* ru.po: Update.
[official-gcc.git] / gcc / ada / sem_ch4.adb
blobdd140c165cb7397e11ce9cf87375a94acacd69d8
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Util; use Exp_Util;
33 with Fname; use Fname;
34 with Itypes; use Itypes;
35 with Lib; use Lib;
36 with Lib.Xref; use Lib.Xref;
37 with Namet; use Namet;
38 with Namet.Sp; use Namet.Sp;
39 with Nlists; use Nlists;
40 with Nmake; use Nmake;
41 with Opt; use Opt;
42 with Output; use Output;
43 with Restrict; use Restrict;
44 with Rident; use Rident;
45 with Sem; use Sem;
46 with Sem_Aux; use Sem_Aux;
47 with Sem_Case; use Sem_Case;
48 with Sem_Cat; use Sem_Cat;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch6; use Sem_Ch6;
51 with Sem_Ch8; use Sem_Ch8;
52 with Sem_Dim; use Sem_Dim;
53 with Sem_Disp; use Sem_Disp;
54 with Sem_Dist; use Sem_Dist;
55 with Sem_Eval; use Sem_Eval;
56 with Sem_Res; use Sem_Res;
57 with Sem_Type; use Sem_Type;
58 with Sem_Util; use Sem_Util;
59 with Sem_Warn; use Sem_Warn;
60 with Stand; use Stand;
61 with Sinfo; use Sinfo;
62 with Snames; use Snames;
63 with Tbuild; use Tbuild;
64 with Uintp; use Uintp;
66 package body Sem_Ch4 is
68 -- Tables which speed up the identification of dangerous calls to Ada 2012
69 -- functions with writable actuals (AI05-0144).
71 -- The following table enumerates the Ada constructs which may evaluate in
72 -- arbitrary order. It does not cover all the language constructs which can
73 -- be evaluated in arbitrary order but the subset needed for AI05-0144.
75 Has_Arbitrary_Evaluation_Order : constant array (Node_Kind) of Boolean :=
76 (N_Aggregate => True,
77 N_Assignment_Statement => True,
78 N_Entry_Call_Statement => True,
79 N_Extension_Aggregate => True,
80 N_Full_Type_Declaration => True,
81 N_Indexed_Component => True,
82 N_Object_Declaration => True,
83 N_Pragma => True,
84 N_Range => True,
85 N_Slice => True,
86 N_Array_Type_Definition => True,
87 N_Membership_Test => True,
88 N_Binary_Op => True,
89 N_Subprogram_Call => True,
90 others => False);
92 -- The following table enumerates the nodes on which we stop climbing when
93 -- locating the outermost Ada construct that can be evaluated in arbitrary
94 -- order.
96 Stop_Subtree_Climbing : constant array (Node_Kind) of Boolean :=
97 (N_Aggregate => True,
98 N_Assignment_Statement => True,
99 N_Entry_Call_Statement => True,
100 N_Extended_Return_Statement => True,
101 N_Extension_Aggregate => True,
102 N_Full_Type_Declaration => True,
103 N_Object_Declaration => True,
104 N_Object_Renaming_Declaration => True,
105 N_Package_Specification => True,
106 N_Pragma => True,
107 N_Procedure_Call_Statement => True,
108 N_Simple_Return_Statement => True,
109 N_Has_Condition => True,
110 others => False);
112 -----------------------
113 -- Local Subprograms --
114 -----------------------
116 procedure Analyze_Concatenation_Rest (N : Node_Id);
117 -- Does the "rest" of the work of Analyze_Concatenation, after the left
118 -- operand has been analyzed. See Analyze_Concatenation for details.
120 procedure Analyze_Expression (N : Node_Id);
121 -- For expressions that are not names, this is just a call to analyze. If
122 -- the expression is a name, it may be a call to a parameterless function,
123 -- and if so must be converted into an explicit call node and analyzed as
124 -- such. This deproceduring must be done during the first pass of overload
125 -- resolution, because otherwise a procedure call with overloaded actuals
126 -- may fail to resolve.
128 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
129 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call is an
130 -- operator name or an expanded name whose selector is an operator name,
131 -- and one possible interpretation is as a predefined operator.
133 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
134 -- If the prefix of a selected_component is overloaded, the proper
135 -- interpretation that yields a record type with the proper selector
136 -- name must be selected.
138 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
139 -- Procedure to analyze a user defined binary operator, which is resolved
140 -- like a function, but instead of a list of actuals it is presented
141 -- with the left and right operands of an operator node.
143 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
144 -- Procedure to analyze a user defined unary operator, which is resolved
145 -- like a function, but instead of a list of actuals, it is presented with
146 -- the operand of the operator node.
148 procedure Ambiguous_Operands (N : Node_Id);
149 -- For equality, membership, and comparison operators with overloaded
150 -- arguments, list possible interpretations.
152 procedure Analyze_One_Call
153 (N : Node_Id;
154 Nam : Entity_Id;
155 Report : Boolean;
156 Success : out Boolean;
157 Skip_First : Boolean := False);
158 -- Check one interpretation of an overloaded subprogram name for
159 -- compatibility with the types of the actuals in a call. If there is a
160 -- single interpretation which does not match, post error if Report is
161 -- set to True.
163 -- Nam is the entity that provides the formals against which the actuals
164 -- are checked. Nam is either the name of a subprogram, or the internal
165 -- subprogram type constructed for an access_to_subprogram. If the actuals
166 -- are compatible with Nam, then Nam is added to the list of candidate
167 -- interpretations for N, and Success is set to True.
169 -- The flag Skip_First is used when analyzing a call that was rewritten
170 -- from object notation. In this case the first actual may have to receive
171 -- an explicit dereference, depending on the first formal of the operation
172 -- being called. The caller will have verified that the object is legal
173 -- for the call. If the remaining parameters match, the first parameter
174 -- will rewritten as a dereference if needed, prior to completing analysis.
176 procedure Check_Misspelled_Selector
177 (Prefix : Entity_Id;
178 Sel : Node_Id);
179 -- Give possible misspelling message if Sel seems likely to be a mis-
180 -- spelling of one of the selectors of the Prefix. This is called by
181 -- Analyze_Selected_Component after producing an invalid selector error
182 -- message.
184 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
185 -- Verify that type T is declared in scope S. Used to find interpretations
186 -- for operators given by expanded names. This is abstracted as a separate
187 -- function to handle extensions to System, where S is System, but T is
188 -- declared in the extension.
190 procedure Find_Arithmetic_Types
191 (L, R : Node_Id;
192 Op_Id : Entity_Id;
193 N : Node_Id);
194 -- L and R are the operands of an arithmetic operator. Find consistent
195 -- pairs of interpretations for L and R that have a numeric type consistent
196 -- with the semantics of the operator.
198 procedure Find_Comparison_Types
199 (L, R : Node_Id;
200 Op_Id : Entity_Id;
201 N : Node_Id);
202 -- L and R are operands of a comparison operator. Find consistent pairs of
203 -- interpretations for L and R.
205 procedure Find_Concatenation_Types
206 (L, R : Node_Id;
207 Op_Id : Entity_Id;
208 N : Node_Id);
209 -- For the four varieties of concatenation
211 procedure Find_Equality_Types
212 (L, R : Node_Id;
213 Op_Id : Entity_Id;
214 N : Node_Id);
215 -- Ditto for equality operators
217 procedure Find_Boolean_Types
218 (L, R : Node_Id;
219 Op_Id : Entity_Id;
220 N : Node_Id);
221 -- Ditto for binary logical operations
223 procedure Find_Negation_Types
224 (R : Node_Id;
225 Op_Id : Entity_Id;
226 N : Node_Id);
227 -- Find consistent interpretation for operand of negation operator
229 procedure Find_Non_Universal_Interpretations
230 (N : Node_Id;
231 R : Node_Id;
232 Op_Id : Entity_Id;
233 T1 : Entity_Id);
234 -- For equality and comparison operators, the result is always boolean,
235 -- and the legality of the operation is determined from the visibility
236 -- of the operand types. If one of the operands has a universal interpre-
237 -- tation, the legality check uses some compatible non-universal
238 -- interpretation of the other operand. N can be an operator node, or
239 -- a function call whose name is an operator designator. Any_Access, which
240 -- is the initial type of the literal NULL, is a universal type for the
241 -- purpose of this routine.
243 function Find_Primitive_Operation (N : Node_Id) return Boolean;
244 -- Find candidate interpretations for the name Obj.Proc when it appears
245 -- in a subprogram renaming declaration.
247 procedure Find_Unary_Types
248 (R : Node_Id;
249 Op_Id : Entity_Id;
250 N : Node_Id);
251 -- Unary arithmetic types: plus, minus, abs
253 procedure Check_Arithmetic_Pair
254 (T1, T2 : Entity_Id;
255 Op_Id : Entity_Id;
256 N : Node_Id);
257 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid types
258 -- for left and right operand. Determine whether they constitute a valid
259 -- pair for the given operator, and record the corresponding interpretation
260 -- of the operator node. The node N may be an operator node (the usual
261 -- case) or a function call whose prefix is an operator designator. In
262 -- both cases Op_Id is the operator name itself.
264 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
265 -- Give detailed information on overloaded call where none of the
266 -- interpretations match. N is the call node, Nam the designator for
267 -- the overloaded entity being called.
269 function Junk_Operand (N : Node_Id) return Boolean;
270 -- Test for an operand that is an inappropriate entity (e.g. a package
271 -- name or a label). If so, issue an error message and return True. If
272 -- the operand is not an inappropriate entity kind, return False.
274 procedure Operator_Check (N : Node_Id);
275 -- Verify that an operator has received some valid interpretation. If none
276 -- was found, determine whether a use clause would make the operation
277 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
278 -- every type compatible with the operator, even if the operator for the
279 -- type is not directly visible. The routine uses this type to emit a more
280 -- informative message.
282 function Process_Implicit_Dereference_Prefix
283 (E : Entity_Id;
284 P : Node_Id) return Entity_Id;
285 -- Called when P is the prefix of an implicit dereference, denoting an
286 -- object E. The function returns the designated type of the prefix, taking
287 -- into account that the designated type of an anonymous access type may be
288 -- a limited view, when the non-limited view is visible.
290 -- If in semantics only mode (-gnatc or generic), the function also records
291 -- that the prefix is a reference to E, if any. Normally, such a reference
292 -- is generated only when the implicit dereference is expanded into an
293 -- explicit one, but for consistency we must generate the reference when
294 -- expansion is disabled as well.
296 procedure Remove_Abstract_Operations (N : Node_Id);
297 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
298 -- operation is not a candidate interpretation.
300 function Try_Container_Indexing
301 (N : Node_Id;
302 Prefix : Node_Id;
303 Exprs : List_Id) return Boolean;
304 -- AI05-0139: Generalized indexing to support iterators over containers
306 function Try_Indexed_Call
307 (N : Node_Id;
308 Nam : Entity_Id;
309 Typ : Entity_Id;
310 Skip_First : Boolean) return Boolean;
311 -- If a function has defaults for all its actuals, a call to it may in fact
312 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
313 -- interpretation as an indexing, prior to analysis as a call. If both are
314 -- possible, the node is overloaded with both interpretations (same symbol
315 -- but two different types). If the call is written in prefix form, the
316 -- prefix becomes the first parameter in the call, and only the remaining
317 -- actuals must be checked for the presence of defaults.
319 function Try_Indirect_Call
320 (N : Node_Id;
321 Nam : Entity_Id;
322 Typ : Entity_Id) return Boolean;
323 -- Similarly, a function F that needs no actuals can return an access to a
324 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
325 -- the call may be overloaded with both interpretations.
327 function Try_Object_Operation
328 (N : Node_Id;
329 CW_Test_Only : Boolean := False) return Boolean;
330 -- Ada 2005 (AI-252): Support the object.operation notation. If node N
331 -- is a call in this notation, it is transformed into a normal subprogram
332 -- call where the prefix is a parameter, and True is returned. If node
333 -- N is not of this form, it is unchanged, and False is returned. If
334 -- CW_Test_Only is true then N is an N_Selected_Component node which
335 -- is part of a call to an entry or procedure of a tagged concurrent
336 -- type and this routine is invoked to search for class-wide subprograms
337 -- conflicting with the target entity.
339 procedure wpo (T : Entity_Id);
340 pragma Warnings (Off, wpo);
341 -- Used for debugging: obtain list of primitive operations even if
342 -- type is not frozen and dispatch table is not built yet.
344 ------------------------
345 -- Ambiguous_Operands --
346 ------------------------
348 procedure Ambiguous_Operands (N : Node_Id) is
349 procedure List_Operand_Interps (Opnd : Node_Id);
351 --------------------------
352 -- List_Operand_Interps --
353 --------------------------
355 procedure List_Operand_Interps (Opnd : Node_Id) is
356 Nam : Node_Id;
357 Err : Node_Id := N;
359 begin
360 if Is_Overloaded (Opnd) then
361 if Nkind (Opnd) in N_Op then
362 Nam := Opnd;
364 elsif Nkind (Opnd) = N_Function_Call then
365 Nam := Name (Opnd);
367 elsif Ada_Version >= Ada_2012 then
368 declare
369 It : Interp;
370 I : Interp_Index;
372 begin
373 Get_First_Interp (Opnd, I, It);
374 while Present (It.Nam) loop
375 if Has_Implicit_Dereference (It.Typ) then
376 Error_Msg_N
377 ("can be interpreted as implicit dereference", Opnd);
378 return;
379 end if;
381 Get_Next_Interp (I, It);
382 end loop;
383 end;
385 return;
386 end if;
388 else
389 return;
390 end if;
392 if Opnd = Left_Opnd (N) then
393 Error_Msg_N
394 ("\left operand has the following interpretations", N);
395 else
396 Error_Msg_N
397 ("\right operand has the following interpretations", N);
398 Err := Opnd;
399 end if;
401 List_Interps (Nam, Err);
402 end List_Operand_Interps;
404 -- Start of processing for Ambiguous_Operands
406 begin
407 if Nkind (N) in N_Membership_Test then
408 Error_Msg_N ("ambiguous operands for membership", N);
410 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
411 Error_Msg_N ("ambiguous operands for equality", N);
413 else
414 Error_Msg_N ("ambiguous operands for comparison", N);
415 end if;
417 if All_Errors_Mode then
418 List_Operand_Interps (Left_Opnd (N));
419 List_Operand_Interps (Right_Opnd (N));
420 else
421 Error_Msg_N ("\use -gnatf switch for details", N);
422 end if;
423 end Ambiguous_Operands;
425 -----------------------
426 -- Analyze_Aggregate --
427 -----------------------
429 -- Most of the analysis of Aggregates requires that the type be known,
430 -- and is therefore put off until resolution.
432 procedure Analyze_Aggregate (N : Node_Id) is
433 begin
434 if No (Etype (N)) then
435 Set_Etype (N, Any_Composite);
436 end if;
437 end Analyze_Aggregate;
439 -----------------------
440 -- Analyze_Allocator --
441 -----------------------
443 procedure Analyze_Allocator (N : Node_Id) is
444 Loc : constant Source_Ptr := Sloc (N);
445 Sav_Errs : constant Nat := Serious_Errors_Detected;
446 E : Node_Id := Expression (N);
447 Acc_Type : Entity_Id;
448 Type_Id : Entity_Id;
449 P : Node_Id;
450 C : Node_Id;
451 Onode : Node_Id;
453 begin
454 Check_SPARK_05_Restriction ("allocator is not allowed", N);
456 -- Deal with allocator restrictions
458 -- In accordance with H.4(7), the No_Allocators restriction only applies
459 -- to user-written allocators. The same consideration applies to the
460 -- No_Standard_Allocators_Before_Elaboration restriction.
462 if Comes_From_Source (N) then
463 Check_Restriction (No_Allocators, N);
465 -- Processing for No_Standard_Allocators_After_Elaboration, loop to
466 -- look at enclosing context, checking task/main subprogram case.
468 C := N;
469 P := Parent (C);
470 while Present (P) loop
472 -- For the task case we need a handled sequence of statements,
473 -- where the occurrence of the allocator is within the statements
474 -- and the parent is a task body
476 if Nkind (P) = N_Handled_Sequence_Of_Statements
477 and then Is_List_Member (C)
478 and then List_Containing (C) = Statements (P)
479 then
480 Onode := Original_Node (Parent (P));
482 -- Check for allocator within task body, this is a definite
483 -- violation of No_Allocators_After_Elaboration we can detect
484 -- at compile time.
486 if Nkind (Onode) = N_Task_Body then
487 Check_Restriction
488 (No_Standard_Allocators_After_Elaboration, N);
489 exit;
490 end if;
491 end if;
493 -- The other case is appearance in a subprogram body. This is
494 -- a violation if this is a library level subprogram with no
495 -- parameters. Note that this is now a static error even if the
496 -- subprogram is not the main program (this is a change, in an
497 -- earlier version only the main program was affected, and the
498 -- check had to be done in the binder.
500 if Nkind (P) = N_Subprogram_Body
501 and then Nkind (Parent (P)) = N_Compilation_Unit
502 and then No (Parameter_Specifications (Specification (P)))
503 then
504 Check_Restriction
505 (No_Standard_Allocators_After_Elaboration, N);
506 end if;
508 C := P;
509 P := Parent (C);
510 end loop;
511 end if;
513 -- Ada 2012 (AI05-0111-3): Analyze the subpool_specification, if
514 -- any. The expected type for the name is any type. A non-overloading
515 -- rule then requires it to be of a type descended from
516 -- System.Storage_Pools.Subpools.Subpool_Handle.
518 -- This isn't exactly what the AI says, but it seems to be the right
519 -- rule. The AI should be fixed.???
521 declare
522 Subpool : constant Node_Id := Subpool_Handle_Name (N);
524 begin
525 if Present (Subpool) then
526 Analyze (Subpool);
528 if Is_Overloaded (Subpool) then
529 Error_Msg_N ("ambiguous subpool handle", Subpool);
530 end if;
532 -- Check that Etype (Subpool) is descended from Subpool_Handle
534 Resolve (Subpool);
535 end if;
536 end;
538 -- Analyze the qualified expression or subtype indication
540 if Nkind (E) = N_Qualified_Expression then
541 Acc_Type := Create_Itype (E_Allocator_Type, N);
542 Set_Etype (Acc_Type, Acc_Type);
543 Find_Type (Subtype_Mark (E));
545 -- Analyze the qualified expression, and apply the name resolution
546 -- rule given in 4.7(3).
548 Analyze (E);
549 Type_Id := Etype (E);
550 Set_Directly_Designated_Type (Acc_Type, Type_Id);
552 -- A qualified expression requires an exact match of the type,
553 -- class-wide matching is not allowed.
555 -- if Is_Class_Wide_Type (Type_Id)
556 -- and then Base_Type
557 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
558 -- then
559 -- Wrong_Type (Expression (E), Type_Id);
560 -- end if;
562 -- We don't analyze the qualified expression itself because it's
563 -- part of the allocator. It is fully analyzed and resolved when
564 -- the allocator is resolved with the context type.
566 Set_Etype (E, Type_Id);
568 -- Case where allocator has a subtype indication
570 else
571 declare
572 Def_Id : Entity_Id;
573 Base_Typ : Entity_Id;
575 begin
576 -- If the allocator includes a N_Subtype_Indication then a
577 -- constraint is present, otherwise the node is a subtype mark.
578 -- Introduce an explicit subtype declaration into the tree
579 -- defining some anonymous subtype and rewrite the allocator to
580 -- use this subtype rather than the subtype indication.
582 -- It is important to introduce the explicit subtype declaration
583 -- so that the bounds of the subtype indication are attached to
584 -- the tree in case the allocator is inside a generic unit.
586 -- Finally, if there is no subtype indication and the type is
587 -- a tagged unconstrained type with discriminants, the designated
588 -- object is constrained by their default values, and it is
589 -- simplest to introduce an explicit constraint now. In some cases
590 -- this is done during expansion, but freeze actions are certain
591 -- to be emitted in the proper order if constraint is explicit.
593 if Is_Entity_Name (E) and then Expander_Active then
594 Find_Type (E);
595 Type_Id := Entity (E);
597 if Is_Tagged_Type (Type_Id)
598 and then Has_Discriminants (Type_Id)
599 and then not Is_Constrained (Type_Id)
600 and then
601 Present
602 (Discriminant_Default_Value
603 (First_Discriminant (Type_Id)))
604 then
605 declare
606 Constr : constant List_Id := New_List;
607 Loc : constant Source_Ptr := Sloc (E);
608 Discr : Entity_Id := First_Discriminant (Type_Id);
610 begin
611 if Present (Discriminant_Default_Value (Discr)) then
612 while Present (Discr) loop
613 Append (Discriminant_Default_Value (Discr), Constr);
614 Next_Discriminant (Discr);
615 end loop;
617 Rewrite (E,
618 Make_Subtype_Indication (Loc,
619 Subtype_Mark => New_Occurrence_Of (Type_Id, Loc),
620 Constraint =>
621 Make_Index_Or_Discriminant_Constraint (Loc,
622 Constraints => Constr)));
623 end if;
624 end;
625 end if;
626 end if;
628 if Nkind (E) = N_Subtype_Indication then
630 -- A constraint is only allowed for a composite type in Ada
631 -- 95. In Ada 83, a constraint is also allowed for an
632 -- access-to-composite type, but the constraint is ignored.
634 Find_Type (Subtype_Mark (E));
635 Base_Typ := Entity (Subtype_Mark (E));
637 if Is_Elementary_Type (Base_Typ) then
638 if not (Ada_Version = Ada_83
639 and then Is_Access_Type (Base_Typ))
640 then
641 Error_Msg_N ("constraint not allowed here", E);
643 if Nkind (Constraint (E)) =
644 N_Index_Or_Discriminant_Constraint
645 then
646 Error_Msg_N -- CODEFIX
647 ("\if qualified expression was meant, " &
648 "use apostrophe", Constraint (E));
649 end if;
650 end if;
652 -- Get rid of the bogus constraint:
654 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
655 Analyze_Allocator (N);
656 return;
657 end if;
659 if Expander_Active then
660 Def_Id := Make_Temporary (Loc, 'S');
662 Insert_Action (E,
663 Make_Subtype_Declaration (Loc,
664 Defining_Identifier => Def_Id,
665 Subtype_Indication => Relocate_Node (E)));
667 if Sav_Errs /= Serious_Errors_Detected
668 and then Nkind (Constraint (E)) =
669 N_Index_Or_Discriminant_Constraint
670 then
671 Error_Msg_N -- CODEFIX
672 ("if qualified expression was meant, "
673 & "use apostrophe!", Constraint (E));
674 end if;
676 E := New_Occurrence_Of (Def_Id, Loc);
677 Rewrite (Expression (N), E);
678 end if;
679 end if;
681 Type_Id := Process_Subtype (E, N);
682 Acc_Type := Create_Itype (E_Allocator_Type, N);
683 Set_Etype (Acc_Type, Acc_Type);
684 Set_Directly_Designated_Type (Acc_Type, Type_Id);
685 Check_Fully_Declared (Type_Id, N);
687 -- Ada 2005 (AI-231): If the designated type is itself an access
688 -- type that excludes null, its default initialization will
689 -- be a null object, and we can insert an unconditional raise
690 -- before the allocator.
692 -- Ada 2012 (AI-104): A not null indication here is altogether
693 -- illegal.
695 if Can_Never_Be_Null (Type_Id) then
696 declare
697 Not_Null_Check : constant Node_Id :=
698 Make_Raise_Constraint_Error (Sloc (E),
699 Reason => CE_Null_Not_Allowed);
701 begin
702 if Expander_Active then
703 Insert_Action (N, Not_Null_Check);
704 Analyze (Not_Null_Check);
706 elsif Warn_On_Ada_2012_Compatibility then
707 Error_Msg_N
708 ("null value not allowed here in Ada 2012?y?", E);
709 end if;
710 end;
711 end if;
713 -- Check for missing initialization. Skip this check if we already
714 -- had errors on analyzing the allocator, since in that case these
715 -- are probably cascaded errors.
717 if not Is_Definite_Subtype (Type_Id)
718 and then Serious_Errors_Detected = Sav_Errs
719 then
720 -- The build-in-place machinery may produce an allocator when
721 -- the designated type is indefinite but the underlying type is
722 -- not. In this case the unknown discriminants are meaningless
723 -- and should not trigger error messages. Check the parent node
724 -- because the allocator is marked as coming from source.
726 if Present (Underlying_Type (Type_Id))
727 and then Is_Definite_Subtype (Underlying_Type (Type_Id))
728 and then not Comes_From_Source (Parent (N))
729 then
730 null;
732 elsif Is_Class_Wide_Type (Type_Id) then
733 Error_Msg_N
734 ("initialization required in class-wide allocation", N);
736 else
737 if Ada_Version < Ada_2005
738 and then Is_Limited_Type (Type_Id)
739 then
740 Error_Msg_N ("unconstrained allocation not allowed", N);
742 if Is_Array_Type (Type_Id) then
743 Error_Msg_N
744 ("\constraint with array bounds required", N);
746 elsif Has_Unknown_Discriminants (Type_Id) then
747 null;
749 else pragma Assert (Has_Discriminants (Type_Id));
750 Error_Msg_N
751 ("\constraint with discriminant values required", N);
752 end if;
754 -- Limited Ada 2005 and general non-limited case
756 else
757 Error_Msg_N
758 ("uninitialized unconstrained allocation not "
759 & "allowed", N);
761 if Is_Array_Type (Type_Id) then
762 Error_Msg_N
763 ("\qualified expression or constraint with "
764 & "array bounds required", N);
766 elsif Has_Unknown_Discriminants (Type_Id) then
767 Error_Msg_N ("\qualified expression required", N);
769 else pragma Assert (Has_Discriminants (Type_Id));
770 Error_Msg_N
771 ("\qualified expression or constraint with "
772 & "discriminant values required", N);
773 end if;
774 end if;
775 end if;
776 end if;
777 end;
778 end if;
780 if Is_Abstract_Type (Type_Id) then
781 Error_Msg_N ("cannot allocate abstract object", E);
782 end if;
784 if Has_Task (Designated_Type (Acc_Type)) then
785 Check_Restriction (No_Tasking, N);
786 Check_Restriction (Max_Tasks, N);
787 Check_Restriction (No_Task_Allocators, N);
788 end if;
790 -- Check restriction against dynamically allocated protected objects
792 if Has_Protected (Designated_Type (Acc_Type)) then
793 Check_Restriction (No_Protected_Type_Allocators, N);
794 end if;
796 -- AI05-0013-1: No_Nested_Finalization forbids allocators if the access
797 -- type is nested, and the designated type needs finalization. The rule
798 -- is conservative in that class-wide types need finalization.
800 if Needs_Finalization (Designated_Type (Acc_Type))
801 and then not Is_Library_Level_Entity (Acc_Type)
802 then
803 Check_Restriction (No_Nested_Finalization, N);
804 end if;
806 -- Check that an allocator of a nested access type doesn't create a
807 -- protected object when restriction No_Local_Protected_Objects applies.
809 if Has_Protected (Designated_Type (Acc_Type))
810 and then not Is_Library_Level_Entity (Acc_Type)
811 then
812 Check_Restriction (No_Local_Protected_Objects, N);
813 end if;
815 -- If the No_Streams restriction is set, check that the type of the
816 -- object is not, and does not contain, any subtype derived from
817 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
818 -- Has_Stream just for efficiency reasons. There is no point in
819 -- spending time on a Has_Stream check if the restriction is not set.
821 if Restriction_Check_Required (No_Streams) then
822 if Has_Stream (Designated_Type (Acc_Type)) then
823 Check_Restriction (No_Streams, N);
824 end if;
825 end if;
827 Set_Etype (N, Acc_Type);
829 if not Is_Library_Level_Entity (Acc_Type) then
830 Check_Restriction (No_Local_Allocators, N);
831 end if;
833 if Serious_Errors_Detected > Sav_Errs then
834 Set_Error_Posted (N);
835 Set_Etype (N, Any_Type);
836 end if;
837 end Analyze_Allocator;
839 ---------------------------
840 -- Analyze_Arithmetic_Op --
841 ---------------------------
843 procedure Analyze_Arithmetic_Op (N : Node_Id) is
844 L : constant Node_Id := Left_Opnd (N);
845 R : constant Node_Id := Right_Opnd (N);
846 Op_Id : Entity_Id;
848 begin
849 Candidate_Type := Empty;
850 Analyze_Expression (L);
851 Analyze_Expression (R);
853 -- If the entity is already set, the node is the instantiation of a
854 -- generic node with a non-local reference, or was manufactured by a
855 -- call to Make_Op_xxx. In either case the entity is known to be valid,
856 -- and we do not need to collect interpretations, instead we just get
857 -- the single possible interpretation.
859 Op_Id := Entity (N);
861 if Present (Op_Id) then
862 if Ekind (Op_Id) = E_Operator then
864 if Nkind_In (N, N_Op_Divide, N_Op_Mod, N_Op_Multiply, N_Op_Rem)
865 and then Treat_Fixed_As_Integer (N)
866 then
867 null;
868 else
869 Set_Etype (N, Any_Type);
870 Find_Arithmetic_Types (L, R, Op_Id, N);
871 end if;
873 else
874 Set_Etype (N, Any_Type);
875 Add_One_Interp (N, Op_Id, Etype (Op_Id));
876 end if;
878 -- Entity is not already set, so we do need to collect interpretations
880 else
881 Set_Etype (N, Any_Type);
883 Op_Id := Get_Name_Entity_Id (Chars (N));
884 while Present (Op_Id) loop
885 if Ekind (Op_Id) = E_Operator
886 and then Present (Next_Entity (First_Entity (Op_Id)))
887 then
888 Find_Arithmetic_Types (L, R, Op_Id, N);
890 -- The following may seem superfluous, because an operator cannot
891 -- be generic, but this ignores the cleverness of the author of
892 -- ACVC bc1013a.
894 elsif Is_Overloadable (Op_Id) then
895 Analyze_User_Defined_Binary_Op (N, Op_Id);
896 end if;
898 Op_Id := Homonym (Op_Id);
899 end loop;
900 end if;
902 Operator_Check (N);
903 Check_Function_Writable_Actuals (N);
904 end Analyze_Arithmetic_Op;
906 ------------------
907 -- Analyze_Call --
908 ------------------
910 -- Function, procedure, and entry calls are checked here. The Name in
911 -- the call may be overloaded. The actuals have been analyzed and may
912 -- themselves be overloaded. On exit from this procedure, the node N
913 -- may have zero, one or more interpretations. In the first case an
914 -- error message is produced. In the last case, the node is flagged
915 -- as overloaded and the interpretations are collected in All_Interp.
917 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
918 -- the type-checking is similar to that of other calls.
920 procedure Analyze_Call (N : Node_Id) is
921 Actuals : constant List_Id := Parameter_Associations (N);
922 Nam : Node_Id;
923 X : Interp_Index;
924 It : Interp;
925 Nam_Ent : Entity_Id;
926 Success : Boolean := False;
928 Deref : Boolean := False;
929 -- Flag indicates whether an interpretation of the prefix is a
930 -- parameterless call that returns an access_to_subprogram.
932 procedure Check_Mixed_Parameter_And_Named_Associations;
933 -- Check that parameter and named associations are not mixed. This is
934 -- a restriction in SPARK mode.
936 procedure Check_Writable_Actuals (N : Node_Id);
937 -- If the call has out or in-out parameters then mark its outermost
938 -- enclosing construct as a node on which the writable actuals check
939 -- must be performed.
941 function Name_Denotes_Function return Boolean;
942 -- If the type of the name is an access to subprogram, this may be the
943 -- type of a name, or the return type of the function being called. If
944 -- the name is not an entity then it can denote a protected function.
945 -- Until we distinguish Etype from Return_Type, we must use this routine
946 -- to resolve the meaning of the name in the call.
948 procedure No_Interpretation;
949 -- Output error message when no valid interpretation exists
951 --------------------------------------------------
952 -- Check_Mixed_Parameter_And_Named_Associations --
953 --------------------------------------------------
955 procedure Check_Mixed_Parameter_And_Named_Associations is
956 Actual : Node_Id;
957 Named_Seen : Boolean;
959 begin
960 Named_Seen := False;
962 Actual := First (Actuals);
963 while Present (Actual) loop
964 case Nkind (Actual) is
965 when N_Parameter_Association =>
966 if Named_Seen then
967 Check_SPARK_05_Restriction
968 ("named association cannot follow positional one",
969 Actual);
970 exit;
971 end if;
973 when others =>
974 Named_Seen := True;
975 end case;
977 Next (Actual);
978 end loop;
979 end Check_Mixed_Parameter_And_Named_Associations;
981 ----------------------------
982 -- Check_Writable_Actuals --
983 ----------------------------
985 -- The identification of conflicts in calls to functions with writable
986 -- actuals is performed in the analysis phase of the front end to ensure
987 -- that it reports exactly the same errors compiling with and without
988 -- expansion enabled. It is performed in two stages:
990 -- 1) When a call to a function with out-mode parameters is found,
991 -- we climb to the outermost enclosing construct that can be
992 -- evaluated in arbitrary order and we mark it with the flag
993 -- Check_Actuals.
995 -- 2) When the analysis of the marked node is complete, we traverse
996 -- its decorated subtree searching for conflicts (see function
997 -- Sem_Util.Check_Function_Writable_Actuals).
999 -- The unique exception to this general rule is for aggregates, since
1000 -- their analysis is performed by the front end in the resolution
1001 -- phase. For aggregates we do not climb to their enclosing construct:
1002 -- we restrict the analysis to the subexpressions initializing the
1003 -- aggregate components.
1005 -- This implies that the analysis of expressions containing aggregates
1006 -- is not complete, since there may be conflicts on writable actuals
1007 -- involving subexpressions of the enclosing logical or arithmetic
1008 -- expressions. However, we cannot wait and perform the analysis when
1009 -- the whole subtree is resolved, since the subtrees may be transformed,
1010 -- thus adding extra complexity and computation cost to identify and
1011 -- report exactly the same errors compiling with and without expansion
1012 -- enabled.
1014 procedure Check_Writable_Actuals (N : Node_Id) is
1015 begin
1016 if Comes_From_Source (N)
1017 and then Present (Get_Subprogram_Entity (N))
1018 and then Has_Out_Or_In_Out_Parameter (Get_Subprogram_Entity (N))
1019 then
1020 -- For procedures and entries there is no need to climb since
1021 -- we only need to check if the actuals of this call invoke
1022 -- functions whose out-mode parameters overlap.
1024 if Nkind (N) /= N_Function_Call then
1025 Set_Check_Actuals (N);
1027 -- For calls to functions we climb to the outermost enclosing
1028 -- construct where the out-mode actuals of this function may
1029 -- introduce conflicts.
1031 else
1032 declare
1033 Outermost : Node_Id;
1034 P : Node_Id := N;
1036 begin
1037 while Present (P) loop
1039 -- For object declarations we can climb to the node from
1040 -- its object definition branch or from its initializing
1041 -- expression. We prefer to mark the child node as the
1042 -- outermost construct to avoid adding further complexity
1043 -- to the routine that will later take care of
1044 -- performing the writable actuals check.
1046 if Has_Arbitrary_Evaluation_Order (Nkind (P))
1047 and then not Nkind_In (P, N_Assignment_Statement,
1048 N_Object_Declaration)
1049 then
1050 Outermost := P;
1051 end if;
1053 -- Avoid climbing more than needed!
1055 exit when Stop_Subtree_Climbing (Nkind (P))
1056 or else (Nkind (P) = N_Range
1057 and then not
1058 Nkind_In (Parent (P), N_In, N_Not_In));
1060 P := Parent (P);
1061 end loop;
1063 Set_Check_Actuals (Outermost);
1064 end;
1065 end if;
1066 end if;
1067 end Check_Writable_Actuals;
1069 ---------------------------
1070 -- Name_Denotes_Function --
1071 ---------------------------
1073 function Name_Denotes_Function return Boolean is
1074 begin
1075 if Is_Entity_Name (Nam) then
1076 return Ekind (Entity (Nam)) = E_Function;
1077 elsif Nkind (Nam) = N_Selected_Component then
1078 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
1079 else
1080 return False;
1081 end if;
1082 end Name_Denotes_Function;
1084 -----------------------
1085 -- No_Interpretation --
1086 -----------------------
1088 procedure No_Interpretation is
1089 L : constant Boolean := Is_List_Member (N);
1090 K : constant Node_Kind := Nkind (Parent (N));
1092 begin
1093 -- If the node is in a list whose parent is not an expression then it
1094 -- must be an attempted procedure call.
1096 if L and then K not in N_Subexpr then
1097 if Ekind (Entity (Nam)) = E_Generic_Procedure then
1098 Error_Msg_NE
1099 ("must instantiate generic procedure& before call",
1100 Nam, Entity (Nam));
1101 else
1102 Error_Msg_N ("procedure or entry name expected", Nam);
1103 end if;
1105 -- Check for tasking cases where only an entry call will do
1107 elsif not L
1108 and then Nkind_In (K, N_Entry_Call_Alternative,
1109 N_Triggering_Alternative)
1110 then
1111 Error_Msg_N ("entry name expected", Nam);
1113 -- Otherwise give general error message
1115 else
1116 Error_Msg_N ("invalid prefix in call", Nam);
1117 end if;
1118 end No_Interpretation;
1120 -- Start of processing for Analyze_Call
1122 begin
1123 if Restriction_Check_Required (SPARK_05) then
1124 Check_Mixed_Parameter_And_Named_Associations;
1125 end if;
1127 -- Initialize the type of the result of the call to the error type,
1128 -- which will be reset if the type is successfully resolved.
