))
8090 x = XEXP (x, 0);
8092 /* If it remains an AND, try making another AND with the bits
8093 in the mode mask that aren't in MASK turned on. If the
8094 constant in the AND is wide enough, this might make a
8095 cheaper constant. */
8097 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8098 && GET_MODE_MASK (GET_MODE (x)) != mask
8099 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
8101 unsigned HOST_WIDE_INT cval
8102 = UINTVAL (XEXP (x, 1))
8103 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8104 int width = GET_MODE_BITSIZE (GET_MODE (x));
8105 rtx y;
8107 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
8108 number, sign extend it. */
8109 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
8110 && (cval & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8111 cval |= (unsigned HOST_WIDE_INT) -1 << width;
8113 y = simplify_gen_binary (AND, GET_MODE (x),
8114 XEXP (x, 0), GEN_INT (cval));
8115 if (rtx_cost (y, SET, optimize_this_for_speed_p)
8116 < rtx_cost (x, SET, optimize_this_for_speed_p))
8117 x = y;
8120 break;
8123 goto binop;
8125 case PLUS:
8126 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8127 low-order bits (as in an alignment operation) and FOO is already
8128 aligned to that boundary, mask C1 to that boundary as well.
8129 This may eliminate that PLUS and, later, the AND. */
8132 unsigned int width = GET_MODE_BITSIZE (mode);
8133 unsigned HOST_WIDE_INT smask = mask;
8135 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8136 number, sign extend it. */
8138 if (width < HOST_BITS_PER_WIDE_INT
8139 && (smask & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8140 smask |= (unsigned HOST_WIDE_INT) (-1) << width;
8142 if (CONST_INT_P (XEXP (x, 1))
8143 && exact_log2 (- smask) >= 0
8144 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8145 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8146 return force_to_mode (plus_constant (XEXP (x, 0),
8147 (INTVAL (XEXP (x, 1)) & smask)),
8148 mode, smask, next_select);
8151 /* ... fall through ... */
8153 case MULT:
8154 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8155 most significant bit in MASK since carries from those bits will
8156 affect the bits we are interested in. */
8157 mask = fuller_mask;
8158 goto binop;
8160 case MINUS:
8161 /* If X is (minus C Y) where C's least set bit is larger than any bit
8162 in the mask, then we may replace with (neg Y). */
8163 if (CONST_INT_P (XEXP (x, 0))
8164 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
8165 & -INTVAL (XEXP (x, 0))))
8166 > mask))
8168 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8169 GET_MODE (x));
8170 return force_to_mode (x, mode, mask, next_select);
8173 /* Similarly, if C contains every bit in the fuller_mask, then we may
8174 replace with (not Y). */
8175 if (CONST_INT_P (XEXP (x, 0))
8176 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8178 x = simplify_gen_unary (NOT, GET_MODE (x),
8179 XEXP (x, 1), GET_MODE (x));
8180 return force_to_mode (x, mode, mask, next_select);
8183 mask = fuller_mask;
8184 goto binop;
8186 case IOR:
8187 case XOR:
8188 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8189 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8190 operation which may be a bitfield extraction. Ensure that the
8191 constant we form is not wider than the mode of X. */
8193 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8194 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8195 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8196 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8197 && CONST_INT_P (XEXP (x, 1))
8198 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8199 + floor_log2 (INTVAL (XEXP (x, 1))))
8200 < GET_MODE_BITSIZE (GET_MODE (x)))
8201 && (UINTVAL (XEXP (x, 1))
8202 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8204 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
8205 << INTVAL (XEXP (XEXP (x, 0), 1)));
8206 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8207 XEXP (XEXP (x, 0), 0), temp);
8208 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8209 XEXP (XEXP (x, 0), 1));
8210 return force_to_mode (x, mode, mask, next_select);
8213 binop:
8214 /* For most binary operations, just propagate into the operation and
8215 change the mode if we have an operation of that mode. */
8217 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8218 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8220 /* If we ended up truncating both operands, truncate the result of the
8221 operation instead. */
8222 if (GET_CODE (op0) == TRUNCATE
8223 && GET_CODE (op1) == TRUNCATE)
8225 op0 = XEXP (op0, 0);
8226 op1 = XEXP (op1, 0);
8229 op0 = gen_lowpart_or_truncate (op_mode, op0);
8230 op1 = gen_lowpart_or_truncate (op_mode, op1);
8232 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8233 x = simplify_gen_binary (code, op_mode, op0, op1);
8234 break;
8236 case ASHIFT:
8237 /* For left shifts, do the same, but just for the first operand.
8238 However, we cannot do anything with shifts where we cannot
8239 guarantee that the counts are smaller than the size of the mode
8240 because such a count will have a different meaning in a
8241 wider mode. */
8243 if (! (CONST_INT_P (XEXP (x, 1))
8244 && INTVAL (XEXP (x, 1)) >= 0
8245 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
8246 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8247 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8248 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
8249 break;
8251 /* If the shift count is a constant and we can do arithmetic in
8252 the mode of the shift, refine which bits we need. Otherwise, use the
8253 conservative form of the mask. */
8254 if (CONST_INT_P (XEXP (x, 1))
8255 && INTVAL (XEXP (x, 1)) >= 0
8256 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
8257 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
8258 mask >>= INTVAL (XEXP (x, 1));
8259 else
8260 mask = fuller_mask;
8262 op0 = gen_lowpart_or_truncate (op_mode,
8263 force_to_mode (XEXP (x, 0), op_mode,
8264 mask, next_select));
8266 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8267 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8268 break;
8270 case LSHIFTRT:
8271 /* Here we can only do something if the shift count is a constant,
8272 this shift constant is valid for the host, and we can do arithmetic
8273 in OP_MODE. */
8275 if (CONST_INT_P (XEXP (x, 1))
8276 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8277 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
8279 rtx inner = XEXP (x, 0);
8280 unsigned HOST_WIDE_INT inner_mask;
8282 /* Select the mask of the bits we need for the shift operand. */
8283 inner_mask = mask << INTVAL (XEXP (x, 1));
8285 /* We can only change the mode of the shift if we can do arithmetic
8286 in the mode of the shift and INNER_MASK is no wider than the
8287 width of X's mode. */
8288 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8289 op_mode = GET_MODE (x);
8291 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8293 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8294 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8297 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8298 shift and AND produces only copies of the sign bit (C2 is one less
8299 than a power of two), we can do this with just a shift. */
8301 if (GET_CODE (x) == LSHIFTRT
8302 && CONST_INT_P (XEXP (x, 1))
8303 /* The shift puts one of the sign bit copies in the least significant
8304 bit. */
8305 && ((INTVAL (XEXP (x, 1))
8306 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8307 >= GET_MODE_BITSIZE (GET_MODE (x)))
8308 && exact_log2 (mask + 1) >= 0
8309 /* Number of bits left after the shift must be more than the mask
8310 needs. */
8311 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8312 <= GET_MODE_BITSIZE (GET_MODE (x)))
8313 /* Must be more sign bit copies than the mask needs. */
8314 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8315 >= exact_log2 (mask + 1)))
8316 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8317 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
8318 - exact_log2 (mask + 1)));
8320 goto shiftrt;
8322 case ASHIFTRT:
8323 /* If we are just looking for the sign bit, we don't need this shift at
8324 all, even if it has a variable count. */
8325 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8326 && (mask == ((unsigned HOST_WIDE_INT) 1
8327 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8328 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8330 /* If this is a shift by a constant, get a mask that contains those bits
8331 that are not copies of the sign bit. We then have two cases: If
8332 MASK only includes those bits, this can be a logical shift, which may
8333 allow simplifications. If MASK is a single-bit field not within
8334 those bits, we are requesting a copy of the sign bit and hence can
8335 shift the sign bit to the appropriate location. */
8337 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8338 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8340 int i;
8342 /* If the considered data is wider than HOST_WIDE_INT, we can't
8343 represent a mask for all its bits in a single scalar.
8344 But we only care about the lower bits, so calculate these. */
8346 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8348 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8350 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8351 is the number of bits a full-width mask would have set.
8352 We need only shift if these are fewer than nonzero can
8353 hold. If not, we must keep all bits set in nonzero. */
8355 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8356 < HOST_BITS_PER_WIDE_INT)
8357 nonzero >>= INTVAL (XEXP (x, 1))
8358 + HOST_BITS_PER_WIDE_INT
8359 - GET_MODE_BITSIZE (GET_MODE (x)) ;
8361 else
8363 nonzero = GET_MODE_MASK (GET_MODE (x));
8364 nonzero >>= INTVAL (XEXP (x, 1));
8367 if ((mask & ~nonzero) == 0)
8369 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8370 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8371 if (GET_CODE (x) != ASHIFTRT)
8372 return force_to_mode (x, mode, mask, next_select);
8375 else if ((i = exact_log2 (mask)) >= 0)
8377 x = simplify_shift_const
8378 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8379 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
8381 if (GET_CODE (x) != ASHIFTRT)
8382 return force_to_mode (x, mode, mask, next_select);
8386 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8387 even if the shift count isn't a constant. */
8388 if (mask == 1)
8389 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8390 XEXP (x, 0), XEXP (x, 1));
8392 shiftrt:
8394 /* If this is a zero- or sign-extension operation that just affects bits
8395 we don't care about, remove it. Be sure the call above returned
8396 something that is still a shift. */
8398 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8399 && CONST_INT_P (XEXP (x, 1))
8400 && INTVAL (XEXP (x, 1)) >= 0
8401 && (INTVAL (XEXP (x, 1))
8402 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
8403 && GET_CODE (XEXP (x, 0)) == ASHIFT
8404 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8405 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8406 next_select);
8408 break;
8410 case ROTATE:
8411 case ROTATERT:
8412 /* If the shift count is constant and we can do computations
8413 in the mode of X, compute where the bits we care about are.
8414 Otherwise, we can't do anything. Don't change the mode of
8415 the shift or propagate MODE into the shift, though. */
8416 if (CONST_INT_P (XEXP (x, 1))
8417 && INTVAL (XEXP (x, 1)) >= 0)
8419 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8420 GET_MODE (x), GEN_INT (mask),
8421 XEXP (x, 1));
8422 if (temp && CONST_INT_P (temp))
8423 SUBST (XEXP (x, 0),
8424 force_to_mode (XEXP (x, 0), GET_MODE (x),
8425 INTVAL (temp), next_select));
8427 break;
8429 case NEG:
8430 /* If we just want the low-order bit, the NEG isn't needed since it
8431 won't change the low-order bit. */
8432 if (mask == 1)
8433 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8435 /* We need any bits less significant than the most significant bit in
8436 MASK since carries from those bits will affect the bits we are
8437 interested in. */
8438 mask = fuller_mask;
8439 goto unop;
8441 case NOT:
8442 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8443 same as the XOR case above. Ensure that the constant we form is not
8444 wider than the mode of X. */
8446 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8447 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8448 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8449 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8450 < GET_MODE_BITSIZE (GET_MODE (x)))
8451 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8453 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8454 GET_MODE (x));
8455 temp = simplify_gen_binary (XOR, GET_MODE (x),
8456 XEXP (XEXP (x, 0), 0), temp);
8457 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8458 temp, XEXP (XEXP (x, 0), 1));
8460 return force_to_mode (x, mode, mask, next_select);
8463 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8464 use the full mask inside the NOT. */
8465 mask = fuller_mask;
8467 unop:
8468 op0 = gen_lowpart_or_truncate (op_mode,
8469 force_to_mode (XEXP (x, 0), mode, mask,
8470 next_select));
8471 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8472 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8473 break;
8475 case NE:
8476 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8477 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8478 which is equal to STORE_FLAG_VALUE. */
8479 if ((mask & ~STORE_FLAG_VALUE) == 0
8480 && XEXP (x, 1) == const0_rtx
8481 && GET_MODE (XEXP (x, 0)) == mode
8482 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8483 && (nonzero_bits (XEXP (x, 0), mode)
8484 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8485 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8487 break;
8489 case IF_THEN_ELSE:
8490 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8491 written in a narrower mode. We play it safe and do not do so. */
8493 SUBST (XEXP (x, 1),
8494 gen_lowpart_or_truncate (GET_MODE (x),
8495 force_to_mode (XEXP (x, 1), mode,
8496 mask, next_select)));
8497 SUBST (XEXP (x, 2),
8498 gen_lowpart_or_truncate (GET_MODE (x),
8499 force_to_mode (XEXP (x, 2), mode,
8500 mask, next_select)));
8501 break;
8503 default:
8504 break;
8507 /* Ensure we return a value of the proper mode. */
8508 return gen_lowpart_or_truncate (mode, x);
8511 /* Return nonzero if X is an expression that has one of two values depending on
8512 whether some other value is zero or nonzero. In that case, we return the
8513 value that is being tested, *PTRUE is set to the value if the rtx being
8514 returned has a nonzero value, and *PFALSE is set to the other alternative.
8516 If we return zero, we set *PTRUE and *PFALSE to X. */
8518 static rtx
8519 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8521 enum machine_mode mode = GET_MODE (x);
8522 enum rtx_code code = GET_CODE (x);
8523 rtx cond0, cond1, true0, true1, false0, false1;
8524 unsigned HOST_WIDE_INT nz;
8526 /* If we are comparing a value against zero, we are done. */
8527 if ((code == NE || code == EQ)
8528 && XEXP (x, 1) == const0_rtx)
8530 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8531 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8532 return XEXP (x, 0);
8535 /* If this is a unary operation whose operand has one of two values, apply
8536 our opcode to compute those values. */
8537 else if (UNARY_P (x)
8538 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8540 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8541 *pfalse = simplify_gen_unary (code, mode, false0,
8542 GET_MODE (XEXP (x, 0)));
8543 return cond0;
8546 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8547 make can't possibly match and would suppress other optimizations. */
8548 else if (code == COMPARE)
8551 /* If this is a binary operation, see if either side has only one of two
8552 values. If either one does or if both do and they are conditional on
8553 the same value, compute the new true and false values. */
8554 else if (BINARY_P (x))
8556 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8557 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8559 if ((cond0 != 0 || cond1 != 0)
8560 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8562 /* If if_then_else_cond returned zero, then true/false are the
8563 same rtl. We must copy one of them to prevent invalid rtl
8564 sharing. */
8565 if (cond0 == 0)
8566 true0 = copy_rtx (true0);
8567 else if (cond1 == 0)
8568 true1 = copy_rtx (true1);
8570 if (COMPARISON_P (x))
8572 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8573 true0, true1);
8574 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8575 false0, false1);
8577 else
8579 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8580 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8583 return cond0 ? cond0 : cond1;
8586 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8587 operands is zero when the other is nonzero, and vice-versa,
8588 and STORE_FLAG_VALUE is 1 or -1. */
8590 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8591 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8592 || code == UMAX)
8593 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8595 rtx op0 = XEXP (XEXP (x, 0), 1);
8596 rtx op1 = XEXP (XEXP (x, 1), 1);
8598 cond0 = XEXP (XEXP (x, 0), 0);
8599 cond1 = XEXP (XEXP (x, 1), 0);
8601 if (COMPARISON_P (cond0)
8602 && COMPARISON_P (cond1)
8603 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8604 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8605 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8606 || ((swap_condition (GET_CODE (cond0))
8607 == reversed_comparison_code (cond1, NULL))
8608 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8609 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8610 && ! side_effects_p (x))
8612 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8613 *pfalse = simplify_gen_binary (MULT, mode,
8614 (code == MINUS
8615 ? simplify_gen_unary (NEG, mode,
8616 op1, mode)
8617 : op1),
8618 const_true_rtx);
8619 return cond0;
8623 /* Similarly for MULT, AND and UMIN, except that for these the result
8624 is always zero. */
8625 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8626 && (code == MULT || code == AND || code == UMIN)
8627 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8629 cond0 = XEXP (XEXP (x, 0), 0);
8630 cond1 = XEXP (XEXP (x, 1), 0);
8632 if (COMPARISON_P (cond0)
8633 && COMPARISON_P (cond1)
8634 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8635 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8636 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8637 || ((swap_condition (GET_CODE (cond0))
8638 == reversed_comparison_code (cond1, NULL))
8639 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8640 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8641 && ! side_effects_p (x))
8643 *ptrue = *pfalse = const0_rtx;
8644 return cond0;
8649 else if (code == IF_THEN_ELSE)
8651 /* If we have IF_THEN_ELSE already, extract the condition and
8652 canonicalize it if it is NE or EQ. */
8653 cond0 = XEXP (x, 0);
8654 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8655 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8656 return XEXP (cond0, 0);
8657 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8659 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8660 return XEXP (cond0, 0);
8662 else
8663 return cond0;
8666 /* If X is a SUBREG, we can narrow both the true and false values
8667 if the inner expression, if there is a condition. */
8668 else if (code == SUBREG
8669 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8670 &true0, &false0)))
8672 true0 = simplify_gen_subreg (mode, true0,
8673 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8674 false0 = simplify_gen_subreg (mode, false0,
8675 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8676 if (true0 && false0)
8678 *ptrue = true0;
8679 *pfalse = false0;
8680 return cond0;
8684 /* If X is a constant, this isn't special and will cause confusions
8685 if we treat it as such. Likewise if it is equivalent to a constant. */
8686 else if (CONSTANT_P (x)
8687 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8690 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8691 will be least confusing to the rest of the compiler. */
8692 else if (mode == BImode)
8694 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8695 return x;
8698 /* If X is known to be either 0 or -1, those are the true and
8699 false values when testing X. */
8700 else if (x == constm1_rtx || x == const0_rtx
8701 || (mode != VOIDmode
8702 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
8704 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8705 return x;
8708 /* Likewise for 0 or a single bit. */
8709 else if (SCALAR_INT_MODE_P (mode)
8710 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8711 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8713 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8714 return x;
8717 /* Otherwise fail; show no condition with true and false values the same. */
8718 *ptrue = *pfalse = x;
8719 return 0;
8722 /* Return the value of expression X given the fact that condition COND
8723 is known to be true when applied to REG as its first operand and VAL
8724 as its second. X is known to not be shared and so can be modified in
8725 place.
8727 We only handle the simplest cases, and specifically those cases that
8728 arise with IF_THEN_ELSE expressions. */
8730 static rtx
8731 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8733 enum rtx_code code = GET_CODE (x);
8734 rtx temp;
8735 const char *fmt;
8736 int i, j;
8738 if (side_effects_p (x))
8739 return x;
8741 /* If either operand of the condition is a floating point value,
8742 then we have to avoid collapsing an EQ comparison. */
8743 if (cond == EQ
8744 && rtx_equal_p (x, reg)
8745 && ! FLOAT_MODE_P (GET_MODE (x))
8746 && ! FLOAT_MODE_P (GET_MODE (val)))
8747 return val;
8749 if (cond == UNEQ && rtx_equal_p (x, reg))
8750 return val;
8752 /* If X is (abs REG) and we know something about REG's relationship
8753 with zero, we may be able to simplify this. */
8755 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8756 switch (cond)
8758 case GE: case GT: case EQ:
8759 return XEXP (x, 0);
8760 case LT: case LE:
8761 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8762 XEXP (x, 0),
8763 GET_MODE (XEXP (x, 0)));
8764 default:
8765 break;
8768 /* The only other cases we handle are MIN, MAX, and comparisons if the
8769 operands are the same as REG and VAL. */
8771 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8773 if (rtx_equal_p (XEXP (x, 0), val))
8774 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8776 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8778 if (COMPARISON_P (x))
8780 if (comparison_dominates_p (cond, code))
8781 return const_true_rtx;
8783 code = reversed_comparison_code (x, NULL);
8784 if (code != UNKNOWN
8785 && comparison_dominates_p (cond, code))
8786 return const0_rtx;
8787 else
8788 return x;
8790 else if (code == SMAX || code == SMIN
8791 || code == UMIN || code == UMAX)
8793 int unsignedp = (code == UMIN || code == UMAX);
8795 /* Do not reverse the condition when it is NE or EQ.
