* ru.po: Update.
[official-gcc.git] / gcc / ada / exp_ch5.adb
blob2a3ecbfe39bc5a0fa949089ee14a5c369b38a60f
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Exp_Aggr; use Exp_Aggr;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Ch11; use Exp_Ch11;
37 with Exp_Dbug; use Exp_Dbug;
38 with Exp_Pakd; use Exp_Pakd;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Ghost; use Ghost;
42 with Inline; use Inline;
43 with Namet; use Namet;
44 with Nlists; use Nlists;
45 with Nmake; use Nmake;
46 with Opt; use Opt;
47 with Restrict; use Restrict;
48 with Rident; use Rident;
49 with Rtsfind; use Rtsfind;
50 with Sinfo; use Sinfo;
51 with Sem; use Sem;
52 with Sem_Aux; use Sem_Aux;
53 with Sem_Ch3; use Sem_Ch3;
54 with Sem_Ch8; use Sem_Ch8;
55 with Sem_Ch13; use Sem_Ch13;
56 with Sem_Eval; use Sem_Eval;
57 with Sem_Res; use Sem_Res;
58 with Sem_Util; use Sem_Util;
59 with Snames; use Snames;
60 with Stand; use Stand;
61 with Stringt; use Stringt;
62 with Tbuild; use Tbuild;
63 with Uintp; use Uintp;
64 with Validsw; use Validsw;
66 package body Exp_Ch5 is
68 procedure Build_Formal_Container_Iteration
69 (N : Node_Id;
70 Container : Entity_Id;
71 Cursor : Entity_Id;
72 Init : out Node_Id;
73 Advance : out Node_Id;
74 New_Loop : out Node_Id);
75 -- Utility to create declarations and loop statement for both forms
76 -- of formal container iterators.
78 function Change_Of_Representation (N : Node_Id) return Boolean;
79 -- Determine if the right hand side of assignment N is a type conversion
80 -- which requires a change of representation. Called only for the array
81 -- and record cases.
83 procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id);
84 -- N is an assignment which assigns an array value. This routine process
85 -- the various special cases and checks required for such assignments,
86 -- including change of representation. Rhs is normally simply the right
87 -- hand side of the assignment, except that if the right hand side is a
88 -- type conversion or a qualified expression, then the RHS is the actual
89 -- expression inside any such type conversions or qualifications.
91 function Expand_Assign_Array_Loop
92 (N : Node_Id;
93 Larray : Entity_Id;
94 Rarray : Entity_Id;
95 L_Type : Entity_Id;
96 R_Type : Entity_Id;
97 Ndim : Pos;
98 Rev : Boolean) return Node_Id;
99 -- N is an assignment statement which assigns an array value. This routine
100 -- expands the assignment into a loop (or nested loops for the case of a
101 -- multi-dimensional array) to do the assignment component by component.
102 -- Larray and Rarray are the entities of the actual arrays on the left
103 -- hand and right hand sides. L_Type and R_Type are the types of these
104 -- arrays (which may not be the same, due to either sliding, or to a
105 -- change of representation case). Ndim is the number of dimensions and
106 -- the parameter Rev indicates if the loops run normally (Rev = False),
107 -- or reversed (Rev = True). The value returned is the constructed
108 -- loop statement. Auxiliary declarations are inserted before node N
109 -- using the standard Insert_Actions mechanism.
111 procedure Expand_Assign_Record (N : Node_Id);
112 -- N is an assignment of an untagged record value. This routine handles
113 -- the case where the assignment must be made component by component,
114 -- either because the target is not byte aligned, or there is a change
115 -- of representation, or when we have a tagged type with a representation
116 -- clause (this last case is required because holes in the tagged type
117 -- might be filled with components from child types).
119 procedure Expand_Formal_Container_Loop (N : Node_Id);
120 -- Use the primitives specified in an Iterable aspect to expand a loop
121 -- over a so-called formal container, primarily for SPARK usage.
123 procedure Expand_Formal_Container_Element_Loop (N : Node_Id);
124 -- Same, for an iterator of the form " For E of C". In this case the
125 -- iterator provides the name of the element, and the cursor is generated
126 -- internally.
128 procedure Expand_Iterator_Loop (N : Node_Id);
129 -- Expand loop over arrays and containers that uses the form "for X of C"
130 -- with an optional subtype mark, or "for Y in C".
132 procedure Expand_Iterator_Loop_Over_Container
133 (N : Node_Id;
134 Isc : Node_Id;
135 I_Spec : Node_Id;
136 Container : Node_Id;
137 Container_Typ : Entity_Id);
138 -- Expand loop over containers that uses the form "for X of C" with an
139 -- optional subtype mark, or "for Y in C". Isc is the iteration scheme.
140 -- I_Spec is the iterator specification and Container is either the
141 -- Container (for OF) or the iterator (for IN).
143 procedure Expand_Predicated_Loop (N : Node_Id);
144 -- Expand for loop over predicated subtype
146 function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id;
147 -- Generate the necessary code for controlled and tagged assignment, that
148 -- is to say, finalization of the target before, adjustment of the target
149 -- after and save and restore of the tag and finalization pointers which
150 -- are not 'part of the value' and must not be changed upon assignment. N
151 -- is the original Assignment node.
153 --------------------------------------
154 -- Build_Formal_Container_iteration --
155 --------------------------------------
157 procedure Build_Formal_Container_Iteration
158 (N : Node_Id;
159 Container : Entity_Id;
160 Cursor : Entity_Id;
161 Init : out Node_Id;
162 Advance : out Node_Id;
163 New_Loop : out Node_Id)
165 Loc : constant Source_Ptr := Sloc (N);
166 Stats : constant List_Id := Statements (N);
167 Typ : constant Entity_Id := Base_Type (Etype (Container));
168 First_Op : constant Entity_Id :=
169 Get_Iterable_Type_Primitive (Typ, Name_First);
170 Next_Op : constant Entity_Id :=
171 Get_Iterable_Type_Primitive (Typ, Name_Next);
173 Has_Element_Op : constant Entity_Id :=
174 Get_Iterable_Type_Primitive (Typ, Name_Has_Element);
175 begin
176 -- Declaration for Cursor
178 Init :=
179 Make_Object_Declaration (Loc,
180 Defining_Identifier => Cursor,
181 Object_Definition => New_Occurrence_Of (Etype (First_Op), Loc),
182 Expression =>
183 Make_Function_Call (Loc,
184 Name => New_Occurrence_Of (First_Op, Loc),
185 Parameter_Associations => New_List (
186 New_Occurrence_Of (Container, Loc))));
188 -- Statement that advances cursor in loop
190 Advance :=
191 Make_Assignment_Statement (Loc,
192 Name => New_Occurrence_Of (Cursor, Loc),
193 Expression =>
194 Make_Function_Call (Loc,
195 Name => New_Occurrence_Of (Next_Op, Loc),
196 Parameter_Associations => New_List (
197 New_Occurrence_Of (Container, Loc),
198 New_Occurrence_Of (Cursor, Loc))));
200 -- Iterator is rewritten as a while_loop
202 New_Loop :=
203 Make_Loop_Statement (Loc,
204 Iteration_Scheme =>
205 Make_Iteration_Scheme (Loc,
206 Condition =>
207 Make_Function_Call (Loc,
208 Name => New_Occurrence_Of (Has_Element_Op, Loc),
209 Parameter_Associations => New_List (
210 New_Occurrence_Of (Container, Loc),
211 New_Occurrence_Of (Cursor, Loc)))),
212 Statements => Stats,
213 End_Label => Empty);
214 end Build_Formal_Container_Iteration;
216 ------------------------------
217 -- Change_Of_Representation --
218 ------------------------------
220 function Change_Of_Representation (N : Node_Id) return Boolean is
221 Rhs : constant Node_Id := Expression (N);
222 begin
223 return
224 Nkind (Rhs) = N_Type_Conversion
225 and then
226 not Same_Representation (Etype (Rhs), Etype (Expression (Rhs)));
227 end Change_Of_Representation;
229 -------------------------
230 -- Expand_Assign_Array --
231 -------------------------
233 -- There are two issues here. First, do we let Gigi do a block move, or
234 -- do we expand out into a loop? Second, we need to set the two flags
235 -- Forwards_OK and Backwards_OK which show whether the block move (or
236 -- corresponding loops) can be legitimately done in a forwards (low to
237 -- high) or backwards (high to low) manner.
239 procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id) is
240 Loc : constant Source_Ptr := Sloc (N);
242 Lhs : constant Node_Id := Name (N);
244 Act_Lhs : constant Node_Id := Get_Referenced_Object (Lhs);
245 Act_Rhs : Node_Id := Get_Referenced_Object (Rhs);
247 L_Type : constant Entity_Id :=
248 Underlying_Type (Get_Actual_Subtype (Act_Lhs));
249 R_Type : Entity_Id :=
250 Underlying_Type (Get_Actual_Subtype (Act_Rhs));
252 L_Slice : constant Boolean := Nkind (Act_Lhs) = N_Slice;
253 R_Slice : constant Boolean := Nkind (Act_Rhs) = N_Slice;
255 Crep : constant Boolean := Change_Of_Representation (N);
257 Larray : Node_Id;
258 Rarray : Node_Id;
260 Ndim : constant Pos := Number_Dimensions (L_Type);
262 Loop_Required : Boolean := False;
263 -- This switch is set to True if the array move must be done using
264 -- an explicit front end generated loop.
266 procedure Apply_Dereference (Arg : Node_Id);
267 -- If the argument is an access to an array, and the assignment is
268 -- converted into a procedure call, apply explicit dereference.
270 function Has_Address_Clause (Exp : Node_Id) return Boolean;
271 -- Test if Exp is a reference to an array whose declaration has
272 -- an address clause, or it is a slice of such an array.
274 function Is_Formal_Array (Exp : Node_Id) return Boolean;
275 -- Test if Exp is a reference to an array which is either a formal
276 -- parameter or a slice of a formal parameter. These are the cases
277 -- where hidden aliasing can occur.
279 function Is_Non_Local_Array (Exp : Node_Id) return Boolean;
280 -- Determine if Exp is a reference to an array variable which is other
281 -- than an object defined in the current scope, or a slice of such
282 -- an object. Such objects can be aliased to parameters (unlike local
283 -- array references).
285 -----------------------
286 -- Apply_Dereference --
287 -----------------------
289 procedure Apply_Dereference (Arg : Node_Id) is
290 Typ : constant Entity_Id := Etype (Arg);
291 begin
292 if Is_Access_Type (Typ) then
293 Rewrite (Arg, Make_Explicit_Dereference (Loc,
294 Prefix => Relocate_Node (Arg)));
295 Analyze_And_Resolve (Arg, Designated_Type (Typ));
296 end if;
297 end Apply_Dereference;
299 ------------------------
300 -- Has_Address_Clause --
301 ------------------------
303 function Has_Address_Clause (Exp : Node_Id) return Boolean is
304 begin
305 return
306 (Is_Entity_Name (Exp) and then
307 Present (Address_Clause (Entity (Exp))))
308 or else
309 (Nkind (Exp) = N_Slice and then Has_Address_Clause (Prefix (Exp)));
310 end Has_Address_Clause;
312 ---------------------
313 -- Is_Formal_Array --
314 ---------------------
316 function Is_Formal_Array (Exp : Node_Id) return Boolean is
317 begin
318 return
319 (Is_Entity_Name (Exp) and then Is_Formal (Entity (Exp)))
320 or else
321 (Nkind (Exp) = N_Slice and then Is_Formal_Array (Prefix (Exp)));
322 end Is_Formal_Array;
324 ------------------------
325 -- Is_Non_Local_Array --
326 ------------------------
328 function Is_Non_Local_Array (Exp : Node_Id) return Boolean is
329 begin
330 return (Is_Entity_Name (Exp)
331 and then Scope (Entity (Exp)) /= Current_Scope)
332 or else (Nkind (Exp) = N_Slice
333 and then Is_Non_Local_Array (Prefix (Exp)));
334 end Is_Non_Local_Array;
336 -- Determine if Lhs, Rhs are formal arrays or nonlocal arrays
338 Lhs_Formal : constant Boolean := Is_Formal_Array (Act_Lhs);
339 Rhs_Formal : constant Boolean := Is_Formal_Array (Act_Rhs);
341 Lhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Lhs);
342 Rhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Rhs);
344 -- Start of processing for Expand_Assign_Array
346 begin
347 -- Deal with length check. Note that the length check is done with
348 -- respect to the right hand side as given, not a possible underlying
349 -- renamed object, since this would generate incorrect extra checks.
351 Apply_Length_Check (Rhs, L_Type);
353 -- We start by assuming that the move can be done in either direction,
354 -- i.e. that the two sides are completely disjoint.
356 Set_Forwards_OK (N, True);
357 Set_Backwards_OK (N, True);
359 -- Normally it is only the slice case that can lead to overlap, and
360 -- explicit checks for slices are made below. But there is one case
361 -- where the slice can be implicit and invisible to us: when we have a
362 -- one dimensional array, and either both operands are parameters, or
363 -- one is a parameter (which can be a slice passed by reference) and the
364 -- other is a non-local variable. In this case the parameter could be a
365 -- slice that overlaps with the other operand.
367 -- However, if the array subtype is a constrained first subtype in the
368 -- parameter case, then we don't have to worry about overlap, since
369 -- slice assignments aren't possible (other than for a slice denoting
370 -- the whole array).
372 -- Note: No overlap is possible if there is a change of representation,
373 -- so we can exclude this case.
375 if Ndim = 1
376 and then not Crep
377 and then
378 ((Lhs_Formal and Rhs_Formal)
379 or else
380 (Lhs_Formal and Rhs_Non_Local_Var)
381 or else
382 (Rhs_Formal and Lhs_Non_Local_Var))
383 and then
384 (not Is_Constrained (Etype (Lhs))
385 or else not Is_First_Subtype (Etype (Lhs)))
386 then
387 Set_Forwards_OK (N, False);
388 Set_Backwards_OK (N, False);
390 -- Note: the bit-packed case is not worrisome here, since if we have
391 -- a slice passed as a parameter, it is always aligned on a byte
392 -- boundary, and if there are no explicit slices, the assignment
393 -- can be performed directly.
394 end if;
396 -- If either operand has an address clause clear Backwards_OK and
397 -- Forwards_OK, since we cannot tell if the operands overlap. We
398 -- exclude this treatment when Rhs is an aggregate, since we know
399 -- that overlap can't occur.
401 if (Has_Address_Clause (Lhs) and then Nkind (Rhs) /= N_Aggregate)
402 or else Has_Address_Clause (Rhs)
403 then
404 Set_Forwards_OK (N, False);
405 Set_Backwards_OK (N, False);
406 end if;
408 -- We certainly must use a loop for change of representation and also
409 -- we use the operand of the conversion on the right hand side as the
410 -- effective right hand side (the component types must match in this
411 -- situation).
413 if Crep then
414 Act_Rhs := Get_Referenced_Object (Rhs);
415 R_Type := Get_Actual_Subtype (Act_Rhs);
416 Loop_Required := True;
418 -- We require a loop if the left side is possibly bit unaligned
420 elsif Possible_Bit_Aligned_Component (Lhs)
421 or else
422 Possible_Bit_Aligned_Component (Rhs)
423 then
424 Loop_Required := True;
426 -- Arrays with controlled components are expanded into a loop to force
427 -- calls to Adjust at the component level.
429 elsif Has_Controlled_Component (L_Type) then
430 Loop_Required := True;
432 -- If object is atomic/VFA, we cannot tolerate a loop
434 elsif Is_Atomic_Or_VFA_Object (Act_Lhs)
435 or else
436 Is_Atomic_Or_VFA_Object (Act_Rhs)
437 then
438 return;
440 -- Loop is required if we have atomic components since we have to
441 -- be sure to do any accesses on an element by element basis.
443 elsif Has_Atomic_Components (L_Type)
444 or else Has_Atomic_Components (R_Type)
445 or else Is_Atomic_Or_VFA (Component_Type (L_Type))
446 or else Is_Atomic_Or_VFA (Component_Type (R_Type))
447 then
448 Loop_Required := True;
450 -- Case where no slice is involved
452 elsif not L_Slice and not R_Slice then
454 -- The following code deals with the case of unconstrained bit packed
455 -- arrays. The problem is that the template for such arrays contains
456 -- the bounds of the actual source level array, but the copy of an
457 -- entire array requires the bounds of the underlying array. It would
458 -- be nice if the back end could take care of this, but right now it
459 -- does not know how, so if we have such a type, then we expand out
460 -- into a loop, which is inefficient but works correctly. If we don't
461 -- do this, we get the wrong length computed for the array to be
462 -- moved. The two cases we need to worry about are:
464 -- Explicit dereference of an unconstrained packed array type as in
465 -- the following example:
467 -- procedure C52 is
468 -- type BITS is array(INTEGER range <>) of BOOLEAN;
469 -- pragma PACK(BITS);
470 -- type A is access BITS;
471 -- P1,P2 : A;
472 -- begin
473 -- P1 := new BITS (1 .. 65_535);
474 -- P2 := new BITS (1 .. 65_535);
475 -- P2.ALL := P1.ALL;
476 -- end C52;
478 -- A formal parameter reference with an unconstrained bit array type
479 -- is the other case we need to worry about (here we assume the same
480 -- BITS type declared above):
482 -- procedure Write_All (File : out BITS; Contents : BITS);
483 -- begin
484 -- File.Storage := Contents;
485 -- end Write_All;
487 -- We expand to a loop in either of these two cases
489 -- Question for future thought. Another potentially more efficient
490 -- approach would be to create the actual subtype, and then do an
491 -- unchecked conversion to this actual subtype ???
493 Check_Unconstrained_Bit_Packed_Array : declare
495 function Is_UBPA_Reference (Opnd : Node_Id) return Boolean;
496 -- Function to perform required test for the first case, above
497 -- (dereference of an unconstrained bit packed array).
499 -----------------------
500 -- Is_UBPA_Reference --
501 -----------------------
503 function Is_UBPA_Reference (Opnd : Node_Id) return Boolean is
504 Typ : constant Entity_Id := Underlying_Type (Etype (Opnd));
505 P_Type : Entity_Id;
506 Des_Type : Entity_Id;
508 begin
509 if Present (Packed_Array_Impl_Type (Typ))
510 and then Is_Array_Type (Packed_Array_Impl_Type (Typ))
511 and then not Is_Constrained (Packed_Array_Impl_Type (Typ))
512 then
513 return True;
515 elsif Nkind (Opnd) = N_Explicit_Dereference then
516 P_Type := Underlying_Type (Etype (Prefix (Opnd)));
518 if not Is_Access_Type (P_Type) then
519 return False;
521 else
522 Des_Type := Designated_Type (P_Type);
523 return
524 Is_Bit_Packed_Array (Des_Type)
525 and then not Is_Constrained (Des_Type);
526 end if;
528 else
529 return False;
530 end if;
531 end Is_UBPA_Reference;
533 -- Start of processing for Check_Unconstrained_Bit_Packed_Array
535 begin
536 if Is_UBPA_Reference (Lhs)
537 or else
538 Is_UBPA_Reference (Rhs)
539 then
540 Loop_Required := True;
542 -- Here if we do not have the case of a reference to a bit packed
543 -- unconstrained array case. In this case gigi can most certainly
544 -- handle the assignment if a forwards move is allowed.
546 -- (could it handle the backwards case also???)
548 elsif Forwards_OK (N) then
549 return;
550 end if;
551 end Check_Unconstrained_Bit_Packed_Array;
553 -- The back end can always handle the assignment if the right side is a
554 -- string literal (note that overlap is definitely impossible in this
555 -- case). If the type is packed, a string literal is always converted
556 -- into an aggregate, except in the case of a null slice, for which no
557 -- aggregate can be written. In that case, rewrite the assignment as a
558 -- null statement, a length check has already been emitted to verify
559 -- that the range of the left-hand side is empty.
561 -- Note that this code is not executed if we have an assignment of a
562 -- string literal to a non-bit aligned component of a record, a case
563 -- which cannot be handled by the backend.
565 elsif Nkind (Rhs) = N_String_Literal then
566 if String_Length (Strval (Rhs)) = 0
567 and then Is_Bit_Packed_Array (L_Type)
568 then
569 Rewrite (N, Make_Null_Statement (Loc));
570 Analyze (N);
571 end if;
573 return;
575 -- If either operand is bit packed, then we need a loop, since we can't
576 -- be sure that the slice is byte aligned. Similarly, if either operand
577 -- is a possibly unaligned slice, then we need a loop (since the back
578 -- end cannot handle unaligned slices).
