1 ------------------------------------------------------------------------------
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
5 -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
30 ------------------------------------------------------------------------------
32 -- This is a NT (native) version of this package
34 -- This package contains all the GNULL primitives that interface directly with
38 -- Turn off polling, we do not want ATC polling to take place during tasking
39 -- operations. It causes infinite loops and other problems.
42 with Interfaces
.C
.Strings
;
44 with System
.Float_Control
;
45 with System
.Interrupt_Management
;
46 with System
.Multiprocessors
;
47 with System
.OS_Primitives
;
48 with System
.Task_Info
;
49 with System
.Tasking
.Debug
;
50 with System
.Win32
.Ext
;
52 with System
.Soft_Links
;
53 -- We use System.Soft_Links instead of System.Tasking.Initialization because
54 -- the later is a higher level package that we shouldn't depend on. For
55 -- example when using the restricted run time, it is replaced by
56 -- System.Tasking.Restricted.Stages.
58 package body System
.Task_Primitives
.Operations
is
60 package SSL
renames System
.Soft_Links
;
63 use Interfaces
.C
.Strings
;
64 use System
.OS_Interface
;
65 use System
.OS_Primitives
;
66 use System
.Parameters
;
69 use System
.Tasking
.Debug
;
73 pragma Link_With
("-Xlinker --stack=0x200000,0x1000");
74 -- Change the default stack size (2 MB) for tasking programs on Windows.
75 -- This allows about 1000 tasks running at the same time. Note that
76 -- we set the stack size for non tasking programs on System unit.
77 -- Also note that under Windows XP, we use a Windows XP extension to
78 -- specify the stack size on a per task basis, as done under other OSes.
84 procedure InitializeCriticalSection
(pCriticalSection
: access RTS_Lock
);
85 procedure InitializeCriticalSection
86 (pCriticalSection
: access CRITICAL_SECTION
);
88 (Stdcall
, InitializeCriticalSection
, "InitializeCriticalSection");
90 procedure EnterCriticalSection
(pCriticalSection
: access RTS_Lock
);
91 procedure EnterCriticalSection
92 (pCriticalSection
: access CRITICAL_SECTION
);
93 pragma Import
(Stdcall
, EnterCriticalSection
, "EnterCriticalSection");
95 procedure LeaveCriticalSection
(pCriticalSection
: access RTS_Lock
);
96 procedure LeaveCriticalSection
(pCriticalSection
: access CRITICAL_SECTION
);
97 pragma Import
(Stdcall
, LeaveCriticalSection
, "LeaveCriticalSection");
99 procedure DeleteCriticalSection
(pCriticalSection
: access RTS_Lock
);
100 procedure DeleteCriticalSection
101 (pCriticalSection
: access CRITICAL_SECTION
);
102 pragma Import
(Stdcall
, DeleteCriticalSection
, "DeleteCriticalSection");
108 Environment_Task_Id
: Task_Id
;
109 -- A variable to hold Task_Id for the environment task
111 Single_RTS_Lock
: aliased RTS_Lock
;
112 -- This is a lock to allow only one thread of control in the RTS at
113 -- a time; it is used to execute in mutual exclusion from all other tasks.
114 -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
116 Time_Slice_Val
: Integer;
117 pragma Import
(C
, Time_Slice_Val
, "__gl_time_slice_val");
119 Dispatching_Policy
: Character;
120 pragma Import
(C
, Dispatching_Policy
, "__gl_task_dispatching_policy");
122 function Get_Policy
(Prio
: System
.Any_Priority
) return Character;
123 pragma Import
(C
, Get_Policy
, "__gnat_get_specific_dispatching");
124 -- Get priority specific dispatching policy
126 Foreign_Task_Elaborated
: aliased Boolean := True;
127 -- Used to identified fake tasks (i.e., non-Ada Threads)
129 Null_Thread_Id
: constant Thread_Id
:= 0;
130 -- Constant to indicate that the thread identifier has not yet been
133 ------------------------------------
134 -- The thread local storage index --
135 ------------------------------------
138 pragma Export
(Ada
, TlsIndex
);
139 -- To ensure that this variable won't be local to this package, since
140 -- in some cases, inlining forces this variable to be global anyway.
148 function Is_Valid_Task
return Boolean;
149 pragma Inline
(Is_Valid_Task
);
150 -- Does executing thread have a TCB?
