1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Elists
; use Elists
;
32 with Errout
; use Errout
;
33 with Eval_Fat
; use Eval_Fat
;
34 with Exp_Util
; use Exp_Util
;
35 with Freeze
; use Freeze
;
37 with Namet
; use Namet
;
38 with Nmake
; use Nmake
;
39 with Nlists
; use Nlists
;
41 with Par_SCO
; use Par_SCO
;
42 with Rtsfind
; use Rtsfind
;
44 with Sem_Aux
; use Sem_Aux
;
45 with Sem_Cat
; use Sem_Cat
;
46 with Sem_Ch6
; use Sem_Ch6
;
47 with Sem_Ch8
; use Sem_Ch8
;
48 with Sem_Res
; use Sem_Res
;
49 with Sem_Util
; use Sem_Util
;
50 with Sem_Type
; use Sem_Type
;
51 with Sem_Warn
; use Sem_Warn
;
52 with Sinfo
; use Sinfo
;
53 with Snames
; use Snames
;
54 with Stand
; use Stand
;
55 with Stringt
; use Stringt
;
56 with Tbuild
; use Tbuild
;
58 package body Sem_Eval
is
60 -----------------------------------------
61 -- Handling of Compile Time Evaluation --
62 -----------------------------------------
64 -- The compile time evaluation of expressions is distributed over several
65 -- Eval_xxx procedures. These procedures are called immediately after
66 -- a subexpression is resolved and is therefore accomplished in a bottom
67 -- up fashion. The flags are synthesized using the following approach.
69 -- Is_Static_Expression is determined by following the detailed rules
70 -- in RM 4.9(4-14). This involves testing the Is_Static_Expression
71 -- flag of the operands in many cases.
73 -- Raises_Constraint_Error is set if any of the operands have the flag
74 -- set or if an attempt to compute the value of the current expression
75 -- results in detection of a runtime constraint error.
77 -- As described in the spec, the requirement is that Is_Static_Expression
78 -- be accurately set, and in addition for nodes for which this flag is set,
79 -- Raises_Constraint_Error must also be set. Furthermore a node which has
80 -- Is_Static_Expression set, and Raises_Constraint_Error clear, then the
81 -- requirement is that the expression value must be precomputed, and the
82 -- node is either a literal, or the name of a constant entity whose value
83 -- is a static expression.
85 -- The general approach is as follows. First compute Is_Static_Expression.
86 -- If the node is not static, then the flag is left off in the node and
87 -- we are all done. Otherwise for a static node, we test if any of the
88 -- operands will raise constraint error, and if so, propagate the flag
89 -- Raises_Constraint_Error to the result node and we are done (since the
90 -- error was already posted at a lower level).
92 -- For the case of a static node whose operands do not raise constraint
93 -- error, we attempt to evaluate the node. If this evaluation succeeds,
94 -- then the node is replaced by the result of this computation. If the
95 -- evaluation raises constraint error, then we rewrite the node with
96 -- Apply_Compile_Time_Constraint_Error to raise the exception and also
97 -- to post appropriate error messages.
103 type Bits
is array (Nat
range <>) of Boolean;
104 -- Used to convert unsigned (modular) values for folding logical ops
106 -- The following declarations are used to maintain a cache of nodes that
107 -- have compile-time-known values. The cache is maintained only for
108 -- discrete types (the most common case), and is populated by calls to
109 -- Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
110 -- since it is possible for the status to change (in particular it is
111 -- possible for a node to get replaced by a constraint error node).
113 CV_Bits
: constant := 5;
114 -- Number of low order bits of Node_Id value used to reference entries
115 -- in the cache table.
117 CV_Cache_Size
: constant Nat
:= 2 ** CV_Bits
;
118 -- Size of cache for compile time values
120 subtype CV_Range
is Nat
range 0 .. CV_Cache_Size
;
122 type CV_Entry
is record
127 type Match_Result
is (Match
, No_Match
, Non_Static
);
128 -- Result returned from functions that test for a matching result. If the
129 -- operands are not OK_Static then Non_Static will be returned. Otherwise
130 -- Match/No_Match is returned depending on whether the match succeeds.
132 type CV_Cache_Array
is array (CV_Range
) of CV_Entry
;
134 CV_Cache
: CV_Cache_Array
:= (others => (Node_High_Bound
, Uint_0
));
135 -- This is the actual cache, with entries consisting of node/value pairs,
136 -- and the impossible value Node_High_Bound used for unset entries.
138 type Range_Membership
is (In_Range
, Out_Of_Range
, Unknown
);
139 -- Range membership may either be statically known to be in range or out
140 -- of range, or not statically known. Used for Test_In_Range below.
142 -----------------------
143 -- Local Subprograms --
144 -----------------------
146 function Choice_Matches
148 Choice
: Node_Id
) return Match_Result
;
149 -- Determines whether given value Expr matches the given Choice. The Expr
150 -- can be of discrete, real, or string type and must be a compile time
151 -- known value (it is an error to make the call if these conditions are
152 -- not met). The choice can be a range, subtype name, subtype indication,
153 -- or expression. The returned result is Non_Static if Choice is not
154 -- OK_Static, otherwise either Match or No_Match is returned depending
155 -- on whether Choice matches Expr. This is used for case expression
156 -- alternatives, and also for membership tests. In each case, more
157 -- possibilities are tested than the syntax allows (e.g. membership allows
158 -- subtype indications and non-discrete types, and case allows an OTHERS
159 -- choice), but it does not matter, since we have already done a full
160 -- semantic and syntax check of the construct, so the extra possibilities
161 -- just will not arise for correct expressions.
163 -- Note: if Choice_Matches finds that a choice raises Constraint_Error, e.g
164 -- a reference to a type, one of whose bounds raises Constraint_Error, then
165 -- it also sets the Raises_Constraint_Error flag on the Choice itself.
167 function Choices_Match
169 Choices
: List_Id
) return Match_Result
;
170 -- This function applies Choice_Matches to each element of Choices. If the
171 -- result is No_Match, then it continues and checks the next element. If
172 -- the result is Match or Non_Static, this result is immediately given
173 -- as the result without checking the rest of the list. Expr can be of
174 -- discrete, real, or string type and must be a compile-time-known value
175 -- (it is an error to make the call if these conditions are not met).
177 function Find_Universal_Operator_Type
(N
: Node_Id
) return Entity_Id
;
178 -- Check whether an arithmetic operation with universal operands which is a
179 -- rewritten function call with an explicit scope indication is ambiguous:
180 -- P."+" (1, 2) will be ambiguous if there is more than one visible numeric
181 -- type declared in P and the context does not impose a type on the result
182 -- (e.g. in the expression of a type conversion). If ambiguous, emit an
183 -- error and return Empty, else return the result type of the operator.