580 elsif Is_Bit_Packed_Array (L_Type)
581 or else Is_Bit_Packed_Array (R_Type)
582 or else Is_Possibly_Unaligned_Slice (Lhs)
583 or else Is_Possibly_Unaligned_Slice (Rhs)
584 then
585 Loop_Required := True;
587 -- If we are not bit-packed, and we have only one slice, then no overlap
588 -- is possible except in the parameter case, so we can let the back end
589 -- handle things.
591 elsif not (L_Slice and R_Slice) then
592 if Forwards_OK (N) then
593 return;
594 end if;
595 end if;
597 -- If the right-hand side is a string literal, introduce a temporary for
598 -- it, for use in the generated loop that will follow.
600 if Nkind (Rhs) = N_String_Literal then
601 declare
602 Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Rhs);
603 Decl : Node_Id;
605 begin
606 Decl :=
607 Make_Object_Declaration (Loc,
608 Defining_Identifier => Temp,
609 Object_Definition => New_Occurrence_Of (L_Type, Loc),
610 Expression => Relocate_Node (Rhs));
612 Insert_Action (N, Decl);
613 Rewrite (Rhs, New_Occurrence_Of (Temp, Loc));
614 R_Type := Etype (Temp);
615 end;
616 end if;
618 -- Come here to complete the analysis
620 -- Loop_Required: Set to True if we know that a loop is required
621 -- regardless of overlap considerations.
623 -- Forwards_OK: Set to False if we already know that a forwards
624 -- move is not safe, else set to True.
626 -- Backwards_OK: Set to False if we already know that a backwards
627 -- move is not safe, else set to True
629 -- Our task at this stage is to complete the overlap analysis, which can
630 -- result in possibly setting Forwards_OK or Backwards_OK to False, and
631 -- then generating the final code, either by deciding that it is OK
632 -- after all to let Gigi handle it, or by generating appropriate code
633 -- in the front end.
635 declare
636 L_Index_Typ : constant Node_Id := Etype (First_Index (L_Type));
637 R_Index_Typ : constant Node_Id := Etype (First_Index (R_Type));
639 Left_Lo : constant Node_Id := Type_Low_Bound (L_Index_Typ);
640 Left_Hi : constant Node_Id := Type_High_Bound (L_Index_Typ);
641 Right_Lo : constant Node_Id := Type_Low_Bound (R_Index_Typ);
642 Right_Hi : constant Node_Id := Type_High_Bound (R_Index_Typ);
644 Act_L_Array : Node_Id;
645 Act_R_Array : Node_Id;
647 Cleft_Lo : Node_Id;
648 Cright_Lo : Node_Id;
649 Condition : Node_Id;
651 Cresult : Compare_Result;
653 begin
654 -- Get the expressions for the arrays. If we are dealing with a
655 -- private type, then convert to the underlying type. We can do
656 -- direct assignments to an array that is a private type, but we
657 -- cannot assign to elements of the array without this extra
658 -- unchecked conversion.
660 -- Note: We propagate Parent to the conversion nodes to generate
661 -- a well-formed subtree.
663 if Nkind (Act_Lhs) = N_Slice then
664 Larray := Prefix (Act_Lhs);
665 else
666 Larray := Act_Lhs;
668 if Is_Private_Type (Etype (Larray)) then
669 declare
670 Par : constant Node_Id := Parent (Larray);
671 begin
672 Larray :=
673 Unchecked_Convert_To
674 (Underlying_Type (Etype (Larray)), Larray);
675 Set_Parent (Larray, Par);
676 end;
677 end if;
678 end if;
680 if Nkind (Act_Rhs) = N_Slice then
681 Rarray := Prefix (Act_Rhs);
682 else
683 Rarray := Act_Rhs;
685 if Is_Private_Type (Etype (Rarray)) then
686 declare
687 Par : constant Node_Id := Parent (Rarray);
688 begin
689 Rarray :=
690 Unchecked_Convert_To
691 (Underlying_Type (Etype (Rarray)), Rarray);
692 Set_Parent (Rarray, Par);
693 end;
694 end if;
695 end if;
697 -- If both sides are slices, we must figure out whether it is safe
698 -- to do the move in one direction or the other. It is always safe
699 -- if there is a change of representation since obviously two arrays
700 -- with different representations cannot possibly overlap.
702 if (not Crep) and L_Slice and R_Slice then
703 Act_L_Array := Get_Referenced_Object (Prefix (Act_Lhs));
704 Act_R_Array := Get_Referenced_Object (Prefix (Act_Rhs));
706 -- If both left and right hand arrays are entity names, and refer
707 -- to different entities, then we know that the move is safe (the
708 -- two storage areas are completely disjoint).
710 if Is_Entity_Name (Act_L_Array)
711 and then Is_Entity_Name (Act_R_Array)
712 and then Entity (Act_L_Array) /= Entity (Act_R_Array)
713 then
714 null;
716 -- Otherwise, we assume the worst, which is that the two arrays
717 -- are the same array. There is no need to check if we know that
718 -- is the case, because if we don't know it, we still have to
719 -- assume it.
721 -- Generally if the same array is involved, then we have an
722 -- overlapping case. We will have to really assume the worst (i.e.
723 -- set neither of the OK flags) unless we can determine the lower
724 -- or upper bounds at compile time and compare them.
726 else
727 Cresult :=
728 Compile_Time_Compare
729 (Left_Lo, Right_Lo, Assume_Valid => True);
731 if Cresult = Unknown then
732 Cresult :=
733 Compile_Time_Compare
734 (Left_Hi, Right_Hi, Assume_Valid => True);
735 end if;
737 case Cresult is
738 when LT | LE | EQ => Set_Backwards_OK (N, False);
739 when GT | GE => Set_Forwards_OK (N, False);
740 when NE | Unknown => Set_Backwards_OK (N, False);
741 Set_Forwards_OK (N, False);
742 end case;
743 end if;
744 end if;
746 -- If after that analysis Loop_Required is False, meaning that we
747 -- have not discovered some non-overlap reason for requiring a loop,
748 -- then the outcome depends on the capabilities of the back end.
750 if not Loop_Required then
751 -- Assume the back end can deal with all cases of overlap by
752 -- falling back to memmove if it cannot use a more efficient
753 -- approach.
755 return;
756 end if;
758 -- At this stage we have to generate an explicit loop, and we have
759 -- the following cases:
761 -- Forwards_OK = True
763 -- Rnn : right_index := right_index'First;
764 -- for Lnn in left-index loop
765 -- left (Lnn) := right (Rnn);
766 -- Rnn := right_index'Succ (Rnn);
767 -- end loop;
769 -- Note: the above code MUST be analyzed with checks off, because
770 -- otherwise the Succ could overflow. But in any case this is more
771 -- efficient.
773 -- Forwards_OK = False, Backwards_OK = True
775 -- Rnn : right_index := right_index'Last;
776 -- for Lnn in reverse left-index loop
777 -- left (Lnn) := right (Rnn);
778 -- Rnn := right_index'Pred (Rnn);
779 -- end loop;
781 -- Note: the above code MUST be analyzed with checks off, because
782 -- otherwise the Pred could overflow. But in any case this is more
783 -- efficient.
785 -- Forwards_OK = Backwards_OK = False
787 -- This only happens if we have the same array on each side. It is
788 -- possible to create situations using overlays that violate this,
789 -- but we simply do not promise to get this "right" in this case.
791 -- There are two possible subcases. If the No_Implicit_Conditionals
792 -- restriction is set, then we generate the following code:
794 -- declare
795 -- T : constant <operand-type> := rhs;
796 -- begin
797 -- lhs := T;
798 -- end;
800 -- If implicit conditionals are permitted, then we generate:
802 -- if Left_Lo <= Right_Lo then
803 -- <code for Forwards_OK = True above>
804 -- else
805 -- <code for Backwards_OK = True above>
806 -- end if;
808 -- In order to detect possible aliasing, we examine the renamed
809 -- expression when the source or target is a renaming. However,
810 -- the renaming may be intended to capture an address that may be
811 -- affected by subsequent code, and therefore we must recover
812 -- the actual entity for the expansion that follows, not the
813 -- object it renames. In particular, if source or target designate
814 -- a portion of a dynamically allocated object, the pointer to it
815 -- may be reassigned but the renaming preserves the proper location.
817 if Is_Entity_Name (Rhs)
818 and then
819 Nkind (Parent (Entity (Rhs))) = N_Object_Renaming_Declaration
820 and then Nkind (Act_Rhs) = N_Slice
821 then
822 Rarray := Rhs;
823 end if;
825 if Is_Entity_Name (Lhs)
826 and then
827 Nkind (Parent (Entity (Lhs))) = N_Object_Renaming_Declaration
828 and then Nkind (Act_Lhs) = N_Slice
829 then
830 Larray := Lhs;
831 end if;
833 -- Cases where either Forwards_OK or Backwards_OK is true
835 if Forwards_OK (N) or else Backwards_OK (N) then
836 if Needs_Finalization (Component_Type (L_Type))
837 and then Base_Type (L_Type) = Base_Type (R_Type)
838 and then Ndim = 1
839 and then not No_Ctrl_Actions (N)
840 then
841 declare
842 Proc : constant Entity_Id :=
843 TSS (Base_Type (L_Type), TSS_Slice_Assign);
844 Actuals : List_Id;
846 begin
847 Apply_Dereference (Larray);
848 Apply_Dereference (Rarray);
849 Actuals := New_List (
850 Duplicate_Subexpr (Larray, Name_Req => True),
851 Duplicate_Subexpr (Rarray, Name_Req => True),
852 Duplicate_Subexpr (Left_Lo, Name_Req => True),
853 Duplicate_Subexpr (Left_Hi, Name_Req => True),
854 Duplicate_Subexpr (Right_Lo, Name_Req => True),
855 Duplicate_Subexpr (Right_Hi, Name_Req => True));
857 Append_To (Actuals,
858 New_Occurrence_Of (
859 Boolean_Literals (not Forwards_OK (N)), Loc));
861 Rewrite (N,
862 Make_Procedure_Call_Statement (Loc,
863 Name => New_Occurrence_Of (Proc, Loc),
864 Parameter_Associations => Actuals));
865 end;
867 else
868 Rewrite (N,
869 Expand_Assign_Array_Loop
870 (N, Larray, Rarray, L_Type, R_Type, Ndim,
871 Rev => not Forwards_OK (N)));
872 end if;
874 -- Case of both are false with No_Implicit_Conditionals
876 elsif Restriction_Active (No_Implicit_Conditionals) then
877 declare
878 T : constant Entity_Id :=
879 Make_Defining_Identifier (Loc, Chars => Name_T);
881 begin
882 Rewrite (N,
883 Make_Block_Statement (Loc,
884 Declarations => New_List (
885 Make_Object_Declaration (Loc,
886 Defining_Identifier => T,
887 Constant_Present => True,
888 Object_Definition =>
889 New_Occurrence_Of (Etype (Rhs), Loc),
890 Expression => Relocate_Node (Rhs))),
892 Handled_Statement_Sequence =>
893 Make_Handled_Sequence_Of_Statements (Loc,
894 Statements => New_List (
895 Make_Assignment_Statement (Loc,
896 Name => Relocate_Node (Lhs),
897 Expression => New_Occurrence_Of (T, Loc))))));
898 end;
900 -- Case of both are false with implicit conditionals allowed
902 else
903 -- Before we generate this code, we must ensure that the left and
904 -- right side array types are defined. They may be itypes, and we
905 -- cannot let them be defined inside the if, since the first use
906 -- in the then may not be executed.
908 Ensure_Defined (L_Type, N);
909 Ensure_Defined (R_Type, N);
911 -- We normally compare addresses to find out which way round to
912 -- do the loop, since this is reliable, and handles the cases of
913 -- parameters, conversions etc. But we can't do that in the bit
914 -- packed case, because addresses don't work there.
916 if not Is_Bit_Packed_Array (L_Type) then
917 Condition :=
918 Make_Op_Le (Loc,
919 Left_Opnd =>
920 Unchecked_Convert_To (RTE (RE_Integer_Address),
921 Make_Attribute_Reference (Loc,
922 Prefix =>
923 Make_Indexed_Component (Loc,
924 Prefix =>
925 Duplicate_Subexpr_Move_Checks (Larray, True),
926 Expressions => New_List (
927 Make_Attribute_Reference (Loc,
928 Prefix =>
929 New_Occurrence_Of
930 (L_Index_Typ, Loc),
931 Attribute_Name => Name_First))),
932 Attribute_Name => Name_Address)),
934 Right_Opnd =>
935 Unchecked_Convert_To (RTE (RE_Integer_Address),
936 Make_Attribute_Reference (Loc,
937 Prefix =>
938 Make_Indexed_Component (Loc,
939 Prefix =>
940 Duplicate_Subexpr_Move_Checks (Rarray, True),
941 Expressions => New_List (
942 Make_Attribute_Reference (Loc,
943 Prefix =>
944 New_Occurrence_Of
945 (R_Index_Typ, Loc),
946 Attribute_Name => Name_First))),
947 Attribute_Name => Name_Address)));
949 -- For the bit packed and VM cases we use the bounds. That's OK,
950 -- because we don't have to worry about parameters, since they
951 -- cannot cause overlap. Perhaps we should worry about weird slice
952 -- conversions ???
954 else
955 -- Copy the bounds
957 Cleft_Lo := New_Copy_Tree (Left_Lo);
958 Cright_Lo := New_Copy_Tree (Right_Lo);
960 -- If the types do not match we add an implicit conversion
961 -- here to ensure proper match
963 if Etype (Left_Lo) /= Etype (Right_Lo) then
964 Cright_Lo :=
965 Unchecked_Convert_To (Etype (Left_Lo), Cright_Lo);
966 end if;
968 -- Reset the Analyzed flag, because the bounds of the index
969 -- type itself may be universal, and must must be reanalyzed
970 -- to acquire the proper type for the back end.
972 Set_Analyzed (Cleft_Lo, False);
973 Set_Analyzed (Cright_Lo, False);
975 Condition :=
976 Make_Op_Le (Loc,
977 Left_Opnd => Cleft_Lo,
978 Right_Opnd => Cright_Lo);
979 end if;
981 if Needs_Finalization (Component_Type (L_Type))
982 and then Base_Type (L_Type) = Base_Type (R_Type)
983 and then Ndim = 1
984 and then not No_Ctrl_Actions (N)
985 then
987 -- Call TSS procedure for array assignment, passing the
988 -- explicit bounds of right and left hand sides.
990 declare
991 Proc : constant Entity_Id :=
992 TSS (Base_Type (L_Type), TSS_Slice_Assign);
993 Actuals : List_Id;
995 begin
996 Apply_Dereference (Larray);
997 Apply_Dereference (Rarray);
998 Actuals := New_List (
999 Duplicate_Subexpr (Larray, Name_Req => True),
1000 Duplicate_Subexpr (Rarray, Name_Req => True),
1001 Duplicate_Subexpr (Left_Lo, Name_Req => True),
1002 Duplicate_Subexpr (Left_Hi, Name_Req => True),
1003 Duplicate_Subexpr (Right_Lo, Name_Req => True),
1004 Duplicate_Subexpr (Right_Hi, Name_Req => True));
1006 Append_To (Actuals,
1007 Make_Op_Not (Loc,
1008 Right_Opnd => Condition));
1010 Rewrite (N,
1011 Make_Procedure_Call_Statement (Loc,
1012 Name => New_Occurrence_Of (Proc, Loc),
1013 Parameter_Associations => Actuals));
1014 end;
1016 else
1017 Rewrite (N,
1018 Make_Implicit_If_Statement (N,
1019 Condition => Condition,
1021 Then_Statements => New_List (
1022 Expand_Assign_Array_Loop
1023 (N, Larray, Rarray, L_Type, R_Type, Ndim,
1024 Rev => False)),
1026 Else_Statements => New_List (
1027 Expand_Assign_Array_Loop
1028 (N, Larray, Rarray, L_Type, R_Type, Ndim,
1029 Rev => True))));
1030 end if;
1031 end if;
1033 Analyze (N, Suppress => All_Checks);
1034 end;
1036 exception
1037 when RE_Not_Available =>
1038 return;
1039 end Expand_Assign_Array;
1041 ------------------------------
1042 -- Expand_Assign_Array_Loop --
1043 ------------------------------
1045 -- The following is an example of the loop generated for the case of a
1046 -- two-dimensional array:
1048 -- declare
1049 -- R2b : Tm1X1 := 1;
1050 -- begin
1051 -- for L1b in 1 .. 100 loop
1052 -- declare
1053 -- R4b : Tm1X2 := 1;
1054 -- begin
1055 -- for L3b in 1 .. 100 loop
1056 -- vm1 (L1b, L3b) := vm2 (R2b, R4b);
1057 -- R4b := Tm1X2'succ(R4b);
1058 -- end loop;
1059 -- end;
1060 -- R2b := Tm1X1'succ(R2b);
1061 -- end loop;
1062 -- end;
1064 -- Here Rev is False, and Tm1Xn are the subscript types for the right hand
1065 -- side. The declarations of R2b and R4b are inserted before the original
1066 -- assignment statement.
1068 function Expand_Assign_Array_Loop
1069 (N : Node_Id;
1070 Larray : Entity_Id;
1071 Rarray : Entity_Id;
1072 L_Type : Entity_Id;
1073 R_Type : Entity_Id;
1074 Ndim : Pos;
1075 Rev : Boolean) return Node_Id
1077 Loc : constant Source_Ptr := Sloc (N);
1079 Lnn : array (1 .. Ndim) of Entity_Id;
1080 Rnn : array (1 .. Ndim) of Entity_Id;
1081 -- Entities used as subscripts on left and right sides
1083 L_Index_Type : array (1 .. Ndim) of Entity_Id;
1084 R_Index_Type : array (1 .. Ndim) of Entity_Id;
1085 -- Left and right index types
1087 Assign : Node_Id;
1089 F_Or_L : Name_Id;
1090 S_Or_P : Name_Id;
1092 function Build_Step (J : Nat) return Node_Id;
1093 -- The increment step for the index of the right-hand side is written
1094 -- as an attribute reference (Succ or Pred). This function returns
1095 -- the corresponding node, which is placed at the end of the loop body.
1097 ----------------
1098 -- Build_Step --
1099 ----------------
1101 function Build_Step (J : Nat) return Node_Id is
1102 Step : Node_Id;
1103 Lim : Name_Id;
1105 begin
1106 if Rev then
1107 Lim := Name_First;
1108 else
1109 Lim := Name_Last;
1110 end if;
1112 Step :=
1113 Make_Assignment_Statement (Loc,
1114 Name => New_Occurrence_Of (Rnn (J), Loc),
1115 Expression =>
1116 Make_Attribute_Reference (Loc,
1117 Prefix =>
1118 New_Occurrence_Of (R_Index_Type (J), Loc),
1119 Attribute_Name => S_Or_P,
1120 Expressions => New_List (
1121 New_Occurrence_Of (Rnn (J), Loc))));
1123 -- Note that on the last iteration of the loop, the index is increased
1124 -- (or decreased) past the corresponding bound. This is consistent with
1125 -- the C semantics of the back-end, where such an off-by-one value on a
1126 -- dead index variable is OK. However, in CodePeer mode this leads to
1127 -- spurious warnings, and thus we place a guard around the attribute
1128 -- reference. For obvious reasons we only do this for CodePeer.
1130 if CodePeer_Mode then
1131 Step :=
1132 Make_If_Statement (Loc,
1133 Condition =>
1134 Make_Op_Ne (Loc,
1135 Left_Opnd => New_Occurrence_Of (Lnn (J), Loc),
1136 Right_Opnd =>
1137 Make_Attribute_Reference (Loc,
1138 Prefix => New_Occurrence_Of (L_Index_Type (J), Loc),
1139 Attribute_Name => Lim)),
1140 Then_Statements => New_List (Step));
1141 end if;
1143 return Step;
1144 end Build_Step;
1146 -- Start of processing for Expand_Assign_Array_Loop
1148 begin
1149 if Rev then
1150 F_Or_L := Name_Last;
1151 S_Or_P := Name_Pred;
1152 else
1153 F_Or_L := Name_First;
1154 S_Or_P := Name_Succ;
1155 end if;
1157 -- Setup index types and subscript entities
1159 declare
1160 L_Index : Node_Id;
1161 R_Index : Node_Id;
1163 begin
1164 L_Index := First_Index (L_Type);
1165 R_Index := First_Index (R_Type);
1167 for J in 1 .. Ndim loop
1168 Lnn (J) := Make_Temporary (Loc, 'L');
1169 Rnn (J) := Make_Temporary (Loc, 'R');
1171 L_Index_Type (J) := Etype (L_Index);
1172 R_Index_Type (J) := Etype (R_Index);
1174 Next_Index (L_Index);
1175 Next_Index (R_Index);
1176 end loop;
1177 end;
1179 -- Now construct the assignment statement
1181 declare
1182 ExprL : constant List_Id := New_List;
1183 ExprR : constant List_Id := New_List;
1185 begin
1186 for J in 1 .. Ndim loop
1187 Append_To (ExprL, New_Occurrence_Of (Lnn (J), Loc));
1188 Append_To (ExprR, New_Occurrence_Of (Rnn (J), Loc));
1189 end loop;
1191 Assign :=
1192 Make_Assignment_Statement (Loc,
1193 Name =>
1194 Make_Indexed_Component (Loc,
1195 Prefix => Duplicate_Subexpr (Larray, Name_Req => True),
1196 Expressions => ExprL),
1197 Expression =>
1198 Make_Indexed_Component (Loc,
1199 Prefix => Duplicate_Subexpr (Rarray, Name_Req => True),
1200 Expressions => ExprR));
1202 -- We set assignment OK, since there are some cases, e.g. in object
1203 -- declarations, where we are actually assigning into a constant.