152 procedure Set
(Self_Id
: Task_Id
);
154 -- Set the self id for the current task
158 package body Specific
is
164 function Is_Valid_Task
return Boolean is
166 return TlsGetValue
(TlsIndex
) /= System
.Null_Address
;
173 procedure Set
(Self_Id
: Task_Id
) is
176 Succeeded
:= TlsSetValue
(TlsIndex
, To_Address
(Self_Id
));
177 pragma Assert
(Succeeded
= Win32
.TRUE);
182 ----------------------------------
183 -- ATCB allocation/deallocation --
184 ----------------------------------
186 package body ATCB_Allocation
is separate;
187 -- The body of this package is shared across several targets
189 ---------------------------------
190 -- Support for foreign threads --
191 ---------------------------------
193 function Register_Foreign_Thread
(Thread
: Thread_Id
) return Task_Id
;
194 -- Allocate and Initialize a new ATCB for the current Thread
196 function Register_Foreign_Thread
197 (Thread
: Thread_Id
) return Task_Id
is separate;
199 ----------------------------------
200 -- Condition Variable Functions --
201 ----------------------------------
203 procedure Initialize_Cond
(Cond
: not null access Condition_Variable
);
204 -- Initialize given condition variable Cond
206 procedure Finalize_Cond
(Cond
: not null access Condition_Variable
);
207 -- Finalize given condition variable Cond
209 procedure Cond_Signal
(Cond
: not null access Condition_Variable
);
210 -- Signal condition variable Cond
213 (Cond
: not null access Condition_Variable
;
214 L
: not null access RTS_Lock
);
215 -- Wait on conditional variable Cond, using lock L
217 procedure Cond_Timed_Wait
218 (Cond
: not null access Condition_Variable
;
219 L
: not null access RTS_Lock
;
221 Timed_Out
: out Boolean;
222 Status
: out Integer);
223 -- Do timed wait on condition variable Cond using lock L. The duration
224 -- of the timed wait is given by Rel_Time. When the condition is
225 -- signalled, Timed_Out shows whether or not a time out occurred.
226 -- Status is only valid if Timed_Out is False, in which case it
227 -- shows whether Cond_Timed_Wait completed successfully.
229 ---------------------
230 -- Initialize_Cond --
231 ---------------------
233 procedure Initialize_Cond
(Cond
: not null access Condition_Variable
) is
236 hEvent
:= CreateEvent
(null, Win32
.TRUE, Win32
.FALSE, Null_Ptr
);
237 pragma Assert
(hEvent
/= 0);
238 Cond
.all := Condition_Variable
(hEvent
);
245 -- No such problem here, DosCloseEventSem has been derived.
246 -- What does such refer to in above comment???
248 procedure Finalize_Cond
(Cond
: not null access Condition_Variable
) is
251 Result
:= CloseHandle
(HANDLE
(Cond
.all));
252 pragma Assert
(Result
= Win32
.TRUE);
259 procedure Cond_Signal
(Cond
: not null access Condition_Variable
) is
262 Result
:= SetEvent
(HANDLE
(Cond
.all));
263 pragma Assert
(Result
= Win32
.TRUE);
270 -- Pre-condition: Cond is posted
273 -- Post-condition: Cond is posted
277 (Cond
: not null access Condition_Variable
;
278 L
: not null access RTS_Lock
)
284 -- Must reset Cond BEFORE L is unlocked
286 Result_Bool
:= ResetEvent
(HANDLE
(Cond
.all));
287 pragma Assert
(Result_Bool
= Win32
.TRUE);
288 Unlock
(L
, Global_Lock
=> True);
290 -- No problem if we are interrupted here: if the condition is signaled,
291 -- WaitForSingleObject will simply not block
293 Result
:= WaitForSingleObject
(HANDLE
(Cond
.all), Wait_Infinite
);
294 pragma Assert
(Result
= 0);
296 Write_Lock
(L
, Global_Lock
=> True);
299 ---------------------
300 -- Cond_Timed_Wait --
301 ---------------------
303 -- Pre-condition: Cond is posted
306 -- Post-condition: Cond is posted
309 procedure Cond_Timed_Wait
310 (Cond
: not null access Condition_Variable
;
311 L
: not null access RTS_Lock
;
313 Timed_Out
: out Boolean;
314 Status
: out Integer)
316 Time_Out_Max
: constant DWORD
:= 16#FFFF0000#
;
317 -- NT 4 can't handle excessive timeout values (e.g. DWORD'Last - 1)
324 -- Must reset Cond BEFORE L is unlocked
326 Result
:= ResetEvent
(HANDLE
(Cond
.all));
327 pragma Assert
(Result
= Win32
.TRUE);
328 Unlock
(L
, Global_Lock
=> True);
330 -- No problem if we are interrupted here: if the condition is signaled,
331 -- WaitForSingleObject will simply not block.