8796 This is because we cannot conclude anything about
8797 the value of 'SMAX (x, y)' when x is not equal to y,
8798 but we can when x equals y. */
8799 if ((code == SMAX || code == UMAX)
8800 && ! (cond == EQ || cond == NE))
8801 cond = reverse_condition (cond);
8803 switch (cond)
8805 case GE: case GT:
8806 return unsignedp ? x : XEXP (x, 1);
8807 case LE: case LT:
8808 return unsignedp ? x : XEXP (x, 0);
8809 case GEU: case GTU:
8810 return unsignedp ? XEXP (x, 1) : x;
8811 case LEU: case LTU:
8812 return unsignedp ? XEXP (x, 0) : x;
8813 default:
8814 break;
8819 else if (code == SUBREG)
8821 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8822 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8824 if (SUBREG_REG (x) != r)
8826 /* We must simplify subreg here, before we lose track of the
8827 original inner_mode. */
8828 new_rtx = simplify_subreg (GET_MODE (x), r,
8829 inner_mode, SUBREG_BYTE (x));
8830 if (new_rtx)
8831 return new_rtx;
8832 else
8833 SUBST (SUBREG_REG (x), r);
8836 return x;
8838 /* We don't have to handle SIGN_EXTEND here, because even in the
8839 case of replacing something with a modeless CONST_INT, a
8840 CONST_INT is already (supposed to be) a valid sign extension for
8841 its narrower mode, which implies it's already properly
8842 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8843 story is different. */
8844 else if (code == ZERO_EXTEND)
8846 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8847 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8849 if (XEXP (x, 0) != r)
8851 /* We must simplify the zero_extend here, before we lose
8852 track of the original inner_mode. */
8853 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8854 r, inner_mode);
8855 if (new_rtx)
8856 return new_rtx;
8857 else
8858 SUBST (XEXP (x, 0), r);
8861 return x;
8864 fmt = GET_RTX_FORMAT (code);
8865 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8867 if (fmt[i] == 'e')
8868 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8869 else if (fmt[i] == 'E')
8870 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8871 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8872 cond, reg, val));
8875 return x;
8878 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8879 assignment as a field assignment. */
8881 static int
8882 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8884 if (x == y || rtx_equal_p (x, y))
8885 return 1;
8887 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8888 return 0;
8890 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8891 Note that all SUBREGs of MEM are paradoxical; otherwise they
8892 would have been rewritten. */
8893 if (MEM_P (x) && GET_CODE (y) == SUBREG
8894 && MEM_P (SUBREG_REG (y))
8895 && rtx_equal_p (SUBREG_REG (y),
8896 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8897 return 1;
8899 if (MEM_P (y) && GET_CODE (x) == SUBREG
8900 && MEM_P (SUBREG_REG (x))
8901 && rtx_equal_p (SUBREG_REG (x),
8902 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8903 return 1;
8905 /* We used to see if get_last_value of X and Y were the same but that's
8906 not correct. In one direction, we'll cause the assignment to have
8907 the wrong destination and in the case, we'll import a register into this
8908 insn that might have already have been dead. So fail if none of the
8909 above cases are true. */
8910 return 0;
8913 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8914 Return that assignment if so.
8916 We only handle the most common cases. */
8918 static rtx
8919 make_field_assignment (rtx x)
8921 rtx dest = SET_DEST (x);
8922 rtx src = SET_SRC (x);
8923 rtx assign;
8924 rtx rhs, lhs;
8925 HOST_WIDE_INT c1;
8926 HOST_WIDE_INT pos;
8927 unsigned HOST_WIDE_INT len;
8928 rtx other;
8929 enum machine_mode mode;
8931 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8932 a clear of a one-bit field. We will have changed it to
8933 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8934 for a SUBREG. */
8936 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8937 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
8938 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8939 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8941 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8942 1, 1, 1, 0);
8943 if (assign != 0)
8944 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8945 return x;
8948 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8949 && subreg_lowpart_p (XEXP (src, 0))
8950 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8951 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8952 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8953 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
8954 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8955 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8957 assign = make_extraction (VOIDmode, dest, 0,
8958 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8959 1, 1, 1, 0);
8960 if (assign != 0)
8961 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8962 return x;
8965 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8966 one-bit field. */
8967 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8968 && XEXP (XEXP (src, 0), 0) == const1_rtx
8969 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8971 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8972 1, 1, 1, 0);
8973 if (assign != 0)
8974 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8975 return x;
8978 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8979 SRC is an AND with all bits of that field set, then we can discard
8980 the AND. */
8981 if (GET_CODE (dest) == ZERO_EXTRACT
8982 && CONST_INT_P (XEXP (dest, 1))
8983 && GET_CODE (src) == AND
8984 && CONST_INT_P (XEXP (src, 1)))
8986 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8987 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8988 unsigned HOST_WIDE_INT ze_mask;
8990 if (width >= HOST_BITS_PER_WIDE_INT)
8991 ze_mask = -1;
8992 else
8993 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8995 /* Complete overlap. We can remove the source AND. */
8996 if ((and_mask & ze_mask) == ze_mask)
8997 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8999 /* Partial overlap. We can reduce the source AND. */
9000 if ((and_mask & ze_mask) != and_mask)
9002 mode = GET_MODE (src);
9003 src = gen_rtx_AND (mode, XEXP (src, 0),
9004 gen_int_mode (and_mask & ze_mask, mode));
9005 return gen_rtx_SET (VOIDmode, dest, src);
9009 /* The other case we handle is assignments into a constant-position
9010 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9011 a mask that has all one bits except for a group of zero bits and
9012 OTHER is known to have zeros where C1 has ones, this is such an
9013 assignment. Compute the position and length from C1. Shift OTHER
9014 to the appropriate position, force it to the required mode, and
9015 make the extraction. Check for the AND in both operands. */
9017 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9018 return x;
9020 rhs = expand_compound_operation (XEXP (src, 0));
9021 lhs = expand_compound_operation (XEXP (src, 1));
9023 if (GET_CODE (rhs) == AND
9024 && CONST_INT_P (XEXP (rhs, 1))
9025 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9026 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9027 else if (GET_CODE (lhs) == AND
9028 && CONST_INT_P (XEXP (lhs, 1))
9029 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9030 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9031 else
9032 return x;
9034 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9035 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
9036 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9037 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9038 return x;
9040 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9041 if (assign == 0)
9042 return x;
9044 /* The mode to use for the source is the mode of the assignment, or of
9045 what is inside a possible STRICT_LOW_PART. */
9046 mode = (GET_CODE (assign) == STRICT_LOW_PART
9047 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9049 /* Shift OTHER right POS places and make it the source, restricting it
9050 to the proper length and mode. */
9052 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9053 GET_MODE (src),
9054 other, pos),
9055 dest);
9056 src = force_to_mode (src, mode,
9057 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
9058 ? ~(unsigned HOST_WIDE_INT) 0
9059 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9062 /* If SRC is masked by an AND that does not make a difference in
9063 the value being stored, strip it. */
9064 if (GET_CODE (assign) == ZERO_EXTRACT
9065 && CONST_INT_P (XEXP (assign, 1))
9066 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9067 && GET_CODE (src) == AND
9068 && CONST_INT_P (XEXP (src, 1))
9069 && UINTVAL (XEXP (src, 1))
9070 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9071 src = XEXP (src, 0);
9073 return gen_rtx_SET (VOIDmode, assign, src);
9076 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9077 if so. */
9079 static rtx
9080 apply_distributive_law (rtx x)
9082 enum rtx_code code = GET_CODE (x);
9083 enum rtx_code inner_code;
9084 rtx lhs, rhs, other;
9085 rtx tem;
9087 /* Distributivity is not true for floating point as it can change the
9088 value. So we don't do it unless -funsafe-math-optimizations. */
9089 if (FLOAT_MODE_P (GET_MODE (x))
9090 && ! flag_unsafe_math_optimizations)
9091 return x;
9093 /* The outer operation can only be one of the following: */
9094 if (code != IOR && code != AND && code != XOR
9095 && code != PLUS && code != MINUS)
9096 return x;
9098 lhs = XEXP (x, 0);
9099 rhs = XEXP (x, 1);
9101 /* If either operand is a primitive we can't do anything, so get out
9102 fast. */
9103 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9104 return x;
9106 lhs = expand_compound_operation (lhs);
9107 rhs = expand_compound_operation (rhs);
9108 inner_code = GET_CODE (lhs);
9109 if (inner_code != GET_CODE (rhs))
9110 return x;
9112 /* See if the inner and outer operations distribute. */
9113 switch (inner_code)
9115 case LSHIFTRT:
9116 case ASHIFTRT:
9117 case AND:
9118 case IOR:
9119 /* These all distribute except over PLUS. */
9120 if (code == PLUS || code == MINUS)
9121 return x;
9122 break;
9124 case MULT:
9125 if (code != PLUS && code != MINUS)
9126 return x;
9127 break;
9129 case ASHIFT:
9130 /* This is also a multiply, so it distributes over everything. */
9131 break;
9133 case SUBREG:
9134 /* Non-paradoxical SUBREGs distributes over all operations,
9135 provided the inner modes and byte offsets are the same, this
9136 is an extraction of a low-order part, we don't convert an fp
9137 operation to int or vice versa, this is not a vector mode,
9138 and we would not be converting a single-word operation into a
9139 multi-word operation. The latter test is not required, but
9140 it prevents generating unneeded multi-word operations. Some
9141 of the previous tests are redundant given the latter test,
9142 but are retained because they are required for correctness.
9144 We produce the result slightly differently in this case. */
9146 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
9147 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
9148 || ! subreg_lowpart_p (lhs)
9149 || (GET_MODE_CLASS (GET_MODE (lhs))
9150 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
9151 || (GET_MODE_SIZE (GET_MODE (lhs))
9152 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
9153 || VECTOR_MODE_P (GET_MODE (lhs))
9154 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
9155 /* Result might need to be truncated. Don't change mode if
9156 explicit truncation is needed. */
9157 || !TRULY_NOOP_TRUNCATION
9158 (GET_MODE_BITSIZE (GET_MODE (x)),
9159 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
9160 return x;
9162 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
9163 SUBREG_REG (lhs), SUBREG_REG (rhs));
9164 return gen_lowpart (GET_MODE (x), tem);
9166 default:
9167 return x;
9170 /* Set LHS and RHS to the inner operands (A and B in the example
9171 above) and set OTHER to the common operand (C in the example).
9172 There is only one way to do this unless the inner operation is
9173 commutative. */
9174 if (COMMUTATIVE_ARITH_P (lhs)
9175 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9176 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9177 else if (COMMUTATIVE_ARITH_P (lhs)
9178 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9179 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9180 else if (COMMUTATIVE_ARITH_P (lhs)
9181 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9182 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9183 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9184 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9185 else
9186 return x;
9188 /* Form the new inner operation, seeing if it simplifies first. */
9189 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9191 /* There is one exception to the general way of distributing:
9192 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9193 if (code == XOR && inner_code == IOR)
9195 inner_code = AND;
9196 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9199 /* We may be able to continuing distributing the result, so call
9200 ourselves recursively on the inner operation before forming the
9201 outer operation, which we return. */
9202 return simplify_gen_binary (inner_code, GET_MODE (x),
9203 apply_distributive_law (tem), other);
9206 /* See if X is of the form (* (+ A B) C), and if so convert to
9207 (+ (* A C) (* B C)) and try to simplify.
9209 Most of the time, this results in no change. However, if some of
9210 the operands are the same or inverses of each other, simplifications
9211 will result.
9213 For example, (and (ior A B) (not B)) can occur as the result of
9214 expanding a bit field assignment. When we apply the distributive
9215 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9216 which then simplifies to (and (A (not B))).
9218 Note that no checks happen on the validity of applying the inverse
9219 distributive law. This is pointless since we can do it in the
9220 few places where this routine is called.
9222 N is the index of the term that is decomposed (the arithmetic operation,
9223 i.e. (+ A B) in the first example above). !N is the index of the term that
9224 is distributed, i.e. of C in the first example above. */
9225 static rtx
9226 distribute_and_simplify_rtx (rtx x, int n)
9228 enum machine_mode mode;
9229 enum rtx_code outer_code, inner_code;
9230 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9232 /* Distributivity is not true for floating point as it can change the
9233 value. So we don't do it unless -funsafe-math-optimizations. */
9234 if (FLOAT_MODE_P (GET_MODE (x))
9235 && ! flag_unsafe_math_optimizations)
9236 return NULL_RTX;
9238 decomposed = XEXP (x, n);
9239 if (!ARITHMETIC_P (decomposed))
9240 return NULL_RTX;
9242 mode = GET_MODE (x);
9243 outer_code = GET_CODE (x);
9244 distributed = XEXP (x, !n);
9246 inner_code = GET_CODE (decomposed);
9247 inner_op0 = XEXP (decomposed, 0);
9248 inner_op1 = XEXP (decomposed, 1);
9250 /* Special case (and (xor B C) (not A)), which is equivalent to
9251 (xor (ior A B) (ior A C)) */
9252 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9254 distributed = XEXP (distributed, 0);
9255 outer_code = IOR;
9258 if (n == 0)
9260 /* Distribute the second term. */
9261 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9262 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9264 else
9266 /* Distribute the first term. */
9267 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9268 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9271 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9272 new_op0, new_op1));
9273 if (GET_CODE (tmp) != outer_code
9274 && rtx_cost (tmp, SET, optimize_this_for_speed_p)
9275 < rtx_cost (x, SET, optimize_this_for_speed_p))
9276 return tmp;
9278 return NULL_RTX;
9281 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9282 in MODE. Return an equivalent form, if different from (and VAROP
9283 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9285 static rtx
9286 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
9287 unsigned HOST_WIDE_INT constop)
9289 unsigned HOST_WIDE_INT nonzero;
9290 unsigned HOST_WIDE_INT orig_constop;
9291 rtx orig_varop;
9292 int i;
9294 orig_varop = varop;
9295 orig_constop = constop;
9296 if (GET_CODE (varop) == CLOBBER)
9297 return NULL_RTX;
9299 /* Simplify VAROP knowing that we will be only looking at some of the
9300 bits in it.
9302 Note by passing in CONSTOP, we guarantee that the bits not set in
9303 CONSTOP are not significant and will never be examined. We must
9304 ensure that is the case by explicitly masking out those bits
9305 before returning. */
9306 varop = force_to_mode (varop, mode, constop, 0);
9308 /* If VAROP is a CLOBBER, we will fail so return it. */
9309 if (GET_CODE (varop) == CLOBBER)
9310 return varop;
9312 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9313 to VAROP and return the new constant. */
9314 if (CONST_INT_P (varop))
9315 return gen_int_mode (INTVAL (varop) & constop, mode);
9317 /* See what bits may be nonzero in VAROP. Unlike the general case of
9318 a call to nonzero_bits, here we don't care about bits outside
9319 MODE. */
9321 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9323 /* Turn off all bits in the constant that are known to already be zero.
9324 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9325 which is tested below. */
9327 constop &= nonzero;
9329 /* If we don't have any bits left, return zero. */
9330 if (constop == 0)
9331 return const0_rtx;
9333 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9334 a power of two, we can replace this with an ASHIFT. */
9335 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9336 && (i = exact_log2 (constop)) >= 0)
9337 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9339 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9340 or XOR, then try to apply the distributive law. This may eliminate
9341 operations if either branch can be simplified because of the AND.
9342 It may also make some cases more complex, but those cases probably
9343 won't match a pattern either with or without this. */
9345 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9346 return
9347 gen_lowpart
9348 (mode,
9349 apply_distributive_law
9350 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9351 simplify_and_const_int (NULL_RTX,
9352 GET_MODE (varop),
9353 XEXP (varop, 0),
9354 constop),
9355 simplify_and_const_int (NULL_RTX,
9356 GET_MODE (varop),
9357 XEXP (varop, 1),
9358 constop))));
9360 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9361 the AND and see if one of the operands simplifies to zero. If so, we
9362 may eliminate it. */
9364 if (GET_CODE (varop) == PLUS
9365 && exact_log2 (constop + 1) >= 0)
9367 rtx o0, o1;
9369 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9370 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9371 if (o0 == const0_rtx)
9372 return o1;
9373 if (o1 == const0_rtx)
9374 return o0;
9377 /* Make a SUBREG if necessary. If we can't make it, fail. */
9378 varop = gen_lowpart (mode, varop);
9379 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9380 return NULL_RTX;
9382 /* If we are only masking insignificant bits, return VAROP. */
9383 if (constop == nonzero)
9384 return varop;
9386 if (varop == orig_varop && constop == orig_constop)
9387 return NULL_RTX;
9389 /* Otherwise, return an AND. */
9390 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9394 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9395 in MODE.
9397 Return an equivalent form, if different from X. Otherwise, return X. If
9398 X is zero, we are to always construct the equivalent form. */
9400 static rtx
9401 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
9402 unsigned HOST_WIDE_INT constop)
9404 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9405 if (tem)
9406 return tem;
9408 if (!x)
9409 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9410 gen_int_mode (constop, mode));
9411 if (GET_MODE (x) != mode)
9412 x = gen_lowpart (mode, x);
9413 return x;
9416 /* Given a REG, X, compute which bits in X can be nonzero.
9417 We don't care about bits outside of those defined in MODE.
9419 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9420 a shift, AND, or zero_extract, we can do better. */
9422 static rtx
9423 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9424 const_rtx known_x ATTRIBUTE_UNUSED,
9425 enum machine_mode known_mode ATTRIBUTE_UNUSED,
9426 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9427 unsigned HOST_WIDE_INT *nonzero)
9429 rtx tem;
9430 reg_stat_type *rsp;
9432 /* If X is a register whose nonzero bits value is current, use it.
9433 Otherwise, if X is a register whose value we can find, use that
9434 value. Otherwise, use the previously-computed global nonzero bits
9435 for this register. */
9437 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9438 if (rsp->last_set_value != 0
9439 && (rsp->last_set_mode == mode
9440 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9441 && GET_MODE_CLASS (mode) == MODE_INT))
9442 && ((rsp->last_set_label >= label_tick_ebb_start
9443 && rsp->last_set_label < label_tick)
9444 || (rsp->last_set_label == label_tick
9445 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9446 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9447 && REG_N_SETS (REGNO (x)) == 1
9448 && !REGNO_REG_SET_P
9449 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9451 *nonzero &= rsp->last_set_nonzero_bits;
9452 return NULL;
9455 tem = get_last_value (x);
9457 if (tem)
9459 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9460 /* If X is narrower than MODE and TEM is a non-negative
9461 constant that would appear negative in the mode of X,
9462 sign-extend it for use in reg_nonzero_bits because some
9463 machines (maybe most) will actually do the sign-extension
9464 and this is the conservative approach.
9466 ??? For 2.5, try to tighten up the MD files in this regard
9467 instead of this kludge. */
9469 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
9470 && CONST_INT_P (tem)
9471 && INTVAL (tem) > 0
9472 && 0 != (UINTVAL (tem)
9473 & ((unsigned HOST_WIDE_INT) 1
9474 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
9475 tem = GEN_INT (UINTVAL (tem)
9476 | ((unsigned HOST_WIDE_INT) (-1)
9477 << GET_MODE_BITSIZE (GET_MODE (x))));
9478 #endif
9479 return tem;
9481 else if (nonzero_sign_valid && rsp->nonzero_bits)
9483 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9485 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
9486 /* We don't know anything about the upper bits. */
9487 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9488 *nonzero &= mask;
9491 return NULL;
9494 /* Return the number of bits at the high-order end of X that are known to
9495 be equal to the sign bit. X will be used in mode MODE; if MODE is
9496 VOIDmode, X will be used in its own mode. The returned value will always
9497 be between 1 and the number of bits in MODE. */
9499 static rtx
9500 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9501 const_rtx known_x ATTRIBUTE_UNUSED,
9502 enum machine_mode known_mode
9503 ATTRIBUTE_UNUSED,
9504 unsigned int known_ret ATTRIBUTE_UNUSED,
9505 unsigned int *result)
9507 rtx tem;
9508 reg_stat_type *rsp;
9510 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
9511 if (rsp->last_set_value != 0
9512 && rsp->last_set_mode == mode
9513 && ((rsp->last_set_label >= label_tick_ebb_start
9514 && rsp->last_set_label < label_tick)
9515 || (rsp->last_set_label == label_tick
9516 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9517 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9518 && REG_N_SETS (REGNO (x)) == 1
9519 && !REGNO_REG_SET_P
9520 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9522 *result = rsp->last_set_sign_bit_copies;
9523 return NULL;
9526 tem = get_last_value (x);
9527 if (tem != 0)
9528 return tem;
9530 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9531 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
9532 *result = rsp->sign_bit_copies;
9534 return NULL;
9537 /* Return the number of "extended" bits there are in X, when interpreted
9538 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9539 unsigned quantities, this is the number of high-order zero bits.