1204 -- If there really is an illegality, it was caught long before now,
1205 -- and was flagged when the original assignment was analyzed.
1207 Set_Assignment_OK (Name (Assign));
1209 -- Propagate the No_Ctrl_Actions flag to individual assignments
1211 Set_No_Ctrl_Actions (Assign, No_Ctrl_Actions (N));
1212 end;
1214 -- Now construct the loop from the inside out, with the last subscript
1215 -- varying most rapidly. Note that Assign is first the raw assignment
1216 -- statement, and then subsequently the loop that wraps it up.
1218 for J in reverse 1 .. Ndim loop
1219 Assign :=
1220 Make_Block_Statement (Loc,
1221 Declarations => New_List (
1222 Make_Object_Declaration (Loc,
1223 Defining_Identifier => Rnn (J),
1224 Object_Definition =>
1225 New_Occurrence_Of (R_Index_Type (J), Loc),
1226 Expression =>
1227 Make_Attribute_Reference (Loc,
1228 Prefix => New_Occurrence_Of (R_Index_Type (J), Loc),
1229 Attribute_Name => F_Or_L))),
1231 Handled_Statement_Sequence =>
1232 Make_Handled_Sequence_Of_Statements (Loc,
1233 Statements => New_List (
1234 Make_Implicit_Loop_Statement (N,
1235 Iteration_Scheme =>
1236 Make_Iteration_Scheme (Loc,
1237 Loop_Parameter_Specification =>
1238 Make_Loop_Parameter_Specification (Loc,
1239 Defining_Identifier => Lnn (J),
1240 Reverse_Present => Rev,
1241 Discrete_Subtype_Definition =>
1242 New_Occurrence_Of (L_Index_Type (J), Loc))),
1244 Statements => New_List (Assign, Build_Step (J))))));
1245 end loop;
1247 return Assign;
1248 end Expand_Assign_Array_Loop;
1250 --------------------------
1251 -- Expand_Assign_Record --
1252 --------------------------
1254 procedure Expand_Assign_Record (N : Node_Id) is
1255 Lhs : constant Node_Id := Name (N);
1256 Rhs : Node_Id := Expression (N);
1257 L_Typ : constant Entity_Id := Base_Type (Etype (Lhs));
1259 begin
1260 -- If change of representation, then extract the real right hand side
1261 -- from the type conversion, and proceed with component-wise assignment,
1262 -- since the two types are not the same as far as the back end is
1263 -- concerned.
1265 if Change_Of_Representation (N) then
1266 Rhs := Expression (Rhs);
1268 -- If this may be a case of a large bit aligned component, then proceed
1269 -- with component-wise assignment, to avoid possible clobbering of other
1270 -- components sharing bits in the first or last byte of the component to
1271 -- be assigned.
1273 elsif Possible_Bit_Aligned_Component (Lhs)
1275 Possible_Bit_Aligned_Component (Rhs)
1276 then
1277 null;
1279 -- If we have a tagged type that has a complete record representation
1280 -- clause, we must do we must do component-wise assignments, since child
1281 -- types may have used gaps for their components, and we might be
1282 -- dealing with a view conversion.
1284 elsif Is_Fully_Repped_Tagged_Type (L_Typ) then
1285 null;
1287 -- If neither condition met, then nothing special to do, the back end
1288 -- can handle assignment of the entire component as a single entity.
1290 else
1291 return;
1292 end if;
1294 -- At this stage we know that we must do a component wise assignment
1296 declare
1297 Loc : constant Source_Ptr := Sloc (N);
1298 R_Typ : constant Entity_Id := Base_Type (Etype (Rhs));
1299 Decl : constant Node_Id := Declaration_Node (R_Typ);
1300 RDef : Node_Id;
1301 F : Entity_Id;
1303 function Find_Component
1304 (Typ : Entity_Id;
1305 Comp : Entity_Id) return Entity_Id;
1306 -- Find the component with the given name in the underlying record
1307 -- declaration for Typ. We need to use the actual entity because the
1308 -- type may be private and resolution by identifier alone would fail.
1310 function Make_Component_List_Assign
1311 (CL : Node_Id;
1312 U_U : Boolean := False) return List_Id;
1313 -- Returns a sequence of statements to assign the components that
1314 -- are referenced in the given component list. The flag U_U is
1315 -- used to force the usage of the inferred value of the variant
1316 -- part expression as the switch for the generated case statement.
1318 function Make_Field_Assign
1319 (C : Entity_Id;
1320 U_U : Boolean := False) return Node_Id;
1321 -- Given C, the entity for a discriminant or component, build an
1322 -- assignment for the corresponding field values. The flag U_U
1323 -- signals the presence of an Unchecked_Union and forces the usage
1324 -- of the inferred discriminant value of C as the right hand side
1325 -- of the assignment.
1327 function Make_Field_Assigns (CI : List_Id) return List_Id;
1328 -- Given CI, a component items list, construct series of statements
1329 -- for fieldwise assignment of the corresponding components.
1331 --------------------
1332 -- Find_Component --
1333 --------------------
1335 function Find_Component
1336 (Typ : Entity_Id;
1337 Comp : Entity_Id) return Entity_Id
1339 Utyp : constant Entity_Id := Underlying_Type (Typ);
1340 C : Entity_Id;
1342 begin
1343 C := First_Entity (Utyp);
1344 while Present (C) loop
1345 if Chars (C) = Chars (Comp) then
1346 return C;
1347 end if;
1349 Next_Entity (C);
1350 end loop;
1352 raise Program_Error;
1353 end Find_Component;
1355 --------------------------------
1356 -- Make_Component_List_Assign --
1357 --------------------------------
1359 function Make_Component_List_Assign
1360 (CL : Node_Id;
1361 U_U : Boolean := False) return List_Id
1363 CI : constant List_Id := Component_Items (CL);
1364 VP : constant Node_Id := Variant_Part (CL);
1366 Alts : List_Id;
1367 DC : Node_Id;
1368 DCH : List_Id;
1369 Expr : Node_Id;
1370 Result : List_Id;
1371 V : Node_Id;
1373 begin
1374 Result := Make_Field_Assigns (CI);
1376 if Present (VP) then
1377 V := First_Non_Pragma (Variants (VP));
1378 Alts := New_List;
1379 while Present (V) loop
1380 DCH := New_List;
1381 DC := First (Discrete_Choices (V));
1382 while Present (DC) loop
1383 Append_To (DCH, New_Copy_Tree (DC));
1384 Next (DC);
1385 end loop;
1387 Append_To (Alts,
1388 Make_Case_Statement_Alternative (Loc,
1389 Discrete_Choices => DCH,
1390 Statements =>
1391 Make_Component_List_Assign (Component_List (V))));
1392 Next_Non_Pragma (V);
1393 end loop;
1395 -- If we have an Unchecked_Union, use the value of the inferred
1396 -- discriminant of the variant part expression as the switch
1397 -- for the case statement. The case statement may later be
1398 -- folded.
1400 if U_U then
1401 Expr :=
1402 New_Copy (Get_Discriminant_Value (
1403 Entity (Name (VP)),
1404 Etype (Rhs),
1405 Discriminant_Constraint (Etype (Rhs))));
1406 else
1407 Expr :=
1408 Make_Selected_Component (Loc,
1409 Prefix => Duplicate_Subexpr (Rhs),
1410 Selector_Name =>
1411 Make_Identifier (Loc, Chars (Name (VP))));
1412 end if;
1414 Append_To (Result,
1415 Make_Case_Statement (Loc,
1416 Expression => Expr,
1417 Alternatives => Alts));
1418 end if;
1420 return Result;
1421 end Make_Component_List_Assign;
1423 -----------------------
1424 -- Make_Field_Assign --
1425 -----------------------
1427 function Make_Field_Assign
1428 (C : Entity_Id;
1429 U_U : Boolean := False) return Node_Id
1431 A : Node_Id;
1432 Expr : Node_Id;
1434 begin
1435 -- In the case of an Unchecked_Union, use the discriminant
1436 -- constraint value as on the right hand side of the assignment.
1438 if U_U then
1439 Expr :=
1440 New_Copy (Get_Discriminant_Value (C,
1441 Etype (Rhs),
1442 Discriminant_Constraint (Etype (Rhs))));
1443 else
1444 Expr :=
1445 Make_Selected_Component (Loc,
1446 Prefix => Duplicate_Subexpr (Rhs),
1447 Selector_Name => New_Occurrence_Of (C, Loc));
1448 end if;
1450 A :=
1451 Make_Assignment_Statement (Loc,
1452 Name =>
1453 Make_Selected_Component (Loc,
1454 Prefix => Duplicate_Subexpr (Lhs),
1455 Selector_Name =>
1456 New_Occurrence_Of (Find_Component (L_Typ, C), Loc)),
1457 Expression => Expr);
1459 -- Set Assignment_OK, so discriminants can be assigned
1461 Set_Assignment_OK (Name (A), True);
1463 if Componentwise_Assignment (N)
1464 and then Nkind (Name (A)) = N_Selected_Component
1465 and then Chars (Selector_Name (Name (A))) = Name_uParent
1466 then
1467 Set_Componentwise_Assignment (A);
1468 end if;
1470 return A;
1471 end Make_Field_Assign;
1473 ------------------------
1474 -- Make_Field_Assigns --
1475 ------------------------
1477 function Make_Field_Assigns (CI : List_Id) return List_Id is
1478 Item : Node_Id;
1479 Result : List_Id;
1481 begin
1482 Item := First (CI);
1483 Result := New_List;
1485 while Present (Item) loop
1487 -- Look for components, but exclude _tag field assignment if
1488 -- the special Componentwise_Assignment flag is set.
1490 if Nkind (Item) = N_Component_Declaration
1491 and then not (Is_Tag (Defining_Identifier (Item))
1492 and then Componentwise_Assignment (N))
1493 then
1494 Append_To
1495 (Result, Make_Field_Assign (Defining_Identifier (Item)));
1496 end if;
1498 Next (Item);
1499 end loop;
1501 return Result;
1502 end Make_Field_Assigns;
1504 -- Start of processing for Expand_Assign_Record
1506 begin
1507 -- Note that we use the base types for this processing. This results
1508 -- in some extra work in the constrained case, but the change of
1509 -- representation case is so unusual that it is not worth the effort.
1511 -- First copy the discriminants. This is done unconditionally. It
1512 -- is required in the unconstrained left side case, and also in the
1513 -- case where this assignment was constructed during the expansion
1514 -- of a type conversion (since initialization of discriminants is
1515 -- suppressed in this case). It is unnecessary but harmless in
1516 -- other cases.
1518 if Has_Discriminants (L_Typ) then
1519 F := First_Discriminant (R_Typ);
1520 while Present (F) loop
1522 -- If we are expanding the initialization of a derived record
1523 -- that constrains or renames discriminants of the parent, we
1524 -- must use the corresponding discriminant in the parent.
1526 declare
1527 CF : Entity_Id;
1529 begin
1530 if Inside_Init_Proc
1531 and then Present (Corresponding_Discriminant (F))
1532 then
1533 CF := Corresponding_Discriminant (F);
1534 else
1535 CF := F;
1536 end if;
1538 if Is_Unchecked_Union (Base_Type (R_Typ)) then
1540 -- Within an initialization procedure this is the
1541 -- assignment to an unchecked union component, in which
1542 -- case there is no discriminant to initialize.
1544 if Inside_Init_Proc then
1545 null;
1547 else
1548 -- The assignment is part of a conversion from a
1549 -- derived unchecked union type with an inferable
1550 -- discriminant, to a parent type.
1552 Insert_Action (N, Make_Field_Assign (CF, True));
1553 end if;
1555 else
1556 Insert_Action (N, Make_Field_Assign (CF));
1557 end if;
1559 Next_Discriminant (F);
1560 end;
1561 end loop;
1562 end if;
1564 -- We know the underlying type is a record, but its current view
1565 -- may be private. We must retrieve the usable record declaration.
1567 if Nkind_In (Decl, N_Private_Type_Declaration,
1568 N_Private_Extension_Declaration)
1569 and then Present (Full_View (R_Typ))
1570 then
1571 RDef := Type_Definition (Declaration_Node (Full_View (R_Typ)));
1572 else
1573 RDef := Type_Definition (Decl);
1574 end if;
1576 if Nkind (RDef) = N_Derived_Type_Definition then
1577 RDef := Record_Extension_Part (RDef);
1578 end if;
1580 if Nkind (RDef) = N_Record_Definition
1581 and then Present (Component_List (RDef))
1582 then
1583 if Is_Unchecked_Union (R_Typ) then
1584 Insert_Actions (N,
1585 Make_Component_List_Assign (Component_List (RDef), True));
1586 else
1587 Insert_Actions
1588 (N, Make_Component_List_Assign (Component_List (RDef)));
1589 end if;
1591 Rewrite (N, Make_Null_Statement (Loc));
1592 end if;
1593 end;
1594 end Expand_Assign_Record;
1596 -----------------------------------
1597 -- Expand_N_Assignment_Statement --
1598 -----------------------------------
1600 -- This procedure implements various cases where an assignment statement
1601 -- cannot just be passed on to the back end in untransformed state.
1603 procedure Expand_N_Assignment_Statement (N : Node_Id) is
1604 Crep : constant Boolean := Change_Of_Representation (N);
1605 Lhs : constant Node_Id := Name (N);
1606 Loc : constant Source_Ptr := Sloc (N);
1607 Rhs : constant Node_Id := Expression (N);
1608 Typ : constant Entity_Id := Underlying_Type (Etype (Lhs));
1609 Exp : Node_Id;
1611 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
1613 begin
1614 -- The assignment statement is Ghost when the left hand side is Ghost.
1615 -- Set the mode now to ensure that any nodes generated during expansion
1616 -- are properly marked as Ghost.
1618 Set_Ghost_Mode (N);
1620 -- Special case to check right away, if the Componentwise_Assignment
1621 -- flag is set, this is a reanalysis from the expansion of the primitive
1622 -- assignment procedure for a tagged type, and all we need to do is to
1623 -- expand to assignment of components, because otherwise, we would get
1624 -- infinite recursion (since this looks like a tagged assignment which
1625 -- would normally try to *call* the primitive assignment procedure).
1627 if Componentwise_Assignment (N) then
1628 Expand_Assign_Record (N);
1629 Ghost_Mode := Save_Ghost_Mode;
1630 return;
1631 end if;
1633 -- Defend against invalid subscripts on left side if we are in standard
1634 -- validity checking mode. No need to do this if we are checking all
1635 -- subscripts.
1637 -- Note that we do this right away, because there are some early return
1638 -- paths in this procedure, and this is required on all paths.
1640 if Validity_Checks_On
1641 and then Validity_Check_Default
1642 and then not Validity_Check_Subscripts
1643 then
1644 Check_Valid_Lvalue_Subscripts (Lhs);
1645 end if;
1647 -- Ada 2005 (AI-327): Handle assignment to priority of protected object
1649 -- Rewrite an assignment to X'Priority into a run-time call
1651 -- For example: X'Priority := New_Prio_Expr;
1652 -- ...is expanded into Set_Ceiling (X._Object, New_Prio_Expr);
1654 -- Note that although X'Priority is notionally an object, it is quite
1655 -- deliberately not defined as an aliased object in the RM. This means
1656 -- that it works fine to rewrite it as a call, without having to worry
1657 -- about complications that would other arise from X'Priority'Access,
1658 -- which is illegal, because of the lack of aliasing.
1660 if Ada_Version >= Ada_2005 then
1661 declare
1662 Call : Node_Id;
1663 Conctyp : Entity_Id;
1664 Ent : Entity_Id;
1665 Subprg : Entity_Id;
1666 RT_Subprg_Name : Node_Id;
1668 begin
1669 -- Handle chains of renamings
1671 Ent := Name (N);
1672 while Nkind (Ent) in N_Has_Entity
1673 and then Present (Entity (Ent))
1674 and then Present (Renamed_Object (Entity (Ent)))
1675 loop
1676 Ent := Renamed_Object (Entity (Ent));
1677 end loop;
1679 -- The attribute Priority applied to protected objects has been
1680 -- previously expanded into a call to the Get_Ceiling run-time
1681 -- subprogram. In restricted profiles this is not available.
1683 if Is_Expanded_Priority_Attribute (Ent) then
1685 -- Look for the enclosing concurrent type
1687 Conctyp := Current_Scope;
1688 while not Is_Concurrent_Type (Conctyp) loop
1689 Conctyp := Scope (Conctyp);
1690 end loop;
1692 pragma Assert (Is_Protected_Type (Conctyp));
1694 -- Generate the first actual of the call
1696 Subprg := Current_Scope;
1697 while not Present (Protected_Body_Subprogram (Subprg)) loop
1698 Subprg := Scope (Subprg);
1699 end loop;
1701 -- Select the appropriate run-time call
1703 if Number_Entries (Conctyp) = 0 then
1704 RT_Subprg_Name :=
1705 New_Occurrence_Of (RTE (RE_Set_Ceiling), Loc);
1706 else
1707 RT_Subprg_Name :=
1708 New_Occurrence_Of (RTE (RO_PE_Set_Ceiling), Loc);
1709 end if;
1711 Call :=
1712 Make_Procedure_Call_Statement (Loc,
1713 Name => RT_Subprg_Name,
1714 Parameter_Associations => New_List (
1715 New_Copy_Tree (First (Parameter_Associations (Ent))),
1716 Relocate_Node (Expression (N))));
1718 Rewrite (N, Call);
1719 Analyze (N);
1721 Ghost_Mode := Save_Ghost_Mode;
1722 return;
1723 end if;
1724 end;
1725 end if;
1727 -- Deal with assignment checks unless suppressed
1729 if not Suppress_Assignment_Checks (N) then
1731 -- First deal with generation of range check if required
1733 if Do_Range_Check (Rhs) then
1734 Generate_Range_Check (Rhs, Typ, CE_Range_Check_Failed);
1735 end if;
1737 -- Then generate predicate check if required
1739 Apply_Predicate_Check (Rhs, Typ);
1740 end if;
1742 -- Check for a special case where a high level transformation is
1743 -- required. If we have either of:
1745 -- P.field := rhs;
1746 -- P (sub) := rhs;
1748 -- where P is a reference to a bit packed array, then we have to unwind
1749 -- the assignment. The exact meaning of being a reference to a bit
1750 -- packed array is as follows:
1752 -- An indexed component whose prefix is a bit packed array is a
1753 -- reference to a bit packed array.
1755 -- An indexed component or selected component whose prefix is a
1756 -- reference to a bit packed array is itself a reference ot a
1757 -- bit packed array.
1759 -- The required transformation is
1761 -- Tnn : prefix_type := P;
1762 -- Tnn.field := rhs;
1763 -- P := Tnn;
1765 -- or
1767 -- Tnn : prefix_type := P;
1768 -- Tnn (subscr) := rhs;
1769 -- P := Tnn;
1771 -- Since P is going to be evaluated more than once, any subscripts
1772 -- in P must have their evaluation forced.
1774 if Nkind_In (Lhs, N_Indexed_Component, N_Selected_Component)
1775 and then Is_Ref_To_Bit_Packed_Array (Prefix (Lhs))
1776 then
1777 declare
1778 BPAR_Expr : constant Node_Id := Relocate_Node (Prefix (Lhs));
1779 BPAR_Typ : constant Entity_Id := Etype (BPAR_Expr);
1780 Tnn : constant Entity_Id :=
1781 Make_Temporary (Loc, 'T', BPAR_Expr);
1783 begin
1784 -- Insert the post assignment first, because we want to copy the
1785 -- BPAR_Expr tree before it gets analyzed in the context of the
1786 -- pre assignment. Note that we do not analyze the post assignment
1787 -- yet (we cannot till we have completed the analysis of the pre
1788 -- assignment). As usual, the analysis of this post assignment
1789 -- will happen on its own when we "run into" it after finishing
1790 -- the current assignment.