333 if Rel_Time
<= 0.0 then
339 (if Rel_Time
>= Duration (Time_Out_Max
) / 1000
341 else DWORD
(Rel_Time
* 1000));
343 Wait_Result
:= WaitForSingleObject
(HANDLE
(Cond
.all), Time_Out
);
345 if Wait_Result
= WAIT_TIMEOUT
then
353 Write_Lock
(L
, Global_Lock
=> True);
355 -- Ensure post-condition
358 Result
:= SetEvent
(HANDLE
(Cond
.all));
359 pragma Assert
(Result
= Win32
.TRUE);
362 Status
:= Integer (Wait_Result
);
369 -- The underlying thread system sets a guard page at the bottom of a thread
370 -- stack, so nothing is needed.
371 -- ??? Check the comment above
373 procedure Stack_Guard
(T
: ST
.Task_Id
; On
: Boolean) is
374 pragma Unreferenced
(T
, On
);
383 function Get_Thread_Id
(T
: ST
.Task_Id
) return OSI
.Thread_Id
is
385 return T
.Common
.LL
.Thread
;
392 function Self
return Task_Id
is
393 Self_Id
: constant Task_Id
:= To_Task_Id
(TlsGetValue
(TlsIndex
));
395 if Self_Id
= null then
396 return Register_Foreign_Thread
(GetCurrentThread
);
402 ---------------------
403 -- Initialize_Lock --
404 ---------------------
406 -- Note: mutexes and cond_variables needed per-task basis are initialized
407 -- in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
408 -- as RTS_Lock, Memory_Lock...) used in the RTS is initialized before any
409 -- status change of RTS. Therefore raising Storage_Error in the following
410 -- routines should be able to be handled safely.
412 procedure Initialize_Lock
413 (Prio
: System
.Any_Priority
;
414 L
: not null access Lock
)
417 InitializeCriticalSection
(L
.Mutex
'Access);
418 L
.Owner_Priority
:= 0;
422 procedure Initialize_Lock
423 (L
: not null access RTS_Lock
; Level
: Lock_Level
)
425 pragma Unreferenced
(Level
);
427 InitializeCriticalSection
(L
);
434 procedure Finalize_Lock
(L
: not null access Lock
) is
436 DeleteCriticalSection
(L
.Mutex
'Access);
439 procedure Finalize_Lock
(L
: not null access RTS_Lock
) is
441 DeleteCriticalSection
(L
);
449 (L
: not null access Lock
; Ceiling_Violation
: out Boolean) is
451 L
.Owner_Priority
:= Get_Priority
(Self
);
453 if L
.Priority
< L
.Owner_Priority
then
454 Ceiling_Violation
:= True;
458 EnterCriticalSection
(L
.Mutex
'Access);
460 Ceiling_Violation
:= False;
464 (L
: not null access RTS_Lock
;
465 Global_Lock
: Boolean := False)
468 if not Single_Lock
or else Global_Lock
then
469 EnterCriticalSection
(L
);
473 procedure Write_Lock
(T
: Task_Id
) is
475 if not Single_Lock
then
476 EnterCriticalSection
(T
.Common
.LL
.L
'Access);
485 (L
: not null access Lock
; Ceiling_Violation
: out Boolean) is
487 Write_Lock
(L
, Ceiling_Violation
);
494 procedure Unlock
(L
: not null access Lock
) is
496 LeaveCriticalSection
(L
.Mutex
'Access);
500 (L
: not null access RTS_Lock
; Global_Lock
: Boolean := False) is
502 if not Single_Lock
or else Global_Lock
then
503 LeaveCriticalSection
(L
);
507 procedure Unlock
(T
: Task_Id
) is
509 if not Single_Lock
then
510 LeaveCriticalSection
(T
.Common
.LL
.L
'Access);
518 -- Dynamic priority ceilings are not supported by the underlying system
520 procedure Set_Ceiling
521 (L
: not null access Lock
;
522 Prio
: System
.Any_Priority
)
524 pragma Unreferenced
(L
, Prio
);
535 Reason
: System
.Tasking
.Task_States
)
537 pragma Unreferenced
(Reason
);
540 pragma Assert
(Self_ID
= Self
);
543 Cond_Wait
(Self_ID
.Common
.LL
.CV
'Access, Single_RTS_Lock
'Access);
545 Cond_Wait
(Self_ID
.Common
.LL
.CV
'Access, Self_ID
.Common
.LL
.L
'Access);
548 if Self_ID
.Deferral_Level
= 0
549 and then Self_ID
.Pending_ATC_Level
< Self_ID
.ATC_Nesting_Level
552 raise Standard
'Abort_Signal;
560 -- This is for use within the run-time system, so abort is assumed to be
561 -- already deferred, and the caller should be holding its own ATCB lock.