185 function From_Bits
(B
: Bits
; T
: Entity_Id
) return Uint
;
186 -- Converts a bit string of length B'Length to a Uint value to be used for
187 -- a target of type T, which is a modular type. This procedure includes the
188 -- necessary reduction by the modulus in the case of a nonbinary modulus
189 -- (for a binary modulus, the bit string is the right length any way so all
192 function Get_String_Val
(N
: Node_Id
) return Node_Id
;
193 -- Given a tree node for a folded string or character value, returns the
194 -- corresponding string literal or character literal (one of the two must
195 -- be available, or the operand would not have been marked as foldable in
196 -- the earlier analysis of the operation).
198 function Is_OK_Static_Choice
(Choice
: Node_Id
) return Boolean;
199 -- Given a choice (from a case expression or membership test), returns
200 -- True if the choice is static and does not raise a Constraint_Error.
202 function Is_OK_Static_Choice_List
(Choices
: List_Id
) return Boolean;
203 -- Given a choice list (from a case expression or membership test), return
204 -- True if all choices are static in the sense of Is_OK_Static_Choice.
206 function Is_Static_Choice
(Choice
: Node_Id
) return Boolean;
207 -- Given a choice (from a case expression or membership test), returns
208 -- True if the choice is static. No test is made for raising of constraint
209 -- error, so this function is used only for legality tests.
211 function Is_Static_Choice_List
(Choices
: List_Id
) return Boolean;
212 -- Given a choice list (from a case expression or membership test), return
213 -- True if all choices are static in the sense of Is_Static_Choice.
215 function Is_Static_Range
(N
: Node_Id
) return Boolean;
216 -- Determine if range is static, as defined in RM 4.9(26). The only allowed
217 -- argument is an N_Range node (but note that the semantic analysis of
218 -- equivalent range attribute references already turned them into the
219 -- equivalent range). This differs from Is_OK_Static_Range (which is what
220 -- must be used by clients) in that it does not care whether the bounds
221 -- raise Constraint_Error or not. Used for checking whether expressions are
222 -- static in the 4.9 sense (without worrying about exceptions).
224 function OK_Bits
(N
: Node_Id
; Bits
: Uint
) return Boolean;
225 -- Bits represents the number of bits in an integer value to be computed
226 -- (but the value has not been computed yet). If this value in Bits is
227 -- reasonable, a result of True is returned, with the implication that the
228 -- caller should go ahead and complete the calculation. If the value in
229 -- Bits is unreasonably large, then an error is posted on node N, and
230 -- False is returned (and the caller skips the proposed calculation).
232 procedure Out_Of_Range
(N
: Node_Id
);
233 -- This procedure is called if it is determined that node N, which appears
234 -- in a non-static context, is a compile-time-known value which is outside
235 -- its range, i.e. the range of Etype. This is used in contexts where
236 -- this is an illegality if N is static, and should generate a warning
239 function Real_Or_String_Static_Predicate_Matches
241 Typ
: Entity_Id
) return Boolean;
242 -- This is the function used to evaluate real or string static predicates.
243 -- Val is an unanalyzed N_Real_Literal or N_String_Literal node, which
244 -- represents the value to be tested against the predicate. Typ is the
245 -- type with the predicate, from which the predicate expression can be
246 -- extracted. The result returned is True if the given value satisfies
249 procedure Rewrite_In_Raise_CE
(N
: Node_Id
; Exp
: Node_Id
);
250 -- N and Exp are nodes representing an expression, Exp is known to raise
251 -- CE. N is rewritten in term of Exp in the optimal way.
253 function String_Type_Len
(Stype
: Entity_Id
) return Uint
;
254 -- Given a string type, determines the length of the index type, or, if
255 -- this index type is non-static, the length of the base type of this index
256 -- type. Note that if the string type is itself static, then the index type
257 -- is static, so the second case applies only if the string type passed is
260 function Test
(Cond
: Boolean) return Uint
;
261 pragma Inline
(Test
);
262 -- This function simply returns the appropriate Boolean'Pos value
263 -- corresponding to the value of Cond as a universal integer. It is
264 -- used for producing the result of the static evaluation of the
267 procedure Test_Expression_Is_Foldable
272 -- Tests to see if expression N whose single operand is Op1 is foldable,
273 -- i.e. the operand value is known at compile time. If the operation is
274 -- foldable, then Fold is True on return, and Stat indicates whether the
275 -- result is static (i.e. the operand was static). Note that it is quite
276 -- possible for Fold to be True, and Stat to be False, since there are
277 -- cases in which we know the value of an operand even though it is not
278 -- technically static (e.g. the static lower bound of a range whose upper
279 -- bound is non-static).
281 -- If Stat is set False on return, then Test_Expression_Is_Foldable makes
282 -- a call to Check_Non_Static_Context on the operand. If Fold is False on
283 -- return, then all processing is complete, and the caller should return,
284 -- since there is nothing else to do.
286 -- If Stat is set True on return, then Is_Static_Expression is also set
287 -- true in node N. There are some cases where this is over-enthusiastic,
288 -- e.g. in the two operand case below, for string comparison, the result is
289 -- not static even though the two operands are static. In such cases, the
290 -- caller must reset the Is_Static_Expression flag in N.
292 -- If Fold and Stat are both set to False then this routine performs also
293 -- the following extra actions:
295 -- If either operand is Any_Type then propagate it to result to prevent
298 -- If some operand raises constraint error, then replace the node N
299 -- with the raise constraint error node. This replacement inherits the
300 -- Is_Static_Expression flag from the operands.
302 procedure Test_Expression_Is_Foldable
308 CRT_Safe
: Boolean := False);
309 -- Same processing, except applies to an expression N with two operands
310 -- Op1 and Op2. The result is static only if both operands are static. If
311 -- CRT_Safe is set True, then CRT_Safe_Compile_Time_Known_Value is used
312 -- for the tests that the two operands are known at compile time. See
313 -- spec of this routine for further details.
315 function Test_In_Range
318 Assume_Valid
: Boolean;
320 Int_Real
: Boolean) return Range_Membership
;
321 -- Common processing for Is_In_Range and Is_Out_Of_Range: Returns In_Range
322 -- or Out_Of_Range if it can be guaranteed at compile time that expression
323 -- N is known to be in or out of range of the subtype Typ. If not compile
324 -- time known, Unknown is returned. See documentation of Is_In_Range for
325 -- complete description of parameters.
327 procedure To_Bits
(U
: Uint
; B
: out Bits
);
328 -- Converts a Uint value to a bit string of length B'Length
330 -----------------------------------------------
331 -- Check_Expression_Against_Static_Predicate --
332 -----------------------------------------------
334 procedure Check_Expression_Against_Static_Predicate
339 -- Nothing to do if expression is not known at compile time, or the
340 -- type has no static predicate set (will be the case for all non-scalar
341 -- types, so no need to make a special test for that).
343 if not (Has_Static_Predicate
(Typ
)
344 and then Compile_Time_Known_Value
(Expr
))
349 -- Here we have a static predicate (note that it could have arisen from
350 -- an explicitly specified Dynamic_Predicate whose expression met the
351 -- rules for being predicate-static). If the expression is known at
352 -- compile time and obeys the predicate, then it is static and must be
353 -- labeled as such, which matters e.g. for case statements. The original
354 -- expression may be a type conversion of a variable with a known value,
355 -- which might otherwise not be marked static.
