1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Debug
; use Debug
;
28 with Einfo
; use Einfo
;
29 with Elists
; use Elists
;
30 with Errout
; use Errout
;
31 with Exp_Disp
; use Exp_Disp
;
32 with Exp_Tss
; use Exp_Tss
;
33 with Exp_Util
; use Exp_Util
;
34 with Freeze
; use Freeze
;
35 with Ghost
; use Ghost
;
36 with Impunit
; use Impunit
;
38 with Lib
.Load
; use Lib
.Load
;
39 with Lib
.Xref
; use Lib
.Xref
;
40 with Namet
; use Namet
;
41 with Namet
.Sp
; use Namet
.Sp
;
42 with Nlists
; use Nlists
;
43 with Nmake
; use Nmake
;
45 with Output
; use Output
;
46 with Restrict
; use Restrict
;
47 with Rident
; use Rident
;
48 with Rtsfind
; use Rtsfind
;
50 with Sem_Aux
; use Sem_Aux
;
51 with Sem_Cat
; use Sem_Cat
;
52 with Sem_Ch3
; use Sem_Ch3
;
53 with Sem_Ch4
; use Sem_Ch4
;
54 with Sem_Ch6
; use Sem_Ch6
;
55 with Sem_Ch12
; use Sem_Ch12
;
56 with Sem_Ch13
; use Sem_Ch13
;
57 with Sem_Dim
; use Sem_Dim
;
58 with Sem_Disp
; use Sem_Disp
;
59 with Sem_Dist
; use Sem_Dist
;
60 with Sem_Eval
; use Sem_Eval
;
61 with Sem_Res
; use Sem_Res
;
62 with Sem_Util
; use Sem_Util
;
63 with Sem_Type
; use Sem_Type
;
64 with Stand
; use Stand
;
65 with Sinfo
; use Sinfo
;
66 with Sinfo
.CN
; use Sinfo
.CN
;
67 with Snames
; use Snames
;
68 with Style
; use Style
;
70 with Tbuild
; use Tbuild
;
71 with Uintp
; use Uintp
;
73 package body Sem_Ch8
is
75 ------------------------------------
76 -- Visibility and Name Resolution --
77 ------------------------------------
79 -- This package handles name resolution and the collection of possible
80 -- interpretations for overloaded names, prior to overload resolution.
82 -- Name resolution is the process that establishes a mapping between source
83 -- identifiers and the entities they denote at each point in the program.
84 -- Each entity is represented by a defining occurrence. Each identifier
85 -- that denotes an entity points to the corresponding defining occurrence.
86 -- This is the entity of the applied occurrence. Each occurrence holds
87 -- an index into the names table, where source identifiers are stored.
89 -- Each entry in the names table for an identifier or designator uses the
90 -- Info pointer to hold a link to the currently visible entity that has
91 -- this name (see subprograms Get_Name_Entity_Id and Set_Name_Entity_Id
92 -- in package Sem_Util). The visibility is initialized at the beginning of
93 -- semantic processing to make entities in package Standard immediately
94 -- visible. The visibility table is used in a more subtle way when
95 -- compiling subunits (see below).
97 -- Entities that have the same name (i.e. homonyms) are chained. In the
98 -- case of overloaded entities, this chain holds all the possible meanings
99 -- of a given identifier. The process of overload resolution uses type
100 -- information to select from this chain the unique meaning of a given
103 -- Entities are also chained in their scope, through the Next_Entity link.
104 -- As a consequence, the name space is organized as a sparse matrix, where
105 -- each row corresponds to a scope, and each column to a source identifier.
106 -- Open scopes, that is to say scopes currently being compiled, have their
107 -- corresponding rows of entities in order, innermost scope first.
109 -- The scopes of packages that are mentioned in context clauses appear in
110 -- no particular order, interspersed among open scopes. This is because
111 -- in the course of analyzing the context of a compilation, a package
112 -- declaration is first an open scope, and subsequently an element of the
113 -- context. If subunits or child units are present, a parent unit may
114 -- appear under various guises at various times in the compilation.
116 -- When the compilation of the innermost scope is complete, the entities
117 -- defined therein are no longer visible. If the scope is not a package
118 -- declaration, these entities are never visible subsequently, and can be
119 -- removed from visibility chains. If the scope is a package declaration,
120 -- its visible declarations may still be accessible. Therefore the entities
121 -- defined in such a scope are left on the visibility chains, and only
122 -- their visibility (immediately visibility or potential use-visibility)
125 -- The ordering of homonyms on their chain does not necessarily follow
126 -- the order of their corresponding scopes on the scope stack. For
127 -- example, if package P and the enclosing scope both contain entities
128 -- named E, then when compiling the package body the chain for E will
129 -- hold the global entity first, and the local one (corresponding to
130 -- the current inner scope) next. As a result, name resolution routines
131 -- do not assume any relative ordering of the homonym chains, either
132 -- for scope nesting or to order of appearance of context clauses.
134 -- When compiling a child unit, entities in the parent scope are always
135 -- immediately visible. When compiling the body of a child unit, private
136 -- entities in the parent must also be made immediately visible. There
137 -- are separate routines to make the visible and private declarations
138 -- visible at various times (see package Sem_Ch7).
140 -- +--------+ +-----+
141 -- | In use |-------->| EU1 |-------------------------->
142 -- +--------+ +-----+
144 -- +--------+ +-----+ +-----+
145 -- | Stand. |---------------->| ES1 |--------------->| ES2 |--->
146 -- +--------+ +-----+ +-----+
148 -- +---------+ | +-----+
149 -- | with'ed |------------------------------>| EW2 |--->
150 -- +---------+ | +-----+
152 -- +--------+ +-----+ +-----+
153 -- | Scope2 |---------------->| E12 |--------------->| E22 |--->
154 -- +--------+ +-----+ +-----+
156 -- +--------+ +-----+ +-----+
157 -- | Scope1 |---------------->| E11 |--------------->| E12 |--->
158 -- +--------+ +-----+ +-----+
162 -- | | with'ed |----------------------------------------->
166 -- (innermost first) | |
167 -- +----------------------------+
168 -- Names table => | Id1 | | | | Id2 |
169 -- +----------------------------+
171 -- Name resolution must deal with several syntactic forms: simple names,
172 -- qualified names, indexed names, and various forms of calls.
174 -- Each identifier points to an entry in the names table. The resolution
175 -- of a simple name consists in traversing the homonym chain, starting
176 -- from the names table. If an entry is immediately visible, it is the one
177 -- designated by the identifier. If only potentially use-visible entities
178 -- are on the chain, we must verify that they do not hide each other. If
179 -- the entity we find is overloadable, we collect all other overloadable
180 -- entities on the chain as long as they are not hidden.
182 -- To resolve expanded names, we must find the entity at the intersection
183 -- of the entity chain for the scope (the prefix) and the homonym chain
184 -- for the selector. In general, homonym chains will be much shorter than
185 -- entity chains, so it is preferable to start from the names table as
186 -- well. If the entity found is overloadable, we must collect all other
187 -- interpretations that are defined in the scope denoted by the prefix.
189 -- For records, protected types, and tasks, their local entities are
190 -- removed from visibility chains on exit from the corresponding scope.
191 -- From the outside, these entities are always accessed by selected
192 -- notation, and the entity chain for the record type, protected type,
193 -- etc. is traversed sequentially in order to find the designated entity.
195 -- The discriminants of a type and the operations of a protected type or
196 -- task are unchained on exit from the first view of the type, (such as
197 -- a private or incomplete type declaration, or a protected type speci-
198 -- fication) and re-chained when compiling the second view.
200 -- In the case of operators, we do not make operators on derived types
201 -- explicit. As a result, the notation P."+" may denote either a user-
202 -- defined function with name "+", or else an implicit declaration of the
203 -- operator "+" in package P. The resolution of expanded names always
204 -- tries to resolve an operator name as such an implicitly defined entity,
205 -- in addition to looking for explicit declarations.
207 -- All forms of names that denote entities (simple names, expanded names,
208 -- character literals in some cases) have a Entity attribute, which
209 -- identifies the entity denoted by the name.
211 ---------------------
212 -- The Scope Stack --
213 ---------------------
215 -- The Scope stack keeps track of the scopes currently been compiled.
216 -- Every entity that contains declarations (including records) is placed
217 -- on the scope stack while it is being processed, and removed at the end.
218 -- Whenever a non-package scope is exited, the entities defined therein
219 -- are removed from the visibility table, so that entities in outer scopes
220 -- become visible (see previous description). On entry to Sem, the scope
221 -- stack only contains the package Standard. As usual, subunits complicate
222 -- this picture ever so slightly.
224 -- The Rtsfind mechanism can force a call to Semantics while another
225 -- compilation is in progress. The unit retrieved by Rtsfind must be
226 -- compiled in its own context, and has no access to the visibility of
227 -- the unit currently being compiled. The procedures Save_Scope_Stack and
228 -- Restore_Scope_Stack make entities in current open scopes invisible
229 -- before compiling the retrieved unit, and restore the compilation
230 -- environment afterwards.
232 ------------------------
233 -- Compiling subunits --
234 ------------------------
236 -- Subunits must be compiled in the environment of the corresponding stub,
237 -- that is to say with the same visibility into the parent (and its
238 -- context) that is available at the point of the stub declaration, but
239 -- with the additional visibility provided by the context clause of the
240 -- subunit itself. As a result, compilation of a subunit forces compilation
241 -- of the parent (see description in lib-). At the point of the stub
242 -- declaration, Analyze is called recursively to compile the proper body of
243 -- the subunit, but without reinitializing the names table, nor the scope
244 -- stack (i.e. standard is not pushed on the stack). In this fashion the
245 -- context of the subunit is added to the context of the parent, and the
246 -- subunit is compiled in the correct environment. Note that in the course
247 -- of processing the context of a subunit, Standard will appear twice on
248 -- the scope stack: once for the parent of the subunit, and once for the
249 -- unit in the context clause being compiled. However, the two sets of
250 -- entities are not linked by homonym chains, so that the compilation of
251 -- any context unit happens in a fresh visibility environment.
253 -------------------------------
254 -- Processing of USE Clauses --
255 -------------------------------
257 -- Every defining occurrence has a flag indicating if it is potentially use
258 -- visible. Resolution of simple names examines this flag. The processing
259 -- of use clauses consists in setting this flag on all visible entities
260 -- defined in the corresponding package. On exit from the scope of the use
261 -- clause, the corresponding flag must be reset. However, a package may
262 -- appear in several nested use clauses (pathological but legal, alas)
263 -- which forces us to use a slightly more involved scheme:
265 -- a) The defining occurrence for a package holds a flag -In_Use- to
266 -- indicate that it is currently in the scope of a use clause. If a
267 -- redundant use clause is encountered, then the corresponding occurrence
268 -- of the package name is flagged -Redundant_Use-.
270 -- b) On exit from a scope, the use clauses in its declarative part are
271 -- scanned. The visibility flag is reset in all entities declared in
272 -- package named in a use clause, as long as the package is not flagged
273 -- as being in a redundant use clause (in which case the outer use
274 -- clause is still in effect, and the direct visibility of its entities
275 -- must be retained).
277 -- Note that entities are not removed from their homonym chains on exit
278 -- from the package specification. A subsequent use clause does not need
279 -- to rechain the visible entities, but only to establish their direct
282 -----------------------------------
283 -- Handling private declarations --
284 -----------------------------------
286 -- The principle that each entity has a single defining occurrence clashes
287 -- with the presence of two separate definitions for private types: the
288 -- first is the private type declaration, and second is the full type
289 -- declaration. It is important that all references to the type point to
290 -- the same defining occurrence, namely the first one. To enforce the two
291 -- separate views of the entity, the corresponding information is swapped
292 -- between the two declarations. Outside of the package, the defining
293 -- occurrence only contains the private declaration information, while in
294 -- the private part and the body of the package the defining occurrence
295 -- contains the full declaration. To simplify the swap, the defining
296 -- occurrence that currently holds the private declaration points to the
297 -- full declaration. During semantic processing the defining occurrence
298 -- also points to a list of private dependents, that is to say access types
299 -- or composite types whose designated types or component types are
300 -- subtypes or derived types of the private type in question. After the
301 -- full declaration has been seen, the private dependents are updated to
302 -- indicate that they have full definitions.
304 ------------------------------------
305 -- Handling of Undefined Messages --
306 ------------------------------------
308 -- In normal mode, only the first use of an undefined identifier generates
309 -- a message. The table Urefs is used to record error messages that have
310 -- been issued so that second and subsequent ones do not generate further
311 -- messages. However, the second reference causes text to be added to the
312 -- original undefined message noting "(more references follow)". The
313 -- full error list option (-gnatf) forces messages to be generated for
314 -- every reference and disconnects the use of this table.
316 type Uref_Entry
is record
318 -- Node for identifier for which original message was posted. The
319 -- Chars field of this identifier is used to detect later references
320 -- to the same identifier.
323 -- Records error message Id of original undefined message. Reset to
324 -- No_Error_Msg after the second occurrence, where it is used to add
325 -- text to the original message as described above.
328 -- Set if the message is not visible rather than undefined
331 -- Records location of error message. Used to make sure that we do
332 -- not consider a, b : undefined as two separate instances, which
333 -- would otherwise happen, since the parser converts this sequence
334 -- to a : undefined; b : undefined.
338 package Urefs
is new Table
.Table
(
339 Table_Component_Type
=> Uref_Entry
,
340 Table_Index_Type
=> Nat
,
341 Table_Low_Bound
=> 1,
343 Table_Increment
=> 100,
344 Table_Name
=> "Urefs");
346 Candidate_Renaming
: Entity_Id
;
347 -- Holds a candidate interpretation that appears in a subprogram renaming
348 -- declaration and does not match the given specification, but matches at
349 -- least on the first formal. Allows better error message when given
350 -- specification omits defaulted parameters, a common error.
352 -----------------------
353 -- Local Subprograms --
354 -----------------------
356 procedure Analyze_Generic_Renaming
359 -- Common processing for all three kinds of generic renaming declarations.
360 -- Enter new name and indicate that it renames the generic unit.
362 procedure Analyze_Renamed_Character
366 -- Renamed entity is given by a character literal, which must belong
367 -- to the return type of the new entity. Is_Body indicates whether the
368 -- declaration is a renaming_as_body. If the original declaration has
369 -- already been frozen (because of an intervening body, e.g.) the body of
370 -- the function must be built now. The same applies to the following
371 -- various renaming procedures.
373 procedure Analyze_Renamed_Dereference
377 -- Renamed entity is given by an explicit dereference. Prefix must be a
378 -- conformant access_to_subprogram type.
380 procedure Analyze_Renamed_Entry
384 -- If the renamed entity in a subprogram renaming is an entry or protected
385 -- subprogram, build a body for the new entity whose only statement is a
386 -- call to the renamed entity.
388 procedure Analyze_Renamed_Family_Member
392 -- Used when the renamed entity is an indexed component. The prefix must
393 -- denote an entry family.
395 procedure Analyze_Renamed_Primitive_Operation
399 -- If the renamed entity in a subprogram renaming is a primitive operation
400 -- or a class-wide operation in prefix form, save the target object,
401 -- which must be added to the list of actuals in any subsequent call.
402 -- The renaming operation is intrinsic because the compiler must in
403 -- fact generate a wrapper for it (6.3.1 (10 1/2)).
405 function Applicable_Use
(Pack_Name
: Node_Id
) return Boolean;
406 -- Common code to Use_One_Package and Set_Use, to determine whether use
407 -- clause must be processed. Pack_Name is an entity name that references
408 -- the package in question.
410 procedure Attribute_Renaming
(N
: Node_Id
);
411 -- Analyze renaming of attribute as subprogram. The renaming declaration N
412 -- is rewritten as a subprogram body that returns the attribute reference
413 -- applied to the formals of the function.
415 procedure Set_Entity_Or_Discriminal
(N
: Node_Id
; E
: Entity_Id
);
416 -- Set Entity, with style check if need be. For a discriminant reference,
417 -- replace by the corresponding discriminal, i.e. the parameter of the
418 -- initialization procedure that corresponds to the discriminant.
420 procedure Check_Frozen_Renaming
(N
: Node_Id
; Subp
: Entity_Id
);
421 -- A renaming_as_body may occur after the entity of the original decla-
422 -- ration has been frozen. In that case, the body of the new entity must
423 -- be built now, because the usual mechanism of building the renamed
424 -- body at the point of freezing will not work. Subp is the subprogram
425 -- for which N provides the Renaming_As_Body.
427 procedure Check_In_Previous_With_Clause
430 -- N is a use_package clause and Nam the package name, or N is a use_type
431 -- clause and Nam is the prefix of the type name. In either case, verify
432 -- that the package is visible at that point in the context: either it
433 -- appears in a previous with_clause, or because it is a fully qualified
434 -- name and the root ancestor appears in a previous with_clause.
436 procedure Check_Library_Unit_Renaming
(N
: Node_Id
; Old_E
: Entity_Id
);
437 -- Verify that the entity in a renaming declaration that is a library unit
438 -- is itself a library unit and not a nested unit or subunit. Also check
439 -- that if the renaming is a child unit of a generic parent, then the
440 -- renamed unit must also be a child unit of that parent. Finally, verify
441 -- that a renamed generic unit is not an implicit child declared within
442 -- an instance of the parent.
444 procedure Chain_Use_Clause
(N
: Node_Id
);
445 -- Chain use clause onto list of uses clauses headed by First_Use_Clause in
446 -- the proper scope table entry. This is usually the current scope, but it
447 -- will be an inner scope when installing the use clauses of the private
448 -- declarations of a parent unit prior to compiling the private part of a
449 -- child unit. This chain is traversed when installing/removing use clauses
450 -- when compiling a subunit or instantiating a generic body on the fly,
451 -- when it is necessary to save and restore full environments.
453 function Enclosing_Instance
return Entity_Id
;
454 -- In an instance nested within another one, several semantic checks are
455 -- unnecessary because the legality of the nested instance has been checked
456 -- in the enclosing generic unit. This applies in particular to legality
457 -- checks on actuals for formal subprograms of the inner instance, which
458 -- are checked as subprogram renamings, and may be complicated by confusion
459 -- in private/full views. This function returns the instance enclosing the
460 -- current one if there is such, else it returns Empty.
462 -- If the renaming determines the entity for the default of a formal
463 -- subprogram nested within another instance, choose the innermost
464 -- candidate. This is because if the formal has a box, and we are within
465 -- an enclosing instance where some candidate interpretations are local
466 -- to this enclosing instance, we know that the default was properly
467 -- resolved when analyzing the generic, so we prefer the local
468 -- candidates to those that are external. This is not always the case
469 -- but is a reasonable heuristic on the use of nested generics. The
470 -- proper solution requires a full renaming model.
472 function Has_Implicit_Character_Literal
(N
: Node_Id
) return Boolean;
473 -- Find a type derived from Character or Wide_Character in the prefix of N.
474 -- Used to resolved qualified names whose selector is a character literal.
476 function Has_Private_With
(E
: Entity_Id
) return Boolean;
477 -- Ada 2005 (AI-262): Determines if the current compilation unit has a
478 -- private with on E.
480 procedure Find_Expanded_Name
(N
: Node_Id
);
481 -- The input is a selected component known to be an expanded name. Verify
482 -- legality of selector given the scope denoted by prefix, and change node
483 -- N into a expanded name with a properly set Entity field.
485 function Find_Renamed_Entity
489 Is_Actual
: Boolean := False) return Entity_Id
;
490 -- Find the renamed entity that corresponds to the given parameter profile
491 -- in a subprogram renaming declaration. The renamed entity may be an
492 -- operator, a subprogram, an entry, or a protected operation. Is_Actual
493 -- indicates that the renaming is the one generated for an actual subpro-
494 -- gram in an instance, for which special visibility checks apply.
496 function Has_Implicit_Operator
(N
: Node_Id
) return Boolean;
497 -- N is an expanded name whose selector is an operator name (e.g. P."+").
498 -- declarative part contains an implicit declaration of an operator if it
499 -- has a declaration of a type to which one of the predefined operators
500 -- apply. The existence of this routine is an implementation artifact. A
501 -- more straightforward but more space-consuming choice would be to make
502 -- all inherited operators explicit in the symbol table.
504 procedure Inherit_Renamed_Profile
(New_S
: Entity_Id
; Old_S
: Entity_Id
);
505 -- A subprogram defined by a renaming declaration inherits the parameter
506 -- profile of the renamed entity. The subtypes given in the subprogram
507 -- specification are discarded and replaced with those of the renamed
508 -- subprogram, which are then used to recheck the default values.
510 function Is_Appropriate_For_Record
(T
: Entity_Id
) return Boolean;
511 -- Prefix is appropriate for record if it is of a record type, or an access
514 function Is_Appropriate_For_Entry_Prefix
(T
: Entity_Id
) return Boolean;
515 -- True if it is of a task type, a protected type, or else an access to one
518 procedure Note_Redundant_Use
(Clause
: Node_Id
);
519 -- Mark the name in a use clause as redundant if the corresponding entity
520 -- is already use-visible. Emit a warning if the use clause comes from
521 -- source and the proper warnings are enabled.
523 procedure Premature_Usage
(N
: Node_Id
);
524 -- Diagnose usage of an entity before it is visible
526 procedure Use_One_Package
(P
: Entity_Id
; N
: Node_Id
);
527 -- Make visible entities declared in package P potentially use-visible
528 -- in the current context. Also used in the analysis of subunits, when
529 -- re-installing use clauses of parent units. N is the use_clause that
530 -- names P (and possibly other packages).
532 procedure Use_One_Type
(Id
: Node_Id
; Installed
: Boolean := False);
533 -- Id is the subtype mark from a use type clause. This procedure makes
534 -- the primitive operators of the type potentially use-visible. The
535 -- boolean flag Installed indicates that the clause is being reinstalled
536 -- after previous analysis, and primitive operations are already chained
537 -- on the Used_Operations list of the clause.
539 procedure Write_Info
;
540 -- Write debugging information on entities declared in current scope
542 --------------------------------
543 -- Analyze_Exception_Renaming --
544 --------------------------------
546 -- The language only allows a single identifier, but the tree holds an
547 -- identifier list. The parser has already issued an error message if
548 -- there is more than one element in the list.
550 procedure Analyze_Exception_Renaming
(N
: Node_Id
) is
551 Id
: constant Entity_Id
:= Defining_Entity
(N
);
552 Nam
: constant Node_Id
:= Name
(N
);
555 Check_SPARK_05_Restriction
("exception renaming is not allowed", N
);
560 Set_Ekind
(Id
, E_Exception
);
561 Set_Etype
(Id
, Standard_Exception_Type
);
562 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
564 if Is_Entity_Name
(Nam
)
565 and then Present
(Entity
(Nam
))
566 and then Ekind
(Entity
(Nam
)) = E_Exception
568 if Present
(Renamed_Object
(Entity
(Nam
))) then
569 Set_Renamed_Object
(Id
, Renamed_Object
(Entity
(Nam
)));
571 Set_Renamed_Object
(Id
, Entity
(Nam
));
574 -- The exception renaming declaration may become Ghost if it renames
577 Mark_Ghost_Renaming
(N
, Entity
(Nam
));
579 Error_Msg_N
("invalid exception name in renaming", Nam
);
582 -- Implementation-defined aspect specifications can appear in a renaming
583 -- declaration, but not language-defined ones. The call to procedure
584 -- Analyze_Aspect_Specifications will take care of this error check.
586 if Has_Aspects
(N
) then
587 Analyze_Aspect_Specifications
(N
, Id
);
589 end Analyze_Exception_Renaming
;
591 ---------------------------
592 -- Analyze_Expanded_Name --
593 ---------------------------
595 procedure Analyze_Expanded_Name
(N
: Node_Id
) is
597 -- If the entity pointer is already set, this is an internal node, or a
598 -- node that is analyzed more than once, after a tree modification. In
599 -- such a case there is no resolution to perform, just set the type. In
600 -- either case, start by analyzing the prefix.
602 Analyze
(Prefix
(N
));
604 if Present
(Entity
(N
)) then
605 if Is_Type
(Entity
(N
)) then
606 Set_Etype
(N
, Entity
(N
));
608 Set_Etype
(N
, Etype
(Entity
(N
)));
612 Find_Expanded_Name
(N
);
615 -- In either case, propagate dimension of entity to expanded name
617 Analyze_Dimension
(N
);
618 end Analyze_Expanded_Name
;
620 ---------------------------------------
621 -- Analyze_Generic_Function_Renaming --
622 ---------------------------------------
624 procedure Analyze_Generic_Function_Renaming
(N
: Node_Id
) is
626 Analyze_Generic_Renaming
(N
, E_Generic_Function
);
627 end Analyze_Generic_Function_Renaming
;
629 --------------------------------------
630 -- Analyze_Generic_Package_Renaming --
631 --------------------------------------
633 procedure Analyze_Generic_Package_Renaming
(N
: Node_Id
) is
635 -- Test for the Text_IO special unit case here, since we may be renaming
636 -- one of the subpackages of Text_IO, then join common routine.
638 Check_Text_IO_Special_Unit
(Name
(N
));
640 Analyze_Generic_Renaming
(N
, E_Generic_Package
);
641 end Analyze_Generic_Package_Renaming
;
643 ----------------------------------------
644 -- Analyze_Generic_Procedure_Renaming --
645 ----------------------------------------
647 procedure Analyze_Generic_Procedure_Renaming
(N
: Node_Id
) is
649 Analyze_Generic_Renaming
(N
, E_Generic_Procedure
);
650 end Analyze_Generic_Procedure_Renaming
;
652 ------------------------------
653 -- Analyze_Generic_Renaming --
654 ------------------------------
656 procedure Analyze_Generic_Renaming
660 New_P
: constant Entity_Id
:= Defining_Entity
(N
);
661 Inst
: Boolean := False;
665 if Name
(N
) = Error
then
669 Check_SPARK_05_Restriction
("generic renaming is not allowed", N
);
671 Generate_Definition
(New_P
);
673 if Current_Scope
/= Standard_Standard
then
674 Set_Is_Pure
(New_P
, Is_Pure
(Current_Scope
));
677 if Nkind
(Name
(N
)) = N_Selected_Component
then
678 Check_Generic_Child_Unit
(Name
(N
), Inst
);
683 if not Is_Entity_Name
(Name
(N
)) then
684 Error_Msg_N
("expect entity name in renaming declaration", Name
(N
));
687 Old_P
:= Entity
(Name
(N
));
691 Set_Ekind
(New_P
, K
);
693 if Etype
(Old_P
) = Any_Type
then
696 elsif Ekind
(Old_P
) /= K
then
697 Error_Msg_N
("invalid generic unit name", Name
(N
));
700 if Present
(Renamed_Object
(Old_P
)) then
701 Set_Renamed_Object
(New_P
, Renamed_Object
(Old_P
));
703 Set_Renamed_Object
(New_P
, Old_P
);
706 -- The generic renaming declaration may become Ghost if it renames a
709 Mark_Ghost_Renaming
(N
, Old_P
);
711 Set_Is_Pure
(New_P
, Is_Pure
(Old_P
));
712 Set_Is_Preelaborated
(New_P
, Is_Preelaborated
(Old_P
));
714 Set_Etype
(New_P
, Etype
(Old_P
));
715 Set_Has_Completion
(New_P
);
717 if In_Open_Scopes
(Old_P
) then
718 Error_Msg_N
("within its scope, generic denotes its instance", N
);
721 -- For subprograms, propagate the Intrinsic flag, to allow, e.g.
722 -- renamings and subsequent instantiations of Unchecked_Conversion.
724 if Ekind_In
(Old_P
, E_Generic_Function
, E_Generic_Procedure
) then
725 Set_Is_Intrinsic_Subprogram
726 (New_P
, Is_Intrinsic_Subprogram
(Old_P
));
729 Check_Library_Unit_Renaming
(N
, Old_P
);
732 -- Implementation-defined aspect specifications can appear in a renaming
733 -- declaration, but not language-defined ones. The call to procedure
734 -- Analyze_Aspect_Specifications will take care of this error check.
736 if Has_Aspects
(N
) then
737 Analyze_Aspect_Specifications
(N
, New_P
);
739 end Analyze_Generic_Renaming
;
741 -----------------------------
742 -- Analyze_Object_Renaming --
743 -----------------------------
745 procedure Analyze_Object_Renaming
(N
: Node_Id
) is
746 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
747 Loc
: constant Source_Ptr
:= Sloc
(N
);
748 Nam
: constant Node_Id
:= Name
(N
);
753 procedure Check_Constrained_Object
;
754 -- If the nominal type is unconstrained but the renamed object is
755 -- constrained, as can happen with renaming an explicit dereference or
756 -- a function return, build a constrained subtype from the object. If
757 -- the renaming is for a formal in an accept statement, the analysis
758 -- has already established its actual subtype. This is only relevant
759 -- if the renamed object is an explicit dereference.
761 ------------------------------
762 -- Check_Constrained_Object --
763 ------------------------------
765 procedure Check_Constrained_Object
is
766 Typ
: constant Entity_Id
:= Etype
(Nam
);
770 if Nkind_In
(Nam
, N_Function_Call
, N_Explicit_Dereference
)
771 and then Is_Composite_Type
(Etype
(Nam
))
772 and then not Is_Constrained
(Etype
(Nam
))
773 and then not Has_Unknown_Discriminants
(Etype
(Nam
))
774 and then Expander_Active
776 -- If Actual_Subtype is already set, nothing to do
778 if Ekind_In
(Id
, E_Variable
, E_Constant
)
779 and then Present
(Actual_Subtype
(Id
))
783 -- A renaming of an unchecked union has no actual subtype
785 elsif Is_Unchecked_Union
(Typ
) then
788 -- If a record is limited its size is invariant. This is the case
789 -- in particular with record types with an access discirminant
790 -- that are used in iterators. This is an optimization, but it
791 -- also prevents typing anomalies when the prefix is further
792 -- expanded. Limited types with discriminants are included.
794 elsif Is_Limited_Record
(Typ
)
796 (Ekind
(Typ
) = E_Limited_Private_Type
797 and then Has_Discriminants
(Typ
)
798 and then Is_Access_Type
(Etype
(First_Discriminant
(Typ
))))
803 Subt
:= Make_Temporary
(Loc
, 'T');
804 Remove_Side_Effects
(Nam
);
806 Make_Subtype_Declaration
(Loc
,
807 Defining_Identifier
=> Subt
,
808 Subtype_Indication
=>
809 Make_Subtype_From_Expr
(Nam
, Typ
)));
810 Rewrite
(Subtype_Mark
(N
), New_Occurrence_Of
(Subt
, Loc
));
811 Set_Etype
(Nam
, Subt
);
813 -- Freeze subtype at once, to prevent order of elaboration
814 -- issues in the backend. The renamed object exists, so its
815 -- type is already frozen in any case.
817 Freeze_Before
(N
, Subt
);
820 end Check_Constrained_Object
;
822 -- Start of processing for Analyze_Object_Renaming
829 Check_SPARK_05_Restriction
("object renaming is not allowed", N
);
831 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
834 -- The renaming of a component that depends on a discriminant requires
835 -- an actual subtype, because in subsequent use of the object Gigi will
836 -- be unable to locate the actual bounds. This explicit step is required
837 -- when the renaming is generated in removing side effects of an
838 -- already-analyzed expression.
840 if Nkind
(Nam
) = N_Selected_Component
and then Analyzed
(Nam
) then
842 -- The object renaming declaration may become Ghost if it renames a
845 if Is_Entity_Name
(Nam
) then
846 Mark_Ghost_Renaming
(N
, Entity
(Nam
));
850 Dec
:= Build_Actual_Subtype_Of_Component
(Etype
(Nam
), Nam
);
852 if Present
(Dec
) then
853 Insert_Action
(N
, Dec
);
854 T
:= Defining_Identifier
(Dec
);
858 -- Complete analysis of the subtype mark in any case, for ASIS use
860 if Present
(Subtype_Mark
(N
)) then
861 Find_Type
(Subtype_Mark
(N
));
864 elsif Present
(Subtype_Mark
(N
)) then
865 Find_Type
(Subtype_Mark
(N
));
866 T
:= Entity
(Subtype_Mark
(N
));
869 -- The object renaming declaration may become Ghost if it renames a
872 if Is_Entity_Name
(Nam
) then
873 Mark_Ghost_Renaming
(N
, Entity
(Nam
));
876 -- Reject renamings of conversions unless the type is tagged, or
877 -- the conversion is implicit (which can occur for cases of anonymous
878 -- access types in Ada 2012).
880 if Nkind
(Nam
) = N_Type_Conversion
881 and then Comes_From_Source
(Nam
)
882 and then not Is_Tagged_Type
(T
)
885 ("renaming of conversion only allowed for tagged types", Nam
);
890 -- If the renamed object is a function call of a limited type,
891 -- the expansion of the renaming is complicated by the presence
892 -- of various temporaries and subtypes that capture constraints
893 -- of the renamed object. Rewrite node as an object declaration,
894 -- whose expansion is simpler. Given that the object is limited
895 -- there is no copy involved and no performance hit.
897 if Nkind
(Nam
) = N_Function_Call
898 and then Is_Limited_View
(Etype
(Nam
))
899 and then not Is_Constrained
(Etype
(Nam
))
900 and then Comes_From_Source
(N
)
903 Set_Ekind
(Id
, E_Constant
);
905 Make_Object_Declaration
(Loc
,
906 Defining_Identifier
=> Id
,
907 Constant_Present
=> True,
908 Object_Definition
=> New_Occurrence_Of
(Etype
(Nam
), Loc
),
909 Expression
=> Relocate_Node
(Nam
)));
913 -- Ada 2012 (AI05-149): Reject renaming of an anonymous access object
914 -- when renaming declaration has a named access type. The Ada 2012
915 -- coverage rules allow an anonymous access type in the context of
916 -- an expected named general access type, but the renaming rules
917 -- require the types to be the same. (An exception is when the type
918 -- of the renaming is also an anonymous access type, which can only
919 -- happen due to a renaming created by the expander.)
921 if Nkind
(Nam
) = N_Type_Conversion
922 and then not Comes_From_Source
(Nam
)
923 and then Ekind
(Etype
(Expression
(Nam
))) = E_Anonymous_Access_Type
924 and then Ekind
(T
) /= E_Anonymous_Access_Type
926 Wrong_Type
(Expression
(Nam
), T
); -- Should we give better error???
929 -- Check that a class-wide object is not being renamed as an object
930 -- of a specific type. The test for access types is needed to exclude
931 -- cases where the renamed object is a dynamically tagged access
932 -- result, such as occurs in certain expansions.
934 if Is_Tagged_Type
(T
) then
935 Check_Dynamically_Tagged_Expression
941 -- Ada 2005 (AI-230/AI-254): Access renaming
943 else pragma Assert
(Present
(Access_Definition
(N
)));
947 N
=> Access_Definition
(N
));
951 -- The object renaming declaration may become Ghost if it renames a
954 if Is_Entity_Name
(Nam
) then
955 Mark_Ghost_Renaming
(N
, Entity
(Nam
));
958 -- Ada 2005 AI05-105: if the declaration has an anonymous access
959 -- type, the renamed object must also have an anonymous type, and
960 -- this is a name resolution rule. This was implicit in the last part
961 -- of the first sentence in 8.5.1(3/2), and is made explicit by this
964 if not Is_Overloaded
(Nam
) then
965 if Ekind
(Etype
(Nam
)) /= Ekind
(T
) then
967 ("expect anonymous access type in object renaming", N
);
974 Typ
: Entity_Id
:= Empty
;
975 Seen
: Boolean := False;
978 Get_First_Interp
(Nam
, I
, It
);
979 while Present
(It
.Typ
) loop
981 -- Renaming is ambiguous if more than one candidate
982 -- interpretation is type-conformant with the context.
984 if Ekind
(It
.Typ
) = Ekind
(T
) then
985 if Ekind
(T
) = E_Anonymous_Access_Subprogram_Type
988 (Designated_Type
(T
), Designated_Type
(It
.Typ
))
994 ("ambiguous expression in renaming", Nam
);
997 elsif Ekind
(T
) = E_Anonymous_Access_Type
999 Covers
(Designated_Type
(T
), Designated_Type
(It
.Typ
))
1005 ("ambiguous expression in renaming", Nam
);
1009 if Covers
(T
, It
.Typ
) then
1011 Set_Etype
(Nam
, Typ
);
1012 Set_Is_Overloaded
(Nam
, False);
1016 Get_Next_Interp
(I
, It
);
1023 -- Do not perform the legality checks below when the resolution of
1024 -- the renaming name failed because the associated type is Any_Type.