1130 Set_Etype (N, Any_Type);
1132 Nam := Name (N);
1134 if not Is_Overloaded (Nam) then
1136 -- Only one interpretation to check
1138 if Ekind (Etype (Nam)) = E_Subprogram_Type then
1139 Nam_Ent := Etype (Nam);
1141 -- If the prefix is an access_to_subprogram, this may be an indirect
1142 -- call. This is the case if the name in the call is not an entity
1143 -- name, or if it is a function name in the context of a procedure
1144 -- call. In this latter case, we have a call to a parameterless
1145 -- function that returns a pointer_to_procedure which is the entity
1146 -- being called. Finally, F (X) may be a call to a parameterless
1147 -- function that returns a pointer to a function with parameters.
1148 -- Note that if F returns an access-to-subprogram whose designated
1149 -- type is an array, F (X) cannot be interpreted as an indirect call
1150 -- through the result of the call to F.
1152 elsif Is_Access_Type (Etype (Nam))
1153 and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
1154 and then
1155 (not Name_Denotes_Function
1156 or else Nkind (N) = N_Procedure_Call_Statement
1157 or else
1158 (Nkind (Parent (N)) /= N_Explicit_Dereference
1159 and then Is_Entity_Name (Nam)
1160 and then No (First_Formal (Entity (Nam)))
1161 and then not
1162 Is_Array_Type (Etype (Designated_Type (Etype (Nam))))
1163 and then Present (Actuals)))
1164 then
1165 Nam_Ent := Designated_Type (Etype (Nam));
1166 Insert_Explicit_Dereference (Nam);
1168 -- Selected component case. Simple entry or protected operation,
1169 -- where the entry name is given by the selector name.
1171 elsif Nkind (Nam) = N_Selected_Component then
1172 Nam_Ent := Entity (Selector_Name (Nam));
1174 if not Ekind_In (Nam_Ent, E_Entry,
1175 E_Entry_Family,
1176 E_Function,
1177 E_Procedure)
1178 then
1179 Error_Msg_N ("name in call is not a callable entity", Nam);
1180 Set_Etype (N, Any_Type);
1181 return;
1182 end if;
1184 -- If the name is an Indexed component, it can be a call to a member
1185 -- of an entry family. The prefix must be a selected component whose
1186 -- selector is the entry. Analyze_Procedure_Call normalizes several
1187 -- kinds of call into this form.
1189 elsif Nkind (Nam) = N_Indexed_Component then
1190 if Nkind (Prefix (Nam)) = N_Selected_Component then
1191 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
1192 else
1193 Error_Msg_N ("name in call is not a callable entity", Nam);
1194 Set_Etype (N, Any_Type);
1195 return;
1196 end if;
1198 elsif not Is_Entity_Name (Nam) then
1199 Error_Msg_N ("name in call is not a callable entity", Nam);
1200 Set_Etype (N, Any_Type);
1201 return;
1203 else
1204 Nam_Ent := Entity (Nam);
1206 -- If not overloadable, this may be a generalized indexing
1207 -- operation with named associations. Rewrite again as an
1208 -- indexed component and analyze as container indexing.
1210 if not Is_Overloadable (Nam_Ent) then
1211 if Present
1212 (Find_Value_Of_Aspect
1213 (Etype (Nam_Ent), Aspect_Constant_Indexing))
1214 then
1215 Replace (N,
1216 Make_Indexed_Component (Sloc (N),
1217 Prefix => Nam,
1218 Expressions => Parameter_Associations (N)));
1220 if Try_Container_Indexing (N, Nam, Expressions (N)) then
1221 return;
1222 else
1223 No_Interpretation;
1224 end if;
1226 else
1227 No_Interpretation;
1228 end if;
1230 return;
1231 end if;
1232 end if;
1234 -- Operations generated for RACW stub types are called only through
1235 -- dispatching, and can never be the static interpretation of a call.
1237 if Is_RACW_Stub_Type_Operation (Nam_Ent) then
1238 No_Interpretation;
1239 return;
1240 end if;
1242 Analyze_One_Call (N, Nam_Ent, True, Success);
1244 -- If this is an indirect call, the return type of the access_to
1245 -- subprogram may be an incomplete type. At the point of the call,
1246 -- use the full type if available, and at the same time update the
1247 -- return type of the access_to_subprogram.
1249 if Success
1250 and then Nkind (Nam) = N_Explicit_Dereference
1251 and then Ekind (Etype (N)) = E_Incomplete_Type
1252 and then Present (Full_View (Etype (N)))
1253 then
1254 Set_Etype (N, Full_View (Etype (N)));
1255 Set_Etype (Nam_Ent, Etype (N));
1256 end if;
1258 -- Overloaded call
1260 else
1261 -- An overloaded selected component must denote overloaded operations
1262 -- of a concurrent type. The interpretations are attached to the
1263 -- simple name of those operations.
1265 if Nkind (Nam) = N_Selected_Component then
1266 Nam := Selector_Name (Nam);
1267 end if;
1269 Get_First_Interp (Nam, X, It);
1270 while Present (It.Nam) loop
1271 Nam_Ent := It.Nam;
1272 Deref := False;
1274 -- Name may be call that returns an access to subprogram, or more
1275 -- generally an overloaded expression one of whose interpretations
1276 -- yields an access to subprogram. If the name is an entity, we do
1277 -- not dereference, because the node is a call that returns the
1278 -- access type: note difference between f(x), where the call may
1279 -- return an access subprogram type, and f(x)(y), where the type
1280 -- returned by the call to f is implicitly dereferenced to analyze
1281 -- the outer call.
1283 if Is_Access_Type (Nam_Ent) then
1284 Nam_Ent := Designated_Type (Nam_Ent);
1286 elsif Is_Access_Type (Etype (Nam_Ent))
1287 and then
1288 (not Is_Entity_Name (Nam)
1289 or else Nkind (N) = N_Procedure_Call_Statement)
1290 and then Ekind (Designated_Type (Etype (Nam_Ent)))
1291 = E_Subprogram_Type
1292 then
1293 Nam_Ent := Designated_Type (Etype (Nam_Ent));
1295 if Is_Entity_Name (Nam) then
1296 Deref := True;
1297 end if;
1298 end if;
1300 -- If the call has been rewritten from a prefixed call, the first
1301 -- parameter has been analyzed, but may need a subsequent
1302 -- dereference, so skip its analysis now.
1304 if N /= Original_Node (N)
1305 and then Nkind (Original_Node (N)) = Nkind (N)
1306 and then Nkind (Name (N)) /= Nkind (Name (Original_Node (N)))
1307 and then Present (Parameter_Associations (N))
1308 and then Present (Etype (First (Parameter_Associations (N))))
1309 then
1310 Analyze_One_Call
1311 (N, Nam_Ent, False, Success, Skip_First => True);
1312 else
1313 Analyze_One_Call (N, Nam_Ent, False, Success);
1314 end if;
1316 -- If the interpretation succeeds, mark the proper type of the
1317 -- prefix (any valid candidate will do). If not, remove the
1318 -- candidate interpretation. This only needs to be done for
1319 -- overloaded protected operations, for other entities disambi-
1320 -- guation is done directly in Resolve.
1322 if Success then
1323 if Deref
1324 and then Nkind (Parent (N)) /= N_Explicit_Dereference
1325 then
1326 Set_Entity (Nam, It.Nam);
1327 Insert_Explicit_Dereference (Nam);
1328 Set_Etype (Nam, Nam_Ent);
1330 else
1331 Set_Etype (Nam, It.Typ);
1332 end if;
1334 elsif Nkind_In (Name (N), N_Selected_Component,
1335 N_Function_Call)
1336 then
1337 Remove_Interp (X);
1338 end if;
1340 Get_Next_Interp (X, It);
1341 end loop;
1343 -- If the name is the result of a function call, it can only be a
1344 -- call to a function returning an access to subprogram. Insert
1345 -- explicit dereference.
1347 if Nkind (Nam) = N_Function_Call then
1348 Insert_Explicit_Dereference (Nam);
1349 end if;
1351 if Etype (N) = Any_Type then
1353 -- None of the interpretations is compatible with the actuals
1355 Diagnose_Call (N, Nam);
1357 -- Special checks for uninstantiated put routines
1359 if Nkind (N) = N_Procedure_Call_Statement
1360 and then Is_Entity_Name (Nam)
1361 and then Chars (Nam) = Name_Put
1362 and then List_Length (Actuals) = 1
1363 then
1364 declare
1365 Arg : constant Node_Id := First (Actuals);
1366 Typ : Entity_Id;
1368 begin
1369 if Nkind (Arg) = N_Parameter_Association then
1370 Typ := Etype (Explicit_Actual_Parameter (Arg));
1371 else
1372 Typ := Etype (Arg);
1373 end if;
1375 if Is_Signed_Integer_Type (Typ) then
1376 Error_Msg_N
1377 ("possible missing instantiation of "
1378 & "'Text_'I'O.'Integer_'I'O!", Nam);
1380 elsif Is_Modular_Integer_Type (Typ) then
1381 Error_Msg_N
1382 ("possible missing instantiation of "
1383 & "'Text_'I'O.'Modular_'I'O!", Nam);
1385 elsif Is_Floating_Point_Type (Typ) then
1386 Error_Msg_N
1387 ("possible missing instantiation of "
1388 & "'Text_'I'O.'Float_'I'O!", Nam);
1390 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1391 Error_Msg_N
1392 ("possible missing instantiation of "
1393 & "'Text_'I'O.'Fixed_'I'O!", Nam);
1395 elsif Is_Decimal_Fixed_Point_Type (Typ) then
1396 Error_Msg_N
1397 ("possible missing instantiation of "
1398 & "'Text_'I'O.'Decimal_'I'O!", Nam);
1400 elsif Is_Enumeration_Type (Typ) then
1401 Error_Msg_N
1402 ("possible missing instantiation of "
1403 & "'Text_'I'O.'Enumeration_'I'O!", Nam);
1404 end if;
1405 end;
1406 end if;
1408 elsif not Is_Overloaded (N)
1409 and then Is_Entity_Name (Nam)
1410 then
1411 -- Resolution yields a single interpretation. Verify that the
1412 -- reference has capitalization consistent with the declaration.
1414 Set_Entity_With_Checks (Nam, Entity (Nam));
1415 Generate_Reference (Entity (Nam), Nam);
1417 Set_Etype (Nam, Etype (Entity (Nam)));
1418 else
1419 Remove_Abstract_Operations (N);
1420 end if;
1422 End_Interp_List;
1423 end if;
1425 if Ada_Version >= Ada_2012 then
1427 -- Check if the call contains a function with writable actuals
1429 Check_Writable_Actuals (N);
1431 -- If found and the outermost construct that can be evaluated in
1432 -- an arbitrary order is precisely this call, then check all its
1433 -- actuals.
1435 Check_Function_Writable_Actuals (N);
1436 end if;
1437 end Analyze_Call;
1439 -----------------------------
1440 -- Analyze_Case_Expression --
1441 -----------------------------
1443 procedure Analyze_Case_Expression (N : Node_Id) is
1444 procedure Non_Static_Choice_Error (Choice : Node_Id);
1445 -- Error routine invoked by the generic instantiation below when
1446 -- the case expression has a non static choice.
1448 package Case_Choices_Analysis is new
1449 Generic_Analyze_Choices
1450 (Process_Associated_Node => No_OP);
1451 use Case_Choices_Analysis;
1453 package Case_Choices_Checking is new
1454 Generic_Check_Choices
1455 (Process_Empty_Choice => No_OP,
1456 Process_Non_Static_Choice => Non_Static_Choice_Error,
1457 Process_Associated_Node => No_OP);
1458 use Case_Choices_Checking;
1460 -----------------------------
1461 -- Non_Static_Choice_Error --
1462 -----------------------------
1464 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1465 begin
1466 Flag_Non_Static_Expr
1467 ("choice given in case expression is not static!", Choice);
1468 end Non_Static_Choice_Error;
1470 -- Local variables
1472 Expr : constant Node_Id := Expression (N);
1473 Alt : Node_Id;
1474 Exp_Type : Entity_Id;
1475 Exp_Btype : Entity_Id;
1477 FirstX : Node_Id := Empty;
1478 -- First expression in the case for which there is some type information
1479 -- available, i.e. it is not Any_Type, which can happen because of some
1480 -- error, or from the use of e.g. raise Constraint_Error.
1482 Others_Present : Boolean;
1483 -- Indicates if Others was present
1485 Wrong_Alt : Node_Id;
1486 -- For error reporting
1488 -- Start of processing for Analyze_Case_Expression
1490 begin
1491 if Comes_From_Source (N) then
1492 Check_Compiler_Unit ("case expression", N);
1493 end if;
1495 Analyze_And_Resolve (Expr, Any_Discrete);
1496 Check_Unset_Reference (Expr);
1497 Exp_Type := Etype (Expr);
1498 Exp_Btype := Base_Type (Exp_Type);
1500 Alt := First (Alternatives (N));
1501 while Present (Alt) loop
1502 Analyze (Expression (Alt));
1504 if No (FirstX) and then Etype (Expression (Alt)) /= Any_Type then
1505 FirstX := Expression (Alt);
1506 end if;
1508 Next (Alt);
1509 end loop;
1511 -- Get our initial type from the first expression for which we got some
1512 -- useful type information from the expression.
1514 if not Is_Overloaded (FirstX) then
1515 Set_Etype (N, Etype (FirstX));
1517 else
1518 declare
1519 I : Interp_Index;
1520 It : Interp;
1522 begin
1523 Set_Etype (N, Any_Type);
1525 Get_First_Interp (FirstX, I, It);
1526 while Present (It.Nam) loop
1528 -- For each interpretation of the first expression, we only
1529 -- add the interpretation if every other expression in the
1530 -- case expression alternatives has a compatible type.
1532 Alt := Next (First (Alternatives (N)));
1533 while Present (Alt) loop
1534 exit when not Has_Compatible_Type (Expression (Alt), It.Typ);
1535 Next (Alt);
1536 end loop;
1538 if No (Alt) then
1539 Add_One_Interp (N, It.Typ, It.Typ);
1540 else
1541 Wrong_Alt := Alt;
1542 end if;
1544 Get_Next_Interp (I, It);
1545 end loop;
1546 end;
1547 end if;
1549 Exp_Btype := Base_Type (Exp_Type);
1551 -- The expression must be of a discrete type which must be determinable
1552 -- independently of the context in which the expression occurs, but
1553 -- using the fact that the expression must be of a discrete type.
1554 -- Moreover, the type this expression must not be a character literal
1555 -- (which is always ambiguous).
1557 -- If error already reported by Resolve, nothing more to do
1559 if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
1560 return;
1562 -- Special casee message for character literal
1564 elsif Exp_Btype = Any_Character then
1565 Error_Msg_N
1566 ("character literal as case expression is ambiguous", Expr);
1567 return;
1568 end if;
1570 if Etype (N) = Any_Type and then Present (Wrong_Alt) then
1571 Error_Msg_N
1572 ("type incompatible with that of previous alternatives",
1573 Expression (Wrong_Alt));
1574 return;
1575 end if;
1577 -- If the case expression is a formal object of mode in out, then
1578 -- treat it as having a nonstatic subtype by forcing use of the base
1579 -- type (which has to get passed to Check_Case_Choices below). Also
1580 -- use base type when the case expression is parenthesized.
1582 if Paren_Count (Expr) > 0
1583 or else (Is_Entity_Name (Expr)
1584 and then Ekind (Entity (Expr)) = E_Generic_In_Out_Parameter)
1585 then
1586 Exp_Type := Exp_Btype;
1587 end if;
1589 -- The case expression alternatives cover the range of a static subtype
1590 -- subject to aspect Static_Predicate. Do not check the choices when the
1591 -- case expression has not been fully analyzed yet because this may lead
1592 -- to bogus errors.
1594 if Is_OK_Static_Subtype (Exp_Type)
1595 and then Has_Static_Predicate_Aspect (Exp_Type)
1596 and then In_Spec_Expression
1597 then
1598 null;
1600 -- Call Analyze_Choices and Check_Choices to do the rest of the work
1602 else
1603 Analyze_Choices (Alternatives (N), Exp_Type);
1604 Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
1605 end if;
1607 if Exp_Type = Universal_Integer and then not Others_Present then
1608 Error_Msg_N
1609 ("case on universal integer requires OTHERS choice", Expr);
1610 end if;
1611 end Analyze_Case_Expression;
1613 ---------------------------
1614 -- Analyze_Comparison_Op --
1615 ---------------------------
1617 procedure Analyze_Comparison_Op (N : Node_Id) is
1618 L : constant Node_Id := Left_Opnd (N);
1619 R : constant Node_Id := Right_Opnd (N);
1620 Op_Id : Entity_Id := Entity (N);
1622 begin
1623 Set_Etype (N, Any_Type);
1624 Candidate_Type := Empty;
1626 Analyze_Expression (L);
1627 Analyze_Expression (R);
1629 if Present (Op_Id) then
1630 if Ekind (Op_Id) = E_Operator then
1631 Find_Comparison_Types (L, R, Op_Id, N);
1632 else
1633 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1634 end if;
1636 if Is_Overloaded (L) then
1637 Set_Etype (L, Intersect_Types (L, R));
1638 end if;
1640 else
1641 Op_Id := Get_Name_Entity_Id (Chars (N));
1642 while Present (Op_Id) loop
1643 if Ekind (Op_Id) = E_Operator then
1644 Find_Comparison_Types (L, R, Op_Id, N);
1645 else
1646 Analyze_User_Defined_Binary_Op (N, Op_Id);
1647 end if;
1649 Op_Id := Homonym (Op_Id);
1650 end loop;
1651 end if;
1653 Operator_Check (N);
1654 Check_Function_Writable_Actuals (N);
1655 end Analyze_Comparison_Op;
1657 ---------------------------
1658 -- Analyze_Concatenation --
1659 ---------------------------
1661 procedure Analyze_Concatenation (N : Node_Id) is
1663 -- We wish to avoid deep recursion, because concatenations are often
1664 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1665 -- operands nonrecursively until we find something that is not a
1666 -- concatenation (A in this case), or has already been analyzed. We
1667 -- analyze that, and then walk back up the tree following Parent
1668 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1669 -- work at each level. The Parent pointers allow us to avoid recursion,
1670 -- and thus avoid running out of memory.
1672 NN : Node_Id := N;
1673 L : Node_Id;
1675 begin
1676 Candidate_Type := Empty;
1678 -- The following code is equivalent to:
1680 -- Set_Etype (N, Any_Type);
1681 -- Analyze_Expression (Left_Opnd (N));
1682 -- Analyze_Concatenation_Rest (N);
1684 -- where the Analyze_Expression call recurses back here if the left
1685 -- operand is a concatenation.
1687 -- Walk down left operands
1689 loop
1690 Set_Etype (NN, Any_Type);
1691 L := Left_Opnd (NN);
1692 exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1693 NN := L;
1694 end loop;
1696 -- Now (given the above example) NN is A&B and L is A
1698 -- First analyze L ...
1700 Analyze_Expression (L);
1702 -- ... then walk NN back up until we reach N (where we started), calling
1703 -- Analyze_Concatenation_Rest along the way.
1705 loop
1706 Analyze_Concatenation_Rest (NN);
1707 exit when NN = N;
1708 NN := Parent (NN);
1709 end loop;
1710 end Analyze_Concatenation;
1712 --------------------------------
1713 -- Analyze_Concatenation_Rest --
1714 --------------------------------
1716 -- If the only one-dimensional array type in scope is String,
1717 -- this is the resulting type of the operation. Otherwise there
1718 -- will be a concatenation operation defined for each user-defined
1719 -- one-dimensional array.
1721 procedure Analyze_Concatenation_Rest (N : Node_Id) is
1722 L : constant Node_Id := Left_Opnd (N);
1723 R : constant Node_Id := Right_Opnd (N);
1724 Op_Id : Entity_Id := Entity (N);
1725 LT : Entity_Id;
1726 RT : Entity_Id;
1728 begin
1729 Analyze_Expression (R);
1731 -- If the entity is present, the node appears in an instance, and
1732 -- denotes a predefined concatenation operation. The resulting type is
1733 -- obtained from the arguments when possible. If the arguments are
1734 -- aggregates, the array type and the concatenation type must be
1735 -- visible.
1737 if Present (Op_Id) then
1738 if Ekind (Op_Id) = E_Operator then
1739 LT := Base_Type (Etype (L));
1740 RT := Base_Type (Etype (R));
1742 if Is_Array_Type (LT)
1743 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1744 then
1745 Add_One_Interp (N, Op_Id, LT);
1747 elsif Is_Array_Type (RT)
1748 and then LT = Base_Type (Component_Type (RT))
1749 then
1750 Add_One_Interp (N, Op_Id, RT);
1752 -- If one operand is a string type or a user-defined array type,
1753 -- and the other is a literal, result is of the specific type.
1755 elsif
1756 (Root_Type (LT) = Standard_String
1757 or else Scope (LT) /= Standard_Standard)
1758 and then Etype (R) = Any_String
1759 then
1760 Add_One_Interp (N, Op_Id, LT);
1762 elsif
1763 (Root_Type (RT) = Standard_String
1764 or else Scope (RT) /= Standard_Standard)
1765 and then Etype (L) = Any_String
1766 then
1767 Add_One_Interp (N, Op_Id, RT);
1769 elsif not Is_Generic_Type (Etype (Op_Id)) then
1770 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1772 else
1773 -- Type and its operations must be visible
1775 Set_Entity (N, Empty);
1776 Analyze_Concatenation (N);
1777 end if;
1779 else
1780 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1781 end if;
1783 else
1784 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
1785 while Present (Op_Id) loop
1786 if Ekind (Op_Id) = E_Operator then
1788 -- Do not consider operators declared in dead code, they can
1789 -- not be part of the resolution.
1791 if Is_Eliminated (Op_Id) then
1792 null;
1793 else
1794 Find_Concatenation_Types (L, R, Op_Id, N);
1795 end if;
1797 else
1798 Analyze_User_Defined_Binary_Op (N, Op_Id);
1799 end if;
1801 Op_Id := Homonym (Op_Id);
1802 end loop;
1803 end if;
1805 Operator_Check (N);
1806 end Analyze_Concatenation_Rest;
1808 -------------------------
1809 -- Analyze_Equality_Op --
1810 -------------------------
1812 procedure Analyze_Equality_Op (N : Node_Id) is
1813 Loc : constant Source_Ptr := Sloc (N);
1814 L : constant Node_Id := Left_Opnd (N);
1815 R : constant Node_Id := Right_Opnd (N);
1816 Op_Id : Entity_Id;
1818 begin
1819 Set_Etype (N, Any_Type);
1820 Candidate_Type := Empty;
1822 Analyze_Expression (L);
1823 Analyze_Expression (R);
1825 -- If the entity is set, the node is a generic instance with a non-local
1826 -- reference to the predefined operator or to a user-defined function.
1827 -- It can also be an inequality that is expanded into the negation of a
1828 -- call to a user-defined equality operator.
1830 -- For the predefined case, the result is Boolean, regardless of the
1831 -- type of the operands. The operands may even be limited, if they are
1832 -- generic actuals. If they are overloaded, label the left argument with
1833 -- the common type that must be present, or with the type of the formal
1834 -- of the user-defined function.
1836 if Present (Entity (N)) then
1837 Op_Id := Entity (N);
1839 if Ekind (Op_Id) = E_Operator then
1840 Add_One_Interp (N, Op_Id, Standard_Boolean);
1841 else
1842 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1843 end if;
1845 if Is_Overloaded (L) then
1846 if Ekind (Op_Id) = E_Operator then
1847 Set_Etype (L, Intersect_Types (L, R));
1848 else
1849 Set_Etype (L, Etype (First_Formal (Op_Id)));
1850 end if;
1851 end if;
1853 else
1854 Op_Id := Get_Name_Entity_Id (Chars (N));
1855 while Present (Op_Id) loop
1856 if Ekind (Op_Id) = E_Operator then
1857 Find_Equality_Types (L, R, Op_Id, N);
1858 else
1859 Analyze_User_Defined_Binary_Op (N, Op_Id);
1860 end if;
1862 Op_Id := Homonym (Op_Id);
1863 end loop;
1864 end if;
1866 -- If there was no match, and the operator is inequality, this may be
1867 -- a case where inequality has not been made explicit, as for tagged
1868 -- types. Analyze the node as the negation of an equality operation.
1869 -- This cannot be done earlier, because before analysis we cannot rule
1870 -- out the presence of an explicit inequality.
1872 if Etype (N) = Any_Type
1873 and then Nkind (N) = N_Op_Ne
1874 then
1875 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
1876 while Present (Op_Id) loop
1877 if Ekind (Op_Id) = E_Operator then
1878 Find_Equality_Types (L, R, Op_Id, N);
1879 else
1880 Analyze_User_Defined_Binary_Op (N, Op_Id);
1881 end if;
1883 Op_Id := Homonym (Op_Id);
1884 end loop;
1886 if Etype (N) /= Any_Type then
1887 Op_Id := Entity (N);
1889 Rewrite (N,
1890 Make_Op_Not (Loc,
1891 Right_Opnd =>
1892 Make_Op_Eq (Loc,
1893 Left_Opnd => Left_Opnd (N),
1894 Right_Opnd => Right_Opnd (N))));
1896 Set_Entity (Right_Opnd (N), Op_Id);
1897 Analyze (N);
1898 end if;
1899 end if;
1901 Operator_Check (N);
1902 Check_Function_Writable_Actuals (N);
1903 end Analyze_Equality_Op;
1905 ----------------------------------
1906 -- Analyze_Explicit_Dereference --
1907 ----------------------------------
1909 procedure Analyze_Explicit_Dereference (N : Node_Id) is
1910 Loc : constant Source_Ptr := Sloc (N);
1911 P : constant Node_Id := Prefix (N);
1912 T : Entity_Id;
1913 I : Interp_Index;
1914 It : Interp;
1915 New_N : Node_Id;
1917 function Is_Function_Type return Boolean;
1918 -- Check whether node may be interpreted as an implicit function call
1920 ----------------------
1921 -- Is_Function_Type --
1922 ----------------------
1924 function Is_Function_Type return Boolean is
1925 I : Interp_Index;
1926 It : Interp;
1928 begin
1929 if not Is_Overloaded (N) then
1930 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
1931 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
1933 else
1934 Get_First_Interp (N, I, It);
1935 while Present (It.Nam) loop
1936 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
1937 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
1938 then
1939 return False;
1940 end if;
1942 Get_Next_Interp (I, It);
1943 end loop;
1945 return True;
1946 end if;
1947 end Is_Function_Type;
1949 -- Start of processing for Analyze_Explicit_Dereference
1951 begin
1952 -- If source node, check SPARK restriction. We guard this with the
1953 -- source node check, because ???
1955 if Comes_From_Source (N) then
1956 Check_SPARK_05_Restriction ("explicit dereference is not allowed", N);
1957 end if;
1959 -- In formal verification mode, keep track of all reads and writes
1960 -- through explicit dereferences.
1962 if GNATprove_Mode then
1963 SPARK_Specific.Generate_Dereference (N);
1964 end if;
1966 Analyze (P);
1967 Set_Etype (N, Any_Type);
1969 -- Test for remote access to subprogram type, and if so return
1970 -- after rewriting the original tree.
1972 if Remote_AST_E_Dereference (P) then
1973 return;
1974 end if;
1976 -- Normal processing for other than remote access to subprogram type
1978 if not Is_Overloaded (P) then
1979 if Is_Access_Type (Etype (P)) then
1981 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
1982 -- avoid other problems caused by the Private_Subtype and it is
1983 -- safe to go to the Base_Type because this is the same as
1984 -- converting the access value to its Base_Type.
1986 declare
1987 DT : Entity_Id := Designated_Type (Etype (P));
1989 begin
1990 if Ekind (DT) = E_Private_Subtype
1991 and then Is_For_Access_Subtype (DT)
1992 then
1993 DT := Base_Type (DT);
1994 end if;
1996 -- An explicit dereference is a legal occurrence of an
1997 -- incomplete type imported through a limited_with clause, if
1998 -- the full view is visible, or if we are within an instance
1999 -- body, where the enclosing body has a regular with_clause
2000 -- on the unit.
2002 if From_Limited_With (DT)
2003 and then not From_Limited_With (Scope (DT))
2004 and then
2005 (Is_Immediately_Visible (Scope (DT))
2006 or else
2007 (Is_Child_Unit (Scope (DT))
2008 and then Is_Visible_Lib_Unit (Scope (DT)))
2009 or else In_Instance_Body)
2010 then
2011 Set_Etype (N, Available_View (DT));
2013 else
2014 Set_Etype (N, DT);
2015 end if;
2016 end;
2018 elsif Etype (P) /= Any_Type then
2019 Error_Msg_N ("prefix of dereference must be an access type", N);
2020 return;
2021 end if;
2023 else
2024 Get_First_Interp (P, I, It);
2025 while Present (It.Nam) loop
2026 T := It.Typ;
2028 if Is_Access_Type (T) then
2029 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
2030 end if;
2032 Get_Next_Interp (I, It);
2033 end loop;
2035 -- Error if no interpretation of the prefix has an access type
2037 if Etype (N) = Any_Type then
2038 Error_Msg_N
2039 ("access type required in prefix of explicit dereference", P);
2040 Set_Etype (N, Any_Type);
2041 return;
2042 end if;
2043 end if;
2045 if Is_Function_Type
2046 and then Nkind (Parent (N)) /= N_Indexed_Component
2048 and then (Nkind (Parent (N)) /= N_Function_Call
2049 or else N /= Name (Parent (N)))
2051 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
2052 or else N /= Name (Parent (N)))
2054 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
2055 and then (Nkind (Parent (N)) /= N_Attribute_Reference
2056 or else
2057 (Attribute_Name (Parent (N)) /= Name_Address
2058 and then
2059 Attribute_Name (Parent (N)) /= Name_Access))
2060 then
2061 -- Name is a function call with no actuals, in a context that
2062 -- requires deproceduring (including as an actual in an enclosing
2063 -- function or procedure call). There are some pathological cases
2064 -- where the prefix might include functions that return access to
2065 -- subprograms and others that return a regular type. Disambiguation
2066 -- of those has to take place in Resolve.
2068 New_N :=
2069 Make_Function_Call (Loc,
2070 Name => Make_Explicit_Dereference (Loc, P),
2071 Parameter_Associations => New_List);
2073 -- If the prefix is overloaded, remove operations that have formals,
2074 -- we know that this is a parameterless call.
2076 if Is_Overloaded (P) then
2077 Get_First_Interp (P, I, It);
2078 while Present (It.Nam) loop
2079 T := It.Typ;
2081 if No (First_Formal (Base_Type (Designated_Type (T)))) then
2082 Set_Etype (P, T);
2083 else
2084 Remove_Interp (I);
2085 end if;
2087 Get_Next_Interp (I, It);
2088 end loop;
2089 end if;
2091 Rewrite (N, New_N);
2092 Analyze (N);
2094 elsif not Is_Function_Type
2095 and then Is_Overloaded (N)
2096 then
2097 -- The prefix may include access to subprograms and other access
2098 -- types. If the context selects the interpretation that is a
2099 -- function call (not a procedure call) we cannot rewrite the node
2100 -- yet, but we include the result of the call interpretation.
2102 Get_First_Interp (N, I, It);
2103 while Present (It.Nam) loop
2104 if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
2105 and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
2106 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
2107 then
2108 Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
2109 end if;
2111 Get_Next_Interp (I, It);
2112 end loop;
2113 end if;
2115 -- A value of remote access-to-class-wide must not be dereferenced
2116 -- (RM E.2.2(16)).
2118 Validate_Remote_Access_To_Class_Wide_Type (N);
2119 end Analyze_Explicit_Dereference;
2121 ------------------------
2122 -- Analyze_Expression --
2123 ------------------------
2125 procedure Analyze_Expression (N : Node_Id) is
2126 begin
2128 -- If the expression is an indexed component that will be rewritten
2129 -- as a container indexing, it has already been analyzed.
2131 if Nkind (N) = N_Indexed_Component
2132 and then Present (Generalized_Indexing (N))
2133 then
2134 null;
2136 else
2137 Analyze (N);
2138 Check_Parameterless_Call (N);
2139 end if;
2140 end Analyze_Expression;
2142 -------------------------------------
2143 -- Analyze_Expression_With_Actions --
2144 -------------------------------------
2146 procedure Analyze_Expression_With_Actions (N : Node_Id) is
2147 A : Node_Id;
2149 begin
2150 A := First (Actions (N));
2151 while Present (A) loop
2152 Analyze (A);
2153 Next (A);
2154 end loop;
2156 Analyze_Expression (Expression (N));
2157 Set_Etype (N, Etype (Expression (N)));
2158 end Analyze_Expression_With_Actions;
2160 ---------------------------
2161 -- Analyze_If_Expression --
2162 ---------------------------
2164 procedure Analyze_If_Expression (N : Node_Id) is
2165 Condition : constant Node_Id := First (Expressions (N));
2166 Then_Expr : constant Node_Id := Next (Condition);
2167 Else_Expr : Node_Id;
2169 begin
2170 -- Defend against error of missing expressions from previous error
2172 if No (Then_Expr) then
2173 Check_Error_Detected;
2174 return;
2175 end if;
2177 if Comes_From_Source (N) then
2178 Check_SPARK_05_Restriction ("if expression is not allowed", N);
2179 end if;
2181 Else_Expr := Next (Then_Expr);
2183 if Comes_From_Source (N) then
2184 Check_Compiler_Unit ("if expression", N);
2185 end if;
2187 -- Analyze and resolve the condition. We need to resolve this now so
2188 -- that it gets folded to True/False if possible, before we analyze
2189 -- the THEN/ELSE branches, because when analyzing these branches, we
2190 -- may call Is_Statically_Unevaluated, which expects the condition of
2191 -- an enclosing IF to have been analyze/resolved/evaluated.
2193 Analyze_Expression (Condition);
2194 Resolve (Condition, Any_Boolean);
2196 -- Analyze THEN expression and (if present) ELSE expression. For those
2197 -- we delay resolution in the normal manner, because of overloading etc.
2199 Analyze_Expression (Then_Expr);
2201 if Present (Else_Expr) then
2202 Analyze_Expression (Else_Expr);
2203 end if;
2205 -- If then expression not overloaded, then that decides the type
2207 if not Is_Overloaded (Then_Expr) then
2208 Set_Etype (N, Etype (Then_Expr));
2210 -- Case where then expression is overloaded
2212 else
2213 declare
2214 I : Interp_Index;
2215 It : Interp;
2217 begin
2218 Set_Etype (N, Any_Type);
2220 -- Loop through interpretations of Then_Expr
2222 Get_First_Interp (Then_Expr, I, It);
2223 while Present (It.Nam) loop
2225 -- Add possible interpretation of Then_Expr if no Else_Expr, or
2226 -- Else_Expr is present and has a compatible type.
2228 if No (Else_Expr)
2229 or else Has_Compatible_Type (Else_Expr, It.Typ)
2230 then
2231 Add_One_Interp (N, It.Typ, It.Typ);
2232 end if;
2234 Get_Next_Interp (I, It);
2235 end loop;
2237 -- If no valid interpretation has been found, then the type of the
2238 -- ELSE expression does not match any interpretation of the THEN
2239 -- expression.
2241 if Etype (N) = Any_Type then
2242 Error_Msg_N
2243 ("type incompatible with that of `THEN` expression",
2244 Else_Expr);
2245 return;
2246 end if;
2247 end;
2248 end if;
2249 end Analyze_If_Expression;
2251 ------------------------------------
2252 -- Analyze_Indexed_Component_Form --
2253 ------------------------------------
2255 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
2256 P : constant Node_Id := Prefix (N);
2257 Exprs : constant List_Id := Expressions (N);
2258 Exp : Node_Id;
2259 P_T : Entity_Id;
2260 E : Node_Id;
2261 U_N : Entity_Id;
2263 procedure Process_Function_Call;
2264 -- Prefix in indexed component form is an overloadable entity, so the
2265 -- node is a function call. Reformat it as such.
2267 procedure Process_Indexed_Component;
2268 -- Prefix in indexed component form is actually an indexed component.
2269 -- This routine processes it, knowing that the prefix is already
2270 -- resolved.
2272 procedure Process_Indexed_Component_Or_Slice;
2273 -- An indexed component with a single index may designate a slice if
2274 -- the index is a subtype mark. This routine disambiguates these two
2275 -- cases by resolving the prefix to see if it is a subtype mark.
2277 procedure Process_Overloaded_Indexed_Component;
2278 -- If the prefix of an indexed component is overloaded, the proper
2279 -- interpretation is selected by the index types and the context.
2281 ---------------------------
2282 -- Process_Function_Call --
2283 ---------------------------
2285 procedure Process_Function_Call is
2286 Loc : constant Source_Ptr := Sloc (N);
2287 Actual : Node_Id;
2289 begin
2290 Change_Node (N, N_Function_Call);
2291 Set_Name (N, P);
2292 Set_Parameter_Associations (N, Exprs);
2294 -- Analyze actuals prior to analyzing the call itself
2296 Actual := First (Parameter_Associations (N));
2297 while Present (Actual) loop
2298 Analyze (Actual);
2299 Check_Parameterless_Call (Actual);
2301 -- Move to next actual. Note that we use Next, not Next_Actual
2302 -- here. The reason for this is a bit subtle. If a function call
2303 -- includes named associations, the parser recognizes the node
2304 -- as a call, and it is analyzed as such. If all associations are
2305 -- positional, the parser builds an indexed_component node, and
2306 -- it is only after analysis of the prefix that the construct
2307 -- is recognized as a call, in which case Process_Function_Call
2308 -- rewrites the node and analyzes the actuals. If the list of
2309 -- actuals is malformed, the parser may leave the node as an
2310 -- indexed component (despite the presence of named associations).