9540 For signed quantities, this is the number of copies of the sign bit
9541 minus 1. In both case, this function returns the number of "spare"
9542 bits. For example, if two quantities for which this function returns
9543 at least 1 are added, the addition is known not to overflow.
9545 This function will always return 0 unless called during combine, which
9546 implies that it must be called from a define_split. */
9548 unsigned int
9549 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9551 if (nonzero_sign_valid == 0)
9552 return 0;
9554 return (unsignedp
9555 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9556 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
9557 - floor_log2 (nonzero_bits (x, mode)))
9558 : 0)
9559 : num_sign_bit_copies (x, mode) - 1);
9562 /* This function is called from `simplify_shift_const' to merge two
9563 outer operations. Specifically, we have already found that we need
9564 to perform operation *POP0 with constant *PCONST0 at the outermost
9565 position. We would now like to also perform OP1 with constant CONST1
9566 (with *POP0 being done last).
9568 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9569 the resulting operation. *PCOMP_P is set to 1 if we would need to
9570 complement the innermost operand, otherwise it is unchanged.
9572 MODE is the mode in which the operation will be done. No bits outside
9573 the width of this mode matter. It is assumed that the width of this mode
9574 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9576 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9577 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9578 result is simply *PCONST0.
9580 If the resulting operation cannot be expressed as one operation, we
9581 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9583 static int
9584 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9586 enum rtx_code op0 = *pop0;
9587 HOST_WIDE_INT const0 = *pconst0;
9589 const0 &= GET_MODE_MASK (mode);
9590 const1 &= GET_MODE_MASK (mode);
9592 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9593 if (op0 == AND)
9594 const1 &= const0;
9596 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9597 if OP0 is SET. */
9599 if (op1 == UNKNOWN || op0 == SET)
9600 return 1;
9602 else if (op0 == UNKNOWN)
9603 op0 = op1, const0 = const1;
9605 else if (op0 == op1)
9607 switch (op0)
9609 case AND:
9610 const0 &= const1;
9611 break;
9612 case IOR:
9613 const0 |= const1;
9614 break;
9615 case XOR:
9616 const0 ^= const1;
9617 break;
9618 case PLUS:
9619 const0 += const1;
9620 break;
9621 case NEG:
9622 op0 = UNKNOWN;
9623 break;
9624 default:
9625 break;
9629 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9630 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9631 return 0;
9633 /* If the two constants aren't the same, we can't do anything. The
9634 remaining six cases can all be done. */
9635 else if (const0 != const1)
9636 return 0;
9638 else
9639 switch (op0)
9641 case IOR:
9642 if (op1 == AND)
9643 /* (a & b) | b == b */
9644 op0 = SET;
9645 else /* op1 == XOR */
9646 /* (a ^ b) | b == a | b */
9648 break;
9650 case XOR:
9651 if (op1 == AND)
9652 /* (a & b) ^ b == (~a) & b */
9653 op0 = AND, *pcomp_p = 1;
9654 else /* op1 == IOR */
9655 /* (a | b) ^ b == a & ~b */
9656 op0 = AND, const0 = ~const0;
9657 break;
9659 case AND:
9660 if (op1 == IOR)
9661 /* (a | b) & b == b */
9662 op0 = SET;
9663 else /* op1 == XOR */
9664 /* (a ^ b) & b) == (~a) & b */
9665 *pcomp_p = 1;
9666 break;
9667 default:
9668 break;
9671 /* Check for NO-OP cases. */
9672 const0 &= GET_MODE_MASK (mode);
9673 if (const0 == 0
9674 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9675 op0 = UNKNOWN;
9676 else if (const0 == 0 && op0 == AND)
9677 op0 = SET;
9678 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9679 && op0 == AND)
9680 op0 = UNKNOWN;
9682 *pop0 = op0;
9684 /* ??? Slightly redundant with the above mask, but not entirely.
9685 Moving this above means we'd have to sign-extend the mode mask
9686 for the final test. */
9687 if (op0 != UNKNOWN && op0 != NEG)
9688 *pconst0 = trunc_int_for_mode (const0, mode);
9690 return 1;
9693 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9694 the shift in. The original shift operation CODE is performed on OP in
9695 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9696 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9697 result of the shift is subject to operation OUTER_CODE with operand
9698 OUTER_CONST. */
9700 static enum machine_mode
9701 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9702 enum machine_mode orig_mode, enum machine_mode mode,
9703 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9705 if (orig_mode == mode)
9706 return mode;
9707 gcc_assert (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (orig_mode));
9709 /* In general we can't perform in wider mode for right shift and rotate. */
9710 switch (code)
9712 case ASHIFTRT:
9713 /* We can still widen if the bits brought in from the left are identical
9714 to the sign bit of ORIG_MODE. */
9715 if (num_sign_bit_copies (op, mode)
9716 > (unsigned) (GET_MODE_BITSIZE (mode)
9717 - GET_MODE_BITSIZE (orig_mode)))
9718 return mode;
9719 return orig_mode;
9721 case LSHIFTRT:
9722 /* Similarly here but with zero bits. */
9723 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9724 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9725 return mode;
9727 /* We can also widen if the bits brought in will be masked off. This
9728 operation is performed in ORIG_MODE. */
9729 if (outer_code == AND)
9731 int care_bits = low_bitmask_len (orig_mode, outer_const);
9733 if (care_bits >= 0
9734 && GET_MODE_BITSIZE (orig_mode) - care_bits >= count)
9735 return mode;
9737 /* fall through */
9739 case ROTATE:
9740 return orig_mode;
9742 case ROTATERT:
9743 gcc_unreachable ();
9745 default:
9746 return mode;
9750 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9751 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
9752 simplify it. Otherwise, return a simplified value.
9754 The shift is normally computed in the widest mode we find in VAROP, as
9755 long as it isn't a different number of words than RESULT_MODE. Exceptions
9756 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9758 static rtx
9759 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9760 rtx varop, int orig_count)
9762 enum rtx_code orig_code = code;
9763 rtx orig_varop = varop;
9764 int count;
9765 enum machine_mode mode = result_mode;
9766 enum machine_mode shift_mode, tmode;
9767 unsigned int mode_words
9768 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9769 /* We form (outer_op (code varop count) (outer_const)). */
9770 enum rtx_code outer_op = UNKNOWN;
9771 HOST_WIDE_INT outer_const = 0;
9772 int complement_p = 0;
9773 rtx new_rtx, x;
9775 /* Make sure and truncate the "natural" shift on the way in. We don't
9776 want to do this inside the loop as it makes it more difficult to
9777 combine shifts. */
9778 if (SHIFT_COUNT_TRUNCATED)
9779 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9781 /* If we were given an invalid count, don't do anything except exactly
9782 what was requested. */
9784 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9785 return NULL_RTX;
9787 count = orig_count;
9789 /* Unless one of the branches of the `if' in this loop does a `continue',
9790 we will `break' the loop after the `if'. */
9792 while (count != 0)
9794 /* If we have an operand of (clobber (const_int 0)), fail. */
9795 if (GET_CODE (varop) == CLOBBER)
9796 return NULL_RTX;
9798 /* Convert ROTATERT to ROTATE. */
9799 if (code == ROTATERT)
9801 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9802 code = ROTATE;
9803 if (VECTOR_MODE_P (result_mode))
9804 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9805 else
9806 count = bitsize - count;
9809 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9810 mode, outer_op, outer_const);
9812 /* Handle cases where the count is greater than the size of the mode
9813 minus 1. For ASHIFT, use the size minus one as the count (this can
9814 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9815 take the count modulo the size. For other shifts, the result is
9816 zero.
9818 Since these shifts are being produced by the compiler by combining
9819 multiple operations, each of which are defined, we know what the
9820 result is supposed to be. */
9822 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
9824 if (code == ASHIFTRT)
9825 count = GET_MODE_BITSIZE (shift_mode) - 1;
9826 else if (code == ROTATE || code == ROTATERT)
9827 count %= GET_MODE_BITSIZE (shift_mode);
9828 else
9830 /* We can't simply return zero because there may be an
9831 outer op. */
9832 varop = const0_rtx;
9833 count = 0;
9834 break;
9838 /* If we discovered we had to complement VAROP, leave. Making a NOT
9839 here would cause an infinite loop. */
9840 if (complement_p)
9841 break;
9843 /* An arithmetic right shift of a quantity known to be -1 or 0
9844 is a no-op. */
9845 if (code == ASHIFTRT
9846 && (num_sign_bit_copies (varop, shift_mode)
9847 == GET_MODE_BITSIZE (shift_mode)))
9849 count = 0;
9850 break;
9853 /* If we are doing an arithmetic right shift and discarding all but
9854 the sign bit copies, this is equivalent to doing a shift by the
9855 bitsize minus one. Convert it into that shift because it will often
9856 allow other simplifications. */
9858 if (code == ASHIFTRT
9859 && (count + num_sign_bit_copies (varop, shift_mode)
9860 >= GET_MODE_BITSIZE (shift_mode)))
9861 count = GET_MODE_BITSIZE (shift_mode) - 1;
9863 /* We simplify the tests below and elsewhere by converting
9864 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9865 `make_compound_operation' will convert it to an ASHIFTRT for
9866 those machines (such as VAX) that don't have an LSHIFTRT. */
9867 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9868 && code == ASHIFTRT
9869 && ((nonzero_bits (varop, shift_mode)
9870 & ((unsigned HOST_WIDE_INT) 1
9871 << (GET_MODE_BITSIZE (shift_mode) - 1))) == 0))
9872 code = LSHIFTRT;
9874 if (((code == LSHIFTRT
9875 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9876 && !(nonzero_bits (varop, shift_mode) >> count))
9877 || (code == ASHIFT
9878 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9879 && !((nonzero_bits (varop, shift_mode) << count)
9880 & GET_MODE_MASK (shift_mode))))
9881 && !side_effects_p (varop))
9882 varop = const0_rtx;
9884 switch (GET_CODE (varop))
9886 case SIGN_EXTEND:
9887 case ZERO_EXTEND:
9888 case SIGN_EXTRACT:
9889 case ZERO_EXTRACT:
9890 new_rtx = expand_compound_operation (varop);
9891 if (new_rtx != varop)
9893 varop = new_rtx;
9894 continue;
9896 break;
9898 case MEM:
9899 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9900 minus the width of a smaller mode, we can do this with a
9901 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9902 if ((code == ASHIFTRT || code == LSHIFTRT)
9903 && ! mode_dependent_address_p (XEXP (varop, 0))
9904 && ! MEM_VOLATILE_P (varop)
9905 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9906 MODE_INT, 1)) != BLKmode)
9908 new_rtx = adjust_address_nv (varop, tmode,
9909 BYTES_BIG_ENDIAN ? 0
9910 : count / BITS_PER_UNIT);
9912 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9913 : ZERO_EXTEND, mode, new_rtx);
9914 count = 0;
9915 continue;
9917 break;
9919 case SUBREG:
9920 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9921 the same number of words as what we've seen so far. Then store
9922 the widest mode in MODE. */
9923 if (subreg_lowpart_p (varop)
9924 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9925 > GET_MODE_SIZE (GET_MODE (varop)))
9926 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9927 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9928 == mode_words
9929 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
9930 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
9932 varop = SUBREG_REG (varop);
9933 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9934 mode = GET_MODE (varop);
9935 continue;
9937 break;
9939 case MULT:
9940 /* Some machines use MULT instead of ASHIFT because MULT
9941 is cheaper. But it is still better on those machines to
9942 merge two shifts into one. */
9943 if (CONST_INT_P (XEXP (varop, 1))
9944 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9946 varop
9947 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9948 XEXP (varop, 0),
9949 GEN_INT (exact_log2 (
9950 UINTVAL (XEXP (varop, 1)))));
9951 continue;
9953 break;
9955 case UDIV:
9956 /* Similar, for when divides are cheaper. */
9957 if (CONST_INT_P (XEXP (varop, 1))
9958 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9960 varop
9961 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9962 XEXP (varop, 0),
9963 GEN_INT (exact_log2 (
9964 UINTVAL (XEXP (varop, 1)))));
9965 continue;
9967 break;
9969 case ASHIFTRT:
9970 /* If we are extracting just the sign bit of an arithmetic
9971 right shift, that shift is not needed. However, the sign
9972 bit of a wider mode may be different from what would be
9973 interpreted as the sign bit in a narrower mode, so, if
9974 the result is narrower, don't discard the shift. */
9975 if (code == LSHIFTRT
9976 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9977 && (GET_MODE_BITSIZE (result_mode)
9978 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9980 varop = XEXP (varop, 0);
9981 continue;
9984 /* ... fall through ... */
9986 case LSHIFTRT:
9987 case ASHIFT:
9988 case ROTATE:
9989 /* Here we have two nested shifts. The result is usually the
9990 AND of a new shift with a mask. We compute the result below. */
9991 if (CONST_INT_P (XEXP (varop, 1))
9992 && INTVAL (XEXP (varop, 1)) >= 0
9993 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9994 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9995 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9996 && !VECTOR_MODE_P (result_mode))
9998 enum rtx_code first_code = GET_CODE (varop);
9999 unsigned int first_count = INTVAL (XEXP (varop, 1));
10000 unsigned HOST_WIDE_INT mask;
10001 rtx mask_rtx;
10003 /* We have one common special case. We can't do any merging if
10004 the inner code is an ASHIFTRT of a smaller mode. However, if
10005 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10006 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10007 we can convert it to
10008 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
10009 This simplifies certain SIGN_EXTEND operations. */
10010 if (code == ASHIFT && first_code == ASHIFTRT
10011 && count == (GET_MODE_BITSIZE (result_mode)
10012 - GET_MODE_BITSIZE (GET_MODE (varop))))
10014 /* C3 has the low-order C1 bits zero. */
10016 mask = GET_MODE_MASK (mode)
10017 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10019 varop = simplify_and_const_int (NULL_RTX, result_mode,
10020 XEXP (varop, 0), mask);
10021 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10022 varop, count);
10023 count = first_count;
10024 code = ASHIFTRT;
10025 continue;
10028 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10029 than C1 high-order bits equal to the sign bit, we can convert
10030 this to either an ASHIFT or an ASHIFTRT depending on the
10031 two counts.
10033 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10035 if (code == ASHIFTRT && first_code == ASHIFT
10036 && GET_MODE (varop) == shift_mode
10037 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10038 > first_count))
10040 varop = XEXP (varop, 0);
10041 count -= first_count;
10042 if (count < 0)
10044 count = -count;
10045 code = ASHIFT;
10048 continue;
10051 /* There are some cases we can't do. If CODE is ASHIFTRT,
10052 we can only do this if FIRST_CODE is also ASHIFTRT.
10054 We can't do the case when CODE is ROTATE and FIRST_CODE is
10055 ASHIFTRT.
10057 If the mode of this shift is not the mode of the outer shift,
10058 we can't do this if either shift is a right shift or ROTATE.
10060 Finally, we can't do any of these if the mode is too wide
10061 unless the codes are the same.
10063 Handle the case where the shift codes are the same
10064 first. */
10066 if (code == first_code)
10068 if (GET_MODE (varop) != result_mode
10069 && (code == ASHIFTRT || code == LSHIFTRT
10070 || code == ROTATE))
10071 break;
10073 count += first_count;
10074 varop = XEXP (varop, 0);
10075 continue;
10078 if (code == ASHIFTRT
10079 || (code == ROTATE && first_code == ASHIFTRT)
10080 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
10081 || (GET_MODE (varop) != result_mode
10082 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10083 || first_code == ROTATE
10084 || code == ROTATE)))
10085 break;
10087 /* To compute the mask to apply after the shift, shift the
10088 nonzero bits of the inner shift the same way the
10089 outer shift will. */
10091 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
10093 mask_rtx
10094 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10095 GEN_INT (count));
10097 /* Give up if we can't compute an outer operation to use. */
10098 if (mask_rtx == 0
10099 || !CONST_INT_P (mask_rtx)
10100 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10101 INTVAL (mask_rtx),
10102 result_mode, &complement_p))
10103 break;
10105 /* If the shifts are in the same direction, we add the
10106 counts. Otherwise, we subtract them. */
10107 if ((code == ASHIFTRT || code == LSHIFTRT)
10108 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10109 count += first_count;
10110 else
10111 count -= first_count;
10113 /* If COUNT is positive, the new shift is usually CODE,
10114 except for the two exceptions below, in which case it is
10115 FIRST_CODE. If the count is negative, FIRST_CODE should
10116 always be used */
10117 if (count > 0
10118 && ((first_code == ROTATE && code == ASHIFT)
10119 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10120 code = first_code;
10121 else if (count < 0)
10122 code = first_code, count = -count;
10124 varop = XEXP (varop, 0);
10125 continue;
10128 /* If we have (A << B << C) for any shift, we can convert this to
10129 (A << C << B). This wins if A is a constant. Only try this if
10130 B is not a constant. */
10132 else if (GET_CODE (varop) == code
10133 && CONST_INT_P (XEXP (varop, 0))
10134 && !CONST_INT_P (XEXP (varop, 1)))
10136 rtx new_rtx = simplify_const_binary_operation (code, mode,
10137 XEXP (varop, 0),
10138 GEN_INT (count));
10139 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10140 count = 0;
10141 continue;
10143 break;
10145 case NOT:
10146 if (VECTOR_MODE_P (mode))
10147 break;
10149 /* Make this fit the case below. */
10150 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
10151 GEN_INT (GET_MODE_MASK (mode)));
10152 continue;
10154 case IOR:
10155 case AND:
10156 case XOR:
10157 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10158 with C the size of VAROP - 1 and the shift is logical if
10159 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10160 we have an (le X 0) operation. If we have an arithmetic shift
10161 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10162 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10164 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10165 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10166 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10167 && (code == LSHIFTRT || code == ASHIFTRT)
10168 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
10169 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10171 count = 0;
10172 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10173 const0_rtx);
10175 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10176 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10178 continue;
10181 /* If we have (shift (logical)), move the logical to the outside
10182 to allow it to possibly combine with another logical and the
10183 shift to combine with another shift. This also canonicalizes to
10184 what a ZERO_EXTRACT looks like. Also, some machines have
10185 (and (shift)) insns. */
10187 if (CONST_INT_P (XEXP (varop, 1))
10188 /* We can't do this if we have (ashiftrt (xor)) and the
10189 constant has its sign bit set in shift_mode. */
10190 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10191 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10192 shift_mode))
10193 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10194 XEXP (varop, 1),
10195 GEN_INT (count))) != 0
10196 && CONST_INT_P (new_rtx)
10197 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10198 INTVAL (new_rtx), result_mode, &complement_p))
10200 varop = XEXP (varop, 0);
10201 continue;
10204 /* If we can't do that, try to simplify the shift in each arm of the
10205 logical expression, make a new logical expression, and apply
10206 the inverse distributive law. This also can't be done
10207 for some (ashiftrt (xor)). */
10208 if (CONST_INT_P (XEXP (varop, 1))
10209 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10210 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10211 shift_mode)))
10213 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10214 XEXP (varop, 0), count);
10215 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10216 XEXP (varop, 1), count);
10218 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10219 lhs, rhs);
10220 varop = apply_distributive_law (varop);
10222 count = 0;
10223 continue;
10225 break;
10227 case EQ:
10228 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10229 says that the sign bit can be tested, FOO has mode MODE, C is
10230 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
10231 that may be nonzero. */
10232 if (code == LSHIFTRT
10233 && XEXP (varop, 1) == const0_rtx
10234 && GET_MODE (XEXP (varop, 0)) == result_mode
10235 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10236 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
10237 && STORE_FLAG_VALUE == -1
10238 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10239 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10240 &complement_p))
10242 varop = XEXP (varop, 0);
10243 count = 0;
10244 continue;
10246 break;
10248 case NEG:
10249 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10250 than the number of bits in the mode is equivalent to A. */
10251 if (code == LSHIFTRT
10252 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10253 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10255 varop = XEXP (varop, 0);
10256 count = 0;
10257 continue;
10260 /* NEG commutes with ASHIFT since it is multiplication. Move the
10261 NEG outside to allow shifts to combine. */
10262 if (code == ASHIFT
10263 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10264 &complement_p))
10266 varop = XEXP (varop, 0);
10267 continue;
10269 break;
10271 case PLUS:
10272 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10273 is one less than the number of bits in the mode is
10274 equivalent to (xor A 1). */
10275 if (code == LSHIFTRT
10276 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10277 && XEXP (varop, 1) == constm1_rtx
10278 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10279 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10280 &complement_p))
10282 count = 0;
10283 varop = XEXP (varop, 0);
10284 continue;
10287 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10288 that might be nonzero in BAR are those being shifted out and those
10289 bits are known zero in FOO, we can replace the PLUS with FOO.