563 procedure Timed_Sleep
566 Mode
: ST
.Delay_Modes
;
567 Reason
: System
.Tasking
.Task_States
;
568 Timedout
: out Boolean;
569 Yielded
: out Boolean)
571 pragma Unreferenced
(Reason
);
572 Check_Time
: Duration := Monotonic_Clock
;
577 pragma Unreferenced
(Result
);
579 Local_Timedout
: Boolean;
585 if Mode
= Relative
then
587 Abs_Time
:= Duration'Min (Time
, Max_Sensible_Delay
) + Check_Time
;
589 Rel_Time
:= Time
- Check_Time
;
593 if Rel_Time
> 0.0 then
595 exit when Self_ID
.Pending_ATC_Level
< Self_ID
.ATC_Nesting_Level
;
599 (Self_ID
.Common
.LL
.CV
'Access,
600 Single_RTS_Lock
'Access,
601 Rel_Time
, Local_Timedout
, Result
);
604 (Self_ID
.Common
.LL
.CV
'Access,
605 Self_ID
.Common
.LL
.L
'Access,
606 Rel_Time
, Local_Timedout
, Result
);
609 Check_Time
:= Monotonic_Clock
;
610 exit when Abs_Time
<= Check_Time
;
612 if not Local_Timedout
then
614 -- Somebody may have called Wakeup for us
620 Rel_Time
:= Abs_Time
- Check_Time
;
629 procedure Timed_Delay
632 Mode
: ST
.Delay_Modes
)
634 Check_Time
: Duration := Monotonic_Clock
;
640 pragma Unreferenced
(Timedout
, Result
);
647 Write_Lock
(Self_ID
);
649 if Mode
= Relative
then
651 Abs_Time
:= Time
+ Check_Time
;
653 Rel_Time
:= Time
- Check_Time
;
657 if Rel_Time
> 0.0 then
658 Self_ID
.Common
.State
:= Delay_Sleep
;
661 exit when Self_ID
.Pending_ATC_Level
< Self_ID
.ATC_Nesting_Level
;
665 (Self_ID
.Common
.LL
.CV
'Access,
666 Single_RTS_Lock
'Access,
667 Rel_Time
, Timedout
, Result
);
670 (Self_ID
.Common
.LL
.CV
'Access,
671 Self_ID
.Common
.LL
.L
'Access,
672 Rel_Time
, Timedout
, Result
);
675 Check_Time
:= Monotonic_Clock
;
676 exit when Abs_Time
<= Check_Time
;
678 Rel_Time
:= Abs_Time
- Check_Time
;
681 Self_ID
.Common
.State
:= Runnable
;
697 procedure Wakeup
(T
: Task_Id
; Reason
: System
.Tasking
.Task_States
) is
698 pragma Unreferenced
(Reason
);
700 Cond_Signal
(T
.Common
.LL
.CV
'Access);
707 procedure Yield
(Do_Yield
: Boolean := True) is
709 -- Note: in a previous implementation if Do_Yield was False, then we
710 -- introduced a delay of 1 millisecond in an attempt to get closer to
711 -- annex D semantics, and in particular to make ACATS CXD8002 pass. But
712 -- this change introduced a huge performance regression evaluating the
713 -- Count attribute. So we decided to remove this processing.