1026 if Etype
(Nam
) = Any_Type
then
1029 -- Ada 2005 (AI-231): In the case where the type is defined by an
1030 -- access_definition, the renamed entity shall be of an access-to-
1031 -- constant type if and only if the access_definition defines an
1032 -- access-to-constant type. ARM 8.5.1(4)
1034 elsif Constant_Present
(Access_Definition
(N
))
1035 and then not Is_Access_Constant
(Etype
(Nam
))
1038 ("(Ada 2005): the renamed object is not access-to-constant "
1039 & "(RM 8.5.1(6))", N
);
1041 elsif not Constant_Present
(Access_Definition
(N
))
1042 and then Is_Access_Constant
(Etype
(Nam
))
1045 ("(Ada 2005): the renamed object is not access-to-variable "
1046 & "(RM 8.5.1(6))", N
);
1049 if Is_Access_Subprogram_Type
(Etype
(Nam
)) then
1050 Check_Subtype_Conformant
1051 (Designated_Type
(T
), Designated_Type
(Etype
(Nam
)));
1053 elsif not Subtypes_Statically_Match
1054 (Designated_Type
(T
),
1055 Available_View
(Designated_Type
(Etype
(Nam
))))
1058 ("subtype of renamed object does not statically match", N
);
1062 -- Special processing for renaming function return object. Some errors
1063 -- and warnings are produced only for calls that come from source.
1065 if Nkind
(Nam
) = N_Function_Call
then
1068 -- Usage is illegal in Ada 83, but renamings are also introduced
1069 -- during expansion, and error does not apply to those.
1072 if Comes_From_Source
(N
) then
1074 ("(Ada 83) cannot rename function return object", Nam
);
1077 -- In Ada 95, warn for odd case of renaming parameterless function
1078 -- call if this is not a limited type (where this is useful).
1081 if Warn_On_Object_Renames_Function
1082 and then No
(Parameter_Associations
(Nam
))
1083 and then not Is_Limited_Type
(Etype
(Nam
))
1084 and then Comes_From_Source
(Nam
)
1087 ("renaming function result object is suspicious?R?", Nam
);
1089 ("\function & will be called only once?R?", Nam
,
1090 Entity
(Name
(Nam
)));
1091 Error_Msg_N
-- CODEFIX
1092 ("\suggest using an initialized constant object "
1093 & "instead?R?", Nam
);
1098 Check_Constrained_Object
;
1100 -- An object renaming requires an exact match of the type. Class-wide
1101 -- matching is not allowed.
1103 if Is_Class_Wide_Type
(T
)
1104 and then Base_Type
(Etype
(Nam
)) /= Base_Type
(T
)
1106 Wrong_Type
(Nam
, T
);
1111 -- Ada 2005 (AI-326): Handle wrong use of incomplete type
1113 if Nkind
(Nam
) = N_Explicit_Dereference
1114 and then Ekind
(Etype
(T2
)) = E_Incomplete_Type
1116 Error_Msg_NE
("invalid use of incomplete type&", Id
, T2
);
1119 elsif Ekind
(Etype
(T
)) = E_Incomplete_Type
then
1120 Error_Msg_NE
("invalid use of incomplete type&", Id
, T
);
1124 -- Ada 2005 (AI-327)
1126 if Ada_Version
>= Ada_2005
1127 and then Nkind
(Nam
) = N_Attribute_Reference
1128 and then Attribute_Name
(Nam
) = Name_Priority
1132 elsif Ada_Version
>= Ada_2005
and then Nkind
(Nam
) in N_Has_Entity
then
1135 Nam_Ent
: Entity_Id
;
1138 if Nkind
(Nam
) = N_Attribute_Reference
then
1139 Nam_Ent
:= Entity
(Prefix
(Nam
));
1141 Nam_Ent
:= Entity
(Nam
);
1144 Nam_Decl
:= Parent
(Nam_Ent
);
1146 if Has_Null_Exclusion
(N
)
1147 and then not Has_Null_Exclusion
(Nam_Decl
)
1149 -- Ada 2005 (AI-423): If the object name denotes a generic
1150 -- formal object of a generic unit G, and the object renaming
1151 -- declaration occurs within the body of G or within the body
1152 -- of a generic unit declared within the declarative region
1153 -- of G, then the declaration of the formal object of G must
1154 -- have a null exclusion or a null-excluding subtype.
1156 if Is_Formal_Object
(Nam_Ent
)
1157 and then In_Generic_Scope
(Id
)
1159 if not Can_Never_Be_Null
(Etype
(Nam_Ent
)) then
1161 ("renamed formal does not exclude `NULL` "
1162 & "(RM 8.5.1(4.6/2))", N
);
1164 elsif In_Package_Body
(Scope
(Id
)) then
1166 ("formal object does not have a null exclusion"
1167 & "(RM 8.5.1(4.6/2))", N
);
1170 -- Ada 2005 (AI-423): Otherwise, the subtype of the object name
1171 -- shall exclude null.
1173 elsif not Can_Never_Be_Null
(Etype
(Nam_Ent
)) then
1175 ("renamed object does not exclude `NULL` "
1176 & "(RM 8.5.1(4.6/2))", N
);
1178 -- An instance is illegal if it contains a renaming that
1179 -- excludes null, and the actual does not. The renaming
1180 -- declaration has already indicated that the declaration
1181 -- of the renamed actual in the instance will raise
1182 -- constraint_error.
1184 elsif Nkind
(Nam_Decl
) = N_Object_Declaration
1185 and then In_Instance
1187 Present
(Corresponding_Generic_Association
(Nam_Decl
))
1188 and then Nkind
(Expression
(Nam_Decl
)) =
1189 N_Raise_Constraint_Error
1192 ("renamed actual does not exclude `NULL` "
1193 & "(RM 8.5.1(4.6/2))", N
);
1195 -- Finally, if there is a null exclusion, the subtype mark
1196 -- must not be null-excluding.
1198 elsif No
(Access_Definition
(N
))
1199 and then Can_Never_Be_Null
(T
)
1202 ("`NOT NULL` not allowed (& already excludes null)",
1207 elsif Can_Never_Be_Null
(T
)
1208 and then not Can_Never_Be_Null
(Etype
(Nam_Ent
))
1211 ("renamed object does not exclude `NULL` "
1212 & "(RM 8.5.1(4.6/2))", N
);
1214 elsif Has_Null_Exclusion
(N
)
1215 and then No
(Access_Definition
(N
))
1216 and then Can_Never_Be_Null
(T
)
1219 ("`NOT NULL` not allowed (& already excludes null)", N
, T
);
1224 -- Set the Ekind of the entity, unless it has been set already, as is
1225 -- the case for the iteration object over a container with no variable
1226 -- indexing. In that case it's been marked as a constant, and we do not
1227 -- want to change it to a variable.
1229 if Ekind
(Id
) /= E_Constant
then
1230 Set_Ekind
(Id
, E_Variable
);
1233 -- Initialize the object size and alignment. Note that we used to call
1234 -- Init_Size_Align here, but that's wrong for objects which have only
1235 -- an Esize, not an RM_Size field.
1237 Init_Object_Size_Align
(Id
);
1239 if T
= Any_Type
or else Etype
(Nam
) = Any_Type
then
1242 -- Verify that the renamed entity is an object or a function call. It
1243 -- may have been rewritten in several ways.
1245 elsif Is_Object_Reference
(Nam
) then
1246 if Comes_From_Source
(N
) then
1247 if Is_Dependent_Component_Of_Mutable_Object
(Nam
) then
1249 ("illegal renaming of discriminant-dependent component", Nam
);
1252 -- If the renaming comes from source and the renamed object is a
1253 -- dereference, then mark the prefix as needing debug information,
1254 -- since it might have been rewritten hence internally generated
1255 -- and Debug_Renaming_Declaration will link the renaming to it.
1257 if Nkind
(Nam
) = N_Explicit_Dereference
1258 and then Is_Entity_Name
(Prefix
(Nam
))
1260 Set_Debug_Info_Needed
(Entity
(Prefix
(Nam
)));
1264 -- A static function call may have been folded into a literal
1266 elsif Nkind
(Original_Node
(Nam
)) = N_Function_Call
1268 -- When expansion is disabled, attribute reference is not rewritten
1269 -- as function call. Otherwise it may be rewritten as a conversion,
1270 -- so check original node.
1272 or else (Nkind
(Original_Node
(Nam
)) = N_Attribute_Reference
1273 and then Is_Function_Attribute_Name
1274 (Attribute_Name
(Original_Node
(Nam
))))
1276 -- Weird but legal, equivalent to renaming a function call. Illegal
1277 -- if the literal is the result of constant-folding an attribute
1278 -- reference that is not a function.
1280 or else (Is_Entity_Name
(Nam
)
1281 and then Ekind
(Entity
(Nam
)) = E_Enumeration_Literal
1283 Nkind
(Original_Node
(Nam
)) /= N_Attribute_Reference
)
1285 or else (Nkind
(Nam
) = N_Type_Conversion
1286 and then Is_Tagged_Type
(Entity
(Subtype_Mark
(Nam
))))
1290 elsif Nkind
(Nam
) = N_Type_Conversion
then
1292 ("renaming of conversion only allowed for tagged types", Nam
);
1294 -- Ada 2005 (AI-327)
1296 elsif Ada_Version
>= Ada_2005
1297 and then Nkind
(Nam
) = N_Attribute_Reference
1298 and then Attribute_Name
(Nam
) = Name_Priority
1302 -- Allow internally generated x'Ref resulting in N_Reference node
1304 elsif Nkind
(Nam
) = N_Reference
then
1308 Error_Msg_N
("expect object name in renaming", Nam
);
1313 if not Is_Variable
(Nam
) then
1314 Set_Ekind
(Id
, E_Constant
);
1315 Set_Never_Set_In_Source
(Id
, True);
1316 Set_Is_True_Constant
(Id
, True);
1319 -- The entity of the renaming declaration needs to reflect whether the
1320 -- renamed object is volatile. Is_Volatile is set if the renamed object
1321 -- is volatile in the RM legality sense.
1323 Set_Is_Volatile
(Id
, Is_Volatile_Object
(Nam
));
1325 -- Also copy settings of Atomic/Independent/Volatile_Full_Access
1327 if Is_Entity_Name
(Nam
) then
1328 Set_Is_Atomic
(Id
, Is_Atomic
(Entity
(Nam
)));
1329 Set_Is_Independent
(Id
, Is_Independent
(Entity
(Nam
)));
1330 Set_Is_Volatile_Full_Access
(Id
,
1331 Is_Volatile_Full_Access
(Entity
(Nam
)));
1334 -- Treat as volatile if we just set the Volatile flag
1338 -- Or if we are renaming an entity which was marked this way
1340 -- Are there more cases, e.g. X(J) where X is Treat_As_Volatile ???
1342 or else (Is_Entity_Name
(Nam
)
1343 and then Treat_As_Volatile
(Entity
(Nam
)))
1345 Set_Treat_As_Volatile
(Id
, True);
1348 -- Now make the link to the renamed object
1350 Set_Renamed_Object
(Id
, Nam
);
1352 -- Implementation-defined aspect specifications can appear in a renaming
1353 -- declaration, but not language-defined ones. The call to procedure
1354 -- Analyze_Aspect_Specifications will take care of this error check.
1356 if Has_Aspects
(N
) then
1357 Analyze_Aspect_Specifications
(N
, Id
);
1360 -- Deal with dimensions
1362 Analyze_Dimension
(N
);
1363 end Analyze_Object_Renaming
;
1365 ------------------------------
1366 -- Analyze_Package_Renaming --
1367 ------------------------------
1369 procedure Analyze_Package_Renaming
(N
: Node_Id
) is
1370 New_P
: constant Entity_Id
:= Defining_Entity
(N
);
1375 if Name
(N
) = Error
then
1379 -- Check for Text_IO special unit (we may be renaming a Text_IO child)
1381 Check_Text_IO_Special_Unit
(Name
(N
));
1383 if Current_Scope
/= Standard_Standard
then
1384 Set_Is_Pure
(New_P
, Is_Pure
(Current_Scope
));
1390 if Is_Entity_Name
(Name
(N
)) then
1391 Old_P
:= Entity
(Name
(N
));
1396 if Etype
(Old_P
) = Any_Type
then
1397 Error_Msg_N
("expect package name in renaming", Name
(N
));
1399 elsif Ekind
(Old_P
) /= E_Package
1400 and then not (Ekind
(Old_P
) = E_Generic_Package
1401 and then In_Open_Scopes
(Old_P
))
1403 if Ekind
(Old_P
) = E_Generic_Package
then
1405 ("generic package cannot be renamed as a package", Name
(N
));
1407 Error_Msg_Sloc
:= Sloc
(Old_P
);
1409 ("expect package name in renaming, found& declared#",
1413 -- Set basic attributes to minimize cascaded errors
1415 Set_Ekind
(New_P
, E_Package
);
1416 Set_Etype
(New_P
, Standard_Void_Type
);
1418 -- Here for OK package renaming
1421 -- Entities in the old package are accessible through the renaming
1422 -- entity. The simplest implementation is to have both packages share
1425 Set_Ekind
(New_P
, E_Package
);
1426 Set_Etype
(New_P
, Standard_Void_Type
);
1428 if Present
(Renamed_Object
(Old_P
)) then
1429 Set_Renamed_Object
(New_P
, Renamed_Object
(Old_P
));
1431 Set_Renamed_Object
(New_P
, Old_P
);
1434 -- The package renaming declaration may become Ghost if it renames a
1437 Mark_Ghost_Renaming
(N
, Old_P
);
1439 Set_Has_Completion
(New_P
);
1440 Set_First_Entity
(New_P
, First_Entity
(Old_P
));
1441 Set_Last_Entity
(New_P
, Last_Entity
(Old_P
));
1442 Set_First_Private_Entity
(New_P
, First_Private_Entity
(Old_P
));
1443 Check_Library_Unit_Renaming
(N
, Old_P
);
1444 Generate_Reference
(Old_P
, Name
(N
));
1446 -- If the renaming is in the visible part of a package, then we set
1447 -- Renamed_In_Spec for the renamed package, to prevent giving
1448 -- warnings about no entities referenced. Such a warning would be
1449 -- overenthusiastic, since clients can see entities in the renamed
1450 -- package via the visible package renaming.
1453 Ent
: constant Entity_Id
:= Cunit_Entity
(Current_Sem_Unit
);
1455 if Ekind
(Ent
) = E_Package
1456 and then not In_Private_Part
(Ent
)
1457 and then In_Extended_Main_Source_Unit
(N
)
1458 and then Ekind
(Old_P
) = E_Package
1460 Set_Renamed_In_Spec
(Old_P
);
1464 -- If this is the renaming declaration of a package instantiation
1465 -- within itself, it is the declaration that ends the list of actuals
1466 -- for the instantiation. At this point, the subtypes that rename
1467 -- the actuals are flagged as generic, to avoid spurious ambiguities
1468 -- if the actuals for two distinct formals happen to coincide. If
1469 -- the actual is a private type, the subtype has a private completion
1470 -- that is flagged in the same fashion.
1472 -- Resolution is identical to what is was in the original generic.
1473 -- On exit from the generic instance, these are turned into regular
1474 -- subtypes again, so they are compatible with types in their class.
1476 if not Is_Generic_Instance
(Old_P
) then
1479 Spec
:= Specification
(Unit_Declaration_Node
(Old_P
));
1482 if Nkind
(Spec
) = N_Package_Specification
1483 and then Present
(Generic_Parent
(Spec
))
1484 and then Old_P
= Current_Scope
1485 and then Chars
(New_P
) = Chars
(Generic_Parent
(Spec
))
1491 E
:= First_Entity
(Old_P
);
1492 while Present
(E
) and then E
/= New_P
loop
1494 and then Nkind
(Parent
(E
)) = N_Subtype_Declaration
1496 Set_Is_Generic_Actual_Type
(E
);
1498 if Is_Private_Type
(E
)
1499 and then Present
(Full_View
(E
))
1501 Set_Is_Generic_Actual_Type
(Full_View
(E
));
1511 -- Implementation-defined aspect specifications can appear in a renaming
1512 -- declaration, but not language-defined ones. The call to procedure
1513 -- Analyze_Aspect_Specifications will take care of this error check.
1515 if Has_Aspects
(N
) then
1516 Analyze_Aspect_Specifications
(N
, New_P
);
1518 end Analyze_Package_Renaming
;
1520 -------------------------------
1521 -- Analyze_Renamed_Character --
1522 -------------------------------
1524 procedure Analyze_Renamed_Character
1529 C
: constant Node_Id
:= Name
(N
);
1532 if Ekind
(New_S
) = E_Function
then
1533 Resolve
(C
, Etype
(New_S
));
1536 Check_Frozen_Renaming
(N
, New_S
);
1540 Error_Msg_N
("character literal can only be renamed as function", N
);
1542 end Analyze_Renamed_Character
;
1544 ---------------------------------
1545 -- Analyze_Renamed_Dereference --
1546 ---------------------------------
1548 procedure Analyze_Renamed_Dereference
1553 Nam
: constant Node_Id
:= Name
(N
);
1554 P
: constant Node_Id
:= Prefix
(Nam
);
1560 if not Is_Overloaded
(P
) then
1561 if Ekind
(Etype
(Nam
)) /= E_Subprogram_Type
1562 or else not Type_Conformant
(Etype
(Nam
), New_S
)
1564 Error_Msg_N
("designated type does not match specification", P
);
1573 Get_First_Interp
(Nam
, Ind
, It
);
1575 while Present
(It
.Nam
) loop
1577 if Ekind
(It
.Nam
) = E_Subprogram_Type
1578 and then Type_Conformant
(It
.Nam
, New_S
)
1580 if Typ
/= Any_Id
then
1581 Error_Msg_N
("ambiguous renaming", P
);
1588 Get_Next_Interp
(Ind
, It
);
1591 if Typ
= Any_Type
then
1592 Error_Msg_N
("designated type does not match specification", P
);
1597 Check_Frozen_Renaming
(N
, New_S
);
1601 end Analyze_Renamed_Dereference
;
1603 ---------------------------
1604 -- Analyze_Renamed_Entry --
1605 ---------------------------
1607 procedure Analyze_Renamed_Entry
1612 Nam
: constant Node_Id
:= Name
(N
);
1613 Sel
: constant Node_Id
:= Selector_Name
(Nam
);
1614 Is_Actual
: constant Boolean := Present
(Corresponding_Formal_Spec
(N
));
1618 if Entity
(Sel
) = Any_Id
then
1620 -- Selector is undefined on prefix. Error emitted already
1622 Set_Has_Completion
(New_S
);
1626 -- Otherwise find renamed entity and build body of New_S as a call to it
1628 Old_S
:= Find_Renamed_Entity
(N
, Selector_Name
(Nam
), New_S
);
1630 if Old_S
= Any_Id
then
1631 Error_Msg_N
(" no subprogram or entry matches specification", N
);
1634 Check_Subtype_Conformant
(New_S
, Old_S
, N
);
1635 Generate_Reference
(New_S
, Defining_Entity
(N
), 'b');
1636 Style
.Check_Identifier
(Defining_Entity
(N
), New_S
);
1639 -- Only mode conformance required for a renaming_as_declaration
1641 Check_Mode_Conformant
(New_S
, Old_S
, N
);
1644 Inherit_Renamed_Profile
(New_S
, Old_S
);
1646 -- The prefix can be an arbitrary expression that yields a task or
1647 -- protected object, so it must be resolved.
1649 Resolve
(Prefix
(Nam
), Scope
(Old_S
));
1652 Set_Convention
(New_S
, Convention
(Old_S
));
1653 Set_Has_Completion
(New_S
, Inside_A_Generic
);
1655 -- AI05-0225: If the renamed entity is a procedure or entry of a
1656 -- protected object, the target object must be a variable.
1658 if Ekind
(Scope
(Old_S
)) in Protected_Kind
1659 and then Ekind
(New_S
) = E_Procedure
1660 and then not Is_Variable
(Prefix
(Nam
))
1664 ("target object of protected operation used as actual for "
1665 & "formal procedure must be a variable", Nam
);
1668 ("target object of protected operation renamed as procedure, "
1669 & "must be a variable", Nam
);
1674 Check_Frozen_Renaming
(N
, New_S
);
1676 end Analyze_Renamed_Entry
;
1678 -----------------------------------
1679 -- Analyze_Renamed_Family_Member --
1680 -----------------------------------
1682 procedure Analyze_Renamed_Family_Member
1687 Nam
: constant Node_Id
:= Name
(N
);
1688 P
: constant Node_Id
:= Prefix
(Nam
);
1692 if (Is_Entity_Name
(P
) and then Ekind
(Entity
(P
)) = E_Entry_Family
)
1693 or else (Nkind
(P
) = N_Selected_Component
1694 and then Ekind
(Entity
(Selector_Name
(P
))) = E_Entry_Family
)
1696 if Is_Entity_Name
(P
) then
1697 Old_S
:= Entity
(P
);
1699 Old_S
:= Entity
(Selector_Name
(P
));
1702 if not Entity_Matches_Spec
(Old_S
, New_S
) then
1703 Error_Msg_N
("entry family does not match specification", N
);
1706 Check_Subtype_Conformant
(New_S
, Old_S
, N
);
1707 Generate_Reference
(New_S
, Defining_Entity
(N
), 'b');
1708 Style
.Check_Identifier
(Defining_Entity
(N
), New_S
);
1712 Error_Msg_N
("no entry family matches specification", N
);
1715 Set_Has_Completion
(New_S
, Inside_A_Generic
);
1718 Check_Frozen_Renaming
(N
, New_S
);
1720 end Analyze_Renamed_Family_Member
;
1722 -----------------------------------------
1723 -- Analyze_Renamed_Primitive_Operation --
1724 -----------------------------------------
1726 procedure Analyze_Renamed_Primitive_Operation
1735 Ctyp
: Conformance_Type
) return Boolean;
1736 -- Verify that the signatures of the renamed entity and the new entity
1737 -- match. The first formal of the renamed entity is skipped because it
1738 -- is the target object in any subsequent call.
1746 Ctyp
: Conformance_Type
) return Boolean
1752 if Ekind
(Subp
) /= Ekind
(New_S
) then
1756 Old_F
:= Next_Formal
(First_Formal
(Subp
));
1757 New_F
:= First_Formal
(New_S
);
1758 while Present
(Old_F
) and then Present
(New_F
) loop
1759 if not Conforming_Types
(Etype
(Old_F
), Etype
(New_F
), Ctyp
) then
1763 if Ctyp
>= Mode_Conformant
1764 and then Ekind
(Old_F
) /= Ekind
(New_F
)
1769 Next_Formal
(New_F
);
1770 Next_Formal
(Old_F
);
1776 -- Start of processing for Analyze_Renamed_Primitive_Operation
1779 if not Is_Overloaded
(Selector_Name
(Name
(N
))) then
1780 Old_S
:= Entity
(Selector_Name
(Name
(N
)));
1782 if not Conforms
(Old_S
, Type_Conformant
) then
1787 -- Find the operation that matches the given signature
1795 Get_First_Interp
(Selector_Name
(Name
(N
)), Ind
, It
);
1797 while Present
(It
.Nam
) loop
1798 if Conforms
(It
.Nam
, Type_Conformant
) then
1802 Get_Next_Interp
(Ind
, It
);
1807 if Old_S
= Any_Id
then
1808 Error_Msg_N
(" no subprogram or entry matches specification", N
);
1812 if not Conforms
(Old_S
, Subtype_Conformant
) then
1813 Error_Msg_N
("subtype conformance error in renaming", N
);
1816 Generate_Reference
(New_S
, Defining_Entity
(N
), 'b');
1817 Style
.Check_Identifier
(Defining_Entity
(N
), New_S
);
1820 -- Only mode conformance required for a renaming_as_declaration
1822 if not Conforms
(Old_S
, Mode_Conformant
) then
1823 Error_Msg_N
("mode conformance error in renaming", N
);
1826 -- Enforce the rule given in (RM 6.3.1 (10.1/2)): a prefixed
1827 -- view of a subprogram is intrinsic, because the compiler has
1828 -- to generate a wrapper for any call to it. If the name in a
1829 -- subprogram renaming is a prefixed view, the entity is thus
1830 -- intrinsic, and 'Access cannot be applied to it.
1832 Set_Convention
(New_S
, Convention_Intrinsic
);
1835 -- Inherit_Renamed_Profile (New_S, Old_S);
1837 -- The prefix can be an arbitrary expression that yields an
1838 -- object, so it must be resolved.
1840 Resolve
(Prefix
(Name
(N
)));
1842 end Analyze_Renamed_Primitive_Operation
;
1844 ---------------------------------
1845 -- Analyze_Subprogram_Renaming --
1846 ---------------------------------
1848 procedure Analyze_Subprogram_Renaming
(N
: Node_Id
) is
1849 Formal_Spec
: constant Entity_Id
:= Corresponding_Formal_Spec
(N
);
1850 Is_Actual
: constant Boolean := Present
(Formal_Spec
);
1851 Nam
: constant Node_Id
:= Name
(N
);
1852 Save_AV
: constant Ada_Version_Type
:= Ada_Version
;
1853 Save_AVP
: constant Node_Id
:= Ada_Version_Pragma
;
1854 Save_AV_Exp
: constant Ada_Version_Type
:= Ada_Version_Explicit
;
1855 Spec
: constant Node_Id
:= Specification
(N
);
1857 Old_S
: Entity_Id
:= Empty
;
1858 Rename_Spec
: Entity_Id
;
1860 procedure Build_Class_Wide_Wrapper
1861 (Ren_Id
: out Entity_Id
;
1862 Wrap_Id
: out Entity_Id
);
1863 -- Ada 2012 (AI05-0071): A generic/instance scenario involving a formal
1864 -- type with unknown discriminants and a generic primitive operation of
1865 -- the said type with a box require special processing when the actual
1866 -- is a class-wide type:
1869 -- type Formal_Typ (<>) is private;
1870 -- with procedure Prim_Op (Param : Formal_Typ) is <>;
1871 -- package Gen is ...
1873 -- package Inst is new Gen (Actual_Typ'Class);
1875 -- In this case the general renaming mechanism used in the prologue of
1876 -- an instance no longer applies:
1878 -- procedure Prim_Op (Param : Formal_Typ) renames Prim_Op;
1880 -- The above is replaced the following wrapper/renaming combination:
1882 -- procedure Wrapper (Param : Formal_Typ) is -- wrapper
1884 -- Prim_Op (Param); -- primitive
1887 -- procedure Prim_Op (Param : Formal_Typ) renames Wrapper;
1889 -- This transformation applies only if there is no explicit visible
1890 -- class-wide operation at the point of the instantiation. Ren_Id is
1891 -- the entity of the renaming declaration. When the transformation
1892 -- applies, Wrap_Id is the entity of the generated class-wide wrapper
1893 -- (or Any_Id). Otherwise, Wrap_Id is the entity of the class-wide
1896 procedure Check_Null_Exclusion
1899 -- Ada 2005 (AI-423): Given renaming Ren of subprogram Sub, check the
1900 -- following AI rules:
1902 -- If Ren is a renaming of a formal subprogram and one of its
1903 -- parameters has a null exclusion, then the corresponding formal
1904 -- in Sub must also have one. Otherwise the subtype of the Sub's
1905 -- formal parameter must exclude null.
1907 -- If Ren is a renaming of a formal function and its return
1908 -- profile has a null exclusion, then Sub's return profile must
1909 -- have one. Otherwise the subtype of Sub's return profile must
1912 procedure Freeze_Actual_Profile
;
1913 -- In Ada 2012, enforce the freezing rule concerning formal incomplete
1914 -- types: a callable entity freezes its profile, unless it has an
1915 -- incomplete untagged formal (RM 13.14(10.2/3)).
1917 function Has_Class_Wide_Actual
return Boolean;
1918 -- Ada 2012 (AI05-071, AI05-0131): True if N is the renaming for a
1919 -- defaulted formal subprogram where the actual for the controlling
1920 -- formal type is class-wide.
1922 function Original_Subprogram
(Subp
: Entity_Id
) return Entity_Id
;
1923 -- Find renamed entity when the declaration is a renaming_as_body and
1924 -- the renamed entity may itself be a renaming_as_body. Used to enforce
1925 -- rule that a renaming_as_body is illegal if the declaration occurs
1926 -- before the subprogram it completes is frozen, and renaming indirectly
1927 -- renames the subprogram itself.(Defect Report 8652/0027).
1929 ------------------------------
1930 -- Build_Class_Wide_Wrapper --
1931 ------------------------------
1933 procedure Build_Class_Wide_Wrapper
1934 (Ren_Id
: out Entity_Id
;
1935 Wrap_Id
: out Entity_Id
)
1937 Loc
: constant Source_Ptr
:= Sloc
(N
);
1940 (Subp_Id
: Entity_Id
;
1941 Params
: List_Id
) return Node_Id
;
1942 -- Create a dispatching call to invoke routine Subp_Id with actuals
1943 -- built from the parameter specifications of list Params.
1945 function Build_Expr_Fun_Call
1946 (Subp_Id
: Entity_Id
;
1947 Params
: List_Id
) return Node_Id
;
1948 -- Create a dispatching call to invoke function Subp_Id with actuals
1949 -- built from the parameter specifications of list Params. Return
1950 -- directly the call, so that it can be used inside an expression
1951 -- function. This is a specificity of the GNATprove mode.
1953 function Build_Spec
(Subp_Id
: Entity_Id
) return Node_Id
;
1954 -- Create a subprogram specification based on the subprogram profile
1957 function Find_Primitive
(Typ
: Entity_Id
) return Entity_Id
;
1958 -- Find a primitive subprogram of type Typ which matches the profile
1959 -- of the renaming declaration.
1961 procedure Interpretation_Error
(Subp_Id
: Entity_Id
);
1962 -- Emit a continuation error message suggesting subprogram Subp_Id as
1963 -- a possible interpretation.
1965 function Is_Intrinsic_Equality
(Subp_Id
: Entity_Id
) return Boolean;
1966 -- Determine whether subprogram Subp_Id denotes the intrinsic "="
1969 function Is_Suitable_Candidate
(Subp_Id
: Entity_Id
) return Boolean;
1970 -- Determine whether subprogram Subp_Id is a suitable candidate for
1971 -- the role of a wrapped subprogram.
1978 (Subp_Id
: Entity_Id
;
1979 Params
: List_Id
) return Node_Id
1981 Actuals
: constant List_Id
:= New_List
;
1982 Call_Ref
: constant Node_Id
:= New_Occurrence_Of
(Subp_Id
, Loc
);
1986 -- Build the actual parameters of the call
1988 Formal
:= First
(Params
);
1989 while Present
(Formal
) loop
1991 Make_Identifier
(Loc
, Chars
(Defining_Identifier
(Formal
))));
1996 -- return Subp_Id (Actuals);
1998 if Ekind_In
(Subp_Id
, E_Function
, E_Operator
) then
2000 Make_Simple_Return_Statement
(Loc
,
2002 Make_Function_Call
(Loc
,
2004 Parameter_Associations
=> Actuals
));
2007 -- Subp_Id (Actuals);
2011 Make_Procedure_Call_Statement
(Loc
,
2013 Parameter_Associations
=> Actuals
);
2017 -------------------------
2018 -- Build_Expr_Fun_Call --
2019 -------------------------
2021 function Build_Expr_Fun_Call
2022 (Subp_Id
: Entity_Id
;
2023 Params
: List_Id
) return Node_Id
2025 Actuals
: constant List_Id
:= New_List
;
2026 Call_Ref
: constant Node_Id
:= New_Occurrence_Of
(Subp_Id
, Loc
);
2030 pragma Assert
(Ekind_In
(Subp_Id
, E_Function
, E_Operator
));
2032 -- Build the actual parameters of the call
2034 Formal
:= First
(Params
);
2035 while Present
(Formal
) loop
2037 Make_Identifier
(Loc
, Chars
(Defining_Identifier
(Formal
))));
2042 -- Subp_Id (Actuals);
2045 Make_Function_Call
(Loc
,
2047 Parameter_Associations
=> Actuals
);
2048 end Build_Expr_Fun_Call
;
2054 function Build_Spec
(Subp_Id
: Entity_Id
) return Node_Id
is
2055 Params
: constant List_Id
:= Copy_Parameter_List
(Subp_Id
);
2056 Spec_Id
: constant Entity_Id
:=
2057 Make_Defining_Identifier
(Loc
,
2058 Chars
=> New_External_Name
(Chars
(Subp_Id
), 'R'));
2061 if Ekind
(Formal_Spec
) = E_Procedure
then
2063 Make_Procedure_Specification
(Loc
,
2064 Defining_Unit_Name
=> Spec_Id
,
2065 Parameter_Specifications
=> Params
);
2068 Make_Function_Specification
(Loc
,
2069 Defining_Unit_Name
=> Spec_Id
,
2070 Parameter_Specifications
=> Params
,
2071 Result_Definition
=>
2072 New_Copy_Tree
(Result_Definition
(Spec
)));
2076 --------------------
2077 -- Find_Primitive --
2078 --------------------
2080 function Find_Primitive
(Typ
: Entity_Id
) return Entity_Id
is
2081 procedure Replace_Parameter_Types
(Spec
: Node_Id
);
2082 -- Given a specification Spec, replace all class-wide parameter
2083 -- types with reference to type Typ.
2085 -----------------------------
2086 -- Replace_Parameter_Types --
2087 -----------------------------
2089 procedure Replace_Parameter_Types
(Spec
: Node_Id
) is
2091 Formal_Id
: Entity_Id
;
2092 Formal_Typ
: Node_Id
;
2095 Formal
:= First
(Parameter_Specifications
(Spec
));
2096 while Present
(Formal
) loop
2097 Formal_Id
:= Defining_Identifier
(Formal
);
2098 Formal_Typ
:= Parameter_Type
(Formal
);
2100 -- Create a new entity for each class-wide formal to prevent
2101 -- aliasing with the original renaming. Replace the type of
2102 -- such a parameter with the candidate type.
2104 if Nkind
(Formal_Typ
) = N_Identifier
2105 and then Is_Class_Wide_Type
(Etype
(Formal_Typ
))
2107 Set_Defining_Identifier
(Formal
,
2108 Make_Defining_Identifier
(Loc
, Chars
(Formal_Id
)));
2110 Set_Parameter_Type
(Formal
, New_Occurrence_Of
(Typ
, Loc
));
2115 end Replace_Parameter_Types
;
2119 Alt_Ren
: constant Node_Id
:= New_Copy_Tree
(N
);
2120 Alt_Nam
: constant Node_Id
:= Name
(Alt_Ren
);
2121 Alt_Spec
: constant Node_Id
:= Specification
(Alt_Ren
);
2122 Subp_Id
: Entity_Id
;
2124 -- Start of processing for Find_Primitive
2127 -- Each attempt to find a suitable primitive of a particular type
2128 -- operates on its own copy of the original renaming. As a result
2129 -- the original renaming is kept decoration and side-effect free.
2131 -- Inherit the overloaded status of the renamed subprogram name
2133 if Is_Overloaded
(Nam
) then
2134 Set_Is_Overloaded
(Alt_Nam
);
2135 Save_Interps
(Nam
, Alt_Nam
);
2138 -- The copied renaming is hidden from visibility to prevent the
2139 -- pollution of the enclosing context.
2141 Set_Defining_Unit_Name
(Alt_Spec
, Make_Temporary
(Loc
, 'R'));
2143 -- The types of all class-wide parameters must be changed to the
2146 Replace_Parameter_Types
(Alt_Spec
);
2148 -- Try to find a suitable primitive which matches the altered
2149 -- profile of the renaming specification.
2154 Nam
=> Name
(Alt_Ren
),
2155 New_S
=> Analyze_Subprogram_Specification
(Alt_Spec
),
2156 Is_Actual
=> Is_Actual
);
2158 -- Do not return Any_Id if the resolion of the altered profile
2159 -- failed as this complicates further checks on the caller side,
2160 -- return Empty instead.