1792 Insert_After (N,
1793 Make_Assignment_Statement (Loc,
1794 Name => New_Copy_Tree (BPAR_Expr),
1795 Expression => New_Occurrence_Of (Tnn, Loc)));
1797 -- At this stage BPAR_Expr is a reference to a bit packed array
1798 -- where the reference was not expanded in the original tree,
1799 -- since it was on the left side of an assignment. But in the
1800 -- pre-assignment statement (the object definition), BPAR_Expr
1801 -- will end up on the right hand side, and must be reexpanded. To
1802 -- achieve this, we reset the analyzed flag of all selected and
1803 -- indexed components down to the actual indexed component for
1804 -- the packed array.
1806 Exp := BPAR_Expr;
1807 loop
1808 Set_Analyzed (Exp, False);
1810 if Nkind_In
1811 (Exp, N_Selected_Component, N_Indexed_Component)
1812 then
1813 Exp := Prefix (Exp);
1814 else
1815 exit;
1816 end if;
1817 end loop;
1819 -- Now we can insert and analyze the pre-assignment
1821 -- If the right-hand side requires a transient scope, it has
1822 -- already been placed on the stack. However, the declaration is
1823 -- inserted in the tree outside of this scope, and must reflect
1824 -- the proper scope for its variable. This awkward bit is forced
1825 -- by the stricter scope discipline imposed by GCC 2.97.
1827 declare
1828 Uses_Transient_Scope : constant Boolean :=
1829 Scope_Is_Transient
1830 and then N = Node_To_Be_Wrapped;
1832 begin
1833 if Uses_Transient_Scope then
1834 Push_Scope (Scope (Current_Scope));
1835 end if;
1837 Insert_Before_And_Analyze (N,
1838 Make_Object_Declaration (Loc,
1839 Defining_Identifier => Tnn,
1840 Object_Definition => New_Occurrence_Of (BPAR_Typ, Loc),
1841 Expression => BPAR_Expr));
1843 if Uses_Transient_Scope then
1844 Pop_Scope;
1845 end if;
1846 end;
1848 -- Now fix up the original assignment and continue processing
1850 Rewrite (Prefix (Lhs),
1851 New_Occurrence_Of (Tnn, Loc));
1853 -- We do not need to reanalyze that assignment, and we do not need
1854 -- to worry about references to the temporary, but we do need to
1855 -- make sure that the temporary is not marked as a true constant
1856 -- since we now have a generated assignment to it.
1858 Set_Is_True_Constant (Tnn, False);
1859 end;
1860 end if;
1862 -- When we have the appropriate type of aggregate in the expression (it
1863 -- has been determined during analysis of the aggregate by setting the
1864 -- delay flag), let's perform in place assignment and thus avoid
1865 -- creating a temporary.
1867 if Is_Delayed_Aggregate (Rhs) then
1868 Convert_Aggr_In_Assignment (N);
1869 Rewrite (N, Make_Null_Statement (Loc));
1870 Analyze (N);
1872 Ghost_Mode := Save_Ghost_Mode;
1873 return;
1874 end if;
1876 -- Apply discriminant check if required. If Lhs is an access type to a
1877 -- designated type with discriminants, we must always check. If the
1878 -- type has unknown discriminants, more elaborate processing below.
1880 if Has_Discriminants (Etype (Lhs))
1881 and then not Has_Unknown_Discriminants (Etype (Lhs))
1882 then
1883 -- Skip discriminant check if change of representation. Will be
1884 -- done when the change of representation is expanded out.
1886 if not Crep then
1887 Apply_Discriminant_Check (Rhs, Etype (Lhs), Lhs);
1888 end if;
1890 -- If the type is private without discriminants, and the full type
1891 -- has discriminants (necessarily with defaults) a check may still be
1892 -- necessary if the Lhs is aliased. The private discriminants must be
1893 -- visible to build the discriminant constraints.
1895 -- Only an explicit dereference that comes from source indicates
1896 -- aliasing. Access to formals of protected operations and entries
1897 -- create dereferences but are not semantic aliasings.
1899 elsif Is_Private_Type (Etype (Lhs))
1900 and then Has_Discriminants (Typ)
1901 and then Nkind (Lhs) = N_Explicit_Dereference
1902 and then Comes_From_Source (Lhs)
1903 then
1904 declare
1905 Lt : constant Entity_Id := Etype (Lhs);
1906 Ubt : Entity_Id := Base_Type (Typ);
1908 begin
1909 -- In the case of an expander-generated record subtype whose base
1910 -- type still appears private, Typ will have been set to that
1911 -- private type rather than the underlying record type (because
1912 -- Underlying type will have returned the record subtype), so it's
1913 -- necessary to apply Underlying_Type again to the base type to
1914 -- get the record type we need for the discriminant check. Such
1915 -- subtypes can be created for assignments in certain cases, such
1916 -- as within an instantiation passed this kind of private type.
1917 -- It would be good to avoid this special test, but making changes
1918 -- to prevent this odd form of record subtype seems difficult. ???
1920 if Is_Private_Type (Ubt) then
1921 Ubt := Underlying_Type (Ubt);
1922 end if;
1924 Set_Etype (Lhs, Ubt);
1925 Rewrite (Rhs, OK_Convert_To (Base_Type (Ubt), Rhs));
1926 Apply_Discriminant_Check (Rhs, Ubt, Lhs);
1927 Set_Etype (Lhs, Lt);
1928 end;
1930 -- If the Lhs has a private type with unknown discriminants, it may
1931 -- have a full view with discriminants, but those are nameable only
1932 -- in the underlying type, so convert the Rhs to it before potential
1933 -- checking. Convert Lhs as well, otherwise the actual subtype might
1934 -- not be constructible. If the discriminants have defaults the type
1935 -- is unconstrained and there is nothing to check.
1937 elsif Has_Unknown_Discriminants (Base_Type (Etype (Lhs)))
1938 and then Has_Discriminants (Typ)
1939 and then not Has_Defaulted_Discriminants (Typ)
1940 then
1941 Rewrite (Rhs, OK_Convert_To (Base_Type (Typ), Rhs));
1942 Rewrite (Lhs, OK_Convert_To (Base_Type (Typ), Lhs));
1943 Apply_Discriminant_Check (Rhs, Typ, Lhs);
1945 -- In the access type case, we need the same discriminant check, and
1946 -- also range checks if we have an access to constrained array.
1948 elsif Is_Access_Type (Etype (Lhs))
1949 and then Is_Constrained (Designated_Type (Etype (Lhs)))
1950 then
1951 if Has_Discriminants (Designated_Type (Etype (Lhs))) then
1953 -- Skip discriminant check if change of representation. Will be
1954 -- done when the change of representation is expanded out.
1956 if not Crep then
1957 Apply_Discriminant_Check (Rhs, Etype (Lhs));
1958 end if;
1960 elsif Is_Array_Type (Designated_Type (Etype (Lhs))) then
1961 Apply_Range_Check (Rhs, Etype (Lhs));
1963 if Is_Constrained (Etype (Lhs)) then
1964 Apply_Length_Check (Rhs, Etype (Lhs));
1965 end if;
1967 if Nkind (Rhs) = N_Allocator then
1968 declare
1969 Target_Typ : constant Entity_Id := Etype (Expression (Rhs));
1970 C_Es : Check_Result;
1972 begin
1973 C_Es :=
1974 Get_Range_Checks
1975 (Lhs,
1976 Target_Typ,
1977 Etype (Designated_Type (Etype (Lhs))));
1979 Insert_Range_Checks
1980 (C_Es,
1982 Target_Typ,
1983 Sloc (Lhs),
1984 Lhs);
1985 end;
1986 end if;
1987 end if;
1989 -- Apply range check for access type case
1991 elsif Is_Access_Type (Etype (Lhs))
1992 and then Nkind (Rhs) = N_Allocator
1993 and then Nkind (Expression (Rhs)) = N_Qualified_Expression
1994 then
1995 Analyze_And_Resolve (Expression (Rhs));
1996 Apply_Range_Check
1997 (Expression (Rhs), Designated_Type (Etype (Lhs)));
1998 end if;
2000 -- Ada 2005 (AI-231): Generate the run-time check
2002 if Is_Access_Type (Typ)
2003 and then Can_Never_Be_Null (Etype (Lhs))
2004 and then not Can_Never_Be_Null (Etype (Rhs))
2006 -- If an actual is an out parameter of a null-excluding access
2007 -- type, there is access check on entry, so we set the flag
2008 -- Suppress_Assignment_Checks on the generated statement to
2009 -- assign the actual to the parameter block, and we do not want
2010 -- to generate an additional check at this point.
2012 and then not Suppress_Assignment_Checks (N)
2013 then
2014 Apply_Constraint_Check (Rhs, Etype (Lhs));
2015 end if;
2017 -- Ada 2012 (AI05-148): Update current accessibility level if Rhs is a
2018 -- stand-alone obj of an anonymous access type. Do not install the check
2019 -- when the Lhs denotes a container cursor and the Next function employs
2020 -- an access type, because this can never result in a dangling pointer.
2022 if Is_Access_Type (Typ)
2023 and then Is_Entity_Name (Lhs)
2024 and then Ekind (Entity (Lhs)) /= E_Loop_Parameter
2025 and then Present (Effective_Extra_Accessibility (Entity (Lhs)))
2026 then
2027 declare
2028 function Lhs_Entity return Entity_Id;
2029 -- Look through renames to find the underlying entity.
2030 -- For assignment to a rename, we don't care about the
2031 -- Enclosing_Dynamic_Scope of the rename declaration.
2033 ----------------
2034 -- Lhs_Entity --
2035 ----------------
2037 function Lhs_Entity return Entity_Id is
2038 Result : Entity_Id := Entity (Lhs);
2040 begin
2041 while Present (Renamed_Object (Result)) loop
2043 -- Renamed_Object must return an Entity_Name here
2044 -- because of preceding "Present (E_E_A (...))" test.
2046 Result := Entity (Renamed_Object (Result));
2047 end loop;
2049 return Result;
2050 end Lhs_Entity;
2052 -- Local Declarations
2054 Access_Check : constant Node_Id :=
2055 Make_Raise_Program_Error (Loc,
2056 Condition =>
2057 Make_Op_Gt (Loc,
2058 Left_Opnd =>
2059 Dynamic_Accessibility_Level (Rhs),
2060 Right_Opnd =>
2061 Make_Integer_Literal (Loc,
2062 Intval =>
2063 Scope_Depth
2064 (Enclosing_Dynamic_Scope
2065 (Lhs_Entity)))),
2066 Reason => PE_Accessibility_Check_Failed);
2068 Access_Level_Update : constant Node_Id :=
2069 Make_Assignment_Statement (Loc,
2070 Name =>
2071 New_Occurrence_Of
2072 (Effective_Extra_Accessibility
2073 (Entity (Lhs)), Loc),
2074 Expression =>
2075 Dynamic_Accessibility_Level (Rhs));
2077 begin
2078 if not Accessibility_Checks_Suppressed (Entity (Lhs)) then
2079 Insert_Action (N, Access_Check);
2080 end if;
2082 Insert_Action (N, Access_Level_Update);
2083 end;
2084 end if;
2086 -- Case of assignment to a bit packed array element. If there is a
2087 -- change of representation this must be expanded into components,
2088 -- otherwise this is a bit-field assignment.
2090 if Nkind (Lhs) = N_Indexed_Component
2091 and then Is_Bit_Packed_Array (Etype (Prefix (Lhs)))
2092 then
2093 -- Normal case, no change of representation
2095 if not Crep then
2096 Expand_Bit_Packed_Element_Set (N);
2097 Ghost_Mode := Save_Ghost_Mode;
2098 return;
2100 -- Change of representation case
2102 else
2103 -- Generate the following, to force component-by-component
2104 -- assignments in an efficient way. Otherwise each component
2105 -- will require a temporary and two bit-field manipulations.
2107 -- T1 : Elmt_Type;
2108 -- T1 := RhS;
2109 -- Lhs := T1;
2111 declare
2112 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T');
2113 Stats : List_Id;
2115 begin
2116 Stats :=
2117 New_List (
2118 Make_Object_Declaration (Loc,
2119 Defining_Identifier => Tnn,
2120 Object_Definition =>
2121 New_Occurrence_Of (Etype (Lhs), Loc)),
2122 Make_Assignment_Statement (Loc,
2123 Name => New_Occurrence_Of (Tnn, Loc),
2124 Expression => Relocate_Node (Rhs)),
2125 Make_Assignment_Statement (Loc,
2126 Name => Relocate_Node (Lhs),
2127 Expression => New_Occurrence_Of (Tnn, Loc)));
2129 Insert_Actions (N, Stats);
2130 Rewrite (N, Make_Null_Statement (Loc));
2131 Analyze (N);
2132 end;
2133 end if;
2135 -- Build-in-place function call case. Note that we're not yet doing
2136 -- build-in-place for user-written assignment statements (the assignment
2137 -- here came from an aggregate.)
2139 elsif Ada_Version >= Ada_2005
2140 and then Is_Build_In_Place_Function_Call (Rhs)
2141 then
2142 Make_Build_In_Place_Call_In_Assignment (N, Rhs);
2144 elsif Is_Tagged_Type (Typ)
2145 or else (Needs_Finalization (Typ) and then not Is_Array_Type (Typ))
2146 then
2147 Tagged_Case : declare
2148 L : List_Id := No_List;
2149 Expand_Ctrl_Actions : constant Boolean := not No_Ctrl_Actions (N);
2151 begin
2152 -- In the controlled case, we ensure that function calls are
2153 -- evaluated before finalizing the target. In all cases, it makes
2154 -- the expansion easier if the side-effects are removed first.
2156 Remove_Side_Effects (Lhs);
2157 Remove_Side_Effects (Rhs);
2159 -- Avoid recursion in the mechanism
2161 Set_Analyzed (N);
2163 -- If dispatching assignment, we need to dispatch to _assign
2165 if Is_Class_Wide_Type (Typ)
2167 -- If the type is tagged, we may as well use the predefined
2168 -- primitive assignment. This avoids inlining a lot of code
2169 -- and in the class-wide case, the assignment is replaced
2170 -- by a dispatching call to _assign. It is suppressed in the
2171 -- case of assignments created by the expander that correspond
2172 -- to initializations, where we do want to copy the tag
2173 -- (Expand_Ctrl_Actions flag is set False in this case). It is
2174 -- also suppressed if restriction No_Dispatching_Calls is in
2175 -- force because in that case predefined primitives are not
2176 -- generated.
2178 or else (Is_Tagged_Type (Typ)
2179 and then Chars (Current_Scope) /= Name_uAssign
2180 and then Expand_Ctrl_Actions
2181 and then
2182 not Restriction_Active (No_Dispatching_Calls))
2183 then
2184 if Is_Limited_Type (Typ) then
2186 -- This can happen in an instance when the formal is an
2187 -- extension of a limited interface, and the actual is
2188 -- limited. This is an error according to AI05-0087, but
2189 -- is not caught at the point of instantiation in earlier
2190 -- versions.
2192 -- This is wrong, error messages cannot be issued during
2193 -- expansion, since they would be missed in -gnatc mode ???
2195 Error_Msg_N ("assignment not available on limited type", N);
2196 Ghost_Mode := Save_Ghost_Mode;
2197 return;
2198 end if;
2200 -- Fetch the primitive op _assign and proper type to call it.
2201 -- Because of possible conflicts between private and full view,
2202 -- fetch the proper type directly from the operation profile.
2204 declare
2205 Op : constant Entity_Id :=
2206 Find_Prim_Op (Typ, Name_uAssign);
2207 F_Typ : Entity_Id := Etype (First_Formal (Op));
2209 begin
2210 -- If the assignment is dispatching, make sure to use the
2211 -- proper type.
2213 if Is_Class_Wide_Type (Typ) then
2214 F_Typ := Class_Wide_Type (F_Typ);
2215 end if;
2217 L := New_List;
2219 -- In case of assignment to a class-wide tagged type, before
2220 -- the assignment we generate run-time check to ensure that
2221 -- the tags of source and target match.
2223 if not Tag_Checks_Suppressed (Typ)
2224 and then Is_Class_Wide_Type (Typ)
2225 and then Is_Tagged_Type (Typ)
2226 and then Is_Tagged_Type (Underlying_Type (Etype (Rhs)))
2227 then
2228 declare
2229 Lhs_Tag : Node_Id;
2230 Rhs_Tag : Node_Id;
2232 begin
2233 if not Is_Interface (Typ) then
2234 Lhs_Tag :=
2235 Make_Selected_Component (Loc,
2236 Prefix => Duplicate_Subexpr (Lhs),
2237 Selector_Name =>
2238 Make_Identifier (Loc, Name_uTag));
2239 Rhs_Tag :=
2240 Make_Selected_Component (Loc,
2241 Prefix => Duplicate_Subexpr (Rhs),
2242 Selector_Name =>
2243 Make_Identifier (Loc, Name_uTag));
2244 else
2245 -- Displace the pointer to the base of the objects
2246 -- applying 'Address, which is later expanded into
2247 -- a call to RE_Base_Address.
2249 Lhs_Tag :=
2250 Make_Explicit_Dereference (Loc,
2251 Prefix =>
2252 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
2253 Make_Attribute_Reference (Loc,
2254 Prefix => Duplicate_Subexpr (Lhs),
2255 Attribute_Name => Name_Address)));
2256 Rhs_Tag :=
2257 Make_Explicit_Dereference (Loc,
2258 Prefix =>
2259 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
2260 Make_Attribute_Reference (Loc,
2261 Prefix => Duplicate_Subexpr (Rhs),
2262 Attribute_Name => Name_Address)));
2263 end if;
2265 Append_To (L,
2266 Make_Raise_Constraint_Error (Loc,
2267 Condition =>
2268 Make_Op_Ne (Loc,
2269 Left_Opnd => Lhs_Tag,
2270 Right_Opnd => Rhs_Tag),
2271 Reason => CE_Tag_Check_Failed));
2272 end;
2273 end if;
2275 declare
2276 Left_N : Node_Id := Duplicate_Subexpr (Lhs);
2277 Right_N : Node_Id := Duplicate_Subexpr (Rhs);
2279 begin
2280 -- In order to dispatch the call to _assign the type of
2281 -- the actuals must match. Add conversion (if required).
2283 if Etype (Lhs) /= F_Typ then
2284 Left_N := Unchecked_Convert_To (F_Typ, Left_N);
2285 end if;
2287 if Etype (Rhs) /= F_Typ then
2288 Right_N := Unchecked_Convert_To (F_Typ, Right_N);
2289 end if;
2291 Append_To (L,
2292 Make_Procedure_Call_Statement (Loc,
2293 Name => New_Occurrence_Of (Op, Loc),
2294 Parameter_Associations => New_List (
2295 Node1 => Left_N,
2296 Node2 => Right_N)));
2297 end;
2298 end;
2300 else
2301 L := Make_Tag_Ctrl_Assignment (N);
2303 -- We can't afford to have destructive Finalization Actions in
2304 -- the Self assignment case, so if the target and the source
2305 -- are not obviously different, code is generated to avoid the
2306 -- self assignment case:
2308 -- if lhs'address /= rhs'address then
2309 -- <code for controlled and/or tagged assignment>
2310 -- end if;
2312 -- Skip this if Restriction (No_Finalization) is active
2314 if not Statically_Different (Lhs, Rhs)
2315 and then Expand_Ctrl_Actions
2316 and then not Restriction_Active (No_Finalization)
2317 then
2318 L := New_List (
2319 Make_Implicit_If_Statement (N,
2320 Condition =>
2321 Make_Op_Ne (Loc,
2322 Left_Opnd =>
2323 Make_Attribute_Reference (Loc,
2324 Prefix => Duplicate_Subexpr (Lhs),
2325 Attribute_Name => Name_Address),
2327 Right_Opnd =>
2328 Make_Attribute_Reference (Loc,
2329 Prefix => Duplicate_Subexpr (Rhs),
2330 Attribute_Name => Name_Address)),
2332 Then_Statements => L));
2333 end if;
2335 -- We need to set up an exception handler for implementing
2336 -- 7.6.1(18). The remaining adjustments are tackled by the
2337 -- implementation of adjust for record_controllers (see
2338 -- s-finimp.adb).
2340 -- This is skipped if we have no finalization
2342 if Expand_Ctrl_Actions
2343 and then not Restriction_Active (No_Finalization)
2344 then
2345 L := New_List (
2346 Make_Block_Statement (Loc,
2347 Handled_Statement_Sequence =>
2348 Make_Handled_Sequence_Of_Statements (Loc,
2349 Statements => L,
2350 Exception_Handlers => New_List (
2351 Make_Handler_For_Ctrl_Operation (Loc)))));
2352 end if;
2353 end if;
2355 Rewrite (N,
2356 Make_Block_Statement (Loc,
2357 Handled_Statement_Sequence =>
2358 Make_Handled_Sequence_Of_Statements (Loc, Statements => L)));
2360 -- If no restrictions on aborts, protect the whole assignment
2361 -- for controlled objects as per 9.8(11).