10290 Similarly in the other operand order. This code occurs when
10291 we are computing the size of a variable-size array. */
10293 if ((code == ASHIFTRT || code == LSHIFTRT)
10294 && count < HOST_BITS_PER_WIDE_INT
10295 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10296 && (nonzero_bits (XEXP (varop, 1), result_mode)
10297 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10299 varop = XEXP (varop, 0);
10300 continue;
10302 else if ((code == ASHIFTRT || code == LSHIFTRT)
10303 && count < HOST_BITS_PER_WIDE_INT
10304 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
10305 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10306 >> count)
10307 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10308 & nonzero_bits (XEXP (varop, 1),
10309 result_mode)))
10311 varop = XEXP (varop, 1);
10312 continue;
10315 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10316 if (code == ASHIFT
10317 && CONST_INT_P (XEXP (varop, 1))
10318 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
10319 XEXP (varop, 1),
10320 GEN_INT (count))) != 0
10321 && CONST_INT_P (new_rtx)
10322 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10323 INTVAL (new_rtx), result_mode, &complement_p))
10325 varop = XEXP (varop, 0);
10326 continue;
10329 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10330 signbit', and attempt to change the PLUS to an XOR and move it to
10331 the outer operation as is done above in the AND/IOR/XOR case
10332 leg for shift(logical). See details in logical handling above
10333 for reasoning in doing so. */
10334 if (code == LSHIFTRT
10335 && CONST_INT_P (XEXP (varop, 1))
10336 && mode_signbit_p (result_mode, XEXP (varop, 1))
10337 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10338 XEXP (varop, 1),
10339 GEN_INT (count))) != 0
10340 && CONST_INT_P (new_rtx)
10341 && merge_outer_ops (&outer_op, &outer_const, XOR,
10342 INTVAL (new_rtx), result_mode, &complement_p))
10344 varop = XEXP (varop, 0);
10345 continue;
10348 break;
10350 case MINUS:
10351 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10352 with C the size of VAROP - 1 and the shift is logical if
10353 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10354 we have a (gt X 0) operation. If the shift is arithmetic with
10355 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10356 we have a (neg (gt X 0)) operation. */
10358 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10359 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10360 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
10361 && (code == LSHIFTRT || code == ASHIFTRT)
10362 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10363 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10364 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10366 count = 0;
10367 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10368 const0_rtx);
10370 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10371 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10373 continue;
10375 break;
10377 case TRUNCATE:
10378 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10379 if the truncate does not affect the value. */
10380 if (code == LSHIFTRT
10381 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10382 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10383 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10384 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
10385 - GET_MODE_BITSIZE (GET_MODE (varop)))))
10387 rtx varop_inner = XEXP (varop, 0);
10389 varop_inner
10390 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10391 XEXP (varop_inner, 0),
10392 GEN_INT
10393 (count + INTVAL (XEXP (varop_inner, 1))));
10394 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10395 count = 0;
10396 continue;
10398 break;
10400 default:
10401 break;
10404 break;
10407 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10408 outer_op, outer_const);
10410 /* We have now finished analyzing the shift. The result should be
10411 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10412 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10413 to the result of the shift. OUTER_CONST is the relevant constant,
10414 but we must turn off all bits turned off in the shift. */
10416 if (outer_op == UNKNOWN
10417 && orig_code == code && orig_count == count
10418 && varop == orig_varop
10419 && shift_mode == GET_MODE (varop))
10420 return NULL_RTX;
10422 /* Make a SUBREG if necessary. If we can't make it, fail. */
10423 varop = gen_lowpart (shift_mode, varop);
10424 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10425 return NULL_RTX;
10427 /* If we have an outer operation and we just made a shift, it is
10428 possible that we could have simplified the shift were it not
10429 for the outer operation. So try to do the simplification
10430 recursively. */
10432 if (outer_op != UNKNOWN)
10433 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10434 else
10435 x = NULL_RTX;
10437 if (x == NULL_RTX)
10438 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10440 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10441 turn off all the bits that the shift would have turned off. */
10442 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10443 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10444 GET_MODE_MASK (result_mode) >> orig_count);
10446 /* Do the remainder of the processing in RESULT_MODE. */
10447 x = gen_lowpart_or_truncate (result_mode, x);
10449 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10450 operation. */
10451 if (complement_p)
10452 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10454 if (outer_op != UNKNOWN)
10456 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10457 && GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
10458 outer_const = trunc_int_for_mode (outer_const, result_mode);
10460 if (outer_op == AND)
10461 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10462 else if (outer_op == SET)
10464 /* This means that we have determined that the result is
10465 equivalent to a constant. This should be rare. */
10466 if (!side_effects_p (x))
10467 x = GEN_INT (outer_const);
10469 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10470 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10471 else
10472 x = simplify_gen_binary (outer_op, result_mode, x,
10473 GEN_INT (outer_const));
10476 return x;
10479 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10480 The result of the shift is RESULT_MODE. If we cannot simplify it,
10481 return X or, if it is NULL, synthesize the expression with
10482 simplify_gen_binary. Otherwise, return a simplified value.
10484 The shift is normally computed in the widest mode we find in VAROP, as
10485 long as it isn't a different number of words than RESULT_MODE. Exceptions
10486 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10488 static rtx
10489 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10490 rtx varop, int count)
10492 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10493 if (tem)
10494 return tem;
10496 if (!x)
10497 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10498 if (GET_MODE (x) != result_mode)
10499 x = gen_lowpart (result_mode, x);
10500 return x;
10504 /* Like recog, but we receive the address of a pointer to a new pattern.
10505 We try to match the rtx that the pointer points to.
10506 If that fails, we may try to modify or replace the pattern,
10507 storing the replacement into the same pointer object.
10509 Modifications include deletion or addition of CLOBBERs.
10511 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10512 the CLOBBERs are placed.
10514 The value is the final insn code from the pattern ultimately matched,
10515 or -1. */
10517 static int
10518 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10520 rtx pat = *pnewpat;
10521 int insn_code_number;
10522 int num_clobbers_to_add = 0;
10523 int i;
10524 rtx notes = 0;
10525 rtx old_notes, old_pat;
10527 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10528 we use to indicate that something didn't match. If we find such a
10529 thing, force rejection. */
10530 if (GET_CODE (pat) == PARALLEL)
10531 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10532 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10533 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10534 return -1;
10536 old_pat = PATTERN (insn);
10537 old_notes = REG_NOTES (insn);
10538 PATTERN (insn) = pat;
10539 REG_NOTES (insn) = 0;
10541 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10542 if (dump_file && (dump_flags & TDF_DETAILS))
10544 if (insn_code_number < 0)
10545 fputs ("Failed to match this instruction:\n", dump_file);
10546 else
10547 fputs ("Successfully matched this instruction:\n", dump_file);
10548 print_rtl_single (dump_file, pat);
10551 /* If it isn't, there is the possibility that we previously had an insn
10552 that clobbered some register as a side effect, but the combined
10553 insn doesn't need to do that. So try once more without the clobbers
10554 unless this represents an ASM insn. */
10556 if (insn_code_number < 0 && ! check_asm_operands (pat)
10557 && GET_CODE (pat) == PARALLEL)
10559 int pos;
10561 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10562 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10564 if (i != pos)
10565 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10566 pos++;
10569 SUBST_INT (XVECLEN (pat, 0), pos);
10571 if (pos == 1)
10572 pat = XVECEXP (pat, 0, 0);
10574 PATTERN (insn) = pat;
10575 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10576 if (dump_file && (dump_flags & TDF_DETAILS))
10578 if (insn_code_number < 0)
10579 fputs ("Failed to match this instruction:\n", dump_file);
10580 else
10581 fputs ("Successfully matched this instruction:\n", dump_file);
10582 print_rtl_single (dump_file, pat);
10585 PATTERN (insn) = old_pat;
10586 REG_NOTES (insn) = old_notes;
10588 /* Recognize all noop sets, these will be killed by followup pass. */
10589 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10590 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10592 /* If we had any clobbers to add, make a new pattern than contains
10593 them. Then check to make sure that all of them are dead. */
10594 if (num_clobbers_to_add)
10596 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10597 rtvec_alloc (GET_CODE (pat) == PARALLEL
10598 ? (XVECLEN (pat, 0)
10599 + num_clobbers_to_add)
10600 : num_clobbers_to_add + 1));
10602 if (GET_CODE (pat) == PARALLEL)
10603 for (i = 0; i < XVECLEN (pat, 0); i++)
10604 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10605 else
10606 XVECEXP (newpat, 0, 0) = pat;
10608 add_clobbers (newpat, insn_code_number);
10610 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10611 i < XVECLEN (newpat, 0); i++)
10613 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10614 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10615 return -1;
10616 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10618 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10619 notes = alloc_reg_note (REG_UNUSED,
10620 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10623 pat = newpat;
10626 *pnewpat = pat;
10627 *pnotes = notes;
10629 return insn_code_number;
10632 /* Like gen_lowpart_general but for use by combine. In combine it
10633 is not possible to create any new pseudoregs. However, it is
10634 safe to create invalid memory addresses, because combine will
10635 try to recognize them and all they will do is make the combine
10636 attempt fail.
10638 If for some reason this cannot do its job, an rtx
10639 (clobber (const_int 0)) is returned.
10640 An insn containing that will not be recognized. */
10642 static rtx
10643 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10645 enum machine_mode imode = GET_MODE (x);
10646 unsigned int osize = GET_MODE_SIZE (omode);
10647 unsigned int isize = GET_MODE_SIZE (imode);
10648 rtx result;
10650 if (omode == imode)
10651 return x;
10653 /* Return identity if this is a CONST or symbolic reference. */
10654 if (omode == Pmode
10655 && (GET_CODE (x) == CONST
10656 || GET_CODE (x) == SYMBOL_REF
10657 || GET_CODE (x) == LABEL_REF))
10658 return x;
10660 /* We can only support MODE being wider than a word if X is a
10661 constant integer or has a mode the same size. */
10662 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10663 && ! ((imode == VOIDmode
10664 && (CONST_INT_P (x)
10665 || GET_CODE (x) == CONST_DOUBLE))
10666 || isize == osize))
10667 goto fail;
10669 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10670 won't know what to do. So we will strip off the SUBREG here and
10671 process normally. */
10672 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10674 x = SUBREG_REG (x);
10676 /* For use in case we fall down into the address adjustments
10677 further below, we need to adjust the known mode and size of
10678 x; imode and isize, since we just adjusted x. */
10679 imode = GET_MODE (x);
10681 if (imode == omode)
10682 return x;
10684 isize = GET_MODE_SIZE (imode);
10687 result = gen_lowpart_common (omode, x);
10689 if (result)
10690 return result;
10692 if (MEM_P (x))
10694 int offset = 0;
10696 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10697 address. */
10698 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10699 goto fail;
10701 /* If we want to refer to something bigger than the original memref,
10702 generate a paradoxical subreg instead. That will force a reload
10703 of the original memref X. */
10704 if (isize < osize)
10705 return gen_rtx_SUBREG (omode, x, 0);
10707 if (WORDS_BIG_ENDIAN)
10708 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10710 /* Adjust the address so that the address-after-the-data is
10711 unchanged. */
10712 if (BYTES_BIG_ENDIAN)
10713 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10715 return adjust_address_nv (x, omode, offset);
10718 /* If X is a comparison operator, rewrite it in a new mode. This
10719 probably won't match, but may allow further simplifications. */
10720 else if (COMPARISON_P (x))
10721 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10723 /* If we couldn't simplify X any other way, just enclose it in a
10724 SUBREG. Normally, this SUBREG won't match, but some patterns may
10725 include an explicit SUBREG or we may simplify it further in combine. */
10726 else
10728 int offset = 0;
10729 rtx res;
10731 offset = subreg_lowpart_offset (omode, imode);
10732 if (imode == VOIDmode)
10734 imode = int_mode_for_mode (omode);
10735 x = gen_lowpart_common (imode, x);
10736 if (x == NULL)
10737 goto fail;
10739 res = simplify_gen_subreg (omode, x, imode, offset);
10740 if (res)
10741 return res;
10744 fail:
10745 return gen_rtx_CLOBBER (omode, const0_rtx);
10748 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10749 comparison code that will be tested.
10751 The result is a possibly different comparison code to use. *POP0 and
10752 *POP1 may be updated.
10754 It is possible that we might detect that a comparison is either always
10755 true or always false. However, we do not perform general constant
10756 folding in combine, so this knowledge isn't useful. Such tautologies
10757 should have been detected earlier. Hence we ignore all such cases. */
10759 static enum rtx_code
10760 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10762 rtx op0 = *pop0;
10763 rtx op1 = *pop1;
10764 rtx tem, tem1;
10765 int i;
10766 enum machine_mode mode, tmode;
10768 /* Try a few ways of applying the same transformation to both operands. */
10769 while (1)
10771 #ifndef WORD_REGISTER_OPERATIONS
10772 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10773 so check specially. */
10774 if (code != GTU && code != GEU && code != LTU && code != LEU
10775 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10776 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10777 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10778 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10779 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10780 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10781 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10782 && CONST_INT_P (XEXP (op0, 1))
10783 && XEXP (op0, 1) == XEXP (op1, 1)
10784 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10785 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10786 && (INTVAL (XEXP (op0, 1))
10787 == (GET_MODE_BITSIZE (GET_MODE (op0))
10788 - (GET_MODE_BITSIZE
10789 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10791 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10792 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10794 #endif
10796 /* If both operands are the same constant shift, see if we can ignore the
10797 shift. We can if the shift is a rotate or if the bits shifted out of
10798 this shift are known to be zero for both inputs and if the type of
10799 comparison is compatible with the shift. */
10800 if (GET_CODE (op0) == GET_CODE (op1)
10801 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10802 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10803 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10804 && (code != GT && code != LT && code != GE && code != LE))
10805 || (GET_CODE (op0) == ASHIFTRT
10806 && (code != GTU && code != LTU
10807 && code != GEU && code != LEU)))
10808 && CONST_INT_P (XEXP (op0, 1))
10809 && INTVAL (XEXP (op0, 1)) >= 0
10810 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10811 && XEXP (op0, 1) == XEXP (op1, 1))
10813 enum machine_mode mode = GET_MODE (op0);
10814 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10815 int shift_count = INTVAL (XEXP (op0, 1));
10817 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10818 mask &= (mask >> shift_count) << shift_count;
10819 else if (GET_CODE (op0) == ASHIFT)
10820 mask = (mask & (mask << shift_count)) >> shift_count;
10822 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10823 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10824 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10825 else
10826 break;
10829 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10830 SUBREGs are of the same mode, and, in both cases, the AND would
10831 be redundant if the comparison was done in the narrower mode,
10832 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10833 and the operand's possibly nonzero bits are 0xffffff01; in that case
10834 if we only care about QImode, we don't need the AND). This case
10835 occurs if the output mode of an scc insn is not SImode and
10836 STORE_FLAG_VALUE == 1 (e.g., the 386).
10838 Similarly, check for a case where the AND's are ZERO_EXTEND
10839 operations from some narrower mode even though a SUBREG is not
10840 present. */
10842 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10843 && CONST_INT_P (XEXP (op0, 1))
10844 && CONST_INT_P (XEXP (op1, 1)))
10846 rtx inner_op0 = XEXP (op0, 0);
10847 rtx inner_op1 = XEXP (op1, 0);
10848 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10849 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10850 int changed = 0;
10852 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10853 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10854 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10855 && (GET_MODE (SUBREG_REG (inner_op0))
10856 == GET_MODE (SUBREG_REG (inner_op1)))
10857 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10858 <= HOST_BITS_PER_WIDE_INT)
10859 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10860 GET_MODE (SUBREG_REG (inner_op0)))))
10861 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10862 GET_MODE (SUBREG_REG (inner_op1))))))
10864 op0 = SUBREG_REG (inner_op0);
10865 op1 = SUBREG_REG (inner_op1);
10867 /* The resulting comparison is always unsigned since we masked
10868 off the original sign bit. */
10869 code = unsigned_condition (code);
10871 changed = 1;
10874 else if (c0 == c1)
10875 for (tmode = GET_CLASS_NARROWEST_MODE
10876 (GET_MODE_CLASS (GET_MODE (op0)));
10877 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10878 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10880 op0 = gen_lowpart (tmode, inner_op0);
10881 op1 = gen_lowpart (tmode, inner_op1);
10882 code = unsigned_condition (code);
10883 changed = 1;
10884 break;
10887 if (! changed)
10888 break;
10891 /* If both operands are NOT, we can strip off the outer operation
10892 and adjust the comparison code for swapped operands; similarly for
10893 NEG, except that this must be an equality comparison. */
10894 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10895 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10896 && (code == EQ || code == NE)))
10897 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10899 else
10900 break;
10903 /* If the first operand is a constant, swap the operands and adjust the
10904 comparison code appropriately, but don't do this if the second operand
10905 is already a constant integer. */
10906 if (swap_commutative_operands_p (op0, op1))
10908 tem = op0, op0 = op1, op1 = tem;
10909 code = swap_condition (code);
10912 /* We now enter a loop during which we will try to simplify the comparison.
10913 For the most part, we only are concerned with comparisons with zero,
10914 but some things may really be comparisons with zero but not start
10915 out looking that way. */
10917 while (CONST_INT_P (op1))
10919 enum machine_mode mode = GET_MODE (op0);
10920 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10921 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10922 int equality_comparison_p;
10923 int sign_bit_comparison_p;
10924 int unsigned_comparison_p;
10925 HOST_WIDE_INT const_op;
10927 /* We only want to handle integral modes. This catches VOIDmode,
10928 CCmode, and the floating-point modes. An exception is that we
10929 can handle VOIDmode if OP0 is a COMPARE or a comparison
10930 operation. */
10932 if (GET_MODE_CLASS (mode) != MODE_INT
10933 && ! (mode == VOIDmode
10934 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10935 break;
10937 /* Get the constant we are comparing against and turn off all bits
10938 not on in our mode. */
10939 const_op = INTVAL (op1);
10940 if (mode != VOIDmode)
10941 const_op = trunc_int_for_mode (const_op, mode);
10942 op1 = GEN_INT (const_op);
10944 /* If we are comparing against a constant power of two and the value
10945 being compared can only have that single bit nonzero (e.g., it was
10946 `and'ed with that bit), we can replace this with a comparison
10947 with zero. */
10948 if (const_op
10949 && (code == EQ || code == NE || code == GE || code == GEU
10950 || code == LT || code == LTU)
10951 && mode_width <= HOST_BITS_PER_WIDE_INT
10952 && exact_log2 (const_op) >= 0
10953 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10955 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10956 op1 = const0_rtx, const_op = 0;
10959 /* Similarly, if we are comparing a value known to be either -1 or
10960 0 with -1, change it to the opposite comparison against zero. */
10962 if (const_op == -1
10963 && (code == EQ || code == NE || code == GT || code == LE
10964 || code == GEU || code == LTU)
10965 && num_sign_bit_copies (op0, mode) == mode_width)
10967 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10968 op1 = const0_rtx, const_op = 0;
10971 /* Do some canonicalizations based on the comparison code. We prefer
10972 comparisons against zero and then prefer equality comparisons.