357 -- Case of real static predicate
359 if Is_Real_Type
(Typ
) then
360 if Real_Or_String_Static_Predicate_Matches
361 (Val
=> Make_Real_Literal
(Sloc
(Expr
), Expr_Value_R
(Expr
)),
364 Set_Is_Static_Expression
(Expr
);
368 -- Case of string static predicate
370 elsif Is_String_Type
(Typ
) then
371 if Real_Or_String_Static_Predicate_Matches
372 (Val
=> Expr_Value_S
(Expr
), Typ
=> Typ
)
374 Set_Is_Static_Expression
(Expr
);
378 -- Case of discrete static predicate
381 pragma Assert
(Is_Discrete_Type
(Typ
));
383 -- If static predicate matches, nothing to do
385 if Choices_Match
(Expr
, Static_Discrete_Predicate
(Typ
)) = Match
then
386 Set_Is_Static_Expression
(Expr
);
391 -- Here we know that the predicate will fail
393 -- Special case of static expression failing a predicate (other than one
394 -- that was explicitly specified with a Dynamic_Predicate aspect). This
395 -- is the case where the expression is no longer considered static.
397 if Is_Static_Expression
(Expr
)
398 and then not Has_Dynamic_Predicate_Aspect
(Typ
)
401 ("??static expression fails static predicate check on &",
404 ("\??expression is no longer considered static", Expr
);
405 Set_Is_Static_Expression
(Expr
, False);
407 -- In all other cases, this is just a warning that a test will fail.
408 -- It does not matter if the expression is static or not, or if the
409 -- predicate comes from a dynamic predicate aspect or not.
413 ("??expression fails predicate check on &", Expr
, Typ
);
415 end Check_Expression_Against_Static_Predicate
;
417 ------------------------------
418 -- Check_Non_Static_Context --
419 ------------------------------
421 procedure Check_Non_Static_Context
(N
: Node_Id
) is
422 T
: constant Entity_Id
:= Etype
(N
);
423 Checks_On
: constant Boolean :=
424 not Index_Checks_Suppressed
(T
)
425 and not Range_Checks_Suppressed
(T
);
428 -- Ignore cases of non-scalar types, error types, or universal real
429 -- types that have no usable bounds.
432 or else not Is_Scalar_Type
(T
)
433 or else T
= Universal_Fixed
434 or else T
= Universal_Real
439 -- At this stage we have a scalar type. If we have an expression that
440 -- raises CE, then we already issued a warning or error msg so there is
441 -- nothing more to be done in this routine.
443 if Raises_Constraint_Error
(N
) then
447 -- Now we have a scalar type which is not marked as raising a constraint
448 -- error exception. The main purpose of this routine is to deal with
449 -- static expressions appearing in a non-static context. That means
450 -- that if we do not have a static expression then there is not much
451 -- to do. The one case that we deal with here is that if we have a
452 -- floating-point value that is out of range, then we post a warning
453 -- that an infinity will result.
455 if not Is_Static_Expression
(N
) then
456 if Is_Floating_Point_Type
(T
) then
457 if Is_Out_Of_Range
(N
, Base_Type
(T
), Assume_Valid
=> True) then
459 ("??float value out of range, infinity will be generated", N
);
461 -- The literal may be the result of constant-folding of a non-
462 -- static subexpression of a larger expression (e.g. a conversion
463 -- of a non-static variable whose value happens to be known). At
464 -- this point we must reduce the value of the subexpression to a
465 -- machine number (RM 4.9 (38/2)).
467 elsif Nkind
(N
) = N_Real_Literal
468 and then Nkind
(Parent
(N
)) in N_Subexpr
470 Rewrite
(N
, New_Copy
(N
));
472 (N
, Machine
(Base_Type
(T
), Realval
(N
), Round_Even
, N
));
479 -- Here we have the case of outer level static expression of scalar
480 -- type, where the processing of this procedure is needed.
482 -- For real types, this is where we convert the value to a machine
483 -- number (see RM 4.9(38)). Also see ACVC test C490001. We should only
484 -- need to do this if the parent is a constant declaration, since in
485 -- other cases, gigi should do the necessary conversion correctly, but
486 -- experimentation shows that this is not the case on all machines, in
487 -- particular if we do not convert all literals to machine values in
488 -- non-static contexts, then ACVC test C490001 fails on Sparc/Solaris
491 -- This conversion is always done by GNATprove on real literals in
492 -- non-static expressions, by calling Check_Non_Static_Context from
493 -- gnat2why, as GNATprove cannot do the conversion later contrary
494 -- to gigi. The frontend computes the information about which
495 -- expressions are static, which is used by gnat2why to call
496 -- Check_Non_Static_Context on exactly those real literals that are
497 -- not subexpressions of static expressions.
499 if Nkind
(N
) = N_Real_Literal
500 and then not Is_Machine_Number
(N
)
501 and then not Is_Generic_Type
(Etype
(N
))
502 and then Etype
(N
) /= Universal_Real
504 -- Check that value is in bounds before converting to machine
505 -- number, so as not to lose case where value overflows in the
506 -- least significant bit or less. See B490001.
508 if Is_Out_Of_Range
(N
, Base_Type
(T
), Assume_Valid
=> True) then
513 -- Note: we have to copy the node, to avoid problems with conformance
514 -- of very similar numbers (see ACVC tests B4A010C and B63103A).
516 Rewrite
(N
, New_Copy
(N
));
518 if not Is_Floating_Point_Type
(T
) then
520 (N
, Corresponding_Integer_Value
(N
) * Small_Value
(T
));
522 elsif not UR_Is_Zero
(Realval
(N
)) then
524 -- Note: even though RM 4.9(38) specifies biased rounding, this
525 -- has been modified by AI-100 in order to prevent confusing
526 -- differences in rounding between static and non-static
527 -- expressions. AI-100 specifies that the effect of such rounding
528 -- is implementation dependent, and in GNAT we round to nearest
529 -- even to match the run-time behavior. Note that this applies
530 -- to floating point literals, not fixed points ones, even though
531 -- their compiler representation is also as a universal real.
534 (N
, Machine
(Base_Type
(T
), Realval
(N
), Round_Even
, N
));
535 Set_Is_Machine_Number
(N
);
540 -- Check for out of range universal integer. This is a non-static
541 -- context, so the integer value must be in range of the runtime
542 -- representation of universal integers.
544 -- We do this only within an expression, because that is the only
545 -- case in which non-static universal integer values can occur, and
546 -- furthermore, Check_Non_Static_Context is currently (incorrectly???)
547 -- called in contexts like the expression of a number declaration where
548 -- we certainly want to allow out of range values.
