1 ------------------------------------------------------------------------------
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
5 -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
30 ------------------------------------------------------------------------------
32 -- This is a POSIX-like version of this package
34 -- This package contains all the GNULL primitives that interface directly with
37 -- Note: this file can only be used for POSIX compliant systems that implement
38 -- SCHED_FIFO and Ceiling Locking correctly.
40 -- For configurations where SCHED_FIFO and priority ceiling are not a
41 -- requirement, this file can also be used (e.g AiX threads)
44 -- Turn off polling, we do not want ATC polling to take place during tasking
45 -- operations. It causes infinite loops and other problems.
47 with Ada
.Unchecked_Conversion
;
51 with System
.Tasking
.Debug
;
52 with System
.Interrupt_Management
;
53 with System
.OS_Constants
;
54 with System
.OS_Primitives
;
55 with System
.Task_Info
;
57 with System
.Soft_Links
;
58 -- We use System.Soft_Links instead of System.Tasking.Initialization
59 -- because the later is a higher level package that we shouldn't depend on.
60 -- For example when using the restricted run time, it is replaced by
61 -- System.Tasking.Restricted.Stages.
63 package body System
.Task_Primitives
.Operations
is
65 package OSC
renames System
.OS_Constants
;
66 package SSL
renames System
.Soft_Links
;
68 use System
.Tasking
.Debug
;
71 use System
.OS_Interface
;
72 use System
.Parameters
;
73 use System
.OS_Primitives
;
79 -- The followings are logically constants, but need to be initialized
82 Single_RTS_Lock
: aliased RTS_Lock
;
83 -- This is a lock to allow only one thread of control in the RTS at
84 -- a time; it is used to execute in mutual exclusion from all other tasks.
85 -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
87 Environment_Task_Id
: Task_Id
;
88 -- A variable to hold Task_Id for the environment task
90 Locking_Policy
: Character;
91 pragma Import
(C
, Locking_Policy
, "__gl_locking_policy");
92 -- Value of the pragma Locking_Policy:
93 -- 'C' for Ceiling_Locking
94 -- 'I' for Inherit_Locking
97 Unblocked_Signal_Mask
: aliased sigset_t
;
98 -- The set of signals that should unblocked in all tasks
100 -- The followings are internal configuration constants needed
102 Next_Serial_Number
: Task_Serial_Number
:= 100;
103 -- We start at 100, to reserve some special values for
104 -- using in error checking.
106 Time_Slice_Val
: Integer;
107 pragma Import
(C
, Time_Slice_Val
, "__gl_time_slice_val");
109 Dispatching_Policy
: Character;
110 pragma Import
(C
, Dispatching_Policy
, "__gl_task_dispatching_policy");
112 Foreign_Task_Elaborated
: aliased Boolean := True;
113 -- Used to identified fake tasks (i.e., non-Ada Threads)
115 Use_Alternate_Stack
: constant Boolean := Alternate_Stack_Size
/= 0;
116 -- Whether to use an alternate signal stack for stack overflows
118 Abort_Handler_Installed
: Boolean := False;
119 -- True if a handler for the abort signal is installed
127 procedure Initialize
(Environment_Task
: Task_Id
);
128 pragma Inline
(Initialize
);
129 -- Initialize various data needed by this package
131 function Is_Valid_Task
return Boolean;
132 pragma Inline
(Is_Valid_Task
);
133 -- Does executing thread have a TCB?
135 procedure Set
(Self_Id
: Task_Id
);
137 -- Set the self id for the current task
139 function Self
return Task_Id
;
140 pragma Inline
(Self
);
141 -- Return a pointer to the Ada Task Control Block of the calling task
145 package body Specific
is separate;
146 -- The body of this package is target specific
148 ----------------------------------
149 -- ATCB allocation/deallocation --
150 ----------------------------------
152 package body ATCB_Allocation
is separate;
153 -- The body of this package is shared across several targets
155 ---------------------------------
156 -- Support for foreign threads --
157 ---------------------------------
159 function Register_Foreign_Thread
(Thread
: Thread_Id
) return Task_Id
;
160 -- Allocate and Initialize a new ATCB for the current Thread
162 function Register_Foreign_Thread
163 (Thread
: Thread_Id
) return Task_Id
is separate;
165 -----------------------
166 -- Local Subprograms --
167 -----------------------
169 procedure Abort_Handler
(Sig
: Signal
);
170 -- Signal handler used to implement asynchronous abort.
171 -- See also comment before body, below.
173 function To_Address
is
174 new Ada
.Unchecked_Conversion
(Task_Id
, System
.Address
);
176 function GNAT_pthread_condattr_setup
177 (attr
: access pthread_condattr_t
) return int
;
179 GNAT_pthread_condattr_setup
, "__gnat_pthread_condattr_setup");
181 procedure Compute_Deadline
183 Mode
: ST
.Delay_Modes
;
184 Check_Time
: out Duration;
185 Abs_Time
: out Duration;
186 Rel_Time
: out Duration);
187 -- Helper for Timed_Sleep and Timed_Delay: given a deadline specified by
188 -- Time and Mode, compute the current clock reading (Check_Time), and the
189 -- target absolute and relative clock readings (Abs_Time, Rel_Time). The
190 -- epoch for Time depends on Mode; the epoch for Check_Time and Abs_Time
191 -- is always that of CLOCK_RT_Ada.