2311 -- The iterator Next_Actual is equivalent to Next if the list is
2312 -- positional, but follows the normalized chain of actuals when
2313 -- named associations are present. In this case normalization has
2314 -- not taken place, and actuals remain unanalyzed, which leads to
2315 -- subsequent crashes or loops if there is an attempt to continue
2316 -- analysis of the program.
2318 -- IF there is a single actual and it is a type name, the node
2319 -- can only be interpreted as a slice of a parameterless call.
2320 -- Rebuild the node as such and analyze.
2322 if No (Next (Actual))
2323 and then Is_Entity_Name (Actual)
2324 and then Is_Type (Entity (Actual))
2325 and then Is_Discrete_Type (Entity (Actual))
2326 then
2327 Replace (N,
2328 Make_Slice (Loc,
2329 Prefix => P,
2330 Discrete_Range =>
2331 New_Occurrence_Of (Entity (Actual), Loc)));
2332 Analyze (N);
2333 return;
2335 else
2336 Next (Actual);
2337 end if;
2338 end loop;
2340 Analyze_Call (N);
2341 end Process_Function_Call;
2343 -------------------------------
2344 -- Process_Indexed_Component --
2345 -------------------------------
2347 procedure Process_Indexed_Component is
2348 Exp : Node_Id;
2349 Array_Type : Entity_Id;
2350 Index : Node_Id;
2351 Pent : Entity_Id := Empty;
2353 begin
2354 Exp := First (Exprs);
2356 if Is_Overloaded (P) then
2357 Process_Overloaded_Indexed_Component;
2359 else
2360 Array_Type := Etype (P);
2362 if Is_Entity_Name (P) then
2363 Pent := Entity (P);
2364 elsif Nkind (P) = N_Selected_Component
2365 and then Is_Entity_Name (Selector_Name (P))
2366 then
2367 Pent := Entity (Selector_Name (P));
2368 end if;
2370 -- Prefix must be appropriate for an array type, taking into
2371 -- account a possible implicit dereference.
2373 if Is_Access_Type (Array_Type) then
2374 Error_Msg_NW
2375 (Warn_On_Dereference, "?d?implicit dereference", N);
2376 Array_Type := Process_Implicit_Dereference_Prefix (Pent, P);
2377 end if;
2379 if Is_Array_Type (Array_Type) then
2380 null;
2382 elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
2383 Analyze (Exp);
2384 Set_Etype (N, Any_Type);
2386 if not Has_Compatible_Type
2387 (Exp, Entry_Index_Type (Pent))
2388 then
2389 Error_Msg_N ("invalid index type in entry name", N);
2391 elsif Present (Next (Exp)) then
2392 Error_Msg_N ("too many subscripts in entry reference", N);
2394 else
2395 Set_Etype (N, Etype (P));
2396 end if;
2398 return;
2400 elsif Is_Record_Type (Array_Type)
2401 and then Remote_AST_I_Dereference (P)
2402 then
2403 return;
2405 elsif Try_Container_Indexing (N, P, Exprs) then
2406 return;
2408 elsif Array_Type = Any_Type then
2409 Set_Etype (N, Any_Type);
2411 -- In most cases the analysis of the prefix will have emitted
2412 -- an error already, but if the prefix may be interpreted as a
2413 -- call in prefixed notation, the report is left to the caller.
2414 -- To prevent cascaded errors, report only if no previous ones.
2416 if Serious_Errors_Detected = 0 then
2417 Error_Msg_N ("invalid prefix in indexed component", P);
2419 if Nkind (P) = N_Expanded_Name then
2420 Error_Msg_NE ("\& is not visible", P, Selector_Name (P));
2421 end if;
2422 end if;
2424 return;
2426 -- Here we definitely have a bad indexing
2428 else
2429 if Nkind (Parent (N)) = N_Requeue_Statement
2430 and then Present (Pent) and then Ekind (Pent) = E_Entry
2431 then
2432 Error_Msg_N
2433 ("REQUEUE does not permit parameters", First (Exprs));
2435 elsif Is_Entity_Name (P)
2436 and then Etype (P) = Standard_Void_Type
2437 then
2438 Error_Msg_NE ("incorrect use of &", P, Entity (P));
2440 else
2441 Error_Msg_N ("array type required in indexed component", P);
2442 end if;
2444 Set_Etype (N, Any_Type);
2445 return;
2446 end if;
2448 Index := First_Index (Array_Type);
2449 while Present (Index) and then Present (Exp) loop
2450 if not Has_Compatible_Type (Exp, Etype (Index)) then
2451 Wrong_Type (Exp, Etype (Index));
2452 Set_Etype (N, Any_Type);
2453 return;
2454 end if;
2456 Next_Index (Index);
2457 Next (Exp);
2458 end loop;
2460 Set_Etype (N, Component_Type (Array_Type));
2461 Check_Implicit_Dereference (N, Etype (N));
2463 if Present (Index) then
2464 Error_Msg_N
2465 ("too few subscripts in array reference", First (Exprs));
2467 elsif Present (Exp) then
2468 Error_Msg_N ("too many subscripts in array reference", Exp);
2469 end if;
2470 end if;
2471 end Process_Indexed_Component;
2473 ----------------------------------------
2474 -- Process_Indexed_Component_Or_Slice --
2475 ----------------------------------------
2477 procedure Process_Indexed_Component_Or_Slice is
2478 begin
2479 Exp := First (Exprs);
2480 while Present (Exp) loop
2481 Analyze_Expression (Exp);
2482 Next (Exp);
2483 end loop;
2485 Exp := First (Exprs);
2487 -- If one index is present, and it is a subtype name, then the node
2488 -- denotes a slice (note that the case of an explicit range for a
2489 -- slice was already built as an N_Slice node in the first place,
2490 -- so that case is not handled here).
2492 -- We use a replace rather than a rewrite here because this is one
2493 -- of the cases in which the tree built by the parser is plain wrong.
2495 if No (Next (Exp))
2496 and then Is_Entity_Name (Exp)
2497 and then Is_Type (Entity (Exp))
2498 then
2499 Replace (N,
2500 Make_Slice (Sloc (N),
2501 Prefix => P,
2502 Discrete_Range => New_Copy (Exp)));
2503 Analyze (N);
2505 -- Otherwise (more than one index present, or single index is not
2506 -- a subtype name), then we have the indexed component case.
2508 else
2509 Process_Indexed_Component;
2510 end if;
2511 end Process_Indexed_Component_Or_Slice;
2513 ------------------------------------------
2514 -- Process_Overloaded_Indexed_Component --
2515 ------------------------------------------
2517 procedure Process_Overloaded_Indexed_Component is
2518 Exp : Node_Id;
2519 I : Interp_Index;
2520 It : Interp;
2521 Typ : Entity_Id;
2522 Index : Node_Id;
2523 Found : Boolean;
2525 begin
2526 Set_Etype (N, Any_Type);
2528 Get_First_Interp (P, I, It);
2529 while Present (It.Nam) loop
2530 Typ := It.Typ;
2532 if Is_Access_Type (Typ) then
2533 Typ := Designated_Type (Typ);
2534 Error_Msg_NW
2535 (Warn_On_Dereference, "?d?implicit dereference", N);
2536 end if;
2538 if Is_Array_Type (Typ) then
2540 -- Got a candidate: verify that index types are compatible
2542 Index := First_Index (Typ);
2543 Found := True;
2544 Exp := First (Exprs);
2545 while Present (Index) and then Present (Exp) loop
2546 if Has_Compatible_Type (Exp, Etype (Index)) then
2547 null;
2548 else
2549 Found := False;
2550 Remove_Interp (I);
2551 exit;
2552 end if;
2554 Next_Index (Index);
2555 Next (Exp);
2556 end loop;
2558 if Found and then No (Index) and then No (Exp) then
2559 declare
2560 CT : constant Entity_Id :=
2561 Base_Type (Component_Type (Typ));
2562 begin
2563 Add_One_Interp (N, CT, CT);
2564 Check_Implicit_Dereference (N, CT);
2565 end;
2566 end if;
2568 elsif Try_Container_Indexing (N, P, Exprs) then
2569 return;
2571 end if;
2573 Get_Next_Interp (I, It);
2574 end loop;
2576 if Etype (N) = Any_Type then
2577 Error_Msg_N ("no legal interpretation for indexed component", N);
2578 Set_Is_Overloaded (N, False);
2579 end if;
2581 End_Interp_List;
2582 end Process_Overloaded_Indexed_Component;
2584 -- Start of processing for Analyze_Indexed_Component_Form
2586 begin
2587 -- Get name of array, function or type
2589 Analyze (P);
2591 -- If P is an explicit dereference whose prefix is of a remote access-
2592 -- to-subprogram type, then N has already been rewritten as a subprogram
2593 -- call and analyzed.
2595 if Nkind (N) in N_Subprogram_Call then
2596 return;
2598 -- When the prefix is attribute 'Loop_Entry and the sole expression of
2599 -- the indexed component denotes a loop name, the indexed form is turned
2600 -- into an attribute reference.
2602 elsif Nkind (N) = N_Attribute_Reference
2603 and then Attribute_Name (N) = Name_Loop_Entry
2604 then
2605 return;
2606 end if;
2608 pragma Assert (Nkind (N) = N_Indexed_Component);
2610 P_T := Base_Type (Etype (P));
2612 if Is_Entity_Name (P) and then Present (Entity (P)) then
2613 U_N := Entity (P);
2615 if Is_Type (U_N) then
2617 -- Reformat node as a type conversion
2619 E := Remove_Head (Exprs);
2621 if Present (First (Exprs)) then
2622 Error_Msg_N
2623 ("argument of type conversion must be single expression", N);
2624 end if;
2626 Change_Node (N, N_Type_Conversion);
2627 Set_Subtype_Mark (N, P);
2628 Set_Etype (N, U_N);
2629 Set_Expression (N, E);
2631 -- After changing the node, call for the specific Analysis
2632 -- routine directly, to avoid a double call to the expander.
2634 Analyze_Type_Conversion (N);
2635 return;
2636 end if;
2638 if Is_Overloadable (U_N) then
2639 Process_Function_Call;
2641 elsif Ekind (Etype (P)) = E_Subprogram_Type
2642 or else (Is_Access_Type (Etype (P))
2643 and then
2644 Ekind (Designated_Type (Etype (P))) =
2645 E_Subprogram_Type)
2646 then
2647 -- Call to access_to-subprogram with possible implicit dereference
2649 Process_Function_Call;
2651 elsif Is_Generic_Subprogram (U_N) then
2653 -- A common beginner's (or C++ templates fan) error
2655 Error_Msg_N ("generic subprogram cannot be called", N);
2656 Set_Etype (N, Any_Type);
2657 return;
2659 else
2660 Process_Indexed_Component_Or_Slice;
2661 end if;
2663 -- If not an entity name, prefix is an expression that may denote
2664 -- an array or an access-to-subprogram.
2666 else
2667 if Ekind (P_T) = E_Subprogram_Type
2668 or else (Is_Access_Type (P_T)
2669 and then
2670 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
2671 then
2672 Process_Function_Call;
2674 elsif Nkind (P) = N_Selected_Component
2675 and then Present (Entity (Selector_Name (P)))
2676 and then Is_Overloadable (Entity (Selector_Name (P)))
2677 then
2678 Process_Function_Call;
2680 -- In ASIS mode within a generic, a prefixed call is analyzed and
2681 -- partially rewritten but the original indexed component has not
2682 -- yet been rewritten as a call. Perform the replacement now.
2684 elsif Nkind (P) = N_Selected_Component
2685 and then Nkind (Parent (P)) = N_Function_Call
2686 and then ASIS_Mode
2687 then
2688 Rewrite (N, Parent (P));
2689 Analyze (N);
2691 else
2692 -- Indexed component, slice, or a call to a member of a family
2693 -- entry, which will be converted to an entry call later.
2695 Process_Indexed_Component_Or_Slice;
2696 end if;
2697 end if;
2699 Analyze_Dimension (N);
2700 end Analyze_Indexed_Component_Form;
2702 ------------------------
2703 -- Analyze_Logical_Op --
2704 ------------------------
2706 procedure Analyze_Logical_Op (N : Node_Id) is
2707 L : constant Node_Id := Left_Opnd (N);
2708 R : constant Node_Id := Right_Opnd (N);
2709 Op_Id : Entity_Id := Entity (N);
2711 begin
2712 Set_Etype (N, Any_Type);
2713 Candidate_Type := Empty;
2715 Analyze_Expression (L);
2716 Analyze_Expression (R);
2718 if Present (Op_Id) then
2720 if Ekind (Op_Id) = E_Operator then
2721 Find_Boolean_Types (L, R, Op_Id, N);
2722 else
2723 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2724 end if;
2726 else
2727 Op_Id := Get_Name_Entity_Id (Chars (N));
2728 while Present (Op_Id) loop
2729 if Ekind (Op_Id) = E_Operator then
2730 Find_Boolean_Types (L, R, Op_Id, N);
2731 else
2732 Analyze_User_Defined_Binary_Op (N, Op_Id);
2733 end if;
2735 Op_Id := Homonym (Op_Id);
2736 end loop;
2737 end if;
2739 Operator_Check (N);
2740 Check_Function_Writable_Actuals (N);
2741 end Analyze_Logical_Op;
2743 ---------------------------
2744 -- Analyze_Membership_Op --
2745 ---------------------------
2747 procedure Analyze_Membership_Op (N : Node_Id) is
2748 Loc : constant Source_Ptr := Sloc (N);
2749 L : constant Node_Id := Left_Opnd (N);
2750 R : constant Node_Id := Right_Opnd (N);
2752 Index : Interp_Index;
2753 It : Interp;
2754 Found : Boolean := False;
2755 I_F : Interp_Index;
2756 T_F : Entity_Id;
2758 procedure Try_One_Interp (T1 : Entity_Id);
2759 -- Routine to try one proposed interpretation. Note that the context
2760 -- of the operation plays no role in resolving the arguments, so that
2761 -- if there is more than one interpretation of the operands that is
2762 -- compatible with a membership test, the operation is ambiguous.
2764 --------------------
2765 -- Try_One_Interp --
2766 --------------------
2768 procedure Try_One_Interp (T1 : Entity_Id) is
2769 begin
2770 if Has_Compatible_Type (R, T1) then
2771 if Found
2772 and then Base_Type (T1) /= Base_Type (T_F)
2773 then
2774 It := Disambiguate (L, I_F, Index, Any_Type);
2776 if It = No_Interp then
2777 Ambiguous_Operands (N);
2778 Set_Etype (L, Any_Type);
2779 return;
2781 else
2782 T_F := It.Typ;
2783 end if;
2785 else
2786 Found := True;
2787 T_F := T1;
2788 I_F := Index;
2789 end if;
2791 Set_Etype (L, T_F);
2792 end if;
2793 end Try_One_Interp;
2795 procedure Analyze_Set_Membership;
2796 -- If a set of alternatives is present, analyze each and find the
2797 -- common type to which they must all resolve.
2799 ----------------------------
2800 -- Analyze_Set_Membership --
2801 ----------------------------
2803 procedure Analyze_Set_Membership is
2804 Alt : Node_Id;
2805 Index : Interp_Index;
2806 It : Interp;
2807 Candidate_Interps : Node_Id;
2808 Common_Type : Entity_Id := Empty;
2810 begin
2811 if Comes_From_Source (N) then
2812 Check_Compiler_Unit ("set membership", N);
2813 end if;
2815 Analyze (L);
2816 Candidate_Interps := L;
2818 if not Is_Overloaded (L) then
2819 Common_Type := Etype (L);
2821 Alt := First (Alternatives (N));
2822 while Present (Alt) loop
2823 Analyze (Alt);
2825 if not Has_Compatible_Type (Alt, Common_Type) then
2826 Wrong_Type (Alt, Common_Type);
2827 end if;
2829 Next (Alt);
2830 end loop;
2832 else
2833 Alt := First (Alternatives (N));
2834 while Present (Alt) loop
2835 Analyze (Alt);
2836 if not Is_Overloaded (Alt) then
2837 Common_Type := Etype (Alt);
2839 else
2840 Get_First_Interp (Alt, Index, It);
2841 while Present (It.Typ) loop
2842 if not
2843 Has_Compatible_Type (Candidate_Interps, It.Typ)
2844 then
2845 Remove_Interp (Index);
2846 end if;
2848 Get_Next_Interp (Index, It);
2849 end loop;
2851 Get_First_Interp (Alt, Index, It);
2853 if No (It.Typ) then
2854 Error_Msg_N ("alternative has no legal type", Alt);
2855 return;
2856 end if;
2858 -- If alternative is not overloaded, we have a unique type
2859 -- for all of them.
2861 Set_Etype (Alt, It.Typ);
2862 Get_Next_Interp (Index, It);
2864 if No (It.Typ) then
2865 Set_Is_Overloaded (Alt, False);
2866 Common_Type := Etype (Alt);
2867 end if;
2869 Candidate_Interps := Alt;
2870 end if;
2872 Next (Alt);
2873 end loop;
2874 end if;
2876 Set_Etype (N, Standard_Boolean);
2878 if Present (Common_Type) then
2879 Set_Etype (L, Common_Type);
2881 -- The left operand may still be overloaded, to be resolved using
2882 -- the Common_Type.
2884 else
2885 Error_Msg_N ("cannot resolve membership operation", N);
2886 end if;
2887 end Analyze_Set_Membership;
2889 -- Start of processing for Analyze_Membership_Op
2891 begin
2892 Analyze_Expression (L);
2894 if No (R) and then Ada_Version >= Ada_2012 then
2895 Analyze_Set_Membership;
2896 Check_Function_Writable_Actuals (N);
2898 return;
2899 end if;
2901 if Nkind (R) = N_Range
2902 or else (Nkind (R) = N_Attribute_Reference
2903 and then Attribute_Name (R) = Name_Range)
2904 then
2905 Analyze (R);
2907 if not Is_Overloaded (L) then
2908 Try_One_Interp (Etype (L));
2910 else
2911 Get_First_Interp (L, Index, It);
2912 while Present (It.Typ) loop
2913 Try_One_Interp (It.Typ);
2914 Get_Next_Interp (Index, It);
2915 end loop;
2916 end if;
2918 -- If not a range, it can be a subtype mark, or else it is a degenerate
2919 -- membership test with a singleton value, i.e. a test for equality,
2920 -- if the types are compatible.
2922 else
2923 Analyze (R);
2925 if Is_Entity_Name (R)
2926 and then Is_Type (Entity (R))
2927 then
2928 Find_Type (R);
2929 Check_Fully_Declared (Entity (R), R);
2931 elsif Ada_Version >= Ada_2012
2932 and then Has_Compatible_Type (R, Etype (L))
2933 then
2934 if Nkind (N) = N_In then
2935 Rewrite (N,
2936 Make_Op_Eq (Loc,
2937 Left_Opnd => L,
2938 Right_Opnd => R));
2939 else
2940 Rewrite (N,
2941 Make_Op_Ne (Loc,
2942 Left_Opnd => L,
2943 Right_Opnd => R));
2944 end if;
2946 Analyze (N);
2947 return;
2949 else
2950 -- In all versions of the language, if we reach this point there
2951 -- is a previous error that will be diagnosed below.
2953 Find_Type (R);
2954 end if;
2955 end if;
2957 -- Compatibility between expression and subtype mark or range is
2958 -- checked during resolution. The result of the operation is Boolean
2959 -- in any case.
2961 Set_Etype (N, Standard_Boolean);
2963 if Comes_From_Source (N)
2964 and then Present (Right_Opnd (N))
2965 and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
2966 then
2967 Error_Msg_N ("membership test not applicable to cpp-class types", N);
2968 end if;
2970 Check_Function_Writable_Actuals (N);
2971 end Analyze_Membership_Op;
2973 -----------------
2974 -- Analyze_Mod --
2975 -----------------
2977 procedure Analyze_Mod (N : Node_Id) is
2978 begin
2979 -- A special warning check, if we have an expression of the form:
2980 -- expr mod 2 * literal
2981 -- where literal is 64 or less, then probably what was meant was
2982 -- expr mod 2 ** literal
2983 -- so issue an appropriate warning.
2985 if Warn_On_Suspicious_Modulus_Value
2986 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
2987 and then Intval (Right_Opnd (N)) = Uint_2
2988 and then Nkind (Parent (N)) = N_Op_Multiply
2989 and then Nkind (Right_Opnd (Parent (N))) = N_Integer_Literal
2990 and then Intval (Right_Opnd (Parent (N))) <= Uint_64
2991 then
2992 Error_Msg_N
2993 ("suspicious MOD value, was '*'* intended'??M?", Parent (N));
2994 end if;
2996 -- Remaining processing is same as for other arithmetic operators
2998 Analyze_Arithmetic_Op (N);
2999 end Analyze_Mod;
3001 ----------------------
3002 -- Analyze_Negation --
3003 ----------------------
3005 procedure Analyze_Negation (N : Node_Id) is
3006 R : constant Node_Id := Right_Opnd (N);
3007 Op_Id : Entity_Id := Entity (N);
3009 begin
3010 Set_Etype (N, Any_Type);
3011 Candidate_Type := Empty;
3013 Analyze_Expression (R);
3015 if Present (Op_Id) then
3016 if Ekind (Op_Id) = E_Operator then
3017 Find_Negation_Types (R, Op_Id, N);
3018 else
3019 Add_One_Interp (N, Op_Id, Etype (Op_Id));
3020 end if;
3022 else
3023 Op_Id := Get_Name_Entity_Id (Chars (N));
3024 while Present (Op_Id) loop
3025 if Ekind (Op_Id) = E_Operator then
3026 Find_Negation_Types (R, Op_Id, N);
3027 else
3028 Analyze_User_Defined_Unary_Op (N, Op_Id);
3029 end if;
3031 Op_Id := Homonym (Op_Id);
3032 end loop;
3033 end if;
3035 Operator_Check (N);
3036 end Analyze_Negation;
3038 ------------------
3039 -- Analyze_Null --
3040 ------------------
3042 procedure Analyze_Null (N : Node_Id) is
3043 begin
3044 Check_SPARK_05_Restriction ("null is not allowed", N);
3046 Set_Etype (N, Any_Access);
3047 end Analyze_Null;
3049 ----------------------
3050 -- Analyze_One_Call --
3051 ----------------------
3053 procedure Analyze_One_Call
3054 (N : Node_Id;
3055 Nam : Entity_Id;
3056 Report : Boolean;
3057 Success : out Boolean;
3058 Skip_First : Boolean := False)
3060 Actuals : constant List_Id := Parameter_Associations (N);
3061 Prev_T : constant Entity_Id := Etype (N);
3063 Must_Skip : constant Boolean := Skip_First
3064 or else Nkind (Original_Node (N)) = N_Selected_Component
3065 or else
3066 (Nkind (Original_Node (N)) = N_Indexed_Component
3067 and then Nkind (Prefix (Original_Node (N)))
3068 = N_Selected_Component);
3069 -- The first formal must be omitted from the match when trying to find
3070 -- a primitive operation that is a possible interpretation, and also
3071 -- after the call has been rewritten, because the corresponding actual
3072 -- is already known to be compatible, and because this may be an
3073 -- indexing of a call with default parameters.
3075 Formal : Entity_Id;
3076 Actual : Node_Id;
3077 Is_Indexed : Boolean := False;
3078 Is_Indirect : Boolean := False;
3079 Subp_Type : constant Entity_Id := Etype (Nam);
3080 Norm_OK : Boolean;
3082 function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
3083 -- There may be a user-defined operator that hides the current
3084 -- interpretation. We must check for this independently of the
3085 -- analysis of the call with the user-defined operation, because
3086 -- the parameter names may be wrong and yet the hiding takes place.
3087 -- This fixes a problem with ACATS test B34014O.
3089 -- When the type Address is a visible integer type, and the DEC
3090 -- system extension is visible, the predefined operator may be
3091 -- hidden as well, by one of the address operations in auxdec.
3092 -- Finally, The abstract operations on address do not hide the
3093 -- predefined operator (this is the purpose of making them abstract).
3095 procedure Indicate_Name_And_Type;
3096 -- If candidate interpretation matches, indicate name and type of
3097 -- result on call node.
3099 ----------------------------
3100 -- Indicate_Name_And_Type --
3101 ----------------------------
3103 procedure Indicate_Name_And_Type is
3104 begin
3105 Add_One_Interp (N, Nam, Etype (Nam));
3106 Check_Implicit_Dereference (N, Etype (Nam));
3107 Success := True;
3109 -- If the prefix of the call is a name, indicate the entity
3110 -- being called. If it is not a name, it is an expression that
3111 -- denotes an access to subprogram or else an entry or family. In
3112 -- the latter case, the name is a selected component, and the entity
3113 -- being called is noted on the selector.
3115 if not Is_Type (Nam) then
3116 if Is_Entity_Name (Name (N)) then
3117 Set_Entity (Name (N), Nam);
3118 Set_Etype (Name (N), Etype (Nam));
3120 elsif Nkind (Name (N)) = N_Selected_Component then
3121 Set_Entity (Selector_Name (Name (N)), Nam);
3122 end if;
3123 end if;
3125 if Debug_Flag_E and not Report then
3126 Write_Str (" Overloaded call ");
3127 Write_Int (Int (N));
3128 Write_Str (" compatible with ");
3129 Write_Int (Int (Nam));
3130 Write_Eol;
3131 end if;
3132 end Indicate_Name_And_Type;
3134 ------------------------
3135 -- Operator_Hidden_By --
3136 ------------------------
3138 function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
3139 Act1 : constant Node_Id := First_Actual (N);
3140 Act2 : constant Node_Id := Next_Actual (Act1);
3141 Form1 : constant Entity_Id := First_Formal (Fun);
3142 Form2 : constant Entity_Id := Next_Formal (Form1);
3144 begin
3145 if Ekind (Fun) /= E_Function or else Is_Abstract_Subprogram (Fun) then
3146 return False;
3148 elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
3149 return False;
3151 elsif Present (Form2) then
3152 if No (Act2)
3153 or else not Has_Compatible_Type (Act2, Etype (Form2))
3154 then
3155 return False;
3156 end if;
3158 elsif Present (Act2) then
3159 return False;
3160 end if;
3162 -- Now we know that the arity of the operator matches the function,
3163 -- and the function call is a valid interpretation. The function
3164 -- hides the operator if it has the right signature, or if one of
3165 -- its operands is a non-abstract operation on Address when this is
3166 -- a visible integer type.
3168 return Hides_Op (Fun, Nam)
3169 or else Is_Descendant_Of_Address (Etype (Form1))
3170 or else
3171 (Present (Form2)
3172 and then Is_Descendant_Of_Address (Etype (Form2)));
3173 end Operator_Hidden_By;
3175 -- Start of processing for Analyze_One_Call
3177 begin
3178 Success := False;
3180 -- If the subprogram has no formals or if all the formals have defaults,
3181 -- and the return type is an array type, the node may denote an indexing
3182 -- of the result of a parameterless call. In Ada 2005, the subprogram
3183 -- may have one non-defaulted formal, and the call may have been written
3184 -- in prefix notation, so that the rebuilt parameter list has more than
3185 -- one actual.
3187 if not Is_Overloadable (Nam)
3188 and then Ekind (Nam) /= E_Subprogram_Type
3189 and then Ekind (Nam) /= E_Entry_Family
3190 then
3191 return;
3192 end if;
3194 -- An indexing requires at least one actual. The name of the call cannot
3195 -- be an implicit indirect call, so it cannot be a generated explicit
3196 -- dereference.
3198 if not Is_Empty_List (Actuals)
3199 and then
3200 (Needs_No_Actuals (Nam)
3201 or else
3202 (Needs_One_Actual (Nam)
3203 and then Present (Next_Actual (First (Actuals)))))
3204 then
3205 if Is_Array_Type (Subp_Type)
3206 and then
3207 (Nkind (Name (N)) /= N_Explicit_Dereference
3208 or else Comes_From_Source (Name (N)))
3209 then
3210 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
3212 elsif Is_Access_Type (Subp_Type)
3213 and then Is_Array_Type (Designated_Type (Subp_Type))
3214 then
3215 Is_Indexed :=
3216 Try_Indexed_Call
3217 (N, Nam, Designated_Type (Subp_Type), Must_Skip);
3219 -- The prefix can also be a parameterless function that returns an
3220 -- access to subprogram, in which case this is an indirect call.
3221 -- If this succeeds, an explicit dereference is added later on,
3222 -- in Analyze_Call or Resolve_Call.
3224 elsif Is_Access_Type (Subp_Type)
3225 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
3226 then
3227 Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
3228 end if;
3230 end if;
3232 -- If the call has been transformed into a slice, it is of the form
3233 -- F (Subtype) where F is parameterless. The node has been rewritten in
3234 -- Try_Indexed_Call and there is nothing else to do.
3236 if Is_Indexed
3237 and then Nkind (N) = N_Slice
3238 then
3239 return;
3240 end if;
3242 Normalize_Actuals
3243 (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
3245 if not Norm_OK then
3247 -- If an indirect call is a possible interpretation, indicate
3248 -- success to the caller. This may be an indexing of an explicit
3249 -- dereference of a call that returns an access type (see above).
3251 if Is_Indirect
3252 or else (Is_Indexed
3253 and then Nkind (Name (N)) = N_Explicit_Dereference
3254 and then Comes_From_Source (Name (N)))
3255 then
3256 Success := True;
3257 return;
3259 -- Mismatch in number or names of parameters
3261 elsif Debug_Flag_E then
3262 Write_Str (" normalization fails in call ");
3263 Write_Int (Int (N));
3264 Write_Str (" with subprogram ");
3265 Write_Int (Int (Nam));
3266 Write_Eol;
3267 end if;
3269 -- If the context expects a function call, discard any interpretation
3270 -- that is a procedure. If the node is not overloaded, leave as is for
3271 -- better error reporting when type mismatch is found.
3273 elsif Nkind (N) = N_Function_Call
3274 and then Is_Overloaded (Name (N))
3275 and then Ekind (Nam) = E_Procedure
3276 then
3277 return;
3279 -- Ditto for function calls in a procedure context
3281 elsif Nkind (N) = N_Procedure_Call_Statement
3282 and then Is_Overloaded (Name (N))
3283 and then Etype (Nam) /= Standard_Void_Type
3284 then
3285 return;
3287 elsif No (Actuals) then
3289 -- If Normalize succeeds, then there are default parameters for
3290 -- all formals.
3292 Indicate_Name_And_Type;
3294 elsif Ekind (Nam) = E_Operator then
3295 if Nkind (N) = N_Procedure_Call_Statement then
3296 return;
3297 end if;
3299 -- This can occur when the prefix of the call is an operator
3300 -- name or an expanded name whose selector is an operator name.
3302 Analyze_Operator_Call (N, Nam);
3304 if Etype (N) /= Prev_T then
3306 -- Check that operator is not hidden by a function interpretation
3308 if Is_Overloaded (Name (N)) then
3309 declare
3310 I : Interp_Index;
3311 It : Interp;
3313 begin
3314 Get_First_Interp (Name (N), I, It);
3315 while Present (It.Nam) loop
3316 if Operator_Hidden_By (It.Nam) then
3317 Set_Etype (N, Prev_T);
3318 return;
3319 end if;
3321 Get_Next_Interp (I, It);
3322 end loop;
3323 end;
3324 end if;
3326 -- If operator matches formals, record its name on the call.
3327 -- If the operator is overloaded, Resolve will select the
3328 -- correct one from the list of interpretations. The call
3329 -- node itself carries the first candidate.
3331 Set_Entity (Name (N), Nam);
3332 Success := True;
3334 elsif Report and then Etype (N) = Any_Type then
3335 Error_Msg_N ("incompatible arguments for operator", N);
3336 end if;
3338 else
3339 -- Normalize_Actuals has chained the named associations in the
3340 -- correct order of the formals.
3342 Actual := First_Actual (N);
3343 Formal := First_Formal (Nam);
3345 -- If we are analyzing a call rewritten from object notation, skip
3346 -- first actual, which may be rewritten later as an explicit
3347 -- dereference.
3349 if Must_Skip then
3350 Next_Actual (Actual);
3351 Next_Formal (Formal);
3352 end if;
3354 while Present (Actual) and then Present (Formal) loop
3355 if Nkind (Parent (Actual)) /= N_Parameter_Association
3356 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
3357 then
3358 -- The actual can be compatible with the formal, but we must
3359 -- also check that the context is not an address type that is
3360 -- visibly an integer type. In this case the use of literals is
3361 -- illegal, except in the body of descendants of system, where
3362 -- arithmetic operations on address are of course used.
3364 if Has_Compatible_Type (Actual, Etype (Formal))
3365 and then
3366 (Etype (Actual) /= Universal_Integer
3367 or else not Is_Descendant_Of_Address (Etype (Formal))
3368 or else
3369 Is_Predefined_File_Name
3370 (Unit_File_Name (Get_Source_Unit (N))))
3371 then
3372 Next_Actual (Actual);
3373 Next_Formal (Formal);
3375 -- In Allow_Integer_Address mode, we allow an actual integer to
3376 -- match a formal address type and vice versa. We only do this
3377 -- if we are certain that an error will otherwise be issued
3379 elsif Address_Integer_Convert_OK
3380 (Etype (Actual), Etype (Formal))
3381 and then (Report and not Is_Indexed and not Is_Indirect)
3382 then
3383 -- Handle this case by introducing an unchecked conversion
3385 Rewrite (Actual,
3386 Unchecked_Convert_To (Etype (Formal),
3387 Relocate_Node (Actual)));
3388 Analyze_And_Resolve (Actual, Etype (Formal));
3389 Next_Actual (Actual);
3390 Next_Formal (Formal);
3392 -- For an Ada 2012 predicate or invariant, a call may mention
3393 -- an incomplete type, while resolution of the corresponding
3394 -- predicate function may see the full view, as a consequence
3395 -- of the delayed resolution of the corresponding expressions.
3397 elsif Ekind (Etype (Formal)) = E_Incomplete_Type
3398 and then Full_View (Etype (Formal)) = Etype (Actual)
3399 then
3400 Set_Etype (Formal, Etype (Actual));
3401 Next_Actual (Actual);
3402 Next_Formal (Formal);
3404 else
3405 if Debug_Flag_E then
3406 Write_Str (" type checking fails in call ");
3407 Write_Int (Int (N));
3408 Write_Str (" with formal ");
3409 Write_Int (Int (Formal));
3410 Write_Str (" in subprogram ");
3411 Write_Int (Int (Nam));
3412 Write_Eol;
3413 end if;
3415 -- Comment needed on the following test???
3417 if Report and not Is_Indexed and not Is_Indirect then
3419 -- Ada 2005 (AI-251): Complete the error notification
3420 -- to help new Ada 2005 users.
3422 if Is_Class_Wide_Type (Etype (Formal))
3423 and then Is_Interface (Etype (Etype (Formal)))
3424 and then not Interface_Present_In_Ancestor
3425 (Typ => Etype (Actual),
3426 Iface => Etype (Etype (Formal)))
3427 then
3428 Error_Msg_NE
3429 ("(Ada 2005) does not implement interface }",
3430 Actual, Etype (Etype (Formal)));
3431 end if;
3433 Wrong_Type (Actual, Etype (Formal));
3435 if Nkind (Actual) = N_Op_Eq
3436 and then Nkind (Left_Opnd (Actual)) = N_Identifier
3437 then
3438 Formal := First_Formal (Nam);
3439 while Present (Formal) loop
3440 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
3441 Error_Msg_N -- CODEFIX
3442 ("possible misspelling of `='>`!", Actual);
3443 exit;
3444 end if;
3446 Next_Formal (Formal);
3447 end loop;
3448 end if;
3450 if All_Errors_Mode then
3451 Error_Msg_Sloc := Sloc (Nam);
3453 if Etype (Formal) = Any_Type then
3454 Error_Msg_N
3455 ("there is no legal actual parameter", Actual);
3456 end if;
3458 if Is_Overloadable (Nam)
3459 and then Present (Alias (Nam))
3460 and then not Comes_From_Source (Nam)
3461 then
3462 Error_Msg_NE
3463 ("\\ =='> in call to inherited operation & #!",
3464 Actual, Nam);
3466 elsif Ekind (Nam) = E_Subprogram_Type then
3467 declare
3468 Access_To_Subprogram_Typ :
3469 constant Entity_Id :=
3470 Defining_Identifier
3471 (Associated_Node_For_Itype (Nam));
3472 begin
3473 Error_Msg_NE
3474 ("\\ =='> in call to dereference of &#!",
3475 Actual, Access_To_Subprogram_Typ);
3476 end;
3478 else
3479 Error_Msg_NE
3480 ("\\ =='> in call to &#!", Actual, Nam);
3482 end if;
3483 end if;
3484 end if;
3486 return;
3487 end if;
3489 else
3490 -- Normalize_Actuals has verified that a default value exists
3491 -- for this formal. Current actual names a subsequent formal.