2162 if Subp_Id
= Any_Id
then
2169 --------------------------
2170 -- Interpretation_Error --
2171 --------------------------
2173 procedure Interpretation_Error
(Subp_Id
: Entity_Id
) is
2175 Error_Msg_Sloc
:= Sloc
(Subp_Id
);
2177 if Is_Internal
(Subp_Id
) then
2179 ("\\possible interpretation: predefined & #",
2183 ("\\possible interpretation: & defined #", Spec
, Formal_Spec
);
2185 end Interpretation_Error
;
2187 ---------------------------
2188 -- Is_Intrinsic_Equality --
2189 ---------------------------
2191 function Is_Intrinsic_Equality
(Subp_Id
: Entity_Id
) return Boolean is
2194 Ekind
(Subp_Id
) = E_Operator
2195 and then Chars
(Subp_Id
) = Name_Op_Eq
2196 and then Is_Intrinsic_Subprogram
(Subp_Id
);
2197 end Is_Intrinsic_Equality
;
2199 ---------------------------
2200 -- Is_Suitable_Candidate --
2201 ---------------------------
2203 function Is_Suitable_Candidate
(Subp_Id
: Entity_Id
) return Boolean is
2205 if No
(Subp_Id
) then
2208 -- An intrinsic subprogram is never a good candidate. This is an
2209 -- indication of a missing primitive, either defined directly or
2210 -- inherited from a parent tagged type.
2212 elsif Is_Intrinsic_Subprogram
(Subp_Id
) then
2218 end Is_Suitable_Candidate
;
2222 Actual_Typ
: Entity_Id
:= Empty
;
2223 -- The actual class-wide type for Formal_Typ
2225 CW_Prim_OK
: Boolean;
2226 CW_Prim_Op
: Entity_Id
;
2227 -- The class-wide subprogram (if available) which corresponds to the
2228 -- renamed generic formal subprogram.
2230 Formal_Typ
: Entity_Id
:= Empty
;
2231 -- The generic formal type with unknown discriminants
2233 Root_Prim_OK
: Boolean;
2234 Root_Prim_Op
: Entity_Id
;
2235 -- The root type primitive (if available) which corresponds to the
2236 -- renamed generic formal subprogram.
2238 Root_Typ
: Entity_Id
:= Empty
;
2239 -- The root type of Actual_Typ
2241 Body_Decl
: Node_Id
;
2243 Prim_Op
: Entity_Id
;
2244 Spec_Decl
: Node_Id
;
2247 -- Start of processing for Build_Class_Wide_Wrapper
2250 -- Analyze the specification of the renaming in case the generation
2251 -- of the class-wide wrapper fails.
2253 Ren_Id
:= Analyze_Subprogram_Specification
(Spec
);
2256 -- Do not attempt to build a wrapper if the renaming is in error
2258 if Error_Posted
(Nam
) then
2262 -- Analyze the renamed name, but do not resolve it. The resolution is
2263 -- completed once a suitable subprogram is found.
2267 -- When the renamed name denotes the intrinsic operator equals, the
2268 -- name must be treated as overloaded. This allows for a potential
2269 -- match against the root type's predefined equality function.
2271 if Is_Intrinsic_Equality
(Entity
(Nam
)) then
2272 Set_Is_Overloaded
(Nam
);
2273 Collect_Interps
(Nam
);
2276 -- Step 1: Find the generic formal type with unknown discriminants
2277 -- and its corresponding class-wide actual type from the renamed
2278 -- generic formal subprogram.
2280 Formal
:= First_Formal
(Formal_Spec
);
2281 while Present
(Formal
) loop
2282 if Has_Unknown_Discriminants
(Etype
(Formal
))
2283 and then not Is_Class_Wide_Type
(Etype
(Formal
))
2284 and then Is_Class_Wide_Type
(Get_Instance_Of
(Etype
(Formal
)))
2286 Formal_Typ
:= Etype
(Formal
);
2287 Actual_Typ
:= Get_Instance_Of
(Formal_Typ
);
2288 Root_Typ
:= Etype
(Actual_Typ
);
2292 Next_Formal
(Formal
);
2295 -- The specification of the generic formal subprogram should always
2296 -- contain a formal type with unknown discriminants whose actual is
2297 -- a class-wide type, otherwise this indicates a failure in routine
2298 -- Has_Class_Wide_Actual.
2300 pragma Assert
(Present
(Formal_Typ
));
2302 -- Step 2: Find the proper class-wide subprogram or primitive which
2303 -- corresponds to the renamed generic formal subprogram.
2305 CW_Prim_Op
:= Find_Primitive
(Actual_Typ
);
2306 CW_Prim_OK
:= Is_Suitable_Candidate
(CW_Prim_Op
);
2307 Root_Prim_Op
:= Find_Primitive
(Root_Typ
);
2308 Root_Prim_OK
:= Is_Suitable_Candidate
(Root_Prim_Op
);
2310 -- The class-wide actual type has two subprograms which correspond to
2311 -- the renamed generic formal subprogram:
2313 -- with procedure Prim_Op (Param : Formal_Typ);
2315 -- procedure Prim_Op (Param : Actual_Typ); -- may be inherited
2316 -- procedure Prim_Op (Param : Actual_Typ'Class);
2318 -- Even though the declaration of the two subprograms is legal, a
2319 -- call to either one is ambiguous and therefore illegal.
2321 if CW_Prim_OK
and Root_Prim_OK
then
2323 -- A user-defined primitive has precedence over a predefined one
2325 if Is_Internal
(CW_Prim_Op
)
2326 and then not Is_Internal
(Root_Prim_Op
)
2328 Prim_Op
:= Root_Prim_Op
;
2330 elsif Is_Internal
(Root_Prim_Op
)
2331 and then not Is_Internal
(CW_Prim_Op
)
2333 Prim_Op
:= CW_Prim_Op
;
2335 elsif CW_Prim_Op
= Root_Prim_Op
then
2336 Prim_Op
:= Root_Prim_Op
;
2338 -- Otherwise both candidate subprograms are user-defined and
2343 ("ambiguous actual for generic subprogram &",
2345 Interpretation_Error
(Root_Prim_Op
);
2346 Interpretation_Error
(CW_Prim_Op
);
2350 elsif CW_Prim_OK
and not Root_Prim_OK
then
2351 Prim_Op
:= CW_Prim_Op
;
2353 elsif not CW_Prim_OK
and Root_Prim_OK
then
2354 Prim_Op
:= Root_Prim_Op
;
2356 -- An intrinsic equality may act as a suitable candidate in the case
2357 -- of a null type extension where the parent's equality is hidden. A
2358 -- call to an intrinsic equality is expanded as dispatching.
2360 elsif Present
(Root_Prim_Op
)
2361 and then Is_Intrinsic_Equality
(Root_Prim_Op
)
2363 Prim_Op
:= Root_Prim_Op
;
2365 -- Otherwise there are no candidate subprograms. Let the caller
2366 -- diagnose the error.
2372 -- At this point resolution has taken place and the name is no longer
2373 -- overloaded. Mark the primitive as referenced.
2375 Set_Is_Overloaded
(Name
(N
), False);
2376 Set_Referenced
(Prim_Op
);
2378 -- Do not generate a wrapper when the only candidate is a class-wide
2379 -- subprogram. Instead modify the renaming to directly map the actual
2380 -- to the generic formal.
2382 if CW_Prim_OK
and then Prim_Op
= CW_Prim_Op
then
2384 Rewrite
(Nam
, New_Occurrence_Of
(Prim_Op
, Loc
));
2388 -- Step 3: Create the declaration and the body of the wrapper, insert
2389 -- all the pieces into the tree.
2391 -- In GNATprove mode, create a function wrapper in the form of an
2392 -- expression function, so that an implicit postcondition relating
2393 -- the result of calling the wrapper function and the result of the
2394 -- dispatching call to the wrapped function is known during proof.
2397 and then Ekind_In
(Ren_Id
, E_Function
, E_Operator
)
2399 New_Spec
:= Build_Spec
(Ren_Id
);
2401 Make_Expression_Function
(Loc
,
2402 Specification
=> New_Spec
,
2405 (Subp_Id
=> Prim_Op
,
2406 Params
=> Parameter_Specifications
(New_Spec
)));
2408 Wrap_Id
:= Defining_Entity
(Body_Decl
);
2410 -- Otherwise, create separate spec and body for the subprogram
2414 Make_Subprogram_Declaration
(Loc
,
2415 Specification
=> Build_Spec
(Ren_Id
));
2416 Insert_Before_And_Analyze
(N
, Spec_Decl
);
2418 Wrap_Id
:= Defining_Entity
(Spec_Decl
);
2421 Make_Subprogram_Body
(Loc
,
2422 Specification
=> Build_Spec
(Ren_Id
),
2423 Declarations
=> New_List
,
2424 Handled_Statement_Sequence
=>
2425 Make_Handled_Sequence_Of_Statements
(Loc
,
2426 Statements
=> New_List
(
2428 (Subp_Id
=> Prim_Op
,
2430 Parameter_Specifications
2431 (Specification
(Spec_Decl
))))));
2433 Set_Corresponding_Body
(Spec_Decl
, Defining_Entity
(Body_Decl
));
2436 -- If the operator carries an Eliminated pragma, indicate that the
2437 -- wrapper is also to be eliminated, to prevent spurious error when
2438 -- using gnatelim on programs that include box-initialization of
2439 -- equality operators.
2441 Set_Is_Eliminated
(Wrap_Id
, Is_Eliminated
(Prim_Op
));
2443 -- In GNATprove mode, insert the body in the tree for analysis
2445 if GNATprove_Mode
then
2446 Insert_Before_And_Analyze
(N
, Body_Decl
);
2449 -- The generated body does not freeze and must be analyzed when the
2450 -- class-wide wrapper is frozen. The body is only needed if expansion
2453 if Expander_Active
then
2454 Append_Freeze_Action
(Wrap_Id
, Body_Decl
);
2457 -- Step 4: The subprogram renaming aliases the wrapper
2459 Rewrite
(Nam
, New_Occurrence_Of
(Wrap_Id
, Loc
));
2460 end Build_Class_Wide_Wrapper
;
2462 --------------------------
2463 -- Check_Null_Exclusion --
2464 --------------------------
2466 procedure Check_Null_Exclusion
2470 Ren_Formal
: Entity_Id
;
2471 Sub_Formal
: Entity_Id
;
2476 Ren_Formal
:= First_Formal
(Ren
);
2477 Sub_Formal
:= First_Formal
(Sub
);
2478 while Present
(Ren_Formal
) and then Present
(Sub_Formal
) loop
2479 if Has_Null_Exclusion
(Parent
(Ren_Formal
))
2481 not (Has_Null_Exclusion
(Parent
(Sub_Formal
))
2482 or else Can_Never_Be_Null
(Etype
(Sub_Formal
)))
2485 ("`NOT NULL` required for parameter &",
2486 Parent
(Sub_Formal
), Sub_Formal
);
2489 Next_Formal
(Ren_Formal
);
2490 Next_Formal
(Sub_Formal
);
2493 -- Return profile check
2495 if Nkind
(Parent
(Ren
)) = N_Function_Specification
2496 and then Nkind
(Parent
(Sub
)) = N_Function_Specification
2497 and then Has_Null_Exclusion
(Parent
(Ren
))
2498 and then not (Has_Null_Exclusion
(Parent
(Sub
))
2499 or else Can_Never_Be_Null
(Etype
(Sub
)))
2502 ("return must specify `NOT NULL`",
2503 Result_Definition
(Parent
(Sub
)));
2505 end Check_Null_Exclusion
;
2507 ---------------------------
2508 -- Freeze_Actual_Profile --
2509 ---------------------------
2511 procedure Freeze_Actual_Profile
is
2513 Has_Untagged_Inc
: Boolean;
2514 Instantiation_Node
: constant Node_Id
:= Parent
(N
);
2517 if Ada_Version
>= Ada_2012
then
2518 F
:= First_Formal
(Formal_Spec
);
2519 Has_Untagged_Inc
:= False;
2520 while Present
(F
) loop
2521 if Ekind
(Etype
(F
)) = E_Incomplete_Type
2522 and then not Is_Tagged_Type
(Etype
(F
))
2524 Has_Untagged_Inc
:= True;
2528 F
:= Next_Formal
(F
);
2531 if Ekind
(Formal_Spec
) = E_Function
2532 and then not Is_Tagged_Type
(Etype
(Formal_Spec
))
2534 Has_Untagged_Inc
:= True;
2537 if not Has_Untagged_Inc
then
2538 F
:= First_Formal
(Old_S
);
2539 while Present
(F
) loop
2540 Freeze_Before
(Instantiation_Node
, Etype
(F
));
2542 if Is_Incomplete_Or_Private_Type
(Etype
(F
))
2543 and then No
(Underlying_Type
(Etype
(F
)))
2545 -- Exclude generic types, or types derived from them.
2546 -- They will be frozen in the enclosing instance.
2548 if Is_Generic_Type
(Etype
(F
))
2549 or else Is_Generic_Type
(Root_Type
(Etype
(F
)))
2553 -- A limited view of a type declared elsewhere needs no
2554 -- freezing actions.
2556 elsif From_Limited_With
(Etype
(F
)) then
2561 ("type& must be frozen before this point",
2562 Instantiation_Node
, Etype
(F
));
2566 F
:= Next_Formal
(F
);
2570 end Freeze_Actual_Profile
;
2572 ---------------------------
2573 -- Has_Class_Wide_Actual --
2574 ---------------------------
2576 function Has_Class_Wide_Actual
return Boolean is
2578 Formal_Typ
: Entity_Id
;
2582 Formal
:= First_Formal
(Formal_Spec
);
2583 while Present
(Formal
) loop
2584 Formal_Typ
:= Etype
(Formal
);
2586 if Has_Unknown_Discriminants
(Formal_Typ
)
2587 and then not Is_Class_Wide_Type
(Formal_Typ
)
2588 and then Is_Class_Wide_Type
(Get_Instance_Of
(Formal_Typ
))
2593 Next_Formal
(Formal
);
2598 end Has_Class_Wide_Actual
;
2600 -------------------------
2601 -- Original_Subprogram --
2602 -------------------------
2604 function Original_Subprogram
(Subp
: Entity_Id
) return Entity_Id
is
2605 Orig_Decl
: Node_Id
;
2606 Orig_Subp
: Entity_Id
;
2609 -- First case: renamed entity is itself a renaming
2611 if Present
(Alias
(Subp
)) then
2612 return Alias
(Subp
);
2614 elsif Nkind
(Unit_Declaration_Node
(Subp
)) = N_Subprogram_Declaration
2615 and then Present
(Corresponding_Body
(Unit_Declaration_Node
(Subp
)))
2617 -- Check if renamed entity is a renaming_as_body
2620 Unit_Declaration_Node
2621 (Corresponding_Body
(Unit_Declaration_Node
(Subp
)));
2623 if Nkind
(Orig_Decl
) = N_Subprogram_Renaming_Declaration
then
2624 Orig_Subp
:= Entity
(Name
(Orig_Decl
));
2626 if Orig_Subp
= Rename_Spec
then
2628 -- Circularity detected
2633 return (Original_Subprogram
(Orig_Subp
));
2641 end Original_Subprogram
;
2645 CW_Actual
: constant Boolean := Has_Class_Wide_Actual
;
2646 -- Ada 2012 (AI05-071, AI05-0131): True if the renaming is for a
2647 -- defaulted formal subprogram when the actual for a related formal
2648 -- type is class-wide.
2650 Inst_Node
: Node_Id
:= Empty
;
2653 -- Start of processing for Analyze_Subprogram_Renaming
2656 -- We must test for the attribute renaming case before the Analyze
2657 -- call because otherwise Sem_Attr will complain that the attribute
2658 -- is missing an argument when it is analyzed.
2660 if Nkind
(Nam
) = N_Attribute_Reference
then
2662 -- In the case of an abstract formal subprogram association, rewrite
2663 -- an actual given by a stream attribute as the name of the
2664 -- corresponding stream primitive of the type.
2666 -- In a generic context the stream operations are not generated, and
2667 -- this must be treated as a normal attribute reference, to be
2668 -- expanded in subsequent instantiations.
2671 and then Is_Abstract_Subprogram
(Formal_Spec
)
2672 and then Expander_Active
2675 Prefix_Type
: constant Entity_Id
:= Entity
(Prefix
(Nam
));
2676 Stream_Prim
: Entity_Id
;
2679 -- The class-wide forms of the stream attributes are not
2680 -- primitive dispatching operations (even though they
2681 -- internally dispatch to a stream attribute).
2683 if Is_Class_Wide_Type
(Prefix_Type
) then
2685 ("attribute must be a primitive dispatching operation",
2690 -- Retrieve the primitive subprogram associated with the
2691 -- attribute. This can only be a stream attribute, since those
2692 -- are the only ones that are dispatching (and the actual for
2693 -- an abstract formal subprogram must be dispatching
2696 case Attribute_Name
(Nam
) is
2699 Find_Optional_Prim_Op
(Prefix_Type
, TSS_Stream_Input
);
2703 Find_Optional_Prim_Op
(Prefix_Type
, TSS_Stream_Output
);
2707 Find_Optional_Prim_Op
(Prefix_Type
, TSS_Stream_Read
);
2711 Find_Optional_Prim_Op
(Prefix_Type
, TSS_Stream_Write
);
2715 ("attribute must be a primitive dispatching operation",
2720 -- If no operation was found, and the type is limited, the user
2721 -- should have defined one.
2723 if No
(Stream_Prim
) then
2724 if Is_Limited_Type
(Prefix_Type
) then
2726 ("stream operation not defined for type&",
2730 -- Otherwise, compiler should have generated default
2733 raise Program_Error
;
2737 -- Rewrite the attribute into the name of its corresponding
2738 -- primitive dispatching subprogram. We can then proceed with
2739 -- the usual processing for subprogram renamings.
2742 Prim_Name
: constant Node_Id
:=
2743 Make_Identifier
(Sloc
(Nam
),
2744 Chars
=> Chars
(Stream_Prim
));
2746 Set_Entity
(Prim_Name
, Stream_Prim
);
2747 Rewrite
(Nam
, Prim_Name
);
2752 -- Normal processing for a renaming of an attribute
2755 Attribute_Renaming
(N
);
2760 -- Check whether this declaration corresponds to the instantiation of a
2761 -- formal subprogram.
2763 -- If this is an instantiation, the corresponding actual is frozen and
2764 -- error messages can be made more precise. If this is a default
2765 -- subprogram, the entity is already established in the generic, and is
2766 -- not retrieved by visibility. If it is a default with a box, the
2767 -- candidate interpretations, if any, have been collected when building
2768 -- the renaming declaration. If overloaded, the proper interpretation is
2769 -- determined in Find_Renamed_Entity. If the entity is an operator,
2770 -- Find_Renamed_Entity applies additional visibility checks.
2773 Inst_Node
:= Unit_Declaration_Node
(Formal_Spec
);
2775 -- Check whether the renaming is for a defaulted actual subprogram
2776 -- with a class-wide actual.
2778 -- The class-wide wrapper is not needed in GNATprove_Mode and there
2779 -- is an external axiomatization on the package.
2782 and then Box_Present
(Inst_Node
)
2786 Present
(Containing_Package_With_Ext_Axioms
(Formal_Spec
)))
2788 Build_Class_Wide_Wrapper
(New_S
, Old_S
);
2790 elsif Is_Entity_Name
(Nam
)
2791 and then Present
(Entity
(Nam
))
2792 and then not Comes_From_Source
(Nam
)
2793 and then not Is_Overloaded
(Nam
)
2795 Old_S
:= Entity
(Nam
);
2797 -- The subprogram renaming declaration may become Ghost if it
2798 -- renames a Ghost entity.
2800 Mark_Ghost_Renaming
(N
, Old_S
);
2802 New_S
:= Analyze_Subprogram_Specification
(Spec
);
2806 if Ekind
(Old_S
) = E_Operator
then
2810 if Box_Present
(Inst_Node
) then
2811 Old_S
:= Find_Renamed_Entity
(N
, Name
(N
), New_S
, Is_Actual
);
2813 -- If there is an immediately visible homonym of the operator
2814 -- and the declaration has a default, this is worth a warning
2815 -- because the user probably did not intend to get the pre-
2816 -- defined operator, visible in the generic declaration. To
2817 -- find if there is an intended candidate, analyze the renaming
2818 -- again in the current context.
2820 elsif Scope
(Old_S
) = Standard_Standard
2821 and then Present
(Default_Name
(Inst_Node
))
2824 Decl
: constant Node_Id
:= New_Copy_Tree
(N
);
2828 Set_Entity
(Name
(Decl
), Empty
);
2829 Analyze
(Name
(Decl
));
2831 Find_Renamed_Entity
(Decl
, Name
(Decl
), New_S
, True);
2834 and then In_Open_Scopes
(Scope
(Hidden
))
2835 and then Is_Immediately_Visible
(Hidden
)
2836 and then Comes_From_Source
(Hidden
)
2837 and then Hidden
/= Old_S
2839 Error_Msg_Sloc
:= Sloc
(Hidden
);
2841 ("default subprogram is resolved in the generic "
2842 & "declaration (RM 12.6(17))??", N
);
2843 Error_Msg_NE
("\and will not use & #??", N
, Hidden
);
2852 -- The subprogram renaming declaration may become Ghost if it
2853 -- renames a Ghost entity.
2855 if Is_Entity_Name
(Nam
) then
2856 Mark_Ghost_Renaming
(N
, Entity
(Nam
));
2859 New_S
:= Analyze_Subprogram_Specification
(Spec
);
2863 -- Renamed entity must be analyzed first, to avoid being hidden by
2864 -- new name (which might be the same in a generic instance).
2868 -- The subprogram renaming declaration may become Ghost if it renames
2871 if Is_Entity_Name
(Nam
) then
2872 Mark_Ghost_Renaming
(N
, Entity
(Nam
));
2875 -- The renaming defines a new overloaded entity, which is analyzed
2876 -- like a subprogram declaration.
2878 New_S
:= Analyze_Subprogram_Specification
(Spec
);
2881 if Current_Scope
/= Standard_Standard
then
2882 Set_Is_Pure
(New_S
, Is_Pure
(Current_Scope
));
2885 -- Set SPARK mode from current context
2887 Set_SPARK_Pragma
(New_S
, SPARK_Mode_Pragma
);
2888 Set_SPARK_Pragma_Inherited
(New_S
);
2890 Rename_Spec
:= Find_Corresponding_Spec
(N
);
2892 -- Case of Renaming_As_Body
2894 if Present
(Rename_Spec
) then
2896 -- Renaming declaration is the completion of the declaration of
2897 -- Rename_Spec. We build an actual body for it at the freezing point.
2899 Set_Corresponding_Spec
(N
, Rename_Spec
);
2901 -- Deal with special case of stream functions of abstract types
2904 if Nkind
(Unit_Declaration_Node
(Rename_Spec
)) =
2905 N_Abstract_Subprogram_Declaration
2907 -- Input stream functions are abstract if the object type is
2908 -- abstract. Similarly, all default stream functions for an
2909 -- interface type are abstract. However, these subprograms may
2910 -- receive explicit declarations in representation clauses, making
2911 -- the attribute subprograms usable as defaults in subsequent
2913 -- In this case we rewrite the declaration to make the subprogram
2914 -- non-abstract. We remove the previous declaration, and insert
2915 -- the new one at the point of the renaming, to prevent premature
2916 -- access to unfrozen types. The new declaration reuses the
2917 -- specification of the previous one, and must not be analyzed.
2920 (Is_Primitive
(Entity
(Nam
))
2922 Is_Abstract_Type
(Find_Dispatching_Type
(Entity
(Nam
))));
2924 Old_Decl
: constant Node_Id
:=
2925 Unit_Declaration_Node
(Rename_Spec
);
2926 New_Decl
: constant Node_Id
:=
2927 Make_Subprogram_Declaration
(Sloc
(N
),
2929 Relocate_Node
(Specification
(Old_Decl
)));
2932 Insert_After
(N
, New_Decl
);
2933 Set_Is_Abstract_Subprogram
(Rename_Spec
, False);
2934 Set_Analyzed
(New_Decl
);
2938 Set_Corresponding_Body
(Unit_Declaration_Node
(Rename_Spec
), New_S
);
2940 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
2941 Error_Msg_N
("(Ada 83) renaming cannot serve as a body", N
);
2944 Set_Convention
(New_S
, Convention
(Rename_Spec
));
2945 Check_Fully_Conformant
(New_S
, Rename_Spec
);
2946 Set_Public_Status
(New_S
);
2948 -- The specification does not introduce new formals, but only
2949 -- repeats the formals of the original subprogram declaration.
2950 -- For cross-reference purposes, and for refactoring tools, we
2951 -- treat the formals of the renaming declaration as body formals.
2953 Reference_Body_Formals
(Rename_Spec
, New_S
);
2955 -- Indicate that the entity in the declaration functions like the
2956 -- corresponding body, and is not a new entity. The body will be
2957 -- constructed later at the freeze point, so indicate that the
2958 -- completion has not been seen yet.
2960 Set_Ekind
(New_S
, E_Subprogram_Body
);
2961 New_S
:= Rename_Spec
;
2962 Set_Has_Completion
(Rename_Spec
, False);
2964 -- Ada 2005: check overriding indicator
2966 if Present
(Overridden_Operation
(Rename_Spec
)) then
2967 if Must_Not_Override
(Specification
(N
)) then
2969 ("subprogram& overrides inherited operation",
2973 and then not Must_Override
(Specification
(N
))
2975 Style
.Missing_Overriding
(N
, Rename_Spec
);
2978 elsif Must_Override
(Specification
(N
)) then
2979 Error_Msg_NE
("subprogram& is not overriding", N
, Rename_Spec
);
2982 -- Normal subprogram renaming (not renaming as body)
2985 Generate_Definition
(New_S
);
2986 New_Overloaded_Entity
(New_S
);
2988 if Is_Entity_Name
(Nam
)
2989 and then Is_Intrinsic_Subprogram
(Entity
(Nam
))
2993 Check_Delayed_Subprogram
(New_S
);
2997 -- There is no need for elaboration checks on the new entity, which may
2998 -- be called before the next freezing point where the body will appear.
2999 -- Elaboration checks refer to the real entity, not the one created by
3000 -- the renaming declaration.
3002 Set_Kill_Elaboration_Checks
(New_S
, True);
3004 -- If we had a previous error, indicate a completely is present to stop
3005 -- junk cascaded messages, but don't take any further action.
3007 if Etype
(Nam
) = Any_Type
then
3008 Set_Has_Completion
(New_S
);
3011 -- Case where name has the form of a selected component
3013 elsif Nkind
(Nam
) = N_Selected_Component
then
3015 -- A name which has the form A.B can designate an entry of task A, a
3016 -- protected operation of protected object A, or finally a primitive
3017 -- operation of object A. In the later case, A is an object of some
3018 -- tagged type, or an access type that denotes one such. To further
3019 -- distinguish these cases, note that the scope of a task entry or
3020 -- protected operation is type of the prefix.
3022 -- The prefix could be an overloaded function call that returns both
3023 -- kinds of operations. This overloading pathology is left to the
3024 -- dedicated reader ???
3027 T
: constant Entity_Id
:= Etype
(Prefix
(Nam
));
3035 and then Is_Tagged_Type
(Designated_Type
(T
))))
3036 and then Scope
(Entity
(Selector_Name
(Nam
))) /= T
3038 Analyze_Renamed_Primitive_Operation
3039 (N
, New_S
, Present
(Rename_Spec
));
3043 -- Renamed entity is an entry or protected operation. For those
3044 -- cases an explicit body is built (at the point of freezing of
3045 -- this entity) that contains a call to the renamed entity.
3047 -- This is not allowed for renaming as body if the renamed
3048 -- spec is already frozen (see RM 8.5.4(5) for details).
3050 if Present
(Rename_Spec
) and then Is_Frozen
(Rename_Spec
) then
3052 ("renaming-as-body cannot rename entry as subprogram", N
);
3054 ("\since & is already frozen (RM 8.5.4(5))",
3057 Analyze_Renamed_Entry
(N
, New_S
, Present
(Rename_Spec
));
3064 -- Case where name is an explicit dereference X.all
3066 elsif Nkind
(Nam
) = N_Explicit_Dereference
then
3068 -- Renamed entity is designated by access_to_subprogram expression.
3069 -- Must build body to encapsulate call, as in the entry case.
3071 Analyze_Renamed_Dereference
(N
, New_S
, Present
(Rename_Spec
));
3074 -- Indexed component
3076 elsif Nkind
(Nam
) = N_Indexed_Component
then
3077 Analyze_Renamed_Family_Member
(N
, New_S
, Present
(Rename_Spec
));
3080 -- Character literal
3082 elsif Nkind
(Nam
) = N_Character_Literal
then
3083 Analyze_Renamed_Character
(N
, New_S
, Present
(Rename_Spec
));
3086 -- Only remaining case is where we have a non-entity name, or a renaming
3087 -- of some other non-overloadable entity.
3089 elsif not Is_Entity_Name
(Nam
)
3090 or else not Is_Overloadable
(Entity
(Nam
))
3092 -- Do not mention the renaming if it comes from an instance
3094 if not Is_Actual
then
3095 Error_Msg_N
("expect valid subprogram name in renaming", N
);
3097 Error_Msg_NE
("no visible subprogram for formal&", N
, Nam
);
3103 -- Find the renamed entity that matches the given specification. Disable
3104 -- Ada_83 because there is no requirement of full conformance between
3105 -- renamed entity and new entity, even though the same circuit is used.
3107 -- This is a bit of an odd case, which introduces a really irregular use
3108 -- of Ada_Version[_Explicit]. Would be nice to find cleaner way to do
3111 Ada_Version
:= Ada_Version_Type
'Max (Ada_Version
, Ada_95
);
3112 Ada_Version_Pragma
:= Empty
;
3113 Ada_Version_Explicit
:= Ada_Version
;
3116 Old_S
:= Find_Renamed_Entity
(N
, Name
(N
), New_S
, Is_Actual
);
3118 -- The visible operation may be an inherited abstract operation that
3119 -- was overridden in the private part, in which case a call will
3120 -- dispatch to the overriding operation. Use the overriding one in
3121 -- the renaming declaration, to prevent spurious errors below.
3123 if Is_Overloadable
(Old_S
)
3124 and then Is_Abstract_Subprogram
(Old_S
)
3125 and then No
(DTC_Entity
(Old_S
))
3126 and then Present
(Alias
(Old_S
))
3127 and then not Is_Abstract_Subprogram
(Alias
(Old_S
))
3128 and then Present
(Overridden_Operation
(Alias
(Old_S
)))
3130 Old_S
:= Alias
(Old_S
);
3133 -- When the renamed subprogram is overloaded and used as an actual
3134 -- of a generic, its entity is set to the first available homonym.
3135 -- We must first disambiguate the name, then set the proper entity.
3137 if Is_Actual
and then Is_Overloaded
(Nam
) then
3138 Set_Entity
(Nam
, Old_S
);
3142 -- Most common case: subprogram renames subprogram. No body is generated
3143 -- in this case, so we must indicate the declaration is complete as is.
3144 -- and inherit various attributes of the renamed subprogram.
3146 if No
(Rename_Spec
) then
3147 Set_Has_Completion
(New_S
);
3148 Set_Is_Imported
(New_S
, Is_Imported
(Entity
(Nam
)));
3149 Set_Is_Pure
(New_S
, Is_Pure
(Entity
(Nam
)));
3150 Set_Is_Preelaborated
(New_S
, Is_Preelaborated
(Entity
(Nam
)));
3152 -- Ada 2005 (AI-423): Check the consistency of null exclusions
3153 -- between a subprogram and its correct renaming.
3155 -- Note: the Any_Id check is a guard that prevents compiler crashes
3156 -- when performing a null exclusion check between a renaming and a
3157 -- renamed subprogram that has been found to be illegal.
3159 if Ada_Version
>= Ada_2005
and then Entity
(Nam
) /= Any_Id
then
3160 Check_Null_Exclusion
3162 Sub
=> Entity
(Nam
));
3165 -- Enforce the Ada 2005 rule that the renamed entity cannot require
3166 -- overriding. The flag Requires_Overriding is set very selectively
3167 -- and misses some other illegal cases. The additional conditions
3168 -- checked below are sufficient but not necessary ???
3170 -- The rule does not apply to the renaming generated for an actual
3171 -- subprogram in an instance.
3176 -- Guard against previous errors, and omit renamings of predefined
3179 elsif not Ekind_In
(Old_S
, E_Function
, E_Procedure
) then
3182 elsif Requires_Overriding
(Old_S
)
3184 (Is_Abstract_Subprogram
(Old_S
)
3185 and then Present
(Find_Dispatching_Type
(Old_S
))
3187 not Is_Abstract_Type
(Find_Dispatching_Type
(Old_S
)))
3190 ("renamed entity cannot be subprogram that requires overriding "
3191 & "(RM 8.5.4 (5.1))", N
);
3195 Prev
: constant Entity_Id
:= Overridden_Operation
(New_S
);
3199 (Has_Non_Trivial_Precondition
(Prev
)
3200 or else Has_Non_Trivial_Precondition
(Old_S
))
3203 ("conflicting inherited classwide preconditions in renaming "
3204 & "of& (RM 6.1.1 (17)", N
, Old_S
);
3209 if Old_S
/= Any_Id
then
3210 if Is_Actual
and then From_Default
(N
) then
3212 -- This is an implicit reference to the default actual
3214 Generate_Reference
(Old_S
, Nam
, Typ
=> 'i', Force
=> True);
3217 Generate_Reference
(Old_S
, Nam
);
3220 Check_Internal_Protected_Use
(N
, Old_S
);
3222 -- For a renaming-as-body, require subtype conformance, but if the
3223 -- declaration being completed has not been frozen, then inherit the
3224 -- convention of the renamed subprogram prior to checking conformance
3225 -- (unless the renaming has an explicit convention established; the
3226 -- rule stated in the RM doesn't seem to address this ???).
3228 if Present
(Rename_Spec
) then
3229 Generate_Reference
(Rename_Spec
, Defining_Entity
(Spec
), 'b');
3230 Style
.Check_Identifier
(Defining_Entity
(Spec
), Rename_Spec
);
3232 if not Is_Frozen
(Rename_Spec
) then
3233 if not Has_Convention_Pragma
(Rename_Spec
) then
3234 Set_Convention
(New_S
, Convention
(Old_S
));
3237 if Ekind
(Old_S
) /= E_Operator
then
3238 Check_Mode_Conformant
(New_S
, Old_S
, Spec
);
3241 if Original_Subprogram
(Old_S
) = Rename_Spec
then
3242 Error_Msg_N
("unfrozen subprogram cannot rename itself ", N
);
3245 Check_Subtype_Conformant
(New_S
, Old_S
, Spec
);
3248 Check_Frozen_Renaming
(N
, Rename_Spec
);
3250 -- Check explicitly that renamed entity is not intrinsic, because
3251 -- in a generic the renamed body is not built. In this case,
3252 -- the renaming_as_body is a completion.
3254 if Inside_A_Generic
then
3255 if Is_Frozen
(Rename_Spec
)
3256 and then Is_Intrinsic_Subprogram
(Old_S
)
3259 ("subprogram in renaming_as_body cannot be intrinsic",
3263 Set_Has_Completion
(Rename_Spec
);
3266 elsif Ekind
(Old_S
) /= E_Operator
then
3268 -- If this a defaulted subprogram for a class-wide actual there is
3269 -- no check for mode conformance, given that the signatures don't
3270 -- match (the source mentions T but the actual mentions T'Class).
3274 elsif not Is_Actual
or else No
(Enclosing_Instance
) then
3275 Check_Mode_Conformant
(New_S
, Old_S
);
3278 if Is_Actual
and then Error_Posted
(New_S
) then
3279 Error_Msg_NE
("invalid actual subprogram: & #!", N
, Old_S
);
3283 if No
(Rename_Spec
) then
3285 -- The parameter profile of the new entity is that of the renamed
3286 -- entity: the subtypes given in the specification are irrelevant.
3288 Inherit_Renamed_Profile
(New_S
, Old_S
);
3290 -- A call to the subprogram is transformed into a call to the
3291 -- renamed entity. This is transitive if the renamed entity is
3292 -- itself a renaming.
3294 if Present
(Alias
(Old_S
)) then
3295 Set_Alias
(New_S
, Alias
(Old_S
));
3297 Set_Alias
(New_S
, Old_S
);
3300 -- Note that we do not set Is_Intrinsic_Subprogram if we have a
3301 -- renaming as body, since the entity in this case is not an
3302 -- intrinsic (it calls an intrinsic, but we have a real body for
3303 -- this call, and it is in this body that the required intrinsic
3304 -- processing will take place).
3306 -- Also, if this is a renaming of inequality, the renamed operator
3307 -- is intrinsic, but what matters is the corresponding equality
3308 -- operator, which may be user-defined.