197 -- Target-dependent binding of inter-thread Abort signal to the raising of
198 -- the Abort_Signal exception.
200 -- The technical issues and alternatives here are essentially the
201 -- same as for raising exceptions in response to other signals
202 -- (e.g. Storage_Error). See code and comments in the package body
203 -- System.Interrupt_Management.
205 -- Some implementations may not allow an exception to be propagated out of
206 -- a handler, and others might leave the signal or interrupt that invoked
207 -- this handler masked after the exceptional return to the application
210 -- GNAT exceptions are originally implemented using setjmp()/longjmp(). On
211 -- most UNIX systems, this will allow transfer out of a signal handler,
212 -- which is usually the only mechanism available for implementing
213 -- asynchronous handlers of this kind. However, some systems do not
214 -- restore the signal mask on longjmp(), leaving the abort signal masked.
216 procedure Abort_Handler
(Sig
: Signal
) is
217 pragma Unreferenced
(Sig
);
219 T
: constant Task_Id
:= Self
;
220 Old_Set
: aliased sigset_t
;
222 Result
: Interfaces
.C
.int
;
223 pragma Warnings
(Off
, Result
);
226 -- It's not safe to raise an exception when using GCC ZCX mechanism.
227 -- Note that we still need to install a signal handler, since in some
228 -- cases (e.g. shutdown of the Server_Task in System.Interrupts) we
229 -- need to send the Abort signal to a task.
231 if ZCX_By_Default
then
235 if T
.Deferral_Level
= 0
236 and then T
.Pending_ATC_Level
< T
.ATC_Nesting_Level
and then
241 -- Make sure signals used for RTS internal purpose are unmasked
243 Result
:= pthread_sigmask
(SIG_UNBLOCK
,
244 Unblocked_Signal_Mask
'Access, Old_Set
'Access);
245 pragma Assert
(Result
= 0);
247 raise Standard
'Abort_Signal;
251 ----------------------
252 -- Compute_Deadline --
253 ----------------------
255 procedure Compute_Deadline
257 Mode
: ST
.Delay_Modes
;
258 Check_Time
: out Duration;
259 Abs_Time
: out Duration;
260 Rel_Time
: out Duration)
263 Check_Time
:= Monotonic_Clock
;
267 if Mode
= Relative
then
268 Abs_Time
:= Duration'Min (Time
, Max_Sensible_Delay
) + Check_Time
;
270 if Relative_Timed_Wait
then
271 Rel_Time
:= Duration'Min (Max_Sensible_Delay
, Time
);
274 pragma Warnings
(Off
);
275 -- Comparison "OSC.CLOCK_RT_Ada = OSC.CLOCK_REALTIME" is compile
278 -- Absolute deadline specified using the tasking clock (CLOCK_RT_Ada)
280 elsif Mode
= Absolute_RT
281 or else OSC
.CLOCK_RT_Ada
= OSC
.CLOCK_REALTIME
283 pragma Warnings
(On
);
284 Abs_Time
:= Duration'Min (Check_Time
+ Max_Sensible_Delay
, Time
);
286 if Relative_Timed_Wait
then
287 Rel_Time
:= Duration'Min (Max_Sensible_Delay
, Time
- Check_Time
);
290 -- Absolute deadline specified using the calendar clock, in the
291 -- case where it is not the same as the tasking clock: compensate for
292 -- difference between clock epochs (Base_Time - Base_Cal_Time).
296 Cal_Check_Time
: constant Duration := OS_Primitives
.Clock
;
297 RT_Time
: constant Duration :=
298 Time
+ Check_Time
- Cal_Check_Time
;
302 Duration'Min (Check_Time
+ Max_Sensible_Delay
, RT_Time
);
304 if Relative_Timed_Wait
then
306 Duration'Min (Max_Sensible_Delay
, RT_Time
- Check_Time
);
310 end Compute_Deadline
;
316 procedure Stack_Guard
(T
: ST
.Task_Id
; On
: Boolean) is
317 Stack_Base
: constant Address
:= Get_Stack_Base
(T
.Common
.LL
.Thread
);
319 Res
: Interfaces
.C
.int
;
322 if Stack_Base_Available
then
324 -- Compute the guard page address
326 Page_Size
:= Address
(Get_Page_Size
);
329 (Stack_Base
- (Stack_Base
mod Page_Size
) + Page_Size
,
331 prot
=> (if On
then PROT_ON
else PROT_OFF
));
332 pragma Assert
(Res
= 0);
340 function Get_Thread_Id
(T
: ST
.Task_Id
) return OSI
.Thread_Id
is
342 return T
.Common
.LL
.Thread
;
349 function Self
return Task_Id
renames Specific
.Self
;
351 ---------------------
352 -- Initialize_Lock --
353 ---------------------
355 -- Note: mutexes and cond_variables needed per-task basis are initialized
356 -- in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
357 -- as RTS_Lock, Memory_Lock...) used in RTS is initialized before any
358 -- status change of RTS. Therefore raising Storage_Error in the following
359 -- routines should be able to be handled safely.