10973 If we can reduce the size of a constant, we will do that too. */
10975 switch (code)
10977 case LT:
10978 /* < C is equivalent to <= (C - 1) */
10979 if (const_op > 0)
10981 const_op -= 1;
10982 op1 = GEN_INT (const_op);
10983 code = LE;
10984 /* ... fall through to LE case below. */
10986 else
10987 break;
10989 case LE:
10990 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10991 if (const_op < 0)
10993 const_op += 1;
10994 op1 = GEN_INT (const_op);
10995 code = LT;
10998 /* If we are doing a <= 0 comparison on a value known to have
10999 a zero sign bit, we can replace this with == 0. */
11000 else if (const_op == 0
11001 && mode_width <= HOST_BITS_PER_WIDE_INT
11002 && (nonzero_bits (op0, mode)
11003 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11004 == 0)
11005 code = EQ;
11006 break;
11008 case GE:
11009 /* >= C is equivalent to > (C - 1). */
11010 if (const_op > 0)
11012 const_op -= 1;
11013 op1 = GEN_INT (const_op);
11014 code = GT;
11015 /* ... fall through to GT below. */
11017 else
11018 break;
11020 case GT:
11021 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11022 if (const_op < 0)
11024 const_op += 1;
11025 op1 = GEN_INT (const_op);
11026 code = GE;
11029 /* If we are doing a > 0 comparison on a value known to have
11030 a zero sign bit, we can replace this with != 0. */
11031 else if (const_op == 0
11032 && mode_width <= HOST_BITS_PER_WIDE_INT
11033 && (nonzero_bits (op0, mode)
11034 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11035 == 0)
11036 code = NE;
11037 break;
11039 case LTU:
11040 /* < C is equivalent to <= (C - 1). */
11041 if (const_op > 0)
11043 const_op -= 1;
11044 op1 = GEN_INT (const_op);
11045 code = LEU;
11046 /* ... fall through ... */
11049 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11050 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11051 && (unsigned HOST_WIDE_INT) const_op
11052 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11054 const_op = 0, op1 = const0_rtx;
11055 code = GE;
11056 break;
11058 else
11059 break;
11061 case LEU:
11062 /* unsigned <= 0 is equivalent to == 0 */
11063 if (const_op == 0)
11064 code = EQ;
11066 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11067 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11068 && (unsigned HOST_WIDE_INT) const_op
11069 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11071 const_op = 0, op1 = const0_rtx;
11072 code = GE;
11074 break;
11076 case GEU:
11077 /* >= C is equivalent to > (C - 1). */
11078 if (const_op > 1)
11080 const_op -= 1;
11081 op1 = GEN_INT (const_op);
11082 code = GTU;
11083 /* ... fall through ... */
11086 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11087 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11088 && (unsigned HOST_WIDE_INT) const_op
11089 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11091 const_op = 0, op1 = const0_rtx;
11092 code = LT;
11093 break;
11095 else
11096 break;
11098 case GTU:
11099 /* unsigned > 0 is equivalent to != 0 */
11100 if (const_op == 0)
11101 code = NE;
11103 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11104 else if (mode_width <= HOST_BITS_PER_WIDE_INT
11105 && (unsigned HOST_WIDE_INT) const_op
11106 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11108 const_op = 0, op1 = const0_rtx;
11109 code = LT;
11111 break;
11113 default:
11114 break;
11117 /* Compute some predicates to simplify code below. */
11119 equality_comparison_p = (code == EQ || code == NE);
11120 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11121 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11122 || code == GEU);
11124 /* If this is a sign bit comparison and we can do arithmetic in
11125 MODE, say that we will only be needing the sign bit of OP0. */
11126 if (sign_bit_comparison_p
11127 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11128 op0 = force_to_mode (op0, mode,
11129 (unsigned HOST_WIDE_INT) 1
11130 << (GET_MODE_BITSIZE (mode) - 1),
11133 /* Now try cases based on the opcode of OP0. If none of the cases
11134 does a "continue", we exit this loop immediately after the
11135 switch. */
11137 switch (GET_CODE (op0))
11139 case ZERO_EXTRACT:
11140 /* If we are extracting a single bit from a variable position in
11141 a constant that has only a single bit set and are comparing it
11142 with zero, we can convert this into an equality comparison
11143 between the position and the location of the single bit. */
11144 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11145 have already reduced the shift count modulo the word size. */
11146 if (!SHIFT_COUNT_TRUNCATED
11147 && CONST_INT_P (XEXP (op0, 0))
11148 && XEXP (op0, 1) == const1_rtx
11149 && equality_comparison_p && const_op == 0
11150 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11152 if (BITS_BIG_ENDIAN)
11154 enum machine_mode new_mode
11155 = mode_for_extraction (EP_extzv, 1);
11156 if (new_mode == MAX_MACHINE_MODE)
11157 i = BITS_PER_WORD - 1 - i;
11158 else
11160 mode = new_mode;
11161 i = (GET_MODE_BITSIZE (mode) - 1 - i);
11165 op0 = XEXP (op0, 2);
11166 op1 = GEN_INT (i);
11167 const_op = i;
11169 /* Result is nonzero iff shift count is equal to I. */
11170 code = reverse_condition (code);
11171 continue;
11174 /* ... fall through ... */
11176 case SIGN_EXTRACT:
11177 tem = expand_compound_operation (op0);
11178 if (tem != op0)
11180 op0 = tem;
11181 continue;
11183 break;
11185 case NOT:
11186 /* If testing for equality, we can take the NOT of the constant. */
11187 if (equality_comparison_p
11188 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11190 op0 = XEXP (op0, 0);
11191 op1 = tem;
11192 continue;
11195 /* If just looking at the sign bit, reverse the sense of the
11196 comparison. */
11197 if (sign_bit_comparison_p)
11199 op0 = XEXP (op0, 0);
11200 code = (code == GE ? LT : GE);
11201 continue;
11203 break;
11205 case NEG:
11206 /* If testing for equality, we can take the NEG of the constant. */
11207 if (equality_comparison_p
11208 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11210 op0 = XEXP (op0, 0);
11211 op1 = tem;
11212 continue;
11215 /* The remaining cases only apply to comparisons with zero. */
11216 if (const_op != 0)
11217 break;
11219 /* When X is ABS or is known positive,
11220 (neg X) is < 0 if and only if X != 0. */
11222 if (sign_bit_comparison_p
11223 && (GET_CODE (XEXP (op0, 0)) == ABS
11224 || (mode_width <= HOST_BITS_PER_WIDE_INT
11225 && (nonzero_bits (XEXP (op0, 0), mode)
11226 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11227 == 0)))
11229 op0 = XEXP (op0, 0);
11230 code = (code == LT ? NE : EQ);
11231 continue;
11234 /* If we have NEG of something whose two high-order bits are the
11235 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11236 if (num_sign_bit_copies (op0, mode) >= 2)
11238 op0 = XEXP (op0, 0);
11239 code = swap_condition (code);
11240 continue;
11242 break;
11244 case ROTATE:
11245 /* If we are testing equality and our count is a constant, we
11246 can perform the inverse operation on our RHS. */
11247 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11248 && (tem = simplify_binary_operation (ROTATERT, mode,
11249 op1, XEXP (op0, 1))) != 0)
11251 op0 = XEXP (op0, 0);
11252 op1 = tem;
11253 continue;
11256 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11257 a particular bit. Convert it to an AND of a constant of that
11258 bit. This will be converted into a ZERO_EXTRACT. */
11259 if (const_op == 0 && sign_bit_comparison_p
11260 && CONST_INT_P (XEXP (op0, 1))
11261 && mode_width <= HOST_BITS_PER_WIDE_INT)
11263 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11264 ((unsigned HOST_WIDE_INT) 1
11265 << (mode_width - 1
11266 - INTVAL (XEXP (op0, 1)))));
11267 code = (code == LT ? NE : EQ);
11268 continue;
11271 /* Fall through. */
11273 case ABS:
11274 /* ABS is ignorable inside an equality comparison with zero. */
11275 if (const_op == 0 && equality_comparison_p)
11277 op0 = XEXP (op0, 0);
11278 continue;
11280 break;
11282 case SIGN_EXTEND:
11283 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11284 (compare FOO CONST) if CONST fits in FOO's mode and we
11285 are either testing inequality or have an unsigned
11286 comparison with ZERO_EXTEND or a signed comparison with
11287 SIGN_EXTEND. But don't do it if we don't have a compare
11288 insn of the given mode, since we'd have to revert it
11289 later on, and then we wouldn't know whether to sign- or
11290 zero-extend. */
11291 mode = GET_MODE (XEXP (op0, 0));
11292 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11293 && ! unsigned_comparison_p
11294 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11295 && ((unsigned HOST_WIDE_INT) const_op
11296 < (((unsigned HOST_WIDE_INT) 1
11297 << (GET_MODE_BITSIZE (mode) - 1))))
11298 && have_insn_for (COMPARE, mode))
11300 op0 = XEXP (op0, 0);
11301 continue;
11303 break;
11305 case SUBREG:
11306 /* Check for the case where we are comparing A - C1 with C2, that is
11308 (subreg:MODE (plus (A) (-C1))) op (C2)
11310 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11311 comparison in the wider mode. One of the following two conditions
11312 must be true in order for this to be valid:
11314 1. The mode extension results in the same bit pattern being added
11315 on both sides and the comparison is equality or unsigned. As
11316 C2 has been truncated to fit in MODE, the pattern can only be
11317 all 0s or all 1s.
11319 2. The mode extension results in the sign bit being copied on
11320 each side.
11322 The difficulty here is that we have predicates for A but not for
11323 (A - C1) so we need to check that C1 is within proper bounds so
11324 as to perturbate A as little as possible. */
11326 if (mode_width <= HOST_BITS_PER_WIDE_INT
11327 && subreg_lowpart_p (op0)
11328 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
11329 && GET_CODE (SUBREG_REG (op0)) == PLUS
11330 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11332 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11333 rtx a = XEXP (SUBREG_REG (op0), 0);
11334 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11336 if ((c1 > 0
11337 && (unsigned HOST_WIDE_INT) c1
11338 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11339 && (equality_comparison_p || unsigned_comparison_p)
11340 /* (A - C1) zero-extends if it is positive and sign-extends
11341 if it is negative, C2 both zero- and sign-extends. */
11342 && ((0 == (nonzero_bits (a, inner_mode)
11343 & ~GET_MODE_MASK (mode))
11344 && const_op >= 0)
11345 /* (A - C1) sign-extends if it is positive and 1-extends
11346 if it is negative, C2 both sign- and 1-extends. */
11347 || (num_sign_bit_copies (a, inner_mode)
11348 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
11349 - mode_width)
11350 && const_op < 0)))
11351 || ((unsigned HOST_WIDE_INT) c1
11352 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11353 /* (A - C1) always sign-extends, like C2. */
11354 && num_sign_bit_copies (a, inner_mode)
11355 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
11356 - (mode_width - 1))))
11358 op0 = SUBREG_REG (op0);
11359 continue;
11363 /* If the inner mode is narrower and we are extracting the low part,
11364 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11365 if (subreg_lowpart_p (op0)
11366 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
11367 /* Fall through */ ;
11368 else
11369 break;
11371 /* ... fall through ... */
11373 case ZERO_EXTEND:
11374 mode = GET_MODE (XEXP (op0, 0));
11375 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11376 && (unsigned_comparison_p || equality_comparison_p)
11377 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11378 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
11379 && have_insn_for (COMPARE, mode))
11381 op0 = XEXP (op0, 0);
11382 continue;
11384 break;
11386 case PLUS:
11387 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11388 this for equality comparisons due to pathological cases involving
11389 overflows. */
11390 if (equality_comparison_p
11391 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11392 op1, XEXP (op0, 1))))
11394 op0 = XEXP (op0, 0);
11395 op1 = tem;
11396 continue;
11399 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11400 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11401 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11403 op0 = XEXP (XEXP (op0, 0), 0);
11404 code = (code == LT ? EQ : NE);
11405 continue;
11407 break;
11409 case MINUS:
11410 /* We used to optimize signed comparisons against zero, but that
11411 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11412 arrive here as equality comparisons, or (GEU, LTU) are
11413 optimized away. No need to special-case them. */
11415 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11416 (eq B (minus A C)), whichever simplifies. We can only do
11417 this for equality comparisons due to pathological cases involving
11418 overflows. */
11419 if (equality_comparison_p
11420 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11421 XEXP (op0, 1), op1)))
11423 op0 = XEXP (op0, 0);
11424 op1 = tem;
11425 continue;
11428 if (equality_comparison_p
11429 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11430 XEXP (op0, 0), op1)))
11432 op0 = XEXP (op0, 1);
11433 op1 = tem;
11434 continue;
11437 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11438 of bits in X minus 1, is one iff X > 0. */
11439 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11440 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11441 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11442 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11444 op0 = XEXP (op0, 1);
11445 code = (code == GE ? LE : GT);
11446 continue;
11448 break;
11450 case XOR:
11451 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11452 if C is zero or B is a constant. */
11453 if (equality_comparison_p
11454 && 0 != (tem = simplify_binary_operation (XOR, mode,
11455 XEXP (op0, 1), op1)))
11457 op0 = XEXP (op0, 0);
11458 op1 = tem;
11459 continue;
11461 break;
11463 case EQ: case NE:
11464 case UNEQ: case LTGT:
11465 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11466 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11467 case UNORDERED: case ORDERED:
11468 /* We can't do anything if OP0 is a condition code value, rather
11469 than an actual data value. */
11470 if (const_op != 0
11471 || CC0_P (XEXP (op0, 0))
11472 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11473 break;
11475 /* Get the two operands being compared. */
11476 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11477 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11478 else
11479 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11481 /* Check for the cases where we simply want the result of the
11482 earlier test or the opposite of that result. */
11483 if (code == NE || code == EQ
11484 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
11485 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11486 && (STORE_FLAG_VALUE
11487 & (((unsigned HOST_WIDE_INT) 1
11488 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
11489 && (code == LT || code == GE)))
11491 enum rtx_code new_code;
11492 if (code == LT || code == NE)
11493 new_code = GET_CODE (op0);
11494 else
11495 new_code = reversed_comparison_code (op0, NULL);
11497 if (new_code != UNKNOWN)
11499 code = new_code;
11500 op0 = tem;
11501 op1 = tem1;
11502 continue;
11505 break;
11507 case IOR:
11508 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11509 iff X <= 0. */
11510 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11511 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11512 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11514 op0 = XEXP (op0, 1);
11515 code = (code == GE ? GT : LE);
11516 continue;
11518 break;
11520 case AND:
11521 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11522 will be converted to a ZERO_EXTRACT later. */
11523 if (const_op == 0 && equality_comparison_p
11524 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11525 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11527 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
11528 XEXP (XEXP (op0, 0), 1));
11529 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11530 continue;
11533 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11534 zero and X is a comparison and C1 and C2 describe only bits set
11535 in STORE_FLAG_VALUE, we can compare with X. */
11536 if (const_op == 0 && equality_comparison_p
11537 && mode_width <= HOST_BITS_PER_WIDE_INT
11538 && CONST_INT_P (XEXP (op0, 1))
11539 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11540 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11541 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11542 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11544 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11545 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11546 if ((~STORE_FLAG_VALUE & mask) == 0
11547 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11548 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11549 && COMPARISON_P (tem))))
11551 op0 = XEXP (XEXP (op0, 0), 0);
11552 continue;
11556 /* If we are doing an equality comparison of an AND of a bit equal
11557 to the sign bit, replace this with a LT or GE comparison of
11558 the underlying value. */
11559 if (equality_comparison_p
11560 && const_op == 0
11561 && CONST_INT_P (XEXP (op0, 1))
11562 && mode_width <= HOST_BITS_PER_WIDE_INT
11563 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11564 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11566 op0 = XEXP (op0, 0);
11567 code = (code == EQ ? GE : LT);
11568 continue;
11571 /* If this AND operation is really a ZERO_EXTEND from a narrower
11572 mode, the constant fits within that mode, and this is either an
11573 equality or unsigned comparison, try to do this comparison in
11574 the narrower mode.
11576 Note that in:
11578 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11579 -> (ne:DI (reg:SI 4) (const_int 0))
11581 unless TRULY_NOOP_TRUNCATION allows it or the register is
11582 known to hold a value of the required mode the
11583 transformation is invalid. */
11584 if ((equality_comparison_p || unsigned_comparison_p)
11585 && CONST_INT_P (XEXP (op0, 1))
11586 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
11587 & GET_MODE_MASK (mode))
11588 + 1)) >= 0
11589 && const_op >> i == 0
11590 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11591 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
11592 GET_MODE_BITSIZE (GET_MODE (op0)))
11593 || (REG_P (XEXP (op0, 0))
11594 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11596 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11597 continue;
11600 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11601 fits in both M1 and M2 and the SUBREG is either paradoxical
11602 or represents the low part, permute the SUBREG and the AND
11603 and try again. */
11604 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11606 unsigned HOST_WIDE_INT c1;
11607 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11608 /* Require an integral mode, to avoid creating something like
11609 (AND:SF ...). */
11610 if (SCALAR_INT_MODE_P (tmode)
11611 /* It is unsafe to commute the AND into the SUBREG if the
11612 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11613 not defined. As originally written the upper bits
11614 have a defined value due to the AND operation.
11615 However, if we commute the AND inside the SUBREG then
11616 they no longer have defined values and the meaning of
11617 the code has been changed. */
11618 && (0
11619 #ifdef WORD_REGISTER_OPERATIONS
11620 || (mode_width > GET_MODE_BITSIZE (tmode)
11621 && mode_width <= BITS_PER_WORD)
11622 #endif
11623 || (mode_width <= GET_MODE_BITSIZE (tmode)
11624 && subreg_lowpart_p (XEXP (op0, 0))))
11625 && CONST_INT_P (XEXP (op0, 1))
11626 && mode_width <= HOST_BITS_PER_WIDE_INT
11627 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
11628 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11629 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11630 && c1 != mask
11631 && c1 != GET_MODE_MASK (tmode))
11633 op0 = simplify_gen_binary (AND, tmode,
11634 SUBREG_REG (XEXP (op0, 0)),
11635 gen_int_mode (c1, tmode));
11636 op0 = gen_lowpart (mode, op0);
11637 continue;
11641 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11642 if (const_op == 0 && equality_comparison_p
11643 && XEXP (op0, 1) == const1_rtx
11644 && GET_CODE (XEXP (op0, 0)) == NOT)
11646 op0 = simplify_and_const_int (NULL_RTX, mode,
11647 XEXP (XEXP (op0, 0), 0), 1);
11648 code = (code == NE ? EQ : NE);
11649 continue;
11652 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11653 (eq (and (lshiftrt X) 1) 0).