3493 Next_Formal (Formal);
3494 end if;
3495 end loop;
3497 -- On exit, all actuals match
3499 Indicate_Name_And_Type;
3500 end if;
3501 end Analyze_One_Call;
3503 ---------------------------
3504 -- Analyze_Operator_Call --
3505 ---------------------------
3507 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
3508 Op_Name : constant Name_Id := Chars (Op_Id);
3509 Act1 : constant Node_Id := First_Actual (N);
3510 Act2 : constant Node_Id := Next_Actual (Act1);
3512 begin
3513 -- Binary operator case
3515 if Present (Act2) then
3517 -- If more than two operands, then not binary operator after all
3519 if Present (Next_Actual (Act2)) then
3520 return;
3521 end if;
3523 -- Otherwise action depends on operator
3525 case Op_Name is
3526 when Name_Op_Add |
3527 Name_Op_Subtract |
3528 Name_Op_Multiply |
3529 Name_Op_Divide |
3530 Name_Op_Mod |
3531 Name_Op_Rem |
3532 Name_Op_Expon =>
3533 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
3535 when Name_Op_And |
3536 Name_Op_Or |
3537 Name_Op_Xor =>
3538 Find_Boolean_Types (Act1, Act2, Op_Id, N);
3540 when Name_Op_Lt |
3541 Name_Op_Le |
3542 Name_Op_Gt |
3543 Name_Op_Ge =>
3544 Find_Comparison_Types (Act1, Act2, Op_Id, N);
3546 when Name_Op_Eq |
3547 Name_Op_Ne =>
3548 Find_Equality_Types (Act1, Act2, Op_Id, N);
3550 when Name_Op_Concat =>
3551 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
3553 -- Is this when others, or should it be an abort???
3555 when others =>
3556 null;
3557 end case;
3559 -- Unary operator case
3561 else
3562 case Op_Name is
3563 when Name_Op_Subtract |
3564 Name_Op_Add |
3565 Name_Op_Abs =>
3566 Find_Unary_Types (Act1, Op_Id, N);
3568 when Name_Op_Not =>
3569 Find_Negation_Types (Act1, Op_Id, N);
3571 -- Is this when others correct, or should it be an abort???
3573 when others =>
3574 null;
3575 end case;
3576 end if;
3577 end Analyze_Operator_Call;
3579 -------------------------------------------
3580 -- Analyze_Overloaded_Selected_Component --
3581 -------------------------------------------
3583 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
3584 Nam : constant Node_Id := Prefix (N);
3585 Sel : constant Node_Id := Selector_Name (N);
3586 Comp : Entity_Id;
3587 I : Interp_Index;
3588 It : Interp;
3589 T : Entity_Id;
3591 begin
3592 Set_Etype (Sel, Any_Type);
3594 Get_First_Interp (Nam, I, It);
3595 while Present (It.Typ) loop
3596 if Is_Access_Type (It.Typ) then
3597 T := Designated_Type (It.Typ);
3598 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
3599 else
3600 T := It.Typ;
3601 end if;
3603 -- Locate the component. For a private prefix the selector can denote
3604 -- a discriminant.
3606 if Is_Record_Type (T) or else Is_Private_Type (T) then
3608 -- If the prefix is a class-wide type, the visible components are
3609 -- those of the base type.
3611 if Is_Class_Wide_Type (T) then
3612 T := Etype (T);
3613 end if;
3615 Comp := First_Entity (T);
3616 while Present (Comp) loop
3617 if Chars (Comp) = Chars (Sel)
3618 and then Is_Visible_Component (Comp)
3619 then
3621 -- AI05-105: if the context is an object renaming with
3622 -- an anonymous access type, the expected type of the
3623 -- object must be anonymous. This is a name resolution rule.
3625 if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
3626 or else No (Access_Definition (Parent (N)))
3627 or else Ekind (Etype (Comp)) = E_Anonymous_Access_Type
3628 or else
3629 Ekind (Etype (Comp)) = E_Anonymous_Access_Subprogram_Type
3630 then
3631 Set_Entity (Sel, Comp);
3632 Set_Etype (Sel, Etype (Comp));
3633 Add_One_Interp (N, Etype (Comp), Etype (Comp));
3634 Check_Implicit_Dereference (N, Etype (Comp));
3636 -- This also specifies a candidate to resolve the name.
3637 -- Further overloading will be resolved from context.
3638 -- The selector name itself does not carry overloading
3639 -- information.
3641 Set_Etype (Nam, It.Typ);
3643 else
3644 -- Named access type in the context of a renaming
3645 -- declaration with an access definition. Remove
3646 -- inapplicable candidate.
3648 Remove_Interp (I);
3649 end if;
3650 end if;
3652 Next_Entity (Comp);
3653 end loop;
3655 elsif Is_Concurrent_Type (T) then
3656 Comp := First_Entity (T);
3657 while Present (Comp)
3658 and then Comp /= First_Private_Entity (T)
3659 loop
3660 if Chars (Comp) = Chars (Sel) then
3661 if Is_Overloadable (Comp) then
3662 Add_One_Interp (Sel, Comp, Etype (Comp));
3663 else
3664 Set_Entity_With_Checks (Sel, Comp);
3665 Generate_Reference (Comp, Sel);
3666 end if;
3668 Set_Etype (Sel, Etype (Comp));
3669 Set_Etype (N, Etype (Comp));
3670 Set_Etype (Nam, It.Typ);
3672 -- For access type case, introduce explicit dereference for
3673 -- more uniform treatment of entry calls. Do this only once
3674 -- if several interpretations yield an access type.
3676 if Is_Access_Type (Etype (Nam))
3677 and then Nkind (Nam) /= N_Explicit_Dereference
3678 then
3679 Insert_Explicit_Dereference (Nam);
3680 Error_Msg_NW
3681 (Warn_On_Dereference, "?d?implicit dereference", N);
3682 end if;
3683 end if;
3685 Next_Entity (Comp);
3686 end loop;
3688 Set_Is_Overloaded (N, Is_Overloaded (Sel));
3689 end if;
3691 Get_Next_Interp (I, It);
3692 end loop;
3694 if Etype (N) = Any_Type
3695 and then not Try_Object_Operation (N)
3696 then
3697 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
3698 Set_Entity (Sel, Any_Id);
3699 Set_Etype (Sel, Any_Type);
3700 end if;
3701 end Analyze_Overloaded_Selected_Component;
3703 ----------------------------------
3704 -- Analyze_Qualified_Expression --
3705 ----------------------------------
3707 procedure Analyze_Qualified_Expression (N : Node_Id) is
3708 Mark : constant Entity_Id := Subtype_Mark (N);
3709 Expr : constant Node_Id := Expression (N);
3710 I : Interp_Index;
3711 It : Interp;
3712 T : Entity_Id;
3714 begin
3715 Analyze_Expression (Expr);
3717 Set_Etype (N, Any_Type);
3718 Find_Type (Mark);
3719 T := Entity (Mark);
3720 Set_Etype (N, T);
3722 if T = Any_Type then
3723 return;
3724 end if;
3726 Check_Fully_Declared (T, N);
3728 -- If expected type is class-wide, check for exact match before
3729 -- expansion, because if the expression is a dispatching call it
3730 -- may be rewritten as explicit dereference with class-wide result.
3731 -- If expression is overloaded, retain only interpretations that
3732 -- will yield exact matches.
3734 if Is_Class_Wide_Type (T) then
3735 if not Is_Overloaded (Expr) then
3736 if Base_Type (Etype (Expr)) /= Base_Type (T) then
3737 if Nkind (Expr) = N_Aggregate then
3738 Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
3739 else
3740 Wrong_Type (Expr, T);
3741 end if;
3742 end if;
3744 else
3745 Get_First_Interp (Expr, I, It);
3747 while Present (It.Nam) loop
3748 if Base_Type (It.Typ) /= Base_Type (T) then
3749 Remove_Interp (I);
3750 end if;
3752 Get_Next_Interp (I, It);
3753 end loop;
3754 end if;
3755 end if;
3757 Set_Etype (N, T);
3758 end Analyze_Qualified_Expression;
3760 -----------------------------------
3761 -- Analyze_Quantified_Expression --
3762 -----------------------------------
3764 procedure Analyze_Quantified_Expression (N : Node_Id) is
3765 function Is_Empty_Range (Typ : Entity_Id) return Boolean;
3766 -- If the iterator is part of a quantified expression, and the range is
3767 -- known to be statically empty, emit a warning and replace expression
3768 -- with its static value. Returns True if the replacement occurs.
3770 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean;
3771 -- Determine whether if expression If_Expr lacks an else part or if it
3772 -- has one, it evaluates to True.
3774 --------------------
3775 -- Is_Empty_Range --
3776 --------------------
3778 function Is_Empty_Range (Typ : Entity_Id) return Boolean is
3779 Loc : constant Source_Ptr := Sloc (N);
3781 begin
3782 if Is_Array_Type (Typ)
3783 and then Compile_Time_Known_Bounds (Typ)
3784 and then
3785 (Expr_Value (Type_Low_Bound (Etype (First_Index (Typ)))) >
3786 Expr_Value (Type_High_Bound (Etype (First_Index (Typ)))))
3787 then
3788 Preanalyze_And_Resolve (Condition (N), Standard_Boolean);
3790 if All_Present (N) then
3791 Error_Msg_N
3792 ("??quantified expression with ALL "
3793 & "over a null range has value True", N);
3794 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
3796 else
3797 Error_Msg_N
3798 ("??quantified expression with SOME "
3799 & "over a null range has value False", N);
3800 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
3801 end if;
3803 Analyze (N);
3804 return True;
3806 else
3807 return False;
3808 end if;
3809 end Is_Empty_Range;
3811 -----------------------------
3812 -- No_Else_Or_Trivial_True --
3813 -----------------------------
3815 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean is
3816 Else_Expr : constant Node_Id :=
3817 Next (Next (First (Expressions (If_Expr))));
3818 begin
3819 return
3820 No (Else_Expr)
3821 or else (Compile_Time_Known_Value (Else_Expr)
3822 and then Is_True (Expr_Value (Else_Expr)));
3823 end No_Else_Or_Trivial_True;
3825 -- Local variables
3827 Cond : constant Node_Id := Condition (N);
3828 Loop_Id : Entity_Id;
3829 QE_Scop : Entity_Id;
3831 -- Start of processing for Analyze_Quantified_Expression
3833 begin
3834 Check_SPARK_05_Restriction ("quantified expression is not allowed", N);
3836 -- Create a scope to emulate the loop-like behavior of the quantified
3837 -- expression. The scope is needed to provide proper visibility of the
3838 -- loop variable.
3840 QE_Scop := New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L');
3841 Set_Etype (QE_Scop, Standard_Void_Type);
3842 Set_Scope (QE_Scop, Current_Scope);
3843 Set_Parent (QE_Scop, N);
3845 Push_Scope (QE_Scop);
3847 -- All constituents are preanalyzed and resolved to avoid untimely
3848 -- generation of various temporaries and types. Full analysis and
3849 -- expansion is carried out when the quantified expression is
3850 -- transformed into an expression with actions.
3852 if Present (Iterator_Specification (N)) then
3853 Preanalyze (Iterator_Specification (N));
3855 -- Do not proceed with the analysis when the range of iteration is
3856 -- empty. The appropriate error is issued by Is_Empty_Range.
3858 if Is_Entity_Name (Name (Iterator_Specification (N)))
3859 and then Is_Empty_Range (Etype (Name (Iterator_Specification (N))))
3860 then
3861 return;
3862 end if;
3864 else pragma Assert (Present (Loop_Parameter_Specification (N)));
3865 declare
3866 Loop_Par : constant Node_Id := Loop_Parameter_Specification (N);
3868 begin
3869 Preanalyze (Loop_Par);
3871 if Nkind (Discrete_Subtype_Definition (Loop_Par)) = N_Function_Call
3872 and then Parent (Loop_Par) /= N
3873 then
3874 -- The parser cannot distinguish between a loop specification
3875 -- and an iterator specification. If after pre-analysis the
3876 -- proper form has been recognized, rewrite the expression to
3877 -- reflect the right kind. This is needed for proper ASIS
3878 -- navigation. If expansion is enabled, the transformation is
3879 -- performed when the expression is rewritten as a loop.
3881 Set_Iterator_Specification (N,
3882 New_Copy_Tree (Iterator_Specification (Parent (Loop_Par))));
3884 Set_Defining_Identifier (Iterator_Specification (N),
3885 Relocate_Node (Defining_Identifier (Loop_Par)));
3886 Set_Name (Iterator_Specification (N),
3887 Relocate_Node (Discrete_Subtype_Definition (Loop_Par)));
3888 Set_Comes_From_Source (Iterator_Specification (N),
3889 Comes_From_Source (Loop_Parameter_Specification (N)));
3890 Set_Loop_Parameter_Specification (N, Empty);
3891 end if;
3892 end;
3893 end if;
3895 Preanalyze_And_Resolve (Cond, Standard_Boolean);
3897 End_Scope;
3898 Set_Etype (N, Standard_Boolean);
3900 -- Verify that the loop variable is used within the condition of the
3901 -- quantified expression.
3903 if Present (Iterator_Specification (N)) then
3904 Loop_Id := Defining_Identifier (Iterator_Specification (N));
3905 else
3906 Loop_Id := Defining_Identifier (Loop_Parameter_Specification (N));
3907 end if;
3909 if Warn_On_Suspicious_Contract
3910 and then not Referenced (Loop_Id, Cond)
3911 then
3912 Error_Msg_N ("?T?unused variable &", Loop_Id);
3913 end if;
3915 -- Diagnose a possible misuse of the SOME existential quantifier. When
3916 -- we have a quantified expression of the form:
3918 -- for some X => (if P then Q [else True])
3920 -- any value for X that makes P False results in the if expression being
3921 -- trivially True, and so also results in the quantified expression
3922 -- being trivially True.
3924 if Warn_On_Suspicious_Contract
3925 and then not All_Present (N)
3926 and then Nkind (Cond) = N_If_Expression
3927 and then No_Else_Or_Trivial_True (Cond)
3928 then
3929 Error_Msg_N ("?T?suspicious expression", N);
3930 Error_Msg_N ("\\did you mean (for all X ='> (if P then Q))", N);
3931 Error_Msg_N ("\\or (for some X ='> P and then Q) instead'?", N);
3932 end if;
3933 end Analyze_Quantified_Expression;
3935 -------------------
3936 -- Analyze_Range --
3937 -------------------
3939 procedure Analyze_Range (N : Node_Id) is
3940 L : constant Node_Id := Low_Bound (N);
3941 H : constant Node_Id := High_Bound (N);
3942 I1, I2 : Interp_Index;
3943 It1, It2 : Interp;
3945 procedure Check_Common_Type (T1, T2 : Entity_Id);
3946 -- Verify the compatibility of two types, and choose the
3947 -- non universal one if the other is universal.
3949 procedure Check_High_Bound (T : Entity_Id);
3950 -- Test one interpretation of the low bound against all those
3951 -- of the high bound.
3953 procedure Check_Universal_Expression (N : Node_Id);
3954 -- In Ada 83, reject bounds of a universal range that are not literals
3955 -- or entity names.
3957 -----------------------
3958 -- Check_Common_Type --
3959 -----------------------
3961 procedure Check_Common_Type (T1, T2 : Entity_Id) is
3962 begin
3963 if Covers (T1 => T1, T2 => T2)
3964 or else
3965 Covers (T1 => T2, T2 => T1)
3966 then
3967 if T1 = Universal_Integer
3968 or else T1 = Universal_Real
3969 or else T1 = Any_Character
3970 then
3971 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
3973 elsif T1 = T2 then
3974 Add_One_Interp (N, T1, T1);
3976 else
3977 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
3978 end if;
3979 end if;
3980 end Check_Common_Type;
3982 ----------------------
3983 -- Check_High_Bound --
3984 ----------------------
3986 procedure Check_High_Bound (T : Entity_Id) is
3987 begin
3988 if not Is_Overloaded (H) then
3989 Check_Common_Type (T, Etype (H));
3990 else
3991 Get_First_Interp (H, I2, It2);
3992 while Present (It2.Typ) loop
3993 Check_Common_Type (T, It2.Typ);
3994 Get_Next_Interp (I2, It2);
3995 end loop;
3996 end if;
3997 end Check_High_Bound;
3999 -----------------------------
4000 -- Is_Universal_Expression --
4001 -----------------------------
4003 procedure Check_Universal_Expression (N : Node_Id) is
4004 begin
4005 if Etype (N) = Universal_Integer
4006 and then Nkind (N) /= N_Integer_Literal
4007 and then not Is_Entity_Name (N)
4008 and then Nkind (N) /= N_Attribute_Reference
4009 then
4010 Error_Msg_N ("illegal bound in discrete range", N);
4011 end if;
4012 end Check_Universal_Expression;
4014 -- Start of processing for Analyze_Range
4016 begin
4017 Set_Etype (N, Any_Type);
4018 Analyze_Expression (L);
4019 Analyze_Expression (H);
4021 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
4022 return;
4024 else
4025 if not Is_Overloaded (L) then
4026 Check_High_Bound (Etype (L));
4027 else
4028 Get_First_Interp (L, I1, It1);
4029 while Present (It1.Typ) loop
4030 Check_High_Bound (It1.Typ);
4031 Get_Next_Interp (I1, It1);
4032 end loop;
4033 end if;
4035 -- If result is Any_Type, then we did not find a compatible pair
4037 if Etype (N) = Any_Type then
4038 Error_Msg_N ("incompatible types in range ", N);
4039 end if;
4040 end if;
4042 if Ada_Version = Ada_83
4043 and then
4044 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
4045 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
4046 then
4047 Check_Universal_Expression (L);
4048 Check_Universal_Expression (H);
4049 end if;
4051 Check_Function_Writable_Actuals (N);
4052 end Analyze_Range;
4054 -----------------------
4055 -- Analyze_Reference --
4056 -----------------------
4058 procedure Analyze_Reference (N : Node_Id) is
4059 P : constant Node_Id := Prefix (N);
4060 E : Entity_Id;
4061 T : Entity_Id;
4062 Acc_Type : Entity_Id;
4064 begin
4065 Analyze (P);
4067 -- An interesting error check, if we take the 'Ref of an object for
4068 -- which a pragma Atomic or Volatile has been given, and the type of the
4069 -- object is not Atomic or Volatile, then we are in trouble. The problem
4070 -- is that no trace of the atomic/volatile status will remain for the
4071 -- backend to respect when it deals with the resulting pointer, since
4072 -- the pointer type will not be marked atomic (it is a pointer to the
4073 -- base type of the object).
4075 -- It is not clear if that can ever occur, but in case it does, we will
4076 -- generate an error message. Not clear if this message can ever be
4077 -- generated, and pretty clear that it represents a bug if it is, still
4078 -- seems worth checking, except in CodePeer mode where we do not really
4079 -- care and don't want to bother the user.
4081 T := Etype (P);
4083 if Is_Entity_Name (P)
4084 and then Is_Object_Reference (P)
4085 and then not CodePeer_Mode
4086 then
4087 E := Entity (P);
4088 T := Etype (P);
4090 if (Has_Atomic_Components (E)
4091 and then not Has_Atomic_Components (T))
4092 or else
4093 (Has_Volatile_Components (E)
4094 and then not Has_Volatile_Components (T))
4095 or else (Is_Atomic (E) and then not Is_Atomic (T))
4096 or else (Is_Volatile (E) and then not Is_Volatile (T))
4097 then
4098 Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
4099 end if;
4100 end if;
4102 -- Carry on with normal processing
4104 Acc_Type := Create_Itype (E_Allocator_Type, N);
4105 Set_Etype (Acc_Type, Acc_Type);
4106 Set_Directly_Designated_Type (Acc_Type, Etype (P));
4107 Set_Etype (N, Acc_Type);
4108 end Analyze_Reference;
4110 --------------------------------
4111 -- Analyze_Selected_Component --
4112 --------------------------------
4114 -- Prefix is a record type or a task or protected type. In the latter case,
4115 -- the selector must denote a visible entry.
4117 procedure Analyze_Selected_Component (N : Node_Id) is
4118 Name : constant Node_Id := Prefix (N);
4119 Sel : constant Node_Id := Selector_Name (N);
4120 Act_Decl : Node_Id;
4121 Comp : Entity_Id;
4122 Has_Candidate : Boolean := False;
4123 In_Scope : Boolean;
4124 Parent_N : Node_Id;
4125 Pent : Entity_Id := Empty;
4126 Prefix_Type : Entity_Id;
4128 Type_To_Use : Entity_Id;
4129 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
4130 -- a class-wide type, we use its root type, whose components are
4131 -- present in the class-wide type.
4133 Is_Single_Concurrent_Object : Boolean;
4134 -- Set True if the prefix is a single task or a single protected object
4136 procedure Find_Component_In_Instance (Rec : Entity_Id);
4137 -- In an instance, a component of a private extension may not be visible
4138 -- while it was visible in the generic. Search candidate scope for a
4139 -- component with the proper identifier. This is only done if all other
4140 -- searches have failed. If a match is found, the Etype of both N and
4141 -- Sel are set from this component, and the entity of Sel is set to
4142 -- reference this component. If no match is found, Entity (Sel) remains
4143 -- unset. For a derived type that is an actual of the instance, the
4144 -- desired component may be found in any ancestor.
4146 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
4147 -- It is known that the parent of N denotes a subprogram call. Comp
4148 -- is an overloadable component of the concurrent type of the prefix.
4149 -- Determine whether all formals of the parent of N and Comp are mode
4150 -- conformant. If the parent node is not analyzed yet it may be an
4151 -- indexed component rather than a function call.
4153 function Has_Dereference (Nod : Node_Id) return Boolean;
4154 -- Check whether prefix includes a dereference at any level.
4156 --------------------------------
4157 -- Find_Component_In_Instance --
4158 --------------------------------
4160 procedure Find_Component_In_Instance (Rec : Entity_Id) is
4161 Comp : Entity_Id;
4162 Typ : Entity_Id;
4164 begin
4165 Typ := Rec;
4166 while Present (Typ) loop
4167 Comp := First_Component (Typ);
4168 while Present (Comp) loop
4169 if Chars (Comp) = Chars (Sel) then
4170 Set_Entity_With_Checks (Sel, Comp);
4171 Set_Etype (Sel, Etype (Comp));
4172 Set_Etype (N, Etype (Comp));
4173 return;
4174 end if;
4176 Next_Component (Comp);
4177 end loop;
4179 -- If not found, the component may be declared in the parent
4180 -- type or its full view, if any.
4182 if Is_Derived_Type (Typ) then
4183 Typ := Etype (Typ);
4185 if Is_Private_Type (Typ) then
4186 Typ := Full_View (Typ);
4187 end if;
4189 else
4190 return;
4191 end if;
4192 end loop;
4194 -- If we fall through, no match, so no changes made
4196 return;
4197 end Find_Component_In_Instance;
4199 ------------------------------
4200 -- Has_Mode_Conformant_Spec --
4201 ------------------------------
4203 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
4204 Comp_Param : Entity_Id;
4205 Param : Node_Id;
4206 Param_Typ : Entity_Id;
4208 begin
4209 Comp_Param := First_Formal (Comp);
4211 if Nkind (Parent (N)) = N_Indexed_Component then
4212 Param := First (Expressions (Parent (N)));
4213 else
4214 Param := First (Parameter_Associations (Parent (N)));
4215 end if;
4217 while Present (Comp_Param)
4218 and then Present (Param)
4219 loop
4220 Param_Typ := Find_Parameter_Type (Param);
4222 if Present (Param_Typ)
4223 and then
4224 not Conforming_Types
4225 (Etype (Comp_Param), Param_Typ, Mode_Conformant)
4226 then
4227 return False;
4228 end if;
4230 Next_Formal (Comp_Param);
4231 Next (Param);
4232 end loop;
4234 -- One of the specs has additional formals; there is no match, unless
4235 -- this may be an indexing of a parameterless call.
4237 -- Note that when expansion is disabled, the corresponding record
4238 -- type of synchronized types is not constructed, so that there is
4239 -- no point is attempting an interpretation as a prefixed call, as
4240 -- this is bound to fail because the primitive operations will not
4241 -- be properly located.
4243 if Present (Comp_Param) or else Present (Param) then
4244 if Needs_No_Actuals (Comp)
4245 and then Is_Array_Type (Etype (Comp))
4246 and then not Expander_Active
4247 then
4248 return True;
4249 else
4250 return False;
4251 end if;
4252 end if;
4254 return True;
4255 end Has_Mode_Conformant_Spec;
4257 ---------------------
4258 -- Has_Dereference --
4259 ---------------------
4261 function Has_Dereference (Nod : Node_Id) return Boolean is
4262 begin
4263 if Nkind (Nod) = N_Explicit_Dereference then
4264 return True;
4266 -- When expansion is disabled an explicit dereference may not have
4267 -- been inserted, but if this is an access type the indirection makes
4268 -- the call safe.
4270 elsif Is_Access_Type (Etype (Nod)) then
4271 return True;
4273 elsif Nkind_In (Nod, N_Indexed_Component, N_Selected_Component) then
4274 return Has_Dereference (Prefix (Nod));
4276 else
4277 return False;
4278 end if;
4279 end Has_Dereference;
4281 -- Start of processing for Analyze_Selected_Component
4283 begin
4284 Set_Etype (N, Any_Type);
4286 if Is_Overloaded (Name) then
4287 Analyze_Overloaded_Selected_Component (N);
4288 return;
4290 elsif Etype (Name) = Any_Type then
4291 Set_Entity (Sel, Any_Id);
4292 Set_Etype (Sel, Any_Type);
4293 return;
4295 else
4296 Prefix_Type := Etype (Name);
4297 end if;
4299 if Is_Access_Type (Prefix_Type) then
4301 -- A RACW object can never be used as prefix of a selected component
4302 -- since that means it is dereferenced without being a controlling
4303 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
4304 -- reporting an error, we must check whether this is actually a
4305 -- dispatching call in prefix form.
4307 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
4308 and then Comes_From_Source (N)
4309 then
4310 if Try_Object_Operation (N) then
4311 return;
4312 else
4313 Error_Msg_N
4314 ("invalid dereference of a remote access-to-class-wide value",
4316 end if;
4318 -- Normal case of selected component applied to access type
4320 else
4321 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
4323 if Is_Entity_Name (Name) then
4324 Pent := Entity (Name);
4325 elsif Nkind (Name) = N_Selected_Component
4326 and then Is_Entity_Name (Selector_Name (Name))
4327 then
4328 Pent := Entity (Selector_Name (Name));
4329 end if;
4331 Prefix_Type := Process_Implicit_Dereference_Prefix (Pent, Name);
4332 end if;
4334 -- If we have an explicit dereference of a remote access-to-class-wide
4335 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
4336 -- have to check for the case of a prefix that is a controlling operand
4337 -- of a prefixed dispatching call, as the dereference is legal in that
4338 -- case. Normally this condition is checked in Validate_Remote_Access_
4339 -- To_Class_Wide_Type, but we have to defer the checking for selected
4340 -- component prefixes because of the prefixed dispatching call case.
4341 -- Note that implicit dereferences are checked for this just above.
4343 elsif Nkind (Name) = N_Explicit_Dereference
4344 and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
4345 and then Comes_From_Source (N)
4346 then
4347 if Try_Object_Operation (N) then
4348 return;
4349 else
4350 Error_Msg_N
4351 ("invalid dereference of a remote access-to-class-wide value",
4353 end if;
4354 end if;
4356 -- (Ada 2005): if the prefix is the limited view of a type, and
4357 -- the context already includes the full view, use the full view
4358 -- in what follows, either to retrieve a component of to find
4359 -- a primitive operation. If the prefix is an explicit dereference,
4360 -- set the type of the prefix to reflect this transformation.
4361 -- If the non-limited view is itself an incomplete type, get the
4362 -- full view if available.
4364 if From_Limited_With (Prefix_Type)
4365 and then Has_Non_Limited_View (Prefix_Type)
4366 then
4367 Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
4369 if Nkind (N) = N_Explicit_Dereference then
4370 Set_Etype (Prefix (N), Prefix_Type);
4371 end if;
4372 end if;
4374 if Ekind (Prefix_Type) = E_Private_Subtype then
4375 Prefix_Type := Base_Type (Prefix_Type);
4376 end if;
4378 Type_To_Use := Prefix_Type;
4380 -- For class-wide types, use the entity list of the root type. This
4381 -- indirection is specially important for private extensions because
4382 -- only the root type get switched (not the class-wide type).
4384 if Is_Class_Wide_Type (Prefix_Type) then
4385 Type_To_Use := Root_Type (Prefix_Type);
4386 end if;
4388 -- If the prefix is a single concurrent object, use its name in error
4389 -- messages, rather than that of its anonymous type.
4391 Is_Single_Concurrent_Object :=
4392 Is_Concurrent_Type (Prefix_Type)
4393 and then Is_Internal_Name (Chars (Prefix_Type))
4394 and then not Is_Derived_Type (Prefix_Type)
4395 and then Is_Entity_Name (Name);
4397 Comp := First_Entity (Type_To_Use);
4399 -- If the selector has an original discriminant, the node appears in
4400 -- an instance. Replace the discriminant with the corresponding one
4401 -- in the current discriminated type. For nested generics, this must
4402 -- be done transitively, so note the new original discriminant.
4404 if Nkind (Sel) = N_Identifier
4405 and then In_Instance
4406 and then Present (Original_Discriminant (Sel))
4407 then
4408 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
4410 -- Mark entity before rewriting, for completeness and because
4411 -- subsequent semantic checks might examine the original node.
4413 Set_Entity (Sel, Comp);
4414 Rewrite (Selector_Name (N), New_Occurrence_Of (Comp, Sloc (N)));
4415 Set_Original_Discriminant (Selector_Name (N), Comp);
4416 Set_Etype (N, Etype (Comp));
4417 Check_Implicit_Dereference (N, Etype (Comp));
4419 if Is_Access_Type (Etype (Name)) then
4420 Insert_Explicit_Dereference (Name);
4421 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
4422 end if;
4424 elsif Is_Record_Type (Prefix_Type) then
4426 -- Find component with given name. In an instance, if the node is
4427 -- known as a prefixed call, do not examine components whose
4428 -- visibility may be accidental.
4430 while Present (Comp) and then not Is_Prefixed_Call (N) loop
4431 if Chars (Comp) = Chars (Sel)
4432 and then Is_Visible_Component (Comp, N)
4433 then
4434 Set_Entity_With_Checks (Sel, Comp);
4435 Set_Etype (Sel, Etype (Comp));
4437 if Ekind (Comp) = E_Discriminant then
4438 if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
4439 Error_Msg_N
4440 ("cannot reference discriminant of unchecked union",
4441 Sel);
4442 end if;
4444 if Is_Generic_Type (Prefix_Type)
4445 or else
4446 Is_Generic_Type (Root_Type (Prefix_Type))
4447 then
4448 Set_Original_Discriminant (Sel, Comp);
4449 end if;
4450 end if;
4452 -- Resolve the prefix early otherwise it is not possible to
4453 -- build the actual subtype of the component: it may need
4454 -- to duplicate this prefix and duplication is only allowed
4455 -- on fully resolved expressions.
4457 Resolve (Name);
4459 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
4460 -- subtypes in a package specification.
4461 -- Example:
4463 -- limited with Pkg;
4464 -- package Pkg is
4465 -- type Acc_Inc is access Pkg.T;
4466 -- X : Acc_Inc;
4467 -- N : Natural := X.all.Comp; -- ERROR, limited view
4468 -- end Pkg; -- Comp is not visible
4470 if Nkind (Name) = N_Explicit_Dereference
4471 and then From_Limited_With (Etype (Prefix (Name)))
4472 and then not Is_Potentially_Use_Visible (Etype (Name))
4473 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
4474 N_Package_Specification
4475 then
4476 Error_Msg_NE
4477 ("premature usage of incomplete}", Prefix (Name),
4478 Etype (Prefix (Name)));
4479 end if;
4481 -- We never need an actual subtype for the case of a selection
4482 -- for a indexed component of a non-packed array, since in
4483 -- this case gigi generates all the checks and can find the
4484 -- necessary bounds information.
4486 -- We also do not need an actual subtype for the case of a
4487 -- first, last, length, or range attribute applied to a
4488 -- non-packed array, since gigi can again get the bounds in
4489 -- these cases (gigi cannot handle the packed case, since it
4490 -- has the bounds of the packed array type, not the original
4491 -- bounds of the type). However, if the prefix is itself a
4492 -- selected component, as in a.b.c (i), gigi may regard a.b.c
4493 -- as a dynamic-sized temporary, so we do generate an actual
4494 -- subtype for this case.
4496 Parent_N := Parent (N);
4498 if not Is_Packed (Etype (Comp))
4499 and then
4500 ((Nkind (Parent_N) = N_Indexed_Component
4501 and then Nkind (Name) /= N_Selected_Component)
4502 or else
4503 (Nkind (Parent_N) = N_Attribute_Reference
4504 and then
4505 Nam_In (Attribute_Name (Parent_N), Name_First,
4506 Name_Last,
4507 Name_Length,
4508 Name_Range)))
4509 then
4510 Set_Etype (N, Etype (Comp));
4512 -- If full analysis is not enabled, we do not generate an
4513 -- actual subtype, because in the absence of expansion
4514 -- reference to a formal of a protected type, for example,
4515 -- will not be properly transformed, and will lead to
4516 -- out-of-scope references in gigi.
4518 -- In all other cases, we currently build an actual subtype.
4519 -- It seems likely that many of these cases can be avoided,
4520 -- but right now, the front end makes direct references to the
4521 -- bounds (e.g. in generating a length check), and if we do
4522 -- not make an actual subtype, we end up getting a direct
4523 -- reference to a discriminant, which will not do.
4525 elsif Full_Analysis then
4526 Act_Decl :=
4527 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
4528 Insert_Action (N, Act_Decl);
4530 if No (Act_Decl) then
4531 Set_Etype (N, Etype (Comp));
4533 else
4534 -- Component type depends on discriminants. Enter the
4535 -- main attributes of the subtype.
4537 declare
4538 Subt : constant Entity_Id :=
4539 Defining_Identifier (Act_Decl);
4541 begin
4542 Set_Etype (Subt, Base_Type (Etype (Comp)));
4543 Set_Ekind (Subt, Ekind (Etype (Comp)));
4544 Set_Etype (N, Subt);
4545 end;
4546 end if;
4548 -- If Full_Analysis not enabled, just set the Etype
4550 else
4551 Set_Etype (N, Etype (Comp));
4552 end if;
4554 Check_Implicit_Dereference (N, Etype (N));
4555 return;
4556 end if;
4558 -- If the prefix is a private extension, check only the visible
4559 -- components of the partial view. This must include the tag,
4560 -- which can appear in expanded code in a tag check.
4562 if Ekind (Type_To_Use) = E_Record_Type_With_Private
4563 and then Chars (Selector_Name (N)) /= Name_uTag
4564 then
4565 exit when Comp = Last_Entity (Type_To_Use);
4566 end if;
4568 Next_Entity (Comp);
4569 end loop;
4571 -- Ada 2005 (AI-252): The selected component can be interpreted as
4572 -- a prefixed view of a subprogram. Depending on the context, this is
4573 -- either a name that can appear in a renaming declaration, or part
4574 -- of an enclosing call given in prefix form.
4576 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
4577 -- selected component should resolve to a name.
4579 if Ada_Version >= Ada_2005
4580 and then Is_Tagged_Type (Prefix_Type)
4581 and then not Is_Concurrent_Type (Prefix_Type)
4582 then
4583 if Nkind (Parent (N)) = N_Generic_Association
4584 or else Nkind (Parent (N)) = N_Requeue_Statement
4585 or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
4586 then
4587 if Find_Primitive_Operation (N) then
4588 return;
4589 end if;
4591 elsif Try_Object_Operation (N) then
4592 return;
4593 end if;
4595 -- If the transformation fails, it will be necessary to redo the
4596 -- analysis with all errors enabled, to indicate candidate
4597 -- interpretations and reasons for each failure ???
4599 end if;
4601 elsif Is_Private_Type (Prefix_Type) then
4603 -- Allow access only to discriminants of the type. If the type has
4604 -- no full view, gigi uses the parent type for the components, so we
4605 -- do the same here.
4607 if No (Full_View (Prefix_Type)) then
4608 Type_To_Use := Root_Type (Base_Type (Prefix_Type));
4609 Comp := First_Entity (Type_To_Use);
4610 end if;
4612 while Present (Comp) loop
4613 if Chars (Comp) = Chars (Sel) then
4614 if Ekind (Comp) = E_Discriminant then
4615 Set_Entity_With_Checks (Sel, Comp);
4616 Generate_Reference (Comp, Sel);
4618 Set_Etype (Sel, Etype (Comp));
4619 Set_Etype (N, Etype (Comp));
4620 Check_Implicit_Dereference (N, Etype (N));
4622 if Is_Generic_Type (Prefix_Type)
4623 or else Is_Generic_Type (Root_Type (Prefix_Type))
4624 then
4625 Set_Original_Discriminant (Sel, Comp);
4626 end if;
4628 -- Before declaring an error, check whether this is tagged
4629 -- private type and a call to a primitive operation.