3310 Set_Is_Intrinsic_Subprogram
3312 Is_Intrinsic_Subprogram
(Old_S
)
3314 (Chars
(Old_S
) /= Name_Op_Ne
3315 or else Ekind
(Old_S
) = E_Operator
3316 or else Is_Intrinsic_Subprogram
3317 (Corresponding_Equality
(Old_S
))));
3319 if Ekind
(Alias
(New_S
)) = E_Operator
then
3320 Set_Has_Delayed_Freeze
(New_S
, False);
3323 -- If the renaming corresponds to an association for an abstract
3324 -- formal subprogram, then various attributes must be set to
3325 -- indicate that the renaming is an abstract dispatching operation
3326 -- with a controlling type.
3328 if Is_Actual
and then Is_Abstract_Subprogram
(Formal_Spec
) then
3330 -- Mark the renaming as abstract here, so Find_Dispatching_Type
3331 -- see it as corresponding to a generic association for a
3332 -- formal abstract subprogram
3334 Set_Is_Abstract_Subprogram
(New_S
);
3337 New_S_Ctrl_Type
: constant Entity_Id
:=
3338 Find_Dispatching_Type
(New_S
);
3339 Old_S_Ctrl_Type
: constant Entity_Id
:=
3340 Find_Dispatching_Type
(Old_S
);
3344 -- The actual must match the (instance of the) formal,
3345 -- and must be a controlling type.
3347 if Old_S_Ctrl_Type
/= New_S_Ctrl_Type
3348 or else No
(New_S_Ctrl_Type
)
3351 ("actual must be dispatching subprogram for type&",
3352 Nam
, New_S_Ctrl_Type
);
3355 Set_Is_Dispatching_Operation
(New_S
);
3356 Check_Controlling_Formals
(New_S_Ctrl_Type
, New_S
);
3358 -- If the actual in the formal subprogram is itself a
3359 -- formal abstract subprogram association, there's no
3360 -- dispatch table component or position to inherit.
3362 if Present
(DTC_Entity
(Old_S
)) then
3363 Set_DTC_Entity
(New_S
, DTC_Entity
(Old_S
));
3364 Set_DT_Position_Value
(New_S
, DT_Position
(Old_S
));
3374 -- The following is illegal, because F hides whatever other F may
3376 -- function F (...) renames F;
3379 or else (Nkind
(Nam
) /= N_Expanded_Name
3380 and then Chars
(Old_S
) = Chars
(New_S
))
3382 Error_Msg_N
("subprogram cannot rename itself", N
);
3384 -- This is illegal even if we use a selector:
3385 -- function F (...) renames Pkg.F;
3386 -- because F is still hidden.
3388 elsif Nkind
(Nam
) = N_Expanded_Name
3389 and then Entity
(Prefix
(Nam
)) = Current_Scope
3390 and then Chars
(Selector_Name
(Nam
)) = Chars
(New_S
)
3392 -- This is an error, but we overlook the error and accept the
3393 -- renaming if the special Overriding_Renamings mode is in effect.
3395 if not Overriding_Renamings
then
3397 ("implicit operation& is not visible (RM 8.3 (15))",
3402 Set_Convention
(New_S
, Convention
(Old_S
));
3404 if Is_Abstract_Subprogram
(Old_S
) then
3405 if Present
(Rename_Spec
) then
3407 ("a renaming-as-body cannot rename an abstract subprogram",
3409 Set_Has_Completion
(Rename_Spec
);
3411 Set_Is_Abstract_Subprogram
(New_S
);
3415 Check_Library_Unit_Renaming
(N
, Old_S
);
3417 -- Pathological case: procedure renames entry in the scope of its
3418 -- task. Entry is given by simple name, but body must be built for
3419 -- procedure. Of course if called it will deadlock.
3421 if Ekind
(Old_S
) = E_Entry
then
3422 Set_Has_Completion
(New_S
, False);
3423 Set_Alias
(New_S
, Empty
);
3426 -- Do not freeze the renaming nor the renamed entity when the context
3427 -- is an enclosing generic. Freezing is an expansion activity, and in
3428 -- addition the renamed entity may depend on the generic formals of
3429 -- the enclosing generic.
3431 if Is_Actual
and not Inside_A_Generic
then
3432 Freeze_Before
(N
, Old_S
);
3433 Freeze_Actual_Profile
;
3434 Set_Has_Delayed_Freeze
(New_S
, False);
3435 Freeze_Before
(N
, New_S
);
3437 -- An abstract subprogram is only allowed as an actual in the case
3438 -- where the formal subprogram is also abstract.
3440 if (Ekind
(Old_S
) = E_Procedure
or else Ekind
(Old_S
) = E_Function
)
3441 and then Is_Abstract_Subprogram
(Old_S
)
3442 and then not Is_Abstract_Subprogram
(Formal_Spec
)
3445 ("abstract subprogram not allowed as generic actual", Nam
);
3450 -- A common error is to assume that implicit operators for types are
3451 -- defined in Standard, or in the scope of a subtype. In those cases
3452 -- where the renamed entity is given with an expanded name, it is
3453 -- worth mentioning that operators for the type are not declared in
3454 -- the scope given by the prefix.
3456 if Nkind
(Nam
) = N_Expanded_Name
3457 and then Nkind
(Selector_Name
(Nam
)) = N_Operator_Symbol
3458 and then Scope
(Entity
(Nam
)) = Standard_Standard
3461 T
: constant Entity_Id
:=
3462 Base_Type
(Etype
(First_Formal
(New_S
)));
3464 Error_Msg_Node_2
:= Prefix
(Nam
);
3466 ("operator for type& is not declared in&", Prefix
(Nam
), T
);
3471 ("no visible subprogram matches the specification for&",
3475 if Present
(Candidate_Renaming
) then
3482 F1
:= First_Formal
(Candidate_Renaming
);
3483 F2
:= First_Formal
(New_S
);
3484 T1
:= First_Subtype
(Etype
(F1
));
3485 while Present
(F1
) and then Present
(F2
) loop
3490 if Present
(F1
) and then Present
(Default_Value
(F1
)) then
3491 if Present
(Next_Formal
(F1
)) then
3493 ("\missing specification for & and other formals with "
3494 & "defaults", Spec
, F1
);
3496 Error_Msg_NE
("\missing specification for &", Spec
, F1
);
3500 if Nkind
(Nam
) = N_Operator_Symbol
3501 and then From_Default
(N
)
3503 Error_Msg_Node_2
:= T1
;
3505 ("default & on & is not directly visible", Nam
, Nam
);
3511 -- Ada 2005 AI 404: if the new subprogram is dispatching, verify that
3512 -- controlling access parameters are known non-null for the renamed
3513 -- subprogram. Test also applies to a subprogram instantiation that
3514 -- is dispatching. Test is skipped if some previous error was detected
3515 -- that set Old_S to Any_Id.
3517 if Ada_Version
>= Ada_2005
3518 and then Old_S
/= Any_Id
3519 and then not Is_Dispatching_Operation
(Old_S
)
3520 and then Is_Dispatching_Operation
(New_S
)
3527 Old_F
:= First_Formal
(Old_S
);
3528 New_F
:= First_Formal
(New_S
);
3529 while Present
(Old_F
) loop
3530 if Ekind
(Etype
(Old_F
)) = E_Anonymous_Access_Type
3531 and then Is_Controlling_Formal
(New_F
)
3532 and then not Can_Never_Be_Null
(Old_F
)
3534 Error_Msg_N
("access parameter is controlling,", New_F
);
3536 ("\corresponding parameter of& must be explicitly null "
3537 & "excluding", New_F
, Old_S
);
3540 Next_Formal
(Old_F
);
3541 Next_Formal
(New_F
);
3546 -- A useful warning, suggested by Ada Bug Finder (Ada-Europe 2005)
3547 -- is to warn if an operator is being renamed as a different operator.
3548 -- If the operator is predefined, examine the kind of the entity, not
3549 -- the abbreviated declaration in Standard.
3551 if Comes_From_Source
(N
)
3552 and then Present
(Old_S
)
3553 and then (Nkind
(Old_S
) = N_Defining_Operator_Symbol
3554 or else Ekind
(Old_S
) = E_Operator
)
3555 and then Nkind
(New_S
) = N_Defining_Operator_Symbol
3556 and then Chars
(Old_S
) /= Chars
(New_S
)
3559 ("& is being renamed as a different operator??", N
, Old_S
);
3562 -- Check for renaming of obsolescent subprogram
3564 Check_Obsolescent_2005_Entity
(Entity
(Nam
), Nam
);
3566 -- Another warning or some utility: if the new subprogram as the same
3567 -- name as the old one, the old one is not hidden by an outer homograph,
3568 -- the new one is not a public symbol, and the old one is otherwise
3569 -- directly visible, the renaming is superfluous.
3571 if Chars
(Old_S
) = Chars
(New_S
)
3572 and then Comes_From_Source
(N
)
3573 and then Scope
(Old_S
) /= Standard_Standard
3574 and then Warn_On_Redundant_Constructs
3575 and then (Is_Immediately_Visible
(Old_S
)
3576 or else Is_Potentially_Use_Visible
(Old_S
))
3577 and then Is_Overloadable
(Current_Scope
)
3578 and then Chars
(Current_Scope
) /= Chars
(Old_S
)
3581 ("redundant renaming, entity is directly visible?r?", Name
(N
));
3584 -- Implementation-defined aspect specifications can appear in a renaming
3585 -- declaration, but not language-defined ones. The call to procedure
3586 -- Analyze_Aspect_Specifications will take care of this error check.
3588 if Has_Aspects
(N
) then
3589 Analyze_Aspect_Specifications
(N
, New_S
);
3592 Ada_Version
:= Save_AV
;
3593 Ada_Version_Pragma
:= Save_AVP
;
3594 Ada_Version_Explicit
:= Save_AV_Exp
;
3596 -- In GNATprove mode, the renamings of actual subprograms are replaced
3597 -- with wrapper functions that make it easier to propagate axioms to the
3598 -- points of call within an instance. Wrappers are generated if formal
3599 -- subprogram is subject to axiomatization.
3601 -- The types in the wrapper profiles are obtained from (instances of)
3602 -- the types of the formal subprogram.
3605 and then GNATprove_Mode
3606 and then Present
(Containing_Package_With_Ext_Axioms
(Formal_Spec
))
3607 and then not Inside_A_Generic
3609 if Ekind
(Old_S
) = E_Function
then
3610 Rewrite
(N
, Build_Function_Wrapper
(Formal_Spec
, Old_S
));
3613 elsif Ekind
(Old_S
) = E_Operator
then
3614 Rewrite
(N
, Build_Operator_Wrapper
(Formal_Spec
, Old_S
));
3618 end Analyze_Subprogram_Renaming
;
3620 -------------------------
3621 -- Analyze_Use_Package --
3622 -------------------------
3624 -- Resolve the package names in the use clause, and make all the visible
3625 -- entities defined in the package potentially use-visible. If the package
3626 -- is already in use from a previous use clause, its visible entities are
3627 -- already use-visible. In that case, mark the occurrence as a redundant
3628 -- use. If the package is an open scope, i.e. if the use clause occurs
3629 -- within the package itself, ignore it.
3631 procedure Analyze_Use_Package
(N
: Node_Id
) is
3632 Ghost_Id
: Entity_Id
:= Empty
;
3633 Living_Id
: Entity_Id
:= Empty
;
3635 Pack_Name
: Node_Id
;
3638 Check_SPARK_05_Restriction
("use clause is not allowed", N
);
3640 Set_Hidden_By_Use_Clause
(N
, No_Elist
);
3642 -- Use clause not allowed in a spec of a predefined package declaration
3643 -- except that packages whose file name starts a-n are OK (these are
3644 -- children of Ada.Numerics, which are never loaded by Rtsfind).
3646 if Is_Predefined_Unit
(Current_Sem_Unit
)
3647 and then Get_Name_String
3648 (Unit_File_Name
(Current_Sem_Unit
)) (1 .. 3) /= "a-n"
3649 and then Nkind
(Unit
(Cunit
(Current_Sem_Unit
))) =
3650 N_Package_Declaration
3652 Error_Msg_N
("use clause not allowed in predefined spec", N
);
3655 -- Chain clause to list of use clauses in current scope
3657 if Nkind
(Parent
(N
)) /= N_Compilation_Unit
then
3658 Chain_Use_Clause
(N
);
3661 -- Loop through package names to identify referenced packages
3663 Pack_Name
:= First
(Names
(N
));
3664 while Present
(Pack_Name
) loop
3665 Analyze
(Pack_Name
);
3667 if Nkind
(Parent
(N
)) = N_Compilation_Unit
3668 and then Nkind
(Pack_Name
) = N_Expanded_Name
3674 Pref
:= Prefix
(Pack_Name
);
3675 while Nkind
(Pref
) = N_Expanded_Name
loop
3676 Pref
:= Prefix
(Pref
);
3679 if Entity
(Pref
) = Standard_Standard
then
3681 ("predefined package Standard cannot appear in a context "
3690 -- Loop through package names to mark all entities as potentially use
3693 Pack_Name
:= First
(Names
(N
));
3694 while Present
(Pack_Name
) loop
3695 if Is_Entity_Name
(Pack_Name
) then
3696 Pack
:= Entity
(Pack_Name
);
3698 if Ekind
(Pack
) /= E_Package
and then Etype
(Pack
) /= Any_Type
then
3699 if Ekind
(Pack
) = E_Generic_Package
then
3700 Error_Msg_N
-- CODEFIX
3701 ("a generic package is not allowed in a use clause",
3704 elsif Ekind_In
(Pack
, E_Generic_Function
, E_Generic_Package
)
3706 Error_Msg_N
-- CODEFIX
3707 ("a generic subprogram is not allowed in a use clause",
3710 elsif Ekind_In
(Pack
, E_Function
, E_Procedure
, E_Operator
) then
3711 Error_Msg_N
-- CODEFIX
3712 ("a subprogram is not allowed in a use clause",
3716 Error_Msg_N
("& is not allowed in a use clause", Pack_Name
);
3720 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
3721 Check_In_Previous_With_Clause
(N
, Pack_Name
);
3724 if Applicable_Use
(Pack_Name
) then
3725 Use_One_Package
(Pack
, N
);
3728 -- Capture the first Ghost package and the first living package
3730 if Is_Entity_Name
(Pack_Name
) then
3731 Pack
:= Entity
(Pack_Name
);
3733 if Is_Ghost_Entity
(Pack
) then
3734 if No
(Ghost_Id
) then
3738 elsif No
(Living_Id
) then
3744 -- Report error because name denotes something other than a package
3747 Error_Msg_N
("& is not a package", Pack_Name
);
3753 -- Detect a mixture of Ghost packages and living packages within the
3754 -- same use package clause. Ideally one would split a use package clause
3755 -- with multiple names into multiple use package clauses with a single
3756 -- name, however clients of the front end would have to adapt to this
3759 if Present
(Ghost_Id
) and then Present
(Living_Id
) then
3761 ("use clause cannot mention ghost and non-ghost ghost units", N
);
3763 Error_Msg_Sloc
:= Sloc
(Ghost_Id
);
3764 Error_Msg_NE
("\& # declared as ghost", N
, Ghost_Id
);
3766 Error_Msg_Sloc
:= Sloc
(Living_Id
);
3767 Error_Msg_NE
("\& # declared as non-ghost", N
, Living_Id
);
3770 Mark_Ghost_Clause
(N
);
3771 end Analyze_Use_Package
;
3773 ----------------------
3774 -- Analyze_Use_Type --
3775 ----------------------
3777 procedure Analyze_Use_Type
(N
: Node_Id
) is
3779 Ghost_Id
: Entity_Id
:= Empty
;
3781 Living_Id
: Entity_Id
:= Empty
;
3784 Set_Hidden_By_Use_Clause
(N
, No_Elist
);
3786 -- Chain clause to list of use clauses in current scope
3788 if Nkind
(Parent
(N
)) /= N_Compilation_Unit
then
3789 Chain_Use_Clause
(N
);
3792 -- If the Used_Operations list is already initialized, the clause has
3793 -- been analyzed previously, and it is being reinstalled, for example
3794 -- when the clause appears in a package spec and we are compiling the
3795 -- corresponding package body. In that case, make the entities on the
3796 -- existing list use_visible, and mark the corresponding types In_Use.
3798 if Present
(Used_Operations
(N
)) then
3804 Mark
:= First
(Subtype_Marks
(N
));
3805 while Present
(Mark
) loop
3806 Use_One_Type
(Mark
, Installed
=> True);
3810 Elmt
:= First_Elmt
(Used_Operations
(N
));
3811 while Present
(Elmt
) loop
3812 Set_Is_Potentially_Use_Visible
(Node
(Elmt
));
3820 -- Otherwise, create new list and attach to it the operations that are
3821 -- made use-visible by the clause.
3823 Set_Used_Operations
(N
, New_Elmt_List
);
3824 Id
:= First
(Subtype_Marks
(N
));
3825 while Present
(Id
) loop
3829 if E
/= Any_Type
then
3832 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
3833 if Nkind
(Id
) = N_Identifier
then
3834 Error_Msg_N
("type is not directly visible", Id
);
3836 elsif Is_Child_Unit
(Scope
(E
))
3837 and then Scope
(E
) /= System_Aux_Id
3839 Check_In_Previous_With_Clause
(N
, Prefix
(Id
));
3844 -- If the use_type_clause appears in a compilation unit context,
3845 -- check whether it comes from a unit that may appear in a
3846 -- limited_with_clause, for a better error message.
3848 if Nkind
(Parent
(N
)) = N_Compilation_Unit
3849 and then Nkind
(Id
) /= N_Identifier
3855 function Mentioned
(Nam
: Node_Id
) return Boolean;
3856 -- Check whether the prefix of expanded name for the type
3857 -- appears in the prefix of some limited_with_clause.
3863 function Mentioned
(Nam
: Node_Id
) return Boolean is
3865 return Nkind
(Name
(Item
)) = N_Selected_Component
3866 and then Chars
(Prefix
(Name
(Item
))) = Chars
(Nam
);
3870 Pref
:= Prefix
(Id
);
3871 Item
:= First
(Context_Items
(Parent
(N
)));
3872 while Present
(Item
) and then Item
/= N
loop
3873 if Nkind
(Item
) = N_With_Clause
3874 and then Limited_Present
(Item
)
3875 and then Mentioned
(Pref
)
3878 (Get_Msg_Id
, "premature usage of incomplete type");
3887 -- Capture the first Ghost type and the first living type
3889 if Is_Ghost_Entity
(E
) then
3890 if No
(Ghost_Id
) then
3894 elsif No
(Living_Id
) then
3901 -- Detect a mixture of Ghost types and living types within the same use
3902 -- type clause. Ideally one would split a use type clause with multiple
3903 -- marks into multiple use type clauses with a single mark, however
3904 -- clients of the front end will have to adapt to this change.
3906 if Present
(Ghost_Id
) and then Present
(Living_Id
) then
3908 ("use clause cannot mention ghost and non-ghost ghost types", N
);
3910 Error_Msg_Sloc
:= Sloc
(Ghost_Id
);
3911 Error_Msg_NE
("\& # declared as ghost", N
, Ghost_Id
);
3913 Error_Msg_Sloc
:= Sloc
(Living_Id
);
3914 Error_Msg_NE
("\& # declared as non-ghost", N
, Living_Id
);
3917 Mark_Ghost_Clause
(N
);
3918 end Analyze_Use_Type
;
3920 --------------------
3921 -- Applicable_Use --
3922 --------------------
3924 function Applicable_Use
(Pack_Name
: Node_Id
) return Boolean is
3925 Pack
: constant Entity_Id
:= Entity
(Pack_Name
);
3928 if In_Open_Scopes
(Pack
) then
3929 if Warn_On_Redundant_Constructs
and then Pack
= Current_Scope
then
3930 Error_Msg_NE
-- CODEFIX
3931 ("& is already use-visible within itself?r?", Pack_Name
, Pack
);
3936 elsif In_Use
(Pack
) then
3937 Note_Redundant_Use
(Pack_Name
);
3940 elsif Present
(Renamed_Object
(Pack
))
3941 and then In_Use
(Renamed_Object
(Pack
))
3943 Note_Redundant_Use
(Pack_Name
);
3951 ------------------------
3952 -- Attribute_Renaming --
3953 ------------------------
3955 procedure Attribute_Renaming
(N
: Node_Id
) is
3956 Loc
: constant Source_Ptr
:= Sloc
(N
);
3957 Nam
: constant Node_Id
:= Name
(N
);
3958 Spec
: constant Node_Id
:= Specification
(N
);
3959 New_S
: constant Entity_Id
:= Defining_Unit_Name
(Spec
);
3960 Aname
: constant Name_Id
:= Attribute_Name
(Nam
);
3962 Form_Num
: Nat
:= 0;
3963 Expr_List
: List_Id
:= No_List
;
3965 Attr_Node
: Node_Id
;
3966 Body_Node
: Node_Id
;
3967 Param_Spec
: Node_Id
;
3970 Generate_Definition
(New_S
);
3972 -- This procedure is called in the context of subprogram renaming, and
3973 -- thus the attribute must be one that is a subprogram. All of those
3974 -- have at least one formal parameter, with the exceptions of the GNAT
3975 -- attribute 'Img, which GNAT treats as renameable.
3977 if not Is_Non_Empty_List
(Parameter_Specifications
(Spec
)) then
3978 if Aname
/= Name_Img
then
3980 ("subprogram renaming an attribute must have formals", N
);
3985 Param_Spec
:= First
(Parameter_Specifications
(Spec
));
3986 while Present
(Param_Spec
) loop
3987 Form_Num
:= Form_Num
+ 1;
3989 if Nkind
(Parameter_Type
(Param_Spec
)) /= N_Access_Definition
then
3990 Find_Type
(Parameter_Type
(Param_Spec
));
3992 -- The profile of the new entity denotes the base type (s) of
3993 -- the types given in the specification. For access parameters
3994 -- there are no subtypes involved.
3996 Rewrite
(Parameter_Type
(Param_Spec
),
3998 (Base_Type
(Entity
(Parameter_Type
(Param_Spec
))), Loc
));
4001 if No
(Expr_List
) then
4002 Expr_List
:= New_List
;
4005 Append_To
(Expr_List
,
4006 Make_Identifier
(Loc
,
4007 Chars
=> Chars
(Defining_Identifier
(Param_Spec
))));
4009 -- The expressions in the attribute reference are not freeze
4010 -- points. Neither is the attribute as a whole, see below.
4012 Set_Must_Not_Freeze
(Last
(Expr_List
));
4017 -- Immediate error if too many formals. Other mismatches in number or
4018 -- types of parameters are detected when we analyze the body of the
4019 -- subprogram that we construct.
4021 if Form_Num
> 2 then
4022 Error_Msg_N
("too many formals for attribute", N
);
4024 -- Error if the attribute reference has expressions that look like
4025 -- formal parameters.
4027 elsif Present
(Expressions
(Nam
)) then
4028 Error_Msg_N
("illegal expressions in attribute reference", Nam
);
4031 Nam_In
(Aname
, Name_Compose
, Name_Exponent
, Name_Leading_Part
,
4032 Name_Pos
, Name_Round
, Name_Scaling
,
4035 if Nkind
(N
) = N_Subprogram_Renaming_Declaration
4036 and then Present
(Corresponding_Formal_Spec
(N
))
4039 ("generic actual cannot be attribute involving universal type",
4043 ("attribute involving a universal type cannot be renamed",
4048 -- Rewrite attribute node to have a list of expressions corresponding to
4049 -- the subprogram formals. A renaming declaration is not a freeze point,
4050 -- and the analysis of the attribute reference should not freeze the
4051 -- type of the prefix. We use the original node in the renaming so that
4052 -- its source location is preserved, and checks on stream attributes are
4053 -- properly applied.
4055 Attr_Node
:= Relocate_Node
(Nam
);
4056 Set_Expressions
(Attr_Node
, Expr_List
);
4058 Set_Must_Not_Freeze
(Attr_Node
);
4059 Set_Must_Not_Freeze
(Prefix
(Nam
));
4061 -- Case of renaming a function
4063 if Nkind
(Spec
) = N_Function_Specification
then
4064 if Is_Procedure_Attribute_Name
(Aname
) then
4065 Error_Msg_N
("attribute can only be renamed as procedure", Nam
);
4069 Find_Type
(Result_Definition
(Spec
));
4070 Rewrite
(Result_Definition
(Spec
),
4072 (Base_Type
(Entity
(Result_Definition
(Spec
))), Loc
));
4075 Make_Subprogram_Body
(Loc
,
4076 Specification
=> Spec
,
4077 Declarations
=> New_List
,
4078 Handled_Statement_Sequence
=>
4079 Make_Handled_Sequence_Of_Statements
(Loc
,
4080 Statements
=> New_List
(
4081 Make_Simple_Return_Statement
(Loc
,
4082 Expression
=> Attr_Node
))));
4084 -- Case of renaming a procedure
4087 if not Is_Procedure_Attribute_Name
(Aname
) then
4088 Error_Msg_N
("attribute can only be renamed as function", Nam
);
4093 Make_Subprogram_Body
(Loc
,
4094 Specification
=> Spec
,
4095 Declarations
=> New_List
,
4096 Handled_Statement_Sequence
=>
4097 Make_Handled_Sequence_Of_Statements
(Loc
,
4098 Statements
=> New_List
(Attr_Node
)));
4101 -- In case of tagged types we add the body of the generated function to
4102 -- the freezing actions of the type (because in the general case such
4103 -- type is still not frozen). We exclude from this processing generic
4104 -- formal subprograms found in instantiations.
4106 -- We must exclude restricted run-time libraries because
4107 -- entity AST_Handler is defined in package System.Aux_Dec which is not
4108 -- available in those platforms. Note that we cannot use the function
4109 -- Restricted_Profile (instead of Configurable_Run_Time_Mode) because
4110 -- the ZFP run-time library is not defined as a profile, and we do not
4111 -- want to deal with AST_Handler in ZFP mode.
4113 if not Configurable_Run_Time_Mode
4114 and then not Present
(Corresponding_Formal_Spec
(N
))
4115 and then Etype
(Nam
) /= RTE
(RE_AST_Handler
)
4118 P
: constant Node_Id
:= Prefix
(Nam
);
4121 -- The prefix of 'Img is an object that is evaluated for each call
4122 -- of the function that renames it.
4124 if Aname
= Name_Img
then
4125 Preanalyze_And_Resolve
(P
);
4127 -- For all other attribute renamings, the prefix is a subtype
4133 -- If the target type is not yet frozen, add the body to the
4134 -- actions to be elaborated at freeze time.
4136 if Is_Tagged_Type
(Etype
(P
))
4137 and then In_Open_Scopes
(Scope
(Etype
(P
)))
4139 Ensure_Freeze_Node
(Etype
(P
));
4140 Append_Freeze_Action
(Etype
(P
), Body_Node
);
4142 Rewrite
(N
, Body_Node
);
4144 Set_Etype
(New_S
, Base_Type
(Etype
(New_S
)));
4148 -- Generic formal subprograms or AST_Handler renaming
4151 Rewrite
(N
, Body_Node
);
4153 Set_Etype
(New_S
, Base_Type
(Etype
(New_S
)));
4156 if Is_Compilation_Unit
(New_S
) then
4158 ("a library unit can only rename another library unit", N
);
4161 -- We suppress elaboration warnings for the resulting entity, since
4162 -- clearly they are not needed, and more particularly, in the case
4163 -- of a generic formal subprogram, the resulting entity can appear
4164 -- after the instantiation itself, and thus look like a bogus case
4165 -- of access before elaboration.
4167 Set_Suppress_Elaboration_Warnings
(New_S
);
4169 end Attribute_Renaming
;
4171 ----------------------
4172 -- Chain_Use_Clause --
4173 ----------------------
4175 procedure Chain_Use_Clause
(N
: Node_Id
) is
4177 Level
: Int
:= Scope_Stack
.Last
;
4180 if not Is_Compilation_Unit
(Current_Scope
)
4181 or else not Is_Child_Unit
(Current_Scope
)
4183 null; -- Common case
4185 elsif Defining_Entity
(Parent
(N
)) = Current_Scope
then
4186 null; -- Common case for compilation unit
4189 -- If declaration appears in some other scope, it must be in some
4190 -- parent unit when compiling a child.
4192 Pack
:= Defining_Entity
(Parent
(N
));
4193 if not In_Open_Scopes
(Pack
) then
4194 null; -- default as well
4196 -- If the use clause appears in an ancestor and we are in the
4197 -- private part of the immediate parent, the use clauses are
4198 -- already installed.
4200 elsif Pack
/= Scope
(Current_Scope
)
4201 and then In_Private_Part
(Scope
(Current_Scope
))
4206 -- Find entry for parent unit in scope stack
4208 while Scope_Stack
.Table
(Level
).Entity
/= Pack
loop
4214 Set_Next_Use_Clause
(N
,
4215 Scope_Stack
.Table
(Level
).First_Use_Clause
);
4216 Scope_Stack
.Table
(Level
).First_Use_Clause
:= N
;
4217 end Chain_Use_Clause
;
4219 ---------------------------
4220 -- Check_Frozen_Renaming --
4221 ---------------------------
4223 procedure Check_Frozen_Renaming
(N
: Node_Id
; Subp
: Entity_Id
) is
4228 if Is_Frozen
(Subp
) and then not Has_Completion
(Subp
) then
4231 (Parent
(Declaration_Node
(Subp
)), Defining_Entity
(N
));
4233 if Is_Entity_Name
(Name
(N
)) then
4234 Old_S
:= Entity
(Name
(N
));
4236 if not Is_Frozen
(Old_S
)
4237 and then Operating_Mode
/= Check_Semantics
4239 Append_Freeze_Action
(Old_S
, B_Node
);
4241 Insert_After
(N
, B_Node
);
4245 if Is_Intrinsic_Subprogram
(Old_S
) and then not In_Instance
then
4247 ("subprogram used in renaming_as_body cannot be intrinsic",
4252 Insert_After
(N
, B_Node
);
4256 end Check_Frozen_Renaming
;
4258 -------------------------------
4259 -- Set_Entity_Or_Discriminal --
4260 -------------------------------
4262 procedure Set_Entity_Or_Discriminal
(N
: Node_Id
; E
: Entity_Id
) is
4266 -- If the entity is not a discriminant, or else expansion is disabled,
4267 -- simply set the entity.
4269 if not In_Spec_Expression
4270 or else Ekind
(E
) /= E_Discriminant
4271 or else Inside_A_Generic
4273 Set_Entity_With_Checks
(N
, E
);
4275 -- The replacement of a discriminant by the corresponding discriminal
4276 -- is not done for a task discriminant that appears in a default
4277 -- expression of an entry parameter. See Exp_Ch2.Expand_Discriminant
4278 -- for details on their handling.
4280 elsif Is_Concurrent_Type
(Scope
(E
)) then
4283 and then not Nkind_In
(P
, N_Parameter_Specification
,
4284 N_Component_Declaration
)
4290 and then Nkind
(P
) = N_Parameter_Specification
4295 Set_Entity
(N
, Discriminal
(E
));
4298 -- Otherwise, this is a discriminant in a context in which
4299 -- it is a reference to the corresponding parameter of the
4300 -- init proc for the enclosing type.
4303 Set_Entity
(N
, Discriminal
(E
));
4305 end Set_Entity_Or_Discriminal
;
4307 -----------------------------------
4308 -- Check_In_Previous_With_Clause --
4309 -----------------------------------
4311 procedure Check_In_Previous_With_Clause
4315 Pack
: constant Entity_Id
:= Entity
(Original_Node
(Nam
));
4320 Item
:= First
(Context_Items
(Parent
(N
)));
4321 while Present
(Item
) and then Item
/= N
loop
4322 if Nkind
(Item
) = N_With_Clause
4324 -- Protect the frontend against previous critical errors
4326 and then Nkind
(Name
(Item
)) /= N_Selected_Component
4327 and then Entity
(Name
(Item
)) = Pack
4331 -- Find root library unit in with_clause
4333 while Nkind
(Par
) = N_Expanded_Name
loop
4334 Par
:= Prefix
(Par
);
4337 if Is_Child_Unit
(Entity
(Original_Node
(Par
))) then
4338 Error_Msg_NE
("& is not directly visible", Par
, Entity
(Par
));
4347 -- On exit, package is not mentioned in a previous with_clause.
4348 -- Check if its prefix is.
4350 if Nkind
(Nam
) = N_Expanded_Name
then
4351 Check_In_Previous_With_Clause
(N
, Prefix
(Nam
));
4353 elsif Pack
/= Any_Id
then
4354 Error_Msg_NE
("& is not visible", Nam
, Pack
);
4356 end Check_In_Previous_With_Clause
;
4358 ---------------------------------
4359 -- Check_Library_Unit_Renaming --
4360 ---------------------------------
4362 procedure Check_Library_Unit_Renaming
(N
: Node_Id
; Old_E
: Entity_Id
) is
4366 if Nkind
(Parent
(N
)) /= N_Compilation_Unit
then
4369 -- Check for library unit. Note that we used to check for the scope
4370 -- being Standard here, but that was wrong for Standard itself.
4372 elsif not Is_Compilation_Unit
(Old_E
)
4373 and then not Is_Child_Unit
(Old_E
)
4375 Error_Msg_N
("renamed unit must be a library unit", Name
(N
));
4377 -- Entities defined in Standard (operators and boolean literals) cannot
4378 -- be renamed as library units.
4380 elsif Scope
(Old_E
) = Standard_Standard
4381 and then Sloc
(Old_E
) = Standard_Location
4383 Error_Msg_N
("renamed unit must be a library unit", Name
(N
));
4385 elsif Present
(Parent_Spec
(N
))
4386 and then Nkind
(Unit
(Parent_Spec
(N
))) = N_Generic_Package_Declaration
4387 and then not Is_Child_Unit
(Old_E
)
4390 ("renamed unit must be a child unit of generic parent", Name
(N
));
4392 elsif Nkind
(N
) in N_Generic_Renaming_Declaration
4393 and then Nkind
(Name
(N
)) = N_Expanded_Name
4394 and then Is_Generic_Instance
(Entity
(Prefix
(Name
(N
))))
4395 and then Is_Generic_Unit
(Old_E
)
4398 ("renamed generic unit must be a library unit", Name
(N
));
4400 elsif Is_Package_Or_Generic_Package
(Old_E
) then
4402 -- Inherit categorization flags
4404 New_E
:= Defining_Entity
(N
);
4405 Set_Is_Pure
(New_E
, Is_Pure
(Old_E
));
4406 Set_Is_Preelaborated
(New_E
, Is_Preelaborated
(Old_E
));
4407 Set_Is_Remote_Call_Interface
(New_E
,
4408 Is_Remote_Call_Interface
(Old_E
));
4409 Set_Is_Remote_Types
(New_E
, Is_Remote_Types
(Old_E
));
4410 Set_Is_Shared_Passive
(New_E
, Is_Shared_Passive
(Old_E
));
4412 end Check_Library_Unit_Renaming
;
4414 ------------------------
4415 -- Enclosing_Instance --
4416 ------------------------
4418 function Enclosing_Instance
return Entity_Id
is
4422 if not Is_Generic_Instance
(Current_Scope
) then
4426 S
:= Scope
(Current_Scope
);
4427 while S
/= Standard_Standard
loop
4428 if Is_Generic_Instance
(S
) then
4436 end Enclosing_Instance
;
4442 procedure End_Scope
is
4448 Id
:= First_Entity
(Current_Scope
);
4449 while Present
(Id
) loop
4450 -- An entity in the current scope is not necessarily the first one
4451 -- on its homonym chain. Find its predecessor if any,
4452 -- If it is an internal entity, it will not be in the visibility
4453 -- chain altogether, and there is nothing to unchain.
4455 if Id
/= Current_Entity
(Id
) then
4456 Prev
:= Current_Entity
(Id
);
4457 while Present
(Prev
)
4458 and then Present
(Homonym
(Prev
))
4459 and then Homonym
(Prev
) /= Id
4461 Prev
:= Homonym
(Prev
);
4464 -- Skip to end of loop if Id is not in the visibility chain
4466 if No
(Prev
) or else Homonym
(Prev
) /= Id
then
4474 Set_Is_Immediately_Visible
(Id
, False);
4476 Outer
:= Homonym
(Id
);
4477 while Present
(Outer
) and then Scope
(Outer
) = Current_Scope
loop
4478 Outer
:= Homonym
(Outer
);
4481 -- Reset homonym link of other entities, but do not modify link
4482 -- between entities in current scope, so that the back-end can have
4483 -- a proper count of local overloadings.