11654 Also handle the case where (not X) is expressed using xor. */
11655 if (const_op == 0 && equality_comparison_p
11656 && XEXP (op0, 1) == const1_rtx
11657 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11659 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11660 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11662 if (GET_CODE (shift_op) == NOT
11663 || (GET_CODE (shift_op) == XOR
11664 && CONST_INT_P (XEXP (shift_op, 1))
11665 && CONST_INT_P (shift_count)
11666 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
11667 && (UINTVAL (XEXP (shift_op, 1))
11668 == (unsigned HOST_WIDE_INT) 1
11669 << INTVAL (shift_count))))
11672 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
11673 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11674 code = (code == NE ? EQ : NE);
11675 continue;
11678 break;
11680 case ASHIFT:
11681 /* If we have (compare (ashift FOO N) (const_int C)) and
11682 the high order N bits of FOO (N+1 if an inequality comparison)
11683 are known to be zero, we can do this by comparing FOO with C
11684 shifted right N bits so long as the low-order N bits of C are
11685 zero. */
11686 if (CONST_INT_P (XEXP (op0, 1))
11687 && INTVAL (XEXP (op0, 1)) >= 0
11688 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11689 < HOST_BITS_PER_WIDE_INT)
11690 && (((unsigned HOST_WIDE_INT) const_op
11691 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
11692 - 1)) == 0)
11693 && mode_width <= HOST_BITS_PER_WIDE_INT
11694 && (nonzero_bits (XEXP (op0, 0), mode)
11695 & ~(mask >> (INTVAL (XEXP (op0, 1))
11696 + ! equality_comparison_p))) == 0)
11698 /* We must perform a logical shift, not an arithmetic one,
11699 as we want the top N bits of C to be zero. */
11700 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11702 temp >>= INTVAL (XEXP (op0, 1));
11703 op1 = gen_int_mode (temp, mode);
11704 op0 = XEXP (op0, 0);
11705 continue;
11708 /* If we are doing a sign bit comparison, it means we are testing
11709 a particular bit. Convert it to the appropriate AND. */
11710 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11711 && mode_width <= HOST_BITS_PER_WIDE_INT)
11713 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11714 ((unsigned HOST_WIDE_INT) 1
11715 << (mode_width - 1
11716 - INTVAL (XEXP (op0, 1)))));
11717 code = (code == LT ? NE : EQ);
11718 continue;
11721 /* If this an equality comparison with zero and we are shifting
11722 the low bit to the sign bit, we can convert this to an AND of the
11723 low-order bit. */
11724 if (const_op == 0 && equality_comparison_p
11725 && CONST_INT_P (XEXP (op0, 1))
11726 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11728 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
11729 continue;
11731 break;
11733 case ASHIFTRT:
11734 /* If this is an equality comparison with zero, we can do this
11735 as a logical shift, which might be much simpler. */
11736 if (equality_comparison_p && const_op == 0
11737 && CONST_INT_P (XEXP (op0, 1)))
11739 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11740 XEXP (op0, 0),
11741 INTVAL (XEXP (op0, 1)));
11742 continue;
11745 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11746 do the comparison in a narrower mode. */
11747 if (! unsigned_comparison_p
11748 && CONST_INT_P (XEXP (op0, 1))
11749 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11750 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11751 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11752 MODE_INT, 1)) != BLKmode
11753 && (((unsigned HOST_WIDE_INT) const_op
11754 + (GET_MODE_MASK (tmode) >> 1) + 1)
11755 <= GET_MODE_MASK (tmode)))
11757 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11758 continue;
11761 /* Likewise if OP0 is a PLUS of a sign extension with a
11762 constant, which is usually represented with the PLUS
11763 between the shifts. */
11764 if (! unsigned_comparison_p
11765 && CONST_INT_P (XEXP (op0, 1))
11766 && GET_CODE (XEXP (op0, 0)) == PLUS
11767 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11768 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11769 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11770 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11771 MODE_INT, 1)) != BLKmode
11772 && (((unsigned HOST_WIDE_INT) const_op
11773 + (GET_MODE_MASK (tmode) >> 1) + 1)
11774 <= GET_MODE_MASK (tmode)))
11776 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11777 rtx add_const = XEXP (XEXP (op0, 0), 1);
11778 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11779 add_const, XEXP (op0, 1));
11781 op0 = simplify_gen_binary (PLUS, tmode,
11782 gen_lowpart (tmode, inner),
11783 new_const);
11784 continue;
11787 /* ... fall through ... */
11788 case LSHIFTRT:
11789 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11790 the low order N bits of FOO are known to be zero, we can do this
11791 by comparing FOO with C shifted left N bits so long as no
11792 overflow occurs. Even if the low order N bits of FOO aren't known
11793 to be zero, if the comparison is >= or < we can use the same
11794 optimization and for > or <= by setting all the low
11795 order N bits in the comparison constant. */
11796 if (CONST_INT_P (XEXP (op0, 1))
11797 && INTVAL (XEXP (op0, 1)) > 0
11798 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11799 && mode_width <= HOST_BITS_PER_WIDE_INT
11800 && (((unsigned HOST_WIDE_INT) const_op
11801 + (GET_CODE (op0) != LSHIFTRT
11802 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11803 + 1)
11804 : 0))
11805 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11807 unsigned HOST_WIDE_INT low_bits
11808 = (nonzero_bits (XEXP (op0, 0), mode)
11809 & (((unsigned HOST_WIDE_INT) 1
11810 << INTVAL (XEXP (op0, 1))) - 1));
11811 if (low_bits == 0 || !equality_comparison_p)
11813 /* If the shift was logical, then we must make the condition
11814 unsigned. */
11815 if (GET_CODE (op0) == LSHIFTRT)
11816 code = unsigned_condition (code);
11818 const_op <<= INTVAL (XEXP (op0, 1));
11819 if (low_bits != 0
11820 && (code == GT || code == GTU
11821 || code == LE || code == LEU))
11822 const_op
11823 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
11824 op1 = GEN_INT (const_op);
11825 op0 = XEXP (op0, 0);
11826 continue;
11830 /* If we are using this shift to extract just the sign bit, we
11831 can replace this with an LT or GE comparison. */
11832 if (const_op == 0
11833 && (equality_comparison_p || sign_bit_comparison_p)
11834 && CONST_INT_P (XEXP (op0, 1))
11835 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11837 op0 = XEXP (op0, 0);
11838 code = (code == NE || code == GT ? LT : GE);
11839 continue;
11841 break;
11843 default:
11844 break;
11847 break;
11850 /* Now make any compound operations involved in this comparison. Then,
11851 check for an outmost SUBREG on OP0 that is not doing anything or is
11852 paradoxical. The latter transformation must only be performed when
11853 it is known that the "extra" bits will be the same in op0 and op1 or
11854 that they don't matter. There are three cases to consider:
11856 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11857 care bits and we can assume they have any convenient value. So
11858 making the transformation is safe.
11860 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11861 In this case the upper bits of op0 are undefined. We should not make
11862 the simplification in that case as we do not know the contents of
11863 those bits.
11865 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11866 UNKNOWN. In that case we know those bits are zeros or ones. We must
11867 also be sure that they are the same as the upper bits of op1.
11869 We can never remove a SUBREG for a non-equality comparison because
11870 the sign bit is in a different place in the underlying object. */
11872 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11873 op1 = make_compound_operation (op1, SET);
11875 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11876 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11877 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11878 && (code == NE || code == EQ))
11880 if (GET_MODE_SIZE (GET_MODE (op0))
11881 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11883 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11884 implemented. */
11885 if (REG_P (SUBREG_REG (op0)))
11887 op0 = SUBREG_REG (op0);
11888 op1 = gen_lowpart (GET_MODE (op0), op1);
11891 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11892 <= HOST_BITS_PER_WIDE_INT)
11893 && (nonzero_bits (SUBREG_REG (op0),
11894 GET_MODE (SUBREG_REG (op0)))
11895 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11897 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11899 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11900 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11901 op0 = SUBREG_REG (op0), op1 = tem;
11905 /* We now do the opposite procedure: Some machines don't have compare
11906 insns in all modes. If OP0's mode is an integer mode smaller than a
11907 word and we can't do a compare in that mode, see if there is a larger
11908 mode for which we can do the compare. There are a number of cases in
11909 which we can use the wider mode. */
11911 mode = GET_MODE (op0);
11912 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11913 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11914 && ! have_insn_for (COMPARE, mode))
11915 for (tmode = GET_MODE_WIDER_MODE (mode);
11916 (tmode != VOIDmode
11917 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11918 tmode = GET_MODE_WIDER_MODE (tmode))
11919 if (have_insn_for (COMPARE, tmode))
11921 int zero_extended;
11923 /* If this is a test for negative, we can make an explicit
11924 test of the sign bit. Test this first so we can use
11925 a paradoxical subreg to extend OP0. */
11927 if (op1 == const0_rtx && (code == LT || code == GE)
11928 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11930 op0 = simplify_gen_binary (AND, tmode,
11931 gen_lowpart (tmode, op0),
11932 GEN_INT ((unsigned HOST_WIDE_INT) 1
11933 << (GET_MODE_BITSIZE (mode)
11934 - 1)));
11935 code = (code == LT) ? NE : EQ;
11936 break;
11939 /* If the only nonzero bits in OP0 and OP1 are those in the
11940 narrower mode and this is an equality or unsigned comparison,
11941 we can use the wider mode. Similarly for sign-extended
11942 values, in which case it is true for all comparisons. */
11943 zero_extended = ((code == EQ || code == NE
11944 || code == GEU || code == GTU
11945 || code == LEU || code == LTU)
11946 && (nonzero_bits (op0, tmode)
11947 & ~GET_MODE_MASK (mode)) == 0
11948 && ((CONST_INT_P (op1)
11949 || (nonzero_bits (op1, tmode)
11950 & ~GET_MODE_MASK (mode)) == 0)));
11952 if (zero_extended
11953 || ((num_sign_bit_copies (op0, tmode)
11954 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11955 - GET_MODE_BITSIZE (mode)))
11956 && (num_sign_bit_copies (op1, tmode)
11957 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11958 - GET_MODE_BITSIZE (mode)))))
11960 /* If OP0 is an AND and we don't have an AND in MODE either,
11961 make a new AND in the proper mode. */
11962 if (GET_CODE (op0) == AND
11963 && !have_insn_for (AND, mode))
11964 op0 = simplify_gen_binary (AND, tmode,
11965 gen_lowpart (tmode,
11966 XEXP (op0, 0)),
11967 gen_lowpart (tmode,
11968 XEXP (op0, 1)));
11969 else
11971 if (zero_extended)
11973 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
11974 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
11976 else
11978 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
11979 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
11981 break;
11986 #ifdef CANONICALIZE_COMPARISON
11987 /* If this machine only supports a subset of valid comparisons, see if we
11988 can convert an unsupported one into a supported one. */
11989 CANONICALIZE_COMPARISON (code, op0, op1);
11990 #endif
11992 *pop0 = op0;
11993 *pop1 = op1;
11995 return code;
11998 /* Utility function for record_value_for_reg. Count number of
11999 rtxs in X. */
12000 static int
12001 count_rtxs (rtx x)
12003 enum rtx_code code = GET_CODE (x);
12004 const char *fmt;
12005 int i, j, ret = 1;
12007 if (GET_RTX_CLASS (code) == '2'
12008 || GET_RTX_CLASS (code) == 'c')
12010 rtx x0 = XEXP (x, 0);
12011 rtx x1 = XEXP (x, 1);
12013 if (x0 == x1)
12014 return 1 + 2 * count_rtxs (x0);
12016 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
12017 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
12018 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12019 return 2 + 2 * count_rtxs (x0)
12020 + count_rtxs (x == XEXP (x1, 0)
12021 ? XEXP (x1, 1) : XEXP (x1, 0));
12023 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
12024 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
12025 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12026 return 2 + 2 * count_rtxs (x1)
12027 + count_rtxs (x == XEXP (x0, 0)
12028 ? XEXP (x0, 1) : XEXP (x0, 0));
12031 fmt = GET_RTX_FORMAT (code);
12032 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12033 if (fmt[i] == 'e')
12034 ret += count_rtxs (XEXP (x, i));
12035 else if (fmt[i] == 'E')
12036 for (j = 0; j < XVECLEN (x, i); j++)
12037 ret += count_rtxs (XVECEXP (x, i, j));
12039 return ret;
12042 /* Utility function for following routine. Called when X is part of a value
12043 being stored into last_set_value. Sets last_set_table_tick
12044 for each register mentioned. Similar to mention_regs in cse.c */
12046 static void
12047 update_table_tick (rtx x)
12049 enum rtx_code code = GET_CODE (x);
12050 const char *fmt = GET_RTX_FORMAT (code);
12051 int i, j;
12053 if (code == REG)
12055 unsigned int regno = REGNO (x);
12056 unsigned int endregno = END_REGNO (x);
12057 unsigned int r;
12059 for (r = regno; r < endregno; r++)
12061 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
12062 rsp->last_set_table_tick = label_tick;
12065 return;
12068 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12069 if (fmt[i] == 'e')
12071 /* Check for identical subexpressions. If x contains
12072 identical subexpression we only have to traverse one of
12073 them. */
12074 if (i == 0 && ARITHMETIC_P (x))
12076 /* Note that at this point x1 has already been
12077 processed. */
12078 rtx x0 = XEXP (x, 0);
12079 rtx x1 = XEXP (x, 1);
12081 /* If x0 and x1 are identical then there is no need to
12082 process x0. */
12083 if (x0 == x1)
12084 break;
12086 /* If x0 is identical to a subexpression of x1 then while
12087 processing x1, x0 has already been processed. Thus we
12088 are done with x. */
12089 if (ARITHMETIC_P (x1)
12090 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12091 break;
12093 /* If x1 is identical to a subexpression of x0 then we
12094 still have to process the rest of x0. */
12095 if (ARITHMETIC_P (x0)
12096 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12098 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12099 break;
12103 update_table_tick (XEXP (x, i));
12105 else if (fmt[i] == 'E')
12106 for (j = 0; j < XVECLEN (x, i); j++)
12107 update_table_tick (XVECEXP (x, i, j));
12110 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12111 are saying that the register is clobbered and we no longer know its
12112 value. If INSN is zero, don't update reg_stat[].last_set; this is
12113 only permitted with VALUE also zero and is used to invalidate the
12114 register. */
12116 static void
12117 record_value_for_reg (rtx reg, rtx insn, rtx value)
12119 unsigned int regno = REGNO (reg);
12120 unsigned int endregno = END_REGNO (reg);
12121 unsigned int i;
12122 reg_stat_type *rsp;
12124 /* If VALUE contains REG and we have a previous value for REG, substitute
12125 the previous value. */
12126 if (value && insn && reg_overlap_mentioned_p (reg, value))
12128 rtx tem;
12130 /* Set things up so get_last_value is allowed to see anything set up to
12131 our insn. */
12132 subst_low_luid = DF_INSN_LUID (insn);
12133 tem = get_last_value (reg);
12135 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12136 it isn't going to be useful and will take a lot of time to process,
12137 so just use the CLOBBER. */
12139 if (tem)
12141 if (ARITHMETIC_P (tem)
12142 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12143 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12144 tem = XEXP (tem, 0);
12145 else if (count_occurrences (value, reg, 1) >= 2)
12147 /* If there are two or more occurrences of REG in VALUE,
12148 prevent the value from growing too much. */
12149 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12150 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12153 value = replace_rtx (copy_rtx (value), reg, tem);
12157 /* For each register modified, show we don't know its value, that
12158 we don't know about its bitwise content, that its value has been
12159 updated, and that we don't know the location of the death of the
12160 register. */
12161 for (i = regno; i < endregno; i++)
12163 rsp = VEC_index (reg_stat_type, reg_stat, i);
12165 if (insn)
12166 rsp->last_set = insn;
12168 rsp->last_set_value = 0;
12169 rsp->last_set_mode = VOIDmode;
12170 rsp->last_set_nonzero_bits = 0;
12171 rsp->last_set_sign_bit_copies = 0;
12172 rsp->last_death = 0;
12173 rsp->truncated_to_mode = VOIDmode;
12176 /* Mark registers that are being referenced in this value. */
12177 if (value)
12178 update_table_tick (value);
12180 /* Now update the status of each register being set.
12181 If someone is using this register in this block, set this register
12182 to invalid since we will get confused between the two lives in this
12183 basic block. This makes using this register always invalid. In cse, we
12184 scan the table to invalidate all entries using this register, but this
12185 is too much work for us. */
12187 for (i = regno; i < endregno; i++)
12189 rsp = VEC_index (reg_stat_type, reg_stat, i);
12190 rsp->last_set_label = label_tick;
12191 if (!insn
12192 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12193 rsp->last_set_invalid = 1;
12194 else
12195 rsp->last_set_invalid = 0;
12198 /* The value being assigned might refer to X (like in "x++;"). In that
12199 case, we must replace it with (clobber (const_int 0)) to prevent
12200 infinite loops. */
12201 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12202 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12204 value = copy_rtx (value);
12205 if (!get_last_value_validate (&value, insn, label_tick, 1))
12206 value = 0;
12209 /* For the main register being modified, update the value, the mode, the
12210 nonzero bits, and the number of sign bit copies. */
12212 rsp->last_set_value = value;
12214 if (value)
12216 enum machine_mode mode = GET_MODE (reg);
12217 subst_low_luid = DF_INSN_LUID (insn);
12218 rsp->last_set_mode = mode;
12219 if (GET_MODE_CLASS (mode) == MODE_INT
12220 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
12221 mode = nonzero_bits_mode;
12222 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12223 rsp->last_set_sign_bit_copies
12224 = num_sign_bit_copies (value, GET_MODE (reg));
12228 /* Called via note_stores from record_dead_and_set_regs to handle one
12229 SET or CLOBBER in an insn. DATA is the instruction in which the
12230 set is occurring. */
12232 static void
12233 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12235 rtx record_dead_insn = (rtx) data;
12237 if (GET_CODE (dest) == SUBREG)
12238 dest = SUBREG_REG (dest);
12240 if (!record_dead_insn)
12242 if (REG_P (dest))
12243 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
12244 return;
12247 if (REG_P (dest))
12249 /* If we are setting the whole register, we know its value. Otherwise
12250 show that we don't know the value. We can handle SUBREG in
12251 some cases. */
12252 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12253 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12254 else if (GET_CODE (setter) == SET
12255 && GET_CODE (SET_DEST (setter)) == SUBREG
12256 && SUBREG_REG (SET_DEST (setter)) == dest
12257 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
12258 && subreg_lowpart_p (SET_DEST (setter)))
12259 record_value_for_reg (dest, record_dead_insn,
12260 gen_lowpart (GET_MODE (dest),
12261 SET_SRC (setter)));
12262 else
12263 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12265 else if (MEM_P (dest)
12266 /* Ignore pushes, they clobber nothing. */
12267 && ! push_operand (dest, GET_MODE (dest)))
12268 mem_last_set = DF_INSN_LUID (record_dead_insn);
12271 /* Update the records of when each REG was most recently set or killed
12272 for the things done by INSN. This is the last thing done in processing
12273 INSN in the combiner loop.
12275 We update reg_stat[], in particular fields last_set, last_set_value,
12276 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12277 last_death, and also the similar information mem_last_set (which insn
12278 most recently modified memory) and last_call_luid (which insn was the
12279 most recent subroutine call). */
12281 static void
12282 record_dead_and_set_regs (rtx insn)
12284 rtx link;
12285 unsigned int i;
12287 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12289 if (REG_NOTE_KIND (link) == REG_DEAD
12290 && REG_P (XEXP (link, 0)))
12292 unsigned int regno = REGNO (XEXP (link, 0));
12293 unsigned int endregno = END_REGNO (XEXP (link, 0));
12295 for (i = regno; i < endregno; i++)
12297 reg_stat_type *rsp;
12299 rsp = VEC_index (reg_stat_type, reg_stat, i);
12300 rsp->last_death = insn;
12303 else if (REG_NOTE_KIND (link) == REG_INC)
12304 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12307 if (CALL_P (insn))
12309 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
12310 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
12312 reg_stat_type *rsp;
12314 rsp = VEC_index (reg_stat_type, reg_stat, i);
12315 rsp->last_set_invalid = 1;
12316 rsp->last_set = insn;
12317 rsp->last_set_value = 0;
12318 rsp->last_set_mode = VOIDmode;
12319 rsp->last_set_nonzero_bits = 0;
12320 rsp->last_set_sign_bit_copies = 0;
12321 rsp->last_death = 0;
12322 rsp->truncated_to_mode = VOIDmode;
12325 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12327 /* We can't combine into a call pattern. Remember, though, that
12328 the return value register is set at this LUID. We could
12329 still replace a register with the return value from the
12330 wrong subroutine call! */
12331 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12333 else
12334 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12337 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12338 register present in the SUBREG, so for each such SUBREG go back and
12339 adjust nonzero and sign bit information of the registers that are
12340 known to have some zero/sign bits set.