4631 elsif Ada_Version >= Ada_2005
4632 and then Is_Tagged_Type (Prefix_Type)
4633 and then Try_Object_Operation (N)
4634 then
4635 return;
4637 else
4638 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4639 Error_Msg_NE ("invisible selector& for }", N, Sel);
4640 Set_Entity (Sel, Any_Id);
4641 Set_Etype (N, Any_Type);
4642 end if;
4644 return;
4645 end if;
4647 Next_Entity (Comp);
4648 end loop;
4650 elsif Is_Concurrent_Type (Prefix_Type) then
4652 -- Find visible operation with given name. For a protected type,
4653 -- the possible candidates are discriminants, entries or protected
4654 -- procedures. For a task type, the set can only include entries or
4655 -- discriminants if the task type is not an enclosing scope. If it
4656 -- is an enclosing scope (e.g. in an inner task) then all entities
4657 -- are visible, but the prefix must denote the enclosing scope, i.e.
4658 -- can only be a direct name or an expanded name.
4660 Set_Etype (Sel, Any_Type);
4661 In_Scope := In_Open_Scopes (Prefix_Type);
4663 while Present (Comp) loop
4664 if Chars (Comp) = Chars (Sel) then
4665 if Is_Overloadable (Comp) then
4666 Add_One_Interp (Sel, Comp, Etype (Comp));
4668 -- If the prefix is tagged, the correct interpretation may
4669 -- lie in the primitive or class-wide operations of the
4670 -- type. Perform a simple conformance check to determine
4671 -- whether Try_Object_Operation should be invoked even if
4672 -- a visible entity is found.
4674 if Is_Tagged_Type (Prefix_Type)
4675 and then
4676 Nkind_In (Parent (N), N_Procedure_Call_Statement,
4677 N_Function_Call,
4678 N_Indexed_Component)
4679 and then Has_Mode_Conformant_Spec (Comp)
4680 then
4681 Has_Candidate := True;
4682 end if;
4684 -- Note: a selected component may not denote a component of a
4685 -- protected type (4.1.3(7)).
4687 elsif Ekind_In (Comp, E_Discriminant, E_Entry_Family)
4688 or else (In_Scope
4689 and then not Is_Protected_Type (Prefix_Type)
4690 and then Is_Entity_Name (Name))
4691 then
4692 Set_Entity_With_Checks (Sel, Comp);
4693 Generate_Reference (Comp, Sel);
4695 -- The selector is not overloadable, so we have a candidate
4696 -- interpretation.
4698 Has_Candidate := True;
4700 else
4701 goto Next_Comp;
4702 end if;
4704 Set_Etype (Sel, Etype (Comp));
4705 Set_Etype (N, Etype (Comp));
4707 if Ekind (Comp) = E_Discriminant then
4708 Set_Original_Discriminant (Sel, Comp);
4709 end if;
4711 -- For access type case, introduce explicit dereference for
4712 -- more uniform treatment of entry calls.
4714 if Is_Access_Type (Etype (Name)) then
4715 Insert_Explicit_Dereference (Name);
4716 Error_Msg_NW
4717 (Warn_On_Dereference, "?d?implicit dereference", N);
4718 end if;
4719 end if;
4721 <<Next_Comp>>
4722 Next_Entity (Comp);
4723 exit when not In_Scope
4724 and then
4725 Comp = First_Private_Entity (Base_Type (Prefix_Type));
4726 end loop;
4728 -- If the scope is a current instance, the prefix cannot be an
4729 -- expression of the same type, unless the selector designates a
4730 -- public operation (otherwise that would represent an attempt to
4731 -- reach an internal entity of another synchronized object).
4732 -- This is legal if prefix is an access to such type and there is
4733 -- a dereference, or is a component with a dereferenced prefix.
4734 -- It is also legal if the prefix is a component of a task type,
4735 -- and the selector is one of the task operations.
4737 if In_Scope
4738 and then not Is_Entity_Name (Name)
4739 and then not Has_Dereference (Name)
4740 then
4741 if Is_Task_Type (Prefix_Type)
4742 and then Present (Entity (Sel))
4743 and then Ekind_In (Entity (Sel), E_Entry, E_Entry_Family)
4744 then
4745 null;
4747 else
4748 Error_Msg_NE
4749 ("invalid reference to internal operation of some object of "
4750 & "type &", N, Type_To_Use);
4751 Set_Entity (Sel, Any_Id);
4752 Set_Etype (Sel, Any_Type);
4753 return;
4754 end if;
4755 end if;
4757 -- If there is no visible entity with the given name or none of the
4758 -- visible entities are plausible interpretations, check whether
4759 -- there is some other primitive operation with that name.
4761 if Ada_Version >= Ada_2005 and then Is_Tagged_Type (Prefix_Type) then
4762 if (Etype (N) = Any_Type
4763 or else not Has_Candidate)
4764 and then Try_Object_Operation (N)
4765 then
4766 return;
4768 -- If the context is not syntactically a procedure call, it
4769 -- may be a call to a primitive function declared outside of
4770 -- the synchronized type.
4772 -- If the context is a procedure call, there might still be
4773 -- an overloading between an entry and a primitive procedure
4774 -- declared outside of the synchronized type, called in prefix
4775 -- notation. This is harder to disambiguate because in one case
4776 -- the controlling formal is implicit ???
4778 elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
4779 and then Nkind (Parent (N)) /= N_Indexed_Component
4780 and then Try_Object_Operation (N)
4781 then
4782 return;
4783 end if;
4785 -- Ada 2012 (AI05-0090-1): If we found a candidate of a call to an
4786 -- entry or procedure of a tagged concurrent type we must check
4787 -- if there are class-wide subprograms covering the primitive. If
4788 -- true then Try_Object_Operation reports the error.
4790 if Has_Candidate
4791 and then Is_Concurrent_Type (Prefix_Type)
4792 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
4793 then
4794 -- Duplicate the call. This is required to avoid problems with
4795 -- the tree transformations performed by Try_Object_Operation.
4796 -- Set properly the parent of the copied call, because it is
4797 -- about to be reanalyzed.
4799 declare
4800 Par : constant Node_Id := New_Copy_Tree (Parent (N));
4802 begin
4803 Set_Parent (Par, Parent (Parent (N)));
4805 if Try_Object_Operation
4806 (Sinfo.Name (Par), CW_Test_Only => True)
4807 then
4808 return;
4809 end if;
4810 end;
4811 end if;
4812 end if;
4814 if Etype (N) = Any_Type and then Is_Protected_Type (Prefix_Type) then
4816 -- Case of a prefix of a protected type: selector might denote
4817 -- an invisible private component.
4819 Comp := First_Private_Entity (Base_Type (Prefix_Type));
4820 while Present (Comp) and then Chars (Comp) /= Chars (Sel) loop
4821 Next_Entity (Comp);
4822 end loop;
4824 if Present (Comp) then
4825 if Is_Single_Concurrent_Object then
4826 Error_Msg_Node_2 := Entity (Name);
4827 Error_Msg_NE ("invisible selector& for &", N, Sel);
4829 else
4830 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4831 Error_Msg_NE ("invisible selector& for }", N, Sel);
4832 end if;
4833 return;
4834 end if;
4835 end if;
4837 Set_Is_Overloaded (N, Is_Overloaded (Sel));
4839 else
4840 -- Invalid prefix
4842 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
4843 end if;
4845 -- If N still has no type, the component is not defined in the prefix
4847 if Etype (N) = Any_Type then
4849 if Is_Single_Concurrent_Object then
4850 Error_Msg_Node_2 := Entity (Name);
4851 Error_Msg_NE ("no selector& for&", N, Sel);
4853 Check_Misspelled_Selector (Type_To_Use, Sel);
4855 -- If this is a derived formal type, the parent may have different
4856 -- visibility at this point. Try for an inherited component before
4857 -- reporting an error.
4859 elsif Is_Generic_Type (Prefix_Type)
4860 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
4861 and then Prefix_Type /= Etype (Prefix_Type)
4862 and then Is_Record_Type (Etype (Prefix_Type))
4863 then
4864 Set_Etype (Prefix (N), Etype (Prefix_Type));
4865 Analyze_Selected_Component (N);
4866 return;
4868 -- Similarly, if this is the actual for a formal derived type, or
4869 -- a derived type thereof, the component inherited from the generic
4870 -- parent may not be visible in the actual, but the selected
4871 -- component is legal. Climb up the derivation chain of the generic
4872 -- parent type until we find the proper ancestor type.
4874 elsif In_Instance and then Is_Tagged_Type (Prefix_Type) then
4875 declare
4876 Par : Entity_Id := Prefix_Type;
4877 begin
4878 -- Climb up derivation chain to generic actual subtype
4880 while not Is_Generic_Actual_Type (Par) loop
4881 if Ekind (Par) = E_Record_Type then
4882 Par := Parent_Subtype (Par);
4883 exit when No (Par);
4884 else
4885 exit when Par = Etype (Par);
4886 Par := Etype (Par);
4887 end if;
4888 end loop;
4890 if Present (Par) and then Is_Generic_Actual_Type (Par) then
4892 -- Now look for component in ancestor types
4894 Par := Generic_Parent_Type (Declaration_Node (Par));
4895 loop
4896 Find_Component_In_Instance (Par);
4897 exit when Present (Entity (Sel))
4898 or else Par = Etype (Par);
4899 Par := Etype (Par);
4900 end loop;
4902 -- Another special case: the type is an extension of a private
4903 -- type T, is an actual in an instance, and we are in the body
4904 -- of the instance, so the generic body had a full view of the
4905 -- type declaration for T or of some ancestor that defines the
4906 -- component in question.
4908 elsif Is_Derived_Type (Type_To_Use)
4909 and then Used_As_Generic_Actual (Type_To_Use)
4910 and then In_Instance_Body
4911 then
4912 Find_Component_In_Instance (Parent_Subtype (Type_To_Use));
4914 -- In ASIS mode the generic parent type may be absent. Examine
4915 -- the parent type directly for a component that may have been
4916 -- visible in a parent generic unit.
4918 elsif Is_Derived_Type (Prefix_Type) then
4919 Par := Etype (Prefix_Type);
4920 Find_Component_In_Instance (Par);
4921 end if;
4922 end;
4924 -- The search above must have eventually succeeded, since the
4925 -- selected component was legal in the generic.
4927 if No (Entity (Sel)) then
4928 raise Program_Error;
4929 end if;
4931 return;
4933 -- Component not found, specialize error message when appropriate
4935 else
4936 if Ekind (Prefix_Type) = E_Record_Subtype then
4938 -- Check whether this is a component of the base type which
4939 -- is absent from a statically constrained subtype. This will
4940 -- raise constraint error at run time, but is not a compile-
4941 -- time error. When the selector is illegal for base type as
4942 -- well fall through and generate a compilation error anyway.
4944 Comp := First_Component (Base_Type (Prefix_Type));
4945 while Present (Comp) loop
4946 if Chars (Comp) = Chars (Sel)
4947 and then Is_Visible_Component (Comp)
4948 then
4949 Set_Entity_With_Checks (Sel, Comp);
4950 Generate_Reference (Comp, Sel);
4951 Set_Etype (Sel, Etype (Comp));
4952 Set_Etype (N, Etype (Comp));
4954 -- Emit appropriate message. The node will be replaced
4955 -- by an appropriate raise statement.
4957 -- Note that in SPARK mode, as with all calls to apply a
4958 -- compile time constraint error, this will be made into
4959 -- an error to simplify the processing of the formal
4960 -- verification backend.
4962 Apply_Compile_Time_Constraint_Error
4963 (N, "component not present in }??",
4964 CE_Discriminant_Check_Failed,
4965 Ent => Prefix_Type, Rep => False);
4967 Set_Raises_Constraint_Error (N);
4968 return;
4969 end if;
4971 Next_Component (Comp);
4972 end loop;
4974 end if;
4976 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4977 Error_Msg_NE ("no selector& for}", N, Sel);
4979 -- Add information in the case of an incomplete prefix
4981 if Is_Incomplete_Type (Type_To_Use) then
4982 declare
4983 Inc : constant Entity_Id := First_Subtype (Type_To_Use);
4985 begin
4986 if From_Limited_With (Scope (Type_To_Use)) then
4987 Error_Msg_NE
4988 ("\limited view of& has no components", N, Inc);
4990 else
4991 Error_Msg_NE
4992 ("\premature usage of incomplete type&", N, Inc);
4994 if Nkind (Parent (Inc)) =
4995 N_Incomplete_Type_Declaration
4996 then
4997 -- Record location of premature use in entity so that
4998 -- a continuation message is generated when the
4999 -- completion is seen.
5001 Set_Premature_Use (Parent (Inc), N);
5002 end if;
5003 end if;
5004 end;
5005 end if;
5007 Check_Misspelled_Selector (Type_To_Use, Sel);
5008 end if;
5010 Set_Entity (Sel, Any_Id);
5011 Set_Etype (Sel, Any_Type);
5012 end if;
5013 end Analyze_Selected_Component;
5015 ---------------------------
5016 -- Analyze_Short_Circuit --
5017 ---------------------------
5019 procedure Analyze_Short_Circuit (N : Node_Id) is
5020 L : constant Node_Id := Left_Opnd (N);
5021 R : constant Node_Id := Right_Opnd (N);
5022 Ind : Interp_Index;
5023 It : Interp;
5025 begin
5026 Analyze_Expression (L);
5027 Analyze_Expression (R);
5028 Set_Etype (N, Any_Type);
5030 if not Is_Overloaded (L) then
5031 if Root_Type (Etype (L)) = Standard_Boolean
5032 and then Has_Compatible_Type (R, Etype (L))
5033 then
5034 Add_One_Interp (N, Etype (L), Etype (L));
5035 end if;
5037 else
5038 Get_First_Interp (L, Ind, It);
5039 while Present (It.Typ) loop
5040 if Root_Type (It.Typ) = Standard_Boolean
5041 and then Has_Compatible_Type (R, It.Typ)
5042 then
5043 Add_One_Interp (N, It.Typ, It.Typ);
5044 end if;
5046 Get_Next_Interp (Ind, It);
5047 end loop;
5048 end if;
5050 -- Here we have failed to find an interpretation. Clearly we know that
5051 -- it is not the case that both operands can have an interpretation of
5052 -- Boolean, but this is by far the most likely intended interpretation.
5053 -- So we simply resolve both operands as Booleans, and at least one of
5054 -- these resolutions will generate an error message, and we do not need
5055 -- to give another error message on the short circuit operation itself.
5057 if Etype (N) = Any_Type then
5058 Resolve (L, Standard_Boolean);
5059 Resolve (R, Standard_Boolean);
5060 Set_Etype (N, Standard_Boolean);
5061 end if;
5062 end Analyze_Short_Circuit;
5064 -------------------
5065 -- Analyze_Slice --
5066 -------------------
5068 procedure Analyze_Slice (N : Node_Id) is
5069 D : constant Node_Id := Discrete_Range (N);
5070 P : constant Node_Id := Prefix (N);
5071 Array_Type : Entity_Id;
5072 Index_Type : Entity_Id;
5074 procedure Analyze_Overloaded_Slice;
5075 -- If the prefix is overloaded, select those interpretations that
5076 -- yield a one-dimensional array type.
5078 ------------------------------
5079 -- Analyze_Overloaded_Slice --
5080 ------------------------------
5082 procedure Analyze_Overloaded_Slice is
5083 I : Interp_Index;
5084 It : Interp;
5085 Typ : Entity_Id;
5087 begin
5088 Set_Etype (N, Any_Type);
5090 Get_First_Interp (P, I, It);
5091 while Present (It.Nam) loop
5092 Typ := It.Typ;
5094 if Is_Access_Type (Typ) then
5095 Typ := Designated_Type (Typ);
5096 Error_Msg_NW
5097 (Warn_On_Dereference, "?d?implicit dereference", N);
5098 end if;
5100 if Is_Array_Type (Typ)
5101 and then Number_Dimensions (Typ) = 1
5102 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
5103 then
5104 Add_One_Interp (N, Typ, Typ);
5105 end if;
5107 Get_Next_Interp (I, It);
5108 end loop;
5110 if Etype (N) = Any_Type then
5111 Error_Msg_N ("expect array type in prefix of slice", N);
5112 end if;
5113 end Analyze_Overloaded_Slice;
5115 -- Start of processing for Analyze_Slice
5117 begin
5118 if Comes_From_Source (N) then
5119 Check_SPARK_05_Restriction ("slice is not allowed", N);
5120 end if;
5122 Analyze (P);
5123 Analyze (D);
5125 if Is_Overloaded (P) then
5126 Analyze_Overloaded_Slice;
5128 else
5129 Array_Type := Etype (P);
5130 Set_Etype (N, Any_Type);
5132 if Is_Access_Type (Array_Type) then
5133 Array_Type := Designated_Type (Array_Type);
5134 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
5135 end if;
5137 if not Is_Array_Type (Array_Type) then
5138 Wrong_Type (P, Any_Array);
5140 elsif Number_Dimensions (Array_Type) > 1 then
5141 Error_Msg_N
5142 ("type is not one-dimensional array in slice prefix", N);
5144 else
5145 if Ekind (Array_Type) = E_String_Literal_Subtype then
5146 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
5147 else
5148 Index_Type := Etype (First_Index (Array_Type));
5149 end if;
5151 if not Has_Compatible_Type (D, Index_Type) then
5152 Wrong_Type (D, Index_Type);
5153 else
5154 Set_Etype (N, Array_Type);
5155 end if;
5156 end if;
5157 end if;
5158 end Analyze_Slice;
5160 -----------------------------
5161 -- Analyze_Type_Conversion --
5162 -----------------------------
5164 procedure Analyze_Type_Conversion (N : Node_Id) is
5165 Expr : constant Node_Id := Expression (N);
5166 Typ : Entity_Id;
5168 begin
5169 -- If Conversion_OK is set, then the Etype is already set, and the only
5170 -- processing required is to analyze the expression. This is used to
5171 -- construct certain "illegal" conversions which are not allowed by Ada
5172 -- semantics, but can be handled by Gigi, see Sinfo for further details.
5174 if Conversion_OK (N) then
5175 Analyze (Expr);
5176 return;
5177 end if;
5179 -- Otherwise full type analysis is required, as well as some semantic
5180 -- checks to make sure the argument of the conversion is appropriate.
5182 Find_Type (Subtype_Mark (N));
5183 Typ := Entity (Subtype_Mark (N));
5184 Set_Etype (N, Typ);
5185 Check_Fully_Declared (Typ, N);
5186 Analyze_Expression (Expr);
5187 Validate_Remote_Type_Type_Conversion (N);
5189 -- Only remaining step is validity checks on the argument. These
5190 -- are skipped if the conversion does not come from the source.
5192 if not Comes_From_Source (N) then
5193 return;
5195 -- If there was an error in a generic unit, no need to replicate the
5196 -- error message. Conversely, constant-folding in the generic may
5197 -- transform the argument of a conversion into a string literal, which
5198 -- is legal. Therefore the following tests are not performed in an
5199 -- instance. The same applies to an inlined body.
5201 elsif In_Instance or In_Inlined_Body then
5202 return;
5204 elsif Nkind (Expr) = N_Null then
5205 Error_Msg_N ("argument of conversion cannot be null", N);
5206 Error_Msg_N ("\use qualified expression instead", N);
5207 Set_Etype (N, Any_Type);
5209 elsif Nkind (Expr) = N_Aggregate then
5210 Error_Msg_N ("argument of conversion cannot be aggregate", N);
5211 Error_Msg_N ("\use qualified expression instead", N);
5213 elsif Nkind (Expr) = N_Allocator then
5214 Error_Msg_N ("argument of conversion cannot be an allocator", N);
5215 Error_Msg_N ("\use qualified expression instead", N);
5217 elsif Nkind (Expr) = N_String_Literal then
5218 Error_Msg_N ("argument of conversion cannot be string literal", N);
5219 Error_Msg_N ("\use qualified expression instead", N);
5221 elsif Nkind (Expr) = N_Character_Literal then
5222 if Ada_Version = Ada_83 then
5223 Resolve (Expr, Typ);
5224 else
5225 Error_Msg_N ("argument of conversion cannot be character literal",
5227 Error_Msg_N ("\use qualified expression instead", N);
5228 end if;
5230 elsif Nkind (Expr) = N_Attribute_Reference
5231 and then Nam_In (Attribute_Name (Expr), Name_Access,
5232 Name_Unchecked_Access,
5233 Name_Unrestricted_Access)
5234 then
5235 Error_Msg_N ("argument of conversion cannot be access", N);
5236 Error_Msg_N ("\use qualified expression instead", N);
5237 end if;
5239 -- A formal parameter of a specific tagged type whose related subprogram
5240 -- is subject to pragma Extensions_Visible with value "False" cannot
5241 -- appear in a class-wide conversion (SPARK RM 6.1.7(3)). Do not check
5242 -- internally generated expressions.
5244 if Is_Class_Wide_Type (Typ)
5245 and then Comes_From_Source (Expr)
5246 and then Is_EVF_Expression (Expr)
5247 then
5248 Error_Msg_N
5249 ("formal parameter with Extensions_Visible False cannot be "
5250 & "converted to class-wide type", Expr);
5251 end if;
5252 end Analyze_Type_Conversion;
5254 ----------------------
5255 -- Analyze_Unary_Op --
5256 ----------------------
5258 procedure Analyze_Unary_Op (N : Node_Id) is
5259 R : constant Node_Id := Right_Opnd (N);
5260 Op_Id : Entity_Id := Entity (N);
5262 begin
5263 Set_Etype (N, Any_Type);
5264 Candidate_Type := Empty;
5266 Analyze_Expression (R);
5268 if Present (Op_Id) then
5269 if Ekind (Op_Id) = E_Operator then
5270 Find_Unary_Types (R, Op_Id, N);
5271 else
5272 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5273 end if;
5275 else
5276 Op_Id := Get_Name_Entity_Id (Chars (N));
5277 while Present (Op_Id) loop
5278 if Ekind (Op_Id) = E_Operator then
5279 if No (Next_Entity (First_Entity (Op_Id))) then
5280 Find_Unary_Types (R, Op_Id, N);
5281 end if;
5283 elsif Is_Overloadable (Op_Id) then
5284 Analyze_User_Defined_Unary_Op (N, Op_Id);
5285 end if;
5287 Op_Id := Homonym (Op_Id);
5288 end loop;
5289 end if;
5291 Operator_Check (N);
5292 end Analyze_Unary_Op;
5294 ----------------------------------
5295 -- Analyze_Unchecked_Expression --
5296 ----------------------------------
5298 procedure Analyze_Unchecked_Expression (N : Node_Id) is
5299 begin
5300 Analyze (Expression (N), Suppress => All_Checks);
5301 Set_Etype (N, Etype (Expression (N)));
5302 Save_Interps (Expression (N), N);
5303 end Analyze_Unchecked_Expression;
5305 ---------------------------------------
5306 -- Analyze_Unchecked_Type_Conversion --
5307 ---------------------------------------
5309 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
5310 begin
5311 Find_Type (Subtype_Mark (N));
5312 Analyze_Expression (Expression (N));
5313 Set_Etype (N, Entity (Subtype_Mark (N)));
5314 end Analyze_Unchecked_Type_Conversion;
5316 ------------------------------------
5317 -- Analyze_User_Defined_Binary_Op --
5318 ------------------------------------
5320 procedure Analyze_User_Defined_Binary_Op
5321 (N : Node_Id;
5322 Op_Id : Entity_Id)
5324 begin
5325 -- Only do analysis if the operator Comes_From_Source, since otherwise
5326 -- the operator was generated by the expander, and all such operators
5327 -- always refer to the operators in package Standard.
5329 if Comes_From_Source (N) then
5330 declare
5331 F1 : constant Entity_Id := First_Formal (Op_Id);
5332 F2 : constant Entity_Id := Next_Formal (F1);
5334 begin
5335 -- Verify that Op_Id is a visible binary function. Note that since
5336 -- we know Op_Id is overloaded, potentially use visible means use
5337 -- visible for sure (RM 9.4(11)).
5339 if Ekind (Op_Id) = E_Function
5340 and then Present (F2)
5341 and then (Is_Immediately_Visible (Op_Id)
5342 or else Is_Potentially_Use_Visible (Op_Id))
5343 and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
5344 and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
5345 then
5346 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5348 -- If the left operand is overloaded, indicate that the current
5349 -- type is a viable candidate. This is redundant in most cases,
5350 -- but for equality and comparison operators where the context
5351 -- does not impose a type on the operands, setting the proper
5352 -- type is necessary to avoid subsequent ambiguities during
5353 -- resolution, when both user-defined and predefined operators
5354 -- may be candidates.
5356 if Is_Overloaded (Left_Opnd (N)) then
5357 Set_Etype (Left_Opnd (N), Etype (F1));
5358 end if;
5360 if Debug_Flag_E then
5361 Write_Str ("user defined operator ");
5362 Write_Name (Chars (Op_Id));
5363 Write_Str (" on node ");
5364 Write_Int (Int (N));
5365 Write_Eol;
5366 end if;
5367 end if;
5368 end;
5369 end if;
5370 end Analyze_User_Defined_Binary_Op;
5372 -----------------------------------
5373 -- Analyze_User_Defined_Unary_Op --
5374 -----------------------------------
5376 procedure Analyze_User_Defined_Unary_Op
5377 (N : Node_Id;
5378 Op_Id : Entity_Id)
5380 begin
5381 -- Only do analysis if the operator Comes_From_Source, since otherwise
5382 -- the operator was generated by the expander, and all such operators
5383 -- always refer to the operators in package Standard.
5385 if Comes_From_Source (N) then
5386 declare
5387 F : constant Entity_Id := First_Formal (Op_Id);
5389 begin
5390 -- Verify that Op_Id is a visible unary function. Note that since
5391 -- we know Op_Id is overloaded, potentially use visible means use
5392 -- visible for sure (RM 9.4(11)).
5394 if Ekind (Op_Id) = E_Function
5395 and then No (Next_Formal (F))
5396 and then (Is_Immediately_Visible (Op_Id)
5397 or else Is_Potentially_Use_Visible (Op_Id))
5398 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
5399 then
5400 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5401 end if;
5402 end;
5403 end if;
5404 end Analyze_User_Defined_Unary_Op;
5406 ---------------------------
5407 -- Check_Arithmetic_Pair --
5408 ---------------------------
5410 procedure Check_Arithmetic_Pair
5411 (T1, T2 : Entity_Id;
5412 Op_Id : Entity_Id;
5413 N : Node_Id)
5415 Op_Name : constant Name_Id := Chars (Op_Id);
5417 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
5418 -- Check whether the fixed-point type Typ has a user-defined operator
5419 -- (multiplication or division) that should hide the corresponding
5420 -- predefined operator. Used to implement Ada 2005 AI-264, to make
5421 -- such operators more visible and therefore useful.
5423 -- If the name of the operation is an expanded name with prefix
5424 -- Standard, the predefined universal fixed operator is available,
5425 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
5427 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
5428 -- Get specific type (i.e. non-universal type if there is one)
5430 ------------------
5431 -- Has_Fixed_Op --
5432 ------------------
5434 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
5435 Bas : constant Entity_Id := Base_Type (Typ);
5436 Ent : Entity_Id;
5437 F1 : Entity_Id;
5438 F2 : Entity_Id;
5440 begin
5441 -- If the universal_fixed operation is given explicitly the rule
5442 -- concerning primitive operations of the type do not apply.
5444 if Nkind (N) = N_Function_Call
5445 and then Nkind (Name (N)) = N_Expanded_Name
5446 and then Entity (Prefix (Name (N))) = Standard_Standard
5447 then
5448 return False;
5449 end if;
5451 -- The operation is treated as primitive if it is declared in the
5452 -- same scope as the type, and therefore on the same entity chain.
5454 Ent := Next_Entity (Typ);
5455 while Present (Ent) loop
5456 if Chars (Ent) = Chars (Op) then
5457 F1 := First_Formal (Ent);
5458 F2 := Next_Formal (F1);
5460 -- The operation counts as primitive if either operand or
5461 -- result are of the given base type, and both operands are
5462 -- fixed point types.
5464 if (Base_Type (Etype (F1)) = Bas
5465 and then Is_Fixed_Point_Type (Etype (F2)))
5467 or else
5468 (Base_Type (Etype (F2)) = Bas
5469 and then Is_Fixed_Point_Type (Etype (F1)))
5471 or else
5472 (Base_Type (Etype (Ent)) = Bas
5473 and then Is_Fixed_Point_Type (Etype (F1))
5474 and then Is_Fixed_Point_Type (Etype (F2)))
5475 then
5476 return True;
5477 end if;
5478 end if;
5480 Next_Entity (Ent);
5481 end loop;
5483 return False;
5484 end Has_Fixed_Op;
5486 -------------------
5487 -- Specific_Type --
5488 -------------------
5490 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
5491 begin
5492 if T1 = Universal_Integer or else T1 = Universal_Real then
5493 return Base_Type (T2);
5494 else
5495 return Base_Type (T1);
5496 end if;
5497 end Specific_Type;
5499 -- Start of processing for Check_Arithmetic_Pair
5501 begin
5502 if Nam_In (Op_Name, Name_Op_Add, Name_Op_Subtract) then
5503 if Is_Numeric_Type (T1)
5504 and then Is_Numeric_Type (T2)
5505 and then (Covers (T1 => T1, T2 => T2)
5506 or else
5507 Covers (T1 => T2, T2 => T1))
5508 then
5509 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5510 end if;
5512 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide) then
5513 if Is_Fixed_Point_Type (T1)
5514 and then (Is_Fixed_Point_Type (T2) or else T2 = Universal_Real)
5515 then
5516 -- If Treat_Fixed_As_Integer is set then the Etype is already set
5517 -- and no further processing is required (this is the case of an
5518 -- operator constructed by Exp_Fixd for a fixed point operation)
5519 -- Otherwise add one interpretation with universal fixed result
5520 -- If the operator is given in functional notation, it comes
5521 -- from source and Fixed_As_Integer cannot apply.
5523 if (Nkind (N) not in N_Op
5524 or else not Treat_Fixed_As_Integer (N))
5525 and then
5526 (not Has_Fixed_Op (T1, Op_Id)
5527 or else Nkind (Parent (N)) = N_Type_Conversion)
5528 then
5529 Add_One_Interp (N, Op_Id, Universal_Fixed);
5530 end if;
5532 elsif Is_Fixed_Point_Type (T2)
5533 and then (Nkind (N) not in N_Op
5534 or else not Treat_Fixed_As_Integer (N))
5535 and then T1 = Universal_Real
5536 and then
5537 (not Has_Fixed_Op (T1, Op_Id)
5538 or else Nkind (Parent (N)) = N_Type_Conversion)
5539 then
5540 Add_One_Interp (N, Op_Id, Universal_Fixed);
5542 elsif Is_Numeric_Type (T1)
5543 and then Is_Numeric_Type (T2)
5544 and then (Covers (T1 => T1, T2 => T2)
5545 or else
5546 Covers (T1 => T2, T2 => T1))
5547 then
5548 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5550 elsif Is_Fixed_Point_Type (T1)
5551 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5552 or else T2 = Universal_Integer)
5553 then
5554 Add_One_Interp (N, Op_Id, T1);
5556 elsif T2 = Universal_Real
5557 and then Base_Type (T1) = Base_Type (Standard_Integer)
5558 and then Op_Name = Name_Op_Multiply
5559 then
5560 Add_One_Interp (N, Op_Id, Any_Fixed);
5562 elsif T1 = Universal_Real
5563 and then Base_Type (T2) = Base_Type (Standard_Integer)
5564 then
5565 Add_One_Interp (N, Op_Id, Any_Fixed);
5567 elsif Is_Fixed_Point_Type (T2)
5568 and then (Base_Type (T1) = Base_Type (Standard_Integer)
5569 or else T1 = Universal_Integer)
5570 and then Op_Name = Name_Op_Multiply
5571 then
5572 Add_One_Interp (N, Op_Id, T2);
5574 elsif T1 = Universal_Real and then T2 = Universal_Integer then
5575 Add_One_Interp (N, Op_Id, T1);
5577 elsif T2 = Universal_Real
5578 and then T1 = Universal_Integer
5579 and then Op_Name = Name_Op_Multiply
5580 then
5581 Add_One_Interp (N, Op_Id, T2);
5582 end if;
5584 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
5586 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
5587 -- set does not require any special processing, since the Etype is
5588 -- already set (case of operation constructed by Exp_Fixed).
5590 if Is_Integer_Type (T1)
5591 and then (Covers (T1 => T1, T2 => T2)
5592 or else
5593 Covers (T1 => T2, T2 => T1))
5594 then
5595 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5596 end if;
5598 elsif Op_Name = Name_Op_Expon then
5599 if Is_Numeric_Type (T1)
5600 and then not Is_Fixed_Point_Type (T1)
5601 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5602 or else T2 = Universal_Integer)
5603 then
5604 Add_One_Interp (N, Op_Id, Base_Type (T1));
5605 end if;
5607 else pragma Assert (Nkind (N) in N_Op_Shift);
5609 -- If not one of the predefined operators, the node may be one
5610 -- of the intrinsic functions. Its kind is always specific, and
5611 -- we can use it directly, rather than the name of the operation.
5613 if Is_Integer_Type (T1)
5614 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5615 or else T2 = Universal_Integer)
5616 then
5617 Add_One_Interp (N, Op_Id, Base_Type (T1));
5618 end if;
5619 end if;
5620 end Check_Arithmetic_Pair;
5622 -------------------------------
5623 -- Check_Misspelled_Selector --
5624 -------------------------------
5626 procedure Check_Misspelled_Selector
5627 (Prefix : Entity_Id;
5628 Sel : Node_Id)
5630 Max_Suggestions : constant := 2;
5631 Nr_Of_Suggestions : Natural := 0;
5633 Suggestion_1 : Entity_Id := Empty;
5634 Suggestion_2 : Entity_Id := Empty;
5636 Comp : Entity_Id;
5638 begin
5639 -- All the components of the prefix of selector Sel are matched against
5640 -- Sel and a count is maintained of possible misspellings. When at
5641 -- the end of the analysis there are one or two (not more) possible
5642 -- misspellings, these misspellings will be suggested as possible
5643 -- correction.
5645 if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
5647 -- Concurrent types should be handled as well ???
5649 return;
5650 end if;
5652 Comp := First_Entity (Prefix);
5653 while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
5654 if Is_Visible_Component (Comp) then
5655 if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
5656 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
5658 case Nr_Of_Suggestions is
5659 when 1 => Suggestion_1 := Comp;
5660 when 2 => Suggestion_2 := Comp;
5661 when others => exit;
5662 end case;
5663 end if;
5664 end if;
5666 Comp := Next_Entity (Comp);
5667 end loop;
5669 -- Report at most two suggestions
5671 if Nr_Of_Suggestions = 1 then
5672 Error_Msg_NE -- CODEFIX
5673 ("\possible misspelling of&", Sel, Suggestion_1);
5675 elsif Nr_Of_Suggestions = 2 then
5676 Error_Msg_Node_2 := Suggestion_2;
5677 Error_Msg_NE -- CODEFIX
5678 ("\possible misspelling of& or&", Sel, Suggestion_1);
5679 end if;
5680 end Check_Misspelled_Selector;
5682 ----------------------
5683 -- Defined_In_Scope --
5684 ----------------------
5686 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
5688 S1 : constant Entity_Id := Scope (Base_Type (T));
5689 begin
5690 return S1 = S
5691 or else (S1 = System_Aux_Id and then S = Scope (S1));
5692 end Defined_In_Scope;
5694 -------------------
5695 -- Diagnose_Call --
5696 -------------------
5698 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
5699 Actual : Node_Id;
5700 X : Interp_Index;
5701 It : Interp;
5702 Err_Mode : Boolean;
5703 New_Nam : Node_Id;
5704 Void_Interp_Seen : Boolean := False;
5706 Success : Boolean;
5707 pragma Warnings (Off, Boolean);
5709 begin
5710 if Ada_Version >= Ada_2005 then
5711 Actual := First_Actual (N);
5712 while Present (Actual) loop
5714 -- Ada 2005 (AI-50217): Post an error in case of premature
5715 -- usage of an entity from the limited view.
5717 if not Analyzed (Etype (Actual))
5718 and then From_Limited_With (Etype (Actual))
5719 then
5720 Error_Msg_Qual_Level := 1;
5721 Error_Msg_NE
5722 ("missing with_clause for scope of imported type&",
5723 Actual, Etype (Actual));
5724 Error_Msg_Qual_Level := 0;
5725 end if;
5727 Next_Actual (Actual);
5728 end loop;
5729 end if;
5731 -- Analyze each candidate call again, with full error reporting
5732 -- for each.
5734 Error_Msg_N
5735 ("no candidate interpretations match the actuals:!", Nam);
5736 Err_Mode := All_Errors_Mode;
5737 All_Errors_Mode := True;
5739 -- If this is a call to an operation of a concurrent type,
5740 -- the failed interpretations have been removed from the
5741 -- name. Recover them to provide full diagnostics.
5743 if Nkind (Parent (Nam)) = N_Selected_Component then
5744 Set_Entity (Nam, Empty);
5745 New_Nam := New_Copy_Tree (Parent (Nam));
5746 Set_Is_Overloaded (New_Nam, False);
5747 Set_Is_Overloaded (Selector_Name (New_Nam), False);
5748 Set_Parent (New_Nam, Parent (Parent (Nam)));
5749 Analyze_Selected_Component (New_Nam);
5750 Get_First_Interp (Selector_Name (New_Nam), X, It);
5751 else
5752 Get_First_Interp (Nam, X, It);
5753 end if;
5755 while Present (It.Nam) loop
5756 if Etype (It.Nam) = Standard_Void_Type then
5757 Void_Interp_Seen := True;
5758 end if;
5760 Analyze_One_Call (N, It.Nam, True, Success);
5761 Get_Next_Interp (X, It);
5762 end loop;
5764 if Nkind (N) = N_Function_Call then
5765 Get_First_Interp (Nam, X, It);
5766 while Present (It.Nam) loop
5767 if Ekind_In (It.Nam, E_Function, E_Operator) then
5768 return;
5769 else
5770 Get_Next_Interp (X, It);
5771 end if;
5772 end loop;
5774 -- If all interpretations are procedures, this deserves a
5775 -- more precise message. Ditto if this appears as the prefix
5776 -- of a selected component, which may be a lexical error.