550 if Etype
(N
) = Universal_Integer
551 and then Nkind
(N
) = N_Integer_Literal
552 and then Nkind
(Parent
(N
)) in N_Subexpr
554 (Intval
(N
) < Expr_Value
(Type_Low_Bound
(Universal_Integer
))
556 Intval
(N
) > Expr_Value
(Type_High_Bound
(Universal_Integer
)))
558 Apply_Compile_Time_Constraint_Error
559 (N
, "non-static universal integer value out of range<<",
560 CE_Range_Check_Failed
);
562 -- Check out of range of base type
564 elsif Is_Out_Of_Range
(N
, Base_Type
(T
), Assume_Valid
=> True) then
567 -- Give warning if outside subtype (where one or both of the bounds of
568 -- the subtype is static). This warning is omitted if the expression
569 -- appears in a range that could be null (warnings are handled elsewhere
572 elsif T
/= Base_Type
(T
) and then Nkind
(Parent
(N
)) /= N_Range
then
573 if Is_In_Range
(N
, T
, Assume_Valid
=> True) then
576 elsif Is_Out_Of_Range
(N
, T
, Assume_Valid
=> True) then
578 -- Ignore out of range values for System.Priority in CodePeer
579 -- mode since the actual target compiler may provide a wider
582 if CodePeer_Mode
and then T
= RTE
(RE_Priority
) then
583 Set_Do_Range_Check
(N
, False);
585 Apply_Compile_Time_Constraint_Error
586 (N
, "value not in range of}<<", CE_Range_Check_Failed
);
590 Enable_Range_Check
(N
);
593 Set_Do_Range_Check
(N
, False);
596 end Check_Non_Static_Context
;
598 ---------------------------------
599 -- Check_String_Literal_Length --
600 ---------------------------------
602 procedure Check_String_Literal_Length
(N
: Node_Id
; Ttype
: Entity_Id
) is
604 if not Raises_Constraint_Error
(N
) and then Is_Constrained
(Ttype
) then
605 if UI_From_Int
(String_Length
(Strval
(N
))) /= String_Type_Len
(Ttype
)
607 Apply_Compile_Time_Constraint_Error
608 (N
, "string length wrong for}??",
609 CE_Length_Check_Failed
,
614 end Check_String_Literal_Length
;
620 function Choice_Matches
622 Choice
: Node_Id
) return Match_Result
624 Etyp
: constant Entity_Id
:= Etype
(Expr
);
630 pragma Assert
(Compile_Time_Known_Value
(Expr
));
631 pragma Assert
(Is_Scalar_Type
(Etyp
) or else Is_String_Type
(Etyp
));
633 if not Is_OK_Static_Choice
(Choice
) then
634 Set_Raises_Constraint_Error
(Choice
);
637 -- When the choice denotes a subtype with a static predictate, check the
638 -- expression against the predicate values. Different procedures apply
639 -- to discrete and non-discrete types.
641 elsif (Nkind
(Choice
) = N_Subtype_Indication
642 or else (Is_Entity_Name
(Choice
)
643 and then Is_Type
(Entity
(Choice
))))
644 and then Has_Predicates
(Etype
(Choice
))
645 and then Has_Static_Predicate
(Etype
(Choice
))
647 if Is_Discrete_Type
(Etype
(Choice
)) then
650 (Expr
, Static_Discrete_Predicate
(Etype
(Choice
)));
652 elsif Real_Or_String_Static_Predicate_Matches
(Expr
, Etype
(Choice
))
660 -- Discrete type case only
662 elsif Is_Discrete_Type
(Etyp
) then
663 Val
:= Expr_Value
(Expr
);
665 if Nkind
(Choice
) = N_Range
then
666 if Val
>= Expr_Value
(Low_Bound
(Choice
))
668 Val
<= Expr_Value
(High_Bound
(Choice
))
675 elsif Nkind
(Choice
) = N_Subtype_Indication
676 or else (Is_Entity_Name
(Choice
) and then Is_Type
(Entity
(Choice
)))
678 if Val
>= Expr_Value
(Type_Low_Bound
(Etype
(Choice
)))
680 Val
<= Expr_Value
(Type_High_Bound
(Etype
(Choice
)))
687 elsif Nkind
(Choice
) = N_Others_Choice
then
691 if Val
= Expr_Value
(Choice
) then
700 elsif Is_Real_Type
(Etyp
) then
701 ValR
:= Expr_Value_R
(Expr
);
703 if Nkind
(Choice
) = N_Range
then
704 if ValR
>= Expr_Value_R
(Low_Bound
(Choice
))
706 ValR
<= Expr_Value_R
(High_Bound
(Choice
))
713 elsif Nkind
(Choice
) = N_Subtype_Indication
714 or else (Is_Entity_Name
(Choice
) and then Is_Type
(Entity
(Choice
)))
716 if ValR
>= Expr_Value_R
(Type_Low_Bound
(Etype
(Choice
)))
718 ValR
<= Expr_Value_R
(Type_High_Bound
(Etype
(Choice
)))
726 if ValR
= Expr_Value_R
(Choice
) then
736 pragma Assert
(Is_String_Type
(Etyp
));
737 ValS
:= Expr_Value_S
(Expr
);
739 if Nkind
(Choice
) = N_Subtype_Indication
740 or else (Is_Entity_Name
(Choice
) and then Is_Type
(Entity
(Choice
)))
742 if not Is_Constrained
(Etype
(Choice
)) then
747 Typlen
: constant Uint
:=
748 String_Type_Len
(Etype
(Choice
));
749 Strlen
: constant Uint
:=
750 UI_From_Int
(String_Length
(Strval
(ValS
)));
752 if Typlen
= Strlen
then
761 if String_Equal
(Strval
(ValS
), Strval
(Expr_Value_S
(Choice
)))
775 function Choices_Match
777 Choices
: List_Id
) return Match_Result
780 Result
: Match_Result
;
783 Choice
:= First
(Choices
);
784 while Present
(Choice
) loop
785 Result
:= Choice_Matches
(Expr
, Choice
);
787 if Result
/= No_Match
then
797 --------------------------
798 -- Compile_Time_Compare --
799 --------------------------
801 function Compile_Time_Compare
803 Assume_Valid
: Boolean) return Compare_Result
805 Discard
: aliased Uint
;
807 return Compile_Time_Compare
(L
, R
, Discard
'Access, Assume_Valid
);
808 end Compile_Time_Compare
;
810 function Compile_Time_Compare
813 Assume_Valid
: Boolean;
814 Rec
: Boolean := False) return Compare_Result
816 Ltyp
: Entity_Id
:= Etype
(L
);
817 Rtyp
: Entity_Id
:= Etype
(R
);
819 Discard
: aliased Uint
;
821 procedure Compare_Decompose
825 -- This procedure decomposes the node N into an expression node and a
826 -- signed offset, so that the value of N is equal to the value of R plus
827 -- the value V (which may be negative). If no such decomposition is
828 -- possible, then on return R is a copy of N, and V is set to zero.
830 function Compare_Fixup
(N
: Node_Id
) return Node_Id
;
831 -- This function deals with replacing 'Last and 'First references with
832 -- their corresponding type bounds, which we then can compare. The
833 -- argument is the original node, the result is the identity, unless we
834 -- have a 'Last/'First reference in which case the value returned is the
835 -- appropriate type bound.
837 function Is_Known_Valid_Operand
(Opnd
: Node_Id
) return Boolean;
838 -- Even if the context does not assume that values are valid, some
839 -- simple cases can be recognized.