12342 This is needed because when combine blows the SUBREGs away, the
12343 information on zero/sign bits is lost and further combines can be
12344 missed because of that. */
12346 static void
12347 record_promoted_value (rtx insn, rtx subreg)
12349 rtx links, set;
12350 unsigned int regno = REGNO (SUBREG_REG (subreg));
12351 enum machine_mode mode = GET_MODE (subreg);
12353 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
12354 return;
12356 for (links = LOG_LINKS (insn); links;)
12358 reg_stat_type *rsp;
12360 insn = XEXP (links, 0);
12361 set = single_set (insn);
12363 if (! set || !REG_P (SET_DEST (set))
12364 || REGNO (SET_DEST (set)) != regno
12365 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12367 links = XEXP (links, 1);
12368 continue;
12371 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12372 if (rsp->last_set == insn)
12374 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
12375 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12378 if (REG_P (SET_SRC (set)))
12380 regno = REGNO (SET_SRC (set));
12381 links = LOG_LINKS (insn);
12383 else
12384 break;
12388 /* Check if X, a register, is known to contain a value already
12389 truncated to MODE. In this case we can use a subreg to refer to
12390 the truncated value even though in the generic case we would need
12391 an explicit truncation. */
12393 static bool
12394 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
12396 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12397 enum machine_mode truncated = rsp->truncated_to_mode;
12399 if (truncated == 0
12400 || rsp->truncation_label < label_tick_ebb_start)
12401 return false;
12402 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12403 return true;
12404 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
12405 GET_MODE_BITSIZE (truncated)))
12406 return true;
12407 return false;
12410 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12411 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12412 might be able to turn a truncate into a subreg using this information.
12413 Return -1 if traversing *P is complete or 0 otherwise. */
12415 static int
12416 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
12418 rtx x = *p;
12419 enum machine_mode truncated_mode;
12420 reg_stat_type *rsp;
12422 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12424 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12425 truncated_mode = GET_MODE (x);
12427 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12428 return -1;
12430 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
12431 GET_MODE_BITSIZE (original_mode)))
12432 return -1;
12434 x = SUBREG_REG (x);
12436 /* ??? For hard-regs we now record everything. We might be able to
12437 optimize this using last_set_mode. */
12438 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12439 truncated_mode = GET_MODE (x);
12440 else
12441 return 0;
12443 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
12444 if (rsp->truncated_to_mode == 0
12445 || rsp->truncation_label < label_tick_ebb_start
12446 || (GET_MODE_SIZE (truncated_mode)
12447 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12449 rsp->truncated_to_mode = truncated_mode;
12450 rsp->truncation_label = label_tick;
12453 return -1;
12456 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12457 the modes they are used in. This can help truning TRUNCATEs into
12458 SUBREGs. */
12460 static void
12461 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12463 for_each_rtx (x, record_truncated_value, NULL);
12466 /* Scan X for promoted SUBREGs. For each one found,
12467 note what it implies to the registers used in it. */
12469 static void
12470 check_promoted_subreg (rtx insn, rtx x)
12472 if (GET_CODE (x) == SUBREG
12473 && SUBREG_PROMOTED_VAR_P (x)
12474 && REG_P (SUBREG_REG (x)))
12475 record_promoted_value (insn, x);
12476 else
12478 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12479 int i, j;
12481 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12482 switch (format[i])
12484 case 'e':
12485 check_promoted_subreg (insn, XEXP (x, i));
12486 break;
12487 case 'V':
12488 case 'E':
12489 if (XVEC (x, i) != 0)
12490 for (j = 0; j < XVECLEN (x, i); j++)
12491 check_promoted_subreg (insn, XVECEXP (x, i, j));
12492 break;
12497 /* Verify that all the registers and memory references mentioned in *LOC are
12498 still valid. *LOC was part of a value set in INSN when label_tick was
12499 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12500 the invalid references with (clobber (const_int 0)) and return 1. This
12501 replacement is useful because we often can get useful information about
12502 the form of a value (e.g., if it was produced by a shift that always
12503 produces -1 or 0) even though we don't know exactly what registers it
12504 was produced from. */
12506 static int
12507 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12509 rtx x = *loc;
12510 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12511 int len = GET_RTX_LENGTH (GET_CODE (x));
12512 int i, j;
12514 if (REG_P (x))
12516 unsigned int regno = REGNO (x);
12517 unsigned int endregno = END_REGNO (x);
12518 unsigned int j;
12520 for (j = regno; j < endregno; j++)
12522 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
12523 if (rsp->last_set_invalid
12524 /* If this is a pseudo-register that was only set once and not
12525 live at the beginning of the function, it is always valid. */
12526 || (! (regno >= FIRST_PSEUDO_REGISTER
12527 && REG_N_SETS (regno) == 1
12528 && (!REGNO_REG_SET_P
12529 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12530 && rsp->last_set_label > tick))
12532 if (replace)
12533 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12534 return replace;
12538 return 1;
12540 /* If this is a memory reference, make sure that there were no stores after
12541 it that might have clobbered the value. We don't have alias info, so we
12542 assume any store invalidates it. Moreover, we only have local UIDs, so
12543 we also assume that there were stores in the intervening basic blocks. */
12544 else if (MEM_P (x) && !MEM_READONLY_P (x)
12545 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12547 if (replace)
12548 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12549 return replace;
12552 for (i = 0; i < len; i++)
12554 if (fmt[i] == 'e')
12556 /* Check for identical subexpressions. If x contains
12557 identical subexpression we only have to traverse one of
12558 them. */
12559 if (i == 1 && ARITHMETIC_P (x))
12561 /* Note that at this point x0 has already been checked
12562 and found valid. */
12563 rtx x0 = XEXP (x, 0);
12564 rtx x1 = XEXP (x, 1);
12566 /* If x0 and x1 are identical then x is also valid. */
12567 if (x0 == x1)
12568 return 1;
12570 /* If x1 is identical to a subexpression of x0 then
12571 while checking x0, x1 has already been checked. Thus
12572 it is valid and so as x. */
12573 if (ARITHMETIC_P (x0)
12574 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12575 return 1;
12577 /* If x0 is identical to a subexpression of x1 then x is
12578 valid iff the rest of x1 is valid. */
12579 if (ARITHMETIC_P (x1)
12580 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12581 return
12582 get_last_value_validate (&XEXP (x1,
12583 x0 == XEXP (x1, 0) ? 1 : 0),
12584 insn, tick, replace);
12587 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12588 replace) == 0)
12589 return 0;
12591 else if (fmt[i] == 'E')
12592 for (j = 0; j < XVECLEN (x, i); j++)
12593 if (get_last_value_validate (&XVECEXP (x, i, j),
12594 insn, tick, replace) == 0)
12595 return 0;
12598 /* If we haven't found a reason for it to be invalid, it is valid. */
12599 return 1;
12602 /* Get the last value assigned to X, if known. Some registers
12603 in the value may be replaced with (clobber (const_int 0)) if their value
12604 is known longer known reliably. */
12606 static rtx
12607 get_last_value (const_rtx x)
12609 unsigned int regno;
12610 rtx value;
12611 reg_stat_type *rsp;
12613 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12614 then convert it to the desired mode. If this is a paradoxical SUBREG,
12615 we cannot predict what values the "extra" bits might have. */
12616 if (GET_CODE (x) == SUBREG
12617 && subreg_lowpart_p (x)
12618 && (GET_MODE_SIZE (GET_MODE (x))
12619 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
12620 && (value = get_last_value (SUBREG_REG (x))) != 0)
12621 return gen_lowpart (GET_MODE (x), value);
12623 if (!REG_P (x))
12624 return 0;
12626 regno = REGNO (x);
12627 rsp = VEC_index (reg_stat_type, reg_stat, regno);
12628 value = rsp->last_set_value;
12630 /* If we don't have a value, or if it isn't for this basic block and
12631 it's either a hard register, set more than once, or it's a live
12632 at the beginning of the function, return 0.
12634 Because if it's not live at the beginning of the function then the reg
12635 is always set before being used (is never used without being set).
12636 And, if it's set only once, and it's always set before use, then all
12637 uses must have the same last value, even if it's not from this basic
12638 block. */
12640 if (value == 0
12641 || (rsp->last_set_label < label_tick_ebb_start
12642 && (regno < FIRST_PSEUDO_REGISTER
12643 || REG_N_SETS (regno) != 1
12644 || REGNO_REG_SET_P
12645 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12646 return 0;
12648 /* If the value was set in a later insn than the ones we are processing,
12649 we can't use it even if the register was only set once. */
12650 if (rsp->last_set_label == label_tick
12651 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12652 return 0;
12654 /* If the value has all its registers valid, return it. */
12655 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12656 return value;
12658 /* Otherwise, make a copy and replace any invalid register with
12659 (clobber (const_int 0)). If that fails for some reason, return 0. */
12661 value = copy_rtx (value);
12662 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12663 return value;
12665 return 0;
12668 /* Return nonzero if expression X refers to a REG or to memory
12669 that is set in an instruction more recent than FROM_LUID. */
12671 static int
12672 use_crosses_set_p (const_rtx x, int from_luid)
12674 const char *fmt;
12675 int i;
12676 enum rtx_code code = GET_CODE (x);
12678 if (code == REG)
12680 unsigned int regno = REGNO (x);
12681 unsigned endreg = END_REGNO (x);
12683 #ifdef PUSH_ROUNDING
12684 /* Don't allow uses of the stack pointer to be moved,
12685 because we don't know whether the move crosses a push insn. */
12686 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12687 return 1;
12688 #endif
12689 for (; regno < endreg; regno++)
12691 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12692 if (rsp->last_set
12693 && rsp->last_set_label == label_tick
12694 && DF_INSN_LUID (rsp->last_set) > from_luid)
12695 return 1;
12697 return 0;
12700 if (code == MEM && mem_last_set > from_luid)
12701 return 1;
12703 fmt = GET_RTX_FORMAT (code);
12705 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12707 if (fmt[i] == 'E')
12709 int j;
12710 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12711 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12712 return 1;
12714 else if (fmt[i] == 'e'
12715 && use_crosses_set_p (XEXP (x, i), from_luid))
12716 return 1;
12718 return 0;
12721 /* Define three variables used for communication between the following
12722 routines. */
12724 static unsigned int reg_dead_regno, reg_dead_endregno;
12725 static int reg_dead_flag;
12727 /* Function called via note_stores from reg_dead_at_p.
12729 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12730 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12732 static void
12733 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12735 unsigned int regno, endregno;
12737 if (!REG_P (dest))
12738 return;
12740 regno = REGNO (dest);
12741 endregno = END_REGNO (dest);
12742 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12743 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12746 /* Return nonzero if REG is known to be dead at INSN.
12748 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12749 referencing REG, it is dead. If we hit a SET referencing REG, it is
12750 live. Otherwise, see if it is live or dead at the start of the basic
12751 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12752 must be assumed to be always live. */
12754 static int
12755 reg_dead_at_p (rtx reg, rtx insn)
12757 basic_block block;
12758 unsigned int i;
12760 /* Set variables for reg_dead_at_p_1. */
12761 reg_dead_regno = REGNO (reg);
12762 reg_dead_endregno = END_REGNO (reg);
12764 reg_dead_flag = 0;
12766 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12767 we allow the machine description to decide whether use-and-clobber
12768 patterns are OK. */
12769 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12771 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12772 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12773 return 0;
12776 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12777 beginning of basic block. */
12778 block = BLOCK_FOR_INSN (insn);
12779 for (;;)
12781 if (INSN_P (insn))
12783 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12784 if (reg_dead_flag)
12785 return reg_dead_flag == 1 ? 1 : 0;
12787 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12788 return 1;
12791 if (insn == BB_HEAD (block))
12792 break;
12794 insn = PREV_INSN (insn);
12797 /* Look at live-in sets for the basic block that we were in. */
12798 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12799 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12800 return 0;
12802 return 1;
12805 /* Note hard registers in X that are used. */
12807 static void
12808 mark_used_regs_combine (rtx x)
12810 RTX_CODE code = GET_CODE (x);
12811 unsigned int regno;
12812 int i;
12814 switch (code)
12816 case LABEL_REF:
12817 case SYMBOL_REF:
12818 case CONST_INT:
12819 case CONST:
12820 case CONST_DOUBLE:
12821 case CONST_VECTOR:
12822 case PC:
12823 case ADDR_VEC:
12824 case ADDR_DIFF_VEC:
12825 case ASM_INPUT:
12826 #ifdef HAVE_cc0
12827 /* CC0 must die in the insn after it is set, so we don't need to take
12828 special note of it here. */
12829 case CC0:
12830 #endif
12831 return;
12833 case CLOBBER:
12834 /* If we are clobbering a MEM, mark any hard registers inside the
12835 address as used. */
12836 if (MEM_P (XEXP (x, 0)))
12837 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12838 return;
12840 case REG:
12841 regno = REGNO (x);
12842 /* A hard reg in a wide mode may really be multiple registers.
12843 If so, mark all of them just like the first. */
12844 if (regno < FIRST_PSEUDO_REGISTER)
12846 /* None of this applies to the stack, frame or arg pointers. */
12847 if (regno == STACK_POINTER_REGNUM
12848 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12849 || regno == HARD_FRAME_POINTER_REGNUM
12850 #endif
12851 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12852 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12853 #endif
12854 || regno == FRAME_POINTER_REGNUM)
12855 return;
12857 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12859 return;
12861 case SET:
12863 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12864 the address. */
12865 rtx testreg = SET_DEST (x);
12867 while (GET_CODE (testreg) == SUBREG
12868 || GET_CODE (testreg) == ZERO_EXTRACT
12869 || GET_CODE (testreg) == STRICT_LOW_PART)
12870 testreg = XEXP (testreg, 0);
12872 if (MEM_P (testreg))
12873 mark_used_regs_combine (XEXP (testreg, 0));
12875 mark_used_regs_combine (SET_SRC (x));
12877 return;
12879 default:
12880 break;
12883 /* Recursively scan the operands of this expression. */
12886 const char *fmt = GET_RTX_FORMAT (code);
12888 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12890 if (fmt[i] == 'e')
12891 mark_used_regs_combine (XEXP (x, i));
12892 else if (fmt[i] == 'E')
12894 int j;
12896 for (j = 0; j < XVECLEN (x, i); j++)
12897 mark_used_regs_combine (XVECEXP (x, i, j));
12903 /* Remove register number REGNO from the dead registers list of INSN.
12905 Return the note used to record the death, if there was one. */
12908 remove_death (unsigned int regno, rtx insn)
12910 rtx note = find_regno_note (insn, REG_DEAD, regno);
12912 if (note)
12913 remove_note (insn, note);
12915 return note;
12918 /* For each register (hardware or pseudo) used within expression X, if its
12919 death is in an instruction with luid between FROM_LUID (inclusive) and
12920 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12921 list headed by PNOTES.
12923 That said, don't move registers killed by maybe_kill_insn.
12925 This is done when X is being merged by combination into TO_INSN. These
12926 notes will then be distributed as needed. */
12928 static void
12929 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12930 rtx *pnotes)
12932 const char *fmt;
12933 int len, i;
12934 enum rtx_code code = GET_CODE (x);
12936 if (code == REG)
12938 unsigned int regno = REGNO (x);
12939 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
12941 /* Don't move the register if it gets killed in between from and to. */
12942 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12943 && ! reg_referenced_p (x, maybe_kill_insn))
12944 return;
12946 if (where_dead
12947 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
12948 && DF_INSN_LUID (where_dead) >= from_luid
12949 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12951 rtx note = remove_death (regno, where_dead);
12953 /* It is possible for the call above to return 0. This can occur
12954 when last_death points to I2 or I1 that we combined with.
12955 In that case make a new note.
12957 We must also check for the case where X is a hard register
12958 and NOTE is a death note for a range of hard registers
12959 including X. In that case, we must put REG_DEAD notes for
12960 the remaining registers in place of NOTE. */
12962 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12963 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12964 > GET_MODE_SIZE (GET_MODE (x))))
12966 unsigned int deadregno = REGNO (XEXP (note, 0));
12967 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12968 unsigned int ourend = END_HARD_REGNO (x);
12969 unsigned int i;
12971 for (i = deadregno; i < deadend; i++)
12972 if (i < regno || i >= ourend)
12973 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12976 /* If we didn't find any note, or if we found a REG_DEAD note that
12977 covers only part of the given reg, and we have a multi-reg hard
12978 register, then to be safe we must check for REG_DEAD notes
12979 for each register other than the first. They could have
12980 their own REG_DEAD notes lying around. */
12981 else if ((note == 0
12982 || (note != 0
12983 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12984 < GET_MODE_SIZE (GET_MODE (x)))))
12985 && regno < FIRST_PSEUDO_REGISTER
12986 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12988 unsigned int ourend = END_HARD_REGNO (x);
12989 unsigned int i, offset;
12990 rtx oldnotes = 0;
12992 if (note)
12993 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12994 else
12995 offset = 1;
12997 for (i = regno + offset; i < ourend; i++)
12998 move_deaths (regno_reg_rtx[i],
12999 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13002 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13004 XEXP (note, 1) = *pnotes;
13005 *pnotes = note;
13007 else
13008 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13011 return;
13014 else if (GET_CODE (x) == SET)
13016 rtx dest = SET_DEST (x);
13018 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13020 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13021 that accesses one word of a multi-word item, some
13022 piece of everything register in the expression is used by
13023 this insn, so remove any old death. */
13024 /* ??? So why do we test for equality of the sizes? */
13026 if (GET_CODE (dest) == ZERO_EXTRACT
13027 || GET_CODE (dest) == STRICT_LOW_PART
13028 || (GET_CODE (dest) == SUBREG
13029 && (((GET_MODE_SIZE (GET_MODE (dest))
13030 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13031 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13032 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13034 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13035 return;
13038 /* If this is some other SUBREG, we know it replaces the entire
13039 value, so use that as the destination. */
13040 if (GET_CODE (dest) == SUBREG)
13041 dest = SUBREG_REG (dest);
13043 /* If this is a MEM, adjust deaths of anything used in the address.
13044 For a REG (the only other possibility), the entire value is
13045 being replaced so the old value is not used in this insn. */
13047 if (MEM_P (dest))
13048 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13049 to_insn, pnotes);
13050 return;
13053 else if (GET_CODE (x) == CLOBBER)
13054 return;
13056 len = GET_RTX_LENGTH (code);
13057 fmt = GET_RTX_FORMAT (code);
13059 for (i = 0; i < len; i++)
13061 if (fmt[i] == 'E')
13063 int j;
13064 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13065 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13066 to_insn, pnotes);
13068 else if (fmt[i] == 'e')
13069 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13073 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13074 pattern of an insn. X must be a REG. */
13076 static int
13077 reg_bitfield_target_p (rtx x, rtx body)
13079 int i;
13081 if (GET_CODE (body) == SET)
13083 rtx dest = SET_DEST (body);
13084 rtx target;
13085 unsigned int regno, tregno, endregno, endtregno;
13087 if (GET_CODE (dest) == ZERO_EXTRACT)
13088 target = XEXP (dest, 0);
13089 else if (GET_CODE (dest) == STRICT_LOW_PART)
13090 target = SUBREG_REG (XEXP (dest, 0));
13091 else
13092 return 0;
13094 if (GET_CODE (target) == SUBREG)
13095 target = SUBREG_REG (target);
13097 if (!REG_P (target))
13098 return 0;
13100 tregno = REGNO (target), regno = REGNO (x);
13101 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13102 return target == x;
13104 endtregno = end_hard_regno (GET_MODE (target), tregno);
13105 endregno = end_hard_regno (GET_MODE (x), regno);
13107 return endregno > tregno && regno < endtregno;
13110 else if (GET_CODE (body) == PARALLEL)
13111 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13112 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13113 return 1;
13115 return 0;
13118 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13119 as appropriate. I3 and I2 are the insns resulting from the combination
13120 insns including FROM (I2 may be zero).