361 procedure Initialize_Lock
362 (Prio
: System
.Any_Priority
;
363 L
: not null access Lock
)
365 Attributes
: aliased pthread_mutexattr_t
;
366 Result
: Interfaces
.C
.int
;
369 Result
:= pthread_mutexattr_init
(Attributes
'Access);
370 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
372 if Result
= ENOMEM
then
376 if Locking_Policy
= 'C' then
377 Result
:= pthread_mutexattr_setprotocol
378 (Attributes
'Access, PTHREAD_PRIO_PROTECT
);
379 pragma Assert
(Result
= 0);
381 Result
:= pthread_mutexattr_setprioceiling
382 (Attributes
'Access, Interfaces
.C
.int
(Prio
));
383 pragma Assert
(Result
= 0);
385 elsif Locking_Policy
= 'I' then
386 Result
:= pthread_mutexattr_setprotocol
387 (Attributes
'Access, PTHREAD_PRIO_INHERIT
);
388 pragma Assert
(Result
= 0);
391 Result
:= pthread_mutex_init
(L
.WO
'Access, Attributes
'Access);
392 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
394 if Result
= ENOMEM
then
395 Result
:= pthread_mutexattr_destroy
(Attributes
'Access);
399 Result
:= pthread_mutexattr_destroy
(Attributes
'Access);
400 pragma Assert
(Result
= 0);
403 procedure Initialize_Lock
404 (L
: not null access RTS_Lock
; Level
: Lock_Level
)
406 pragma Unreferenced
(Level
);
408 Attributes
: aliased pthread_mutexattr_t
;
409 Result
: Interfaces
.C
.int
;
412 Result
:= pthread_mutexattr_init
(Attributes
'Access);
413 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
415 if Result
= ENOMEM
then
419 if Locking_Policy
= 'C' then
420 Result
:= pthread_mutexattr_setprotocol
421 (Attributes
'Access, PTHREAD_PRIO_PROTECT
);
422 pragma Assert
(Result
= 0);
424 Result
:= pthread_mutexattr_setprioceiling
425 (Attributes
'Access, Interfaces
.C
.int
(System
.Any_Priority
'Last));
426 pragma Assert
(Result
= 0);
428 elsif Locking_Policy
= 'I' then
429 Result
:= pthread_mutexattr_setprotocol
430 (Attributes
'Access, PTHREAD_PRIO_INHERIT
);
431 pragma Assert
(Result
= 0);
434 Result
:= pthread_mutex_init
(L
, Attributes
'Access);
435 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
437 if Result
= ENOMEM
then
438 Result
:= pthread_mutexattr_destroy
(Attributes
'Access);
442 Result
:= pthread_mutexattr_destroy
(Attributes
'Access);
443 pragma Assert
(Result
= 0);
450 procedure Finalize_Lock
(L
: not null access Lock
) is
451 Result
: Interfaces
.C
.int
;
453 Result
:= pthread_mutex_destroy
(L
.WO
'Access);
454 pragma Assert
(Result
= 0);
457 procedure Finalize_Lock
(L
: not null access RTS_Lock
) is
458 Result
: Interfaces
.C
.int
;
460 Result
:= pthread_mutex_destroy
(L
);
461 pragma Assert
(Result
= 0);
469 (L
: not null access Lock
; Ceiling_Violation
: out Boolean)
471 Result
: Interfaces
.C
.int
;
474 Result
:= pthread_mutex_lock
(L
.WO
'Access);
476 -- The cause of EINVAL is a priority ceiling violation
478 Ceiling_Violation
:= Result
= EINVAL
;
479 pragma Assert
(Result
= 0 or else Ceiling_Violation
);
483 (L
: not null access RTS_Lock
;
484 Global_Lock
: Boolean := False)
486 Result
: Interfaces
.C
.int
;
488 if not Single_Lock
or else Global_Lock
then
489 Result
:= pthread_mutex_lock
(L
);
490 pragma Assert
(Result
= 0);
494 procedure Write_Lock
(T
: Task_Id
) is
495 Result
: Interfaces
.C
.int
;
497 if not Single_Lock
then
498 Result
:= pthread_mutex_lock
(T
.Common
.LL
.L
'Access);
499 pragma Assert
(Result
= 0);
508 (L
: not null access Lock
; Ceiling_Violation
: out Boolean) is
510 Write_Lock
(L
, Ceiling_Violation
);
517 procedure Unlock
(L
: not null access Lock
) is
518 Result
: Interfaces
.C
.int
;
520 Result
:= pthread_mutex_unlock
(L
.WO
'Access);
521 pragma Assert
(Result
= 0);
525 (L
: not null access RTS_Lock
; Global_Lock
: Boolean := False)
527 Result
: Interfaces
.C
.int
;
529 if not Single_Lock
or else Global_Lock
then
530 Result
:= pthread_mutex_unlock
(L
);
531 pragma Assert
(Result
= 0);
535 procedure Unlock
(T
: Task_Id
) is
536 Result
: Interfaces
.C
.int
;
538 if not Single_Lock
then
539 Result
:= pthread_mutex_unlock
(T
.Common
.LL
.L
'Access);
540 pragma Assert
(Result
= 0);
548 -- Dynamic priority ceilings are not supported by the underlying system
550 procedure Set_Ceiling
551 (L
: not null access Lock
;
552 Prio
: System
.Any_Priority
)
554 pragma Unreferenced
(L
, Prio
);
565 Reason
: System
.Tasking
.Task_States
)
567 pragma Unreferenced
(Reason
);
569 Result
: Interfaces
.C
.int
;
574 (cond
=> Self_ID
.Common
.LL
.CV
'Access,
575 mutex
=> (if Single_Lock
576 then Single_RTS_Lock
'Access
577 else Self_ID
.Common
.LL
.L
'Access));
579 -- EINTR is not considered a failure
581 pragma Assert
(Result
= 0 or else Result
= EINTR
);
588 -- This is for use within the run-time system, so abort is
589 -- assumed to be already deferred, and the caller should be
590 -- holding its own ATCB lock.