715 -- Moreover, CXD8002 appears to pass on Windows (although we do not
716 -- guarantee full Annex D compliance on Windows in any case).
727 procedure Set_Priority
729 Prio
: System
.Any_Priority
;
730 Loss_Of_Inheritance
: Boolean := False)
733 pragma Unreferenced
(Loss_Of_Inheritance
);
739 Interfaces
.C
.int
(Underlying_Priorities
(Prio
)));
740 pragma Assert
(Res
= Win32
.TRUE);
742 -- Note: Annex D (RM D.2.3(5/2)) requires the task to be placed at the
743 -- head of its priority queue when decreasing its priority as a result
744 -- of a loss of inherited priority. This is not the case, but we
745 -- consider it an acceptable variation (RM 1.1.3(6)), given this is
746 -- the built-in behavior offered by the Windows operating system.
748 -- In older versions we attempted to better approximate the Annex D
749 -- required behavior, but this simulation was not entirely accurate,
750 -- and it seems better to live with the standard Windows semantics.
752 T
.Common
.Current_Priority
:= Prio
;
759 function Get_Priority
(T
: Task_Id
) return System
.Any_Priority
is
761 return T
.Common
.Current_Priority
;
768 -- There were two paths were we needed to call Enter_Task :
769 -- 1) from System.Task_Primitives.Operations.Initialize
770 -- 2) from System.Tasking.Stages.Task_Wrapper
772 -- The pseudo handle (LL.Thread) need not be closed when it is no
773 -- longer needed. Calling the CloseHandle function with this handle
776 procedure Enter_Task
(Self_ID
: Task_Id
) is
777 procedure Get_Stack_Bounds
(Base
: Address
; Limit
: Address
);
778 pragma Import
(C
, Get_Stack_Bounds
, "__gnat_get_stack_bounds");
779 -- Get stack boundaries
781 Specific
.Set
(Self_ID
);
783 -- Properly initializes the FPU for x86 systems
785 System
.Float_Control
.Reset
;
787 if Self_ID
.Common
.Task_Info
/= null
789 Self_ID
.Common
.Task_Info
.CPU
>= CPU_Number
(Number_Of_Processors
)
791 raise Invalid_CPU_Number
;
794 Self_ID
.Common
.LL
.Thread
:= GetCurrentThread
;
795 Self_ID
.Common
.LL
.Thread_Id
:= GetCurrentThreadId
;
798 (Self_ID
.Common
.Compiler_Data
.Pri_Stack_Info
.Base
'Address,
799 Self_ID
.Common
.Compiler_Data
.Pri_Stack_Info
.Limit
'Address);
806 function Is_Valid_Task
return Boolean renames Specific
.Is_Valid_Task
;
808 -----------------------------
809 -- Register_Foreign_Thread --
810 -----------------------------
812 function Register_Foreign_Thread
return Task_Id
is
814 if Is_Valid_Task
then
817 return Register_Foreign_Thread
(GetCurrentThread
);
819 end Register_Foreign_Thread
;
825 procedure Initialize_TCB
(Self_ID
: Task_Id
; Succeeded
: out Boolean) is
827 -- Initialize thread ID to 0, this is needed to detect threads that
828 -- are not yet activated.
830 Self_ID
.Common
.LL
.Thread
:= Null_Thread_Id
;
832 Initialize_Cond
(Self_ID
.Common
.LL
.CV
'Access);
834 if not Single_Lock
then
835 Initialize_Lock
(Self_ID
.Common
.LL
.L
'Access, ATCB_Level
);
845 procedure Create_Task
847 Wrapper
: System
.Address
;
848 Stack_Size
: System
.Parameters
.Size_Type
;
849 Priority
: System
.Any_Priority
;
850 Succeeded
: out Boolean)
852 Initial_Stack_Size
: constant := 1024;
853 -- We set the initial stack size to 1024. On Windows version prior to XP
854 -- there is no way to fix a task stack size. Only the initial stack size
855 -- can be set, the operating system will raise the task stack size if
858 function Is_Windows_XP
return Integer;
859 pragma Import
(C
, Is_Windows_XP
, "__gnat_is_windows_xp");
860 -- Returns 1 if running on Windows XP
863 TaskId
: aliased DWORD
;
864 pTaskParameter
: Win32
.PVOID
;
866 Entry_Point
: PTHREAD_START_ROUTINE
;
868 use type System
.Multiprocessors
.CPU_Range
;
871 -- Check whether both Dispatching_Domain and CPU are specified for the
872 -- task, and the CPU value is not contained within the range of
873 -- processors for the domain.