4486 Set_Name_Entity_Id
(Chars
(Id
), Outer
);
4488 elsif Scope
(Prev
) /= Scope
(Id
) then
4489 Set_Homonym
(Prev
, Outer
);
4496 -- If the scope generated freeze actions, place them before the
4497 -- current declaration and analyze them. Type declarations and
4498 -- the bodies of initialization procedures can generate such nodes.
4499 -- We follow the parent chain until we reach a list node, which is
4500 -- the enclosing list of declarations. If the list appears within
4501 -- a protected definition, move freeze nodes outside the protected
4505 (Scope_Stack
.Table
(Scope_Stack
.Last
).Pending_Freeze_Actions
)
4509 L
: constant List_Id
:= Scope_Stack
.Table
4510 (Scope_Stack
.Last
).Pending_Freeze_Actions
;
4513 if Is_Itype
(Current_Scope
) then
4514 Decl
:= Associated_Node_For_Itype
(Current_Scope
);
4516 Decl
:= Parent
(Current_Scope
);
4521 while not (Is_List_Member
(Decl
))
4522 or else Nkind_In
(Parent
(Decl
), N_Protected_Definition
,
4525 Decl
:= Parent
(Decl
);
4528 Insert_List_Before_And_Analyze
(Decl
, L
);
4536 ---------------------
4537 -- End_Use_Clauses --
4538 ---------------------
4540 procedure End_Use_Clauses
(Clause
: Node_Id
) is
4544 -- Remove Use_Type clauses first, because they affect the
4545 -- visibility of operators in subsequent used packages.
4548 while Present
(U
) loop
4549 if Nkind
(U
) = N_Use_Type_Clause
then
4553 Next_Use_Clause
(U
);
4557 while Present
(U
) loop
4558 if Nkind
(U
) = N_Use_Package_Clause
then
4559 End_Use_Package
(U
);
4562 Next_Use_Clause
(U
);
4564 end End_Use_Clauses
;
4566 ---------------------
4567 -- End_Use_Package --
4568 ---------------------
4570 procedure End_Use_Package
(N
: Node_Id
) is
4571 Pack_Name
: Node_Id
;
4576 function Is_Primitive_Operator_In_Use
4578 F
: Entity_Id
) return Boolean;
4579 -- Check whether Op is a primitive operator of a use-visible type
4581 ----------------------------------
4582 -- Is_Primitive_Operator_In_Use --
4583 ----------------------------------
4585 function Is_Primitive_Operator_In_Use
4587 F
: Entity_Id
) return Boolean
4589 T
: constant Entity_Id
:= Base_Type
(Etype
(F
));
4591 return In_Use
(T
) and then Scope
(T
) = Scope
(Op
);
4592 end Is_Primitive_Operator_In_Use
;
4594 -- Start of processing for End_Use_Package
4597 Pack_Name
:= First
(Names
(N
));
4598 while Present
(Pack_Name
) loop
4600 -- Test that Pack_Name actually denotes a package before processing
4602 if Is_Entity_Name
(Pack_Name
)
4603 and then Ekind
(Entity
(Pack_Name
)) = E_Package
4605 Pack
:= Entity
(Pack_Name
);
4607 if In_Open_Scopes
(Pack
) then
4610 elsif not Redundant_Use
(Pack_Name
) then
4611 Set_In_Use
(Pack
, False);
4612 Set_Current_Use_Clause
(Pack
, Empty
);
4614 Id
:= First_Entity
(Pack
);
4615 while Present
(Id
) loop
4617 -- Preserve use-visibility of operators that are primitive
4618 -- operators of a type that is use-visible through an active
4621 if Nkind
(Id
) = N_Defining_Operator_Symbol
4623 (Is_Primitive_Operator_In_Use
(Id
, First_Formal
(Id
))
4625 (Present
(Next_Formal
(First_Formal
(Id
)))
4627 Is_Primitive_Operator_In_Use
4628 (Id
, Next_Formal
(First_Formal
(Id
)))))
4632 Set_Is_Potentially_Use_Visible
(Id
, False);
4635 if Is_Private_Type
(Id
)
4636 and then Present
(Full_View
(Id
))
4638 Set_Is_Potentially_Use_Visible
(Full_View
(Id
), False);
4644 if Present
(Renamed_Object
(Pack
)) then
4645 Set_In_Use
(Renamed_Object
(Pack
), False);
4646 Set_Current_Use_Clause
(Renamed_Object
(Pack
), Empty
);
4649 if Chars
(Pack
) = Name_System
4650 and then Scope
(Pack
) = Standard_Standard
4651 and then Present_System_Aux
4653 Id
:= First_Entity
(System_Aux_Id
);
4654 while Present
(Id
) loop
4655 Set_Is_Potentially_Use_Visible
(Id
, False);
4657 if Is_Private_Type
(Id
)
4658 and then Present
(Full_View
(Id
))
4660 Set_Is_Potentially_Use_Visible
(Full_View
(Id
), False);
4666 Set_In_Use
(System_Aux_Id
, False);
4670 Set_Redundant_Use
(Pack_Name
, False);
4677 if Present
(Hidden_By_Use_Clause
(N
)) then
4678 Elmt
:= First_Elmt
(Hidden_By_Use_Clause
(N
));
4679 while Present
(Elmt
) loop
4681 E
: constant Entity_Id
:= Node
(Elmt
);
4684 -- Reset either Use_Visibility or Direct_Visibility, depending
4685 -- on how the entity was hidden by the use clause.
4687 if In_Use
(Scope
(E
))
4688 and then Used_As_Generic_Actual
(Scope
(E
))
4690 Set_Is_Potentially_Use_Visible
(Node
(Elmt
));
4692 Set_Is_Immediately_Visible
(Node
(Elmt
));
4699 Set_Hidden_By_Use_Clause
(N
, No_Elist
);
4701 end End_Use_Package
;
4707 procedure End_Use_Type
(N
: Node_Id
) is
4712 -- Start of processing for End_Use_Type
4715 Id
:= First
(Subtype_Marks
(N
));
4716 while Present
(Id
) loop
4718 -- A call to Rtsfind may occur while analyzing a use_type clause,
4719 -- in which case the type marks are not resolved yet, and there is
4720 -- nothing to remove.
4722 if not Is_Entity_Name
(Id
) or else No
(Entity
(Id
)) then
4728 if T
= Any_Type
or else From_Limited_With
(T
) then
4731 -- Note that the use_type clause may mention a subtype of the type
4732 -- whose primitive operations have been made visible. Here as
4733 -- elsewhere, it is the base type that matters for visibility.
4735 elsif In_Open_Scopes
(Scope
(Base_Type
(T
))) then
4738 elsif not Redundant_Use
(Id
) then
4739 Set_In_Use
(T
, False);
4740 Set_In_Use
(Base_Type
(T
), False);
4741 Set_Current_Use_Clause
(T
, Empty
);
4742 Set_Current_Use_Clause
(Base_Type
(T
), Empty
);
4749 if Is_Empty_Elmt_List
(Used_Operations
(N
)) then
4753 Elmt
:= First_Elmt
(Used_Operations
(N
));
4754 while Present
(Elmt
) loop
4755 Set_Is_Potentially_Use_Visible
(Node
(Elmt
), False);
4761 ----------------------
4762 -- Find_Direct_Name --
4763 ----------------------
4765 procedure Find_Direct_Name
(N
: Node_Id
) is
4770 Homonyms
: Entity_Id
;
4771 -- Saves start of homonym chain
4773 Inst
: Entity_Id
:= Empty
;
4774 -- Enclosing instance, if any
4776 Nvis_Entity
: Boolean;
4777 -- Set True to indicate that there is at least one entity on the homonym
4778 -- chain which, while not visible, is visible enough from the user point
4779 -- of view to warrant an error message of "not visible" rather than
4782 Nvis_Is_Private_Subprg
: Boolean := False;
4783 -- Ada 2005 (AI-262): Set True to indicate that a form of Beaujolais
4784 -- effect concerning library subprograms has been detected. Used to
4785 -- generate the precise error message.
4787 function From_Actual_Package
(E
: Entity_Id
) return Boolean;
4788 -- Returns true if the entity is an actual for a package that is itself
4789 -- an actual for a formal package of the current instance. Such an
4790 -- entity requires special handling because it may be use-visible but
4791 -- hides directly visible entities defined outside the instance, because
4792 -- the corresponding formal did so in the generic.
4794 function Is_Actual_Parameter
return Boolean;
4795 -- This function checks if the node N is an identifier that is an actual
4796 -- parameter of a procedure call. If so it returns True, otherwise it
4797 -- return False. The reason for this check is that at this stage we do
4798 -- not know what procedure is being called if the procedure might be
4799 -- overloaded, so it is premature to go setting referenced flags or
4800 -- making calls to Generate_Reference. We will wait till Resolve_Actuals
4801 -- for that processing
4803 function Known_But_Invisible
(E
: Entity_Id
) return Boolean;
4804 -- This function determines whether a reference to the entity E, which
4805 -- is not visible, can reasonably be considered to be known to the
4806 -- writer of the reference. This is a heuristic test, used only for
4807 -- the purposes of figuring out whether we prefer to complain that an
4808 -- entity is undefined or invisible (and identify the declaration of
4809 -- the invisible entity in the latter case). The point here is that we
4810 -- don't want to complain that something is invisible and then point to
4811 -- something entirely mysterious to the writer.
4813 procedure Nvis_Messages
;
4814 -- Called if there are no visible entries for N, but there is at least
4815 -- one non-directly visible, or hidden declaration. This procedure
4816 -- outputs an appropriate set of error messages.
4818 procedure Undefined
(Nvis
: Boolean);
4819 -- This function is called if the current node has no corresponding
4820 -- visible entity or entities. The value set in Msg indicates whether
4821 -- an error message was generated (multiple error messages for the
4822 -- same variable are generally suppressed, see body for details).
4823 -- Msg is True if an error message was generated, False if not. This
4824 -- value is used by the caller to determine whether or not to output
4825 -- additional messages where appropriate. The parameter is set False
4826 -- to get the message "X is undefined", and True to get the message
4827 -- "X is not visible".
4829 -------------------------
4830 -- From_Actual_Package --
4831 -------------------------
4833 function From_Actual_Package
(E
: Entity_Id
) return Boolean is
4834 Scop
: constant Entity_Id
:= Scope
(E
);
4835 -- Declared scope of candidate entity
4837 function Declared_In_Actual
(Pack
: Entity_Id
) return Boolean;
4838 -- Recursive function that does the work and examines actuals of
4839 -- actual packages of current instance.
4841 ------------------------
4842 -- Declared_In_Actual --
4843 ------------------------
4845 function Declared_In_Actual
(Pack
: Entity_Id
) return Boolean is
4849 if No
(Associated_Formal_Package
(Pack
)) then
4853 Act
:= First_Entity
(Pack
);
4854 while Present
(Act
) loop
4855 if Renamed_Object
(Pack
) = Scop
then
4858 -- Check for end of list of actuals
4860 elsif Ekind
(Act
) = E_Package
4861 and then Renamed_Object
(Act
) = Pack
4865 elsif Ekind
(Act
) = E_Package
4866 and then Declared_In_Actual
(Act
)
4876 end Declared_In_Actual
;
4882 -- Start of processing for From_Actual_Package
4885 if not In_Instance
then
4889 Inst
:= Current_Scope
;
4890 while Present
(Inst
)
4891 and then Ekind
(Inst
) /= E_Package
4892 and then not Is_Generic_Instance
(Inst
)
4894 Inst
:= Scope
(Inst
);
4901 Act
:= First_Entity
(Inst
);
4902 while Present
(Act
) loop
4903 if Ekind
(Act
) = E_Package
4904 and then Declared_In_Actual
(Act
)
4914 end From_Actual_Package
;
4916 -------------------------
4917 -- Is_Actual_Parameter --
4918 -------------------------
4920 function Is_Actual_Parameter
return Boolean is
4923 Nkind
(N
) = N_Identifier
4925 (Nkind
(Parent
(N
)) = N_Procedure_Call_Statement
4927 (Nkind
(Parent
(N
)) = N_Parameter_Association
4928 and then N
= Explicit_Actual_Parameter
(Parent
(N
))
4929 and then Nkind
(Parent
(Parent
(N
))) =
4930 N_Procedure_Call_Statement
));
4931 end Is_Actual_Parameter
;
4933 -------------------------
4934 -- Known_But_Invisible --
4935 -------------------------
4937 function Known_But_Invisible
(E
: Entity_Id
) return Boolean is
4938 Fname
: File_Name_Type
;
4941 -- Entities in Standard are always considered to be known
4943 if Sloc
(E
) <= Standard_Location
then
4946 -- An entity that does not come from source is always considered
4947 -- to be unknown, since it is an artifact of code expansion.
4949 elsif not Comes_From_Source
(E
) then
4952 -- In gnat internal mode, we consider all entities known. The
4953 -- historical reason behind this discrepancy is not known??? But the
4954 -- only effect is to modify the error message given, so it is not
4955 -- critical. Since it only affects the exact wording of error
4956 -- messages in illegal programs, we do not mention this as an
4957 -- effect of -gnatg, since it is not a language modification.
4959 elsif GNAT_Mode
then
4963 -- Here we have an entity that is not from package Standard, and
4964 -- which comes from Source. See if it comes from an internal file.
4966 Fname
:= Unit_File_Name
(Get_Source_Unit
(E
));
4968 -- Case of from internal file
4970 if In_Internal_Unit
(E
) then
4972 -- Private part entities in internal files are never considered
4973 -- to be known to the writer of normal application code.
4975 if Is_Hidden
(E
) then
4979 -- Entities from System packages other than System and
4980 -- System.Storage_Elements are not considered to be known.
4981 -- System.Auxxxx files are also considered known to the user.
4983 -- Should refine this at some point to generally distinguish
4984 -- between known and unknown internal files ???
4986 Get_Name_String
(Fname
);
4991 Name_Buffer
(1 .. 2) /= "s-"
4993 Name_Buffer
(3 .. 8) = "stoele"
4995 Name_Buffer
(3 .. 5) = "aux";
4997 -- If not an internal file, then entity is definitely known, even if
4998 -- it is in a private part (the message generated will note that it
4999 -- is in a private part).
5004 end Known_But_Invisible
;
5010 procedure Nvis_Messages
is
5011 Comp_Unit
: Node_Id
;
5013 Found
: Boolean := False;
5014 Hidden
: Boolean := False;
5018 -- Ada 2005 (AI-262): Generate a precise error concerning the
5019 -- Beaujolais effect that was previously detected
5021 if Nvis_Is_Private_Subprg
then
5023 pragma Assert
(Nkind
(E2
) = N_Defining_Identifier
5024 and then Ekind
(E2
) = E_Function
5025 and then Scope
(E2
) = Standard_Standard
5026 and then Has_Private_With
(E2
));
5028 -- Find the sloc corresponding to the private with'ed unit
5030 Comp_Unit
:= Cunit
(Current_Sem_Unit
);
5031 Error_Msg_Sloc
:= No_Location
;
5033 Item
:= First
(Context_Items
(Comp_Unit
));
5034 while Present
(Item
) loop
5035 if Nkind
(Item
) = N_With_Clause
5036 and then Private_Present
(Item
)
5037 and then Entity
(Name
(Item
)) = E2
5039 Error_Msg_Sloc
:= Sloc
(Item
);
5046 pragma Assert
(Error_Msg_Sloc
/= No_Location
);
5048 Error_Msg_N
("(Ada 2005): hidden by private with clause #", N
);
5052 Undefined
(Nvis
=> True);
5056 -- First loop does hidden declarations
5059 while Present
(Ent
) loop
5060 if Is_Potentially_Use_Visible
(Ent
) then
5062 Error_Msg_N
-- CODEFIX
5063 ("multiple use clauses cause hiding!", N
);
5067 Error_Msg_Sloc
:= Sloc
(Ent
);
5068 Error_Msg_N
-- CODEFIX
5069 ("hidden declaration#!", N
);
5072 Ent
:= Homonym
(Ent
);
5075 -- If we found hidden declarations, then that's enough, don't
5076 -- bother looking for non-visible declarations as well.
5082 -- Second loop does non-directly visible declarations
5085 while Present
(Ent
) loop
5086 if not Is_Potentially_Use_Visible
(Ent
) then
5088 -- Do not bother the user with unknown entities
5090 if not Known_But_Invisible
(Ent
) then
5094 Error_Msg_Sloc
:= Sloc
(Ent
);
5096 -- Output message noting that there is a non-visible
5097 -- declaration, distinguishing the private part case.
5099 if Is_Hidden
(Ent
) then
5100 Error_Msg_N
("non-visible (private) declaration#!", N
);
5102 -- If the entity is declared in a generic package, it
5103 -- cannot be visible, so there is no point in adding it
5104 -- to the list of candidates if another homograph from a
5105 -- non-generic package has been seen.
5107 elsif Ekind
(Scope
(Ent
)) = E_Generic_Package
5113 Error_Msg_N
-- CODEFIX
5114 ("non-visible declaration#!", N
);
5116 if Ekind
(Scope
(Ent
)) /= E_Generic_Package
then
5120 if Is_Compilation_Unit
(Ent
)
5122 Nkind
(Parent
(Parent
(N
))) = N_Use_Package_Clause
5124 Error_Msg_Qual_Level
:= 99;
5125 Error_Msg_NE
-- CODEFIX
5126 ("\\missing `WITH &;`", N
, Ent
);
5127 Error_Msg_Qual_Level
:= 0;
5130 if Ekind
(Ent
) = E_Discriminant
5131 and then Present
(Corresponding_Discriminant
(Ent
))
5132 and then Scope
(Corresponding_Discriminant
(Ent
)) =
5136 ("inherited discriminant not allowed here" &
5137 " (RM 3.8 (12), 3.8.1 (6))!", N
);
5141 -- Set entity and its containing package as referenced. We
5142 -- can't be sure of this, but this seems a better choice
5143 -- to avoid unused entity messages.
5145 if Comes_From_Source
(Ent
) then
5146 Set_Referenced
(Ent
);
5147 Set_Referenced
(Cunit_Entity
(Get_Source_Unit
(Ent
)));
5152 Ent
:= Homonym
(Ent
);
5161 procedure Undefined
(Nvis
: Boolean) is
5162 Emsg
: Error_Msg_Id
;
5165 -- We should never find an undefined internal name. If we do, then
5166 -- see if we have previous errors. If so, ignore on the grounds that
5167 -- it is probably a cascaded message (e.g. a block label from a badly
5168 -- formed block). If no previous errors, then we have a real internal
5169 -- error of some kind so raise an exception.
5171 if Is_Internal_Name
(Chars
(N
)) then
5172 if Total_Errors_Detected
/= 0 then
5175 raise Program_Error
;
5179 -- A very specialized error check, if the undefined variable is
5180 -- a case tag, and the case type is an enumeration type, check
5181 -- for a possible misspelling, and if so, modify the identifier
5183 -- Named aggregate should also be handled similarly ???
5185 if Nkind
(N
) = N_Identifier
5186 and then Nkind
(Parent
(N
)) = N_Case_Statement_Alternative
5189 Case_Stm
: constant Node_Id
:= Parent
(Parent
(N
));
5190 Case_Typ
: constant Entity_Id
:= Etype
(Expression
(Case_Stm
));
5195 if Is_Enumeration_Type
(Case_Typ
)
5196 and then not Is_Standard_Character_Type
(Case_Typ
)
5198 Lit
:= First_Literal
(Case_Typ
);
5199 Get_Name_String
(Chars
(Lit
));
5201 if Chars
(Lit
) /= Chars
(N
)
5202 and then Is_Bad_Spelling_Of
(Chars
(N
), Chars
(Lit
))
5204 Error_Msg_Node_2
:= Lit
;
5205 Error_Msg_N
-- CODEFIX
5206 ("& is undefined, assume misspelling of &", N
);
5207 Rewrite
(N
, New_Occurrence_Of
(Lit
, Sloc
(N
)));
5211 Lit
:= Next_Literal
(Lit
);
5216 -- Normal processing
5218 Set_Entity
(N
, Any_Id
);
5219 Set_Etype
(N
, Any_Type
);
5221 -- We use the table Urefs to keep track of entities for which we
5222 -- have issued errors for undefined references. Multiple errors
5223 -- for a single name are normally suppressed, however we modify
5224 -- the error message to alert the programmer to this effect.
5226 for J
in Urefs
.First
.. Urefs
.Last
loop
5227 if Chars
(N
) = Chars
(Urefs
.Table
(J
).Node
) then
5228 if Urefs
.Table
(J
).Err
/= No_Error_Msg
5229 and then Sloc
(N
) /= Urefs
.Table
(J
).Loc
5231 Error_Msg_Node_1
:= Urefs
.Table
(J
).Node
;
5233 if Urefs
.Table
(J
).Nvis
then
5234 Change_Error_Text
(Urefs
.Table
(J
).Err
,
5235 "& is not visible (more references follow)");
5237 Change_Error_Text
(Urefs
.Table
(J
).Err
,
5238 "& is undefined (more references follow)");
5241 Urefs
.Table
(J
).Err
:= No_Error_Msg
;
5244 -- Although we will set Msg False, and thus suppress the
5245 -- message, we also set Error_Posted True, to avoid any
5246 -- cascaded messages resulting from the undefined reference.
5249 Set_Error_Posted
(N
, True);
5254 -- If entry not found, this is first undefined occurrence
5257 Error_Msg_N
("& is not visible!", N
);
5261 Error_Msg_N
("& is undefined!", N
);
5264 -- A very bizarre special check, if the undefined identifier
5265 -- is put or put_line, then add a special error message (since
5266 -- this is a very common error for beginners to make).
5268 if Nam_In
(Chars
(N
), Name_Put
, Name_Put_Line
) then
5269 Error_Msg_N
-- CODEFIX
5270 ("\\possible missing `WITH Ada.Text_'I'O; " &
5271 "USE Ada.Text_'I'O`!", N
);
5273 -- Another special check if N is the prefix of a selected
5274 -- component which is a known unit, add message complaining
5275 -- about missing with for this unit.
5277 elsif Nkind
(Parent
(N
)) = N_Selected_Component
5278 and then N
= Prefix
(Parent
(N
))
5279 and then Is_Known_Unit
(Parent
(N
))
5281 Error_Msg_Node_2
:= Selector_Name
(Parent
(N
));
5282 Error_Msg_N
-- CODEFIX
5283 ("\\missing `WITH &.&;`", Prefix
(Parent
(N
)));
5286 -- Now check for possible misspellings
5290 Ematch
: Entity_Id
:= Empty
;
5292 Last_Name_Id
: constant Name_Id
:=
5293 Name_Id
(Nat
(First_Name_Id
) +
5294 Name_Entries_Count
- 1);
5297 for Nam
in First_Name_Id
.. Last_Name_Id
loop
5298 E
:= Get_Name_Entity_Id
(Nam
);
5301 and then (Is_Immediately_Visible
(E
)
5303 Is_Potentially_Use_Visible
(E
))
5305 if Is_Bad_Spelling_Of
(Chars
(N
), Nam
) then
5312 if Present
(Ematch
) then
5313 Error_Msg_NE
-- CODEFIX
5314 ("\possible misspelling of&", N
, Ematch
);
5319 -- Make entry in undefined references table unless the full errors
5320 -- switch is set, in which case by refraining from generating the
5321 -- table entry, we guarantee that we get an error message for every
5322 -- undefined reference.
5324 if not All_Errors_Mode
then
5337 Nested_Inst
: Entity_Id
:= Empty
;
5338 -- The entity of a nested instance which appears within Inst (if any)
5340 -- Start of processing for Find_Direct_Name
5343 -- If the entity pointer is already set, this is an internal node, or
5344 -- a node that is analyzed more than once, after a tree modification.
5345 -- In such a case there is no resolution to perform, just set the type.
5347 if Present
(Entity
(N
)) then
5348 if Is_Type
(Entity
(N
)) then
5349 Set_Etype
(N
, Entity
(N
));
5353 Entyp
: constant Entity_Id
:= Etype
(Entity
(N
));
5356 -- One special case here. If the Etype field is already set,
5357 -- and references the packed array type corresponding to the
5358 -- etype of the referenced entity, then leave it alone. This
5359 -- happens for trees generated from Exp_Pakd, where expressions
5360 -- can be deliberately "mis-typed" to the packed array type.
5362 if Is_Array_Type
(Entyp
)
5363 and then Is_Packed
(Entyp
)
5364 and then Present
(Etype
(N
))
5365 and then Etype
(N
) = Packed_Array_Impl_Type
(Entyp
)
5369 -- If not that special case, then just reset the Etype
5372 Set_Etype
(N
, Etype
(Entity
(N
)));
5380 -- Here if Entity pointer was not set, we need full visibility analysis
5381 -- First we generate debugging output if the debug E flag is set.
5383 if Debug_Flag_E
then
5384 Write_Str
("Looking for ");
5385 Write_Name
(Chars
(N
));
5389 Homonyms
:= Current_Entity
(N
);
5390 Nvis_Entity
:= False;
5393 while Present
(E
) loop
5395 -- If entity is immediately visible or potentially use visible, then
5396 -- process the entity and we are done.
5398 if Is_Immediately_Visible
(E
) then
5399 goto Immediately_Visible_Entity
;
5401 elsif Is_Potentially_Use_Visible
(E
) then
5402 goto Potentially_Use_Visible_Entity
;
5404 -- Note if a known but invisible entity encountered
5406 elsif Known_But_Invisible
(E
) then
5407 Nvis_Entity
:= True;
5410 -- Move to next entity in chain and continue search
5415 -- If no entries on homonym chain that were potentially visible,
5416 -- and no entities reasonably considered as non-visible, then
5417 -- we have a plain undefined reference, with no additional
5418 -- explanation required.
5420 if not Nvis_Entity
then
5421 Undefined
(Nvis
=> False);
5423 -- Otherwise there is at least one entry on the homonym chain that
5424 -- is reasonably considered as being known and non-visible.
5432 -- Processing for a potentially use visible entry found. We must search
5433 -- the rest of the homonym chain for two reasons. First, if there is a
5434 -- directly visible entry, then none of the potentially use-visible
5435 -- entities are directly visible (RM 8.4(10)). Second, we need to check
5436 -- for the case of multiple potentially use-visible entries hiding one
5437 -- another and as a result being non-directly visible (RM 8.4(11)).
5439 <<Potentially_Use_Visible_Entity
>> declare
5440 Only_One_Visible
: Boolean := True;
5441 All_Overloadable
: Boolean := Is_Overloadable
(E
);
5445 while Present
(E2
) loop
5446 if Is_Immediately_Visible
(E2
) then
5448 -- If the use-visible entity comes from the actual for a
5449 -- formal package, it hides a directly visible entity from
5450 -- outside the instance.
5452 if From_Actual_Package
(E
)
5453 and then Scope_Depth
(E2
) < Scope_Depth
(Inst
)
5458 goto Immediately_Visible_Entity
;
5461 elsif Is_Potentially_Use_Visible
(E2
) then
5462 Only_One_Visible
:= False;
5463 All_Overloadable
:= All_Overloadable
and Is_Overloadable
(E2
);
5465 -- Ada 2005 (AI-262): Protect against a form of Beaujolais effect
5466 -- that can occur in private_with clauses. Example:
5469 -- private with B; package A is
5470 -- package C is function B return Integer;
5472 -- V1 : Integer := B;
5473 -- private function B return Integer;
5474 -- V2 : Integer := B;
5477 -- V1 resolves to A.B, but V2 resolves to library unit B
5479 elsif Ekind
(E2
) = E_Function
5480 and then Scope
(E2
) = Standard_Standard
5481 and then Has_Private_With
(E2
)
5483 Only_One_Visible
:= False;
5484 All_Overloadable
:= False;
5485 Nvis_Is_Private_Subprg
:= True;
5492 -- On falling through this loop, we have checked that there are no
5493 -- immediately visible entities. Only_One_Visible is set if exactly
5494 -- one potentially use visible entity exists. All_Overloadable is
5495 -- set if all the potentially use visible entities are overloadable.
5496 -- The condition for legality is that either there is one potentially
5497 -- use visible entity, or if there is more than one, then all of them
5498 -- are overloadable.
5500 if Only_One_Visible
or All_Overloadable
then
5503 -- If there is more than one potentially use-visible entity and at
5504 -- least one of them non-overloadable, we have an error (RM 8.4(11)).
5505 -- Note that E points to the first such entity on the homonym list.
5508 -- If one of the entities is declared in an actual package, it
5509 -- was visible in the generic, and takes precedence over other
5510 -- entities that are potentially use-visible. The same applies
5511 -- if the entity is declared in a local instantiation of the
5512 -- current instance.
5516 -- Find the current instance
5518 Inst
:= Current_Scope
;
5519 while Present
(Inst
) and then Inst
/= Standard_Standard
loop
5520 if Is_Generic_Instance
(Inst
) then
5524 Inst
:= Scope
(Inst
);
5527 -- Reexamine the candidate entities, giving priority to those
5528 -- that were visible within the generic.
5531 while Present
(E2
) loop
5532 Nested_Inst
:= Nearest_Enclosing_Instance
(E2
);
5534 -- The entity is declared within an actual package, or in a
5535 -- nested instance. The ">=" accounts for the case where the
5536 -- current instance and the nested instance are the same.
5538 if From_Actual_Package
(E2
)
5539 or else (Present
(Nested_Inst
)
5540 and then Scope_Depth
(Nested_Inst
) >=
5553 elsif Is_Predefined_Unit
(Current_Sem_Unit
) then
5554 -- A use-clause in the body of a system file creates conflict
5555 -- with some entity in a user scope, while rtsfind is active.
5556 -- Keep only the entity coming from another predefined unit.
5559 while Present
(E2
) loop
5560 if In_Predefined_Unit
(E2
) then
5568 -- Entity must exist because predefined unit is correct
5570 raise Program_Error
;
5579 -- Come here with E set to the first immediately visible entity on
5580 -- the homonym chain. This is the one we want unless there is another
5581 -- immediately visible entity further on in the chain for an inner
5582 -- scope (RM 8.3(8)).
5584 <<Immediately_Visible_Entity
>> declare
5589 -- Find scope level of initial entity. When compiling through
5590 -- Rtsfind, the previous context is not completely invisible, and
5591 -- an outer entity may appear on the chain, whose scope is below
5592 -- the entry for Standard that delimits the current scope stack.
5593 -- Indicate that the level for this spurious entry is outside of
5594 -- the current scope stack.
5596 Level
:= Scope_Stack
.Last
;
5598 Scop
:= Scope_Stack
.Table
(Level
).Entity
;
5599 exit when Scop
= Scope
(E
);
5601 exit when Scop
= Standard_Standard
;
5604 -- Now search remainder of homonym chain for more inner entry
5605 -- If the entity is Standard itself, it has no scope, and we
5606 -- compare it with the stack entry directly.
5609 while Present
(E2
) loop
5610 if Is_Immediately_Visible
(E2
) then
5612 -- If a generic package contains a local declaration that
5613 -- has the same name as the generic, there may be a visibility
5614 -- conflict in an instance, where the local declaration must
5615 -- also hide the name of the corresponding package renaming.
5616 -- We check explicitly for a package declared by a renaming,
5617 -- whose renamed entity is an instance that is on the scope
5618 -- stack, and that contains a homonym in the same scope. Once
5619 -- we have found it, we know that the package renaming is not
5620 -- immediately visible, and that the identifier denotes the
5621 -- other entity (and its homonyms if overloaded).
5623 if Scope
(E
) = Scope
(E2
)
5624 and then Ekind
(E
) = E_Package
5625 and then Present
(Renamed_Object
(E
))
5626 and then Is_Generic_Instance
(Renamed_Object
(E
))
5627 and then In_Open_Scopes
(Renamed_Object
(E
))
5628 and then Comes_From_Source
(N
)
5630 Set_Is_Immediately_Visible
(E
, False);
5634 for J
in Level
+ 1 .. Scope_Stack
.Last
loop
5635 if Scope_Stack
.Table
(J
).Entity
= Scope
(E2
)
5636 or else Scope_Stack
.Table
(J
).Entity
= E2
5649 -- At the end of that loop, E is the innermost immediately
5650 -- visible entity, so we are all set.
5653 -- Come here with entity found, and stored in E
5657 -- Check violation of No_Wide_Characters restriction
5659 Check_Wide_Character_Restriction
(E
, N
);
5661 -- When distribution features are available (Get_PCS_Name /=
5662 -- Name_No_DSA), a remote access-to-subprogram type is converted
5663 -- into a record type holding whatever information is needed to
5664 -- perform a remote call on an RCI subprogram. In that case we
5665 -- rewrite any occurrence of the RAS type into the equivalent record
5666 -- type here. 'Access attribute references and RAS dereferences are
5667 -- then implemented using specific TSSs. However when distribution is
5668 -- not available (case of Get_PCS_Name = Name_No_DSA), we bypass the
5669 -- generation of these TSSs, and we must keep the RAS type in its
5670 -- original access-to-subprogram form (since all calls through a
5671 -- value of such type will be local anyway in the absence of a PCS).
5673 if Comes_From_Source
(N
)
5674 and then Is_Remote_Access_To_Subprogram_Type
(E
)
5675 and then Ekind
(E
) = E_Access_Subprogram_Type
5676 and then Expander_Active
5677 and then Get_PCS_Name
/= Name_No_DSA
5679 Rewrite
(N
, New_Occurrence_Of
(Equivalent_Type
(E
), Sloc
(N
)));
5683 -- Set the entity. Note that the reason we call Set_Entity for the
5684 -- overloadable case, as opposed to Set_Entity_With_Checks is
5685 -- that in the overloaded case, the initial call can set the wrong
5686 -- homonym. The call that sets the right homonym is in Sem_Res and
5687 -- that call does use Set_Entity_With_Checks, so we don't miss
5690 if Is_Overloadable
(E
) then
5693 Set_Entity_With_Checks
(N
, E
);
5699 Set_Etype
(N
, Get_Full_View
(Etype
(E
)));
5702 if Debug_Flag_E
then
5703 Write_Str
(" found ");
5704 Write_Entity_Info
(E
, " ");
5707 -- If the Ekind of the entity is Void, it means that all homonyms
5708 -- are hidden from all visibility (RM 8.3(5,14-20)). However, this
5709 -- test is skipped if the current scope is a record and the name is
5710 -- a pragma argument expression (case of Atomic and Volatile pragmas
5711 -- and possibly other similar pragmas added later, which are allowed
5712 -- to reference components in the current record).
5714 if Ekind
(E
) = E_Void
5716 (not Is_Record_Type
(Current_Scope
)
5717 or else Nkind
(Parent
(N
)) /= N_Pragma_Argument_Association
)
5719 Premature_Usage
(N
);
5721 -- If the entity is overloadable, collect all interpretations of the
5722 -- name for subsequent overload resolution. We optimize a bit here to
5723 -- do this only if we have an overloadable entity that is not on its
5724 -- own on the homonym chain.
5726 elsif Is_Overloadable
(E
)
5727 and then (Present
(Homonym
(E
)) or else Current_Entity
(N
) /= E
)
5729 Collect_Interps
(N
);
5731 -- If no homonyms were visible, the entity is unambiguous
5733 if not Is_Overloaded
(N
) then
5734 if not Is_Actual_Parameter
then
5735 Generate_Reference
(E
, N
);
5739 -- Case of non-overloadable entity, set the entity providing that
5740 -- we do not have the case of a discriminant reference within a
5741 -- default expression. Such references are replaced with the
5742 -- corresponding discriminal, which is the formal corresponding to
5743 -- to the discriminant in the initialization procedure.
5746 -- Entity is unambiguous, indicate that it is referenced here
5748 -- For a renaming of an object, always generate simple reference,
5749 -- we don't try to keep track of assignments in this case, except
5750 -- in SPARK mode where renamings are traversed for generating
5751 -- local effects of subprograms.
5754 and then Present
(Renamed_Object
(E
))
5755 and then not GNATprove_Mode
5757 Generate_Reference
(E
, N
);
5759 -- If the renamed entity is a private protected component,
5760 -- reference the original component as well. This needs to be
5761 -- done because the private renamings are installed before any
5762 -- analysis has occurred. Reference to a private component will
5763 -- resolve to the renaming and the original component will be
5764 -- left unreferenced, hence the following.