2363 if Needs_Finalization (Typ)
2364 and then Expand_Ctrl_Actions
2365 and then Abort_Allowed
2366 then
2367 declare
2368 Blk : constant Entity_Id :=
2369 New_Internal_Entity
2370 (E_Block, Current_Scope, Sloc (N), 'B');
2371 AUD : constant Entity_Id := RTE (RE_Abort_Undefer_Direct);
2373 begin
2374 Set_Scope (Blk, Current_Scope);
2375 Set_Etype (Blk, Standard_Void_Type);
2376 Set_Identifier (N, New_Occurrence_Of (Blk, Sloc (N)));
2378 Prepend_To (L, Build_Runtime_Call (Loc, RE_Abort_Defer));
2379 Set_At_End_Proc (Handled_Statement_Sequence (N),
2380 New_Occurrence_Of (AUD, Loc));
2382 -- Present the Abort_Undefer_Direct function to the backend
2383 -- so that it can inline the call to the function.
2385 Add_Inlined_Body (AUD, N);
2387 Expand_At_End_Handler
2388 (Handled_Statement_Sequence (N), Blk);
2389 end;
2390 end if;
2392 -- N has been rewritten to a block statement for which it is
2393 -- known by construction that no checks are necessary: analyze
2394 -- it with all checks suppressed.
2396 Analyze (N, Suppress => All_Checks);
2397 Ghost_Mode := Save_Ghost_Mode;
2398 return;
2399 end Tagged_Case;
2401 -- Array types
2403 elsif Is_Array_Type (Typ) then
2404 declare
2405 Actual_Rhs : Node_Id := Rhs;
2407 begin
2408 while Nkind_In (Actual_Rhs, N_Type_Conversion,
2409 N_Qualified_Expression)
2410 loop
2411 Actual_Rhs := Expression (Actual_Rhs);
2412 end loop;
2414 Expand_Assign_Array (N, Actual_Rhs);
2415 Ghost_Mode := Save_Ghost_Mode;
2416 return;
2417 end;
2419 -- Record types
2421 elsif Is_Record_Type (Typ) then
2422 Expand_Assign_Record (N);
2423 Ghost_Mode := Save_Ghost_Mode;
2424 return;
2426 -- Scalar types. This is where we perform the processing related to the
2427 -- requirements of (RM 13.9.1(9-11)) concerning the handling of invalid
2428 -- scalar values.
2430 elsif Is_Scalar_Type (Typ) then
2432 -- Case where right side is known valid
2434 if Expr_Known_Valid (Rhs) then
2436 -- Here the right side is valid, so it is fine. The case to deal
2437 -- with is when the left side is a local variable reference whose
2438 -- value is not currently known to be valid. If this is the case,
2439 -- and the assignment appears in an unconditional context, then
2440 -- we can mark the left side as now being valid if one of these
2441 -- conditions holds:
2443 -- The expression of the right side has Do_Range_Check set so
2444 -- that we know a range check will be performed. Note that it
2445 -- can be the case that a range check is omitted because we
2446 -- make the assumption that we can assume validity for operands
2447 -- appearing in the right side in determining whether a range
2448 -- check is required
2450 -- The subtype of the right side matches the subtype of the
2451 -- left side. In this case, even though we have not checked
2452 -- the range of the right side, we know it is in range of its
2453 -- subtype if the expression is valid.
2455 if Is_Local_Variable_Reference (Lhs)
2456 and then not Is_Known_Valid (Entity (Lhs))
2457 and then In_Unconditional_Context (N)
2458 then
2459 if Do_Range_Check (Rhs)
2460 or else Etype (Lhs) = Etype (Rhs)
2461 then
2462 Set_Is_Known_Valid (Entity (Lhs), True);
2463 end if;
2464 end if;
2466 -- Case where right side may be invalid in the sense of the RM
2467 -- reference above. The RM does not require that we check for the
2468 -- validity on an assignment, but it does require that the assignment
2469 -- of an invalid value not cause erroneous behavior.
2471 -- The general approach in GNAT is to use the Is_Known_Valid flag
2472 -- to avoid the need for validity checking on assignments. However
2473 -- in some cases, we have to do validity checking in order to make
2474 -- sure that the setting of this flag is correct.
2476 else
2477 -- Validate right side if we are validating copies
2479 if Validity_Checks_On
2480 and then Validity_Check_Copies
2481 then
2482 -- Skip this if left hand side is an array or record component
2483 -- and elementary component validity checks are suppressed.
2485 if Nkind_In (Lhs, N_Selected_Component, N_Indexed_Component)
2486 and then not Validity_Check_Components
2487 then
2488 null;
2489 else
2490 Ensure_Valid (Rhs);
2491 end if;
2493 -- We can propagate this to the left side where appropriate
2495 if Is_Local_Variable_Reference (Lhs)
2496 and then not Is_Known_Valid (Entity (Lhs))
2497 and then In_Unconditional_Context (N)
2498 then
2499 Set_Is_Known_Valid (Entity (Lhs), True);
2500 end if;
2502 -- Otherwise check to see what should be done
2504 -- If left side is a local variable, then we just set its flag to
2505 -- indicate that its value may no longer be valid, since we are
2506 -- copying a potentially invalid value.
2508 elsif Is_Local_Variable_Reference (Lhs) then
2509 Set_Is_Known_Valid (Entity (Lhs), False);
2511 -- Check for case of a nonlocal variable on the left side which
2512 -- is currently known to be valid. In this case, we simply ensure
2513 -- that the right side is valid. We only play the game of copying
2514 -- validity status for local variables, since we are doing this
2515 -- statically, not by tracing the full flow graph.
2517 elsif Is_Entity_Name (Lhs)
2518 and then Is_Known_Valid (Entity (Lhs))
2519 then
2520 -- Note: If Validity_Checking mode is set to none, we ignore
2521 -- the Ensure_Valid call so don't worry about that case here.
2523 Ensure_Valid (Rhs);
2525 -- In all other cases, we can safely copy an invalid value without
2526 -- worrying about the status of the left side. Since it is not a
2527 -- variable reference it will not be considered
2528 -- as being known to be valid in any case.
2530 else
2531 null;
2532 end if;
2533 end if;
2534 end if;
2536 Ghost_Mode := Save_Ghost_Mode;
2538 exception
2539 when RE_Not_Available =>
2540 Ghost_Mode := Save_Ghost_Mode;
2541 return;
2542 end Expand_N_Assignment_Statement;
2544 ------------------------------
2545 -- Expand_N_Block_Statement --
2546 ------------------------------
2548 -- Encode entity names defined in block statement
2550 procedure Expand_N_Block_Statement (N : Node_Id) is
2551 begin
2552 Qualify_Entity_Names (N);
2553 end Expand_N_Block_Statement;
2555 -----------------------------
2556 -- Expand_N_Case_Statement --
2557 -----------------------------
2559 procedure Expand_N_Case_Statement (N : Node_Id) is
2560 Loc : constant Source_Ptr := Sloc (N);
2561 Expr : constant Node_Id := Expression (N);
2562 Alt : Node_Id;
2563 Len : Nat;
2564 Cond : Node_Id;
2565 Choice : Node_Id;
2566 Chlist : List_Id;
2568 begin
2569 -- Check for the situation where we know at compile time which branch
2570 -- will be taken.
2572 -- If the value is static but its subtype is predicated and the value
2573 -- does not obey the predicate, the value is marked non-static, and
2574 -- there can be no corresponding static alternative. In that case we
2575 -- replace the case statement with an exception, regardless of whether
2576 -- assertions are enabled or not, unless predicates are ignored.
2578 if Compile_Time_Known_Value (Expr)
2579 and then Has_Predicates (Etype (Expr))
2580 and then not Predicates_Ignored (Etype (Expr))
2581 and then not Is_OK_Static_Expression (Expr)
2582 then
2583 Rewrite (N,
2584 Make_Raise_Constraint_Error (Loc, Reason => CE_Invalid_Data));
2585 Analyze (N);
2586 return;
2588 elsif Compile_Time_Known_Value (Expr)
2589 and then (not Has_Predicates (Etype (Expr))
2590 or else Is_Static_Expression (Expr))
2591 then
2592 Alt := Find_Static_Alternative (N);
2594 -- Do not consider controlled objects found in a case statement which
2595 -- actually models a case expression because their early finalization
2596 -- will affect the result of the expression.
2598 if not From_Conditional_Expression (N) then
2599 Process_Statements_For_Controlled_Objects (Alt);
2600 end if;
2602 -- Move statements from this alternative after the case statement.
2603 -- They are already analyzed, so will be skipped by the analyzer.
2605 Insert_List_After (N, Statements (Alt));
2607 -- That leaves the case statement as a shell. So now we can kill all
2608 -- other alternatives in the case statement.
2610 Kill_Dead_Code (Expression (N));
2612 declare
2613 Dead_Alt : Node_Id;
2615 begin
2616 -- Loop through case alternatives, skipping pragmas, and skipping
2617 -- the one alternative that we select (and therefore retain).
2619 Dead_Alt := First (Alternatives (N));
2620 while Present (Dead_Alt) loop
2621 if Dead_Alt /= Alt
2622 and then Nkind (Dead_Alt) = N_Case_Statement_Alternative
2623 then
2624 Kill_Dead_Code (Statements (Dead_Alt), Warn_On_Deleted_Code);
2625 end if;
2627 Next (Dead_Alt);
2628 end loop;
2629 end;
2631 Rewrite (N, Make_Null_Statement (Loc));
2632 return;
2633 end if;
2635 -- Here if the choice is not determined at compile time
2637 declare
2638 Last_Alt : constant Node_Id := Last (Alternatives (N));
2640 Others_Present : Boolean;
2641 Others_Node : Node_Id;
2643 Then_Stms : List_Id;
2644 Else_Stms : List_Id;
2646 begin
2647 if Nkind (First (Discrete_Choices (Last_Alt))) = N_Others_Choice then
2648 Others_Present := True;
2649 Others_Node := Last_Alt;
2650 else
2651 Others_Present := False;
2652 end if;
2654 -- First step is to worry about possible invalid argument. The RM
2655 -- requires (RM 5.4(13)) that if the result is invalid (e.g. it is
2656 -- outside the base range), then Constraint_Error must be raised.
2658 -- Case of validity check required (validity checks are on, the
2659 -- expression is not known to be valid, and the case statement
2660 -- comes from source -- no need to validity check internally
2661 -- generated case statements).
2663 if Validity_Check_Default
2664 and then not Predicates_Ignored (Etype (Expr))
2665 then
2666 Ensure_Valid (Expr);
2667 end if;
2669 -- If there is only a single alternative, just replace it with the
2670 -- sequence of statements since obviously that is what is going to
2671 -- be executed in all cases.
2673 Len := List_Length (Alternatives (N));
2675 if Len = 1 then
2677 -- We still need to evaluate the expression if it has any side
2678 -- effects.
2680 Remove_Side_Effects (Expression (N));
2681 Alt := First (Alternatives (N));
2683 -- Do not consider controlled objects found in a case statement
2684 -- which actually models a case expression because their early
2685 -- finalization will affect the result of the expression.
2687 if not From_Conditional_Expression (N) then
2688 Process_Statements_For_Controlled_Objects (Alt);
2689 end if;
2691 Insert_List_After (N, Statements (Alt));
2693 -- That leaves the case statement as a shell. The alternative that
2694 -- will be executed is reset to a null list. So now we can kill
2695 -- the entire case statement.
2697 Kill_Dead_Code (Expression (N));
2698 Rewrite (N, Make_Null_Statement (Loc));
2699 return;
2701 -- An optimization. If there are only two alternatives, and only
2702 -- a single choice, then rewrite the whole case statement as an
2703 -- if statement, since this can result in subsequent optimizations.
2704 -- This helps not only with case statements in the source of a
2705 -- simple form, but also with generated code (discriminant check
2706 -- functions in particular).
2708 -- Note: it is OK to do this before expanding out choices for any
2709 -- static predicates, since the if statement processing will handle
2710 -- the static predicate case fine.
2712 elsif Len = 2 then
2713 Chlist := Discrete_Choices (First (Alternatives (N)));
2715 if List_Length (Chlist) = 1 then
2716 Choice := First (Chlist);
2718 Then_Stms := Statements (First (Alternatives (N)));
2719 Else_Stms := Statements (Last (Alternatives (N)));
2721 -- For TRUE, generate "expression", not expression = true
2723 if Nkind (Choice) = N_Identifier
2724 and then Entity (Choice) = Standard_True
2725 then
2726 Cond := Expression (N);
2728 -- For FALSE, generate "expression" and switch then/else
2730 elsif Nkind (Choice) = N_Identifier
2731 and then Entity (Choice) = Standard_False
2732 then
2733 Cond := Expression (N);
2734 Else_Stms := Statements (First (Alternatives (N)));
2735 Then_Stms := Statements (Last (Alternatives (N)));
2737 -- For a range, generate "expression in range"
2739 elsif Nkind (Choice) = N_Range
2740 or else (Nkind (Choice) = N_Attribute_Reference
2741 and then Attribute_Name (Choice) = Name_Range)
2742 or else (Is_Entity_Name (Choice)
2743 and then Is_Type (Entity (Choice)))
2744 then
2745 Cond :=
2746 Make_In (Loc,
2747 Left_Opnd => Expression (N),
2748 Right_Opnd => Relocate_Node (Choice));
2750 -- A subtype indication is not a legal operator in a membership
2751 -- test, so retrieve its range.
2753 elsif Nkind (Choice) = N_Subtype_Indication then
2754 Cond :=
2755 Make_In (Loc,
2756 Left_Opnd => Expression (N),
2757 Right_Opnd =>
2758 Relocate_Node
2759 (Range_Expression (Constraint (Choice))));
2761 -- For any other subexpression "expression = value"
2763 else
2764 Cond :=
2765 Make_Op_Eq (Loc,
2766 Left_Opnd => Expression (N),
2767 Right_Opnd => Relocate_Node (Choice));
2768 end if;
2770 -- Now rewrite the case as an IF
2772 Rewrite (N,
2773 Make_If_Statement (Loc,
2774 Condition => Cond,
2775 Then_Statements => Then_Stms,
2776 Else_Statements => Else_Stms));
2777 Analyze (N);
2778 return;
2779 end if;
2780 end if;
2782 -- If the last alternative is not an Others choice, replace it with
2783 -- an N_Others_Choice. Note that we do not bother to call Analyze on
2784 -- the modified case statement, since it's only effect would be to
2785 -- compute the contents of the Others_Discrete_Choices which is not
2786 -- needed by the back end anyway.
2788 -- The reason for this is that the back end always needs some default
2789 -- for a switch, so if we have not supplied one in the processing
2790 -- above for validity checking, then we need to supply one here.
2792 if not Others_Present then
2793 Others_Node := Make_Others_Choice (Sloc (Last_Alt));
2795 -- If Predicates_Ignored is true the value does not satisfy the
2796 -- predicate, and there is no Others choice, Constraint_Error
2797 -- must be raised (4.5.7 (21/3)).
2799 if Predicates_Ignored (Etype (Expr)) then
2800 declare
2801 Except : constant Node_Id :=
2802 Make_Raise_Constraint_Error (Loc,
2803 Reason => CE_Invalid_Data);
2804 New_Alt : constant Node_Id :=
2805 Make_Case_Statement_Alternative (Loc,
2806 Discrete_Choices => New_List (
2807 Make_Others_Choice (Loc)),
2808 Statements => New_List (Except));
2810 begin
2811 Append (New_Alt, Alternatives (N));
2812 Analyze_And_Resolve (Except);
2813 end;
2815 else
2816 Set_Others_Discrete_Choices
2817 (Others_Node, Discrete_Choices (Last_Alt));
2818 Set_Discrete_Choices (Last_Alt, New_List (Others_Node));
2819 end if;
2821 end if;
2823 -- Deal with possible declarations of controlled objects, and also
2824 -- with rewriting choice sequences for static predicate references.
2826 Alt := First_Non_Pragma (Alternatives (N));
2827 while Present (Alt) loop
2829 -- Do not consider controlled objects found in a case statement
2830 -- which actually models a case expression because their early
2831 -- finalization will affect the result of the expression.
2833 if not From_Conditional_Expression (N) then
2834 Process_Statements_For_Controlled_Objects (Alt);
2835 end if;
2837 if Has_SP_Choice (Alt) then
2838 Expand_Static_Predicates_In_Choices (Alt);
2839 end if;
2841 Next_Non_Pragma (Alt);
2842 end loop;
2843 end;
2844 end Expand_N_Case_Statement;
2846 -----------------------------
2847 -- Expand_N_Exit_Statement --
2848 -----------------------------
2850 -- The only processing required is to deal with a possible C/Fortran
2851 -- boolean value used as the condition for the exit statement.
2853 procedure Expand_N_Exit_Statement (N : Node_Id) is
2854 begin
2855 Adjust_Condition (Condition (N));
2856 end Expand_N_Exit_Statement;
2858 ----------------------------------
2859 -- Expand_Formal_Container_Loop --
2860 ----------------------------------
2862 procedure Expand_Formal_Container_Loop (N : Node_Id) is
2863 Loc : constant Source_Ptr := Sloc (N);
2864 Isc : constant Node_Id := Iteration_Scheme (N);
2865 I_Spec : constant Node_Id := Iterator_Specification (Isc);
2866 Cursor : constant Entity_Id := Defining_Identifier (I_Spec);
2867 Container : constant Node_Id := Entity (Name (I_Spec));
2868 Stats : constant List_Id := Statements (N);
2870 Advance : Node_Id;
2871 Blk_Nod : Node_Id;
2872 Init : Node_Id;
2873 New_Loop : Node_Id;
2875 begin
2876 -- The expansion resembles the one for Ada containers, but the
2877 -- primitives mention the domain of iteration explicitly, and
2878 -- function First applied to the container yields a cursor directly.
2880 -- Cursor : Cursor_type := First (Container);
2881 -- while Has_Element (Cursor, Container) loop
2882 -- <original loop statements>
2883 -- Cursor := Next (Container, Cursor);
2884 -- end loop;
2886 Build_Formal_Container_Iteration
2887 (N, Container, Cursor, Init, Advance, New_Loop);
2889 Set_Ekind (Cursor, E_Variable);
2890 Append_To (Stats, Advance);
2892 -- Build block to capture declaration of cursor entity.
2894 Blk_Nod :=
2895 Make_Block_Statement (Loc,
2896 Declarations => New_List (Init),
2897 Handled_Statement_Sequence =>
2898 Make_Handled_Sequence_Of_Statements (Loc,
2899 Statements => New_List (New_Loop)));
2901 Rewrite (N, Blk_Nod);
2902 Analyze (N);
2903 end Expand_Formal_Container_Loop;
2905 ------------------------------------------
2906 -- Expand_Formal_Container_Element_Loop --
2907 ------------------------------------------
2909 procedure Expand_Formal_Container_Element_Loop (N : Node_Id) is
2910 Loc : constant Source_Ptr := Sloc (N);
2911 Isc : constant Node_Id := Iteration_Scheme (N);
2912 I_Spec : constant Node_Id := Iterator_Specification (Isc);
2913 Element : constant Entity_Id := Defining_Identifier (I_Spec);
2914 Container : constant Node_Id := Entity (Name (I_Spec));
2915 Container_Typ : constant Entity_Id := Base_Type (Etype (Container));
2916 Stats : constant List_Id := Statements (N);
2918 Cursor : constant Entity_Id :=
2919 Make_Defining_Identifier (Loc,
2920 Chars => New_External_Name (Chars (Element), 'C'));
2921 Elmt_Decl : Node_Id;
2922 Elmt_Ref : Node_Id;
2924 Element_Op : constant Entity_Id :=
2925 Get_Iterable_Type_Primitive (Container_Typ, Name_Element);
2927 Advance : Node_Id;
2928 Init : Node_Id;
2929 New_Loop : Node_Id;
2931 begin
2932 -- For an element iterator, the Element aspect must be present,
2933 -- (this is checked during analysis) and the expansion takes the form:
2935 -- Cursor : Cursor_type := First (Container);
2936 -- Elmt : Element_Type;
2937 -- while Has_Element (Cursor, Container) loop
2938 -- Elmt := Element (Container, Cursor);
2939 -- <original loop statements>
2940 -- Cursor := Next (Container, Cursor);
2941 -- end loop;
2943 -- However this expansion is not legal if the element is indefinite.