875 if T
.Common
.Domain
/= null
876 and then T
.Common
.Base_CPU
/= System
.Multiprocessors
.Not_A_Specific_CPU
878 (T
.Common
.Base_CPU
not in T
.Common
.Domain
'Range
879 or else not T
.Common
.Domain
(T
.Common
.Base_CPU
))
885 pTaskParameter
:= To_Address
(T
);
887 Entry_Point
:= To_PTHREAD_START_ROUTINE
(Wrapper
);
889 if Is_Windows_XP
= 1 then
890 hTask
:= CreateThread
895 DWORD
(Create_Suspended
)
896 or DWORD
(Stack_Size_Param_Is_A_Reservation
),
897 TaskId
'Unchecked_Access);
899 hTask
:= CreateThread
904 DWORD
(Create_Suspended
),
905 TaskId
'Unchecked_Access);
908 -- Step 1: Create the thread in blocked mode
915 -- Step 2: set its TCB
917 T
.Common
.LL
.Thread
:= hTask
;
919 -- Note: it would be useful to initialize Thread_Id right away to avoid
920 -- a race condition in gdb where Thread_ID may not have the right value
921 -- yet, but GetThreadId is a Vista specific API, not available under XP:
922 -- T.Common.LL.Thread_Id := GetThreadId (hTask); so instead we set the
923 -- field to 0 to avoid having a random value. Thread_Id is initialized
924 -- in Enter_Task anyway.
926 T
.Common
.LL
.Thread_Id
:= 0;
928 -- Step 3: set its priority (child has inherited priority from parent)
930 Set_Priority
(T
, Priority
);
932 if Time_Slice_Val
= 0
933 or else Dispatching_Policy
= 'F'
934 or else Get_Policy
(Priority
) = 'F'
936 -- Here we need Annex D semantics so we disable the NT priority
937 -- boost. A priority boost is temporarily given by the system to
938 -- a thread when it is taken out of a wait state.
940 SetThreadPriorityBoost
(hTask
, DisablePriorityBoost
=> Win32
.TRUE);
943 -- Step 4: Handle pragma CPU and Task_Info
945 Set_Task_Affinity
(T
);
947 -- Step 5: Now, start it for good
949 Result
:= ResumeThread
(hTask
);
950 pragma Assert
(Result
= 1);
952 Succeeded
:= Result
= 1;
959 procedure Finalize_TCB
(T
: Task_Id
) is
961 pragma Unreferenced
(Succeeded
);
964 if not Single_Lock
then
965 Finalize_Lock
(T
.Common
.LL
.L
'Access);
968 Finalize_Cond
(T
.Common
.LL
.CV
'Access);
970 if T
.Known_Tasks_Index
/= -1 then
971 Known_Tasks
(T
.Known_Tasks_Index
) := null;
974 if T
.Common
.LL
.Thread
/= 0 then
976 -- This task has been activated. Close the thread handle. This
977 -- is needed to release system resources.
979 Succeeded
:= CloseHandle
(T
.Common
.LL
.Thread
);
980 -- Note that we do not check for the returned value, this is
981 -- because the above call will fail for a foreign thread. But
982 -- we still need to call it to properly close Ada tasks created
983 -- with CreateThread() in Create_Task above.
986 ATCB_Allocation
.Free_ATCB
(T
);
993 procedure Exit_Task
is
1002 procedure Abort_Task
(T
: Task_Id
) is
1003 pragma Unreferenced
(T
);
1008 ----------------------
1009 -- Environment_Task --
1010 ----------------------
1012 function Environment_Task
return Task_Id
is
1014 return Environment_Task_Id
;
1015 end Environment_Task
;
1021 procedure Lock_RTS
is
1023 Write_Lock
(Single_RTS_Lock
'Access, Global_Lock
=> True);
1030 procedure Unlock_RTS
is
1032 Unlock
(Single_RTS_Lock
'Access, Global_Lock
=> True);
1039 procedure Initialize
(Environment_Task
: Task_Id
) is
1043 Environment_Task_Id
:= Environment_Task
;
1044 OS_Primitives
.Initialize
;
1045 Interrupt_Management
.Initialize
;
1047 if Time_Slice_Val
= 0 or else Dispatching_Policy
= 'F' then
1048 -- Here we need Annex D semantics, switch the current process to the
1049 -- Realtime_Priority_Class.