841 function Is_Same_Value
(L
, R
: Node_Id
) return Boolean;
842 -- Returns True iff L and R represent expressions that definitely have
843 -- identical (but not necessarily compile-time-known) values Indeed the
844 -- caller is expected to have already dealt with the cases of compile
845 -- time known values, so these are not tested here.
847 -----------------------
848 -- Compare_Decompose --
849 -----------------------
851 procedure Compare_Decompose
857 if Nkind
(N
) = N_Op_Add
858 and then Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
861 V
:= Intval
(Right_Opnd
(N
));
864 elsif Nkind
(N
) = N_Op_Subtract
865 and then Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
868 V
:= UI_Negate
(Intval
(Right_Opnd
(N
)));
871 elsif Nkind
(N
) = N_Attribute_Reference
then
872 if Attribute_Name
(N
) = Name_Succ
then
873 R
:= First
(Expressions
(N
));
877 elsif Attribute_Name
(N
) = Name_Pred
then
878 R
:= First
(Expressions
(N
));
886 end Compare_Decompose
;
892 function Compare_Fixup
(N
: Node_Id
) return Node_Id
is
898 -- Fixup only required for First/Last attribute reference
900 if Nkind
(N
) = N_Attribute_Reference
901 and then Nam_In
(Attribute_Name
(N
), Name_First
, Name_Last
)
903 Xtyp
:= Etype
(Prefix
(N
));
905 -- If we have no type, then just abandon the attempt to do
906 -- a fixup, this is probably the result of some other error.
912 -- Dereference an access type
914 if Is_Access_Type
(Xtyp
) then
915 Xtyp
:= Designated_Type
(Xtyp
);
918 -- If we don't have an array type at this stage, something is
919 -- peculiar, e.g. another error, and we abandon the attempt at
922 if not Is_Array_Type
(Xtyp
) then
926 -- Ignore unconstrained array, since bounds are not meaningful
928 if not Is_Constrained
(Xtyp
) then
932 if Ekind
(Xtyp
) = E_String_Literal_Subtype
then
933 if Attribute_Name
(N
) = Name_First
then
934 return String_Literal_Low_Bound
(Xtyp
);
937 Make_Integer_Literal
(Sloc
(N
),
938 Intval
=> Intval
(String_Literal_Low_Bound
(Xtyp
)) +
939 String_Literal_Length
(Xtyp
));
943 -- Find correct index type
945 Indx
:= First_Index
(Xtyp
);
947 if Present
(Expressions
(N
)) then
948 Subs
:= UI_To_Int
(Expr_Value
(First
(Expressions
(N
))));
950 for J
in 2 .. Subs
loop
951 Indx
:= Next_Index
(Indx
);
955 Xtyp
:= Etype
(Indx
);
957 if Attribute_Name
(N
) = Name_First
then
958 return Type_Low_Bound
(Xtyp
);
960 return Type_High_Bound
(Xtyp
);
967 ----------------------------
968 -- Is_Known_Valid_Operand --
969 ----------------------------
971 function Is_Known_Valid_Operand
(Opnd
: Node_Id
) return Boolean is
973 return (Is_Entity_Name
(Opnd
)
975 (Is_Known_Valid
(Entity
(Opnd
))
976 or else Ekind
(Entity
(Opnd
)) = E_In_Parameter
978 (Ekind
(Entity
(Opnd
)) in Object_Kind
979 and then Present
(Current_Value
(Entity
(Opnd
))))))
980 or else Is_OK_Static_Expression
(Opnd
);
981 end Is_Known_Valid_Operand
;
987 function Is_Same_Value
(L
, R
: Node_Id
) return Boolean is
988 Lf
: constant Node_Id
:= Compare_Fixup
(L
);
989 Rf
: constant Node_Id
:= Compare_Fixup
(R
);
991 function Is_Same_Subscript
(L
, R
: List_Id
) return Boolean;
992 -- L, R are the Expressions values from two attribute nodes for First
993 -- or Last attributes. Either may be set to No_List if no expressions
994 -- are present (indicating subscript 1). The result is True if both
995 -- expressions represent the same subscript (note one case is where
996 -- one subscript is missing and the other is explicitly set to 1).
998 -----------------------
999 -- Is_Same_Subscript --
1000 -----------------------
1002 function Is_Same_Subscript
(L
, R
: List_Id
) return Boolean is
1008 return Expr_Value
(First
(R
)) = Uint_1
;
1013 return Expr_Value
(First
(L
)) = Uint_1
;
1015 return Expr_Value
(First
(L
)) = Expr_Value
(First
(R
));
1018 end Is_Same_Subscript
;
1020 -- Start of processing for Is_Same_Value
1023 -- Values are the same if they refer to the same entity and the
1024 -- entity is non-volatile. This does not however apply to Float
1025 -- types, since we may have two NaN values and they should never
1028 -- If the entity is a discriminant, the two expressions may be bounds
1029 -- of components of objects of the same discriminated type. The
1030 -- values of the discriminants are not static, and therefore the
1031 -- result is unknown.
1033 -- It would be better to comment individual branches of this test ???
1035 if Nkind_In
(Lf
, N_Identifier
, N_Expanded_Name
)
1036 and then Nkind_In
(Rf
, N_Identifier
, N_Expanded_Name
)
1037 and then Entity
(Lf
) = Entity
(Rf
)
1038 and then Ekind
(Entity
(Lf
)) /= E_Discriminant
1039 and then Present
(Entity
(Lf
))
1040 and then not Is_Floating_Point_Type
(Etype
(L
))
1041 and then not Is_Volatile_Reference
(L
)
1042 and then not Is_Volatile_Reference
(R
)
1046 -- Or if they are compile-time-known and identical
1048 elsif Compile_Time_Known_Value
(Lf
)
1050 Compile_Time_Known_Value
(Rf
)
1051 and then Expr_Value
(Lf
) = Expr_Value
(Rf
)
1055 -- False if Nkind of the two nodes is different for remaining cases
1057 elsif Nkind
(Lf
) /= Nkind
(Rf
) then
1060 -- True if both 'First or 'Last values applying to the same entity
1061 -- (first and last don't change even if value does). Note that we
1062 -- need this even with the calls to Compare_Fixup, to handle the
1063 -- case of unconstrained array attributes where Compare_Fixup
1064 -- cannot find useful bounds.