5766 if Is_Prival
(E
) then
5767 Generate_Reference
(Prival_Link
(E
), N
);
5770 -- One odd case is that we do not want to set the Referenced flag
5771 -- if the entity is a label, and the identifier is the label in
5772 -- the source, since this is not a reference from the point of
5773 -- view of the user.
5775 elsif Nkind
(Parent
(N
)) = N_Label
then
5777 R
: constant Boolean := Referenced
(E
);
5780 -- Generate reference unless this is an actual parameter
5781 -- (see comment below)
5783 if Is_Actual_Parameter
then
5784 Generate_Reference
(E
, N
);
5785 Set_Referenced
(E
, R
);
5789 -- Normal case, not a label: generate reference
5792 if not Is_Actual_Parameter
then
5794 -- Package or generic package is always a simple reference
5796 if Ekind_In
(E
, E_Package
, E_Generic_Package
) then
5797 Generate_Reference
(E
, N
, 'r');
5799 -- Else see if we have a left hand side
5804 Generate_Reference
(E
, N
, 'm');
5807 Generate_Reference
(E
, N
, 'r');
5809 -- If we don't know now, generate reference later
5812 Deferred_References
.Append
((E
, N
));
5818 Set_Entity_Or_Discriminal
(N
, E
);
5820 -- The name may designate a generalized reference, in which case
5821 -- the dereference interpretation will be included. Context is
5822 -- one in which a name is legal.
5824 if Ada_Version
>= Ada_2012
5826 (Nkind
(Parent
(N
)) in N_Subexpr
5827 or else Nkind_In
(Parent
(N
), N_Assignment_Statement
,
5828 N_Object_Declaration
,
5829 N_Parameter_Association
))
5831 Check_Implicit_Dereference
(N
, Etype
(E
));
5836 -- Come here with entity set
5839 Check_Restriction_No_Use_Of_Entity
(N
);
5840 end Find_Direct_Name
;
5842 ------------------------
5843 -- Find_Expanded_Name --
5844 ------------------------
5846 -- This routine searches the homonym chain of the entity until it finds
5847 -- an entity declared in the scope denoted by the prefix. If the entity
5848 -- is private, it may nevertheless be immediately visible, if we are in
5849 -- the scope of its declaration.
5851 procedure Find_Expanded_Name
(N
: Node_Id
) is
5852 function In_Abstract_View_Pragma
(Nod
: Node_Id
) return Boolean;
5853 -- Determine whether expanded name Nod appears within a pragma which is
5854 -- a suitable context for an abstract view of a state or variable. The
5855 -- following pragmas fall in this category:
5862 -- In addition, pragma Abstract_State is also considered suitable even
5863 -- though it is an illegal context for an abstract view as this allows
5864 -- for proper resolution of abstract views of variables. This illegal
5865 -- context is later flagged in the analysis of indicator Part_Of.
5867 -----------------------------
5868 -- In_Abstract_View_Pragma --
5869 -----------------------------
5871 function In_Abstract_View_Pragma
(Nod
: Node_Id
) return Boolean is
5875 -- Climb the parent chain looking for a pragma
5878 while Present
(Par
) loop
5879 if Nkind
(Par
) = N_Pragma
then
5880 if Nam_In
(Pragma_Name_Unmapped
(Par
),
5881 Name_Abstract_State
,
5885 Name_Refined_Depends
,
5886 Name_Refined_Global
)
5890 -- Otherwise the pragma is not a legal context for an abstract
5897 -- Prevent the search from going too far
5899 elsif Is_Body_Or_Package_Declaration
(Par
) then
5903 Par
:= Parent
(Par
);
5907 end In_Abstract_View_Pragma
;
5911 Selector
: constant Node_Id
:= Selector_Name
(N
);
5912 Candidate
: Entity_Id
:= Empty
;
5916 -- Start of processing for Find_Expanded_Name
5919 P_Name
:= Entity
(Prefix
(N
));
5921 -- If the prefix is a renamed package, look for the entity in the
5922 -- original package.
5924 if Ekind
(P_Name
) = E_Package
5925 and then Present
(Renamed_Object
(P_Name
))
5927 P_Name
:= Renamed_Object
(P_Name
);
5929 -- Rewrite node with entity field pointing to renamed object
5931 Rewrite
(Prefix
(N
), New_Copy
(Prefix
(N
)));
5932 Set_Entity
(Prefix
(N
), P_Name
);
5934 -- If the prefix is an object of a concurrent type, look for
5935 -- the entity in the associated task or protected type.
5937 elsif Is_Concurrent_Type
(Etype
(P_Name
)) then
5938 P_Name
:= Etype
(P_Name
);
5941 Id
:= Current_Entity
(Selector
);
5944 Is_New_Candidate
: Boolean;
5947 while Present
(Id
) loop
5948 if Scope
(Id
) = P_Name
then
5950 Is_New_Candidate
:= True;
5952 -- Handle abstract views of states and variables. These are
5953 -- acceptable candidates only when the reference to the view
5954 -- appears in certain pragmas.
5956 if Ekind
(Id
) = E_Abstract_State
5957 and then From_Limited_With
(Id
)
5958 and then Present
(Non_Limited_View
(Id
))
5960 if In_Abstract_View_Pragma
(N
) then
5961 Candidate
:= Non_Limited_View
(Id
);
5962 Is_New_Candidate
:= True;
5964 -- Hide the candidate because it is not used in a proper
5969 Is_New_Candidate
:= False;
5973 -- Ada 2005 (AI-217): Handle shadow entities associated with
5974 -- types declared in limited-withed nested packages. We don't need
5975 -- to handle E_Incomplete_Subtype entities because the entities
5976 -- in the limited view are always E_Incomplete_Type and
5977 -- E_Class_Wide_Type entities (see Build_Limited_Views).
5979 -- Regarding the expression used to evaluate the scope, it
5980 -- is important to note that the limited view also has shadow
5981 -- entities associated nested packages. For this reason the
5982 -- correct scope of the entity is the scope of the real entity.
5983 -- The non-limited view may itself be incomplete, in which case
5984 -- get the full view if available.
5986 elsif Ekind_In
(Id
, E_Incomplete_Type
, E_Class_Wide_Type
)
5987 and then From_Limited_With
(Id
)
5988 and then Present
(Non_Limited_View
(Id
))
5989 and then Scope
(Non_Limited_View
(Id
)) = P_Name
5991 Candidate
:= Get_Full_View
(Non_Limited_View
(Id
));
5992 Is_New_Candidate
:= True;
5995 Is_New_Candidate
:= False;
5998 if Is_New_Candidate
then
6000 -- If entity is a child unit, either it is a visible child of
6001 -- the prefix, or we are in the body of a generic prefix, as
6002 -- will happen when a child unit is instantiated in the body
6003 -- of a generic parent. This is because the instance body does
6004 -- not restore the full compilation context, given that all
6005 -- non-local references have been captured.
6007 if Is_Child_Unit
(Id
) or else P_Name
= Standard_Standard
then
6008 exit when Is_Visible_Lib_Unit
(Id
)
6009 or else (Is_Child_Unit
(Id
)
6010 and then In_Open_Scopes
(Scope
(Id
))
6011 and then In_Instance_Body
);
6013 exit when not Is_Hidden
(Id
);
6016 exit when Is_Immediately_Visible
(Id
);
6024 and then Ekind_In
(P_Name
, E_Procedure
, E_Function
)
6025 and then Is_Generic_Instance
(P_Name
)
6027 -- Expanded name denotes entity in (instance of) generic subprogram.
6028 -- The entity may be in the subprogram instance, or may denote one of
6029 -- the formals, which is declared in the enclosing wrapper package.
6031 P_Name
:= Scope
(P_Name
);
6033 Id
:= Current_Entity
(Selector
);
6034 while Present
(Id
) loop
6035 exit when Scope
(Id
) = P_Name
;
6040 if No
(Id
) or else Chars
(Id
) /= Chars
(Selector
) then
6041 Set_Etype
(N
, Any_Type
);
6043 -- If we are looking for an entity defined in System, try to find it
6044 -- in the child package that may have been provided as an extension
6045 -- to System. The Extend_System pragma will have supplied the name of
6046 -- the extension, which may have to be loaded.
6048 if Chars
(P_Name
) = Name_System
6049 and then Scope
(P_Name
) = Standard_Standard
6050 and then Present
(System_Extend_Unit
)
6051 and then Present_System_Aux
(N
)
6053 Set_Entity
(Prefix
(N
), System_Aux_Id
);
6054 Find_Expanded_Name
(N
);
6057 -- There is an implicit instance of the predefined operator in
6058 -- the given scope. The operator entity is defined in Standard.
6059 -- Has_Implicit_Operator makes the node into an Expanded_Name.
6061 elsif Nkind
(Selector
) = N_Operator_Symbol
6062 and then Has_Implicit_Operator
(N
)
6066 -- If there is no literal defined in the scope denoted by the
6067 -- prefix, the literal may belong to (a type derived from)
6068 -- Standard_Character, for which we have no explicit literals.
6070 elsif Nkind
(Selector
) = N_Character_Literal
6071 and then Has_Implicit_Character_Literal
(N
)
6076 -- If the prefix is a single concurrent object, use its name in
6077 -- the error message, rather than that of the anonymous type.
6079 if Is_Concurrent_Type
(P_Name
)
6080 and then Is_Internal_Name
(Chars
(P_Name
))
6082 Error_Msg_Node_2
:= Entity
(Prefix
(N
));
6084 Error_Msg_Node_2
:= P_Name
;
6087 if P_Name
= System_Aux_Id
then
6088 P_Name
:= Scope
(P_Name
);
6089 Set_Entity
(Prefix
(N
), P_Name
);
6092 if Present
(Candidate
) then
6094 -- If we know that the unit is a child unit we can give a more
6095 -- accurate error message.
6097 if Is_Child_Unit
(Candidate
) then
6099 -- If the candidate is a private child unit and we are in
6100 -- the visible part of a public unit, specialize the error
6101 -- message. There might be a private with_clause for it,
6102 -- but it is not currently active.
6104 if Is_Private_Descendant
(Candidate
)
6105 and then Ekind
(Current_Scope
) = E_Package
6106 and then not In_Private_Part
(Current_Scope
)
6107 and then not Is_Private_Descendant
(Current_Scope
)
6110 ("private child unit& is not visible here", Selector
);
6112 -- Normal case where we have a missing with for a child unit
6115 Error_Msg_Qual_Level
:= 99;
6116 Error_Msg_NE
-- CODEFIX
6117 ("missing `WITH &;`", Selector
, Candidate
);
6118 Error_Msg_Qual_Level
:= 0;
6121 -- Here we don't know that this is a child unit
6124 Error_Msg_NE
("& is not a visible entity of&", N
, Selector
);
6128 -- Within the instantiation of a child unit, the prefix may
6129 -- denote the parent instance, but the selector has the name
6130 -- of the original child. That is to say, when A.B appears
6131 -- within an instantiation of generic child unit B, the scope
6132 -- stack includes an instance of A (P_Name) and an instance
6133 -- of B under some other name. We scan the scope to find this
6134 -- child instance, which is the desired entity.
6135 -- Note that the parent may itself be a child instance, if
6136 -- the reference is of the form A.B.C, in which case A.B has
6137 -- already been rewritten with the proper entity.
6139 if In_Open_Scopes
(P_Name
)
6140 and then Is_Generic_Instance
(P_Name
)
6143 Gen_Par
: constant Entity_Id
:=
6144 Generic_Parent
(Specification
6145 (Unit_Declaration_Node
(P_Name
)));
6146 S
: Entity_Id
:= Current_Scope
;
6150 for J
in reverse 0 .. Scope_Stack
.Last
loop
6151 S
:= Scope_Stack
.Table
(J
).Entity
;
6153 exit when S
= Standard_Standard
;
6155 if Ekind_In
(S
, E_Function
,
6160 Generic_Parent
(Specification
6161 (Unit_Declaration_Node
(S
)));
6163 -- Check that P is a generic child of the generic
6164 -- parent of the prefix.
6167 and then Chars
(P
) = Chars
(Selector
)
6168 and then Scope
(P
) = Gen_Par
6179 -- If this is a selection from Ada, System or Interfaces, then
6180 -- we assume a missing with for the corresponding package.
6182 if Is_Known_Unit
(N
) then
6183 if not Error_Posted
(N
) then
6184 Error_Msg_Node_2
:= Selector
;
6185 Error_Msg_N
-- CODEFIX
6186 ("missing `WITH &.&;`", Prefix
(N
));
6189 -- If this is a selection from a dummy package, then suppress
6190 -- the error message, of course the entity is missing if the
6191 -- package is missing.
6193 elsif Sloc
(Error_Msg_Node_2
) = No_Location
then
6196 -- Here we have the case of an undefined component
6199 -- The prefix may hide a homonym in the context that
6200 -- declares the desired entity. This error can use a
6201 -- specialized message.
6203 if In_Open_Scopes
(P_Name
) then
6205 H
: constant Entity_Id
:= Homonym
(P_Name
);
6209 and then Is_Compilation_Unit
(H
)
6211 (Is_Immediately_Visible
(H
)
6212 or else Is_Visible_Lib_Unit
(H
))
6214 Id
:= First_Entity
(H
);
6215 while Present
(Id
) loop
6216 if Chars
(Id
) = Chars
(Selector
) then
6217 Error_Msg_Qual_Level
:= 99;
6218 Error_Msg_Name_1
:= Chars
(Selector
);
6220 ("% not declared in&", N
, P_Name
);
6222 ("\use fully qualified name starting with "
6223 & "Standard to make& visible", N
, H
);
6224 Error_Msg_Qual_Level
:= 0;
6232 -- If not found, standard error message
6234 Error_Msg_NE
("& not declared in&", N
, Selector
);
6240 Error_Msg_NE
("& not declared in&", N
, Selector
);
6243 -- Check for misspelling of some entity in prefix
6245 Id
:= First_Entity
(P_Name
);
6246 while Present
(Id
) loop
6247 if Is_Bad_Spelling_Of
(Chars
(Id
), Chars
(Selector
))
6248 and then not Is_Internal_Name
(Chars
(Id
))
6250 Error_Msg_NE
-- CODEFIX
6251 ("possible misspelling of&", Selector
, Id
);
6258 -- Specialize the message if this may be an instantiation
6259 -- of a child unit that was not mentioned in the context.
6261 if Nkind
(Parent
(N
)) = N_Package_Instantiation
6262 and then Is_Generic_Instance
(Entity
(Prefix
(N
)))
6263 and then Is_Compilation_Unit
6264 (Generic_Parent
(Parent
(Entity
(Prefix
(N
)))))
6266 Error_Msg_Node_2
:= Selector
;
6267 Error_Msg_N
-- CODEFIX
6268 ("\missing `WITH &.&;`", Prefix
(N
));
6278 if Comes_From_Source
(N
)
6279 and then Is_Remote_Access_To_Subprogram_Type
(Id
)
6280 and then Ekind
(Id
) = E_Access_Subprogram_Type
6281 and then Present
(Equivalent_Type
(Id
))
6283 -- If we are not actually generating distribution code (i.e. the
6284 -- current PCS is the dummy non-distributed version), then the
6285 -- Equivalent_Type will be missing, and Id should be treated as
6286 -- a regular access-to-subprogram type.
6288 Id
:= Equivalent_Type
(Id
);
6289 Set_Chars
(Selector
, Chars
(Id
));
6292 -- Ada 2005 (AI-50217): Check usage of entities in limited withed units
6294 if Ekind
(P_Name
) = E_Package
and then From_Limited_With
(P_Name
) then
6295 if From_Limited_With
(Id
)
6296 or else Is_Type
(Id
)
6297 or else Ekind
(Id
) = E_Package
6302 ("limited withed package can only be used to access incomplete "
6307 if Is_Task_Type
(P_Name
)
6308 and then ((Ekind
(Id
) = E_Entry
6309 and then Nkind
(Parent
(N
)) /= N_Attribute_Reference
)
6311 (Ekind
(Id
) = E_Entry_Family
6313 Nkind
(Parent
(Parent
(N
))) /= N_Attribute_Reference
))
6315 -- If both the task type and the entry are in scope, this may still
6316 -- be the expanded name of an entry formal.
6318 if In_Open_Scopes
(Id
)
6319 and then Nkind
(Parent
(N
)) = N_Selected_Component
6324 -- It is an entry call after all, either to the current task
6325 -- (which will deadlock) or to an enclosing task.
6327 Analyze_Selected_Component
(N
);
6332 Change_Selected_Component_To_Expanded_Name
(N
);
6334 -- Set appropriate type
6336 if Is_Type
(Id
) then
6339 Set_Etype
(N
, Get_Full_View
(Etype
(Id
)));
6342 -- Do style check and generate reference, but skip both steps if this
6343 -- entity has homonyms, since we may not have the right homonym set yet.
6344 -- The proper homonym will be set during the resolve phase.
6346 if Has_Homonym
(Id
) then
6350 Set_Entity_Or_Discriminal
(N
, Id
);
6354 Generate_Reference
(Id
, N
, 'm');
6357 Generate_Reference
(Id
, N
, 'r');
6360 Deferred_References
.Append
((Id
, N
));
6364 -- Check for violation of No_Wide_Characters
6366 Check_Wide_Character_Restriction
(Id
, N
);
6368 -- If the Ekind of the entity is Void, it means that all homonyms are
6369 -- hidden from all visibility (RM 8.3(5,14-20)).
6371 if Ekind
(Id
) = E_Void
then
6372 Premature_Usage
(N
);
6374 elsif Is_Overloadable
(Id
) and then Present
(Homonym
(Id
)) then
6376 H
: Entity_Id
:= Homonym
(Id
);
6379 while Present
(H
) loop
6380 if Scope
(H
) = Scope
(Id
)
6381 and then (not Is_Hidden
(H
)
6382 or else Is_Immediately_Visible
(H
))
6384 Collect_Interps
(N
);
6391 -- If an extension of System is present, collect possible explicit
6392 -- overloadings declared in the extension.
6394 if Chars
(P_Name
) = Name_System
6395 and then Scope
(P_Name
) = Standard_Standard
6396 and then Present
(System_Extend_Unit
)
6397 and then Present_System_Aux
(N
)
6399 H
:= Current_Entity
(Id
);
6401 while Present
(H
) loop
6402 if Scope
(H
) = System_Aux_Id
then
6403 Add_One_Interp
(N
, H
, Etype
(H
));
6412 if Nkind
(Selector_Name
(N
)) = N_Operator_Symbol
6413 and then Scope
(Id
) /= Standard_Standard
6415 -- In addition to user-defined operators in the given scope, there
6416 -- may be an implicit instance of the predefined operator. The
6417 -- operator (defined in Standard) is found in Has_Implicit_Operator,
6418 -- and added to the interpretations. Procedure Add_One_Interp will
6419 -- determine which hides which.
6421 if Has_Implicit_Operator
(N
) then
6426 -- If there is a single interpretation for N we can generate a
6427 -- reference to the unique entity found.
6429 if Is_Overloadable
(Id
) and then not Is_Overloaded
(N
) then
6430 Generate_Reference
(Id
, N
);
6433 Check_Restriction_No_Use_Of_Entity
(N
);
6434 end Find_Expanded_Name
;
6436 -------------------------
6437 -- Find_Renamed_Entity --
6438 -------------------------
6440 function Find_Renamed_Entity
6444 Is_Actual
: Boolean := False) return Entity_Id
6447 I1
: Interp_Index
:= 0; -- Suppress junk warnings
6453 function Is_Visible_Operation
(Op
: Entity_Id
) return Boolean;
6454 -- If the renamed entity is an implicit operator, check whether it is
6455 -- visible because its operand type is properly visible. This check
6456 -- applies to explicit renamed entities that appear in the source in a
6457 -- renaming declaration or a formal subprogram instance, but not to
6458 -- default generic actuals with a name.
6460 function Report_Overload
return Entity_Id
;
6461 -- List possible interpretations, and specialize message in the
6462 -- case of a generic actual.
6464 function Within
(Inner
, Outer
: Entity_Id
) return Boolean;
6465 -- Determine whether a candidate subprogram is defined within the
6466 -- enclosing instance. If yes, it has precedence over outer candidates.
6468 --------------------------
6469 -- Is_Visible_Operation --
6470 --------------------------
6472 function Is_Visible_Operation
(Op
: Entity_Id
) return Boolean is
6478 if Ekind
(Op
) /= E_Operator
6479 or else Scope
(Op
) /= Standard_Standard
6480 or else (In_Instance
6481 and then (not Is_Actual
6482 or else Present
(Enclosing_Instance
)))
6487 -- For a fixed point type operator, check the resulting type,
6488 -- because it may be a mixed mode integer * fixed operation.
6490 if Present
(Next_Formal
(First_Formal
(New_S
)))
6491 and then Is_Fixed_Point_Type
(Etype
(New_S
))
6493 Typ
:= Etype
(New_S
);
6495 Typ
:= Etype
(First_Formal
(New_S
));
6498 Btyp
:= Base_Type
(Typ
);
6500 if Nkind
(Nam
) /= N_Expanded_Name
then
6501 return (In_Open_Scopes
(Scope
(Btyp
))
6502 or else Is_Potentially_Use_Visible
(Btyp
)
6503 or else In_Use
(Btyp
)
6504 or else In_Use
(Scope
(Btyp
)));
6507 Scop
:= Entity
(Prefix
(Nam
));
6509 if Ekind
(Scop
) = E_Package
6510 and then Present
(Renamed_Object
(Scop
))
6512 Scop
:= Renamed_Object
(Scop
);
6515 -- Operator is visible if prefix of expanded name denotes
6516 -- scope of type, or else type is defined in System_Aux
6517 -- and the prefix denotes System.
6519 return Scope
(Btyp
) = Scop
6520 or else (Scope
(Btyp
) = System_Aux_Id
6521 and then Scope
(Scope
(Btyp
)) = Scop
);
6524 end Is_Visible_Operation
;
6530 function Within
(Inner
, Outer
: Entity_Id
) return Boolean is
6534 Sc
:= Scope
(Inner
);
6535 while Sc
/= Standard_Standard
loop
6546 ---------------------
6547 -- Report_Overload --
6548 ---------------------
6550 function Report_Overload
return Entity_Id
is
6553 Error_Msg_NE
-- CODEFIX
6554 ("ambiguous actual subprogram&, " &
6555 "possible interpretations:", N
, Nam
);
6557 Error_Msg_N
-- CODEFIX
6558 ("ambiguous subprogram, " &
6559 "possible interpretations:", N
);
6562 List_Interps
(Nam
, N
);
6564 end Report_Overload
;
6566 -- Start of processing for Find_Renamed_Entity
6570 Candidate_Renaming
:= Empty
;
6572 if Is_Overloaded
(Nam
) then
6573 Get_First_Interp
(Nam
, Ind
, It
);
6574 while Present
(It
.Nam
) loop
6575 if Entity_Matches_Spec
(It
.Nam
, New_S
)
6576 and then Is_Visible_Operation
(It
.Nam
)
6578 if Old_S
/= Any_Id
then
6580 -- Note: The call to Disambiguate only happens if a
6581 -- previous interpretation was found, in which case I1
6582 -- has received a value.
6584 It1
:= Disambiguate
(Nam
, I1
, Ind
, Etype
(Old_S
));
6586 if It1
= No_Interp
then
6587 Inst
:= Enclosing_Instance
;
6589 if Present
(Inst
) then
6590 if Within
(It
.Nam
, Inst
) then
6591 if Within
(Old_S
, Inst
) then
6593 -- Choose the innermost subprogram, which would
6594 -- have hidden the outer one in the generic.
6596 if Scope_Depth
(It
.Nam
) <
6605 elsif Within
(Old_S
, Inst
) then
6609 return Report_Overload
;
6612 -- If not within an instance, ambiguity is real
6615 return Report_Overload
;
6629 Present
(First_Formal
(It
.Nam
))
6630 and then Present
(First_Formal
(New_S
))
6631 and then (Base_Type
(Etype
(First_Formal
(It
.Nam
))) =
6632 Base_Type
(Etype
(First_Formal
(New_S
))))
6634 Candidate_Renaming
:= It
.Nam
;
6637 Get_Next_Interp
(Ind
, It
);
6640 Set_Entity
(Nam
, Old_S
);
6642 if Old_S
/= Any_Id
then
6643 Set_Is_Overloaded
(Nam
, False);
6646 -- Non-overloaded case
6650 and then Present
(Enclosing_Instance
)
6651 and then Entity_Matches_Spec
(Entity
(Nam
), New_S
)
6653 Old_S
:= Entity
(Nam
);
6655 elsif Entity_Matches_Spec
(Entity
(Nam
), New_S
) then
6656 Candidate_Renaming
:= New_S
;
6658 if Is_Visible_Operation
(Entity
(Nam
)) then
6659 Old_S
:= Entity
(Nam
);
6662 elsif Present
(First_Formal
(Entity
(Nam
)))
6663 and then Present
(First_Formal
(New_S
))
6664 and then (Base_Type
(Etype
(First_Formal
(Entity
(Nam
)))) =
6665 Base_Type
(Etype
(First_Formal
(New_S
))))
6667 Candidate_Renaming
:= Entity
(Nam
);
6672 end Find_Renamed_Entity
;
6674 -----------------------------
6675 -- Find_Selected_Component --
6676 -----------------------------
6678 procedure Find_Selected_Component
(N
: Node_Id
) is
6679 P
: constant Node_Id
:= Prefix
(N
);
6682 -- Entity denoted by prefix
6689 function Available_Subtype
return Boolean;
6690 -- A small optimization: if the prefix is constrained and the component
6691 -- is an array type we may already have a usable subtype for it, so we
6692 -- can use it rather than generating a new one, because the bounds
6693 -- will be the values of the discriminants and not discriminant refs.
6694 -- This simplifies value tracing in GNATProve. For consistency, both
6695 -- the entity name and the subtype come from the constrained component.
6697 -- This is only used in GNATProve mode: when generating code it may be
6698 -- necessary to create an itype in the scope of use of the selected
6699 -- component, e.g. in the context of a expanded record equality.
6701 function Is_Reference_In_Subunit
return Boolean;
6702 -- In a subunit, the scope depth is not a proper measure of hiding,
6703 -- because the context of the proper body may itself hide entities in
6704 -- parent units. This rare case requires inspecting the tree directly
6705 -- because the proper body is inserted in the main unit and its context
6706 -- is simply added to that of the parent.
6708 -----------------------
6709 -- Available_Subtype --
6710 -----------------------
6712 function Available_Subtype
return Boolean is
6716 if GNATprove_Mode
then
6717 Comp
:= First_Entity
(Etype
(P
));
6718 while Present
(Comp
) loop
6719 if Chars
(Comp
) = Chars
(Selector_Name
(N
)) then
6720 Set_Etype
(N
, Etype
(Comp
));
6721 Set_Entity
(Selector_Name
(N
), Comp
);
6722 Set_Etype
(Selector_Name
(N
), Etype
(Comp
));
6726 Next_Component
(Comp
);
6731 end Available_Subtype
;
6733 -----------------------------
6734 -- Is_Reference_In_Subunit --
6735 -----------------------------
6737 function Is_Reference_In_Subunit
return Boolean is
6739 Comp_Unit
: Node_Id
;
6743 while Present
(Comp_Unit
)
6744 and then Nkind
(Comp_Unit
) /= N_Compilation_Unit
6746 Comp_Unit
:= Parent
(Comp_Unit
);
6749 if No
(Comp_Unit
) or else Nkind
(Unit
(Comp_Unit
)) /= N_Subunit
then
6753 -- Now check whether the package is in the context of the subunit
6755 Clause
:= First
(Context_Items
(Comp_Unit
));
6756 while Present
(Clause
) loop
6757 if Nkind
(Clause
) = N_With_Clause
6758 and then Entity
(Name
(Clause
)) = P_Name
6763 Clause
:= Next
(Clause
);
6767 end Is_Reference_In_Subunit
;
6769 -- Start of processing for Find_Selected_Component
6774 if Nkind
(P
) = N_Error
then
6778 -- Selector name cannot be a character literal or an operator symbol in
6779 -- SPARK, except for the operator symbol in a renaming.
6781 if Restriction_Check_Required
(SPARK_05
) then
6782 if Nkind
(Selector_Name
(N
)) = N_Character_Literal
then
6783 Check_SPARK_05_Restriction
6784 ("character literal cannot be prefixed", N
);
6785 elsif Nkind
(Selector_Name
(N
)) = N_Operator_Symbol
6786 and then Nkind
(Parent
(N
)) /= N_Subprogram_Renaming_Declaration
6788 Check_SPARK_05_Restriction
6789 ("operator symbol cannot be prefixed", N
);
6793 -- If the selector already has an entity, the node has been constructed
6794 -- in the course of expansion, and is known to be valid. Do not verify
6795 -- that it is defined for the type (it may be a private component used
6796 -- in the expansion of record equality).
6798 if Present
(Entity
(Selector_Name
(N
))) then
6799 if No
(Etype
(N
)) or else Etype
(N
) = Any_Type
then
6801 Sel_Name
: constant Node_Id
:= Selector_Name
(N
);
6802 Selector
: constant Entity_Id
:= Entity
(Sel_Name
);
6806 Set_Etype
(Sel_Name
, Etype
(Selector
));
6808 if not Is_Entity_Name
(P
) then
6812 -- Build an actual subtype except for the first parameter
6813 -- of an init proc, where this actual subtype is by
6814 -- definition incorrect, since the object is uninitialized
6815 -- (and does not even have defined discriminants etc.)
6817 if Is_Entity_Name
(P
)
6818 and then Ekind
(Entity
(P
)) = E_Function
6820 Nam
:= New_Copy
(P
);
6822 if Is_Overloaded
(P
) then
6823 Save_Interps
(P
, Nam
);
6826 Rewrite
(P
, Make_Function_Call
(Sloc
(P
), Name
=> Nam
));
6828 Analyze_Selected_Component
(N
);
6831 elsif Ekind
(Selector
) = E_Component
6832 and then (not Is_Entity_Name
(P
)
6833 or else Chars
(Entity
(P
)) /= Name_uInit
)
6835 -- Check if we already have an available subtype we can use
6837 if Ekind
(Etype
(P
)) = E_Record_Subtype
6838 and then Nkind
(Parent
(Etype
(P
))) = N_Subtype_Declaration
6839 and then Is_Array_Type
(Etype
(Selector
))
6840 and then not Is_Packed
(Etype
(Selector
))
6841 and then Available_Subtype
6845 -- Do not build the subtype when referencing components of
6846 -- dispatch table wrappers. Required to avoid generating
6847 -- elaboration code with HI runtimes.
6849 elsif RTU_Loaded
(Ada_Tags
)
6851 ((RTE_Available
(RE_Dispatch_Table_Wrapper
)
6852 and then Scope
(Selector
) =
6853 RTE
(RE_Dispatch_Table_Wrapper
))
6855 (RTE_Available
(RE_No_Dispatch_Table_Wrapper
)
6856 and then Scope
(Selector
) =
6857 RTE
(RE_No_Dispatch_Table_Wrapper
)))
6862 Build_Actual_Subtype_Of_Component
6863 (Etype
(Selector
), N
);
6870 if No
(C_Etype
) then
6871 C_Etype
:= Etype
(Selector
);
6873 Insert_Action
(N
, C_Etype
);
6874 C_Etype
:= Defining_Identifier
(C_Etype
);
6877 Set_Etype
(N
, C_Etype
);
6880 -- If this is the name of an entry or protected operation, and
6881 -- the prefix is an access type, insert an explicit dereference,
6882 -- so that entry calls are treated uniformly.
6884 if Is_Access_Type
(Etype
(P
))
6885 and then Is_Concurrent_Type
(Designated_Type
(Etype
(P
)))
6888 New_P
: constant Node_Id
:=
6889 Make_Explicit_Dereference
(Sloc
(P
),
6890 Prefix
=> Relocate_Node
(P
));
6893 Set_Etype
(P
, Designated_Type
(Etype
(Prefix
(P
))));
6897 -- If the selected component appears within a default expression
6898 -- and it has an actual subtype, the pre-analysis has not yet
6899 -- completed its analysis, because Insert_Actions is disabled in
6900 -- that context. Within the init proc of the enclosing type we
6901 -- must complete this analysis, if an actual subtype was created.
6903 elsif Inside_Init_Proc
then
6905 Typ
: constant Entity_Id
:= Etype
(N
);
6906 Decl
: constant Node_Id
:= Declaration_Node
(Typ
);
6908 if Nkind
(Decl
) = N_Subtype_Declaration
6909 and then not Analyzed
(Decl
)
6910 and then Is_List_Member
(Decl
)
6911 and then No
(Parent
(Decl
))
6914 Insert_Action
(N
, Decl
);
6921 elsif Is_Entity_Name
(P
) then
6922 P_Name
:= Entity
(P
);
6924 -- The prefix may denote an enclosing type which is the completion
6925 -- of an incomplete type declaration.
6927 if Is_Type
(P_Name
) then
6928 Set_Entity
(P
, Get_Full_View
(P_Name
));
6929 Set_Etype
(P
, Entity
(P
));
6930 P_Name
:= Entity
(P
);
6933 P_Type
:= Base_Type
(Etype
(P
));
6935 if Debug_Flag_E
then
6936 Write_Str
("Found prefix type to be ");
6937 Write_Entity_Info
(P_Type
, " "); Write_Eol
;
6940 -- The designated type may be a limited view with no components.
6941 -- Check whether the non-limited view is available, because in some
6942 -- cases this will not be set when installing the context. Rewrite
6943 -- the node by introducing an explicit dereference at once, and
6944 -- setting the type of the rewritten prefix to the non-limited view
6945 -- of the original designated type.
6947 if Is_Access_Type
(P_Type
) then
6949 Desig_Typ
: constant Entity_Id
:=
6950 Directly_Designated_Type
(P_Type
);
6953 if Is_Incomplete_Type
(Desig_Typ
)
6954 and then From_Limited_With
(Desig_Typ
)
6955 and then Present
(Non_Limited_View
(Desig_Typ
))
6958 Make_Explicit_Dereference
(Sloc
(P
),
6959 Prefix
=> Relocate_Node
(P
)));
6961 Set_Etype
(P
, Get_Full_View
(Non_Limited_View
(Desig_Typ
)));
6962 P_Type
:= Etype
(P
);
6967 -- First check for components of a record object (not the
6968 -- result of a call, which is handled below).
6970 if Is_Appropriate_For_Record
(P_Type
)
6971 and then not Is_Overloadable
(P_Name
)
6972 and then not Is_Type
(P_Name
)
6974 -- Selected component of record. Type checking will validate
6975 -- name of selector.
6977 -- ??? Could we rewrite an implicit dereference into an explicit
6980 Analyze_Selected_Component
(N
);
6982 -- Reference to type name in predicate/invariant expression
6984 elsif Is_Appropriate_For_Entry_Prefix
(P_Type
)
6985 and then not In_Open_Scopes
(P_Name
)
6986 and then (not Is_Concurrent_Type
(Etype
(P_Name
))
6987 or else not In_Open_Scopes
(Etype
(P_Name
)))
6989 -- Call to protected operation or entry. Type checking is
6990 -- needed on the prefix.
6992 Analyze_Selected_Component
(N
);
6994 elsif (In_Open_Scopes
(P_Name
)
6995 and then Ekind
(P_Name
) /= E_Void
6996 and then not Is_Overloadable
(P_Name
))
6997 or else (Is_Concurrent_Type
(Etype
(P_Name
))
6998 and then In_Open_Scopes
(Etype
(P_Name
)))
7000 -- Prefix denotes an enclosing loop, block, or task, i.e. an
7001 -- enclosing construct that is not a subprogram or accept.
7003 -- A special case: a protected body may call an operation
7004 -- on an external object of the same type, in which case it
7005 -- is not an expanded name. If the prefix is the type itself,
7006 -- or the context is a single synchronized object it can only
7007 -- be interpreted as an expanded name.
7009 if Is_Concurrent_Type
(Etype
(P_Name
)) then
7011 or else Present
(Anonymous_Object
(Etype
(P_Name
)))
7013 Find_Expanded_Name
(N
);
7016 Analyze_Selected_Component
(N
);
7021 Find_Expanded_Name
(N
);
7024 elsif Ekind
(P_Name
) = E_Package
then
7025 Find_Expanded_Name
(N
);
7027 elsif Is_Overloadable
(P_Name
) then
7029 -- The subprogram may be a renaming (of an enclosing scope) as
7030 -- in the case of the name of the generic within an instantiation.