1051 Discard
:= OS_Interface
.SetPriorityClass
1052 (GetCurrentProcess
, Realtime_Priority_Class
);
1055 TlsIndex
:= TlsAlloc
;
1057 -- Initialize the lock used to synchronize chain of all ATCBs
1059 Initialize_Lock
(Single_RTS_Lock
'Access, RTS_Lock_Level
);
1061 Environment_Task
.Common
.LL
.Thread
:= GetCurrentThread
;
1063 -- Make environment task known here because it doesn't go through
1064 -- Activate_Tasks, which does it for all other tasks.
1066 Known_Tasks
(Known_Tasks
'First) := Environment_Task
;
1067 Environment_Task
.Known_Tasks_Index
:= Known_Tasks
'First;
1069 Enter_Task
(Environment_Task
);
1071 -- pragma CPU and dispatching domains for the environment task
1073 Set_Task_Affinity
(Environment_Task
);
1076 ---------------------
1077 -- Monotonic_Clock --
1078 ---------------------
1080 function Monotonic_Clock
return Duration is
1081 function Internal_Clock
return Duration;
1082 pragma Import
(Ada
, Internal_Clock
, "__gnat_monotonic_clock");
1084 return Internal_Clock
;
1085 end Monotonic_Clock
;
1091 function RT_Resolution
return Duration is
1092 Ticks_Per_Second
: aliased LARGE_INTEGER
;
1094 QueryPerformanceFrequency
(Ticks_Per_Second
'Access);
1095 return Duration (1.0 / Ticks_Per_Second
);
1102 procedure Initialize
(S
: in out Suspension_Object
) is
1104 -- Initialize internal state. It is always initialized to False (ARM
1110 -- Initialize internal mutex
1112 InitializeCriticalSection
(S
.L
'Access);
1114 -- Initialize internal condition variable
1116 S
.CV
:= CreateEvent
(null, Win32
.TRUE, Win32
.FALSE, Null_Ptr
);
1117 pragma Assert
(S
.CV
/= 0);
1124 procedure Finalize
(S
: in out Suspension_Object
) is
1128 -- Destroy internal mutex
1130 DeleteCriticalSection
(S
.L
'Access);
1132 -- Destroy internal condition variable
1134 Result
:= CloseHandle
(S
.CV
);
1135 pragma Assert
(Result
= Win32
.TRUE);
1142 function Current_State
(S
: Suspension_Object
) return Boolean is
1144 -- We do not want to use lock on this read operation. State is marked
1145 -- as Atomic so that we ensure that the value retrieved is correct.
1154 procedure Set_False
(S
: in out Suspension_Object
) is
1156 SSL
.Abort_Defer
.all;
1158 EnterCriticalSection
(S
.L
'Access);
1162 LeaveCriticalSection
(S
.L
'Access);
1164 SSL
.Abort_Undefer
.all;
1171 procedure Set_True
(S
: in out Suspension_Object
) is
1175 SSL
.Abort_Defer
.all;
1177 EnterCriticalSection
(S
.L
'Access);
1179 -- If there is already a task waiting on this suspension object then
1180 -- we resume it, leaving the state of the suspension object to False,
1181 -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
1182 -- the state to True.
1188 Result
:= SetEvent
(S
.CV
);
1189 pragma Assert
(Result
= Win32
.TRUE);
1195 LeaveCriticalSection
(S
.L
'Access);
1197 SSL
.Abort_Undefer
.all;
1200 ------------------------
1201 -- Suspend_Until_True --
1202 ------------------------
1204 procedure Suspend_Until_True
(S
: in out Suspension_Object
) is
1209 SSL
.Abort_Defer
.all;
1211 EnterCriticalSection
(S
.L
'Access);
1215 -- Program_Error must be raised upon calling Suspend_Until_True
1216 -- if another task is already waiting on that suspension object
1217 -- (ARM D.10 par. 10).
1219 LeaveCriticalSection
(S
.L
'Access);
1221 SSL
.Abort_Undefer
.all;
1223 raise Program_Error
;
1226 -- Suspend the task if the state is False. Otherwise, the task
1227 -- continues its execution, and the state of the suspension object
1228 -- is set to False (ARM D.10 par. 9).