13122 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13123 not need REG_DEAD notes because they are being substituted for. This
13124 saves searching in the most common cases.
13126 Each note in the list is either ignored or placed on some insns, depending
13127 on the type of note. */
13129 static void
13130 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
13131 rtx elim_i1, rtx elim_i0)
13133 rtx note, next_note;
13134 rtx tem;
13136 for (note = notes; note; note = next_note)
13138 rtx place = 0, place2 = 0;
13140 next_note = XEXP (note, 1);
13141 switch (REG_NOTE_KIND (note))
13143 case REG_BR_PROB:
13144 case REG_BR_PRED:
13145 /* Doesn't matter much where we put this, as long as it's somewhere.
13146 It is preferable to keep these notes on branches, which is most
13147 likely to be i3. */
13148 place = i3;
13149 break;
13151 case REG_VALUE_PROFILE:
13152 /* Just get rid of this note, as it is unused later anyway. */
13153 break;
13155 case REG_NON_LOCAL_GOTO:
13156 if (JUMP_P (i3))
13157 place = i3;
13158 else
13160 gcc_assert (i2 && JUMP_P (i2));
13161 place = i2;
13163 break;
13165 case REG_EH_REGION:
13166 /* These notes must remain with the call or trapping instruction. */
13167 if (CALL_P (i3))
13168 place = i3;
13169 else if (i2 && CALL_P (i2))
13170 place = i2;
13171 else
13173 gcc_assert (cfun->can_throw_non_call_exceptions);
13174 if (may_trap_p (i3))
13175 place = i3;
13176 else if (i2 && may_trap_p (i2))
13177 place = i2;
13178 /* ??? Otherwise assume we've combined things such that we
13179 can now prove that the instructions can't trap. Drop the
13180 note in this case. */
13182 break;
13184 case REG_NORETURN:
13185 case REG_SETJMP:
13186 /* These notes must remain with the call. It should not be
13187 possible for both I2 and I3 to be a call. */
13188 if (CALL_P (i3))
13189 place = i3;
13190 else
13192 gcc_assert (i2 && CALL_P (i2));
13193 place = i2;
13195 break;
13197 case REG_UNUSED:
13198 /* Any clobbers for i3 may still exist, and so we must process
13199 REG_UNUSED notes from that insn.
13201 Any clobbers from i2 or i1 can only exist if they were added by
13202 recog_for_combine. In that case, recog_for_combine created the
13203 necessary REG_UNUSED notes. Trying to keep any original
13204 REG_UNUSED notes from these insns can cause incorrect output
13205 if it is for the same register as the original i3 dest.
13206 In that case, we will notice that the register is set in i3,
13207 and then add a REG_UNUSED note for the destination of i3, which
13208 is wrong. However, it is possible to have REG_UNUSED notes from
13209 i2 or i1 for register which were both used and clobbered, so
13210 we keep notes from i2 or i1 if they will turn into REG_DEAD
13211 notes. */
13213 /* If this register is set or clobbered in I3, put the note there
13214 unless there is one already. */
13215 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13217 if (from_insn != i3)
13218 break;
13220 if (! (REG_P (XEXP (note, 0))
13221 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13222 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13223 place = i3;
13225 /* Otherwise, if this register is used by I3, then this register
13226 now dies here, so we must put a REG_DEAD note here unless there
13227 is one already. */
13228 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13229 && ! (REG_P (XEXP (note, 0))
13230 ? find_regno_note (i3, REG_DEAD,
13231 REGNO (XEXP (note, 0)))
13232 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13234 PUT_REG_NOTE_KIND (note, REG_DEAD);
13235 place = i3;
13237 break;
13239 case REG_EQUAL:
13240 case REG_EQUIV:
13241 case REG_NOALIAS:
13242 /* These notes say something about results of an insn. We can
13243 only support them if they used to be on I3 in which case they
13244 remain on I3. Otherwise they are ignored.
13246 If the note refers to an expression that is not a constant, we
13247 must also ignore the note since we cannot tell whether the
13248 equivalence is still true. It might be possible to do
13249 slightly better than this (we only have a problem if I2DEST
13250 or I1DEST is present in the expression), but it doesn't
13251 seem worth the trouble. */
13253 if (from_insn == i3
13254 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13255 place = i3;
13256 break;
13258 case REG_INC:
13259 /* These notes say something about how a register is used. They must
13260 be present on any use of the register in I2 or I3. */
13261 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13262 place = i3;
13264 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13266 if (place)
13267 place2 = i2;
13268 else
13269 place = i2;
13271 break;
13273 case REG_LABEL_TARGET:
13274 case REG_LABEL_OPERAND:
13275 /* This can show up in several ways -- either directly in the
13276 pattern, or hidden off in the constant pool with (or without?)
13277 a REG_EQUAL note. */
13278 /* ??? Ignore the without-reg_equal-note problem for now. */
13279 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13280 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13281 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13282 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
13283 place = i3;
13285 if (i2
13286 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13287 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13288 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13289 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
13291 if (place)
13292 place2 = i2;
13293 else
13294 place = i2;
13297 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13298 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13299 there. */
13300 if (place && JUMP_P (place)
13301 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13302 && (JUMP_LABEL (place) == NULL
13303 || JUMP_LABEL (place) == XEXP (note, 0)))
13305 rtx label = JUMP_LABEL (place);
13307 if (!label)
13308 JUMP_LABEL (place) = XEXP (note, 0);
13309 else if (LABEL_P (label))
13310 LABEL_NUSES (label)--;
13313 if (place2 && JUMP_P (place2)
13314 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13315 && (JUMP_LABEL (place2) == NULL
13316 || JUMP_LABEL (place2) == XEXP (note, 0)))
13318 rtx label = JUMP_LABEL (place2);
13320 if (!label)
13321 JUMP_LABEL (place2) = XEXP (note, 0);
13322 else if (LABEL_P (label))
13323 LABEL_NUSES (label)--;
13324 place2 = 0;
13326 break;
13328 case REG_NONNEG:
13329 /* This note says something about the value of a register prior
13330 to the execution of an insn. It is too much trouble to see
13331 if the note is still correct in all situations. It is better
13332 to simply delete it. */
13333 break;
13335 case REG_DEAD:
13336 /* If we replaced the right hand side of FROM_INSN with a
13337 REG_EQUAL note, the original use of the dying register
13338 will not have been combined into I3 and I2. In such cases,
13339 FROM_INSN is guaranteed to be the first of the combined
13340 instructions, so we simply need to search back before
13341 FROM_INSN for the previous use or set of this register,
13342 then alter the notes there appropriately.
13344 If the register is used as an input in I3, it dies there.
13345 Similarly for I2, if it is nonzero and adjacent to I3.
13347 If the register is not used as an input in either I3 or I2
13348 and it is not one of the registers we were supposed to eliminate,
13349 there are two possibilities. We might have a non-adjacent I2
13350 or we might have somehow eliminated an additional register
13351 from a computation. For example, we might have had A & B where
13352 we discover that B will always be zero. In this case we will
13353 eliminate the reference to A.
13355 In both cases, we must search to see if we can find a previous
13356 use of A and put the death note there. */
13358 if (from_insn
13359 && from_insn == i2mod
13360 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13361 tem = from_insn;
13362 else
13364 if (from_insn
13365 && CALL_P (from_insn)
13366 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13367 place = from_insn;
13368 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13369 place = i3;
13370 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13371 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13372 place = i2;
13373 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13374 && !(i2mod
13375 && reg_overlap_mentioned_p (XEXP (note, 0),
13376 i2mod_old_rhs)))
13377 || rtx_equal_p (XEXP (note, 0), elim_i1)
13378 || rtx_equal_p (XEXP (note, 0), elim_i0))
13379 break;
13380 tem = i3;
13383 if (place == 0)
13385 basic_block bb = this_basic_block;
13387 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
13389 if (!NONDEBUG_INSN_P (tem))
13391 if (tem == BB_HEAD (bb))
13392 break;
13393 continue;
13396 /* If the register is being set at TEM, see if that is all
13397 TEM is doing. If so, delete TEM. Otherwise, make this
13398 into a REG_UNUSED note instead. Don't delete sets to
13399 global register vars. */
13400 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13401 || !global_regs[REGNO (XEXP (note, 0))])
13402 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
13404 rtx set = single_set (tem);
13405 rtx inner_dest = 0;
13406 #ifdef HAVE_cc0
13407 rtx cc0_setter = NULL_RTX;
13408 #endif
13410 if (set != 0)
13411 for (inner_dest = SET_DEST (set);
13412 (GET_CODE (inner_dest) == STRICT_LOW_PART
13413 || GET_CODE (inner_dest) == SUBREG
13414 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13415 inner_dest = XEXP (inner_dest, 0))
13418 /* Verify that it was the set, and not a clobber that
13419 modified the register.
13421 CC0 targets must be careful to maintain setter/user
13422 pairs. If we cannot delete the setter due to side
13423 effects, mark the user with an UNUSED note instead
13424 of deleting it. */
13426 if (set != 0 && ! side_effects_p (SET_SRC (set))
13427 && rtx_equal_p (XEXP (note, 0), inner_dest)
13428 #ifdef HAVE_cc0
13429 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13430 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13431 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13432 #endif
13435 /* Move the notes and links of TEM elsewhere.
13436 This might delete other dead insns recursively.
13437 First set the pattern to something that won't use
13438 any register. */
13439 rtx old_notes = REG_NOTES (tem);
13441 PATTERN (tem) = pc_rtx;
13442 REG_NOTES (tem) = NULL;
13444 distribute_notes (old_notes, tem, tem, NULL_RTX,
13445 NULL_RTX, NULL_RTX, NULL_RTX);
13446 distribute_links (LOG_LINKS (tem));
13448 SET_INSN_DELETED (tem);
13449 if (tem == i2)
13450 i2 = NULL_RTX;
13452 #ifdef HAVE_cc0
13453 /* Delete the setter too. */
13454 if (cc0_setter)
13456 PATTERN (cc0_setter) = pc_rtx;
13457 old_notes = REG_NOTES (cc0_setter);
13458 REG_NOTES (cc0_setter) = NULL;
13460 distribute_notes (old_notes, cc0_setter,
13461 cc0_setter, NULL_RTX,
13462 NULL_RTX, NULL_RTX, NULL_RTX);
13463 distribute_links (LOG_LINKS (cc0_setter));
13465 SET_INSN_DELETED (cc0_setter);
13466 if (cc0_setter == i2)
13467 i2 = NULL_RTX;
13469 #endif
13471 else
13473 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13475 /* If there isn't already a REG_UNUSED note, put one
13476 here. Do not place a REG_DEAD note, even if
13477 the register is also used here; that would not
13478 match the algorithm used in lifetime analysis
13479 and can cause the consistency check in the
13480 scheduler to fail. */
13481 if (! find_regno_note (tem, REG_UNUSED,
13482 REGNO (XEXP (note, 0))))
13483 place = tem;
13484 break;
13487 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13488 || (CALL_P (tem)
13489 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13491 place = tem;
13493 /* If we are doing a 3->2 combination, and we have a
13494 register which formerly died in i3 and was not used
13495 by i2, which now no longer dies in i3 and is used in
13496 i2 but does not die in i2, and place is between i2
13497 and i3, then we may need to move a link from place to
13498 i2. */
13499 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13500 && from_insn
13501 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13502 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13504 rtx links = LOG_LINKS (place);
13505 LOG_LINKS (place) = 0;
13506 distribute_links (links);
13508 break;
13511 if (tem == BB_HEAD (bb))
13512 break;
13517 /* If the register is set or already dead at PLACE, we needn't do
13518 anything with this note if it is still a REG_DEAD note.
13519 We check here if it is set at all, not if is it totally replaced,
13520 which is what `dead_or_set_p' checks, so also check for it being
13521 set partially. */
13523 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13525 unsigned int regno = REGNO (XEXP (note, 0));
13526 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
13528 if (dead_or_set_p (place, XEXP (note, 0))
13529 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13531 /* Unless the register previously died in PLACE, clear
13532 last_death. [I no longer understand why this is
13533 being done.] */
13534 if (rsp->last_death != place)
13535 rsp->last_death = 0;
13536 place = 0;
13538 else
13539 rsp->last_death = place;
13541 /* If this is a death note for a hard reg that is occupying
13542 multiple registers, ensure that we are still using all
13543 parts of the object. If we find a piece of the object
13544 that is unused, we must arrange for an appropriate REG_DEAD
13545 note to be added for it. However, we can't just emit a USE
13546 and tag the note to it, since the register might actually
13547 be dead; so we recourse, and the recursive call then finds
13548 the previous insn that used this register. */
13550 if (place && regno < FIRST_PSEUDO_REGISTER
13551 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13553 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13554 int all_used = 1;
13555 unsigned int i;
13557 for (i = regno; i < endregno; i++)
13558 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13559 && ! find_regno_fusage (place, USE, i))
13560 || dead_or_set_regno_p (place, i))
13561 all_used = 0;
13563 if (! all_used)
13565 /* Put only REG_DEAD notes for pieces that are
13566 not already dead or set. */
13568 for (i = regno; i < endregno;
13569 i += hard_regno_nregs[i][reg_raw_mode[i]])
13571 rtx piece = regno_reg_rtx[i];
13572 basic_block bb = this_basic_block;
13574 if (! dead_or_set_p (place, piece)
13575 && ! reg_bitfield_target_p (piece,
13576 PATTERN (place)))
13578 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13579 NULL_RTX);
13581 distribute_notes (new_note, place, place,
13582 NULL_RTX, NULL_RTX, NULL_RTX,
13583 NULL_RTX);
13585 else if (! refers_to_regno_p (i, i + 1,
13586 PATTERN (place), 0)
13587 && ! find_regno_fusage (place, USE, i))
13588 for (tem = PREV_INSN (place); ;
13589 tem = PREV_INSN (tem))
13591 if (!NONDEBUG_INSN_P (tem))
13593 if (tem == BB_HEAD (bb))
13594 break;
13595 continue;
13597 if (dead_or_set_p (tem, piece)
13598 || reg_bitfield_target_p (piece,
13599 PATTERN (tem)))
13601 add_reg_note (tem, REG_UNUSED, piece);
13602 break;
13608 place = 0;
13612 break;
13614 default:
13615 /* Any other notes should not be present at this point in the
13616 compilation. */
13617 gcc_unreachable ();
13620 if (place)
13622 XEXP (note, 1) = REG_NOTES (place);
13623 REG_NOTES (place) = note;
13626 if (place2)
13627 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
13631 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13632 I3, I2, and I1 to new locations. This is also called to add a link
13633 pointing at I3 when I3's destination is changed. */
13635 static void
13636 distribute_links (rtx links)
13638 rtx link, next_link;
13640 for (link = links; link; link = next_link)
13642 rtx place = 0;
13643 rtx insn;
13644 rtx set, reg;
13646 next_link = XEXP (link, 1);
13648 /* If the insn that this link points to is a NOTE or isn't a single
13649 set, ignore it. In the latter case, it isn't clear what we
13650 can do other than ignore the link, since we can't tell which
13651 register it was for. Such links wouldn't be used by combine
13652 anyway.
13654 It is not possible for the destination of the target of the link to
13655 have been changed by combine. The only potential of this is if we
13656 replace I3, I2, and I1 by I3 and I2. But in that case the
13657 destination of I2 also remains unchanged. */
13659 if (NOTE_P (XEXP (link, 0))
13660 || (set = single_set (XEXP (link, 0))) == 0)
13661 continue;
13663 reg = SET_DEST (set);
13664 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13665 || GET_CODE (reg) == STRICT_LOW_PART)
13666 reg = XEXP (reg, 0);
13668 /* A LOG_LINK is defined as being placed on the first insn that uses
13669 a register and points to the insn that sets the register. Start
13670 searching at the next insn after the target of the link and stop
13671 when we reach a set of the register or the end of the basic block.
13673 Note that this correctly handles the link that used to point from
13674 I3 to I2. Also note that not much searching is typically done here
13675 since most links don't point very far away. */
13677 for (insn = NEXT_INSN (XEXP (link, 0));
13678 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13679 || BB_HEAD (this_basic_block->next_bb) != insn));
13680 insn = NEXT_INSN (insn))
13681 if (DEBUG_INSN_P (insn))
13682 continue;
13683 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13685 if (reg_referenced_p (reg, PATTERN (insn)))
13686 place = insn;
13687 break;
13689 else if (CALL_P (insn)
13690 && find_reg_fusage (insn, USE, reg))
13692 place = insn;
13693 break;
13695 else if (INSN_P (insn) && reg_set_p (reg, insn))
13696 break;
13698 /* If we found a place to put the link, place it there unless there
13699 is already a link to the same insn as LINK at that point. */
13701 if (place)
13703 rtx link2;
13705 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
13706 if (XEXP (link2, 0) == XEXP (link, 0))
13707 break;
13709 if (link2 == 0)
13711 XEXP (link, 1) = LOG_LINKS (place);
13712 LOG_LINKS (place) = link;
13714 /* Set added_links_insn to the earliest insn we added a
13715 link to. */
13716 if (added_links_insn == 0
13717 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13718 added_links_insn = place;
13724 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13725 Check whether the expression pointer to by LOC is a register or
13726 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13727 Otherwise return zero. */
13729 static int
13730 unmentioned_reg_p_1 (rtx *loc, void *expr)
13732 rtx x = *loc;
13734 if (x != NULL_RTX
13735 && (REG_P (x) || MEM_P (x))
13736 && ! reg_mentioned_p (x, (rtx) expr))
13737 return 1;
13738 return 0;
13741 /* Check for any register or memory mentioned in EQUIV that is not
13742 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13743 of EXPR where some registers may have been replaced by constants. */
13745 static bool
13746 unmentioned_reg_p (rtx equiv, rtx expr)
13748 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13751 void
13752 dump_combine_stats (FILE *file)
13754 fprintf
13755 (file,
13756 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13757 combine_attempts, combine_merges, combine_extras, combine_successes);
13760 void
13761 dump_combine_total_stats (FILE *file)
13763 fprintf
13764 (file,
13765 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13766 total_attempts, total_merges, total_extras, total_successes);
13769 static bool
13770 gate_handle_combine (void)
13772 return (optimize > 0);
13775 /* Try combining insns through substitution. */
13776 static unsigned int
13777 rest_of_handle_combine (void)
13779 int rebuild_jump_labels_after_combine;
13781 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13782 df_note_add_problem ();
13783 df_analyze ();
13785 regstat_init_n_sets_and_refs ();
13787 rebuild_jump_labels_after_combine
13788 = combine_instructions (get_insns (), max_reg_num ());
13790 /* Combining insns may have turned an indirect jump into a
13791 direct jump. Rebuild the JUMP_LABEL fields of jumping
13792 instructions. */
13793 if (rebuild_jump_labels_after_combine)
13795 timevar_push (TV_JUMP);
13796 rebuild_jump_labels (get_insns ());
13797 cleanup_cfg (0);
13798 timevar_pop (TV_JUMP);
13801 regstat_free_n_sets_and_refs ();
13802 return 0;
13805 struct rtl_opt_pass pass_combine =
13808 RTL_PASS,
13809 "combine", /* name */
13810 gate_handle_combine, /* gate */
13811 rest_of_handle_combine, /* execute */
13812 NULL, /* sub */
13813 NULL, /* next */
13814 0, /* static_pass_number */
13815 TV_COMBINE, /* tv_id */
13816 PROP_cfglayout, /* properties_required */
13817 0, /* properties_provided */
13818 0, /* properties_destroyed */
13819 0, /* todo_flags_start */
13820 TODO_dump_func |
13821 TODO_df_finish | TODO_verify_rtl_sharing |
13822 TODO_ggc_collect, /* todo_flags_finish */