7032 if Ekind_In
(P_Name
, E_Procedure
, E_Function
)
7033 and then Present
(Alias
(P_Name
))
7034 and then Is_Generic_Instance
(Alias
(P_Name
))
7036 P_Name
:= Alias
(P_Name
);
7039 if Is_Overloaded
(P
) then
7041 -- The prefix must resolve to a unique enclosing construct
7044 Found
: Boolean := False;
7049 Get_First_Interp
(P
, Ind
, It
);
7050 while Present
(It
.Nam
) loop
7051 if In_Open_Scopes
(It
.Nam
) then
7054 "prefix must be unique enclosing scope", N
);
7055 Set_Entity
(N
, Any_Id
);
7056 Set_Etype
(N
, Any_Type
);
7065 Get_Next_Interp
(Ind
, It
);
7070 if In_Open_Scopes
(P_Name
) then
7071 Set_Entity
(P
, P_Name
);
7072 Set_Is_Overloaded
(P
, False);
7073 Find_Expanded_Name
(N
);
7076 -- If no interpretation as an expanded name is possible, it
7077 -- must be a selected component of a record returned by a
7078 -- function call. Reformat prefix as a function call, the rest
7079 -- is done by type resolution.
7081 -- Error if the prefix is procedure or entry, as is P.X
7083 if Ekind
(P_Name
) /= E_Function
7085 (not Is_Overloaded
(P
)
7086 or else Nkind
(Parent
(N
)) = N_Procedure_Call_Statement
)
7088 -- Prefix may mention a package that is hidden by a local
7089 -- declaration: let the user know. Scan the full homonym
7090 -- chain, the candidate package may be anywhere on it.
7092 if Present
(Homonym
(Current_Entity
(P_Name
))) then
7093 P_Name
:= Current_Entity
(P_Name
);
7095 while Present
(P_Name
) loop
7096 exit when Ekind
(P_Name
) = E_Package
;
7097 P_Name
:= Homonym
(P_Name
);
7100 if Present
(P_Name
) then
7101 if not Is_Reference_In_Subunit
then
7102 Error_Msg_Sloc
:= Sloc
(Entity
(Prefix
(N
)));
7104 ("package& is hidden by declaration#", N
, P_Name
);
7107 Set_Entity
(Prefix
(N
), P_Name
);
7108 Find_Expanded_Name
(N
);
7112 P_Name
:= Entity
(Prefix
(N
));
7117 ("invalid prefix in selected component&", N
, P_Name
);
7118 Change_Selected_Component_To_Expanded_Name
(N
);
7119 Set_Entity
(N
, Any_Id
);
7120 Set_Etype
(N
, Any_Type
);
7122 -- Here we have a function call, so do the reformatting
7125 Nam
:= New_Copy
(P
);
7126 Save_Interps
(P
, Nam
);
7128 -- We use Replace here because this is one of those cases
7129 -- where the parser has missclassified the node, and we fix
7130 -- things up and then do the semantic analysis on the fixed
7131 -- up node. Normally we do this using one of the Sinfo.CN
7132 -- routines, but this is too tricky for that.
7134 -- Note that using Rewrite would be wrong, because we would
7135 -- have a tree where the original node is unanalyzed, and
7136 -- this violates the required interface for ASIS.
7139 Make_Function_Call
(Sloc
(P
), Name
=> Nam
));
7141 -- Now analyze the reformatted node
7145 -- If the prefix is illegal after this transformation, there
7146 -- may be visibility errors on the prefix. The safest is to
7147 -- treat the selected component as an error.
7149 if Error_Posted
(P
) then
7150 Set_Etype
(N
, Any_Type
);
7154 Analyze_Selected_Component
(N
);
7159 -- Remaining cases generate various error messages
7162 -- Format node as expanded name, to avoid cascaded errors
7164 -- If the limited_with transformation was applied earlier, restore
7165 -- source for proper error reporting.
7167 if not Comes_From_Source
(P
)
7168 and then Nkind
(P
) = N_Explicit_Dereference
7170 Rewrite
(P
, Prefix
(P
));
7171 P_Type
:= Etype
(P
);
7174 Change_Selected_Component_To_Expanded_Name
(N
);
7175 Set_Entity
(N
, Any_Id
);
7176 Set_Etype
(N
, Any_Type
);
7178 -- Issue error message, but avoid this if error issued already.
7179 -- Use identifier of prefix if one is available.
7181 if P_Name
= Any_Id
then
7184 -- It is not an error if the prefix is the current instance of
7185 -- type name, e.g. the expression of a type aspect, when it is
7186 -- analyzed for ASIS use.
7188 elsif Is_Entity_Name
(P
) and then Is_Current_Instance
(P
) then
7191 elsif Ekind
(P_Name
) = E_Void
then
7192 Premature_Usage
(P
);
7194 elsif Nkind
(P
) /= N_Attribute_Reference
then
7196 -- This may have been meant as a prefixed call to a primitive
7197 -- of an untagged type. If it is a function call check type of
7198 -- its first formal and add explanation.
7201 F
: constant Entity_Id
:=
7202 Current_Entity
(Selector_Name
(N
));
7205 and then Is_Overloadable
(F
)
7206 and then Present
(First_Entity
(F
))
7207 and then not Is_Tagged_Type
(Etype
(First_Entity
(F
)))
7210 ("prefixed call is only allowed for objects of a "
7211 & "tagged type", N
);
7215 Error_Msg_N
("invalid prefix in selected component&", P
);
7217 if Is_Access_Type
(P_Type
)
7218 and then Ekind
(Designated_Type
(P_Type
)) = E_Incomplete_Type
7221 ("\dereference must not be of an incomplete type "
7222 & "(RM 3.10.1)", P
);
7226 Error_Msg_N
("invalid prefix in selected component", P
);
7230 -- Selector name is restricted in SPARK
7232 if Nkind
(N
) = N_Expanded_Name
7233 and then Restriction_Check_Required
(SPARK_05
)
7235 if Is_Subprogram
(P_Name
) then
7236 Check_SPARK_05_Restriction
7237 ("prefix of expanded name cannot be a subprogram", P
);
7238 elsif Ekind
(P_Name
) = E_Loop
then
7239 Check_SPARK_05_Restriction
7240 ("prefix of expanded name cannot be a loop statement", P
);
7245 -- If prefix is not the name of an entity, it must be an expression,
7246 -- whose type is appropriate for a record. This is determined by
7249 Analyze_Selected_Component
(N
);
7252 Analyze_Dimension
(N
);
7253 end Find_Selected_Component
;
7259 procedure Find_Type
(N
: Node_Id
) is
7269 elsif Nkind
(N
) = N_Attribute_Reference
then
7271 -- Class attribute. This is not valid in Ada 83 mode, but we do not
7272 -- need to enforce that at this point, since the declaration of the
7273 -- tagged type in the prefix would have been flagged already.
7275 if Attribute_Name
(N
) = Name_Class
then
7276 Check_Restriction
(No_Dispatch
, N
);
7277 Find_Type
(Prefix
(N
));
7279 -- Propagate error from bad prefix
7281 if Etype
(Prefix
(N
)) = Any_Type
then
7282 Set_Entity
(N
, Any_Type
);
7283 Set_Etype
(N
, Any_Type
);
7287 T
:= Base_Type
(Entity
(Prefix
(N
)));
7289 -- Case where type is not known to be tagged. Its appearance in
7290 -- the prefix of the 'Class attribute indicates that the full view
7293 if not Is_Tagged_Type
(T
) then
7294 if Ekind
(T
) = E_Incomplete_Type
then
7296 -- It is legal to denote the class type of an incomplete
7297 -- type. The full type will have to be tagged, of course.
7298 -- In Ada 2005 this usage is declared obsolescent, so we
7299 -- warn accordingly. This usage is only legal if the type
7300 -- is completed in the current scope, and not for a limited
7303 if Ada_Version
>= Ada_2005
then
7305 -- Test whether the Available_View of a limited type view
7306 -- is tagged, since the limited view may not be marked as
7307 -- tagged if the type itself has an untagged incomplete
7308 -- type view in its package.
7310 if From_Limited_With
(T
)
7311 and then not Is_Tagged_Type
(Available_View
(T
))
7314 ("prefix of Class attribute must be tagged", N
);
7315 Set_Etype
(N
, Any_Type
);
7316 Set_Entity
(N
, Any_Type
);
7319 -- ??? This test is temporarily disabled (always
7320 -- False) because it causes an unwanted warning on
7321 -- GNAT sources (built with -gnatg, which includes
7322 -- Warn_On_Obsolescent_ Feature). Once this issue
7323 -- is cleared in the sources, it can be enabled.
7325 elsif Warn_On_Obsolescent_Feature
and then False then
7327 ("applying 'Class to an untagged incomplete type"
7328 & " is an obsolescent feature (RM J.11)?r?", N
);
7332 Set_Is_Tagged_Type
(T
);
7333 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
7334 Make_Class_Wide_Type
(T
);
7335 Set_Entity
(N
, Class_Wide_Type
(T
));
7336 Set_Etype
(N
, Class_Wide_Type
(T
));
7338 elsif Ekind
(T
) = E_Private_Type
7339 and then not Is_Generic_Type
(T
)
7340 and then In_Private_Part
(Scope
(T
))
7342 -- The Class attribute can be applied to an untagged private
7343 -- type fulfilled by a tagged type prior to the full type
7344 -- declaration (but only within the parent package's private
7345 -- part). Create the class-wide type now and check that the
7346 -- full type is tagged later during its analysis. Note that
7347 -- we do not mark the private type as tagged, unlike the
7348 -- case of incomplete types, because the type must still
7349 -- appear untagged to outside units.
7351 if No
(Class_Wide_Type
(T
)) then
7352 Make_Class_Wide_Type
(T
);
7355 Set_Entity
(N
, Class_Wide_Type
(T
));
7356 Set_Etype
(N
, Class_Wide_Type
(T
));
7359 -- Should we introduce a type Any_Tagged and use Wrong_Type
7360 -- here, it would be a bit more consistent???
7363 ("tagged type required, found}",
7364 Prefix
(N
), First_Subtype
(T
));
7365 Set_Entity
(N
, Any_Type
);
7369 -- Case of tagged type
7372 if Is_Concurrent_Type
(T
) then
7373 if No
(Corresponding_Record_Type
(Entity
(Prefix
(N
)))) then
7375 -- Previous error. Create a class-wide type for the
7376 -- synchronized type itself, with minimal semantic
7377 -- attributes, to catch other errors in some ACATS tests.
7379 pragma Assert
(Serious_Errors_Detected
> 0);
7380 Make_Class_Wide_Type
(T
);
7381 C
:= Class_Wide_Type
(T
);
7382 Set_First_Entity
(C
, First_Entity
(T
));
7385 C
:= Class_Wide_Type
7386 (Corresponding_Record_Type
(Entity
(Prefix
(N
))));
7390 C
:= Class_Wide_Type
(Entity
(Prefix
(N
)));
7393 Set_Entity_With_Checks
(N
, C
);
7394 Generate_Reference
(C
, N
);
7398 -- Base attribute, not allowed in Ada 83
7400 elsif Attribute_Name
(N
) = Name_Base
then
7401 Error_Msg_Name_1
:= Name_Base
;
7402 Check_SPARK_05_Restriction
7403 ("attribute% is only allowed as prefix of another attribute", N
);
7405 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
7407 ("(Ada 83) Base attribute not allowed in subtype mark", N
);
7410 Find_Type
(Prefix
(N
));
7411 Typ
:= Entity
(Prefix
(N
));
7413 if Ada_Version
>= Ada_95
7414 and then not Is_Scalar_Type
(Typ
)
7415 and then not Is_Generic_Type
(Typ
)
7418 ("prefix of Base attribute must be scalar type",
7421 elsif Warn_On_Redundant_Constructs
7422 and then Base_Type
(Typ
) = Typ
7424 Error_Msg_NE
-- CODEFIX
7425 ("redundant attribute, & is its own base type?r?", N
, Typ
);
7428 T
:= Base_Type
(Typ
);
7430 -- Rewrite attribute reference with type itself (see similar
7431 -- processing in Analyze_Attribute, case Base). Preserve prefix
7432 -- if present, for other legality checks.
7434 if Nkind
(Prefix
(N
)) = N_Expanded_Name
then
7436 Make_Expanded_Name
(Sloc
(N
),
7438 Prefix
=> New_Copy
(Prefix
(Prefix
(N
))),
7439 Selector_Name
=> New_Occurrence_Of
(T
, Sloc
(N
))));
7442 Rewrite
(N
, New_Occurrence_Of
(T
, Sloc
(N
)));
7449 elsif Attribute_Name
(N
) = Name_Stub_Type
then
7451 -- This is handled in Analyze_Attribute
7455 -- All other attributes are invalid in a subtype mark
7458 Error_Msg_N
("invalid attribute in subtype mark", N
);
7464 if Is_Entity_Name
(N
) then
7465 T_Name
:= Entity
(N
);
7467 Error_Msg_N
("subtype mark required in this context", N
);
7468 Set_Etype
(N
, Any_Type
);
7472 if T_Name
= Any_Id
or else Etype
(N
) = Any_Type
then
7474 -- Undefined id. Make it into a valid type
7476 Set_Entity
(N
, Any_Type
);
7478 elsif not Is_Type
(T_Name
)
7479 and then T_Name
/= Standard_Void_Type
7481 Error_Msg_Sloc
:= Sloc
(T_Name
);
7482 Error_Msg_N
("subtype mark required in this context", N
);
7483 Error_Msg_NE
("\\found & declared#", N
, T_Name
);
7484 Set_Entity
(N
, Any_Type
);
7487 -- If the type is an incomplete type created to handle
7488 -- anonymous access components of a record type, then the
7489 -- incomplete type is the visible entity and subsequent
7490 -- references will point to it. Mark the original full
7491 -- type as referenced, to prevent spurious warnings.
7493 if Is_Incomplete_Type
(T_Name
)
7494 and then Present
(Full_View
(T_Name
))
7495 and then not Comes_From_Source
(T_Name
)
7497 Set_Referenced
(Full_View
(T_Name
));
7500 T_Name
:= Get_Full_View
(T_Name
);
7502 -- Ada 2005 (AI-251, AI-50217): Handle interfaces visible through
7503 -- limited-with clauses
7505 if From_Limited_With
(T_Name
)
7506 and then Ekind
(T_Name
) in Incomplete_Kind
7507 and then Present
(Non_Limited_View
(T_Name
))
7508 and then Is_Interface
(Non_Limited_View
(T_Name
))
7510 T_Name
:= Non_Limited_View
(T_Name
);
7513 if In_Open_Scopes
(T_Name
) then
7514 if Ekind
(Base_Type
(T_Name
)) = E_Task_Type
then
7516 -- In Ada 2005, a task name can be used in an access
7517 -- definition within its own body. It cannot be used
7518 -- in the discriminant part of the task declaration,
7519 -- nor anywhere else in the declaration because entries
7520 -- cannot have access parameters.
7522 if Ada_Version
>= Ada_2005
7523 and then Nkind
(Parent
(N
)) = N_Access_Definition
7525 Set_Entity
(N
, T_Name
);
7526 Set_Etype
(N
, T_Name
);
7528 if Has_Completion
(T_Name
) then
7533 ("task type cannot be used as type mark " &
7534 "within its own declaration", N
);
7539 ("task type cannot be used as type mark " &
7540 "within its own spec or body", N
);
7543 elsif Ekind
(Base_Type
(T_Name
)) = E_Protected_Type
then
7545 -- In Ada 2005, a protected name can be used in an access
7546 -- definition within its own body.
7548 if Ada_Version
>= Ada_2005
7549 and then Nkind
(Parent
(N
)) = N_Access_Definition
7551 Set_Entity
(N
, T_Name
);
7552 Set_Etype
(N
, T_Name
);
7557 ("protected type cannot be used as type mark " &
7558 "within its own spec or body", N
);
7562 Error_Msg_N
("type declaration cannot refer to itself", N
);
7565 Set_Etype
(N
, Any_Type
);
7566 Set_Entity
(N
, Any_Type
);
7567 Set_Error_Posted
(T_Name
);
7571 Set_Entity
(N
, T_Name
);
7572 Set_Etype
(N
, T_Name
);
7576 if Present
(Etype
(N
)) and then Comes_From_Source
(N
) then
7577 if Is_Fixed_Point_Type
(Etype
(N
)) then
7578 Check_Restriction
(No_Fixed_Point
, N
);
7579 elsif Is_Floating_Point_Type
(Etype
(N
)) then
7580 Check_Restriction
(No_Floating_Point
, N
);
7583 -- A Ghost type must appear in a specific context
7585 if Is_Ghost_Entity
(Etype
(N
)) then
7586 Check_Ghost_Context
(Etype
(N
), N
);
7591 ------------------------------------
7592 -- Has_Implicit_Character_Literal --
7593 ------------------------------------
7595 function Has_Implicit_Character_Literal
(N
: Node_Id
) return Boolean is
7597 Found
: Boolean := False;
7598 P
: constant Entity_Id
:= Entity
(Prefix
(N
));
7599 Priv_Id
: Entity_Id
:= Empty
;
7602 if Ekind
(P
) = E_Package
and then not In_Open_Scopes
(P
) then
7603 Priv_Id
:= First_Private_Entity
(P
);
7606 if P
= Standard_Standard
then
7607 Change_Selected_Component_To_Expanded_Name
(N
);
7608 Rewrite
(N
, Selector_Name
(N
));
7610 Set_Etype
(Original_Node
(N
), Standard_Character
);
7614 Id
:= First_Entity
(P
);
7615 while Present
(Id
) and then Id
/= Priv_Id
loop
7616 if Is_Standard_Character_Type
(Id
) and then Is_Base_Type
(Id
) then
7618 -- We replace the node with the literal itself, resolve as a
7619 -- character, and set the type correctly.
7622 Change_Selected_Component_To_Expanded_Name
(N
);
7623 Rewrite
(N
, Selector_Name
(N
));
7626 Set_Etype
(Original_Node
(N
), Id
);
7630 -- More than one type derived from Character in given scope.
7631 -- Collect all possible interpretations.
7633 Add_One_Interp
(N
, Id
, Id
);
7641 end Has_Implicit_Character_Literal
;
7643 ----------------------
7644 -- Has_Private_With --
7645 ----------------------
7647 function Has_Private_With
(E
: Entity_Id
) return Boolean is
7648 Comp_Unit
: constant Node_Id
:= Cunit
(Current_Sem_Unit
);
7652 Item
:= First
(Context_Items
(Comp_Unit
));
7653 while Present
(Item
) loop
7654 if Nkind
(Item
) = N_With_Clause
7655 and then Private_Present
(Item
)
7656 and then Entity
(Name
(Item
)) = E
7665 end Has_Private_With
;
7667 ---------------------------
7668 -- Has_Implicit_Operator --
7669 ---------------------------
7671 function Has_Implicit_Operator
(N
: Node_Id
) return Boolean is
7672 Op_Id
: constant Name_Id
:= Chars
(Selector_Name
(N
));
7673 P
: constant Entity_Id
:= Entity
(Prefix
(N
));
7675 Priv_Id
: Entity_Id
:= Empty
;
7677 procedure Add_Implicit_Operator
7679 Op_Type
: Entity_Id
:= Empty
);
7680 -- Add implicit interpretation to node N, using the type for which a
7681 -- predefined operator exists. If the operator yields a boolean type,
7682 -- the Operand_Type is implicitly referenced by the operator, and a
7683 -- reference to it must be generated.
7685 ---------------------------
7686 -- Add_Implicit_Operator --
7687 ---------------------------
7689 procedure Add_Implicit_Operator
7691 Op_Type
: Entity_Id
:= Empty
)
7693 Predef_Op
: Entity_Id
;
7696 Predef_Op
:= Current_Entity
(Selector_Name
(N
));
7697 while Present
(Predef_Op
)
7698 and then Scope
(Predef_Op
) /= Standard_Standard
7700 Predef_Op
:= Homonym
(Predef_Op
);
7703 if Nkind
(N
) = N_Selected_Component
then
7704 Change_Selected_Component_To_Expanded_Name
(N
);
7707 -- If the context is an unanalyzed function call, determine whether
7708 -- a binary or unary interpretation is required.
7710 if Nkind
(Parent
(N
)) = N_Indexed_Component
then
7712 Is_Binary_Call
: constant Boolean :=
7714 (Next
(First
(Expressions
(Parent
(N
)))));
7715 Is_Binary_Op
: constant Boolean :=
7717 (Predef_Op
) /= Last_Entity
(Predef_Op
);
7718 Predef_Op2
: constant Entity_Id
:= Homonym
(Predef_Op
);
7721 if Is_Binary_Call
then
7722 if Is_Binary_Op
then
7723 Add_One_Interp
(N
, Predef_Op
, T
);
7725 Add_One_Interp
(N
, Predef_Op2
, T
);
7729 if not Is_Binary_Op
then
7730 Add_One_Interp
(N
, Predef_Op
, T
);
7732 Add_One_Interp
(N
, Predef_Op2
, T
);
7738 Add_One_Interp
(N
, Predef_Op
, T
);
7740 -- For operators with unary and binary interpretations, if
7741 -- context is not a call, add both
7743 if Present
(Homonym
(Predef_Op
)) then
7744 Add_One_Interp
(N
, Homonym
(Predef_Op
), T
);
7748 -- The node is a reference to a predefined operator, and
7749 -- an implicit reference to the type of its operands.
7751 if Present
(Op_Type
) then
7752 Generate_Operator_Reference
(N
, Op_Type
);
7754 Generate_Operator_Reference
(N
, T
);
7756 end Add_Implicit_Operator
;
7758 -- Start of processing for Has_Implicit_Operator
7761 if Ekind
(P
) = E_Package
and then not In_Open_Scopes
(P
) then
7762 Priv_Id
:= First_Private_Entity
(P
);
7765 Id
:= First_Entity
(P
);
7769 -- Boolean operators: an implicit declaration exists if the scope
7770 -- contains a declaration for a derived Boolean type, or for an
7771 -- array of Boolean type.
7778 while Id
/= Priv_Id
loop
7779 if Valid_Boolean_Arg
(Id
) and then Is_Base_Type
(Id
) then
7780 Add_Implicit_Operator
(Id
);
7787 -- Equality: look for any non-limited type (result is Boolean)
7792 while Id
/= Priv_Id
loop
7794 and then not Is_Limited_Type
(Id
)
7795 and then Is_Base_Type
(Id
)
7797 Add_Implicit_Operator
(Standard_Boolean
, Id
);
7804 -- Comparison operators: scalar type, or array of scalar
7811 while Id
/= Priv_Id
loop
7812 if (Is_Scalar_Type
(Id
)
7813 or else (Is_Array_Type
(Id
)
7814 and then Is_Scalar_Type
(Component_Type
(Id
))))
7815 and then Is_Base_Type
(Id
)
7817 Add_Implicit_Operator
(Standard_Boolean
, Id
);
7824 -- Arithmetic operators: any numeric type
7835 while Id
/= Priv_Id
loop
7836 if Is_Numeric_Type
(Id
) and then Is_Base_Type
(Id
) then
7837 Add_Implicit_Operator
(Id
);
7844 -- Concatenation: any one-dimensional array type
7846 when Name_Op_Concat
=>
7847 while Id
/= Priv_Id
loop
7848 if Is_Array_Type
(Id
)
7849 and then Number_Dimensions
(Id
) = 1
7850 and then Is_Base_Type
(Id
)
7852 Add_Implicit_Operator
(Id
);
7859 -- What is the others condition here? Should we be using a
7860 -- subtype of Name_Id that would restrict to operators ???
7866 -- If we fall through, then we do not have an implicit operator
7869 end Has_Implicit_Operator
;
7871 -----------------------------------
7872 -- Has_Loop_In_Inner_Open_Scopes --
7873 -----------------------------------
7875 function Has_Loop_In_Inner_Open_Scopes
(S
: Entity_Id
) return Boolean is
7877 -- Several scope stacks are maintained by Scope_Stack. The base of the
7878 -- currently active scope stack is denoted by the Is_Active_Stack_Base
7879 -- flag in the scope stack entry. Note that the scope stacks used to
7880 -- simply be delimited implicitly by the presence of Standard_Standard
7881 -- at their base, but there now are cases where this is not sufficient
7882 -- because Standard_Standard actually may appear in the middle of the
7883 -- active set of scopes.
7885 for J
in reverse 0 .. Scope_Stack
.Last
loop
7887 -- S was reached without seing a loop scope first
7889 if Scope_Stack
.Table
(J
).Entity
= S
then
7892 -- S was not yet reached, so it contains at least one inner loop
7894 elsif Ekind
(Scope_Stack
.Table
(J
).Entity
) = E_Loop
then
7898 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
7899 -- cases where Standard_Standard appears in the middle of the active
7900 -- set of scopes. This affects the declaration and overriding of
7901 -- private inherited operations in instantiations of generic child
7904 pragma Assert
(not Scope_Stack
.Table
(J
).Is_Active_Stack_Base
);
7907 raise Program_Error
; -- unreachable
7908 end Has_Loop_In_Inner_Open_Scopes
;
7910 --------------------
7911 -- In_Open_Scopes --
7912 --------------------
7914 function In_Open_Scopes
(S
: Entity_Id
) return Boolean is
7916 -- Several scope stacks are maintained by Scope_Stack. The base of the
7917 -- currently active scope stack is denoted by the Is_Active_Stack_Base
7918 -- flag in the scope stack entry. Note that the scope stacks used to
7919 -- simply be delimited implicitly by the presence of Standard_Standard
7920 -- at their base, but there now are cases where this is not sufficient
7921 -- because Standard_Standard actually may appear in the middle of the
7922 -- active set of scopes.
7924 for J
in reverse 0 .. Scope_Stack
.Last
loop
7925 if Scope_Stack
.Table
(J
).Entity
= S
then
7929 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
7930 -- cases where Standard_Standard appears in the middle of the active
7931 -- set of scopes. This affects the declaration and overriding of
7932 -- private inherited operations in instantiations of generic child
7935 exit when Scope_Stack
.Table
(J
).Is_Active_Stack_Base
;
7941 -----------------------------
7942 -- Inherit_Renamed_Profile --
7943 -----------------------------
7945 procedure Inherit_Renamed_Profile
(New_S
: Entity_Id
; Old_S
: Entity_Id
) is
7952 if Ekind
(Old_S
) = E_Operator
then
7953 New_F
:= First_Formal
(New_S
);
7955 while Present
(New_F
) loop
7956 Set_Etype
(New_F
, Base_Type
(Etype
(New_F
)));
7957 Next_Formal
(New_F
);
7960 Set_Etype
(New_S
, Base_Type
(Etype
(New_S
)));
7963 New_F
:= First_Formal
(New_S
);
7964 Old_F
:= First_Formal
(Old_S
);
7966 while Present
(New_F
) loop
7967 New_T
:= Etype
(New_F
);
7968 Old_T
:= Etype
(Old_F
);
7970 -- If the new type is a renaming of the old one, as is the case
7971 -- for actuals in instances, retain its name, to simplify later
7974 if Nkind
(Parent
(New_T
)) = N_Subtype_Declaration
7975 and then Is_Entity_Name
(Subtype_Indication
(Parent
(New_T
)))
7976 and then Entity
(Subtype_Indication
(Parent
(New_T
))) = Old_T
7980 Set_Etype
(New_F
, Old_T
);
7983 Next_Formal
(New_F
);
7984 Next_Formal
(Old_F
);
7987 pragma Assert
(No
(Old_F
));
7989 if Ekind_In
(Old_S
, E_Function
, E_Enumeration_Literal
) then
7990 Set_Etype
(New_S
, Etype
(Old_S
));
7993 end Inherit_Renamed_Profile
;
7999 procedure Initialize
is
8004 -------------------------
8005 -- Install_Use_Clauses --
8006 -------------------------
8008 procedure Install_Use_Clauses
8010 Force_Installation
: Boolean := False)
8018 while Present
(U
) loop
8020 -- Case of USE package
8022 if Nkind
(U
) = N_Use_Package_Clause
then
8023 P
:= First
(Names
(U
));
8024 while Present
(P
) loop
8027 if Ekind
(Id
) = E_Package
then
8029 Note_Redundant_Use
(P
);
8031 elsif Present
(Renamed_Object
(Id
))
8032 and then In_Use
(Renamed_Object
(Id
))
8034 Note_Redundant_Use
(P
);
8036 elsif Force_Installation
or else Applicable_Use
(P
) then
8037 Use_One_Package
(Id
, U
);
8048 P
:= First
(Subtype_Marks
(U
));
8049 while Present
(P
) loop
8050 if not Is_Entity_Name
(P
)
8051 or else No
(Entity
(P
))
8055 elsif Entity
(P
) /= Any_Type
then
8063 Next_Use_Clause
(U
);
8065 end Install_Use_Clauses
;
8067 -------------------------------------
8068 -- Is_Appropriate_For_Entry_Prefix --
8069 -------------------------------------
8071 function Is_Appropriate_For_Entry_Prefix
(T
: Entity_Id
) return Boolean is
8072 P_Type
: Entity_Id
:= T
;
8075 if Is_Access_Type
(P_Type
) then
8076 P_Type
:= Designated_Type
(P_Type
);
8079 return Is_Task_Type
(P_Type
) or else Is_Protected_Type
(P_Type
);
8080 end Is_Appropriate_For_Entry_Prefix
;
8082 -------------------------------
8083 -- Is_Appropriate_For_Record --
8084 -------------------------------
8086 function Is_Appropriate_For_Record
(T
: Entity_Id
) return Boolean is
8088 function Has_Components
(T1
: Entity_Id
) return Boolean;
8089 -- Determine if given type has components (i.e. is either a record
8090 -- type or a type that has discriminants).
8092 --------------------
8093 -- Has_Components --
8094 --------------------
8096 function Has_Components
(T1
: Entity_Id
) return Boolean is
8098 return Is_Record_Type
(T1
)
8099 or else (Is_Private_Type
(T1
) and then Has_Discriminants
(T1
))
8100 or else (Is_Task_Type
(T1
) and then Has_Discriminants
(T1
))
8101 or else (Is_Incomplete_Type
(T1
)
8102 and then From_Limited_With
(T1
)
8103 and then Present
(Non_Limited_View
(T1
))
8104 and then Is_Record_Type
8105 (Get_Full_View
(Non_Limited_View
(T1
))));
8108 -- Start of processing for Is_Appropriate_For_Record
8113 and then (Has_Components
(T
)
8114 or else (Is_Access_Type
(T
)
8115 and then Has_Components
(Designated_Type
(T
))));
8116 end Is_Appropriate_For_Record
;
8118 ------------------------
8119 -- Note_Redundant_Use --
8120 ------------------------
8122 procedure Note_Redundant_Use
(Clause
: Node_Id
) is
8123 Pack_Name
: constant Entity_Id
:= Entity
(Clause
);
8124 Cur_Use
: constant Node_Id
:= Current_Use_Clause
(Pack_Name
);
8125 Decl
: constant Node_Id
:= Parent
(Clause
);
8127 Prev_Use
: Node_Id
:= Empty
;
8128 Redundant
: Node_Id
:= Empty
;
8129 -- The Use_Clause which is actually redundant. In the simplest case it
8130 -- is Pack itself, but when we compile a body we install its context
8131 -- before that of its spec, in which case it is the use_clause in the
8132 -- spec that will appear to be redundant, and we want the warning to be
8133 -- placed on the body. Similar complications appear when the redundancy
8134 -- is between a child unit and one of its ancestors.
8137 Set_Redundant_Use
(Clause
, True);
8139 if not Comes_From_Source
(Clause
)
8141 or else not Warn_On_Redundant_Constructs
8146 if not Is_Compilation_Unit
(Current_Scope
) then
8148 -- If the use_clause is in an inner scope, it is made redundant by
8149 -- some clause in the current context, with one exception: If we're
8150 -- compiling a nested package body, and the use_clause comes from the
8151 -- corresponding spec, the clause is not necessarily fully redundant,
8152 -- so we should not warn. If a warning was warranted, it would have
8153 -- been given when the spec was processed.
8155 if Nkind
(Parent
(Decl
)) = N_Package_Specification
then
8157 Package_Spec_Entity
: constant Entity_Id
:=
8158 Defining_Unit_Name
(Parent
(Decl
));
8160 if In_Package_Body
(Package_Spec_Entity
) then
8166 Redundant
:= Clause
;
8167 Prev_Use
:= Cur_Use
;
8169 elsif Nkind
(Unit
(Cunit
(Current_Sem_Unit
))) = N_Package_Body
then
8171 Cur_Unit
: constant Unit_Number_Type
:= Get_Source_Unit
(Cur_Use
);
8172 New_Unit
: constant Unit_Number_Type
:= Get_Source_Unit
(Clause
);
8176 if Cur_Unit
= New_Unit
then
8178 -- Redundant clause in same body
8180 Redundant
:= Clause
;
8181 Prev_Use
:= Cur_Use
;
8183 elsif Cur_Unit
= Current_Sem_Unit
then
8185 -- If the new clause is not in the current unit it has been
8186 -- analyzed first, and it makes the other one redundant.
8187 -- However, if the new clause appears in a subunit, Cur_Unit
8188 -- is still the parent, and in that case the redundant one
8189 -- is the one appearing in the subunit.
8191 if Nkind
(Unit
(Cunit
(New_Unit
))) = N_Subunit
then
8192 Redundant
:= Clause
;
8193 Prev_Use
:= Cur_Use
;
8195 -- Most common case: redundant clause in body,
8196 -- original clause in spec. Current scope is spec entity.
8201 Unit
(Library_Unit
(Cunit
(Current_Sem_Unit
))))
8203 Redundant
:= Cur_Use
;
8207 -- The new clause may appear in an unrelated unit, when
8208 -- the parents of a generic are being installed prior to
8209 -- instantiation. In this case there must be no warning.
8210 -- We detect this case by checking whether the current top
8211 -- of the stack is related to the current compilation.
8213 Scop
:= Current_Scope
;
8214 while Present
(Scop
) and then Scop
/= Standard_Standard
loop
8215 if Is_Compilation_Unit
(Scop
)
8216 and then not Is_Child_Unit
(Scop
)
8220 elsif Scop
= Cunit_Entity
(Current_Sem_Unit
) then
8224 Scop
:= Scope
(Scop
);
8227 Redundant
:= Cur_Use
;
8231 elsif New_Unit
= Current_Sem_Unit
then
8232 Redundant
:= Clause
;
8233 Prev_Use
:= Cur_Use
;
8236 -- Neither is the current unit, so they appear in parent or
8237 -- sibling units. Warning will be emitted elsewhere.
8243 elsif Nkind
(Unit
(Cunit
(Current_Sem_Unit
))) = N_Package_Declaration
8244 and then Present
(Parent_Spec
(Unit
(Cunit
(Current_Sem_Unit
))))
8246 -- Use_clause is in child unit of current unit, and the child unit
8247 -- appears in the context of the body of the parent, so it has been
8248 -- installed first, even though it is the redundant one. Depending on
8249 -- their placement in the context, the visible or the private parts
8250 -- of the two units, either might appear as redundant, but the
8251 -- message has to be on the current unit.
8253 if Get_Source_Unit
(Cur_Use
) = Current_Sem_Unit
then
8254 Redundant
:= Cur_Use
;
8257 Redundant
:= Clause
;
8258 Prev_Use
:= Cur_Use
;
8261 -- If the new use clause appears in the private part of a parent unit
8262 -- it may appear to be redundant w.r.t. a use clause in a child unit,
8263 -- but the previous use clause was needed in the visible part of the
8264 -- child, and no warning should be emitted.
8266 if Nkind
(Parent
(Decl
)) = N_Package_Specification
8268 List_Containing
(Decl
) = Private_Declarations
(Parent
(Decl
))
8271 Par
: constant Entity_Id
:= Defining_Entity
(Parent
(Decl
));
8272 Spec
: constant Node_Id
:=
8273 Specification
(Unit
(Cunit
(Current_Sem_Unit
)));
8276 if Is_Compilation_Unit
(Par
)
8277 and then Par
/= Cunit_Entity
(Current_Sem_Unit
)
8278 and then Parent
(Cur_Use
) = Spec
8280 List_Containing
(Cur_Use
) = Visible_Declarations
(Spec
)
8287 -- Finally, if the current use clause is in the context then
8288 -- the clause is redundant when it is nested within the unit.