1233 LeaveCriticalSection
(S
.L
'Access);
1235 SSL
.Abort_Undefer
.all;
1240 -- Must reset CV BEFORE L is unlocked
1242 Result_Bool
:= ResetEvent
(S
.CV
);
1243 pragma Assert
(Result_Bool
= Win32
.TRUE);
1245 LeaveCriticalSection
(S
.L
'Access);
1247 SSL
.Abort_Undefer
.all;
1249 Result
:= WaitForSingleObject
(S
.CV
, Wait_Infinite
);
1250 pragma Assert
(Result
= 0);
1253 end Suspend_Until_True
;
1259 -- Dummy versions, currently this only works for solaris (native)
1261 function Check_Exit
(Self_ID
: ST
.Task_Id
) return Boolean is
1262 pragma Unreferenced
(Self_ID
);
1267 --------------------
1268 -- Check_No_Locks --
1269 --------------------
1271 function Check_No_Locks
(Self_ID
: ST
.Task_Id
) return Boolean is
1272 pragma Unreferenced
(Self_ID
);
1281 function Suspend_Task
1283 Thread_Self
: Thread_Id
) return Boolean
1286 if T
.Common
.LL
.Thread
/= Thread_Self
then
1287 return SuspendThread
(T
.Common
.LL
.Thread
) = NO_ERROR
;
1297 function Resume_Task
1299 Thread_Self
: Thread_Id
) return Boolean
1302 if T
.Common
.LL
.Thread
/= Thread_Self
then
1303 return ResumeThread
(T
.Common
.LL
.Thread
) = NO_ERROR
;
1309 --------------------
1310 -- Stop_All_Tasks --
1311 --------------------
1313 procedure Stop_All_Tasks
is
1322 function Stop_Task
(T
: ST
.Task_Id
) return Boolean is
1323 pragma Unreferenced
(T
);
1332 function Continue_Task
(T
: ST
.Task_Id
) return Boolean is
1333 pragma Unreferenced
(T
);
1338 -----------------------
1339 -- Set_Task_Affinity --
1340 -----------------------
1342 procedure Set_Task_Affinity
(T
: ST
.Task_Id
) is
1345 use type System
.Multiprocessors
.CPU_Range
;
1348 -- Do nothing if the underlying thread has not yet been created. If the
1349 -- thread has not yet been created then the proper affinity will be set
1350 -- during its creation.
1352 if T
.Common
.LL
.Thread
= Null_Thread_Id
then
1357 elsif T
.Common
.Base_CPU
/= Multiprocessors
.Not_A_Specific_CPU
then
1359 -- The CPU numbering in pragma CPU starts at 1 while the subprogram
1360 -- to set the affinity starts at 0, therefore we must substract 1.
1363 SetThreadIdealProcessor
1364 (T
.Common
.LL
.Thread
, ProcessorId
(T
.Common
.Base_CPU
) - 1);
1365 pragma Assert
(Result
= 1);
1369 elsif T
.Common
.Task_Info
/= null then
1370 if T
.Common
.Task_Info
.CPU
/= Task_Info
.Any_CPU
then
1372 SetThreadIdealProcessor
1373 (T
.Common
.LL
.Thread
, T
.Common
.Task_Info
.CPU
);
1374 pragma Assert
(Result
= 1);
1377 -- Dispatching domains
1379 elsif T
.Common
.Domain
/= null
1380 and then (T
.Common
.Domain
/= ST
.System_Domain
1382 T
.Common
.Domain
.all /=
1383 (Multiprocessors
.CPU
'First ..
1384 Multiprocessors
.Number_Of_CPUs
=> True))
1387 CPU_Set
: DWORD
:= 0;
1390 for Proc
in T
.Common
.Domain
'Range loop
1391 if T
.Common
.Domain
(Proc
) then
1393 -- The thread affinity mask is a bit vector in which each
1394 -- bit represents a logical processor.
1396 CPU_Set
:= CPU_Set
+ 2 ** (Integer (Proc
) - 1);
1400 Result
:= SetThreadAffinityMask
(T
.Common
.LL
.Thread
, CPU_Set
);
1401 pragma Assert
(Result
= 1);
1404 end Set_Task_Affinity
;
1406 end System
.Task_Primitives
.Operations
;