592 procedure Timed_Sleep
595 Mode
: ST
.Delay_Modes
;
596 Reason
: Task_States
;
597 Timedout
: out Boolean;
598 Yielded
: out Boolean)
600 pragma Unreferenced
(Reason
);
602 Base_Time
: Duration;
603 Check_Time
: Duration;
607 Request
: aliased timespec
;
608 Result
: Interfaces
.C
.int
;
617 Check_Time
=> Check_Time
,
618 Abs_Time
=> Abs_Time
,
619 Rel_Time
=> Rel_Time
);
620 Base_Time
:= Check_Time
;
622 if Abs_Time
> Check_Time
then
624 To_Timespec
(if Relative_Timed_Wait
then Rel_Time
else Abs_Time
);
627 exit when Self_ID
.Pending_ATC_Level
< Self_ID
.ATC_Nesting_Level
;
630 pthread_cond_timedwait
631 (cond
=> Self_ID
.Common
.LL
.CV
'Access,
632 mutex
=> (if Single_Lock
633 then Single_RTS_Lock
'Access
634 else Self_ID
.Common
.LL
.L
'Access),
635 abstime
=> Request
'Access);
637 Check_Time
:= Monotonic_Clock
;
638 exit when Abs_Time
<= Check_Time
or else Check_Time
< Base_Time
;
640 if Result
= 0 or Result
= EINTR
then
642 -- Somebody may have called Wakeup for us
648 pragma Assert
(Result
= ETIMEDOUT
);
657 -- This is for use in implementing delay statements, so we assume the
658 -- caller is abort-deferred but is holding no locks.
660 procedure Timed_Delay
663 Mode
: ST
.Delay_Modes
)
665 Base_Time
: Duration;
666 Check_Time
: Duration;
669 Request
: aliased timespec
;
671 Result
: Interfaces
.C
.int
;
672 pragma Warnings
(Off
, Result
);
679 Write_Lock
(Self_ID
);
684 Check_Time
=> Check_Time
,
685 Abs_Time
=> Abs_Time
,
686 Rel_Time
=> Rel_Time
);
687 Base_Time
:= Check_Time
;
689 if Abs_Time
> Check_Time
then
691 To_Timespec
(if Relative_Timed_Wait
then Rel_Time
else Abs_Time
);
692 Self_ID
.Common
.State
:= Delay_Sleep
;
695 exit when Self_ID
.Pending_ATC_Level
< Self_ID
.ATC_Nesting_Level
;
698 pthread_cond_timedwait
699 (cond
=> Self_ID
.Common
.LL
.CV
'Access,
700 mutex
=> (if Single_Lock
701 then Single_RTS_Lock
'Access
702 else Self_ID
.Common
.LL
.L
'Access),
703 abstime
=> Request
'Access);
705 Check_Time
:= Monotonic_Clock
;
706 exit when Abs_Time
<= Check_Time
or else Check_Time
< Base_Time
;
708 pragma Assert
(Result
= 0
709 or else Result
= ETIMEDOUT
710 or else Result
= EINTR
);
713 Self_ID
.Common
.State
:= Runnable
;
722 Result
:= sched_yield
;
725 ---------------------
726 -- Monotonic_Clock --
727 ---------------------
729 function Monotonic_Clock
return Duration is
730 TS
: aliased timespec
;
731 Result
: Interfaces
.C
.int
;
733 Result
:= clock_gettime
734 (clock_id
=> OSC
.CLOCK_RT_Ada
, tp
=> TS
'Unchecked_Access);
735 pragma Assert
(Result
= 0);
736 return To_Duration
(TS
);
743 function RT_Resolution
return Duration is
744 TS
: aliased timespec
;
745 Result
: Interfaces
.C
.int
;
747 Result
:= clock_getres
(OSC
.CLOCK_REALTIME
, TS
'Unchecked_Access);
748 pragma Assert
(Result
= 0);
750 return To_Duration
(TS
);
757 procedure Wakeup
(T
: Task_Id
; Reason
: System
.Tasking
.Task_States
) is
758 pragma Unreferenced
(Reason
);
759 Result
: Interfaces
.C
.int
;
761 Result
:= pthread_cond_signal
(T
.Common
.LL
.CV
'Access);
762 pragma Assert
(Result
= 0);
769 procedure Yield
(Do_Yield
: Boolean := True) is
770 Result
: Interfaces
.C
.int
;
771 pragma Unreferenced
(Result
);
774 Result
:= sched_yield
;
782 procedure Set_Priority
784 Prio
: System
.Any_Priority
;
785 Loss_Of_Inheritance
: Boolean := False)
787 pragma Unreferenced
(Loss_Of_Inheritance
);
789 Result
: Interfaces
.C
.int
;
790 Param
: aliased struct_sched_param
;
792 function Get_Policy
(Prio
: System
.Any_Priority
) return Character;
793 pragma Import
(C
, Get_Policy
, "__gnat_get_specific_dispatching");
794 -- Get priority specific dispatching policy
796 Priority_Specific_Policy
: constant Character := Get_Policy
(Prio
);
797 -- Upper case first character of the policy name corresponding to the
798 -- task as set by a Priority_Specific_Dispatching pragma.