2944 -- In that case we create a block to hold a variable declaration
2945 -- initialized with a call to Element, and generate:
2947 -- Cursor : Cursor_type := First (Container);
2948 -- while Has_Element (Cursor, Container) loop
2949 -- declare
2950 -- Elmt : Element-Type := Element (Container, Cursor);
2951 -- begin
2952 -- <original loop statements>
2953 -- Cursor := Next (Container, Cursor);
2954 -- end;
2955 -- end loop;
2957 Build_Formal_Container_Iteration
2958 (N, Container, Cursor, Init, Advance, New_Loop);
2959 Append_To (Stats, Advance);
2961 Set_Ekind (Cursor, E_Variable);
2962 Insert_Action (N, Init);
2964 -- Declaration for Element.
2966 Elmt_Decl :=
2967 Make_Object_Declaration (Loc,
2968 Defining_Identifier => Element,
2969 Object_Definition => New_Occurrence_Of (Etype (Element_Op), Loc));
2971 if not Is_Constrained (Etype (Element_Op)) then
2972 Set_Expression (Elmt_Decl,
2973 Make_Function_Call (Loc,
2974 Name => New_Occurrence_Of (Element_Op, Loc),
2975 Parameter_Associations => New_List (
2976 New_Occurrence_Of (Container, Loc),
2977 New_Occurrence_Of (Cursor, Loc))));
2979 Set_Statements (New_Loop,
2980 New_List
2981 (Make_Block_Statement (Loc,
2982 Declarations => New_List (Elmt_Decl),
2983 Handled_Statement_Sequence =>
2984 Make_Handled_Sequence_Of_Statements (Loc,
2985 Statements => Stats))));
2987 else
2988 Elmt_Ref :=
2989 Make_Assignment_Statement (Loc,
2990 Name => New_Occurrence_Of (Element, Loc),
2991 Expression =>
2992 Make_Function_Call (Loc,
2993 Name => New_Occurrence_Of (Element_Op, Loc),
2994 Parameter_Associations => New_List (
2995 New_Occurrence_Of (Container, Loc),
2996 New_Occurrence_Of (Cursor, Loc))));
2998 Prepend (Elmt_Ref, Stats);
3000 -- The element is assignable in the expanded code
3002 Set_Assignment_OK (Name (Elmt_Ref));
3004 -- The loop is rewritten as a block, to hold the element declaration
3006 New_Loop :=
3007 Make_Block_Statement (Loc,
3008 Declarations => New_List (Elmt_Decl),
3009 Handled_Statement_Sequence =>
3010 Make_Handled_Sequence_Of_Statements (Loc,
3011 Statements => New_List (New_Loop)));
3012 end if;
3014 -- The element is only modified in expanded code, so it appears as
3015 -- unassigned to the warning machinery. We must suppress this spurious
3016 -- warning explicitly.
3018 Set_Warnings_Off (Element);
3020 Rewrite (N, New_Loop);
3022 -- The loop parameter is declared by an object declaration, but within
3023 -- the loop we must prevent user assignments to it, so we analyze the
3024 -- declaration and reset the entity kind, before analyzing the rest of
3025 -- the loop;
3027 Analyze (Elmt_Decl);
3028 Set_Ekind (Defining_Identifier (Elmt_Decl), E_Loop_Parameter);
3030 Analyze (N);
3031 end Expand_Formal_Container_Element_Loop;
3033 -----------------------------
3034 -- Expand_N_Goto_Statement --
3035 -----------------------------
3037 -- Add poll before goto if polling active
3039 procedure Expand_N_Goto_Statement (N : Node_Id) is
3040 begin
3041 Generate_Poll_Call (N);
3042 end Expand_N_Goto_Statement;
3044 ---------------------------
3045 -- Expand_N_If_Statement --
3046 ---------------------------
3048 -- First we deal with the case of C and Fortran convention boolean values,
3049 -- with zero/non-zero semantics.
3051 -- Second, we deal with the obvious rewriting for the cases where the
3052 -- condition of the IF is known at compile time to be True or False.
3054 -- Third, we remove elsif parts which have non-empty Condition_Actions and
3055 -- rewrite as independent if statements. For example:
3057 -- if x then xs
3058 -- elsif y then ys
3059 -- ...
3060 -- end if;
3062 -- becomes
3064 -- if x then xs
3065 -- else
3066 -- <<condition actions of y>>
3067 -- if y then ys
3068 -- ...
3069 -- end if;
3070 -- end if;
3072 -- This rewriting is needed if at least one elsif part has a non-empty
3073 -- Condition_Actions list. We also do the same processing if there is a
3074 -- constant condition in an elsif part (in conjunction with the first
3075 -- processing step mentioned above, for the recursive call made to deal
3076 -- with the created inner if, this deals with properly optimizing the
3077 -- cases of constant elsif conditions).
3079 procedure Expand_N_If_Statement (N : Node_Id) is
3080 Loc : constant Source_Ptr := Sloc (N);
3081 Hed : Node_Id;
3082 E : Node_Id;
3083 New_If : Node_Id;
3085 Warn_If_Deleted : constant Boolean :=
3086 Warn_On_Deleted_Code and then Comes_From_Source (N);
3087 -- Indicates whether we want warnings when we delete branches of the
3088 -- if statement based on constant condition analysis. We never want
3089 -- these warnings for expander generated code.
3091 begin
3092 -- Do not consider controlled objects found in an if statement which
3093 -- actually models an if expression because their early finalization
3094 -- will affect the result of the expression.
3096 if not From_Conditional_Expression (N) then
3097 Process_Statements_For_Controlled_Objects (N);
3098 end if;
3100 Adjust_Condition (Condition (N));
3102 -- The following loop deals with constant conditions for the IF. We
3103 -- need a loop because as we eliminate False conditions, we grab the
3104 -- first elsif condition and use it as the primary condition.
3106 while Compile_Time_Known_Value (Condition (N)) loop
3108 -- If condition is True, we can simply rewrite the if statement now
3109 -- by replacing it by the series of then statements.
3111 if Is_True (Expr_Value (Condition (N))) then
3113 -- All the else parts can be killed
3115 Kill_Dead_Code (Elsif_Parts (N), Warn_If_Deleted);
3116 Kill_Dead_Code (Else_Statements (N), Warn_If_Deleted);
3118 Hed := Remove_Head (Then_Statements (N));
3119 Insert_List_After (N, Then_Statements (N));
3120 Rewrite (N, Hed);
3121 return;
3123 -- If condition is False, then we can delete the condition and
3124 -- the Then statements
3126 else
3127 -- We do not delete the condition if constant condition warnings
3128 -- are enabled, since otherwise we end up deleting the desired
3129 -- warning. Of course the backend will get rid of this True/False
3130 -- test anyway, so nothing is lost here.
3132 if not Constant_Condition_Warnings then
3133 Kill_Dead_Code (Condition (N));
3134 end if;
3136 Kill_Dead_Code (Then_Statements (N), Warn_If_Deleted);
3138 -- If there are no elsif statements, then we simply replace the
3139 -- entire if statement by the sequence of else statements.
3141 if No (Elsif_Parts (N)) then
3142 if No (Else_Statements (N))
3143 or else Is_Empty_List (Else_Statements (N))
3144 then
3145 Rewrite (N,
3146 Make_Null_Statement (Sloc (N)));
3147 else
3148 Hed := Remove_Head (Else_Statements (N));
3149 Insert_List_After (N, Else_Statements (N));
3150 Rewrite (N, Hed);
3151 end if;
3153 return;
3155 -- If there are elsif statements, the first of them becomes the
3156 -- if/then section of the rebuilt if statement This is the case
3157 -- where we loop to reprocess this copied condition.
3159 else
3160 Hed := Remove_Head (Elsif_Parts (N));
3161 Insert_Actions (N, Condition_Actions (Hed));
3162 Set_Condition (N, Condition (Hed));
3163 Set_Then_Statements (N, Then_Statements (Hed));
3165 -- Hed might have been captured as the condition determining
3166 -- the current value for an entity. Now it is detached from
3167 -- the tree, so a Current_Value pointer in the condition might
3168 -- need to be updated.
3170 Set_Current_Value_Condition (N);
3172 if Is_Empty_List (Elsif_Parts (N)) then
3173 Set_Elsif_Parts (N, No_List);
3174 end if;
3175 end if;
3176 end if;
3177 end loop;
3179 -- Loop through elsif parts, dealing with constant conditions and
3180 -- possible condition actions that are present.
3182 if Present (Elsif_Parts (N)) then
3183 E := First (Elsif_Parts (N));
3184 while Present (E) loop
3186 -- Do not consider controlled objects found in an if statement
3187 -- which actually models an if expression because their early
3188 -- finalization will affect the result of the expression.
3190 if not From_Conditional_Expression (N) then
3191 Process_Statements_For_Controlled_Objects (E);
3192 end if;
3194 Adjust_Condition (Condition (E));
3196 -- If there are condition actions, then rewrite the if statement
3197 -- as indicated above. We also do the same rewrite for a True or
3198 -- False condition. The further processing of this constant
3199 -- condition is then done by the recursive call to expand the
3200 -- newly created if statement
3202 if Present (Condition_Actions (E))
3203 or else Compile_Time_Known_Value (Condition (E))
3204 then
3205 -- Note this is not an implicit if statement, since it is part
3206 -- of an explicit if statement in the source (or of an implicit
3207 -- if statement that has already been tested).
3209 New_If :=
3210 Make_If_Statement (Sloc (E),
3211 Condition => Condition (E),
3212 Then_Statements => Then_Statements (E),
3213 Elsif_Parts => No_List,
3214 Else_Statements => Else_Statements (N));
3216 -- Elsif parts for new if come from remaining elsif's of parent
3218 while Present (Next (E)) loop
3219 if No (Elsif_Parts (New_If)) then
3220 Set_Elsif_Parts (New_If, New_List);
3221 end if;
3223 Append (Remove_Next (E), Elsif_Parts (New_If));
3224 end loop;
3226 Set_Else_Statements (N, New_List (New_If));
3228 if Present (Condition_Actions (E)) then
3229 Insert_List_Before (New_If, Condition_Actions (E));
3230 end if;
3232 Remove (E);
3234 if Is_Empty_List (Elsif_Parts (N)) then
3235 Set_Elsif_Parts (N, No_List);
3236 end if;
3238 Analyze (New_If);
3239 return;
3241 -- No special processing for that elsif part, move to next
3243 else
3244 Next (E);
3245 end if;
3246 end loop;
3247 end if;
3249 -- Some more optimizations applicable if we still have an IF statement
3251 if Nkind (N) /= N_If_Statement then
3252 return;
3253 end if;
3255 -- Another optimization, special cases that can be simplified
3257 -- if expression then
3258 -- return true;
3259 -- else
3260 -- return false;
3261 -- end if;
3263 -- can be changed to:
3265 -- return expression;
3267 -- and
3269 -- if expression then
3270 -- return false;
3271 -- else
3272 -- return true;
3273 -- end if;
3275 -- can be changed to:
3277 -- return not (expression);
3279 -- Only do these optimizations if we are at least at -O1 level and
3280 -- do not do them if control flow optimizations are suppressed.
3282 if Optimization_Level > 0
3283 and then not Opt.Suppress_Control_Flow_Optimizations
3284 then
3285 if Nkind (N) = N_If_Statement
3286 and then No (Elsif_Parts (N))
3287 and then Present (Else_Statements (N))
3288 and then List_Length (Then_Statements (N)) = 1
3289 and then List_Length (Else_Statements (N)) = 1
3290 then
3291 declare
3292 Then_Stm : constant Node_Id := First (Then_Statements (N));
3293 Else_Stm : constant Node_Id := First (Else_Statements (N));
3295 begin
3296 if Nkind (Then_Stm) = N_Simple_Return_Statement
3297 and then
3298 Nkind (Else_Stm) = N_Simple_Return_Statement
3299 then
3300 declare
3301 Then_Expr : constant Node_Id := Expression (Then_Stm);
3302 Else_Expr : constant Node_Id := Expression (Else_Stm);
3304 begin
3305 if Nkind (Then_Expr) = N_Identifier
3306 and then
3307 Nkind (Else_Expr) = N_Identifier
3308 then
3309 if Entity (Then_Expr) = Standard_True
3310 and then Entity (Else_Expr) = Standard_False
3311 then
3312 Rewrite (N,
3313 Make_Simple_Return_Statement (Loc,
3314 Expression => Relocate_Node (Condition (N))));
3315 Analyze (N);
3316 return;
3318 elsif Entity (Then_Expr) = Standard_False
3319 and then Entity (Else_Expr) = Standard_True
3320 then
3321 Rewrite (N,
3322 Make_Simple_Return_Statement (Loc,
3323 Expression =>
3324 Make_Op_Not (Loc,
3325 Right_Opnd =>
3326 Relocate_Node (Condition (N)))));
3327 Analyze (N);
3328 return;
3329 end if;
3330 end if;
3331 end;
3332 end if;
3333 end;
3334 end if;
3335 end if;
3336 end Expand_N_If_Statement;
3338 --------------------------
3339 -- Expand_Iterator_Loop --
3340 --------------------------
3342 procedure Expand_Iterator_Loop (N : Node_Id) is
3343 Isc : constant Node_Id := Iteration_Scheme (N);
3344 I_Spec : constant Node_Id := Iterator_Specification (Isc);
3346 Container : constant Node_Id := Name (I_Spec);
3347 Container_Typ : constant Entity_Id := Base_Type (Etype (Container));
3349 begin
3350 -- Processing for arrays
3352 if Is_Array_Type (Container_Typ) then
3353 pragma Assert (Of_Present (I_Spec));
3354 Expand_Iterator_Loop_Over_Array (N);
3356 elsif Has_Aspect (Container_Typ, Aspect_Iterable) then
3357 if Of_Present (I_Spec) then
3358 Expand_Formal_Container_Element_Loop (N);
3359 else
3360 Expand_Formal_Container_Loop (N);
3361 end if;
3363 -- Processing for containers
3365 else
3366 Expand_Iterator_Loop_Over_Container
3367 (N, Isc, I_Spec, Container, Container_Typ);
3368 end if;
3369 end Expand_Iterator_Loop;
3371 -------------------------------------
3372 -- Expand_Iterator_Loop_Over_Array --
3373 -------------------------------------
3375 procedure Expand_Iterator_Loop_Over_Array (N : Node_Id) is
3376 Isc : constant Node_Id := Iteration_Scheme (N);
3377 I_Spec : constant Node_Id := Iterator_Specification (Isc);
3378 Array_Node : constant Node_Id := Name (I_Spec);
3379 Array_Typ : constant Entity_Id := Base_Type (Etype (Array_Node));
3380 Array_Dim : constant Pos := Number_Dimensions (Array_Typ);
3381 Id : constant Entity_Id := Defining_Identifier (I_Spec);
3382 Loc : constant Source_Ptr := Sloc (N);
3383 Stats : constant List_Id := Statements (N);
3384 Core_Loop : Node_Id;
3385 Dim1 : Int;
3386 Ind_Comp : Node_Id;
3387 Iterator : Entity_Id;
3389 -- Start of processing for Expand_Iterator_Loop_Over_Array
3391 begin
3392 -- for Element of Array loop
3394 -- It requires an internally generated cursor to iterate over the array
3396 pragma Assert (Of_Present (I_Spec));
3398 Iterator := Make_Temporary (Loc, 'C');
3400 -- Generate:
3401 -- Element : Component_Type renames Array (Iterator);
3402 -- Iterator is the index value, or a list of index values
3403 -- in the case of a multidimensional array.
3405 Ind_Comp :=
3406 Make_Indexed_Component (Loc,
3407 Prefix => Relocate_Node (Array_Node),
3408 Expressions => New_List (New_Occurrence_Of (Iterator, Loc)));
3410 Prepend_To (Stats,
3411 Make_Object_Renaming_Declaration (Loc,
3412 Defining_Identifier => Id,
3413 Subtype_Mark =>
3414 New_Occurrence_Of (Component_Type (Array_Typ), Loc),
3415 Name => Ind_Comp));
3417 -- Mark the loop variable as needing debug info, so that expansion
3418 -- of the renaming will result in Materialize_Entity getting set via
3419 -- Debug_Renaming_Declaration. (This setting is needed here because
3420 -- the setting in Freeze_Entity comes after the expansion, which is
3421 -- too late. ???)
3423 Set_Debug_Info_Needed (Id);
3425 -- Generate:
3427 -- for Iterator in [reverse] Array'Range (Array_Dim) loop
3428 -- Element : Component_Type renames Array (Iterator);
3429 -- <original loop statements>
3430 -- end loop;
3432 -- If this is an iteration over a multidimensional array, the
3433 -- innermost loop is over the last dimension in Ada, and over
3434 -- the first dimension in Fortran.
3436 if Convention (Array_Typ) = Convention_Fortran then
3437 Dim1 := 1;
3438 else
3439 Dim1 := Array_Dim;
3440 end if;
3442 Core_Loop :=
3443 Make_Loop_Statement (Loc,
3444 Iteration_Scheme =>
3445 Make_Iteration_Scheme (Loc,
3446 Loop_Parameter_Specification =>
3447 Make_Loop_Parameter_Specification (Loc,
3448 Defining_Identifier => Iterator,
3449 Discrete_Subtype_Definition =>
3450 Make_Attribute_Reference (Loc,
3451 Prefix => Relocate_Node (Array_Node),
3452 Attribute_Name => Name_Range,
3453 Expressions => New_List (
3454 Make_Integer_Literal (Loc, Dim1))),
3455 Reverse_Present => Reverse_Present (I_Spec))),
3456 Statements => Stats,
3457 End_Label => Empty);
3459 -- Processing for multidimensional array. The body of each loop is
3460 -- a loop over a previous dimension, going in decreasing order in Ada
3461 -- and in increasing order in Fortran.
3463 if Array_Dim > 1 then
3464 for Dim in 1 .. Array_Dim - 1 loop
3465 if Convention (Array_Typ) = Convention_Fortran then
3466 Dim1 := Dim + 1;
3467 else
3468 Dim1 := Array_Dim - Dim;
3469 end if;
3471 Iterator := Make_Temporary (Loc, 'C');
3473 -- Generate the dimension loops starting from the innermost one
3475 -- for Iterator in [reverse] Array'Range (Array_Dim - Dim) loop
3476 -- <core loop>
3477 -- end loop;
3479 Core_Loop :=
3480 Make_Loop_Statement (Loc,
3481 Iteration_Scheme =>
3482 Make_Iteration_Scheme (Loc,
3483 Loop_Parameter_Specification =>
3484 Make_Loop_Parameter_Specification (Loc,
3485 Defining_Identifier => Iterator,
3486 Discrete_Subtype_Definition =>
3487 Make_Attribute_Reference (Loc,
3488 Prefix => Relocate_Node (Array_Node),
3489 Attribute_Name => Name_Range,
3490 Expressions => New_List (
3491 Make_Integer_Literal (Loc, Dim1))),
3492 Reverse_Present => Reverse_Present (I_Spec))),
3493 Statements => New_List (Core_Loop),
3494 End_Label => Empty);
3496 -- Update the previously created object renaming declaration with
3497 -- the new iterator, by adding the index of the next loop to the
3498 -- indexed component, in the order that corresponds to the
3499 -- convention.
3501 if Convention (Array_Typ) = Convention_Fortran then
3502 Append_To (Expressions (Ind_Comp),
3503 New_Occurrence_Of (Iterator, Loc));
3504 else
3505 Prepend_To (Expressions (Ind_Comp),
3506 New_Occurrence_Of (Iterator, Loc));
3507 end if;
3508 end loop;
3509 end if;
3511 -- Inherit the loop identifier from the original loop. This ensures that
3512 -- the scope stack is consistent after the rewriting.
3514 if Present (Identifier (N)) then
3515 Set_Identifier (Core_Loop, Relocate_Node (Identifier (N)));
3516 end if;
3518 Rewrite (N, Core_Loop);
3519 Analyze (N);
3520 end Expand_Iterator_Loop_Over_Array;
3522 -----------------------------------------
3523 -- Expand_Iterator_Loop_Over_Container --
3524 -----------------------------------------
3526 -- For a 'for ... in' loop, such as:
3528 -- for Cursor in Iterator_Function (...) loop
3529 -- ...
3530 -- end loop;
3532 -- we generate:
3534 -- Iter : Iterator_Type := Iterator_Function (...);
3535 -- Cursor : Cursor_type := First (Iter); -- or Last for "reverse"
3536 -- while Has_Element (Cursor) loop
3537 -- ...
3539 -- Cursor := Iter.Next (Cursor); -- or Prev for "reverse"
3540 -- end loop;
3542 -- For a 'for ... of' loop, such as:
3544 -- for X of Container loop
3545 -- ...
3546 -- end loop;
3548 -- the RM implies the generation of:
3550 -- Iter : Iterator_Type := Container.Iterate; -- the Default_Iterator
3551 -- Cursor : Cursor_Type := First (Iter); -- or Last for "reverse"
3552 -- while Has_Element (Cursor) loop
3553 -- declare
3554 -- X : Element_Type renames Element (Cursor).Element.all;
3555 -- -- or Constant_Element
3556 -- begin
3557 -- ...