1066 elsif Nkind
(Lf
) = N_Attribute_Reference
1067 and then Attribute_Name
(Lf
) = Attribute_Name
(Rf
)
1068 and then Nam_In
(Attribute_Name
(Lf
), Name_First
, Name_Last
)
1069 and then Nkind_In
(Prefix
(Lf
), N_Identifier
, N_Expanded_Name
)
1070 and then Nkind_In
(Prefix
(Rf
), N_Identifier
, N_Expanded_Name
)
1071 and then Entity
(Prefix
(Lf
)) = Entity
(Prefix
(Rf
))
1072 and then Is_Same_Subscript
(Expressions
(Lf
), Expressions
(Rf
))
1076 -- True if the same selected component from the same record
1078 elsif Nkind
(Lf
) = N_Selected_Component
1079 and then Selector_Name
(Lf
) = Selector_Name
(Rf
)
1080 and then Is_Same_Value
(Prefix
(Lf
), Prefix
(Rf
))
1084 -- True if the same unary operator applied to the same operand
1086 elsif Nkind
(Lf
) in N_Unary_Op
1087 and then Is_Same_Value
(Right_Opnd
(Lf
), Right_Opnd
(Rf
))
1091 -- True if the same binary operator applied to the same operands
1093 elsif Nkind
(Lf
) in N_Binary_Op
1094 and then Is_Same_Value
(Left_Opnd
(Lf
), Left_Opnd
(Rf
))
1095 and then Is_Same_Value
(Right_Opnd
(Lf
), Right_Opnd
(Rf
))
1099 -- All other cases, we can't tell, so return False
1106 -- Start of processing for Compile_Time_Compare
1109 Diff
.all := No_Uint
;
1111 -- In preanalysis mode, always return Unknown unless the expression
1112 -- is static. It is too early to be thinking we know the result of a
1113 -- comparison, save that judgment for the full analysis. This is
1114 -- particularly important in the case of pre and postconditions, which
1115 -- otherwise can be prematurely collapsed into having True or False
1116 -- conditions when this is inappropriate.
1118 if not (Full_Analysis
1119 or else (Is_OK_Static_Expression
(L
)
1121 Is_OK_Static_Expression
(R
)))
1126 -- If either operand could raise constraint error, then we cannot
1127 -- know the result at compile time (since CE may be raised).
1129 if not (Cannot_Raise_Constraint_Error
(L
)
1131 Cannot_Raise_Constraint_Error
(R
))
1136 -- Identical operands are most certainly equal
1142 -- If expressions have no types, then do not attempt to determine if
1143 -- they are the same, since something funny is going on. One case in
1144 -- which this happens is during generic template analysis, when bounds
1145 -- are not fully analyzed.
1147 if No
(Ltyp
) or else No
(Rtyp
) then
1151 -- These get reset to the base type for the case of entities where
1152 -- Is_Known_Valid is not set. This takes care of handling possible
1153 -- invalid representations using the value of the base type, in
1154 -- accordance with RM 13.9.1(10).
1156 Ltyp
:= Underlying_Type
(Ltyp
);
1157 Rtyp
:= Underlying_Type
(Rtyp
);
1159 -- Same rationale as above, but for Underlying_Type instead of Etype
1161 if No
(Ltyp
) or else No
(Rtyp
) then
1165 -- We do not attempt comparisons for packed arrays represented as
1166 -- modular types, where the semantics of comparison is quite different.
1168 if Is_Packed_Array_Impl_Type
(Ltyp
)
1169 and then Is_Modular_Integer_Type
(Ltyp
)
1173 -- For access types, the only time we know the result at compile time
1174 -- (apart from identical operands, which we handled already) is if we
1175 -- know one operand is null and the other is not, or both operands are
1178 elsif Is_Access_Type
(Ltyp
) then
1179 if Known_Null
(L
) then
1180 if Known_Null
(R
) then
1182 elsif Known_Non_Null
(R
) then
1188 elsif Known_Non_Null
(L
) and then Known_Null
(R
) then
1195 -- Case where comparison involves two compile-time-known values
1197 elsif Compile_Time_Known_Value
(L
)
1199 Compile_Time_Known_Value
(R
)
1201 -- For the floating-point case, we have to be a little careful, since
1202 -- at compile time we are dealing with universal exact values, but at
1203 -- runtime, these will be in non-exact target form. That's why the
1204 -- returned results are LE and GE below instead of LT and GT.
1206 if Is_Floating_Point_Type
(Ltyp
)
1208 Is_Floating_Point_Type
(Rtyp
)
1211 Lo
: constant Ureal
:= Expr_Value_R
(L
);
1212 Hi
: constant Ureal
:= Expr_Value_R
(R
);
1223 -- For string types, we have two string literals and we proceed to
1224 -- compare them using the Ada style dictionary string comparison.
1226 elsif not Is_Scalar_Type
(Ltyp
) then
1228 Lstring
: constant String_Id
:= Strval
(Expr_Value_S
(L
));
1229 Rstring
: constant String_Id
:= Strval
(Expr_Value_S
(R
));
1230 Llen
: constant Nat
:= String_Length
(Lstring
);
1231 Rlen
: constant Nat
:= String_Length
(Rstring
);
1234 for J
in 1 .. Nat
'Min (Llen
, Rlen
) loop
1236 LC
: constant Char_Code
:= Get_String_Char
(Lstring
, J
);
1237 RC
: constant Char_Code
:= Get_String_Char
(Rstring
, J
);
1249 elsif Llen
> Rlen
then
1256 -- For remaining scalar cases we know exactly (note that this does
1257 -- include the fixed-point case, where we know the run time integer
1262 Lo
: constant Uint
:= Expr_Value
(L
);
1263 Hi
: constant Uint
:= Expr_Value
(R
);
1266 Diff
.all := Hi
- Lo
;
1271 Diff
.all := Lo
- Hi
;
1277 -- Cases where at least one operand is not known at compile time
1280 -- Remaining checks apply only for discrete types
1282 if not Is_Discrete_Type
(Ltyp
)
1284 not Is_Discrete_Type
(Rtyp
)
1289 -- Defend against generic types, or actually any expressions that
1290 -- contain a reference to a generic type from within a generic
1291 -- template. We don't want to do any range analysis of such
1292 -- expressions for two reasons. First, the bounds of a generic type
1293 -- itself are junk and cannot be used for any kind of analysis.
1294 -- Second, we may have a case where the range at run time is indeed
1295 -- known, but we don't want to do compile time analysis in the
1296 -- template based on that range since in an instance the value may be
1297 -- static, and able to be elaborated without reference to the bounds
1298 -- of types involved. As an example, consider:
1300 -- (F'Pos (F'Last) + 1) > Integer'Last
1302 -- The expression on the left side of > is Universal_Integer and thus
1303 -- acquires the type Integer for evaluation at run time, and at run
1304 -- time it is true that this condition is always False, but within
1305 -- an instance F may be a type with a static range greater than the
1306 -- range of Integer, and the expression statically evaluates to True.
1308 if References_Generic_Formal_Type
(L
)
1310 References_Generic_Formal_Type
(R
)
1315 -- Replace types by base types for the case of values which are not
1316 -- known to have valid representations. This takes care of properly
1317 -- dealing with invalid representations.
1319 if not Assume_Valid
then
1320 if not (Is_Entity_Name
(L
)
1321 and then (Is_Known_Valid
(Entity
(L
))
1322 or else Assume_No_Invalid_Values
))
1324 Ltyp
:= Underlying_Type
(Base_Type
(Ltyp
));
1327 if not (Is_Entity_Name
(R
)
1328 and then (Is_Known_Valid
(Entity
(R
))
1329 or else Assume_No_Invalid_Values
))
1331 Rtyp
:= Underlying_Type
(Base_Type
(Rtyp
));
1335 -- First attempt is to decompose the expressions to extract a
1336 -- constant offset resulting from the use of any of the forms:
1343 -- Then we see if the two expressions are the same value, and if so
1344 -- the result is obtained by comparing the offsets.