801 T
.Common
.Current_Priority
:= Prio
;
802 Param
.sched_priority
:= To_Target_Priority
(Prio
);
804 if Time_Slice_Supported
805 and then (Dispatching_Policy
= 'R'
806 or else Priority_Specific_Policy
= 'R'
807 or else Time_Slice_Val
> 0)
809 Result
:= pthread_setschedparam
810 (T
.Common
.LL
.Thread
, SCHED_RR
, Param
'Access);
812 elsif Dispatching_Policy
= 'F'
813 or else Priority_Specific_Policy
= 'F'
814 or else Time_Slice_Val
= 0
816 Result
:= pthread_setschedparam
817 (T
.Common
.LL
.Thread
, SCHED_FIFO
, Param
'Access);
820 Result
:= pthread_setschedparam
821 (T
.Common
.LL
.Thread
, SCHED_OTHER
, Param
'Access);
824 pragma Assert
(Result
= 0);
831 function Get_Priority
(T
: Task_Id
) return System
.Any_Priority
is
833 return T
.Common
.Current_Priority
;
840 procedure Enter_Task
(Self_ID
: Task_Id
) is
842 Self_ID
.Common
.LL
.Thread
:= pthread_self
;
843 Self_ID
.Common
.LL
.LWP
:= lwp_self
;
845 Specific
.Set
(Self_ID
);
847 if Use_Alternate_Stack
then
849 Stack
: aliased stack_t
;
850 Result
: Interfaces
.C
.int
;
852 Stack
.ss_sp
:= Self_ID
.Common
.Task_Alternate_Stack
;
853 Stack
.ss_size
:= Alternate_Stack_Size
;
855 Result
:= sigaltstack
(Stack
'Access, null);
856 pragma Assert
(Result
= 0);
865 function Is_Valid_Task
return Boolean renames Specific
.Is_Valid_Task
;
867 -----------------------------
868 -- Register_Foreign_Thread --
869 -----------------------------
871 function Register_Foreign_Thread
return Task_Id
is
873 if Is_Valid_Task
then
876 return Register_Foreign_Thread
(pthread_self
);
878 end Register_Foreign_Thread
;
884 procedure Initialize_TCB
(Self_ID
: Task_Id
; Succeeded
: out Boolean) is
885 Mutex_Attr
: aliased pthread_mutexattr_t
;
886 Result
: Interfaces
.C
.int
;
887 Cond_Attr
: aliased pthread_condattr_t
;
890 -- Give the task a unique serial number
892 Self_ID
.Serial_Number
:= Next_Serial_Number
;
893 Next_Serial_Number
:= Next_Serial_Number
+ 1;
894 pragma Assert
(Next_Serial_Number
/= 0);
896 if not Single_Lock
then
897 Result
:= pthread_mutexattr_init
(Mutex_Attr
'Access);
898 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
901 if Locking_Policy
= 'C' then
903 pthread_mutexattr_setprotocol
905 PTHREAD_PRIO_PROTECT
);
906 pragma Assert
(Result
= 0);
909 pthread_mutexattr_setprioceiling
911 Interfaces
.C
.int
(System
.Any_Priority
'Last));
912 pragma Assert
(Result
= 0);
914 elsif Locking_Policy
= 'I' then
916 pthread_mutexattr_setprotocol
918 PTHREAD_PRIO_INHERIT
);
919 pragma Assert
(Result
= 0);
924 (Self_ID
.Common
.LL
.L
'Access,
926 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
934 Result
:= pthread_mutexattr_destroy
(Mutex_Attr
'Access);
935 pragma Assert
(Result
= 0);
938 Result
:= pthread_condattr_init
(Cond_Attr
'Access);
939 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
942 Result
:= GNAT_pthread_condattr_setup
(Cond_Attr
'Access);
943 pragma Assert
(Result
= 0);
947 (Self_ID
.Common
.LL
.CV
'Access, Cond_Attr
'Access);
948 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
954 if not Single_Lock
then
955 Result
:= pthread_mutex_destroy
(Self_ID
.Common
.LL
.L
'Access);
956 pragma Assert
(Result
= 0);
962 Result
:= pthread_condattr_destroy
(Cond_Attr
'Access);
963 pragma Assert
(Result
= 0);
970 procedure Create_Task
972 Wrapper
: System
.Address
;
973 Stack_Size
: System
.Parameters
.Size_Type
;
974 Priority
: System