8290 elsif Nkind
(Parent
(Cur_Use
)) = N_Compilation_Unit
8291 and then Nkind
(Parent
(Parent
(Clause
))) /= N_Compilation_Unit
8292 and then Get_Source_Unit
(Cur_Use
) = Get_Source_Unit
(Clause
)
8294 Redundant
:= Clause
;
8295 Prev_Use
:= Cur_Use
;
8301 if Present
(Redundant
) then
8302 Error_Msg_Sloc
:= Sloc
(Prev_Use
);
8303 Error_Msg_NE
-- CODEFIX
8304 ("& is already use-visible through previous use clause #??",
8305 Redundant
, Pack_Name
);
8307 end Note_Redundant_Use
;
8313 procedure Pop_Scope
is
8314 SST
: Scope_Stack_Entry
renames Scope_Stack
.Table
(Scope_Stack
.Last
);
8315 S
: constant Entity_Id
:= SST
.Entity
;
8318 if Debug_Flag_E
then
8322 -- Set Default_Storage_Pool field of the library unit if necessary
8324 if Ekind_In
(S
, E_Package
, E_Generic_Package
)
8326 Nkind
(Parent
(Unit_Declaration_Node
(S
))) = N_Compilation_Unit
8329 Aux
: constant Node_Id
:=
8330 Aux_Decls_Node
(Parent
(Unit_Declaration_Node
(S
)));
8332 if No
(Default_Storage_Pool
(Aux
)) then
8333 Set_Default_Storage_Pool
(Aux
, Default_Pool
);
8338 Scope_Suppress
:= SST
.Save_Scope_Suppress
;
8339 Local_Suppress_Stack_Top
:= SST
.Save_Local_Suppress_Stack_Top
;
8340 Check_Policy_List
:= SST
.Save_Check_Policy_List
;
8341 Default_Pool
:= SST
.Save_Default_Storage_Pool
;
8342 No_Tagged_Streams
:= SST
.Save_No_Tagged_Streams
;
8343 SPARK_Mode
:= SST
.Save_SPARK_Mode
;
8344 SPARK_Mode_Pragma
:= SST
.Save_SPARK_Mode_Pragma
;
8345 Default_SSO
:= SST
.Save_Default_SSO
;
8346 Uneval_Old
:= SST
.Save_Uneval_Old
;
8348 if Debug_Flag_W
then
8349 Write_Str
("<-- exiting scope: ");
8350 Write_Name
(Chars
(Current_Scope
));
8351 Write_Str
(", Depth=");
8352 Write_Int
(Int
(Scope_Stack
.Last
));
8356 End_Use_Clauses
(SST
.First_Use_Clause
);
8358 -- If the actions to be wrapped are still there they will get lost
8359 -- causing incomplete code to be generated. It is better to abort in
8360 -- this case (and we do the abort even with assertions off since the
8361 -- penalty is incorrect code generation).
8363 if SST
.Actions_To_Be_Wrapped
/= Scope_Actions
'(others => No_List) then
8364 raise Program_Error;
8367 -- Free last subprogram name if allocated, and pop scope
8369 Free (SST.Last_Subprogram_Name);
8370 Scope_Stack.Decrement_Last;
8377 procedure Push_Scope (S : Entity_Id) is
8378 E : constant Entity_Id := Scope (S);
8381 if Ekind (S) = E_Void then
8384 -- Set scope depth if not a non-concurrent type, and we have not yet set
8385 -- the scope depth. This means that we have the first occurrence of the
8386 -- scope, and this is where the depth is set.
8388 elsif (not Is_Type (S) or else Is_Concurrent_Type (S))
8389 and then not Scope_Depth_Set (S)
8391 if S = Standard_Standard then
8392 Set_Scope_Depth_Value (S, Uint_0);
8394 elsif Is_Child_Unit (S) then
8395 Set_Scope_Depth_Value (S, Uint_1);
8397 elsif not Is_Record_Type (Current_Scope) then
8398 if Ekind (S) = E_Loop then
8399 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope));
8401 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope) + 1);
8406 Scope_Stack.Increment_Last;
8409 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8413 SST.Save_Scope_Suppress := Scope_Suppress;
8414 SST.Save_Local_Suppress_Stack_Top := Local_Suppress_Stack_Top;
8415 SST.Save_Check_Policy_List := Check_Policy_List;
8416 SST.Save_Default_Storage_Pool := Default_Pool;
8417 SST.Save_No_Tagged_Streams := No_Tagged_Streams;
8418 SST.Save_SPARK_Mode := SPARK_Mode;
8419 SST.Save_SPARK_Mode_Pragma := SPARK_Mode_Pragma;
8420 SST.Save_Default_SSO := Default_SSO;
8421 SST.Save_Uneval_Old := Uneval_Old;
8423 -- Each new scope pushed onto the scope stack inherits the component
8424 -- alignment of the previous scope. This emulates the "visibility"
8425 -- semantics of pragma Component_Alignment.
8427 if Scope_Stack.Last > Scope_Stack.First then
8428 SST.Component_Alignment_Default :=
8430 (Scope_Stack.Last - 1). Component_Alignment_Default;
8432 -- Otherwise, this is the first scope being pushed on the scope
8433 -- stack. Inherit the component alignment from the configuration
8434 -- form of pragma Component_Alignment (if any).
8437 SST.Component_Alignment_Default :=
8438 Configuration_Component_Alignment;
8441 SST.Last_Subprogram_Name := null;
8442 SST.Is_Transient := False;
8443 SST.Node_To_Be_Wrapped := Empty;
8444 SST.Pending_Freeze_Actions := No_List;
8445 SST.Actions_To_Be_Wrapped := (others => No_List);
8446 SST.First_Use_Clause := Empty;
8447 SST.Is_Active_Stack_Base := False;
8448 SST.Previous_Visibility := False;
8449 SST.Locked_Shared_Objects := No_Elist;
8452 if Debug_Flag_W then
8453 Write_Str ("--> new scope: ");
8454 Write_Name (Chars (Current_Scope));
8455 Write_Str (", Id=");
8456 Write_Int (Int (Current_Scope));
8457 Write_Str (", Depth=");
8458 Write_Int (Int (Scope_Stack.Last));
8462 -- Deal with copying flags from the previous scope to this one. This is
8463 -- not necessary if either scope is standard, or if the new scope is a
8466 if S /= Standard_Standard
8467 and then Scope (S) /= Standard_Standard
8468 and then not Is_Child_Unit (S)
8470 if Nkind (E) not in N_Entity then
8474 -- Copy categorization flags from Scope (S) to S, this is not done
8475 -- when Scope (S) is Standard_Standard since propagation is from
8476 -- library unit entity inwards. Copy other relevant attributes as
8477 -- well (Discard_Names in particular).
8479 -- We only propagate inwards for library level entities,
8480 -- inner level subprograms do not inherit the categorization.
8482 if Is_Library_Level_Entity (S) then
8483 Set_Is_Preelaborated (S, Is_Preelaborated (E));
8484 Set_Is_Shared_Passive (S, Is_Shared_Passive (E));
8485 Set_Discard_Names (S, Discard_Names (E));
8486 Set_Suppress_Value_Tracking_On_Call
8487 (S, Suppress_Value_Tracking_On_Call (E));
8488 Set_Categorization_From_Scope (E => S, Scop => E);
8492 if Is_Child_Unit (S)
8493 and then Present (E)
8494 and then Ekind_In (E, E_Package, E_Generic_Package)
8496 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
8499 Aux : constant Node_Id :=
8500 Aux_Decls_Node (Parent (Unit_Declaration_Node (E)));
8502 if Present (Default_Storage_Pool (Aux)) then
8503 Default_Pool := Default_Storage_Pool (Aux);
8509 ---------------------
8510 -- Premature_Usage --
8511 ---------------------
8513 procedure Premature_Usage (N : Node_Id) is
8514 Kind : constant Node_Kind := Nkind (Parent (Entity (N)));
8515 E : Entity_Id := Entity (N);
8518 -- Within an instance, the analysis of the actual for a formal object
8519 -- does not see the name of the object itself. This is significant only
8520 -- if the object is an aggregate, where its analysis does not do any
8521 -- name resolution on component associations. (see 4717-008). In such a
8522 -- case, look for the visible homonym on the chain.
8524 if In_Instance and then Present (Homonym (E)) then
8526 while Present (E) and then not In_Open_Scopes (Scope (E)) loop
8532 Set_Etype (N, Etype (E));
8537 if Kind = N_Component_Declaration then
8539 ("component&! cannot be used before end of record declaration", N);
8541 elsif Kind = N_Parameter_Specification then
8543 ("formal parameter&! cannot be used before end of specification",
8546 elsif Kind = N_Discriminant_Specification then
8548 ("discriminant&! cannot be used before end of discriminant part",
8551 elsif Kind = N_Procedure_Specification
8552 or else Kind = N_Function_Specification
8555 ("subprogram&! cannot be used before end of its declaration",
8558 elsif Kind = N_Full_Type_Declaration then
8560 ("type& cannot be used before end of its declaration!", N);
8564 ("object& cannot be used before end of its declaration!", N);
8566 -- If the premature reference appears as the expression in its own
8567 -- declaration, rewrite it to prevent compiler loops in subsequent
8568 -- uses of this mangled declaration in address clauses.
8570 if Nkind (Parent (N)) = N_Object_Declaration then
8571 Set_Entity (N, Any_Id);
8574 end Premature_Usage;
8576 ------------------------
8577 -- Present_System_Aux --
8578 ------------------------
8580 function Present_System_Aux (N : Node_Id := Empty) return Boolean is
8582 Aux_Name : Unit_Name_Type;
8583 Unum : Unit_Number_Type;
8588 function Find_System (C_Unit : Node_Id) return Entity_Id;
8589 -- Scan context clause of compilation unit to find with_clause
8596 function Find_System (C_Unit : Node_Id) return Entity_Id is
8597 With_Clause : Node_Id;
8600 With_Clause := First (Context_Items (C_Unit));
8601 while Present (With_Clause) loop
8602 if (Nkind (With_Clause) = N_With_Clause
8603 and then Chars (Name (With_Clause)) = Name_System)
8604 and then Comes_From_Source (With_Clause)
8615 -- Start of processing for Present_System_Aux
8618 -- The child unit may have been loaded and analyzed already
8620 if Present (System_Aux_Id) then
8623 -- If no previous pragma for System.Aux, nothing to load
8625 elsif No (System_Extend_Unit) then
8628 -- Use the unit name given in the pragma to retrieve the unit.
8629 -- Verify that System itself appears in the context clause of the
8630 -- current compilation. If System is not present, an error will
8631 -- have been reported already.
8634 With_Sys := Find_System (Cunit (Current_Sem_Unit));
8636 The_Unit := Unit (Cunit (Current_Sem_Unit));
8640 (Nkind (The_Unit) = N_Package_Body
8641 or else (Nkind (The_Unit) = N_Subprogram_Body
8642 and then not Acts_As_Spec (Cunit (Current_Sem_Unit))))
8644 With_Sys := Find_System (Library_Unit (Cunit (Current_Sem_Unit)));
8647 if No (With_Sys) and then Present (N) then
8649 -- If we are compiling a subunit, we need to examine its
8650 -- context as well (Current_Sem_Unit is the parent unit);
8652 The_Unit := Parent (N);
8653 while Nkind (The_Unit) /= N_Compilation_Unit loop
8654 The_Unit := Parent (The_Unit);
8657 if Nkind (Unit (The_Unit)) = N_Subunit then
8658 With_Sys := Find_System (The_Unit);
8662 if No (With_Sys) then
8666 Loc := Sloc (With_Sys);
8667 Get_Name_String (Chars (Expression (System_Extend_Unit)));
8668 Name_Buffer (8 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
8669 Name_Buffer (1 .. 7) := "system.";
8670 Name_Buffer (Name_Len + 8) := '%';
8671 Name_Buffer (Name_Len + 9) := 's
';
8672 Name_Len := Name_Len + 9;
8673 Aux_Name := Name_Find;
8677 (Load_Name => Aux_Name,
8680 Error_Node => With_Sys);
8682 if Unum /= No_Unit then
8683 Semantics (Cunit (Unum));
8685 Defining_Entity (Specification (Unit (Cunit (Unum))));
8688 Make_With_Clause (Loc,
8690 Make_Expanded_Name (Loc,
8691 Chars => Chars (System_Aux_Id),
8692 Prefix => New_Occurrence_Of (Scope (System_Aux_Id), Loc),
8693 Selector_Name => New_Occurrence_Of (System_Aux_Id, Loc)));
8695 Set_Entity (Name (Withn), System_Aux_Id);
8697 Set_Library_Unit (Withn, Cunit (Unum));
8698 Set_Corresponding_Spec (Withn, System_Aux_Id);
8699 Set_First_Name (Withn, True);
8700 Set_Implicit_With (Withn, True);
8702 Insert_After (With_Sys, Withn);
8703 Mark_Rewrite_Insertion (Withn);
8704 Set_Context_Installed (Withn);
8708 -- Here if unit load failed
8711 Error_Msg_Name_1 := Name_System;
8712 Error_Msg_Name_2 := Chars (Expression (System_Extend_Unit));
8714 ("extension package `%.%` does not exist",
8715 Opt.System_Extend_Unit);
8719 end Present_System_Aux;
8721 -------------------------
8722 -- Restore_Scope_Stack --
8723 -------------------------
8725 procedure Restore_Scope_Stack
8727 Handle_Use : Boolean := True)
8729 SS_Last : constant Int := Scope_Stack.Last;
8733 -- Restore visibility of previous scope stack, if any, using the list
8734 -- we saved (we use Remove, since this list will not be used again).
8737 Elmt := Last_Elmt (List);
8738 exit when Elmt = No_Elmt;
8739 Set_Is_Immediately_Visible (Node (Elmt));
8740 Remove_Last_Elmt (List);
8743 -- Restore use clauses
8745 if SS_Last >= Scope_Stack.First
8746 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8749 Install_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
8751 end Restore_Scope_Stack;
8753 ----------------------
8754 -- Save_Scope_Stack --
8755 ----------------------
8757 -- Save_Scope_Stack/Restore_Scope_Stack were originally designed to avoid
8758 -- consuming any memory. That is, Save_Scope_Stack took care of removing
8759 -- from immediate visibility entities and Restore_Scope_Stack took care
8760 -- of restoring their visibility analyzing the context of each entity. The
8761 -- problem of such approach is that it was fragile and caused unexpected
8762 -- visibility problems, and indeed one test was found where there was a
8765 -- Furthermore, the following experiment was carried out:
8767 -- - Save_Scope_Stack was modified to store in an Elist1 all those
8768 -- entities whose attribute Is_Immediately_Visible is modified
8769 -- from True to False.
8771 -- - Restore_Scope_Stack was modified to store in another Elist2
8772 -- all the entities whose attribute Is_Immediately_Visible is
8773 -- modified from False to True.
8775 -- - Extra code was added to verify that all the elements of Elist1
8776 -- are found in Elist2
8778 -- This test shows that there may be more occurrences of this problem which
8779 -- have not yet been detected. As a result, we replaced that approach by
8780 -- the current one in which Save_Scope_Stack returns the list of entities
8781 -- whose visibility is changed, and that list is passed to Restore_Scope_
8782 -- Stack to undo that change. This approach is simpler and safer, although
8783 -- it consumes more memory.
8785 function Save_Scope_Stack (Handle_Use : Boolean := True) return Elist_Id is
8786 Result : constant Elist_Id := New_Elmt_List;
8789 SS_Last : constant Int := Scope_Stack.Last;
8791 procedure Remove_From_Visibility (E : Entity_Id);
8792 -- If E is immediately visible then append it to the result and remove
8793 -- it temporarily from visibility.
8795 ----------------------------
8796 -- Remove_From_Visibility --
8797 ----------------------------
8799 procedure Remove_From_Visibility (E : Entity_Id) is
8801 if Is_Immediately_Visible (E) then
8802 Append_Elmt (E, Result);
8803 Set_Is_Immediately_Visible (E, False);
8805 end Remove_From_Visibility;
8807 -- Start of processing for Save_Scope_Stack
8810 if SS_Last >= Scope_Stack.First
8811 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8814 End_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
8817 -- If the call is from within a compilation unit, as when called from
8818 -- Rtsfind, make current entries in scope stack invisible while we
8819 -- analyze the new unit.
8821 for J in reverse 0 .. SS_Last loop
8822 exit when Scope_Stack.Table (J).Entity = Standard_Standard
8823 or else No (Scope_Stack.Table (J).Entity);
8825 S := Scope_Stack.Table (J).Entity;
8827 Remove_From_Visibility (S);
8829 E := First_Entity (S);
8830 while Present (E) loop
8831 Remove_From_Visibility (E);
8839 end Save_Scope_Stack;
8845 procedure Set_Use (L : List_Id) is
8847 Pack_Name : Node_Id;
8854 while Present (Decl) loop
8855 if Nkind (Decl) = N_Use_Package_Clause then
8856 Chain_Use_Clause (Decl);
8858 Pack_Name := First (Names (Decl));
8859 while Present (Pack_Name) loop
8860 Pack := Entity (Pack_Name);
8862 if Ekind (Pack) = E_Package
8863 and then Applicable_Use (Pack_Name)
8865 Use_One_Package (Pack, Decl);
8871 elsif Nkind (Decl) = N_Use_Type_Clause then
8872 Chain_Use_Clause (Decl);
8874 Id := First (Subtype_Marks (Decl));
8875 while Present (Id) loop
8876 if Entity (Id) /= Any_Type then
8889 ---------------------
8890 -- Use_One_Package --
8891 ---------------------
8893 procedure Use_One_Package (P : Entity_Id; N : Node_Id) is
8896 Current_Instance : Entity_Id := Empty;
8898 Private_With_OK : Boolean := False;
8901 if Ekind (P) /= E_Package then
8906 Set_Current_Use_Clause (P, N);
8908 -- Ada 2005 (AI-50217): Check restriction
8910 if From_Limited_With (P) then
8911 Error_Msg_N ("limited withed package cannot appear in use clause", N);
8914 -- Find enclosing instance, if any
8917 Current_Instance := Current_Scope;
8918 while not Is_Generic_Instance (Current_Instance) loop
8919 Current_Instance := Scope (Current_Instance);
8922 if No (Hidden_By_Use_Clause (N)) then
8923 Set_Hidden_By_Use_Clause (N, New_Elmt_List);
8927 -- If unit is a package renaming, indicate that the renamed
8928 -- package is also in use (the flags on both entities must
8929 -- remain consistent, and a subsequent use of either of them
8930 -- should be recognized as redundant).
8932 if Present (Renamed_Object (P)) then
8933 Set_In_Use (Renamed_Object (P));
8934 Set_Current_Use_Clause (Renamed_Object (P), N);
8935 Real_P := Renamed_Object (P);
8940 -- Ada 2005 (AI-262): Check the use_clause of a private withed package
8941 -- found in the private part of a package specification
8943 if In_Private_Part (Current_Scope)
8944 and then Has_Private_With (P)
8945 and then Is_Child_Unit (Current_Scope)
8946 and then Is_Child_Unit (P)
8947 and then Is_Ancestor_Package (Scope (Current_Scope), P)
8949 Private_With_OK := True;
8952 -- Loop through entities in one package making them potentially
8955 Id := First_Entity (P);
8957 and then (Id /= First_Private_Entity (P)
8958 or else Private_With_OK) -- Ada 2005 (AI-262)
8960 Prev := Current_Entity (Id);
8961 while Present (Prev) loop
8962 if Is_Immediately_Visible (Prev)
8963 and then (not Is_Overloadable (Prev)
8964 or else not Is_Overloadable (Id)
8965 or else (Type_Conformant (Id, Prev)))
8967 if No (Current_Instance) then
8969 -- Potentially use-visible entity remains hidden
8971 goto Next_Usable_Entity;
8973 -- A use clause within an instance hides outer global entities,
8974 -- which are not used to resolve local entities in the
8975 -- instance. Note that the predefined entities in Standard
8976 -- could not have been hidden in the generic by a use clause,
8977 -- and therefore remain visible. Other compilation units whose
8978 -- entities appear in Standard must be hidden in an instance.
8980 -- To determine whether an entity is external to the instance
8981 -- we compare the scope depth of its scope with that of the
8982 -- current instance. However, a generic actual of a subprogram
8983 -- instance is declared in the wrapper package but will not be
8984 -- hidden by a use-visible entity. similarly, an entity that is
8985 -- declared in an enclosing instance will not be hidden by an
8986 -- an entity declared in a generic actual, which can only have
8987 -- been use-visible in the generic and will not have hidden the
8988 -- entity in the generic parent.
8990 -- If Id is called Standard, the predefined package with the
8991 -- same name is in the homonym chain. It has to be ignored
8992 -- because it has no defined scope (being the only entity in
8993 -- the system with this mandated behavior).
8995 elsif not Is_Hidden (Id)
8996 and then Present (Scope (Prev))
8997 and then not Is_Wrapper_Package (Scope (Prev))
8998 and then Scope_Depth (Scope (Prev)) <
8999 Scope_Depth (Current_Instance)
9000 and then (Scope (Prev) /= Standard_Standard
9001 or else Sloc (Prev) > Standard_Location)
9003 if In_Open_Scopes (Scope (Prev))
9004 and then Is_Generic_Instance (Scope (Prev))
9005 and then Present (Associated_Formal_Package (P))
9010 Set_Is_Potentially_Use_Visible (Id);
9011 Set_Is_Immediately_Visible (Prev, False);
9012 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
9016 -- A user-defined operator is not use-visible if the predefined
9017 -- operator for the type is immediately visible, which is the case
9018 -- if the type of the operand is in an open scope. This does not
9019 -- apply to user-defined operators that have operands of different
9020 -- types, because the predefined mixed mode operations (multiply
9021 -- and divide) apply to universal types and do not hide anything.
9023 elsif Ekind (Prev) = E_Operator
9024 and then Operator_Matches_Spec (Prev, Id)
9025 and then In_Open_Scopes
9026 (Scope (Base_Type (Etype (First_Formal (Id)))))
9027 and then (No (Next_Formal (First_Formal (Id)))
9028 or else Etype (First_Formal (Id)) =
9029 Etype (Next_Formal (First_Formal (Id)))
9030 or else Chars (Prev) = Name_Op_Expon)
9032 goto Next_Usable_Entity;
9034 -- In an instance, two homonyms may become use_visible through the
9035 -- actuals of distinct formal packages. In the generic, only the
9036 -- current one would have been visible, so make the other one
9039 elsif Present (Current_Instance)
9040 and then Is_Potentially_Use_Visible (Prev)
9041 and then not Is_Overloadable (Prev)
9042 and then Scope (Id) /= Scope (Prev)
9043 and then Used_As_Generic_Actual (Scope (Prev))
9044 and then Used_As_Generic_Actual (Scope (Id))
9045 and then not In_Same_List (Current_Use_Clause (Scope (Prev)),
9046 Current_Use_Clause (Scope (Id)))
9048 Set_Is_Potentially_Use_Visible (Prev, False);
9049 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
9052 Prev := Homonym (Prev);
9055 -- On exit, we know entity is not hidden, unless it is private
9057 if not Is_Hidden (Id)
9058 and then ((not Is_Child_Unit (Id)) or else Is_Visible_Lib_Unit (Id))
9060 Set_Is_Potentially_Use_Visible (Id);
9062 if Is_Private_Type (Id) and then Present (Full_View (Id)) then
9063 Set_Is_Potentially_Use_Visible (Full_View (Id));
9067 <<Next_Usable_Entity>>
9071 -- Child units are also made use-visible by a use clause, but they may
9072 -- appear after all visible declarations in the parent entity list.
9074 while Present (Id) loop
9075 if Is_Child_Unit (Id) and then Is_Visible_Lib_Unit (Id) then
9076 Set_Is_Potentially_Use_Visible (Id);
9082 if Chars (Real_P) = Name_System
9083 and then Scope (Real_P) = Standard_Standard
9084 and then Present_System_Aux (N)
9086 Use_One_Package (System_Aux_Id, N);
9089 end Use_One_Package;
9095 procedure Use_One_Type (Id : Node_Id; Installed : Boolean := False) is
9097 Is_Known_Used : Boolean;
9101 function Spec_Reloaded_For_Body return Boolean;
9102 -- Determine whether the compilation unit is a package body and the use
9103 -- type clause is in the spec of the same package. Even though the spec
9104 -- was analyzed first, its context is reloaded when analysing the body.
9106 procedure Use_Class_Wide_Operations (Typ : Entity_Id);
9107 -- AI05-150: if the use_type_clause carries the "all" qualifier,
9108 -- class-wide operations of ancestor types are use-visible if the
9109 -- ancestor type is visible.
9111 ----------------------------
9112 -- Spec_Reloaded_For_Body --
9113 ----------------------------
9115 function Spec_Reloaded_For_Body return Boolean is
9117 if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
9119 Spec : constant Node_Id :=
9120 Parent (List_Containing (Parent (Id)));
9123 -- Check whether type is declared in a package specification,
9124 -- and current unit is the corresponding package body. The
9125 -- use clauses themselves may be within a nested package.
9128 Nkind (Spec) = N_Package_Specification
9130 In_Same_Source_Unit (Corresponding_Body (Parent (Spec)),
9131 Cunit_Entity (Current_Sem_Unit));
9136 end Spec_Reloaded_For_Body;
9138 -------------------------------
9139 -- Use_Class_Wide_Operations --
9140 -------------------------------
9142 procedure Use_Class_Wide_Operations (Typ : Entity_Id) is
9146 function Is_Class_Wide_Operation_Of
9148 T : Entity_Id) return Boolean;
9149 -- Determine whether a subprogram has a class-wide parameter or
9150 -- result that is T'Class.
9152 ---------------------------------
9153 -- Is_Class_Wide_Operation_Of --
9154 ---------------------------------
9156 function Is_Class_Wide_Operation_Of
9158 T : Entity_Id) return Boolean
9163 Formal := First_Formal (Op);
9164 while Present (Formal) loop
9165 if Etype (Formal) = Class_Wide_Type (T) then
9168 Next_Formal (Formal);
9171 if Etype (Op) = Class_Wide_Type (T) then
9176 end Is_Class_Wide_Operation_Of;
9178 -- Start of processing for Use_Class_Wide_Operations
9181 Scop := Scope (Typ);
9182 if not Is_Hidden (Scop) then
9183 Ent := First_Entity (Scop);
9184 while Present (Ent) loop
9185 if Is_Overloadable (Ent)
9186 and then Is_Class_Wide_Operation_Of (Ent, Typ)
9187 and then not Is_Potentially_Use_Visible (Ent)
9189 Set_Is_Potentially_Use_Visible (Ent);
9190 Append_Elmt (Ent, Used_Operations (Parent (Id)));
9197 if Is_Derived_Type (Typ) then
9198 Use_Class_Wide_Operations (Etype (Base_Type (Typ)));
9200 end Use_Class_Wide_Operations;
9202 -- Start of processing for Use_One_Type
9205 -- It is the type determined by the subtype mark (8.4(8)) whose
9206 -- operations become potentially use-visible.
9208 T := Base_Type (Entity (Id));
9210 -- Either the type itself is used, the package where it is declared
9211 -- is in use or the entity is declared in the current package, thus
9216 or else In_Use (Scope (T))
9217 or else Scope (T) = Current_Scope;
9219 Set_Redundant_Use (Id,
9220 Is_Known_Used or else Is_Potentially_Use_Visible (T));
9222 if Ekind (T) = E_Incomplete_Type then
9223 Error_Msg_N ("premature usage of incomplete type", Id);
9225 elsif In_Open_Scopes (Scope (T)) then
9228 -- A limited view cannot appear in a use_type clause. However, an access
9229 -- type whose designated type is limited has the flag but is not itself
9230 -- a limited view unless we only have a limited view of its enclosing
9233 elsif From_Limited_With (T) and then From_Limited_With (Scope (T)) then
9235 ("incomplete type from limited view cannot appear in use clause",
9238 -- If the use clause is redundant, Used_Operations will usually be
9239 -- empty, but we need to set it to empty here in one case: If we are
9240 -- instantiating a generic library unit, then we install the ancestors
9241 -- of that unit in the scope stack, which involves reprocessing use
9242 -- clauses in those ancestors. Such a use clause will typically have a
9243 -- nonempty Used_Operations unless it was redundant in the generic unit,
9244 -- even if it is redundant at the place of the instantiation.
9246 elsif Redundant_Use (Id) then
9247 Set_Used_Operations (Parent (Id), New_Elmt_List);
9249 -- If the subtype mark designates a subtype in a different package,
9250 -- we have to check that the parent type is visible, otherwise the
9251 -- use type clause is a noop. Not clear how to do that???
9256 -- If T is tagged, primitive operators on class-wide operands
9257 -- are also available.
9259 if Is_Tagged_Type (T) then
9260 Set_In_Use (Class_Wide_Type (T));
9263 Set_Current_Use_Clause (T, Parent (Id));
9265 -- Iterate over primitive operations of the type. If an operation is
9266 -- already use_visible, it is the result of a previous use_clause,
9267 -- and already appears on the corresponding entity chain. If the
9268 -- clause is being reinstalled, operations are already use-visible.
9274 Op_List := Collect_Primitive_Operations (T);
9275 Elmt := First_Elmt (Op_List);
9276 while Present (Elmt) loop
9277 if (Nkind (Node (Elmt)) = N_Defining_Operator_Symbol
9278 or else Chars (Node (Elmt)) in Any_Operator_Name)
9279 and then not Is_Hidden (Node (Elmt))
9280 and then not Is_Potentially_Use_Visible (Node (Elmt))
9282 Set_Is_Potentially_Use_Visible (Node (Elmt));
9283 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
9285 elsif Ada_Version >= Ada_2012
9286 and then All_Present (Parent (Id))
9287 and then not Is_Hidden (Node (Elmt))
9288 and then not Is_Potentially_Use_Visible (Node (Elmt))
9290 Set_Is_Potentially_Use_Visible (Node (Elmt));
9291 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
9298 if Ada_Version >= Ada_2012
9299 and then All_Present (Parent (Id))
9300 and then Is_Tagged_Type (T)
9302 Use_Class_Wide_Operations (T);
9306 -- If warning on redundant constructs, check for unnecessary WITH
9308 if Warn_On_Redundant_Constructs
9309 and then Is_Known_Used
9311 -- with P; with P; use P;
9312 -- package P is package X is package body X is
9313 -- type T ... use P.T;
9315 -- The compilation unit is the body of X. GNAT first compiles the
9316 -- spec of X, then proceeds to the body. At that point P is marked
9317 -- as use visible. The analysis then reinstalls the spec along with
9318 -- its context. The use clause P.T is now recognized as redundant,
9319 -- but in the wrong context. Do not emit a warning in such cases.
9320 -- Do not emit a warning either if we are in an instance, there is
9321 -- no redundancy between an outer use_clause and one that appears
9322 -- within the generic.
9324 and then not Spec_Reloaded_For_Body
9325 and then not In_Instance
9327 -- The type already has a use clause
9331 -- Case where we know the current use clause for the type
9333 if Present (Current_Use_Clause (T)) then
9334 Use_Clause_Known : declare
9335 Clause1 : constant Node_Id := Parent (Id);
9336 Clause2 : constant Node_Id := Current_Use_Clause (T);
9343 function Entity_Of_Unit (U : Node_Id) return Entity_Id;
9344 -- Return the appropriate entity for determining which unit
9345 -- has a deeper scope: the defining entity for U, unless U
9346 -- is a package instance, in which case we retrieve the
9347 -- entity of the instance spec.
9349 --------------------
9350 -- Entity_Of_Unit --
9351 --------------------
9353 function Entity_Of_Unit (U : Node_Id) return Entity_Id is
9355 if Nkind (U) = N_Package_Instantiation
9356 and then Analyzed (U)
9358 return Defining_Entity (Instance_Spec (U));
9360 return Defining_Entity (U);
9364 -- Start of processing for Use_Clause_Known
9367 -- If both current use type clause and the use type clause
9368 -- for the type are at the compilation unit level, one of
9369 -- the units must be an ancestor of the other, and the
9370 -- warning belongs on the descendant.
9372 if Nkind (Parent (Clause1)) = N_Compilation_Unit
9374 Nkind (Parent (Clause2)) = N_Compilation_Unit
9376 -- If the unit is a subprogram body that acts as spec,
9377 -- the context clause is shared with the constructed
9378 -- subprogram spec. Clearly there is no redundancy.
9380 if Clause1 = Clause2 then
9384 Unit1 := Unit (Parent (Clause1));
9385 Unit2 := Unit (Parent (Clause2));
9387 -- If both clauses are on same unit, or one is the body
9388 -- of the other, or one of them is in a subunit, report
9389 -- redundancy on the later one.
9391 if Unit1 = Unit2 then
9392 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9393 Error_Msg_NE -- CODEFIX
9394 ("& is already use-visible through previous "
9395 & "use_type_clause #??", Clause1, T);
9398 elsif Nkind (Unit1) = N_Subunit then
9399 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9400 Error_Msg_NE -- CODEFIX
9401 ("& is already use-visible through previous "
9402 & "use_type_clause #??", Clause1, T);
9405 elsif Nkind_In (Unit2, N_Package_Body, N_Subprogram_Body)
9406 and then Nkind (Unit1) /= Nkind (Unit2)
9407 and then Nkind (Unit1) /= N_Subunit
9409 Error_Msg_Sloc := Sloc (Clause1);
9410 Error_Msg_NE -- CODEFIX
9411 ("& is already use-visible through previous "
9412 & "use_type_clause #??", Current_Use_Clause (T), T);
9416 -- There is a redundant use type clause in a child unit.
9417 -- Determine which of the units is more deeply nested.
9418 -- If a unit is a package instance, retrieve the entity
9419 -- and its scope from the instance spec.
9421 Ent1 := Entity_Of_Unit (Unit1);
9422 Ent2 := Entity_Of_Unit (Unit2);
9424 if Scope (Ent2) = Standard_Standard then
9425 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9428 elsif Scope (Ent1) = Standard_Standard then
9429 Error_Msg_Sloc := Sloc (Id);
9432 -- If both units are child units, we determine which one
9433 -- is the descendant by the scope distance to the
9434 -- ultimate parent unit.
9444 and then Present (S2)
9445 and then S1 /= Standard_Standard
9446 and then S2 /= Standard_Standard
9452 if S1 = Standard_Standard then
9453 Error_Msg_Sloc := Sloc (Id);
9456 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9462 Error_Msg_NE -- CODEFIX
9463 ("& is already use-visible through previous "
9464 & "use_type_clause #??", Err_No, Id);
9466 -- Case where current use type clause and the use type
9467 -- clause for the type are not both at the compilation unit
9468 -- level. In this case we don't have location information.
9471 Error_Msg_NE -- CODEFIX
9472 ("& is already use-visible through previous "
9473 & "use type clause??", Id, T);
9475 end Use_Clause_Known;
9477 -- Here if Current_Use_Clause is not set for T, another case
9478 -- where we do not have the location information available.
9481 Error_Msg_NE -- CODEFIX
9482 ("& is already use-visible through previous "
9483 & "use type clause??", Id, T);
9486 -- The package where T is declared is already used
9488 elsif In_Use (Scope (T)) then
9489 Error_Msg_Sloc := Sloc (Current_Use_Clause (Scope (T)));
9490 Error_Msg_NE -- CODEFIX
9491 ("& is already use-visible through package use clause #??",
9494 -- The current scope is the package where T is declared
9497 Error_Msg_Node_2 := Scope (T);
9498 Error_Msg_NE -- CODEFIX
9499 ("& is already use-visible inside package &??", Id, T);
9508 procedure Write_Info is
9509 Id : Entity_Id := First_Entity (Current_Scope);
9512 -- No point in dumping standard entities
9514 if Current_Scope = Standard_Standard then
9518 Write_Str ("========================================================");
9520 Write_Str (" Defined Entities in ");
9521 Write_Name (Chars (Current_Scope));
9523 Write_Str ("========================================================");
9527 Write_Str ("-- none --");
9531 while Present (Id) loop
9532 Write_Entity_Info (Id, " ");
9537 if Scope (Current_Scope) = Standard_Standard then
9539 -- Print information on the current unit itself
9541 Write_Entity_Info (Current_Scope, " ");
9554 for J in reverse 1 .. Scope_Stack.Last loop
9555 S := Scope_Stack.Table (J).Entity;
9556 Write_Int (Int (S));
9557 Write_Str (" === ");
9558 Write_Name (Chars (S));
9567 procedure we (S : Entity_Id) is
9570 E := First_Entity (S);
9571 while Present (E) loop
9572 Write_Int (Int (E));
9573 Write_Str (" === ");
9574 Write_Name (Chars (E));