3558 -- end;
3559 -- Cursor := Iter.Next (Cursor); -- or Prev for "reverse"
3560 -- end loop;
3562 -- In the general case, we do what the RM says. However, the operations
3563 -- Element and Iter.Next are slow, which is bad inside a loop, because they
3564 -- involve dispatching via interfaces, secondary stack manipulation,
3565 -- Busy/Lock incr/decr, and adjust/finalization/at-end handling. So for the
3566 -- predefined containers, we use an equivalent but optimized expansion.
3568 -- In the optimized case, we make use of these:
3570 -- procedure Next (Position : in out Cursor); -- instead of Iter.Next
3572 -- function Pseudo_Reference
3573 -- (Container : aliased Vector'Class) return Reference_Control_Type;
3575 -- type Element_Access is access all Element_Type;
3577 -- function Get_Element_Access
3578 -- (Position : Cursor) return not null Element_Access;
3580 -- Next is declared in the visible part of the container packages.
3581 -- The other three are added in the private part. (We're not supposed to
3582 -- pollute the namespace for clients. The compiler has no trouble breaking
3583 -- privacy to call things in the private part of an instance.)
3585 -- Source:
3587 -- for X of My_Vector loop
3588 -- X.Count := X.Count + 1;
3589 -- ...
3590 -- end loop;
3592 -- The compiler will generate:
3594 -- Iter : Reversible_Iterator'Class := Iterate (My_Vector);
3595 -- -- Reversible_Iterator is an interface. Iterate is the
3596 -- -- Default_Iterator aspect of Vector. This increments Lock,
3597 -- -- disallowing tampering with cursors. Unfortunately, it does not
3598 -- -- increment Busy. The result of Iterate is Limited_Controlled;
3599 -- -- finalization will decrement Lock. This is a build-in-place
3600 -- -- dispatching call to Iterate.
3602 -- Cur : Cursor := First (Iter); -- or Last
3603 -- -- Dispatching call via interface.
3605 -- Control : Reference_Control_Type := Pseudo_Reference (My_Vector);
3606 -- -- Pseudo_Reference increments Busy, to detect tampering with
3607 -- -- elements, as required by RM. Also redundantly increment
3608 -- -- Lock. Finalization of Control will decrement both Busy and
3609 -- -- Lock. Pseudo_Reference returns a record containing a pointer to
3610 -- -- My_Vector, used by Finalize.
3611 -- --
3612 -- -- Control is not used below, except to finalize it -- it's purely
3613 -- -- an RAII thing. This is needed because we are eliminating the
3614 -- -- call to Reference within the loop.
3616 -- while Has_Element (Cur) loop
3617 -- declare
3618 -- X : My_Element renames Get_Element_Access (Cur).all;
3619 -- -- Get_Element_Access returns a pointer to the element
3620 -- -- designated by Cur. No dispatching here, and no horsing
3621 -- -- around with access discriminants. This is instead of the
3622 -- -- existing
3623 -- --
3624 -- -- X : My_Element renames Reference (Cur).Element.all;
3625 -- --
3626 -- -- which creates a controlled object.
3627 -- begin
3628 -- -- Any attempt to tamper with My_Vector here in the loop
3629 -- -- will correctly raise Program_Error, because of the
3630 -- -- Control.
3632 -- X.Count := X.Count + 1;
3633 -- ...
3635 -- Next (Cur); -- or Prev
3636 -- -- This is instead of "Cur := Next (Iter, Cur);"
3637 -- end;
3638 -- -- No finalization here
3639 -- end loop;
3640 -- Finalize Iter and Control here, decrementing Lock twice and Busy
3641 -- once.
3643 -- This optimization makes "for ... of" loops over 30 times faster in cases
3644 -- measured.
3646 procedure Expand_Iterator_Loop_Over_Container
3647 (N : Node_Id;
3648 Isc : Node_Id;
3649 I_Spec : Node_Id;
3650 Container : Node_Id;
3651 Container_Typ : Entity_Id)
3653 Id : constant Entity_Id := Defining_Identifier (I_Spec);
3654 Elem_Typ : constant Entity_Id := Etype (Id);
3655 Id_Kind : constant Entity_Kind := Ekind (Id);
3656 Loc : constant Source_Ptr := Sloc (N);
3657 Stats : constant List_Id := Statements (N);
3659 Cursor : Entity_Id;
3660 Decl : Node_Id;
3661 Iter_Type : Entity_Id;
3662 Iterator : Entity_Id;
3663 Name_Init : Name_Id;
3664 Name_Step : Name_Id;
3665 New_Loop : Node_Id;
3667 Fast_Element_Access_Op : Entity_Id := Empty;
3668 Fast_Step_Op : Entity_Id := Empty;
3669 -- Only for optimized version of "for ... of"
3671 Iter_Pack : Entity_Id;
3672 -- The package in which the iterator interface is instantiated. This is
3673 -- typically an instance within the container package.
3675 Pack : Entity_Id;
3676 -- The package in which the container type is declared
3678 begin
3679 -- Determine the advancement and initialization steps for the cursor.
3680 -- Analysis of the expanded loop will verify that the container has a
3681 -- reverse iterator.
3683 if Reverse_Present (I_Spec) then
3684 Name_Init := Name_Last;
3685 Name_Step := Name_Previous;
3686 else
3687 Name_Init := Name_First;
3688 Name_Step := Name_Next;
3689 end if;
3691 -- The type of the iterator is the return type of the Iterate function
3692 -- used. For the "of" form this is the default iterator for the type,
3693 -- otherwise it is the type of the explicit function used in the
3694 -- iterator specification. The most common case will be an Iterate
3695 -- function in the container package.
3697 -- The Iterator type is declared in an instance within the container
3698 -- package itself, for example:
3700 -- package Vector_Iterator_Interfaces is new
3701 -- Ada.Iterator_Interfaces (Cursor, Has_Element);
3703 -- If the container type is a derived type, the cursor type is found in
3704 -- the package of the ultimate ancestor type.
3706 if Is_Derived_Type (Container_Typ) then
3707 Pack := Scope (Root_Type (Container_Typ));
3708 else
3709 Pack := Scope (Container_Typ);
3710 end if;
3712 if Of_Present (I_Spec) then
3713 Handle_Of : declare
3714 Container_Arg : Node_Id;
3716 function Get_Default_Iterator
3717 (T : Entity_Id) return Entity_Id;
3718 -- If the container is a derived type, the aspect holds the parent
3719 -- operation. The required one is a primitive of the derived type
3720 -- and is either inherited or overridden. Also sets Container_Arg.
3722 --------------------------
3723 -- Get_Default_Iterator --
3724 --------------------------
3726 function Get_Default_Iterator
3727 (T : Entity_Id) return Entity_Id
3729 Iter : constant Entity_Id :=
3730 Entity (Find_Value_Of_Aspect (T, Aspect_Default_Iterator));
3731 Prim : Elmt_Id;
3732 Op : Entity_Id;
3734 begin
3735 Container_Arg := New_Copy_Tree (Container);
3737 -- A previous version of GNAT allowed indexing aspects to
3738 -- be redefined on derived container types, while the
3739 -- default iterator was inherited from the parent type.
3740 -- This non-standard extension is preserved temporarily for
3741 -- use by the modelling project under debug flag d.X.
3743 if Debug_Flag_Dot_XX then
3744 if Base_Type (Etype (Container)) /=
3745 Base_Type (Etype (First_Formal (Iter)))
3746 then
3747 Container_Arg :=
3748 Make_Type_Conversion (Loc,
3749 Subtype_Mark =>
3750 New_Occurrence_Of
3751 (Etype (First_Formal (Iter)), Loc),
3752 Expression => Container_Arg);
3753 end if;
3755 return Iter;
3757 elsif Is_Derived_Type (T) then
3759 -- The default iterator must be a primitive operation of the
3760 -- type, at the same dispatch slot position.
3762 Prim := First_Elmt (Primitive_Operations (T));
3763 while Present (Prim) loop
3764 Op := Node (Prim);
3766 if Chars (Op) = Chars (Iter)
3767 and then DT_Position (Op) = DT_Position (Iter)
3768 then
3769 return Op;
3770 end if;
3772 Next_Elmt (Prim);
3773 end loop;
3775 -- Default iterator must exist
3777 pragma Assert (False);
3779 -- Otherwise not a derived type
3781 else
3782 return Iter;
3783 end if;
3784 end Get_Default_Iterator;
3786 -- Local variables
3788 Default_Iter : Entity_Id;
3789 Ent : Entity_Id;
3791 Reference_Control_Type : Entity_Id := Empty;
3792 Pseudo_Reference : Entity_Id := Empty;
3794 -- Start of processing for Handle_Of
3796 begin
3797 if Is_Class_Wide_Type (Container_Typ) then
3798 Default_Iter :=
3799 Get_Default_Iterator (Etype (Base_Type (Container_Typ)));
3800 else
3801 Default_Iter := Get_Default_Iterator (Etype (Container));
3802 end if;
3804 Cursor := Make_Temporary (Loc, 'C');
3806 -- For a container element iterator, the iterator type is obtained
3807 -- from the corresponding aspect, whose return type is descended
3808 -- from the corresponding interface type in some instance of
3809 -- Ada.Iterator_Interfaces. The actuals of that instantiation
3810 -- are Cursor and Has_Element.
3812 Iter_Type := Etype (Default_Iter);
3814 -- The iterator type, which is a class-wide type, may itself be
3815 -- derived locally, so the desired instantiation is the scope of
3816 -- the root type of the iterator type.
3818 Iter_Pack := Scope (Root_Type (Etype (Iter_Type)));
3820 -- Find declarations needed for "for ... of" optimization
3822 Ent := First_Entity (Pack);
3823 while Present (Ent) loop
3824 if Chars (Ent) = Name_Get_Element_Access then
3825 Fast_Element_Access_Op := Ent;
3827 elsif Chars (Ent) = Name_Step
3828 and then Ekind (Ent) = E_Procedure
3829 then
3830 Fast_Step_Op := Ent;
3832 elsif Chars (Ent) = Name_Reference_Control_Type then
3833 Reference_Control_Type := Ent;
3835 elsif Chars (Ent) = Name_Pseudo_Reference then
3836 Pseudo_Reference := Ent;
3837 end if;
3839 Next_Entity (Ent);
3840 end loop;
3842 if Present (Reference_Control_Type)
3843 and then Present (Pseudo_Reference)
3844 then
3845 Insert_Action (N,
3846 Make_Object_Declaration (Loc,
3847 Defining_Identifier => Make_Temporary (Loc, 'D'),
3848 Object_Definition =>
3849 New_Occurrence_Of (Reference_Control_Type, Loc),
3850 Expression =>
3851 Make_Function_Call (Loc,
3852 Name =>
3853 New_Occurrence_Of (Pseudo_Reference, Loc),
3854 Parameter_Associations =>
3855 New_List (New_Copy_Tree (Container_Arg)))));
3856 end if;
3858 -- Rewrite domain of iteration as a call to the default iterator
3859 -- for the container type. The formal may be an access parameter
3860 -- in which case we must build a reference to the container.
3862 declare
3863 Arg : Node_Id;
3864 begin
3865 if Is_Access_Type (Etype (First_Entity (Default_Iter))) then
3866 Arg :=
3867 Make_Attribute_Reference (Loc,
3868 Prefix => Container_Arg,
3869 Attribute_Name => Name_Unrestricted_Access);
3870 else
3871 Arg := Container_Arg;
3872 end if;
3874 Rewrite (Name (I_Spec),
3875 Make_Function_Call (Loc,
3876 Name =>
3877 New_Occurrence_Of (Default_Iter, Loc),
3878 Parameter_Associations => New_List (Arg)));
3879 end;
3881 Analyze_And_Resolve (Name (I_Spec));
3883 -- Find cursor type in proper iterator package, which is an
3884 -- instantiation of Iterator_Interfaces.
3886 Ent := First_Entity (Iter_Pack);
3887 while Present (Ent) loop
3888 if Chars (Ent) = Name_Cursor then
3889 Set_Etype (Cursor, Etype (Ent));
3890 exit;
3891 end if;
3893 Next_Entity (Ent);
3894 end loop;
3896 if Present (Fast_Element_Access_Op) then
3897 Decl :=
3898 Make_Object_Renaming_Declaration (Loc,
3899 Defining_Identifier => Id,
3900 Subtype_Mark =>
3901 New_Occurrence_Of (Elem_Typ, Loc),
3902 Name =>
3903 Make_Explicit_Dereference (Loc,
3904 Prefix =>
3905 Make_Function_Call (Loc,
3906 Name =>
3907 New_Occurrence_Of (Fast_Element_Access_Op, Loc),
3908 Parameter_Associations =>
3909 New_List (New_Occurrence_Of (Cursor, Loc)))));
3911 else
3912 Decl :=
3913 Make_Object_Renaming_Declaration (Loc,
3914 Defining_Identifier => Id,
3915 Subtype_Mark =>
3916 New_Occurrence_Of (Elem_Typ, Loc),
3917 Name =>
3918 Make_Indexed_Component (Loc,
3919 Prefix => Relocate_Node (Container_Arg),
3920 Expressions =>
3921 New_List (New_Occurrence_Of (Cursor, Loc))));
3922 end if;
3924 -- The defining identifier in the iterator is user-visible and
3925 -- must be visible in the debugger.
3927 Set_Debug_Info_Needed (Id);
3929 -- If the container does not have a variable indexing aspect,
3930 -- the element is a constant in the loop. The container itself
3931 -- may be constant, in which case the element is a constant as
3932 -- well. The container has been rewritten as a call to Iterate,
3933 -- so examine original node.
3935 if No (Find_Value_Of_Aspect
3936 (Container_Typ, Aspect_Variable_Indexing))
3937 or else not Is_Variable (Original_Node (Container))
3938 then
3939 Set_Ekind (Id, E_Constant);
3940 end if;
3942 Prepend_To (Stats, Decl);
3943 end Handle_Of;
3945 -- X in Iterate (S) : type of iterator is type of explicitly given
3946 -- Iterate function, and the loop variable is the cursor. It will be
3947 -- assigned in the loop and must be a variable.
3949 else
3950 Iter_Type := Etype (Name (I_Spec));
3952 -- The iterator type, which is a class-wide type, may itself be
3953 -- derived locally, so the desired instantiation is the scope of
3954 -- the root type of the iterator type, as in the "of" case.
3956 Iter_Pack := Scope (Root_Type (Etype (Iter_Type)));
3957 Cursor := Id;
3958 end if;
3960 Iterator := Make_Temporary (Loc, 'I');
3962 -- For both iterator forms, add a call to the step operation to advance
3963 -- the cursor. Generate:
3965 -- Cursor := Iterator.Next (Cursor);
3967 -- or else
3969 -- Cursor := Next (Cursor);
3971 if Present (Fast_Element_Access_Op) and then Present (Fast_Step_Op) then
3972 declare
3973 Curs_Name : constant Node_Id := New_Occurrence_Of (Cursor, Loc);
3974 Step_Call : Node_Id;
3976 begin
3977 Step_Call :=
3978 Make_Procedure_Call_Statement (Loc,
3979 Name =>
3980 New_Occurrence_Of (Fast_Step_Op, Loc),
3981 Parameter_Associations => New_List (Curs_Name));
3983 Append_To (Stats, Step_Call);
3984 Set_Assignment_OK (Curs_Name);
3985 end;
3987 else
3988 declare
3989 Rhs : Node_Id;
3991 begin
3992 Rhs :=
3993 Make_Function_Call (Loc,
3994 Name =>
3995 Make_Selected_Component (Loc,
3996 Prefix => New_Occurrence_Of (Iterator, Loc),
3997 Selector_Name => Make_Identifier (Loc, Name_Step)),
3998 Parameter_Associations => New_List (
3999 New_Occurrence_Of (Cursor, Loc)));
4001 Append_To (Stats,
4002 Make_Assignment_Statement (Loc,
4003 Name => New_Occurrence_Of (Cursor, Loc),
4004 Expression => Rhs));
4005 Set_Assignment_OK (Name (Last (Stats)));
4006 end;
4007 end if;
4009 -- Generate:
4010 -- while Has_Element (Cursor) loop
4011 -- <Stats>
4012 -- end loop;
4014 -- Has_Element is the second actual in the iterator package
4016 New_Loop :=
4017 Make_Loop_Statement (Loc,
4018 Iteration_Scheme =>
4019 Make_Iteration_Scheme (Loc,
4020 Condition =>
4021 Make_Function_Call (Loc,
4022 Name =>
4023 New_Occurrence_Of
4024 (Next_Entity (First_Entity (Iter_Pack)), Loc),
4025 Parameter_Associations => New_List (
4026 New_Occurrence_Of (Cursor, Loc)))),
4028 Statements => Stats,
4029 End_Label => Empty);
4031 -- If present, preserve identifier of loop, which can be used in an exit
4032 -- statement in the body.
4034 if Present (Identifier (N)) then
4035 Set_Identifier (New_Loop, Relocate_Node (Identifier (N)));
4036 end if;
4038 -- Create the declarations for Iterator and cursor and insert them
4039 -- before the source loop. Given that the domain of iteration is already
4040 -- an entity, the iterator is just a renaming of that entity. Possible
4041 -- optimization ???
4043 Insert_Action (N,
4044 Make_Object_Renaming_Declaration (Loc,
4045 Defining_Identifier => Iterator,
4046 Subtype_Mark => New_Occurrence_Of (Iter_Type, Loc),
4047 Name => Relocate_Node (Name (I_Spec))));
4049 -- Create declaration for cursor
4051 declare
4052 Cursor_Decl : constant Node_Id :=
4053 Make_Object_Declaration (Loc,
4054 Defining_Identifier => Cursor,
4055 Object_Definition =>
4056 New_Occurrence_Of (Etype (Cursor), Loc),
4057 Expression =>
4058 Make_Selected_Component (Loc,
4059 Prefix =>
4060 New_Occurrence_Of (Iterator, Loc),
4061 Selector_Name =>
4062 Make_Identifier (Loc, Name_Init)));
4064 begin
4065 -- The cursor is only modified in expanded code, so it appears
4066 -- as unassigned to the warning machinery. We must suppress this
4067 -- spurious warning explicitly. The cursor's kind is that of the
4068 -- original loop parameter (it is a constant if the domain of
4069 -- iteration is constant).
4071 Set_Warnings_Off (Cursor);
4072 Set_Assignment_OK (Cursor_Decl);
4074 Insert_Action (N, Cursor_Decl);
4075 Set_Ekind (Cursor, Id_Kind);
4076 end;
4078 -- If the range of iteration is given by a function call that returns
4079 -- a container, the finalization actions have been saved in the
4080 -- Condition_Actions of the iterator. Insert them now at the head of
4081 -- the loop.
4083 if Present (Condition_Actions (Isc)) then
4084 Insert_List_Before (N, Condition_Actions (Isc));
4085 end if;
4087 Rewrite (N, New_Loop);
4088 Analyze (N);
4089 end Expand_Iterator_Loop_Over_Container;
4091 -----------------------------
4092 -- Expand_N_Loop_Statement --
4093 -----------------------------
4095 -- 1. Remove null loop entirely
4096 -- 2. Deal with while condition for C/Fortran boolean
4097 -- 3. Deal with loops with a non-standard enumeration type range
4098 -- 4. Deal with while loops where Condition_Actions is set
4099 -- 5. Deal with loops over predicated subtypes
4100 -- 6. Deal with loops with iterators over arrays and containers
4101 -- 7. Insert polling call if required
4103 procedure Expand_N_Loop_Statement (N : Node_Id) is
4104 Loc : constant Source_Ptr := Sloc (N);
4105 Scheme : constant Node_Id := Iteration_Scheme (N);
4106 Stmt : Node_Id;
4108 begin
4109 -- Delete null loop
4111 if Is_Null_Loop (N) then
4112 Rewrite (N, Make_Null_Statement (Loc));
4113 return;
4114 end if;
4116 -- Deal with condition for C/Fortran Boolean
4118 if Present (Scheme) then
4119 Adjust_Condition (Condition (Scheme));
4120 end if;
4122 -- Generate polling call
4124 if Is_Non_Empty_List (Statements (N)) then
4125 Generate_Poll_Call (First (Statements (N)));
4126 end if;
4128 -- Nothing more to do for plain loop with no iteration scheme
4130 if No (Scheme) then
4131 null;
4133 -- Case of for loop (Loop_Parameter_Specification present)
4135 -- Note: we do not have to worry about validity checking of the for loop
4136 -- range bounds here, since they were frozen with constant declarations
4137 -- and it is during that process that the validity checking is done.