.Any_Priority
;
975 Succeeded
: out Boolean)
977 Attributes
: aliased pthread_attr_t
;
978 Adjusted_Stack_Size
: Interfaces
.C
.size_t
;
979 Page_Size
: constant Interfaces
.C
.size_t
:=
980 Interfaces
.C
.size_t
(Get_Page_Size
);
981 Result
: Interfaces
.C
.int
;
983 function Thread_Body_Access
is new
984 Ada
.Unchecked_Conversion
(System
.Address
, Thread_Body
);
986 use System
.Task_Info
;
989 Adjusted_Stack_Size
:=
990 Interfaces
.C
.size_t
(Stack_Size
+ Alternate_Stack_Size
);
992 if Stack_Base_Available
then
994 -- If Stack Checking is supported then allocate 2 additional pages:
996 -- In the worst case, stack is allocated at something like
997 -- N * Get_Page_Size - epsilon, we need to add the size for 2 pages
998 -- to be sure the effective stack size is greater than what
1001 Adjusted_Stack_Size
:= Adjusted_Stack_Size
+ 2 * Page_Size
;
1004 -- Round stack size as this is required by some OSes (Darwin)
1006 Adjusted_Stack_Size
:= Adjusted_Stack_Size
+ Page_Size
- 1;
1007 Adjusted_Stack_Size
:=
1008 Adjusted_Stack_Size
- Adjusted_Stack_Size
mod Page_Size
;
1010 Result
:= pthread_attr_init
(Attributes
'Access);
1011 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
1019 pthread_attr_setdetachstate
1020 (Attributes
'Access, PTHREAD_CREATE_DETACHED
);
1021 pragma Assert
(Result
= 0);
1024 pthread_attr_setstacksize
1025 (Attributes
'Access, Adjusted_Stack_Size
);
1026 pragma Assert
(Result
= 0);
1028 if T
.Common
.Task_Info
/= Default_Scope
then
1029 case T
.Common
.Task_Info
is
1030 when System
.Task_Info
.Process_Scope
=>
1032 pthread_attr_setscope
1033 (Attributes
'Access, PTHREAD_SCOPE_PROCESS
);
1035 when System
.Task_Info
.System_Scope
=>
1037 pthread_attr_setscope
1038 (Attributes
'Access, PTHREAD_SCOPE_SYSTEM
);
1040 when System
.Task_Info
.Default_Scope
=>
1044 pragma Assert
(Result
= 0);
1047 -- Since the initial signal mask of a thread is inherited from the
1048 -- creator, and the Environment task has all its signals masked, we
1049 -- do not need to manipulate caller's signal mask at this point.
1050 -- All tasks in RTS will have All_Tasks_Mask initially.
1052 -- Note: the use of Unrestricted_Access in the following call is needed
1053 -- because otherwise we have an error of getting a access-to-volatile
1054 -- value which points to a non-volatile object. But in this case it is
1055 -- safe to do this, since we know we have no problems with aliasing and
1056 -- Unrestricted_Access bypasses this check.
1058 Result
:= pthread_create
1059 (T
.Common
.LL
.Thread
'Unrestricted_Access,
1061 Thread_Body_Access
(Wrapper
),
1063 pragma Assert
(Result
= 0 or else Result
= EAGAIN
);
1065 Succeeded
:= Result
= 0;
1067 Result
:= pthread_attr_destroy
(Attributes
'Access);
1068 pragma Assert
(Result
= 0);
1071 Set_Priority
(T
, Priority
);
1079 procedure Finalize_TCB
(T
: Task_Id
) is
1080 Result
: Interfaces
.C
.int
;
1083 if not Single_Lock
then
1084 Result
:= pthread_mutex_destroy
(T
.Common
.LL
.L
'Access);
1085 pragma Assert
(Result
= 0);
1088 Result
:= pthread_cond_destroy
(T
.Common
.LL
.CV
'Access);
1089 pragma Assert
(Result
= 0);
1091 if T
.Known_Tasks_Index
/= -1 then
1092 Known_Tasks
(T
.Known_Tasks_Index
) := null;
1095 ATCB_Allocation
.Free_ATCB
(T
);
1102 procedure Exit_Task
is
1104 -- Mark this task as unknown, so that if Self is called, it won't
1105 -- return a dangling pointer.