5778 Error_Msg_N
5779 ("\context requires function call, found procedure name", Nam);
5781 if Nkind (Parent (N)) = N_Selected_Component
5782 and then N = Prefix (Parent (N))
5783 then
5784 Error_Msg_N -- CODEFIX
5785 ("\period should probably be semicolon", Parent (N));
5786 end if;
5788 elsif Nkind (N) = N_Procedure_Call_Statement
5789 and then not Void_Interp_Seen
5790 then
5791 Error_Msg_N (
5792 "\function name found in procedure call", Nam);
5793 end if;
5795 All_Errors_Mode := Err_Mode;
5796 end Diagnose_Call;
5798 ---------------------------
5799 -- Find_Arithmetic_Types --
5800 ---------------------------
5802 procedure Find_Arithmetic_Types
5803 (L, R : Node_Id;
5804 Op_Id : Entity_Id;
5805 N : Node_Id)
5807 Index1 : Interp_Index;
5808 Index2 : Interp_Index;
5809 It1 : Interp;
5810 It2 : Interp;
5812 procedure Check_Right_Argument (T : Entity_Id);
5813 -- Check right operand of operator
5815 --------------------------
5816 -- Check_Right_Argument --
5817 --------------------------
5819 procedure Check_Right_Argument (T : Entity_Id) is
5820 begin
5821 if not Is_Overloaded (R) then
5822 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
5823 else
5824 Get_First_Interp (R, Index2, It2);
5825 while Present (It2.Typ) loop
5826 Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
5827 Get_Next_Interp (Index2, It2);
5828 end loop;
5829 end if;
5830 end Check_Right_Argument;
5832 -- Start of processing for Find_Arithmetic_Types
5834 begin
5835 if not Is_Overloaded (L) then
5836 Check_Right_Argument (Etype (L));
5838 else
5839 Get_First_Interp (L, Index1, It1);
5840 while Present (It1.Typ) loop
5841 Check_Right_Argument (It1.Typ);
5842 Get_Next_Interp (Index1, It1);
5843 end loop;
5844 end if;
5846 end Find_Arithmetic_Types;
5848 ------------------------
5849 -- Find_Boolean_Types --
5850 ------------------------
5852 procedure Find_Boolean_Types
5853 (L, R : Node_Id;
5854 Op_Id : Entity_Id;
5855 N : Node_Id)
5857 Index : Interp_Index;
5858 It : Interp;
5860 procedure Check_Numeric_Argument (T : Entity_Id);
5861 -- Special case for logical operations one of whose operands is an
5862 -- integer literal. If both are literal the result is any modular type.
5864 ----------------------------
5865 -- Check_Numeric_Argument --
5866 ----------------------------
5868 procedure Check_Numeric_Argument (T : Entity_Id) is
5869 begin
5870 if T = Universal_Integer then
5871 Add_One_Interp (N, Op_Id, Any_Modular);
5873 elsif Is_Modular_Integer_Type (T) then
5874 Add_One_Interp (N, Op_Id, T);
5875 end if;
5876 end Check_Numeric_Argument;
5878 -- Start of processing for Find_Boolean_Types
5880 begin
5881 if not Is_Overloaded (L) then
5882 if Etype (L) = Universal_Integer
5883 or else Etype (L) = Any_Modular
5884 then
5885 if not Is_Overloaded (R) then
5886 Check_Numeric_Argument (Etype (R));
5888 else
5889 Get_First_Interp (R, Index, It);
5890 while Present (It.Typ) loop
5891 Check_Numeric_Argument (It.Typ);
5892 Get_Next_Interp (Index, It);
5893 end loop;
5894 end if;
5896 -- If operands are aggregates, we must assume that they may be
5897 -- boolean arrays, and leave disambiguation for the second pass.
5898 -- If only one is an aggregate, verify that the other one has an
5899 -- interpretation as a boolean array
5901 elsif Nkind (L) = N_Aggregate then
5902 if Nkind (R) = N_Aggregate then
5903 Add_One_Interp (N, Op_Id, Etype (L));
5905 elsif not Is_Overloaded (R) then
5906 if Valid_Boolean_Arg (Etype (R)) then
5907 Add_One_Interp (N, Op_Id, Etype (R));
5908 end if;
5910 else
5911 Get_First_Interp (R, Index, It);
5912 while Present (It.Typ) loop
5913 if Valid_Boolean_Arg (It.Typ) then
5914 Add_One_Interp (N, Op_Id, It.Typ);
5915 end if;
5917 Get_Next_Interp (Index, It);
5918 end loop;
5919 end if;
5921 elsif Valid_Boolean_Arg (Etype (L))
5922 and then Has_Compatible_Type (R, Etype (L))
5923 then
5924 Add_One_Interp (N, Op_Id, Etype (L));
5925 end if;
5927 else
5928 Get_First_Interp (L, Index, It);
5929 while Present (It.Typ) loop
5930 if Valid_Boolean_Arg (It.Typ)
5931 and then Has_Compatible_Type (R, It.Typ)
5932 then
5933 Add_One_Interp (N, Op_Id, It.Typ);
5934 end if;
5936 Get_Next_Interp (Index, It);
5937 end loop;
5938 end if;
5939 end Find_Boolean_Types;
5941 ---------------------------
5942 -- Find_Comparison_Types --
5943 ---------------------------
5945 procedure Find_Comparison_Types
5946 (L, R : Node_Id;
5947 Op_Id : Entity_Id;
5948 N : Node_Id)
5950 Index : Interp_Index;
5951 It : Interp;
5952 Found : Boolean := False;
5953 I_F : Interp_Index;
5954 T_F : Entity_Id;
5955 Scop : Entity_Id := Empty;
5957 procedure Try_One_Interp (T1 : Entity_Id);
5958 -- Routine to try one proposed interpretation. Note that the context
5959 -- of the operator plays no role in resolving the arguments, so that
5960 -- if there is more than one interpretation of the operands that is
5961 -- compatible with comparison, the operation is ambiguous.
5963 --------------------
5964 -- Try_One_Interp --
5965 --------------------
5967 procedure Try_One_Interp (T1 : Entity_Id) is
5968 begin
5970 -- If the operator is an expanded name, then the type of the operand
5971 -- must be defined in the corresponding scope. If the type is
5972 -- universal, the context will impose the correct type.
5974 if Present (Scop)
5975 and then not Defined_In_Scope (T1, Scop)
5976 and then T1 /= Universal_Integer
5977 and then T1 /= Universal_Real
5978 and then T1 /= Any_String
5979 and then T1 /= Any_Composite
5980 then
5981 return;
5982 end if;
5984 if Valid_Comparison_Arg (T1) and then Has_Compatible_Type (R, T1) then
5985 if Found and then Base_Type (T1) /= Base_Type (T_F) then
5986 It := Disambiguate (L, I_F, Index, Any_Type);
5988 if It = No_Interp then
5989 Ambiguous_Operands (N);
5990 Set_Etype (L, Any_Type);
5991 return;
5993 else
5994 T_F := It.Typ;
5995 end if;
5997 else
5998 Found := True;
5999 T_F := T1;
6000 I_F := Index;
6001 end if;
6003 Set_Etype (L, T_F);
6004 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
6006 end if;
6007 end Try_One_Interp;
6009 -- Start of processing for Find_Comparison_Types
6011 begin
6012 -- If left operand is aggregate, the right operand has to
6013 -- provide a usable type for it.
6015 if Nkind (L) = N_Aggregate and then Nkind (R) /= N_Aggregate then
6016 Find_Comparison_Types (L => R, R => L, Op_Id => Op_Id, N => N);
6017 return;
6018 end if;
6020 if Nkind (N) = N_Function_Call
6021 and then Nkind (Name (N)) = N_Expanded_Name
6022 then
6023 Scop := Entity (Prefix (Name (N)));
6025 -- The prefix may be a package renaming, and the subsequent test
6026 -- requires the original package.
6028 if Ekind (Scop) = E_Package
6029 and then Present (Renamed_Entity (Scop))
6030 then
6031 Scop := Renamed_Entity (Scop);
6032 Set_Entity (Prefix (Name (N)), Scop);
6033 end if;
6034 end if;
6036 if not Is_Overloaded (L) then
6037 Try_One_Interp (Etype (L));
6039 else
6040 Get_First_Interp (L, Index, It);
6041 while Present (It.Typ) loop
6042 Try_One_Interp (It.Typ);
6043 Get_Next_Interp (Index, It);
6044 end loop;
6045 end if;
6046 end Find_Comparison_Types;
6048 ----------------------------------------
6049 -- Find_Non_Universal_Interpretations --
6050 ----------------------------------------
6052 procedure Find_Non_Universal_Interpretations
6053 (N : Node_Id;
6054 R : Node_Id;
6055 Op_Id : Entity_Id;
6056 T1 : Entity_Id)
6058 Index : Interp_Index;
6059 It : Interp;
6061 begin
6062 if T1 = Universal_Integer or else T1 = Universal_Real
6064 -- If the left operand of an equality operator is null, the visibility
6065 -- of the operator must be determined from the interpretation of the
6066 -- right operand. This processing must be done for Any_Access, which
6067 -- is the internal representation of the type of the literal null.
6069 or else T1 = Any_Access
6070 then
6071 if not Is_Overloaded (R) then
6072 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
6073 else
6074 Get_First_Interp (R, Index, It);
6075 while Present (It.Typ) loop
6076 if Covers (It.Typ, T1) then
6077 Add_One_Interp
6078 (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
6079 end if;
6081 Get_Next_Interp (Index, It);
6082 end loop;
6083 end if;
6084 else
6085 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
6086 end if;
6087 end Find_Non_Universal_Interpretations;
6089 ------------------------------
6090 -- Find_Concatenation_Types --
6091 ------------------------------
6093 procedure Find_Concatenation_Types
6094 (L, R : Node_Id;
6095 Op_Id : Entity_Id;
6096 N : Node_Id)
6098 Op_Type : constant Entity_Id := Etype (Op_Id);
6100 begin
6101 if Is_Array_Type (Op_Type)
6102 and then not Is_Limited_Type (Op_Type)
6104 and then (Has_Compatible_Type (L, Op_Type)
6105 or else
6106 Has_Compatible_Type (L, Component_Type (Op_Type)))
6108 and then (Has_Compatible_Type (R, Op_Type)
6109 or else
6110 Has_Compatible_Type (R, Component_Type (Op_Type)))
6111 then
6112 Add_One_Interp (N, Op_Id, Op_Type);
6113 end if;
6114 end Find_Concatenation_Types;
6116 -------------------------
6117 -- Find_Equality_Types --
6118 -------------------------
6120 procedure Find_Equality_Types
6121 (L, R : Node_Id;
6122 Op_Id : Entity_Id;
6123 N : Node_Id)
6125 Index : Interp_Index;
6126 It : Interp;
6127 Found : Boolean := False;
6128 I_F : Interp_Index;
6129 T_F : Entity_Id;
6130 Scop : Entity_Id := Empty;
6132 procedure Try_One_Interp (T1 : Entity_Id);
6133 -- The context of the equality operator plays no role in resolving the
6134 -- arguments, so that if there is more than one interpretation of the
6135 -- operands that is compatible with equality, the construct is ambiguous
6136 -- and an error can be emitted now, after trying to disambiguate, i.e.
6137 -- applying preference rules.
6139 --------------------
6140 -- Try_One_Interp --
6141 --------------------
6143 procedure Try_One_Interp (T1 : Entity_Id) is
6144 Bas : constant Entity_Id := Base_Type (T1);
6146 begin
6147 -- If the operator is an expanded name, then the type of the operand
6148 -- must be defined in the corresponding scope. If the type is
6149 -- universal, the context will impose the correct type. An anonymous
6150 -- type for a 'Access reference is also universal in this sense, as
6151 -- the actual type is obtained from context.
6153 -- In Ada 2005, the equality operator for anonymous access types
6154 -- is declared in Standard, and preference rules apply to it.
6156 if Present (Scop) then
6157 if Defined_In_Scope (T1, Scop)
6158 or else T1 = Universal_Integer
6159 or else T1 = Universal_Real
6160 or else T1 = Any_Access
6161 or else T1 = Any_String
6162 or else T1 = Any_Composite
6163 or else (Ekind (T1) = E_Access_Subprogram_Type
6164 and then not Comes_From_Source (T1))
6165 then
6166 null;
6168 elsif Ekind (T1) = E_Anonymous_Access_Type
6169 and then Scop = Standard_Standard
6170 then
6171 null;
6173 else
6174 -- The scope does not contain an operator for the type
6176 return;
6177 end if;
6179 -- If we have infix notation, the operator must be usable. Within
6180 -- an instance, if the type is already established we know it is
6181 -- correct. If an operand is universal it is compatible with any
6182 -- numeric type.
6184 elsif In_Open_Scopes (Scope (Bas))
6185 or else Is_Potentially_Use_Visible (Bas)
6186 or else In_Use (Bas)
6187 or else (In_Use (Scope (Bas)) and then not Is_Hidden (Bas))
6189 -- In an instance, the type may have been immediately visible.
6190 -- Either the types are compatible, or one operand is universal
6191 -- (numeric or null).
6193 or else (In_Instance
6194 and then
6195 (First_Subtype (T1) = First_Subtype (Etype (R))
6196 or else Nkind (R) = N_Null
6197 or else
6198 (Is_Numeric_Type (T1)
6199 and then Is_Universal_Numeric_Type (Etype (R)))))
6201 -- In Ada 2005, the equality on anonymous access types is declared
6202 -- in Standard, and is always visible.
6204 or else Ekind (T1) = E_Anonymous_Access_Type
6205 then
6206 null;
6208 else
6209 -- Save candidate type for subsequent error message, if any
6211 if not Is_Limited_Type (T1) then
6212 Candidate_Type := T1;
6213 end if;
6215 return;
6216 end if;
6218 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
6219 -- Do not allow anonymous access types in equality operators.
6221 if Ada_Version < Ada_2005
6222 and then Ekind (T1) = E_Anonymous_Access_Type
6223 then
6224 return;
6225 end if;
6227 -- If the right operand has a type compatible with T1, check for an
6228 -- acceptable interpretation, unless T1 is limited (no predefined
6229 -- equality available), or this is use of a "/=" for a tagged type.
6230 -- In the latter case, possible interpretations of equality need
6231 -- to be considered, we don't want the default inequality declared
6232 -- in Standard to be chosen, and the "/=" will be rewritten as a
6233 -- negation of "=" (see the end of Analyze_Equality_Op). This ensures
6234 -- that rewriting happens during analysis rather than being
6235 -- delayed until expansion (this is needed for ASIS, which only sees
6236 -- the unexpanded tree). Note that if the node is N_Op_Ne, but Op_Id
6237 -- is Name_Op_Eq then we still proceed with the interpretation,
6238 -- because that indicates the potential rewriting case where the
6239 -- interpretation to consider is actually "=" and the node may be
6240 -- about to be rewritten by Analyze_Equality_Op.
6242 if T1 /= Standard_Void_Type
6243 and then Has_Compatible_Type (R, T1)
6245 and then
6246 ((not Is_Limited_Type (T1)
6247 and then not Is_Limited_Composite (T1))
6249 or else
6250 (Is_Array_Type (T1)
6251 and then not Is_Limited_Type (Component_Type (T1))
6252 and then Available_Full_View_Of_Component (T1)))
6254 and then
6255 (Nkind (N) /= N_Op_Ne
6256 or else not Is_Tagged_Type (T1)
6257 or else Chars (Op_Id) = Name_Op_Eq)
6258 then
6259 if Found
6260 and then Base_Type (T1) /= Base_Type (T_F)
6261 then
6262 It := Disambiguate (L, I_F, Index, Any_Type);
6264 if It = No_Interp then
6265 Ambiguous_Operands (N);
6266 Set_Etype (L, Any_Type);
6267 return;
6269 else
6270 T_F := It.Typ;
6271 end if;
6273 else
6274 Found := True;
6275 T_F := T1;
6276 I_F := Index;
6277 end if;
6279 if not Analyzed (L) then
6280 Set_Etype (L, T_F);
6281 end if;
6283 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
6285 -- Case of operator was not visible, Etype still set to Any_Type
6287 if Etype (N) = Any_Type then
6288 Found := False;
6289 end if;
6291 elsif Scop = Standard_Standard
6292 and then Ekind (T1) = E_Anonymous_Access_Type
6293 then
6294 Found := True;
6295 end if;
6296 end Try_One_Interp;
6298 -- Start of processing for Find_Equality_Types
6300 begin
6301 -- If left operand is aggregate, the right operand has to
6302 -- provide a usable type for it.
6304 if Nkind (L) = N_Aggregate
6305 and then Nkind (R) /= N_Aggregate
6306 then
6307 Find_Equality_Types (L => R, R => L, Op_Id => Op_Id, N => N);
6308 return;
6309 end if;
6311 if Nkind (N) = N_Function_Call
6312 and then Nkind (Name (N)) = N_Expanded_Name
6313 then
6314 Scop := Entity (Prefix (Name (N)));
6316 -- The prefix may be a package renaming, and the subsequent test
6317 -- requires the original package.
6319 if Ekind (Scop) = E_Package
6320 and then Present (Renamed_Entity (Scop))
6321 then
6322 Scop := Renamed_Entity (Scop);
6323 Set_Entity (Prefix (Name (N)), Scop);
6324 end if;
6325 end if;
6327 if not Is_Overloaded (L) then
6328 Try_One_Interp (Etype (L));
6330 else
6331 Get_First_Interp (L, Index, It);
6332 while Present (It.Typ) loop
6333 Try_One_Interp (It.Typ);
6334 Get_Next_Interp (Index, It);
6335 end loop;
6336 end if;
6337 end Find_Equality_Types;
6339 -------------------------
6340 -- Find_Negation_Types --
6341 -------------------------
6343 procedure Find_Negation_Types
6344 (R : Node_Id;
6345 Op_Id : Entity_Id;
6346 N : Node_Id)
6348 Index : Interp_Index;
6349 It : Interp;
6351 begin
6352 if not Is_Overloaded (R) then
6353 if Etype (R) = Universal_Integer then
6354 Add_One_Interp (N, Op_Id, Any_Modular);
6355 elsif Valid_Boolean_Arg (Etype (R)) then
6356 Add_One_Interp (N, Op_Id, Etype (R));
6357 end if;
6359 else
6360 Get_First_Interp (R, Index, It);
6361 while Present (It.Typ) loop
6362 if Valid_Boolean_Arg (It.Typ) then
6363 Add_One_Interp (N, Op_Id, It.Typ);
6364 end if;
6366 Get_Next_Interp (Index, It);
6367 end loop;
6368 end if;
6369 end Find_Negation_Types;
6371 ------------------------------
6372 -- Find_Primitive_Operation --
6373 ------------------------------
6375 function Find_Primitive_Operation (N : Node_Id) return Boolean is
6376 Obj : constant Node_Id := Prefix (N);
6377 Op : constant Node_Id := Selector_Name (N);
6379 Prim : Elmt_Id;
6380 Prims : Elist_Id;
6381 Typ : Entity_Id;
6383 begin
6384 Set_Etype (Op, Any_Type);
6386 if Is_Access_Type (Etype (Obj)) then
6387 Typ := Designated_Type (Etype (Obj));
6388 else
6389 Typ := Etype (Obj);
6390 end if;
6392 if Is_Class_Wide_Type (Typ) then
6393 Typ := Root_Type (Typ);
6394 end if;
6396 Prims := Primitive_Operations (Typ);
6398 Prim := First_Elmt (Prims);
6399 while Present (Prim) loop
6400 if Chars (Node (Prim)) = Chars (Op) then
6401 Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
6402 Set_Etype (N, Etype (Node (Prim)));
6403 end if;
6405 Next_Elmt (Prim);
6406 end loop;
6408 -- Now look for class-wide operations of the type or any of its
6409 -- ancestors by iterating over the homonyms of the selector.
6411 declare
6412 Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
6413 Hom : Entity_Id;
6415 begin
6416 Hom := Current_Entity (Op);
6417 while Present (Hom) loop
6418 if (Ekind (Hom) = E_Procedure
6419 or else
6420 Ekind (Hom) = E_Function)
6421 and then Scope (Hom) = Scope (Typ)
6422 and then Present (First_Formal (Hom))
6423 and then
6424 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
6425 or else
6426 (Is_Access_Type (Etype (First_Formal (Hom)))
6427 and then
6428 Ekind (Etype (First_Formal (Hom))) =
6429 E_Anonymous_Access_Type
6430 and then
6431 Base_Type
6432 (Designated_Type (Etype (First_Formal (Hom)))) =
6433 Cls_Type))
6434 then
6435 Add_One_Interp (Op, Hom, Etype (Hom));
6436 Set_Etype (N, Etype (Hom));
6437 end if;
6439 Hom := Homonym (Hom);
6440 end loop;
6441 end;
6443 return Etype (Op) /= Any_Type;
6444 end Find_Primitive_Operation;
6446 ----------------------
6447 -- Find_Unary_Types --
6448 ----------------------
6450 procedure Find_Unary_Types
6451 (R : Node_Id;
6452 Op_Id : Entity_Id;
6453 N : Node_Id)
6455 Index : Interp_Index;
6456 It : Interp;
6458 begin
6459 if not Is_Overloaded (R) then
6460 if Is_Numeric_Type (Etype (R)) then
6462 -- In an instance a generic actual may be a numeric type even if
6463 -- the formal in the generic unit was not. In that case, the
6464 -- predefined operator was not a possible interpretation in the
6465 -- generic, and cannot be one in the instance, unless the operator
6466 -- is an actual of an instance.
6468 if In_Instance
6469 and then
6470 not Is_Numeric_Type (Corresponding_Generic_Type (Etype (R)))
6471 then
6472 null;
6473 else
6474 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
6475 end if;
6476 end if;
6478 else
6479 Get_First_Interp (R, Index, It);
6480 while Present (It.Typ) loop
6481 if Is_Numeric_Type (It.Typ) then
6482 if In_Instance
6483 and then
6484 not Is_Numeric_Type
6485 (Corresponding_Generic_Type (Etype (It.Typ)))
6486 then
6487 null;
6489 else
6490 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
6491 end if;
6492 end if;
6494 Get_Next_Interp (Index, It);
6495 end loop;
6496 end if;
6497 end Find_Unary_Types;
6499 ------------------
6500 -- Junk_Operand --
6501 ------------------
6503 function Junk_Operand (N : Node_Id) return Boolean is
6504 Enode : Node_Id;
6506 begin
6507 if Error_Posted (N) then
6508 return False;
6509 end if;
6511 -- Get entity to be tested
6513 if Is_Entity_Name (N)
6514 and then Present (Entity (N))
6515 then
6516 Enode := N;
6518 -- An odd case, a procedure name gets converted to a very peculiar
6519 -- function call, and here is where we detect this happening.
6521 elsif Nkind (N) = N_Function_Call
6522 and then Is_Entity_Name (Name (N))
6523 and then Present (Entity (Name (N)))
6524 then
6525 Enode := Name (N);
6527 -- Another odd case, there are at least some cases of selected
6528 -- components where the selected component is not marked as having
6529 -- an entity, even though the selector does have an entity
6531 elsif Nkind (N) = N_Selected_Component
6532 and then Present (Entity (Selector_Name (N)))
6533 then
6534 Enode := Selector_Name (N);
6536 else
6537 return False;
6538 end if;
6540 -- Now test the entity we got to see if it is a bad case
6542 case Ekind (Entity (Enode)) is
6544 when E_Package =>
6545 Error_Msg_N
6546 ("package name cannot be used as operand", Enode);
6548 when Generic_Unit_Kind =>
6549 Error_Msg_N
6550 ("generic unit name cannot be used as operand", Enode);
6552 when Type_Kind =>
6553 Error_Msg_N
6554 ("subtype name cannot be used as operand", Enode);
6556 when Entry_Kind =>
6557 Error_Msg_N
6558 ("entry name cannot be used as operand", Enode);
6560 when E_Procedure =>
6561 Error_Msg_N
6562 ("procedure name cannot be used as operand", Enode);
6564 when E_Exception =>
6565 Error_Msg_N
6566 ("exception name cannot be used as operand", Enode);
6568 when E_Block | E_Label | E_Loop =>
6569 Error_Msg_N
6570 ("label name cannot be used as operand", Enode);
6572 when others =>
6573 return False;
6575 end case;
6577 return True;
6578 end Junk_Operand;
6580 --------------------
6581 -- Operator_Check --
6582 --------------------
6584 procedure Operator_Check (N : Node_Id) is
6585 begin
6586 Remove_Abstract_Operations (N);
6588 -- Test for case of no interpretation found for operator
6590 if Etype (N) = Any_Type then
6591 declare
6592 L : Node_Id;
6593 R : Node_Id;
6594 Op_Id : Entity_Id := Empty;
6596 begin
6597 R := Right_Opnd (N);
6599 if Nkind (N) in N_Binary_Op then
6600 L := Left_Opnd (N);
6601 else
6602 L := Empty;
6603 end if;
6605 -- If either operand has no type, then don't complain further,
6606 -- since this simply means that we have a propagated error.
6608 if R = Error
6609 or else Etype (R) = Any_Type
6610 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
6611 then
6612 -- For the rather unusual case where one of the operands is
6613 -- a Raise_Expression, whose initial type is Any_Type, use
6614 -- the type of the other operand.
6616 if Nkind (L) = N_Raise_Expression then
6617 Set_Etype (L, Etype (R));
6618 Set_Etype (N, Etype (R));
6620 elsif Nkind (R) = N_Raise_Expression then
6621 Set_Etype (R, Etype (L));
6622 Set_Etype (N, Etype (L));
6623 end if;
6625 return;
6627 -- We explicitly check for the case of concatenation of component
6628 -- with component to avoid reporting spurious matching array types
6629 -- that might happen to be lurking in distant packages (such as
6630 -- run-time packages). This also prevents inconsistencies in the
6631 -- messages for certain ACVC B tests, which can vary depending on
6632 -- types declared in run-time interfaces. Another improvement when
6633 -- aggregates are present is to look for a well-typed operand.
6635 elsif Present (Candidate_Type)
6636 and then (Nkind (N) /= N_Op_Concat
6637 or else Is_Array_Type (Etype (L))
6638 or else Is_Array_Type (Etype (R)))
6639 then
6640 if Nkind (N) = N_Op_Concat then
6641 if Etype (L) /= Any_Composite
6642 and then Is_Array_Type (Etype (L))
6643 then
6644 Candidate_Type := Etype (L);
6646 elsif Etype (R) /= Any_Composite
6647 and then Is_Array_Type (Etype (R))
6648 then
6649 Candidate_Type := Etype (R);
6650 end if;
6651 end if;
6653 Error_Msg_NE -- CODEFIX
6654 ("operator for} is not directly visible!",
6655 N, First_Subtype (Candidate_Type));
6657 declare
6658 U : constant Node_Id :=
6659 Cunit (Get_Source_Unit (Candidate_Type));
6660 begin
6661 if Unit_Is_Visible (U) then
6662 Error_Msg_N -- CODEFIX
6663 ("use clause would make operation legal!", N);
6664 else
6665 Error_Msg_NE -- CODEFIX
6666 ("add with_clause and use_clause for&!",
6667 N, Defining_Entity (Unit (U)));
6668 end if;
6669 end;
6670 return;
6672 -- If either operand is a junk operand (e.g. package name), then
6673 -- post appropriate error messages, but do not complain further.
6675 -- Note that the use of OR in this test instead of OR ELSE is
6676 -- quite deliberate, we may as well check both operands in the
6677 -- binary operator case.
6679 elsif Junk_Operand (R)
6680 or -- really mean OR here and not OR ELSE, see above
6681 (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
6682 then
6683 return;
6685 -- If we have a logical operator, one of whose operands is
6686 -- Boolean, then we know that the other operand cannot resolve to
6687 -- Boolean (since we got no interpretations), but in that case we
6688 -- pretty much know that the other operand should be Boolean, so
6689 -- resolve it that way (generating an error).
6691 elsif Nkind_In (N, N_Op_And, N_Op_Or, N_Op_Xor) then
6692 if Etype (L) = Standard_Boolean then
6693 Resolve (R, Standard_Boolean);
6694 return;
6695 elsif Etype (R) = Standard_Boolean then
6696 Resolve (L, Standard_Boolean);
6697 return;
6698 end if;
6700 -- For an arithmetic operator or comparison operator, if one
6701 -- of the operands is numeric, then we know the other operand
6702 -- is not the same numeric type. If it is a non-numeric type,
6703 -- then probably it is intended to match the other operand.
6705 elsif Nkind_In (N, N_Op_Add,
6706 N_Op_Divide,
6707 N_Op_Ge,
6708 N_Op_Gt,
6709 N_Op_Le)
6710 or else
6711 Nkind_In (N, N_Op_Lt,
6712 N_Op_Mod,
6713 N_Op_Multiply,
6714 N_Op_Rem,
6715 N_Op_Subtract)
6716 then
6717 -- If Allow_Integer_Address is active, check whether the
6718 -- operation becomes legal after converting an operand.
6720 if Is_Numeric_Type (Etype (L))
6721 and then not Is_Numeric_Type (Etype (R))
6722 then
6723 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
6724 Rewrite (R,
6725 Unchecked_Convert_To (Etype (L), Relocate_Node (R)));
6727 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6728 Analyze_Comparison_Op (N);
6729 else
6730 Analyze_Arithmetic_Op (N);
6731 end if;
6732 else
6733 Resolve (R, Etype (L));
6734 end if;
6736 return;
6738 elsif Is_Numeric_Type (Etype (R))
6739 and then not Is_Numeric_Type (Etype (L))
6740 then
6741 if Address_Integer_Convert_OK (Etype (L), Etype (R)) then
6742 Rewrite (L,
6743 Unchecked_Convert_To (Etype (R), Relocate_Node (L)));
6745 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6746 Analyze_Comparison_Op (N);
6747 else
6748 Analyze_Arithmetic_Op (N);
6749 end if;
6751 return;
6753 else
6754 Resolve (L, Etype (R));
6755 end if;
6757 return;
6759 elsif Allow_Integer_Address
6760 and then Is_Descendant_Of_Address (Etype (L))
6761 and then Is_Descendant_Of_Address (Etype (R))
6762 and then not Error_Posted (N)
6763 then
6764 declare
6765 Addr_Type : constant Entity_Id := Etype (L);
6767 begin
6768 Rewrite (L,
6769 Unchecked_Convert_To (
6770 Standard_Integer, Relocate_Node (L)));
6771 Rewrite (R,
6772 Unchecked_Convert_To (
6773 Standard_Integer, Relocate_Node (R)));
6775 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6776 Analyze_Comparison_Op (N);
6777 else
6778 Analyze_Arithmetic_Op (N);
6779 end if;
6781 -- If this is an operand in an enclosing arithmetic
6782 -- operation, Convert the result as an address so that
6783 -- arithmetic folding of address can continue.
6785 if Nkind (Parent (N)) in N_Op then
6786 Rewrite (N,
6787 Unchecked_Convert_To (Addr_Type, Relocate_Node (N)));
6788 end if;
6790 return;
6791 end;
6792 end if;
6794 -- Comparisons on A'Access are common enough to deserve a
6795 -- special message.
6797 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne)
6798 and then Ekind (Etype (L)) = E_Access_Attribute_Type
6799 and then Ekind (Etype (R)) = E_Access_Attribute_Type
6800 then
6801 Error_Msg_N
6802 ("two access attributes cannot be compared directly", N);
6803 Error_Msg_N
6804 ("\use qualified expression for one of the operands",
6806 return;
6808 -- Another one for C programmers
6810 elsif Nkind (N) = N_Op_Concat
6811 and then Valid_Boolean_Arg (Etype (L))
6812 and then Valid_Boolean_Arg (Etype (R))
6813 then
6814 Error_Msg_N ("invalid operands for concatenation", N);
6815 Error_Msg_N -- CODEFIX
6816 ("\maybe AND was meant", N);
6817 return;
6819 -- A special case for comparison of access parameter with null
6821 elsif Nkind (N) = N_Op_Eq
6822 and then Is_Entity_Name (L)
6823 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
6824 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
6825 N_Access_Definition
6826 and then Nkind (R) = N_Null
6827 then
6828 Error_Msg_N ("access parameter is not allowed to be null", L);
6829 Error_Msg_N ("\(call would raise Constraint_Error)", L);
6830 return;
6832 -- Another special case for exponentiation, where the right
6833 -- operand must be Natural, independently of the base.
6835 elsif Nkind (N) = N_Op_Expon
6836 and then Is_Numeric_Type (Etype (L))
6837 and then not Is_Overloaded (R)
6838 and then
6839 First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
6840 and then Base_Type (Etype (R)) /= Universal_Integer
6841 then
6842 if Ada_Version >= Ada_2012
6843 and then Has_Dimension_System (Etype (L))
6844 then
6845 Error_Msg_NE
6846 ("exponent for dimensioned type must be a rational" &
6847 ", found}", R, Etype (R));
6848 else
6849 Error_Msg_NE
6850 ("exponent must be of type Natural, found}", R, Etype (R));
6851 end if;
6853 return;
6855 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
6856 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
6857 Rewrite (R,
6858 Unchecked_Convert_To (Etype (L), Relocate_Node (R)));
6859 Analyze_Equality_Op (N);
6860 return;
6861 end if;
6862 end if;
6864 -- If we fall through then just give general message. Note that in
6865 -- the following messages, if the operand is overloaded we choose
6866 -- an arbitrary type to complain about, but that is probably more
6867 -- useful than not giving a type at all.
6869 if Nkind (N) in N_Unary_Op then
6870 Error_Msg_Node_2 := Etype (R);
6871 Error_Msg_N ("operator& not defined for}", N);
6872 return;
6874 else
6875 if Nkind (N) in N_Binary_Op then
6876 if not Is_Overloaded (L)
6877 and then not Is_Overloaded (R)
6878 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
6879 then
6880 Error_Msg_Node_2 := First_Subtype (Etype (R));
6881 Error_Msg_N ("there is no applicable operator& for}", N);
6883 else
6884 -- Another attempt to find a fix: one of the candidate
6885 -- interpretations may not be use-visible. This has
6886 -- already been checked for predefined operators, so
6887 -- we examine only user-defined functions.
6889 Op_Id := Get_Name_Entity_Id (Chars (N));
6891 while Present (Op_Id) loop
6892 if Ekind (Op_Id) /= E_Operator
6893 and then Is_Overloadable (Op_Id)
6894 then
6895 if not Is_Immediately_Visible (Op_Id)
6896 and then not In_Use (Scope (Op_Id))
6897 and then not Is_Abstract_Subprogram (Op_Id)
6898 and then not Is_Hidden (Op_Id)
6899 and then Ekind (Scope (Op_Id)) = E_Package
6900 and then
6901 Has_Compatible_Type
6902 (L, Etype (First_Formal (Op_Id)))
6903 and then Present
6904 (Next_Formal (First_Formal (Op_Id)))
6905 and then
6906 Has_Compatible_Type
6908 Etype (Next_Formal (First_Formal (Op_Id))))
6909 then
6910 Error_Msg_N
6911 ("No legal interpretation for operator&", N);
6912 Error_Msg_NE
6913 ("\use clause on& would make operation legal",
6914 N, Scope (Op_Id));
6915 exit;
6916 end if;
6917 end if;
6919 Op_Id := Homonym (Op_Id);
6920 end loop;
6922 if No (Op_Id) then
6923 Error_Msg_N ("invalid operand types for operator&", N);
6925 if Nkind (N) /= N_Op_Concat then
6926 Error_Msg_NE ("\left operand has}!", N, Etype (L));
6927 Error_Msg_NE ("\right operand has}!", N, Etype (R));
6929 -- For concatenation operators it is more difficult to
6930 -- determine which is the wrong operand. It is worth
6931 -- flagging explicitly an access type, for those who
6932 -- might think that a dereference happens here.
6934 elsif Is_Access_Type (Etype (L)) then
6935 Error_Msg_N ("\left operand is access type", N);
6937 elsif Is_Access_Type (Etype (R)) then
6938 Error_Msg_N ("\right operand is access type", N);
6939 end if;
6940 end if;
6941 end if;
6942 end if;
6943 end if;
6944 end;
6945 end if;
6946 end Operator_Check;
6948 -----------------------------------------
6949 -- Process_Implicit_Dereference_Prefix --
6950 -----------------------------------------
6952 function Process_Implicit_Dereference_Prefix
6953 (E : Entity_Id;
6954 P : Entity_Id) return Entity_Id
6956 Ref : Node_Id;
6957 Typ : constant Entity_Id := Designated_Type (Etype (P));
6959 begin
6960 if Present (E)
6961 and then (Operating_Mode = Check_Semantics or else not Expander_Active)
6962 then
6963 -- We create a dummy reference to E to ensure that the reference is
6964 -- not considered as part of an assignment (an implicit dereference
6965 -- can never assign to its prefix). The Comes_From_Source attribute
6966 -- needs to be propagated for accurate warnings.