4139 elsif Present (Loop_Parameter_Specification (Scheme)) then
4140 declare
4141 LPS : constant Node_Id :=
4142 Loop_Parameter_Specification (Scheme);
4143 Loop_Id : constant Entity_Id := Defining_Identifier (LPS);
4144 Ltype : constant Entity_Id := Etype (Loop_Id);
4145 Btype : constant Entity_Id := Base_Type (Ltype);
4146 Expr : Node_Id;
4147 Decls : List_Id;
4148 New_Id : Entity_Id;
4150 begin
4151 -- Deal with loop over predicates
4153 if Is_Discrete_Type (Ltype)
4154 and then Present (Predicate_Function (Ltype))
4155 then
4156 Expand_Predicated_Loop (N);
4158 -- Handle the case where we have a for loop with the range type
4159 -- being an enumeration type with non-standard representation.
4160 -- In this case we expand:
4162 -- for x in [reverse] a .. b loop
4163 -- ...
4164 -- end loop;
4166 -- to
4168 -- for xP in [reverse] integer
4169 -- range etype'Pos (a) .. etype'Pos (b)
4170 -- loop
4171 -- declare
4172 -- x : constant etype := Pos_To_Rep (xP);
4173 -- begin
4174 -- ...
4175 -- end;
4176 -- end loop;
4178 elsif Is_Enumeration_Type (Btype)
4179 and then Present (Enum_Pos_To_Rep (Btype))
4180 then
4181 New_Id :=
4182 Make_Defining_Identifier (Loc,
4183 Chars => New_External_Name (Chars (Loop_Id), 'P'));
4185 -- If the type has a contiguous representation, successive
4186 -- values can be generated as offsets from the first literal.
4188 if Has_Contiguous_Rep (Btype) then
4189 Expr :=
4190 Unchecked_Convert_To (Btype,
4191 Make_Op_Add (Loc,
4192 Left_Opnd =>
4193 Make_Integer_Literal (Loc,
4194 Enumeration_Rep (First_Literal (Btype))),
4195 Right_Opnd => New_Occurrence_Of (New_Id, Loc)));
4196 else
4197 -- Use the constructed array Enum_Pos_To_Rep
4199 Expr :=
4200 Make_Indexed_Component (Loc,
4201 Prefix =>
4202 New_Occurrence_Of (Enum_Pos_To_Rep (Btype), Loc),
4203 Expressions =>
4204 New_List (New_Occurrence_Of (New_Id, Loc)));
4205 end if;
4207 -- Build declaration for loop identifier
4209 Decls :=
4210 New_List (
4211 Make_Object_Declaration (Loc,
4212 Defining_Identifier => Loop_Id,
4213 Constant_Present => True,
4214 Object_Definition => New_Occurrence_Of (Ltype, Loc),
4215 Expression => Expr));
4217 Rewrite (N,
4218 Make_Loop_Statement (Loc,
4219 Identifier => Identifier (N),
4221 Iteration_Scheme =>
4222 Make_Iteration_Scheme (Loc,
4223 Loop_Parameter_Specification =>
4224 Make_Loop_Parameter_Specification (Loc,
4225 Defining_Identifier => New_Id,
4226 Reverse_Present => Reverse_Present (LPS),
4228 Discrete_Subtype_Definition =>
4229 Make_Subtype_Indication (Loc,
4231 Subtype_Mark =>
4232 New_Occurrence_Of (Standard_Natural, Loc),
4234 Constraint =>
4235 Make_Range_Constraint (Loc,
4236 Range_Expression =>
4237 Make_Range (Loc,
4239 Low_Bound =>
4240 Make_Attribute_Reference (Loc,
4241 Prefix =>
4242 New_Occurrence_Of (Btype, Loc),
4244 Attribute_Name => Name_Pos,
4246 Expressions => New_List (
4247 Relocate_Node
4248 (Type_Low_Bound (Ltype)))),
4250 High_Bound =>
4251 Make_Attribute_Reference (Loc,
4252 Prefix =>
4253 New_Occurrence_Of (Btype, Loc),
4255 Attribute_Name => Name_Pos,
4257 Expressions => New_List (
4258 Relocate_Node
4259 (Type_High_Bound
4260 (Ltype))))))))),
4262 Statements => New_List (
4263 Make_Block_Statement (Loc,
4264 Declarations => Decls,
4265 Handled_Statement_Sequence =>
4266 Make_Handled_Sequence_Of_Statements (Loc,
4267 Statements => Statements (N)))),
4269 End_Label => End_Label (N)));
4271 -- The loop parameter's entity must be removed from the loop
4272 -- scope's entity list and rendered invisible, since it will
4273 -- now be located in the new block scope. Any other entities
4274 -- already associated with the loop scope, such as the loop
4275 -- parameter's subtype, will remain there.
4277 -- In an element loop, the loop will contain a declaration for
4278 -- a cursor variable; otherwise the loop id is the first entity
4279 -- in the scope constructed for the loop.
4281 if Comes_From_Source (Loop_Id) then
4282 pragma Assert (First_Entity (Scope (Loop_Id)) = Loop_Id);
4283 null;
4284 end if;
4286 Set_First_Entity (Scope (Loop_Id), Next_Entity (Loop_Id));
4287 Remove_Homonym (Loop_Id);
4289 if Last_Entity (Scope (Loop_Id)) = Loop_Id then
4290 Set_Last_Entity (Scope (Loop_Id), Empty);
4291 end if;
4293 Analyze (N);
4295 -- Nothing to do with other cases of for loops
4297 else
4298 null;
4299 end if;
4300 end;
4302 -- Second case, if we have a while loop with Condition_Actions set, then
4303 -- we change it into a plain loop:
4305 -- while C loop
4306 -- ...
4307 -- end loop;
4309 -- changed to:
4311 -- loop
4312 -- <<condition actions>>
4313 -- exit when not C;
4314 -- ...
4315 -- end loop
4317 elsif Present (Scheme)
4318 and then Present (Condition_Actions (Scheme))
4319 and then Present (Condition (Scheme))
4320 then
4321 declare
4322 ES : Node_Id;
4324 begin
4325 ES :=
4326 Make_Exit_Statement (Sloc (Condition (Scheme)),
4327 Condition =>
4328 Make_Op_Not (Sloc (Condition (Scheme)),
4329 Right_Opnd => Condition (Scheme)));
4331 Prepend (ES, Statements (N));
4332 Insert_List_Before (ES, Condition_Actions (Scheme));
4334 -- This is not an implicit loop, since it is generated in response
4335 -- to the loop statement being processed. If this is itself
4336 -- implicit, the restriction has already been checked. If not,
4337 -- it is an explicit loop.
4339 Rewrite (N,
4340 Make_Loop_Statement (Sloc (N),
4341 Identifier => Identifier (N),
4342 Statements => Statements (N),
4343 End_Label => End_Label (N)));
4345 Analyze (N);
4346 end;
4348 -- Here to deal with iterator case
4350 elsif Present (Scheme)
4351 and then Present (Iterator_Specification (Scheme))
4352 then
4353 Expand_Iterator_Loop (N);
4355 -- An iterator loop may generate renaming declarations for elements
4356 -- that require debug information. This is the case in particular
4357 -- with element iterators, where debug information must be generated
4358 -- for the temporary that holds the element value. These temporaries
4359 -- are created within a transient block whose local declarations are
4360 -- transferred to the loop, which now has nontrivial local objects.
4362 if Nkind (N) = N_Loop_Statement
4363 and then Present (Identifier (N))
4364 then
4365 Qualify_Entity_Names (N);
4366 end if;
4367 end if;
4369 -- When the iteration scheme mentiones attribute 'Loop_Entry, the loop
4370 -- is transformed into a conditional block where the original loop is
4371 -- the sole statement. Inspect the statements of the nested loop for
4372 -- controlled objects.
4374 Stmt := N;
4376 if Subject_To_Loop_Entry_Attributes (Stmt) then
4377 Stmt := Find_Loop_In_Conditional_Block (Stmt);
4378 end if;
4380 Process_Statements_For_Controlled_Objects (Stmt);
4381 end Expand_N_Loop_Statement;
4383 ----------------------------
4384 -- Expand_Predicated_Loop --
4385 ----------------------------
4387 -- Note: the expander can handle generation of loops over predicated
4388 -- subtypes for both the dynamic and static cases. Depending on what
4389 -- we decide is allowed in Ada 2012 mode and/or extensions allowed
4390 -- mode, the semantic analyzer may disallow one or both forms.
4392 procedure Expand_Predicated_Loop (N : Node_Id) is
4393 Loc : constant Source_Ptr := Sloc (N);
4394 Isc : constant Node_Id := Iteration_Scheme (N);
4395 LPS : constant Node_Id := Loop_Parameter_Specification (Isc);
4396 Loop_Id : constant Entity_Id := Defining_Identifier (LPS);
4397 Ltype : constant Entity_Id := Etype (Loop_Id);
4398 Stat : constant List_Id := Static_Discrete_Predicate (Ltype);
4399 Stmts : constant List_Id := Statements (N);
4401 begin
4402 -- Case of iteration over non-static predicate, should not be possible
4403 -- since this is not allowed by the semantics and should have been
4404 -- caught during analysis of the loop statement.
4406 if No (Stat) then
4407 raise Program_Error;
4409 -- If the predicate list is empty, that corresponds to a predicate of
4410 -- False, in which case the loop won't run at all, and we rewrite the
4411 -- entire loop as a null statement.
4413 elsif Is_Empty_List (Stat) then
4414 Rewrite (N, Make_Null_Statement (Loc));
4415 Analyze (N);
4417 -- For expansion over a static predicate we generate the following
4419 -- declare
4420 -- J : Ltype := min-val;
4421 -- begin
4422 -- loop
4423 -- body
4424 -- case J is
4425 -- when endpoint => J := startpoint;
4426 -- when endpoint => J := startpoint;
4427 -- ...
4428 -- when max-val => exit;
4429 -- when others => J := Lval'Succ (J);
4430 -- end case;
4431 -- end loop;
4432 -- end;
4434 -- with min-val replaced by max-val and Succ replaced by Pred if the
4435 -- loop parameter specification carries a Reverse indicator.
4437 -- To make this a little clearer, let's take a specific example:
4439 -- type Int is range 1 .. 10;
4440 -- subtype StaticP is Int with
4441 -- predicate => StaticP in 3 | 10 | 5 .. 7;
4442 -- ...
4443 -- for L in StaticP loop
4444 -- Put_Line ("static:" & J'Img);
4445 -- end loop;
4447 -- In this case, the loop is transformed into
4449 -- begin
4450 -- J : L := 3;
4451 -- loop
4452 -- body
4453 -- case J is
4454 -- when 3 => J := 5;
4455 -- when 7 => J := 10;
4456 -- when 10 => exit;
4457 -- when others => J := L'Succ (J);
4458 -- end case;
4459 -- end loop;
4460 -- end;
4462 else
4463 Static_Predicate : declare
4464 S : Node_Id;
4465 D : Node_Id;
4466 P : Node_Id;
4467 Alts : List_Id;
4468 Cstm : Node_Id;
4470 function Lo_Val (N : Node_Id) return Node_Id;
4471 -- Given static expression or static range, returns an identifier
4472 -- whose value is the low bound of the expression value or range.
4474 function Hi_Val (N : Node_Id) return Node_Id;
4475 -- Given static expression or static range, returns an identifier
4476 -- whose value is the high bound of the expression value or range.
4478 ------------
4479 -- Hi_Val --
4480 ------------
4482 function Hi_Val (N : Node_Id) return Node_Id is
4483 begin
4484 if Is_OK_Static_Expression (N) then
4485 return New_Copy (N);
4486 else
4487 pragma Assert (Nkind (N) = N_Range);
4488 return New_Copy (High_Bound (N));
4489 end if;
4490 end Hi_Val;
4492 ------------
4493 -- Lo_Val --
4494 ------------
4496 function Lo_Val (N : Node_Id) return Node_Id is
4497 begin
4498 if Is_OK_Static_Expression (N) then
4499 return New_Copy (N);
4500 else
4501 pragma Assert (Nkind (N) = N_Range);
4502 return New_Copy (Low_Bound (N));
4503 end if;
4504 end Lo_Val;
4506 -- Start of processing for Static_Predicate
4508 begin
4509 -- Convert loop identifier to normal variable and reanalyze it so
4510 -- that this conversion works. We have to use the same defining
4511 -- identifier, since there may be references in the loop body.
4513 Set_Analyzed (Loop_Id, False);
4514 Set_Ekind (Loop_Id, E_Variable);
4516 -- In most loops the loop variable is assigned in various
4517 -- alternatives in the body. However, in the rare case when
4518 -- the range specifies a single element, the loop variable
4519 -- may trigger a spurious warning that is could be constant.
4520 -- This warning might as well be suppressed.
4522 Set_Warnings_Off (Loop_Id);
4524 -- Loop to create branches of case statement
4526 Alts := New_List;
4528 if Reverse_Present (LPS) then
4530 -- Initial value is largest value in predicate.
4532 D :=
4533 Make_Object_Declaration (Loc,
4534 Defining_Identifier => Loop_Id,
4535 Object_Definition => New_Occurrence_Of (Ltype, Loc),
4536 Expression => Hi_Val (Last (Stat)));
4538 P := Last (Stat);
4539 while Present (P) loop
4540 if No (Prev (P)) then
4541 S := Make_Exit_Statement (Loc);
4542 else
4543 S :=
4544 Make_Assignment_Statement (Loc,
4545 Name => New_Occurrence_Of (Loop_Id, Loc),
4546 Expression => Hi_Val (Prev (P)));
4547 Set_Suppress_Assignment_Checks (S);
4548 end if;
4550 Append_To (Alts,
4551 Make_Case_Statement_Alternative (Loc,
4552 Statements => New_List (S),
4553 Discrete_Choices => New_List (Lo_Val (P))));
4555 Prev (P);
4556 end loop;
4558 else
4560 -- Initial value is smallest value in predicate.
4562 D :=
4563 Make_Object_Declaration (Loc,
4564 Defining_Identifier => Loop_Id,
4565 Object_Definition => New_Occurrence_Of (Ltype, Loc),
4566 Expression => Lo_Val (First (Stat)));
4568 P := First (Stat);
4569 while Present (P) loop
4570 if No (Next (P)) then
4571 S := Make_Exit_Statement (Loc);
4572 else
4573 S :=
4574 Make_Assignment_Statement (Loc,
4575 Name => New_Occurrence_Of (Loop_Id, Loc),
4576 Expression => Lo_Val (Next (P)));
4577 Set_Suppress_Assignment_Checks (S);
4578 end if;
4580 Append_To (Alts,
4581 Make_Case_Statement_Alternative (Loc,
4582 Statements => New_List (S),
4583 Discrete_Choices => New_List (Hi_Val (P))));
4585 Next (P);
4586 end loop;
4587 end if;
4589 -- Add others choice
4591 declare
4592 Name_Next : Name_Id;
4594 begin
4595 if Reverse_Present (LPS) then
4596 Name_Next := Name_Pred;
4597 else
4598 Name_Next := Name_Succ;
4599 end if;
4601 S :=
4602 Make_Assignment_Statement (Loc,
4603 Name => New_Occurrence_Of (Loop_Id, Loc),
4604 Expression =>
4605 Make_Attribute_Reference (Loc,
4606 Prefix => New_Occurrence_Of (Ltype, Loc),
4607 Attribute_Name => Name_Next,
4608 Expressions => New_List (
4609 New_Occurrence_Of (Loop_Id, Loc))));
4610 Set_Suppress_Assignment_Checks (S);
4611 end;
4613 Append_To (Alts,
4614 Make_Case_Statement_Alternative (Loc,
4615 Discrete_Choices => New_List (Make_Others_Choice (Loc)),
4616 Statements => New_List (S)));
4618 -- Construct case statement and append to body statements
4620 Cstm :=
4621 Make_Case_Statement (Loc,
4622 Expression => New_Occurrence_Of (Loop_Id, Loc),
4623 Alternatives => Alts);
4624 Append_To (Stmts, Cstm);
4626 -- Rewrite the loop
4628 Set_Suppress_Assignment_Checks (D);
4630 Rewrite (N,
4631 Make_Block_Statement (Loc,
4632 Declarations => New_List (D),
4633 Handled_Statement_Sequence =>
4634 Make_Handled_Sequence_Of_Statements (Loc,
4635 Statements => New_List (
4636 Make_Loop_Statement (Loc,
4637 Statements => Stmts,
4638 End_Label => Empty)))));
4640 Analyze (N);
4641 end Static_Predicate;
4642 end if;
4643 end Expand_Predicated_Loop;
4645 ------------------------------
4646 -- Make_Tag_Ctrl_Assignment --
4647 ------------------------------
4649 function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id is
4650 Asn : constant Node_Id := Relocate_Node (N);
4651 L : constant Node_Id := Name (N);
4652 Loc : constant Source_Ptr := Sloc (N);
4653 Res : constant List_Id := New_List;
4654 T : constant Entity_Id := Underlying_Type (Etype (L));
4656 Comp_Asn : constant Boolean := Is_Fully_Repped_Tagged_Type (T);
4657 Ctrl_Act : constant Boolean := Needs_Finalization (T)
4658 and then not No_Ctrl_Actions (N);
4659 Save_Tag : constant Boolean := Is_Tagged_Type (T)
4660 and then not Comp_Asn
4661 and then not No_Ctrl_Actions (N)
4662 and then Tagged_Type_Expansion;
4663 Tag_Id : Entity_Id;
4665 begin
4666 -- Finalize the target of the assignment when controlled
4668 -- We have two exceptions here:
4670 -- 1. If we are in an init proc since it is an initialization more
4671 -- than an assignment.
4673 -- 2. If the left-hand side is a temporary that was not initialized
4674 -- (or the parent part of a temporary since it is the case in
4675 -- extension aggregates). Such a temporary does not come from
4676 -- source. We must examine the original node for the prefix, because
4677 -- it may be a component of an entry formal, in which case it has
4678 -- been rewritten and does not appear to come from source either.
4680 -- Case of init proc
4682 if not Ctrl_Act then
4683 null;
4685 -- The left hand side is an uninitialized temporary object
4687 elsif Nkind (L) = N_Type_Conversion
4688 and then Is_Entity_Name (Expression (L))
4689 and then Nkind (Parent (Entity (Expression (L)))) =
4690 N_Object_Declaration
4691 and then No_Initialization (Parent (Entity (Expression (L))))
4692 then
4693 null;
4695 else
4696 Append_To (Res,
4697 Make_Final_Call
4698 (Obj_Ref => Duplicate_Subexpr_No_Checks (L),
4699 Typ => Etype (L)));
4700 end if;
4702 -- Save the Tag in a local variable Tag_Id
4704 if Save_Tag then
4705 Tag_Id := Make_Temporary (Loc, 'A');
4707 Append_To (Res,
4708 Make_Object_Declaration (Loc,
4709 Defining_Identifier => Tag_Id,
4710 Object_Definition => New_Occurrence_Of (RTE (RE_Tag), Loc),
4711 Expression =>
4712 Make_Selected_Component (Loc,
4713 Prefix => Duplicate_Subexpr_No_Checks (L),
4714 Selector_Name =>
4715 New_Occurrence_Of (First_Tag_Component (T), Loc))));
4717 -- Otherwise Tag_Id is not used
4719 else
4720 Tag_Id := Empty;
4721 end if;
4723 -- If the tagged type has a full rep clause, expand the assignment into
4724 -- component-wise assignments. Mark the node as unanalyzed in order to
4725 -- generate the proper code and propagate this scenario by setting a
4726 -- flag to avoid infinite recursion.
4728 if Comp_Asn then
4729 Set_Analyzed (Asn, False);
4730 Set_Componentwise_Assignment (Asn, True);
4731 end if;
4733 Append_To (Res, Asn);
4735 -- Restore the tag
4737 if Save_Tag then
4738 Append_To (Res,
4739 Make_Assignment_Statement (Loc,
4740 Name =>
4741 Make_Selected_Component (Loc,
4742 Prefix => Duplicate_Subexpr_No_Checks (L),
4743 Selector_Name =>
4744 New_Occurrence_Of (First_Tag_Component (T), Loc)),
4745 Expression => New_Occurrence_Of (Tag_Id, Loc)));
4746 end if;
4748 -- Adjust the target after the assignment when controlled (not in the
4749 -- init proc since it is an initialization more than an assignment).
4751 if Ctrl_Act then
4752 Append_To (Res,
4753 Make_Adjust_Call
4754 (Obj_Ref => Duplicate_Subexpr_Move_Checks (L),
4755 Typ => Etype (L)));
4756 end if;
4758 return Res;
4760 exception
4762 -- Could use comment here ???
4764 when RE_Not_Available =>
4765 return Empty_List;
4766 end Make_Tag_Ctrl_Assignment;
4768 end Exp_Ch5;