1107 Specific
.Set
(null);
1114 procedure Abort_Task
(T
: Task_Id
) is
1115 Result
: Interfaces
.C
.int
;
1117 if Abort_Handler_Installed
then
1120 (T
.Common
.LL
.Thread
,
1121 Signal
(System
.Interrupt_Management
.Abort_Task_Interrupt
));
1122 pragma Assert
(Result
= 0);
1130 procedure Initialize
(S
: in out Suspension_Object
) is
1131 Mutex_Attr
: aliased pthread_mutexattr_t
;
1132 Cond_Attr
: aliased pthread_condattr_t
;
1133 Result
: Interfaces
.C
.int
;
1136 -- Initialize internal state (always to False (RM D.10 (6)))
1141 -- Initialize internal mutex
1143 Result
:= pthread_mutexattr_init
(Mutex_Attr
'Access);
1144 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
1146 if Result
= ENOMEM
then
1147 raise Storage_Error
;
1150 Result
:= pthread_mutex_init
(S
.L
'Access, Mutex_Attr
'Access);
1151 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
1153 if Result
= ENOMEM
then
1154 Result
:= pthread_mutexattr_destroy
(Mutex_Attr
'Access);
1155 pragma Assert
(Result
= 0);
1157 raise Storage_Error
;
1160 Result
:= pthread_mutexattr_destroy
(Mutex_Attr
'Access);
1161 pragma Assert
(Result
= 0);
1163 -- Initialize internal condition variable
1165 Result
:= pthread_condattr_init
(Cond_Attr
'Access);
1166 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
1169 Result
:= pthread_mutex_destroy
(S
.L
'Access);
1170 pragma Assert
(Result
= 0);
1172 -- Storage_Error is propagated as intended if the allocation of the
1173 -- underlying OS entities fails.
1175 raise Storage_Error
;
1178 Result
:= GNAT_pthread_condattr_setup
(Cond_Attr
'Access);
1179 pragma Assert
(Result
= 0);
1182 Result
:= pthread_cond_init
(S
.CV
'Access, Cond_Attr
'Access);
1183 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
1186 Result
:= pthread_mutex_destroy
(S
.L
'Access);
1187 pragma Assert
(Result
= 0);
1189 Result
:= pthread_condattr_destroy
(Cond_Attr
'Access);
1190 pragma Assert
(Result
= 0);
1192 -- Storage_Error is propagated as intended if the allocation of the
1193 -- underlying OS entities fails.
1195 raise Storage_Error
;
1198 Result
:= pthread_condattr_destroy
(Cond_Attr
'Access);
1199 pragma Assert
(Result
= 0);
1206 procedure Finalize
(S
: in out Suspension_Object
) is
1207 Result
: Interfaces
.C
.int
;
1210 -- Destroy internal mutex
1212 Result
:= pthread_mutex_destroy
(S
.L
'Access);
1213 pragma Assert
(Result
= 0);
1215 -- Destroy internal condition variable
1217 Result
:= pthread_cond_destroy
(S
.CV
'Access);
1218 pragma Assert
(Result
= 0);
1225 function Current_State
(S
: Suspension_Object
) return Boolean is
1227 -- We do not want to use lock on this read operation. State is marked
1228 -- as Atomic so that we ensure that the value retrieved is correct.
1237 procedure Set_False
(S
: in out Suspension_Object
) is
1238 Result
: Interfaces
.C
.int
;
1241 SSL
.Abort_Defer
.all;
1243 Result
:= pthread_mutex_lock
(S
.L
'Access);
1244 pragma Assert
(Result
= 0);
1248 Result
:= pthread_mutex_unlock
(S
.L
'Access);
1249 pragma Assert
(Result
= 0);
1251 SSL
.Abort_Undefer
.all;
1258 procedure Set_True
(S
: in out Suspension_Object
) is
1259 Result
: Interfaces
.C
.int
;
1262 SSL
.Abort_Defer
.all;
1264 Result
:= pthread_mutex_lock
(S
.L
'Access);
1265 pragma Assert
(Result
= 0);
1267 -- If there is already a task waiting on this suspension object then
1268 -- we resume it, leaving the state of the suspension object to False,
1269 -- as it is specified in (RM D.10(9)). Otherwise, it just leaves
1270 -- the state to True.
1276 Result
:= pthread_cond_signal
(S
.CV
'Access);
1277 pragma Assert
(Result
= 0);
1283 Result
:= pthread_mutex_unlock
(S
.L
'Access);
1284 pragma Assert
(Result
= 0);
1286 SSL
.Abort_Undefer
.all;
1289 ------------------------
1290 -- Suspend_Until_True --
1291 ------------------------
1293 procedure Suspend_Until_True
(S
: in out Suspension_Object
) is
1294 Result
: Interfaces
.C
.int
;
1297 SSL
.Abort_Defer
.all;
1299 Result
:= pthread_mutex_lock
(S
.L
'Access);
1300 pragma Assert
(Result
= 0);
1304 -- Program_Error must be raised upon calling Suspend_Until_True
1305 -- if another task is already waiting on that suspension object
1308 Result
:= pthread_mutex_unlock
(S
.L
'Access);
1309 pragma Assert
(Result
= 0);
1311 SSL
.Abort_Undefer
.all;
1313 raise Program_Error
;
1316 -- Suspend the task if the state is False. Otherwise, the task
1317 -- continues its execution, and the state of the suspension object
1318 -- is set to False (ARM D.10 par. 9).
1326 -- Loop in case pthread_cond_wait returns earlier than expected
1327 -- (e.g. in case of EINTR caused by a signal).