6968 Ref := New_Occurrence_Of (E, Sloc (P));
6969 Set_Comes_From_Source (Ref, Comes_From_Source (P));
6970 Generate_Reference (E, Ref);
6971 end if;
6973 -- An implicit dereference is a legal occurrence of an incomplete type
6974 -- imported through a limited_with clause, if the full view is visible.
6976 if From_Limited_With (Typ)
6977 and then not From_Limited_With (Scope (Typ))
6978 and then
6979 (Is_Immediately_Visible (Scope (Typ))
6980 or else
6981 (Is_Child_Unit (Scope (Typ))
6982 and then Is_Visible_Lib_Unit (Scope (Typ))))
6983 then
6984 return Available_View (Typ);
6985 else
6986 return Typ;
6987 end if;
6988 end Process_Implicit_Dereference_Prefix;
6990 --------------------------------
6991 -- Remove_Abstract_Operations --
6992 --------------------------------
6994 procedure Remove_Abstract_Operations (N : Node_Id) is
6995 Abstract_Op : Entity_Id := Empty;
6996 Address_Descendant : Boolean := False;
6997 I : Interp_Index;
6998 It : Interp;
7000 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
7001 -- activate this if either extensions are enabled, or if the abstract
7002 -- operation in question comes from a predefined file. This latter test
7003 -- allows us to use abstract to make operations invisible to users. In
7004 -- particular, if type Address is non-private and abstract subprograms
7005 -- are used to hide its operators, they will be truly hidden.
7007 type Operand_Position is (First_Op, Second_Op);
7008 Univ_Type : constant Entity_Id := Universal_Interpretation (N);
7010 procedure Remove_Address_Interpretations (Op : Operand_Position);
7011 -- Ambiguities may arise when the operands are literal and the address
7012 -- operations in s-auxdec are visible. In that case, remove the
7013 -- interpretation of a literal as Address, to retain the semantics
7014 -- of Address as a private type.
7016 ------------------------------------
7017 -- Remove_Address_Interpretations --
7018 ------------------------------------
7020 procedure Remove_Address_Interpretations (Op : Operand_Position) is
7021 Formal : Entity_Id;
7023 begin
7024 if Is_Overloaded (N) then
7025 Get_First_Interp (N, I, It);
7026 while Present (It.Nam) loop
7027 Formal := First_Entity (It.Nam);
7029 if Op = Second_Op then
7030 Formal := Next_Entity (Formal);
7031 end if;
7033 if Is_Descendant_Of_Address (Etype (Formal)) then
7034 Address_Descendant := True;
7035 Remove_Interp (I);
7036 end if;
7038 Get_Next_Interp (I, It);
7039 end loop;
7040 end if;
7041 end Remove_Address_Interpretations;
7043 -- Start of processing for Remove_Abstract_Operations
7045 begin
7046 if Is_Overloaded (N) then
7047 if Debug_Flag_V then
7048 Write_Str ("Remove_Abstract_Operations: ");
7049 Write_Overloads (N);
7050 end if;
7052 Get_First_Interp (N, I, It);
7054 while Present (It.Nam) loop
7055 if Is_Overloadable (It.Nam)
7056 and then Is_Abstract_Subprogram (It.Nam)
7057 and then not Is_Dispatching_Operation (It.Nam)
7058 then
7059 Abstract_Op := It.Nam;
7061 if Is_Descendant_Of_Address (It.Typ) then
7062 Address_Descendant := True;
7063 Remove_Interp (I);
7064 exit;
7066 -- In Ada 2005, this operation does not participate in overload
7067 -- resolution. If the operation is defined in a predefined
7068 -- unit, it is one of the operations declared abstract in some
7069 -- variants of System, and it must be removed as well.
7071 elsif Ada_Version >= Ada_2005
7072 or else Is_Predefined_File_Name
7073 (Unit_File_Name (Get_Source_Unit (It.Nam)))
7074 then
7075 Remove_Interp (I);
7076 exit;
7077 end if;
7078 end if;
7080 Get_Next_Interp (I, It);
7081 end loop;
7083 if No (Abstract_Op) then
7085 -- If some interpretation yields an integer type, it is still
7086 -- possible that there are address interpretations. Remove them
7087 -- if one operand is a literal, to avoid spurious ambiguities
7088 -- on systems where Address is a visible integer type.
7090 if Is_Overloaded (N)
7091 and then Nkind (N) in N_Op
7092 and then Is_Integer_Type (Etype (N))
7093 then
7094 if Nkind (N) in N_Binary_Op then
7095 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
7096 Remove_Address_Interpretations (Second_Op);
7098 elsif Nkind (Right_Opnd (N)) = N_Integer_Literal then
7099 Remove_Address_Interpretations (First_Op);
7100 end if;
7101 end if;
7102 end if;
7104 elsif Nkind (N) in N_Op then
7106 -- Remove interpretations that treat literals as addresses. This
7107 -- is never appropriate, even when Address is defined as a visible
7108 -- Integer type. The reason is that we would really prefer Address
7109 -- to behave as a private type, even in this case. If Address is a
7110 -- visible integer type, we get lots of overload ambiguities.
7112 if Nkind (N) in N_Binary_Op then
7113 declare
7114 U1 : constant Boolean :=
7115 Present (Universal_Interpretation (Right_Opnd (N)));
7116 U2 : constant Boolean :=
7117 Present (Universal_Interpretation (Left_Opnd (N)));
7119 begin
7120 if U1 then
7121 Remove_Address_Interpretations (Second_Op);
7122 end if;
7124 if U2 then
7125 Remove_Address_Interpretations (First_Op);
7126 end if;
7128 if not (U1 and U2) then
7130 -- Remove corresponding predefined operator, which is
7131 -- always added to the overload set.
7133 Get_First_Interp (N, I, It);
7134 while Present (It.Nam) loop
7135 if Scope (It.Nam) = Standard_Standard
7136 and then Base_Type (It.Typ) =
7137 Base_Type (Etype (Abstract_Op))
7138 then
7139 Remove_Interp (I);
7140 end if;
7142 Get_Next_Interp (I, It);
7143 end loop;
7145 elsif Is_Overloaded (N)
7146 and then Present (Univ_Type)
7147 then
7148 -- If both operands have a universal interpretation,
7149 -- it is still necessary to remove interpretations that
7150 -- yield Address. Any remaining ambiguities will be
7151 -- removed in Disambiguate.
7153 Get_First_Interp (N, I, It);
7154 while Present (It.Nam) loop
7155 if Is_Descendant_Of_Address (It.Typ) then
7156 Remove_Interp (I);
7158 elsif not Is_Type (It.Nam) then
7159 Set_Entity (N, It.Nam);
7160 end if;
7162 Get_Next_Interp (I, It);
7163 end loop;
7164 end if;
7165 end;
7166 end if;
7168 elsif Nkind (N) = N_Function_Call
7169 and then
7170 (Nkind (Name (N)) = N_Operator_Symbol
7171 or else
7172 (Nkind (Name (N)) = N_Expanded_Name
7173 and then
7174 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
7175 then
7177 declare
7178 Arg1 : constant Node_Id := First (Parameter_Associations (N));
7179 U1 : constant Boolean :=
7180 Present (Universal_Interpretation (Arg1));
7181 U2 : constant Boolean :=
7182 Present (Next (Arg1)) and then
7183 Present (Universal_Interpretation (Next (Arg1)));
7185 begin
7186 if U1 then
7187 Remove_Address_Interpretations (First_Op);
7188 end if;
7190 if U2 then
7191 Remove_Address_Interpretations (Second_Op);
7192 end if;
7194 if not (U1 and U2) then
7195 Get_First_Interp (N, I, It);
7196 while Present (It.Nam) loop
7197 if Scope (It.Nam) = Standard_Standard
7198 and then It.Typ = Base_Type (Etype (Abstract_Op))
7199 then
7200 Remove_Interp (I);
7201 end if;
7203 Get_Next_Interp (I, It);
7204 end loop;
7205 end if;
7206 end;
7207 end if;
7209 -- If the removal has left no valid interpretations, emit an error
7210 -- message now and label node as illegal.
7212 if Present (Abstract_Op) then
7213 Get_First_Interp (N, I, It);
7215 if No (It.Nam) then
7217 -- Removal of abstract operation left no viable candidate
7219 Set_Etype (N, Any_Type);
7220 Error_Msg_Sloc := Sloc (Abstract_Op);
7221 Error_Msg_NE
7222 ("cannot call abstract operation& declared#", N, Abstract_Op);
7224 -- In Ada 2005, an abstract operation may disable predefined
7225 -- operators. Since the context is not yet known, we mark the
7226 -- predefined operators as potentially hidden. Do not include
7227 -- predefined operators when addresses are involved since this
7228 -- case is handled separately.
7230 elsif Ada_Version >= Ada_2005 and then not Address_Descendant then
7231 while Present (It.Nam) loop
7232 if Is_Numeric_Type (It.Typ)
7233 and then Scope (It.Typ) = Standard_Standard
7234 then
7235 Set_Abstract_Op (I, Abstract_Op);
7236 end if;
7238 Get_Next_Interp (I, It);
7239 end loop;
7240 end if;
7241 end if;
7243 if Debug_Flag_V then
7244 Write_Str ("Remove_Abstract_Operations done: ");
7245 Write_Overloads (N);
7246 end if;
7247 end if;
7248 end Remove_Abstract_Operations;
7250 ----------------------------
7251 -- Try_Container_Indexing --
7252 ----------------------------
7254 function Try_Container_Indexing
7255 (N : Node_Id;
7256 Prefix : Node_Id;
7257 Exprs : List_Id) return Boolean
7259 Pref_Typ : constant Entity_Id := Etype (Prefix);
7261 function Constant_Indexing_OK return Boolean;
7262 -- Constant_Indexing is legal if there is no Variable_Indexing defined
7263 -- for the type, or else node not a target of assignment, or an actual
7264 -- for an IN OUT or OUT formal (RM 4.1.6 (11)).
7266 function Find_Indexing_Operations
7267 (T : Entity_Id;
7268 Nam : Name_Id;
7269 Is_Constant : Boolean) return Node_Id;
7270 -- Return a reference to the primitive operation of type T denoted by
7271 -- name Nam. If the operation is overloaded, the reference carries all
7272 -- interpretations. Flag Is_Constant should be set when the context is
7273 -- constant indexing.
7275 --------------------------
7276 -- Constant_Indexing_OK --
7277 --------------------------
7279 function Constant_Indexing_OK return Boolean is
7280 Par : Node_Id;
7282 begin
7283 if No (Find_Value_Of_Aspect (Pref_Typ, Aspect_Variable_Indexing)) then
7284 return True;
7286 elsif not Is_Variable (Prefix) then
7287 return True;
7288 end if;
7290 Par := N;
7291 while Present (Par) loop
7292 if Nkind (Parent (Par)) = N_Assignment_Statement
7293 and then Par = Name (Parent (Par))
7294 then
7295 return False;
7297 -- The call may be overloaded, in which case we assume that its
7298 -- resolution does not depend on the type of the parameter that
7299 -- includes the indexing operation.
7301 elsif Nkind_In (Parent (Par), N_Function_Call,
7302 N_Procedure_Call_Statement)
7303 and then Is_Entity_Name (Name (Parent (Par)))
7304 then
7305 declare
7306 Actual : Node_Id;
7307 Formal : Entity_Id;
7308 Proc : Entity_Id;
7310 begin
7311 -- We should look for an interpretation with the proper
7312 -- number of formals, and determine whether it is an
7313 -- In_Parameter, but for now we examine the formal that
7314 -- corresponds to the indexing, and assume that variable
7315 -- indexing is required if some interpretation has an
7316 -- assignable formal at that position. Still does not
7317 -- cover the most complex cases ???
7319 if Is_Overloaded (Name (Parent (Par))) then
7320 declare
7321 Proc : constant Node_Id := Name (Parent (Par));
7322 A : Node_Id;
7323 F : Entity_Id;
7324 I : Interp_Index;
7325 It : Interp;
7327 begin
7328 Get_First_Interp (Proc, I, It);
7329 while Present (It.Nam) loop
7330 F := First_Formal (It.Nam);
7331 A := First (Parameter_Associations (Parent (Par)));
7333 while Present (F) and then Present (A) loop
7334 if A = Par then
7335 if Ekind (F) /= E_In_Parameter then
7336 return False;
7337 else
7338 exit; -- interpretation is safe
7339 end if;
7340 end if;
7342 Next_Formal (F);
7343 Next_Actual (A);
7344 end loop;
7346 Get_Next_Interp (I, It);
7347 end loop;
7348 end;
7350 return True;
7352 else
7353 Proc := Entity (Name (Parent (Par)));
7355 -- If this is an indirect call, get formals from
7356 -- designated type.
7358 if Is_Access_Subprogram_Type (Etype (Proc)) then
7359 Proc := Designated_Type (Etype (Proc));
7360 end if;
7361 end if;
7363 Formal := First_Formal (Proc);
7364 Actual := First_Actual (Parent (Par));
7366 -- Find corresponding actual
7368 while Present (Actual) loop
7369 exit when Actual = Par;
7370 Next_Actual (Actual);
7372 if Present (Formal) then
7373 Next_Formal (Formal);
7375 -- Otherwise this is a parameter mismatch, the error is
7376 -- reported elsewhere.
7378 else
7379 return False;
7380 end if;
7381 end loop;
7383 return Ekind (Formal) = E_In_Parameter;
7384 end;
7386 elsif Nkind (Parent (Par)) = N_Object_Renaming_Declaration then
7387 return False;
7389 -- If the indexed component is a prefix it may be the first actual
7390 -- of a prefixed call. Retrieve the called entity, if any, and
7391 -- check its first formal. Determine if the context is a procedure
7392 -- or function call.
7394 elsif Nkind (Parent (Par)) = N_Selected_Component then
7395 declare
7396 Sel : constant Node_Id := Selector_Name (Parent (Par));
7397 Nam : constant Entity_Id := Current_Entity (Sel);
7399 begin
7400 if Present (Nam) and then Is_Overloadable (Nam) then
7401 if Nkind (Parent (Parent (Par))) =
7402 N_Procedure_Call_Statement
7403 then
7404 return False;
7406 elsif Ekind (Nam) = E_Function
7407 and then Present (First_Formal (Nam))
7408 then
7409 return Ekind (First_Formal (Nam)) = E_In_Parameter;
7410 end if;
7411 end if;
7412 end;
7414 elsif Nkind (Par) in N_Op then
7415 return True;
7416 end if;
7418 Par := Parent (Par);
7419 end loop;
7421 -- In all other cases, constant indexing is legal
7423 return True;
7424 end Constant_Indexing_OK;
7426 ------------------------------
7427 -- Find_Indexing_Operations --
7428 ------------------------------
7430 function Find_Indexing_Operations
7431 (T : Entity_Id;
7432 Nam : Name_Id;
7433 Is_Constant : Boolean) return Node_Id
7435 procedure Inspect_Declarations
7436 (Typ : Entity_Id;
7437 Ref : in out Node_Id);
7438 -- Traverse the declarative list where type Typ resides and collect
7439 -- all suitable interpretations in node Ref.
7441 procedure Inspect_Primitives
7442 (Typ : Entity_Id;
7443 Ref : in out Node_Id);
7444 -- Traverse the list of primitive operations of type Typ and collect
7445 -- all suitable interpretations in node Ref.
7447 function Is_OK_Candidate
7448 (Subp_Id : Entity_Id;
7449 Typ : Entity_Id) return Boolean;
7450 -- Determine whether subprogram Subp_Id is a suitable indexing
7451 -- operation for type Typ. To qualify as such, the subprogram must
7452 -- be a function, have at least two parameters, and the type of the
7453 -- first parameter must be either Typ, or Typ'Class, or access [to
7454 -- constant] with designated type Typ or Typ'Class.
7456 procedure Record_Interp (Subp_Id : Entity_Id; Ref : in out Node_Id);
7457 -- Store subprogram Subp_Id as an interpretation in node Ref
7459 --------------------------
7460 -- Inspect_Declarations --
7461 --------------------------
7463 procedure Inspect_Declarations
7464 (Typ : Entity_Id;
7465 Ref : in out Node_Id)
7467 Typ_Decl : constant Node_Id := Declaration_Node (Typ);
7468 Decl : Node_Id;
7469 Subp_Id : Entity_Id;
7471 begin
7472 -- Ensure that the routine is not called with itypes, which lack a
7473 -- declarative node.
7475 pragma Assert (Present (Typ_Decl));
7476 pragma Assert (Is_List_Member (Typ_Decl));
7478 Decl := First (List_Containing (Typ_Decl));
7479 while Present (Decl) loop
7480 if Nkind (Decl) = N_Subprogram_Declaration then
7481 Subp_Id := Defining_Entity (Decl);
7483 if Is_OK_Candidate (Subp_Id, Typ) then
7484 Record_Interp (Subp_Id, Ref);
7485 end if;
7486 end if;
7488 Next (Decl);
7489 end loop;
7490 end Inspect_Declarations;
7492 ------------------------
7493 -- Inspect_Primitives --
7494 ------------------------
7496 procedure Inspect_Primitives
7497 (Typ : Entity_Id;
7498 Ref : in out Node_Id)
7500 Prim_Elmt : Elmt_Id;
7501 Prim_Id : Entity_Id;
7503 begin
7504 Prim_Elmt := First_Elmt (Primitive_Operations (Typ));
7505 while Present (Prim_Elmt) loop
7506 Prim_Id := Node (Prim_Elmt);
7508 if Is_OK_Candidate (Prim_Id, Typ) then
7509 Record_Interp (Prim_Id, Ref);
7510 end if;
7512 Next_Elmt (Prim_Elmt);
7513 end loop;
7514 end Inspect_Primitives;
7516 ---------------------
7517 -- Is_OK_Candidate --
7518 ---------------------
7520 function Is_OK_Candidate
7521 (Subp_Id : Entity_Id;
7522 Typ : Entity_Id) return Boolean
7524 Formal : Entity_Id;
7525 Formal_Typ : Entity_Id;
7526 Param_Typ : Node_Id;
7528 begin
7529 -- To classify as a suitable candidate, the subprogram must be a
7530 -- function whose name matches the argument of aspect Constant or
7531 -- Variable_Indexing.
7533 if Ekind (Subp_Id) = E_Function and then Chars (Subp_Id) = Nam then
7534 Formal := First_Formal (Subp_Id);
7536 -- The candidate requires at least two parameters
7538 if Present (Formal) and then Present (Next_Formal (Formal)) then
7539 Formal_Typ := Empty;
7540 Param_Typ := Parameter_Type (Parent (Formal));
7542 -- Use the designated type when the first parameter is of an
7543 -- access type.
7545 if Nkind (Param_Typ) = N_Access_Definition
7546 and then Present (Subtype_Mark (Param_Typ))
7547 then
7548 -- When the context is a constant indexing, the access
7549 -- definition must be access-to-constant. This does not
7550 -- apply to variable indexing.
7552 if not Is_Constant
7553 or else Constant_Present (Param_Typ)
7554 then
7555 Formal_Typ := Etype (Subtype_Mark (Param_Typ));
7556 end if;
7558 -- Otherwise use the parameter type
7560 else
7561 Formal_Typ := Etype (Param_Typ);
7562 end if;
7564 if Present (Formal_Typ) then
7566 -- Use the specific type when the parameter type is
7567 -- class-wide.
7569 if Is_Class_Wide_Type (Formal_Typ) then
7570 Formal_Typ := Etype (Base_Type (Formal_Typ));
7571 end if;
7573 -- Use the full view when the parameter type is private
7574 -- or incomplete.
7576 if Is_Incomplete_Or_Private_Type (Formal_Typ)
7577 and then Present (Full_View (Formal_Typ))
7578 then
7579 Formal_Typ := Full_View (Formal_Typ);
7580 end if;
7582 -- The type of the first parameter must denote the type
7583 -- of the container or acts as its ancestor type.
7585 return
7586 Formal_Typ = Typ
7587 or else Is_Ancestor (Formal_Typ, Typ);
7588 end if;
7589 end if;
7590 end if;
7592 return False;
7593 end Is_OK_Candidate;
7595 -------------------
7596 -- Record_Interp --
7597 -------------------
7599 procedure Record_Interp (Subp_Id : Entity_Id; Ref : in out Node_Id) is
7600 begin
7601 if Present (Ref) then
7602 Add_One_Interp (Ref, Subp_Id, Etype (Subp_Id));
7604 -- Otherwise this is the first interpretation. Create a reference
7605 -- where all remaining interpretations will be collected.
7607 else
7608 Ref := New_Occurrence_Of (Subp_Id, Sloc (T));
7609 end if;
7610 end Record_Interp;
7612 -- Local variables
7614 Ref : Node_Id;
7615 Typ : Entity_Id;
7617 -- Start of processing for Find_Indexing_Operations
7619 begin
7620 Typ := T;
7622 -- Use the specific type when the parameter type is class-wide
7624 if Is_Class_Wide_Type (Typ) then
7625 Typ := Root_Type (Typ);
7626 end if;
7628 Ref := Empty;
7629 Typ := Underlying_Type (Base_Type (Typ));
7631 Inspect_Primitives (Typ, Ref);
7632 Inspect_Declarations (Typ, Ref);
7634 return Ref;
7635 end Find_Indexing_Operations;
7637 -- Local variables
7639 Loc : constant Source_Ptr := Sloc (N);
7640 Assoc : List_Id;
7641 C_Type : Entity_Id;
7642 Func : Entity_Id;
7643 Func_Name : Node_Id;
7644 Indexing : Node_Id;
7646 Is_Constant_Indexing : Boolean := False;
7647 -- This flag reflects the nature of the container indexing. Note that
7648 -- the context may be suited for constant indexing, but the type may
7649 -- lack a Constant_Indexing annotation.
7651 -- Start of processing for Try_Container_Indexing
7653 begin
7654 -- Node may have been analyzed already when testing for a prefixed
7655 -- call, in which case do not redo analysis.
7657 if Present (Generalized_Indexing (N)) then
7658 return True;
7659 end if;
7661 C_Type := Pref_Typ;
7663 -- If indexing a class-wide container, obtain indexing primitive from
7664 -- specific type.
7666 if Is_Class_Wide_Type (C_Type) then
7667 C_Type := Etype (Base_Type (C_Type));
7668 end if;
7670 -- Check whether the type has a specified indexing aspect
7672 Func_Name := Empty;
7674 -- The context is suitable for constant indexing, so obtain the name of
7675 -- the indexing function from aspect Constant_Indexing.
7677 if Constant_Indexing_OK then
7678 Func_Name :=
7679 Find_Value_Of_Aspect (Pref_Typ, Aspect_Constant_Indexing);
7680 end if;
7682 if Present (Func_Name) then
7683 Is_Constant_Indexing := True;
7685 -- Otherwise attempt variable indexing
7687 else
7688 Func_Name :=
7689 Find_Value_Of_Aspect (Pref_Typ, Aspect_Variable_Indexing);
7690 end if;
7692 -- The type is not subject to either form of indexing, therefore the
7693 -- indexed component does not denote container indexing. If this is a
7694 -- true error, it is diagnosed by the caller.
7696 if No (Func_Name) then
7698 -- The prefix itself may be an indexing of a container. Rewrite it
7699 -- as such and retry.
7701 if Has_Implicit_Dereference (Pref_Typ) then
7702 Build_Explicit_Dereference (Prefix, First_Discriminant (Pref_Typ));
7703 return Try_Container_Indexing (N, Prefix, Exprs);
7705 -- Otherwise this is definitely not container indexing
7707 else
7708 return False;
7709 end if;
7711 -- If the container type is derived from another container type, the
7712 -- value of the inherited aspect is the Reference operation declared
7713 -- for the parent type.
7715 -- However, Reference is also a primitive operation of the type, and the
7716 -- inherited operation has a different signature. We retrieve the right
7717 -- ones (the function may be overloaded) from the list of primitive
7718 -- operations of the derived type.
7720 -- Note that predefined containers are typically all derived from one of
7721 -- the Controlled types. The code below is motivated by containers that
7722 -- are derived from other types with a Reference aspect.
7724 elsif Is_Derived_Type (C_Type)
7725 and then Etype (First_Formal (Entity (Func_Name))) /= Pref_Typ
7726 then
7727 Func_Name :=
7728 Find_Indexing_Operations
7729 (T => C_Type,
7730 Nam => Chars (Func_Name),
7731 Is_Constant => Is_Constant_Indexing);
7732 end if;
7734 Assoc := New_List (Relocate_Node (Prefix));
7736 -- A generalized indexing may have nore than one index expression, so
7737 -- transfer all of them to the argument list to be used in the call.
7738 -- Note that there may be named associations, in which case the node
7739 -- was rewritten earlier as a call, and has been transformed back into
7740 -- an indexed expression to share the following processing.
7742 -- The generalized indexing node is the one on which analysis and
7743 -- resolution take place. Before expansion the original node is replaced
7744 -- with the generalized indexing node, which is a call, possibly with a
7745 -- dereference operation.
7747 if Comes_From_Source (N) then
7748 Check_Compiler_Unit ("generalized indexing", N);
7749 end if;
7751 -- Create argument list for function call that represents generalized
7752 -- indexing. Note that indices (i.e. actuals) may themselves be
7753 -- overloaded.
7755 declare
7756 Arg : Node_Id;
7757 New_Arg : Node_Id;
7759 begin
7760 Arg := First (Exprs);
7761 while Present (Arg) loop
7762 New_Arg := Relocate_Node (Arg);
7764 -- The arguments can be parameter associations, in which case the
7765 -- explicit actual parameter carries the overloadings.
7767 if Nkind (New_Arg) /= N_Parameter_Association then
7768 Save_Interps (Arg, New_Arg);
7769 end if;
7771 Append (New_Arg, Assoc);
7772 Next (Arg);
7773 end loop;
7774 end;
7776 if not Is_Overloaded (Func_Name) then
7777 Func := Entity (Func_Name);
7778 Indexing :=
7779 Make_Function_Call (Loc,
7780 Name => New_Occurrence_Of (Func, Loc),
7781 Parameter_Associations => Assoc);
7782 Set_Parent (Indexing, Parent (N));
7783 Set_Generalized_Indexing (N, Indexing);
7784 Analyze (Indexing);
7785 Set_Etype (N, Etype (Indexing));
7787 -- If the return type of the indexing function is a reference type,
7788 -- add the dereference as a possible interpretation. Note that the
7789 -- indexing aspect may be a function that returns the element type
7790 -- with no intervening implicit dereference, and that the reference
7791 -- discriminant is not the first discriminant.
7793 if Has_Discriminants (Etype (Func)) then
7794 Check_Implicit_Dereference (N, Etype (Func));
7795 end if;
7797 else
7798 -- If there are multiple indexing functions, build a function call
7799 -- and analyze it for each of the possible interpretations.
7801 Indexing :=
7802 Make_Function_Call (Loc,
7803 Name =>
7804 Make_Identifier (Loc, Chars (Func_Name)),
7805 Parameter_Associations => Assoc);
7807 Set_Parent (Indexing, Parent (N));
7808 Set_Generalized_Indexing (N, Indexing);
7809 Set_Etype (N, Any_Type);
7810 Set_Etype (Name (Indexing), Any_Type);
7812 declare
7813 I : Interp_Index;
7814 It : Interp;
7815 Success : Boolean;
7817 begin
7818 Get_First_Interp (Func_Name, I, It);
7819 Set_Etype (Indexing, Any_Type);
7821 -- Analyze eacn candidae function with the given actuals
7823 while Present (It.Nam) loop
7824 Analyze_One_Call (Indexing, It.Nam, False, Success);
7825 Get_Next_Interp (I, It);
7826 end loop;
7828 -- If there are several successful candidates, resolution will
7829 -- be by result. Mark the interpretations of the function name
7830 -- itself.
7832 if Is_Overloaded (Indexing) then
7833 Get_First_Interp (Indexing, I, It);
7835 while Present (It.Nam) loop
7836 Add_One_Interp (Name (Indexing), It.Nam, It.Typ);
7837 Get_Next_Interp (I, It);
7838 end loop;
7840 else
7841 Set_Etype (Name (Indexing), Etype (Indexing));
7842 end if;
7844 -- Now add the candidate interpretations to the indexing node
7845 -- itself, to be replaced later by the function call.
7847 if Is_Overloaded (Name (Indexing)) then
7848 Get_First_Interp (Name (Indexing), I, It);
7850 while Present (It.Nam) loop
7851 Add_One_Interp (N, It.Nam, It.Typ);
7853 -- Add dereference interpretation if the result type has
7854 -- implicit reference discriminants.
7856 if Has_Discriminants (Etype (It.Nam)) then
7857 Check_Implicit_Dereference (N, Etype (It.Nam));
7858 end if;
7860 Get_Next_Interp (I, It);
7861 end loop;
7863 else
7864 Set_Etype (N, Etype (Name (Indexing)));
7865 if Has_Discriminants (Etype (N)) then
7866 Check_Implicit_Dereference (N, Etype (N));
7867 end if;
7868 end if;
7869 end;
7870 end if;
7872 if Etype (Indexing) = Any_Type then
7873 Error_Msg_NE
7874 ("container cannot be indexed with&", N, Etype (First (Exprs)));
7875 Rewrite (N, New_Occurrence_Of (Any_Id, Loc));
7876 end if;
7878 return True;
7879 end Try_Container_Indexing;
7881 -----------------------
7882 -- Try_Indirect_Call --
7883 -----------------------
7885 function Try_Indirect_Call
7886 (N : Node_Id;
7887 Nam : Entity_Id;
7888 Typ : Entity_Id) return Boolean
7890 Actual : Node_Id;
7891 Formal : Entity_Id;
7893 Call_OK : Boolean;
7894 pragma Warnings (Off, Call_OK);
7896 begin
7897 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
7899 Actual := First_Actual (N);
7900 Formal := First_Formal (Designated_Type (Typ));
7901 while Present (Actual) and then Present (Formal) loop
7902 if not Has_Compatible_Type (Actual, Etype (Formal)) then
7903 return False;
7904 end if;
7906 Next (Actual);
7907 Next_Formal (Formal);
7908 end loop;
7910 if No (Actual) and then No (Formal) then
7911 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
7913 -- Nam is a candidate interpretation for the name in the call,
7914 -- if it is not an indirect call.
7916 if not Is_Type (Nam)
7917 and then Is_Entity_Name (Name (N))
7918 then
7919 Set_Entity (Name (N), Nam);
7920 end if;
7922 return True;
7924 else
7925 return False;
7926 end if;
7927 end Try_Indirect_Call;
7929 ----------------------
7930 -- Try_Indexed_Call --
7931 ----------------------
7933 function Try_Indexed_Call
7934 (N : Node_Id;
7935 Nam : Entity_Id;
7936 Typ : Entity_Id;
7937 Skip_First : Boolean) return Boolean
7939 Loc : constant Source_Ptr := Sloc (N);
7940 Actuals : constant List_Id := Parameter_Associations (N);
7941 Actual : Node_Id;
7942 Index : Entity_Id;
7944 begin
7945 Actual := First (Actuals);
7947 -- If the call was originally written in prefix form, skip the first
7948 -- actual, which is obviously not defaulted.
7950 if Skip_First then
7951 Next (Actual);
7952 end if;
7954 Index := First_Index (Typ);
7955 while Present (Actual) and then Present (Index) loop
7957 -- If the parameter list has a named association, the expression
7958 -- is definitely a call and not an indexed component.
7960 if Nkind (Actual) = N_Parameter_Association then
7961 return False;
7962 end if;
7964 if Is_Entity_Name (Actual)
7965 and then Is_Type (Entity (Actual))
7966 and then No (Next (Actual))
7967 then
7968 -- A single actual that is a type name indicates a slice if the
7969 -- type is discrete, and an error otherwise.
7971 if Is_Discrete_Type (Entity (Actual)) then
7972 Rewrite (N,
7973 Make_Slice (Loc,
7974 Prefix =>
7975 Make_Function_Call (Loc,
7976 Name => Relocate_Node (Name (N))),
7977 Discrete_Range =>
7978 New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
7980 Analyze (N);
7982 else
7983 Error_Msg_N ("invalid use of type in expression", Actual);
7984 Set_Etype (N, Any_Type);
7985 end if;
7987 return True;
7989 elsif not Has_Compatible_Type (Actual, Etype (Index)) then
7990 return False;
7991 end if;
7993 Next (Actual);
7994 Next_Index (Index);
7995 end loop;
7997 if No (Actual) and then No (Index) then
7998 Add_One_Interp (N, Nam, Component_Type (Typ));
8000 -- Nam is a candidate interpretation for the name in the call,
8001 -- if it is not an indirect call.
8003 if not Is_Type (Nam)
8004 and then Is_Entity_Name (Name (N))
8005 then
8006 Set_Entity (Name (N), Nam);
8007 end if;
8009 return True;
8010 else
8011 return False;
8012 end if;
8013 end Try_Indexed_Call;
8015 --------------------------
8016 -- Try_Object_Operation --
8017 --------------------------
8019 function Try_Object_Operation
8020 (N : Node_Id; CW_Test_Only : Boolean := False) return Boolean
8022 K : constant Node_Kind := Nkind (Parent (N));
8023 Is_Subprg_Call : constant Boolean := K in N_Subprogram_Call;
8024 Loc : constant Source_Ptr := Sloc (N);
8025 Obj : constant Node_Id := Prefix (N);
8027 Subprog : constant Node_Id :=
8028 Make_Identifier (Sloc (Selector_Name (N)),
8029 Chars => Chars (Selector_Name (N)));
8030 -- Identifier on which possible interpretations will be collected
8032 Report_Error : Boolean := False;
8033 -- If no candidate interpretation matches the context, redo analysis
8034 -- with Report_Error True to provide additional information.
8036 Actual : Node_Id;
8037 Candidate : Entity_Id := Empty;
8038 New_Call_Node : Node_Id := Empty;
8039 Node_To_Replace : Node_Id;
8040 Obj_Type : Entity_Id := Etype (Obj);
8041 Success : Boolean := False;
8043 function Valid_Candidate
8044 (Success : Boolean;
8045 Call : Node_Id;
8046 Subp : Entity_Id) return Entity_Id;
8047 -- If the subprogram is a valid interpretation, record it, and add
8048 -- to the list of interpretations of Subprog. Otherwise return Empty.
8050 procedure Complete_Object_Operation
8051 (Call_Node : Node_Id;
8052 Node_To_Replace : Node_Id);
8053 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
8054 -- Call_Node, insert the object (or its dereference) as the first actual
8055 -- in the call, and complete the analysis of the call.
8057 procedure Report_Ambiguity (Op : Entity_Id);
8058 -- If a prefixed procedure call is ambiguous, indicate whether the
8059 -- call includes an implicit dereference or an implicit 'Access.
8061 procedure Transform_Object_Operation
8062 (Call_Node : out Node_Id;
8063 Node_To_Replace : out Node_Id);
8064 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
8065 -- Call_Node is the resulting subprogram call, Node_To_Replace is
8066 -- either N or the parent of N, and Subprog is a reference to the
8067 -- subprogram we are trying to match.
8069 function Try_Class_Wide_Operation
8070 (Call_Node : Node_Id;
8071 Node_To_Replace : Node_Id) return Boolean;
8072 -- Traverse all ancestor types looking for a class-wide subprogram
8073 -- for which the current operation is a valid non-dispatching call.
8075 procedure Try_One_Prefix_Interpretation (T : Entity_Id);
8076 -- If prefix is overloaded, its interpretation may include different
8077 -- tagged types, and we must examine the primitive operations and
8078 -- the class-wide operations of each in order to find candidate
8079 -- interpretations for the call as a whole.
8081 function Try_Primitive_Operation
8082 (Call_Node : Node_Id;
8083 Node_To_Replace : Node_Id) return Boolean;
8084 -- Traverse the list of primitive subprograms looking for a dispatching
8085 -- operation for which the current node is a valid call .
8087 ---------------------
8088 -- Valid_Candidate --
8089 ---------------------
8091 function Valid_Candidate
8092 (Success : Boolean;
8093 Call : Node_Id;
8094 Subp : Entity_Id) return Entity_Id
8096 Arr_Type : Entity_Id;
8097 Comp_Type : Entity_Id;
8099 begin
8100 -- If the subprogram is a valid interpretation, record it in global
8101 -- variable Subprog, to collect all possible overloadings.
8103 if Success then
8104 if Subp /= Entity (Subprog) then
8105 Add_One_Interp (Subprog, Subp, Etype (Subp));
8106 end if;
8107 end if;
8109 -- If the call may be an indexed call, retrieve component type of
8110 -- resulting expression, and add possible interpretation.
8112 Arr_Type := Empty;
8113 Comp_Type := Empty;
8115 if Nkind (Call) = N_Function_Call
8116 and then Nkind (Parent (N)) = N_Indexed_Component
8117 and then Needs_One_Actual (Subp)
8118 then
8119 if Is_Array_Type (Etype (Subp)) then
8120 Arr_Type := Etype (Subp);
8122 elsif Is_Access_Type (Etype (Subp))
8123 and then Is_Array_Type (Designated_Type (Etype (Subp)))
8124 then
8125 Arr_Type := Designated_Type (Etype (Subp));
8126 end if;
8127 end if;
8129 if Present (Arr_Type) then
8131 -- Verify that the actuals (excluding the object) match the types
8132 -- of the indexes.