1346 -- Note: the reason we do this test first is that it returns only
1347 -- decisive results (with diff set), where other tests, like the
1348 -- range test, may not be as so decisive. Consider for example
1349 -- J .. J + 1. This code can conclude LT with a difference of 1,
1350 -- even if the range of J is not known.
1359 Compare_Decompose
(L
, Lnode
, Loffs
);
1360 Compare_Decompose
(R
, Rnode
, Roffs
);
1362 if Is_Same_Value
(Lnode
, Rnode
) then
1363 if Loffs
= Roffs
then
1367 -- When the offsets are not equal, we can go farther only if
1368 -- the types are not modular (e.g. X < X + 1 is False if X is
1369 -- the largest number).
1371 if not Is_Modular_Integer_Type
(Ltyp
)
1372 and then not Is_Modular_Integer_Type
(Rtyp
)
1374 if Loffs
< Roffs
then
1375 Diff
.all := Roffs
- Loffs
;
1378 Diff
.all := Loffs
- Roffs
;
1385 -- Next, try range analysis and see if operand ranges are disjoint
1393 -- True if each range is a single point
1396 Determine_Range
(L
, LOK
, LLo
, LHi
, Assume_Valid
);
1397 Determine_Range
(R
, ROK
, RLo
, RHi
, Assume_Valid
);
1400 Single
:= (LLo
= LHi
) and then (RLo
= RHi
);
1403 if Single
and Assume_Valid
then
1404 Diff
.all := RLo
- LLo
;
1409 elsif RHi
< LLo
then
1410 if Single
and Assume_Valid
then
1411 Diff
.all := LLo
- RLo
;
1416 elsif Single
and then LLo
= RLo
then
1418 -- If the range includes a single literal and we can assume
1419 -- validity then the result is known even if an operand is
1422 if Assume_Valid
then
1428 elsif LHi
= RLo
then
1431 elsif RHi
= LLo
then
1434 elsif not Is_Known_Valid_Operand
(L
)
1435 and then not Assume_Valid
1437 if Is_Same_Value
(L
, R
) then
1444 -- If the range of either operand cannot be determined, nothing
1445 -- further can be inferred.
1452 -- Here is where we check for comparisons against maximum bounds of
1453 -- types, where we know that no value can be outside the bounds of
1454 -- the subtype. Note that this routine is allowed to assume that all
1455 -- expressions are within their subtype bounds. Callers wishing to
1456 -- deal with possibly invalid values must in any case take special
1457 -- steps (e.g. conversions to larger types) to avoid this kind of
1458 -- optimization, which is always considered to be valid. We do not
1459 -- attempt this optimization with generic types, since the type
1460 -- bounds may not be meaningful in this case.
1462 -- We are in danger of an infinite recursion here. It does not seem
1463 -- useful to go more than one level deep, so the parameter Rec is
1464 -- used to protect ourselves against this infinite recursion.
1468 -- See if we can get a decisive check against one operand and a
1469 -- bound of the other operand (four possible tests here). Note
1470 -- that we avoid testing junk bounds of a generic type.
1472 if not Is_Generic_Type
(Rtyp
) then
1473 case Compile_Time_Compare
(L
, Type_Low_Bound
(Rtyp
),
1475 Assume_Valid
, Rec
=> True)
1477 when LT
=> return LT
;
1478 when LE
=> return LE
;
1479 when EQ
=> return LE
;
1480 when others => null;
1483 case Compile_Time_Compare
(L
, Type_High_Bound
(Rtyp
),
1485 Assume_Valid
, Rec
=> True)
1487 when GT
=> return GT
;
1488 when GE
=> return GE
;
1489 when EQ
=> return GE
;
1490 when others => null;
1494 if not Is_Generic_Type
(Ltyp
) then
1495 case Compile_Time_Compare
(Type_Low_Bound
(Ltyp
), R
,
1497 Assume_Valid
, Rec
=> True)
1499 when GT
=> return GT
;
1500 when GE
=> return GE
;
1501 when EQ
=> return GE
;
1502 when others => null;
1505 case Compile_Time_Compare
(Type_High_Bound
(Ltyp
), R
,
1507 Assume_Valid
, Rec
=> True)
1509 when LT
=> return LT
;
1510 when LE
=> return LE
;
1511 when EQ
=> return LE
;
1512 when others => null;
1517 -- Next attempt is to see if we have an entity compared with a
1518 -- compile-time-known value, where there is a current value
1519 -- conditional for the entity which can tell us the result.
1523 -- Entity variable (left operand)
1526 -- Value (right operand)
1529 -- If False, we have reversed the operands
1532 -- Comparison operator kind from Get_Current_Value_Condition call
1535 -- Value from Get_Current_Value_Condition call
1540 Result
: Compare_Result
;
1541 -- Known result before inversion
1544 if Is_Entity_Name
(L
)
1545 and then Compile_Time_Known_Value
(R
)
1548 Val
:= Expr_Value
(R
);
1551 elsif Is_Entity_Name
(R
)
1552 and then Compile_Time_Known_Value
(L
)
1555 Val
:= Expr_Value
(L
);
1558 -- That was the last chance at finding a compile time result
1564 Get_Current_Value_Condition
(Var
, Op
, Opn
);
1566 -- That was the last chance, so if we got nothing return
1572 Opv
:= Expr_Value
(Opn
);
1574 -- We got a comparison, so we might have something interesting
1576 -- Convert LE to LT and GE to GT, just so we have fewer cases
1578 if Op
= N_Op_Le
then
1582 elsif Op
= N_Op_Ge
then
1587 -- Deal with equality case
1589 if Op
= N_Op_Eq
then
1592 elsif Opv
< Val
then
1598 -- Deal with inequality case
1600 elsif Op
= N_Op_Ne
then
1607 -- Deal with greater than case
1609 elsif Op
= N_Op_Gt
then
1612 elsif Opv
= Val
- 1 then
1618 -- Deal with less than case
1620 else pragma Assert
(Op
= N_Op_Lt
);
1623 elsif Opv
= Val
+ 1 then
1630 -- Deal with inverting result
1634 when GT
=> return LT
;
1635 when GE
=> return LE
;
1636 when LT
=> return GT
;
1637 when LE
=> return GE
;
1638 when others => return Result
;
1645 end Compile_Time_Compare
;
1647 -------------------------------
1648 -- Compile_Time_Known_Bounds --
1649 -------------------------------
1651 function Compile_Time_Known_Bounds
(T
: Entity_Id
) return Boolean is
1656 if T
= Any_Composite
or else not Is_Array_Type
(T
) then
1660 Indx
:= First_Index
(T
);
1661 while Present
(Indx
) loop
1662 Typ
:= Underlying_Type
(Etype
(Indx
));
1664 -- Never look at junk bounds of a generic type
1666 if Is_Generic_Type
(Typ
) then
1670 -- Otherwise check bounds for compile-time-known
1672 if not Compile_Time_Known_Value
(Type_Low_Bound
(Typ
)) then
1674 elsif not Compile_Time_Known_Value
(Type_High_Bound
(Typ
)) then
1682 end Compile_Time_Known_Bounds
;
1684 ------------------------------
1685 -- Compile_Time_Known_Value --
1686 ------------------------------
1688 function Compile_Time_Known_Value
(Op
: Node_Id
) return Boolean is
1689 K
: constant Node_Kind
:= Nkind
(Op
);
1690 CV_Ent
: CV_Entry
renames CV_Cache
(Nat
(Op
) mod CV_Cache_Size
);
1693 -- Never known at compile time if bad type or raises constraint error
1694 -- or empty (latter case occurs only as a result of a previous error).