1329 Result
:= pthread_cond_wait
(S
.CV
'Access, S
.L
'Access);
1330 pragma Assert
(Result
= 0 or else Result
= EINTR
);
1332 exit when not S
.Waiting
;
1336 Result
:= pthread_mutex_unlock
(S
.L
'Access);
1337 pragma Assert
(Result
= 0);
1339 SSL
.Abort_Undefer
.all;
1341 end Suspend_Until_True
;
1349 function Check_Exit
(Self_ID
: ST
.Task_Id
) return Boolean is
1350 pragma Unreferenced
(Self_ID
);
1355 --------------------
1356 -- Check_No_Locks --
1357 --------------------
1359 function Check_No_Locks
(Self_ID
: ST
.Task_Id
) return Boolean is
1360 pragma Unreferenced
(Self_ID
);
1365 ----------------------
1366 -- Environment_Task --
1367 ----------------------
1369 function Environment_Task
return Task_Id
is
1371 return Environment_Task_Id
;
1372 end Environment_Task
;
1378 procedure Lock_RTS
is
1380 Write_Lock
(Single_RTS_Lock
'Access, Global_Lock
=> True);
1387 procedure Unlock_RTS
is
1389 Unlock
(Single_RTS_Lock
'Access, Global_Lock
=> True);
1396 function Suspend_Task
1398 Thread_Self
: Thread_Id
) return Boolean
1400 pragma Unreferenced
(T
, Thread_Self
);
1409 function Resume_Task
1411 Thread_Self
: Thread_Id
) return Boolean
1413 pragma Unreferenced
(T
, Thread_Self
);
1418 --------------------
1419 -- Stop_All_Tasks --
1420 --------------------
1422 procedure Stop_All_Tasks
is
1431 function Stop_Task
(T
: ST
.Task_Id
) return Boolean is
1432 pragma Unreferenced
(T
);
1441 function Continue_Task
(T
: ST
.Task_Id
) return Boolean is
1442 pragma Unreferenced
(T
);
1451 procedure Initialize
(Environment_Task
: Task_Id
) is
1452 act
: aliased struct_sigaction
;
1453 old_act
: aliased struct_sigaction
;
1454 Tmp_Set
: aliased sigset_t
;
1455 Result
: Interfaces
.C
.int
;
1458 (Int
: System
.Interrupt_Management
.Interrupt_ID
) return Character;
1459 pragma Import
(C
, State
, "__gnat_get_interrupt_state");
1460 -- Get interrupt state. Defined in a-init.c
1461 -- The input argument is the interrupt number,
1462 -- and the result is one of the following:
1464 Default
: constant Character := 's';
1465 -- 'n' this interrupt not set by any Interrupt_State pragma
1466 -- 'u' Interrupt_State pragma set state to User
1467 -- 'r' Interrupt_State pragma set state to Runtime
1468 -- 's' Interrupt_State pragma set state to System (use "default"
1472 Environment_Task_Id
:= Environment_Task
;
1474 Interrupt_Management
.Initialize
;
1476 -- Prepare the set of signals that should unblocked in all tasks
1478 Result
:= sigemptyset
(Unblocked_Signal_Mask
'Access);
1479 pragma Assert
(Result
= 0);
1481 for J
in Interrupt_Management
.Interrupt_ID
loop
1482 if System
.Interrupt_Management
.Keep_Unmasked
(J
) then
1483 Result
:= sigaddset
(Unblocked_Signal_Mask
'Access, Signal
(J
));
1484 pragma Assert
(Result
= 0);
1488 -- Initialize the lock used to synchronize chain of all ATCBs
1490 Initialize_Lock
(Single_RTS_Lock
'Access, RTS_Lock_Level
);
1492 Specific
.Initialize
(Environment_Task
);
1494 if Use_Alternate_Stack
then
1495 Environment_Task
.Common
.Task_Alternate_Stack
:=
1496 Alternate_Stack
'Address;
1499 -- Make environment task known here because it doesn't go through
1500 -- Activate_Tasks, which does it for all other tasks.
1502 Known_Tasks
(Known_Tasks
'First) := Environment_Task
;
1503 Environment_Task
.Known_Tasks_Index
:= Known_Tasks
'First;
1505 Enter_Task
(Environment_Task
);
1508 (System
.Interrupt_Management
.Abort_Task_Interrupt
) /= Default
1511 act
.sa_handler
:= Abort_Handler
'Address;
1513 Result
:= sigemptyset
(Tmp_Set
'Access);
1514 pragma Assert
(Result
= 0);
1515 act
.sa_mask
:= Tmp_Set
;
1519 (Signal
(System
.Interrupt_Management
.Abort_Task_Interrupt
),
1520 act
'Unchecked_Access,
1521 old_act
'Unchecked_Access);
1522 pragma Assert
(Result
= 0);
1523 Abort_Handler_Installed
:= True;
1527 -----------------------
1528 -- Set_Task_Affinity --
1529 -----------------------
1531 procedure Set_Task_Affinity
(T
: ST
.Task_Id
) is
1532 pragma Unreferenced
(T
);
1535 -- Setting task affinity is not supported by the underlying system
1538 end Set_Task_Affinity
;
1540 end System
.Task_Primitives
.Operations
;