8134 declare
8135 Actual : Node_Id;
8136 Index : Node_Id;
8138 begin
8139 Actual := Next (First_Actual (Call));
8140 Index := First_Index (Arr_Type);
8141 while Present (Actual) and then Present (Index) loop
8142 if not Has_Compatible_Type (Actual, Etype (Index)) then
8143 Arr_Type := Empty;
8144 exit;
8145 end if;
8147 Next_Actual (Actual);
8148 Next_Index (Index);
8149 end loop;
8151 if No (Actual)
8152 and then No (Index)
8153 and then Present (Arr_Type)
8154 then
8155 Comp_Type := Component_Type (Arr_Type);
8156 end if;
8157 end;
8159 if Present (Comp_Type)
8160 and then Etype (Subprog) /= Comp_Type
8161 then
8162 Add_One_Interp (Subprog, Subp, Comp_Type);
8163 end if;
8164 end if;
8166 if Etype (Call) /= Any_Type then
8167 return Subp;
8168 else
8169 return Empty;
8170 end if;
8171 end Valid_Candidate;
8173 -------------------------------
8174 -- Complete_Object_Operation --
8175 -------------------------------
8177 procedure Complete_Object_Operation
8178 (Call_Node : Node_Id;
8179 Node_To_Replace : Node_Id)
8181 Control : constant Entity_Id := First_Formal (Entity (Subprog));
8182 Formal_Type : constant Entity_Id := Etype (Control);
8183 First_Actual : Node_Id;
8185 begin
8186 -- Place the name of the operation, with its interpretations,
8187 -- on the rewritten call.
8189 Set_Name (Call_Node, Subprog);
8191 First_Actual := First (Parameter_Associations (Call_Node));
8193 -- For cross-reference purposes, treat the new node as being in the
8194 -- source if the original one is. Set entity and type, even though
8195 -- they may be overwritten during resolution if overloaded.
8197 Set_Comes_From_Source (Subprog, Comes_From_Source (N));
8198 Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
8200 if Nkind (N) = N_Selected_Component
8201 and then not Inside_A_Generic
8202 then
8203 Set_Entity (Selector_Name (N), Entity (Subprog));
8204 Set_Etype (Selector_Name (N), Etype (Entity (Subprog)));
8205 end if;
8207 -- If need be, rewrite first actual as an explicit dereference. If
8208 -- the call is overloaded, the rewriting can only be done once the
8209 -- primitive operation is identified.
8211 if Is_Overloaded (Subprog) then
8213 -- The prefix itself may be overloaded, and its interpretations
8214 -- must be propagated to the new actual in the call.
8216 if Is_Overloaded (Obj) then
8217 Save_Interps (Obj, First_Actual);
8218 end if;
8220 Rewrite (First_Actual, Obj);
8222 elsif not Is_Access_Type (Formal_Type)
8223 and then Is_Access_Type (Etype (Obj))
8224 then
8225 Rewrite (First_Actual,
8226 Make_Explicit_Dereference (Sloc (Obj), Obj));
8227 Analyze (First_Actual);
8229 -- If we need to introduce an explicit dereference, verify that
8230 -- the resulting actual is compatible with the mode of the formal.
8232 if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
8233 and then Is_Access_Constant (Etype (Obj))
8234 then
8235 Error_Msg_NE
8236 ("expect variable in call to&", Prefix (N), Entity (Subprog));
8237 end if;
8239 -- Conversely, if the formal is an access parameter and the object
8240 -- is not, replace the actual with a 'Access reference. Its analysis
8241 -- will check that the object is aliased.
8243 elsif Is_Access_Type (Formal_Type)
8244 and then not Is_Access_Type (Etype (Obj))
8245 then
8246 -- A special case: A.all'access is illegal if A is an access to a
8247 -- constant and the context requires an access to a variable.
8249 if not Is_Access_Constant (Formal_Type) then
8250 if (Nkind (Obj) = N_Explicit_Dereference
8251 and then Is_Access_Constant (Etype (Prefix (Obj))))
8252 or else not Is_Variable (Obj)
8253 then
8254 Error_Msg_NE
8255 ("actual for & must be a variable", Obj, Control);
8256 end if;
8257 end if;
8259 Rewrite (First_Actual,
8260 Make_Attribute_Reference (Loc,
8261 Attribute_Name => Name_Access,
8262 Prefix => Relocate_Node (Obj)));
8264 if not Is_Aliased_View (Obj) then
8265 Error_Msg_NE
8266 ("object in prefixed call to & must be aliased "
8267 & "(RM 4.1.3 (13 1/2))", Prefix (First_Actual), Subprog);
8268 end if;
8270 Analyze (First_Actual);
8272 else
8273 if Is_Overloaded (Obj) then
8274 Save_Interps (Obj, First_Actual);
8275 end if;
8277 Rewrite (First_Actual, Obj);
8278 end if;
8280 -- The operation is obtained from the dispatch table and not by
8281 -- visibility, and may be declared in a unit that is not explicitly
8282 -- referenced in the source, but is nevertheless required in the
8283 -- context of the current unit. Indicate that operation and its scope
8284 -- are referenced, to prevent spurious and misleading warnings. If
8285 -- the operation is overloaded, all primitives are in the same scope
8286 -- and we can use any of them.
8288 Set_Referenced (Entity (Subprog), True);
8289 Set_Referenced (Scope (Entity (Subprog)), True);
8291 Rewrite (Node_To_Replace, Call_Node);
8293 -- Propagate the interpretations collected in subprog to the new
8294 -- function call node, to be resolved from context.
8296 if Is_Overloaded (Subprog) then
8297 Save_Interps (Subprog, Node_To_Replace);
8299 else
8300 -- The type of the subprogram may be a limited view obtained
8301 -- transitively from another unit. If full view is available,
8302 -- use it to analyze call.
8304 declare
8305 T : constant Entity_Id := Etype (Subprog);
8306 begin
8307 if From_Limited_With (T) then
8308 Set_Etype (Entity (Subprog), Available_View (T));
8309 end if;
8310 end;
8312 Analyze (Node_To_Replace);
8314 -- If the operation has been rewritten into a call, which may get
8315 -- subsequently an explicit dereference, preserve the type on the
8316 -- original node (selected component or indexed component) for
8317 -- subsequent legality tests, e.g. Is_Variable. which examines
8318 -- the original node.
8320 if Nkind (Node_To_Replace) = N_Function_Call then
8321 Set_Etype
8322 (Original_Node (Node_To_Replace), Etype (Node_To_Replace));
8323 end if;
8324 end if;
8325 end Complete_Object_Operation;
8327 ----------------------
8328 -- Report_Ambiguity --
8329 ----------------------
8331 procedure Report_Ambiguity (Op : Entity_Id) is
8332 Access_Actual : constant Boolean :=
8333 Is_Access_Type (Etype (Prefix (N)));
8334 Access_Formal : Boolean := False;
8336 begin
8337 Error_Msg_Sloc := Sloc (Op);
8339 if Present (First_Formal (Op)) then
8340 Access_Formal := Is_Access_Type (Etype (First_Formal (Op)));
8341 end if;
8343 if Access_Formal and then not Access_Actual then
8344 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
8345 Error_Msg_N
8346 ("\possible interpretation "
8347 & "(inherited, with implicit 'Access) #", N);
8348 else
8349 Error_Msg_N
8350 ("\possible interpretation (with implicit 'Access) #", N);
8351 end if;
8353 elsif not Access_Formal and then Access_Actual then
8354 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
8355 Error_Msg_N
8356 ("\possible interpretation "
8357 & "(inherited, with implicit dereference) #", N);
8358 else
8359 Error_Msg_N
8360 ("\possible interpretation (with implicit dereference) #", N);
8361 end if;
8363 else
8364 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
8365 Error_Msg_N ("\possible interpretation (inherited)#", N);
8366 else
8367 Error_Msg_N -- CODEFIX
8368 ("\possible interpretation#", N);
8369 end if;
8370 end if;
8371 end Report_Ambiguity;
8373 --------------------------------
8374 -- Transform_Object_Operation --
8375 --------------------------------
8377 procedure Transform_Object_Operation
8378 (Call_Node : out Node_Id;
8379 Node_To_Replace : out Node_Id)
8381 Dummy : constant Node_Id := New_Copy (Obj);
8382 -- Placeholder used as a first parameter in the call, replaced
8383 -- eventually by the proper object.
8385 Parent_Node : constant Node_Id := Parent (N);
8387 Actual : Node_Id;
8388 Actuals : List_Id;
8390 begin
8391 -- Common case covering 1) Call to a procedure and 2) Call to a
8392 -- function that has some additional actuals.
8394 if Nkind (Parent_Node) in N_Subprogram_Call
8396 -- N is a selected component node containing the name of the
8397 -- subprogram. If N is not the name of the parent node we must
8398 -- not replace the parent node by the new construct. This case
8399 -- occurs when N is a parameterless call to a subprogram that
8400 -- is an actual parameter of a call to another subprogram. For
8401 -- example:
8402 -- Some_Subprogram (..., Obj.Operation, ...)
8404 and then Name (Parent_Node) = N
8405 then
8406 Node_To_Replace := Parent_Node;
8408 Actuals := Parameter_Associations (Parent_Node);
8410 if Present (Actuals) then
8411 Prepend (Dummy, Actuals);
8412 else
8413 Actuals := New_List (Dummy);
8414 end if;
8416 if Nkind (Parent_Node) = N_Procedure_Call_Statement then
8417 Call_Node :=
8418 Make_Procedure_Call_Statement (Loc,
8419 Name => New_Copy (Subprog),
8420 Parameter_Associations => Actuals);
8422 else
8423 Call_Node :=
8424 Make_Function_Call (Loc,
8425 Name => New_Copy (Subprog),
8426 Parameter_Associations => Actuals);
8427 end if;
8429 -- Before analysis, a function call appears as an indexed component
8430 -- if there are no named associations.
8432 elsif Nkind (Parent_Node) = N_Indexed_Component
8433 and then N = Prefix (Parent_Node)
8434 then
8435 Node_To_Replace := Parent_Node;
8436 Actuals := Expressions (Parent_Node);
8438 Actual := First (Actuals);
8439 while Present (Actual) loop
8440 Analyze (Actual);
8441 Next (Actual);
8442 end loop;
8444 Prepend (Dummy, Actuals);
8446 Call_Node :=
8447 Make_Function_Call (Loc,
8448 Name => New_Copy (Subprog),
8449 Parameter_Associations => Actuals);
8451 -- Parameterless call: Obj.F is rewritten as F (Obj)
8453 else
8454 Node_To_Replace := N;
8456 Call_Node :=
8457 Make_Function_Call (Loc,
8458 Name => New_Copy (Subprog),
8459 Parameter_Associations => New_List (Dummy));
8460 end if;
8461 end Transform_Object_Operation;
8463 ------------------------------
8464 -- Try_Class_Wide_Operation --
8465 ------------------------------
8467 function Try_Class_Wide_Operation
8468 (Call_Node : Node_Id;
8469 Node_To_Replace : Node_Id) return Boolean
8471 Anc_Type : Entity_Id;
8472 Matching_Op : Entity_Id := Empty;
8473 Error : Boolean;
8475 procedure Traverse_Homonyms
8476 (Anc_Type : Entity_Id;
8477 Error : out Boolean);
8478 -- Traverse the homonym chain of the subprogram searching for those
8479 -- homonyms whose first formal has the Anc_Type's class-wide type,
8480 -- or an anonymous access type designating the class-wide type. If
8481 -- an ambiguity is detected, then Error is set to True.
8483 procedure Traverse_Interfaces
8484 (Anc_Type : Entity_Id;
8485 Error : out Boolean);
8486 -- Traverse the list of interfaces, if any, associated with Anc_Type
8487 -- and search for acceptable class-wide homonyms associated with each
8488 -- interface. If an ambiguity is detected, then Error is set to True.
8490 -----------------------
8491 -- Traverse_Homonyms --
8492 -----------------------
8494 procedure Traverse_Homonyms
8495 (Anc_Type : Entity_Id;
8496 Error : out Boolean)
8498 Cls_Type : Entity_Id;
8499 Hom : Entity_Id;
8500 Hom_Ref : Node_Id;
8501 Success : Boolean;
8503 begin
8504 Error := False;
8506 Cls_Type := Class_Wide_Type (Anc_Type);
8508 Hom := Current_Entity (Subprog);
8510 -- Find a non-hidden operation whose first parameter is of the
8511 -- class-wide type, a subtype thereof, or an anonymous access
8512 -- to same. If in an instance, the operation can be considered
8513 -- even if hidden (it may be hidden because the instantiation
8514 -- is expanded after the containing package has been analyzed).
8516 while Present (Hom) loop
8517 if Ekind_In (Hom, E_Procedure, E_Function)
8518 and then (not Is_Hidden (Hom) or else In_Instance)
8519 and then Scope (Hom) = Scope (Anc_Type)
8520 and then Present (First_Formal (Hom))
8521 and then
8522 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
8523 or else
8524 (Is_Access_Type (Etype (First_Formal (Hom)))
8525 and then
8526 Ekind (Etype (First_Formal (Hom))) =
8527 E_Anonymous_Access_Type
8528 and then
8529 Base_Type
8530 (Designated_Type (Etype (First_Formal (Hom)))) =
8531 Cls_Type))
8532 then
8533 -- If the context is a procedure call, ignore functions
8534 -- in the name of the call.
8536 if Ekind (Hom) = E_Function
8537 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
8538 and then N = Name (Parent (N))
8539 then
8540 goto Next_Hom;
8542 -- If the context is a function call, ignore procedures
8543 -- in the name of the call.
8545 elsif Ekind (Hom) = E_Procedure
8546 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
8547 then
8548 goto Next_Hom;
8549 end if;
8551 Set_Etype (Call_Node, Any_Type);
8552 Set_Is_Overloaded (Call_Node, False);
8553 Success := False;
8555 if No (Matching_Op) then
8556 Hom_Ref := New_Occurrence_Of (Hom, Sloc (Subprog));
8557 Set_Etype (Call_Node, Any_Type);
8558 Set_Parent (Call_Node, Parent (Node_To_Replace));
8560 Set_Name (Call_Node, Hom_Ref);
8562 Analyze_One_Call
8563 (N => Call_Node,
8564 Nam => Hom,
8565 Report => Report_Error,
8566 Success => Success,
8567 Skip_First => True);
8569 Matching_Op :=
8570 Valid_Candidate (Success, Call_Node, Hom);
8572 else
8573 Analyze_One_Call
8574 (N => Call_Node,
8575 Nam => Hom,
8576 Report => Report_Error,
8577 Success => Success,
8578 Skip_First => True);
8580 if Present (Valid_Candidate (Success, Call_Node, Hom))
8581 and then Nkind (Call_Node) /= N_Function_Call
8582 then
8583 Error_Msg_NE ("ambiguous call to&", N, Hom);
8584 Report_Ambiguity (Matching_Op);
8585 Report_Ambiguity (Hom);
8586 Error := True;
8587 return;
8588 end if;
8589 end if;
8590 end if;
8592 <<Next_Hom>>
8593 Hom := Homonym (Hom);
8594 end loop;
8595 end Traverse_Homonyms;
8597 -------------------------
8598 -- Traverse_Interfaces --
8599 -------------------------
8601 procedure Traverse_Interfaces
8602 (Anc_Type : Entity_Id;
8603 Error : out Boolean)
8605 Intface_List : constant List_Id :=
8606 Abstract_Interface_List (Anc_Type);
8607 Intface : Node_Id;
8609 begin
8610 Error := False;
8612 if Is_Non_Empty_List (Intface_List) then
8613 Intface := First (Intface_List);
8614 while Present (Intface) loop
8616 -- Look for acceptable class-wide homonyms associated with
8617 -- the interface.
8619 Traverse_Homonyms (Etype (Intface), Error);
8621 if Error then
8622 return;
8623 end if;
8625 -- Continue the search by looking at each of the interface's
8626 -- associated interface ancestors.
8628 Traverse_Interfaces (Etype (Intface), Error);
8630 if Error then
8631 return;
8632 end if;
8634 Next (Intface);
8635 end loop;
8636 end if;
8637 end Traverse_Interfaces;
8639 -- Start of processing for Try_Class_Wide_Operation
8641 begin
8642 -- If we are searching only for conflicting class-wide subprograms
8643 -- then initialize directly Matching_Op with the target entity.
8645 if CW_Test_Only then
8646 Matching_Op := Entity (Selector_Name (N));
8647 end if;
8649 -- Loop through ancestor types (including interfaces), traversing
8650 -- the homonym chain of the subprogram, trying out those homonyms
8651 -- whose first formal has the class-wide type of the ancestor, or
8652 -- an anonymous access type designating the class-wide type.
8654 Anc_Type := Obj_Type;
8655 loop
8656 -- Look for a match among homonyms associated with the ancestor
8658 Traverse_Homonyms (Anc_Type, Error);
8660 if Error then
8661 return True;
8662 end if;
8664 -- Continue the search for matches among homonyms associated with
8665 -- any interfaces implemented by the ancestor.
8667 Traverse_Interfaces (Anc_Type, Error);
8669 if Error then
8670 return True;
8671 end if;
8673 exit when Etype (Anc_Type) = Anc_Type;
8674 Anc_Type := Etype (Anc_Type);
8675 end loop;
8677 if Present (Matching_Op) then
8678 Set_Etype (Call_Node, Etype (Matching_Op));
8679 end if;
8681 return Present (Matching_Op);
8682 end Try_Class_Wide_Operation;
8684 -----------------------------------
8685 -- Try_One_Prefix_Interpretation --
8686 -----------------------------------
8688 procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
8690 -- If the interpretation does not have a valid candidate type,
8691 -- preserve current value of Obj_Type for subsequent errors.
8693 Prev_Obj_Type : constant Entity_Id := Obj_Type;
8695 begin
8696 Obj_Type := T;
8698 if Is_Access_Type (Obj_Type) then
8699 Obj_Type := Designated_Type (Obj_Type);
8700 end if;
8702 if Ekind (Obj_Type) = E_Private_Subtype then
8703 Obj_Type := Base_Type (Obj_Type);
8704 end if;
8706 if Is_Class_Wide_Type (Obj_Type) then
8707 Obj_Type := Etype (Class_Wide_Type (Obj_Type));
8708 end if;
8710 -- The type may have be obtained through a limited_with clause,
8711 -- in which case the primitive operations are available on its
8712 -- non-limited view. If still incomplete, retrieve full view.
8714 if Ekind (Obj_Type) = E_Incomplete_Type
8715 and then From_Limited_With (Obj_Type)
8716 and then Has_Non_Limited_View (Obj_Type)
8717 then
8718 Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
8719 end if;
8721 -- If the object is not tagged, or the type is still an incomplete
8722 -- type, this is not a prefixed call.
8724 if not Is_Tagged_Type (Obj_Type)
8725 or else Is_Incomplete_Type (Obj_Type)
8726 then
8728 -- Restore previous type if current one is not legal candidate
8730 Obj_Type := Prev_Obj_Type;
8731 return;
8732 end if;
8734 declare
8735 Dup_Call_Node : constant Node_Id := New_Copy (New_Call_Node);
8736 CW_Result : Boolean;
8737 Prim_Result : Boolean;
8738 pragma Unreferenced (CW_Result);
8740 begin
8741 if not CW_Test_Only then
8742 Prim_Result :=
8743 Try_Primitive_Operation
8744 (Call_Node => New_Call_Node,
8745 Node_To_Replace => Node_To_Replace);
8746 end if;
8748 -- Check if there is a class-wide subprogram covering the
8749 -- primitive. This check must be done even if a candidate
8750 -- was found in order to report ambiguous calls.
8752 if not (Prim_Result) then
8753 CW_Result :=
8754 Try_Class_Wide_Operation
8755 (Call_Node => New_Call_Node,
8756 Node_To_Replace => Node_To_Replace);
8758 -- If we found a primitive we search for class-wide subprograms
8759 -- using a duplicate of the call node (done to avoid missing its
8760 -- decoration if there is no ambiguity).
8762 else
8763 CW_Result :=
8764 Try_Class_Wide_Operation
8765 (Call_Node => Dup_Call_Node,
8766 Node_To_Replace => Node_To_Replace);
8767 end if;
8768 end;
8769 end Try_One_Prefix_Interpretation;
8771 -----------------------------
8772 -- Try_Primitive_Operation --
8773 -----------------------------
8775 function Try_Primitive_Operation
8776 (Call_Node : Node_Id;
8777 Node_To_Replace : Node_Id) return Boolean
8779 Elmt : Elmt_Id;
8780 Prim_Op : Entity_Id;
8781 Matching_Op : Entity_Id := Empty;
8782 Prim_Op_Ref : Node_Id := Empty;
8784 Corr_Type : Entity_Id := Empty;
8785 -- If the prefix is a synchronized type, the controlling type of
8786 -- the primitive operation is the corresponding record type, else
8787 -- this is the object type itself.
8789 Success : Boolean := False;
8791 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
8792 -- For tagged types the candidate interpretations are found in
8793 -- the list of primitive operations of the type and its ancestors.
8794 -- For formal tagged types we have to find the operations declared
8795 -- in the same scope as the type (including in the generic formal
8796 -- part) because the type itself carries no primitive operations,
8797 -- except for formal derived types that inherit the operations of
8798 -- the parent and progenitors.
8800 -- If the context is a generic subprogram body, the generic formals
8801 -- are visible by name, but are not in the entity list of the
8802 -- subprogram because that list starts with the subprogram formals.
8803 -- We retrieve the candidate operations from the generic declaration.
8805 function Extended_Primitive_Ops (T : Entity_Id) return Elist_Id;
8806 -- Prefix notation can also be used on operations that are not
8807 -- primitives of the type, but are declared in the same immediate
8808 -- declarative part, which can only mean the corresponding package
8809 -- body (See RM 4.1.3 (9.2/3)). If we are in that body we extend the
8810 -- list of primitives with body operations with the same name that
8811 -- may be candidates, so that Try_Primitive_Operations can examine
8812 -- them if no real primitive is found.
8814 function Is_Private_Overriding (Op : Entity_Id) return Boolean;
8815 -- An operation that overrides an inherited operation in the private
8816 -- part of its package may be hidden, but if the inherited operation
8817 -- is visible a direct call to it will dispatch to the private one,
8818 -- which is therefore a valid candidate.
8820 function Names_Match
8821 (Obj_Type : Entity_Id;
8822 Prim_Op : Entity_Id;
8823 Subprog : Entity_Id) return Boolean;
8824 -- Return True if the names of Prim_Op and Subprog match. If Obj_Type
8825 -- is a protected type then compare also the original name of Prim_Op
8826 -- with the name of Subprog (since the expander may have added a
8827 -- prefix to its original name --see Exp_Ch9.Build_Selected_Name).
8829 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
8830 -- Verify that the prefix, dereferenced if need be, is a valid
8831 -- controlling argument in a call to Op. The remaining actuals
8832 -- are checked in the subsequent call to Analyze_One_Call.
8834 ------------------------------
8835 -- Collect_Generic_Type_Ops --
8836 ------------------------------
8838 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
8839 Bas : constant Entity_Id := Base_Type (T);
8840 Candidates : constant Elist_Id := New_Elmt_List;
8841 Subp : Entity_Id;
8842 Formal : Entity_Id;
8844 procedure Check_Candidate;
8845 -- The operation is a candidate if its first parameter is a
8846 -- controlling operand of the desired type.
8848 -----------------------
8849 -- Check_Candidate; --
8850 -----------------------
8852 procedure Check_Candidate is
8853 begin
8854 Formal := First_Formal (Subp);
8856 if Present (Formal)
8857 and then Is_Controlling_Formal (Formal)
8858 and then
8859 (Base_Type (Etype (Formal)) = Bas
8860 or else
8861 (Is_Access_Type (Etype (Formal))
8862 and then Designated_Type (Etype (Formal)) = Bas))
8863 then
8864 Append_Elmt (Subp, Candidates);
8865 end if;
8866 end Check_Candidate;
8868 -- Start of processing for Collect_Generic_Type_Ops
8870 begin
8871 if Is_Derived_Type (T) then
8872 return Primitive_Operations (T);
8874 elsif Ekind_In (Scope (T), E_Procedure, E_Function) then
8876 -- Scan the list of generic formals to find subprograms
8877 -- that may have a first controlling formal of the type.
8879 if Nkind (Unit_Declaration_Node (Scope (T))) =
8880 N_Generic_Subprogram_Declaration
8881 then
8882 declare
8883 Decl : Node_Id;
8885 begin
8886 Decl :=
8887 First (Generic_Formal_Declarations
8888 (Unit_Declaration_Node (Scope (T))));
8889 while Present (Decl) loop
8890 if Nkind (Decl) in N_Formal_Subprogram_Declaration then
8891 Subp := Defining_Entity (Decl);
8892 Check_Candidate;
8893 end if;
8895 Next (Decl);
8896 end loop;
8897 end;
8898 end if;
8899 return Candidates;
8901 else
8902 -- Scan the list of entities declared in the same scope as
8903 -- the type. In general this will be an open scope, given that
8904 -- the call we are analyzing can only appear within a generic
8905 -- declaration or body (either the one that declares T, or a
8906 -- child unit).
8908 -- For a subtype representing a generic actual type, go to the
8909 -- base type.
8911 if Is_Generic_Actual_Type (T) then
8912 Subp := First_Entity (Scope (Base_Type (T)));
8913 else
8914 Subp := First_Entity (Scope (T));
8915 end if;
8917 while Present (Subp) loop
8918 if Is_Overloadable (Subp) then
8919 Check_Candidate;
8920 end if;
8922 Next_Entity (Subp);
8923 end loop;
8925 return Candidates;
8926 end if;
8927 end Collect_Generic_Type_Ops;
8929 ----------------------------
8930 -- Extended_Primitive_Ops --
8931 ----------------------------
8933 function Extended_Primitive_Ops (T : Entity_Id) return Elist_Id is
8934 Type_Scope : constant Entity_Id := Scope (T);
8936 Body_Decls : List_Id;
8937 Op_Found : Boolean;
8938 Op : Entity_Id;
8939 Op_List : Elist_Id;
8941 begin
8942 Op_List := Primitive_Operations (T);
8944 if Ekind (Type_Scope) = E_Package
8945 and then In_Package_Body (Type_Scope)
8946 and then In_Open_Scopes (Type_Scope)
8947 then
8948 -- Retrieve list of declarations of package body.
8950 Body_Decls :=
8951 Declarations
8952 (Unit_Declaration_Node
8953 (Corresponding_Body
8954 (Unit_Declaration_Node (Type_Scope))));
8956 Op := Current_Entity (Subprog);
8957 Op_Found := False;
8958 while Present (Op) loop
8959 if Comes_From_Source (Op)
8960 and then Is_Overloadable (Op)
8962 -- Exclude overriding primitive operations of a type
8963 -- extension declared in the package body, to prevent
8964 -- duplicates in extended list.
8966 and then not Is_Primitive (Op)
8967 and then Is_List_Member (Unit_Declaration_Node (Op))
8968 and then List_Containing (Unit_Declaration_Node (Op)) =
8969 Body_Decls
8970 then
8971 if not Op_Found then
8973 -- Copy list of primitives so it is not affected for
8974 -- other uses.
8976 Op_List := New_Copy_Elist (Op_List);
8977 Op_Found := True;
8978 end if;
8980 Append_Elmt (Op, Op_List);
8981 end if;
8983 Op := Homonym (Op);
8984 end loop;
8985 end if;
8987 return Op_List;
8988 end Extended_Primitive_Ops;
8990 ---------------------------
8991 -- Is_Private_Overriding --
8992 ---------------------------
8994 function Is_Private_Overriding (Op : Entity_Id) return Boolean is
8995 Visible_Op : constant Entity_Id := Homonym (Op);
8997 begin
8998 return Present (Visible_Op)
8999 and then Scope (Op) = Scope (Visible_Op)
9000 and then not Comes_From_Source (Visible_Op)
9001 and then Alias (Visible_Op) = Op
9002 and then not Is_Hidden (Visible_Op);
9003 end Is_Private_Overriding;
9005 -----------------
9006 -- Names_Match --
9007 -----------------
9009 function Names_Match
9010 (Obj_Type : Entity_Id;
9011 Prim_Op : Entity_Id;
9012 Subprog : Entity_Id) return Boolean is
9013 begin
9014 -- Common case: exact match
9016 if Chars (Prim_Op) = Chars (Subprog) then
9017 return True;
9019 -- For protected type primitives the expander may have built the
9020 -- name of the dispatching primitive prepending the type name to
9021 -- avoid conflicts with the name of the protected subprogram (see
9022 -- Exp_Ch9.Build_Selected_Name).
9024 elsif Is_Protected_Type (Obj_Type) then
9025 return
9026 Present (Original_Protected_Subprogram (Prim_Op))
9027 and then Chars (Original_Protected_Subprogram (Prim_Op)) =
9028 Chars (Subprog);
9029 end if;
9031 return False;
9032 end Names_Match;
9034 -----------------------------
9035 -- Valid_First_Argument_Of --
9036 -----------------------------
9038 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
9039 Typ : Entity_Id := Etype (First_Formal (Op));
9041 begin
9042 if Is_Concurrent_Type (Typ)
9043 and then Present (Corresponding_Record_Type (Typ))
9044 then
9045 Typ := Corresponding_Record_Type (Typ);
9046 end if;
9048 -- Simple case. Object may be a subtype of the tagged type or
9049 -- may be the corresponding record of a synchronized type.
9051 return Obj_Type = Typ
9052 or else Base_Type (Obj_Type) = Typ
9053 or else Corr_Type = Typ
9055 -- Prefix can be dereferenced
9057 or else
9058 (Is_Access_Type (Corr_Type)
9059 and then Designated_Type (Corr_Type) = Typ)
9061 -- Formal is an access parameter, for which the object
9062 -- can provide an access.
9064 or else
9065 (Ekind (Typ) = E_Anonymous_Access_Type
9066 and then
9067 Base_Type (Designated_Type (Typ)) = Base_Type (Corr_Type));
9068 end Valid_First_Argument_Of;
9070 -- Start of processing for Try_Primitive_Operation
9072 begin
9073 -- Look for subprograms in the list of primitive operations. The name
9074 -- must be identical, and the kind of call indicates the expected
9075 -- kind of operation (function or procedure). If the type is a
9076 -- (tagged) synchronized type, the primitive ops are attached to the
9077 -- corresponding record (base) type.
9079 if Is_Concurrent_Type (Obj_Type) then
9080 if Present (Corresponding_Record_Type (Obj_Type)) then
9081 Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
9082 Elmt := First_Elmt (Primitive_Operations (Corr_Type));
9083 else
9084 Corr_Type := Obj_Type;
9085 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
9086 end if;
9088 elsif not Is_Generic_Type (Obj_Type) then
9089 Corr_Type := Obj_Type;
9090 Elmt := First_Elmt (Extended_Primitive_Ops (Obj_Type));
9092 else
9093 Corr_Type := Obj_Type;
9094 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
9095 end if;
9097 while Present (Elmt) loop
9098 Prim_Op := Node (Elmt);
9100 if Names_Match (Obj_Type, Prim_Op, Subprog)
9101 and then Present (First_Formal (Prim_Op))
9102 and then Valid_First_Argument_Of (Prim_Op)
9103 and then
9104 (Nkind (Call_Node) = N_Function_Call)
9106 (Ekind (Prim_Op) = E_Function)
9107 then
9108 -- Ada 2005 (AI-251): If this primitive operation corresponds
9109 -- to an immediate ancestor interface there is no need to add
9110 -- it to the list of interpretations; the corresponding aliased
9111 -- primitive is also in this list of primitive operations and
9112 -- will be used instead.
9114 if (Present (Interface_Alias (Prim_Op))
9115 and then Is_Ancestor (Find_Dispatching_Type
9116 (Alias (Prim_Op)), Corr_Type))
9118 -- Do not consider hidden primitives unless the type is in an
9119 -- open scope or we are within an instance, where visibility
9120 -- is known to be correct, or else if this is an overriding
9121 -- operation in the private part for an inherited operation.
9123 or else (Is_Hidden (Prim_Op)
9124 and then not Is_Immediately_Visible (Obj_Type)
9125 and then not In_Instance
9126 and then not Is_Private_Overriding (Prim_Op))
9127 then
9128 goto Continue;
9129 end if;
9131 Set_Etype (Call_Node, Any_Type);
9132 Set_Is_Overloaded (Call_Node, False);
9134 if No (Matching_Op) then
9135 Prim_Op_Ref := New_Occurrence_Of (Prim_Op, Sloc (Subprog));
9136 Candidate := Prim_Op;
9138 Set_Parent (Call_Node, Parent (Node_To_Replace));
9140 Set_Name (Call_Node, Prim_Op_Ref);
9141 Success := False;
9143 Analyze_One_Call
9144 (N => Call_Node,
9145 Nam => Prim_Op,
9146 Report => Report_Error,
9147 Success => Success,
9148 Skip_First => True);
9150 Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
9152 -- More than one interpretation, collect for subsequent
9153 -- disambiguation. If this is a procedure call and there
9154 -- is another match, report ambiguity now.
9156 else
9157 Analyze_One_Call
9158 (N => Call_Node,
9159 Nam => Prim_Op,
9160 Report => Report_Error,
9161 Success => Success,
9162 Skip_First => True);
9164 if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
9165 and then Nkind (Call_Node) /= N_Function_Call
9166 then
9167 Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
9168 Report_Ambiguity (Matching_Op);
9169 Report_Ambiguity (Prim_Op);
9170 return True;
9171 end if;
9172 end if;
9173 end if;
9175 <<Continue>>
9176 Next_Elmt (Elmt);
9177 end loop;
9179 if Present (Matching_Op) then
9180 Set_Etype (Call_Node, Etype (Matching_Op));
9181 end if;
9183 return Present (Matching_Op);
9184 end Try_Primitive_Operation;
9186 -- Start of processing for Try_Object_Operation
9188 begin
9189 Analyze_Expression (Obj);
9191 -- Analyze the actuals if node is known to be a subprogram call
9193 if Is_Subprg_Call and then N = Name (Parent (N)) then
9194 Actual := First (Parameter_Associations (Parent (N)));
9195 while Present (Actual) loop
9196 Analyze_Expression (Actual);
9197 Next (Actual);
9198 end loop;
9199 end if;
9201 -- Build a subprogram call node, using a copy of Obj as its first
9202 -- actual. This is a placeholder, to be replaced by an explicit
9203 -- dereference when needed.
9205 Transform_Object_Operation
9206 (Call_Node => New_Call_Node,
9207 Node_To_Replace => Node_To_Replace);
9209 Set_Etype (New_Call_Node, Any_Type);
9210 Set_Etype (Subprog, Any_Type);
9211 Set_Parent (New_Call_Node, Parent (Node_To_Replace));
9213 if not Is_Overloaded (Obj) then
9214 Try_One_Prefix_Interpretation (Obj_Type);
9216 else
9217 declare
9218 I : Interp_Index;
9219 It : Interp;
9220 begin
9221 Get_First_Interp (Obj, I, It);
9222 while Present (It.Nam) loop
9223 Try_One_Prefix_Interpretation (It.Typ);
9224 Get_Next_Interp (I, It);
9225 end loop;
9226 end;
9227 end if;
9229 if Etype (New_Call_Node) /= Any_Type then
9231 -- No need to complete the tree transformations if we are only
9232 -- searching for conflicting class-wide subprograms
9234 if CW_Test_Only then
9235 return False;
9236 else
9237 Complete_Object_Operation
9238 (Call_Node => New_Call_Node,
9239 Node_To_Replace => Node_To_Replace);
9240 return True;
9241 end if;
9243 elsif Present (Candidate) then
9245 -- The argument list is not type correct. Re-analyze with error
9246 -- reporting enabled, and use one of the possible candidates.
9247 -- In All_Errors_Mode, re-analyze all failed interpretations.
9249 if All_Errors_Mode then
9250 Report_Error := True;
9251 if Try_Primitive_Operation
9252 (Call_Node => New_Call_Node,
9253 Node_To_Replace => Node_To_Replace)
9255 or else
9256 Try_Class_Wide_Operation
9257 (Call_Node => New_Call_Node,
9258 Node_To_Replace => Node_To_Replace)
9259 then
9260 null;
9261 end if;
9263 else
9264 Analyze_One_Call
9265 (N => New_Call_Node,
9266 Nam => Candidate,
9267 Report => True,
9268 Success => Success,
9269 Skip_First => True);
9270 end if;
9272 -- No need for further errors
9274 return True;
9276 else
9277 -- There was no candidate operation, so report it as an error
9278 -- in the caller: Analyze_Selected_Component.
9280 return False;
9281 end if;
9282 end Try_Object_Operation;
9284 ---------
9285 -- wpo --
9286 ---------
9288 procedure wpo (T : Entity_Id) is
9289 Op : Entity_Id;
9290 E : Elmt_Id;
9292 begin
9293 if not Is_Tagged_Type (T) then
9294 return;
9295 end if;
9297 E := First_Elmt (Primitive_Operations (Base_Type (T)));
9298 while Present (E) loop
9299 Op := Node (E);
9300 Write_Int (Int (Op));
9301 Write_Str (" === ");
9302 Write_Name (Chars (Op));
9303 Write_Str (" in ");
9304 Write_Name (Chars (Scope (Op)));
9305 Next_Elmt (E);
9306 Write_Eol;
9307 end loop;
9308 end wpo;
9310 end Sem_Ch4;