1697 Check_Error_Detected
;
1701 or else Etype
(Op
) = Any_Type
1702 or else Raises_Constraint_Error
(Op
)
1707 -- If we have an entity name, then see if it is the name of a constant
1708 -- and if so, test the corresponding constant value, or the name of an
1709 -- enumeration literal, which is always a constant.
1711 if Present
(Etype
(Op
)) and then Is_Entity_Name
(Op
) then
1713 Ent
: constant Entity_Id
:= Entity
(Op
);
1717 -- Never known at compile time if it is a packed array value. We
1718 -- might want to try to evaluate these at compile time one day,
1719 -- but we do not make that attempt now.
1721 if Is_Packed_Array_Impl_Type
(Etype
(Op
)) then
1724 elsif Ekind
(Ent
) = E_Enumeration_Literal
then
1727 elsif Ekind
(Ent
) = E_Constant
then
1728 Val
:= Constant_Value
(Ent
);
1730 if Present
(Val
) then
1732 -- Guard against an illegal deferred constant whose full
1733 -- view is initialized with a reference to itself. Treat
1734 -- this case as a value not known at compile time.
1736 if Is_Entity_Name
(Val
) and then Entity
(Val
) = Ent
then
1739 return Compile_Time_Known_Value
(Val
);
1742 -- Otherwise, the constant does not have a compile-time-known
1751 -- We have a value, see if it is compile-time-known
1754 -- Integer literals are worth storing in the cache
1756 if K
= N_Integer_Literal
then
1758 CV_Ent
.V
:= Intval
(Op
);
1761 -- Other literals and NULL are known at compile time
1764 Nkind_In
(K
, N_Character_Literal
,
1773 -- If we fall through, not known at compile time
1777 -- If we get an exception while trying to do this test, then some error
1778 -- has occurred, and we simply say that the value is not known after all
1783 end Compile_Time_Known_Value
;
1785 --------------------------------------
1786 -- Compile_Time_Known_Value_Or_Aggr --
1787 --------------------------------------
1789 function Compile_Time_Known_Value_Or_Aggr
(Op
: Node_Id
) return Boolean is
1791 -- If we have an entity name, then see if it is the name of a constant
1792 -- and if so, test the corresponding constant value, or the name of
1793 -- an enumeration literal, which is always a constant.
1795 if Is_Entity_Name
(Op
) then
1797 E
: constant Entity_Id
:= Entity
(Op
);
1801 if Ekind
(E
) = E_Enumeration_Literal
then
1804 elsif Ekind
(E
) /= E_Constant
then
1808 V
:= Constant_Value
(E
);
1810 and then Compile_Time_Known_Value_Or_Aggr
(V
);
1814 -- We have a value, see if it is compile-time-known
1817 if Compile_Time_Known_Value
(Op
) then
1820 elsif Nkind
(Op
) = N_Aggregate
then
1822 if Present
(Expressions
(Op
)) then
1826 Expr
:= First
(Expressions
(Op
));
1827 while Present
(Expr
) loop
1828 if not Compile_Time_Known_Value_Or_Aggr
(Expr
) then
1837 if Present
(Component_Associations
(Op
)) then
1842 Cass
:= First
(Component_Associations
(Op
));
1843 while Present
(Cass
) loop
1845 Compile_Time_Known_Value_Or_Aggr
(Expression
(Cass
))
1857 elsif Nkind
(Op
) = N_Qualified_Expression
then
1858 return Compile_Time_Known_Value_Or_Aggr
(Expression
(Op
));
1860 -- All other types of values are not known at compile time
1867 end Compile_Time_Known_Value_Or_Aggr
;
1869 ---------------------------------------
1870 -- CRT_Safe_Compile_Time_Known_Value --
1871 ---------------------------------------
1873 function CRT_Safe_Compile_Time_Known_Value
(Op
: Node_Id
) return Boolean is
1875 if (Configurable_Run_Time_Mode
or No_Run_Time_Mode
)
1876 and then not Is_OK_Static_Expression
(Op
)
1880 return Compile_Time_Known_Value
(Op
);
1882 end CRT_Safe_Compile_Time_Known_Value
;
1888 -- This is only called for actuals of functions that are not predefined
1889 -- operators (which have already been rewritten as operators at this
1890 -- stage), so the call can never be folded, and all that needs doing for
1891 -- the actual is to do the check for a non-static context.
1893 procedure Eval_Actual
(N
: Node_Id
) is
1895 Check_Non_Static_Context
(N
);
1898 --------------------
1899 -- Eval_Allocator --
1900 --------------------
1902 -- Allocators are never static, so all we have to do is to do the
1903 -- check for a non-static context if an expression is present.
1905 procedure Eval_Allocator
(N
: Node_Id
) is
1906 Expr
: constant Node_Id
:= Expression
(N
);
1908 if Nkind
(Expr
) = N_Qualified_Expression
then
1909 Check_Non_Static_Context
(Expression
(Expr
));
1913 ------------------------
1914 -- Eval_Arithmetic_Op --
1915 ------------------------
1917 -- Arithmetic operations are static functions, so the result is static
1918 -- if both operands are static (RM 4.9(7), 4.9(20)).
1920 procedure Eval_Arithmetic_Op
(N
: Node_Id
) is
1921 Left
: constant Node_Id
:= Left_Opnd
(N
);
1922 Right
: constant Node_Id
:= Right_Opnd
(N
);
1923 Ltype
: constant Entity_Id
:= Etype
(Left
);
1924 Rtype
: constant Entity_Id
:= Etype
(Right
);
1925 Otype
: Entity_Id
:= Empty
;
1930 -- If not foldable we are done
1932 Test_Expression_Is_Foldable
(N
, Left
, Right
, Stat
, Fold
);
1938 -- Otherwise attempt to fold
1940 if Is_Universal_Numeric_Type
(Etype
(Left
))
1942 Is_Universal_Numeric_Type
(Etype
(Right
))
1944 Otype
:= Find_Universal_Operator_Type
(N
);
1947 -- Fold for cases where both operands are of integer type
1949 if Is_Integer_Type
(Ltype
) and then Is_Integer_Type
(Rtype
) then
1951 Left_Int
: constant Uint
:= Expr_Value
(Left
);
1952 Right_Int
: constant Uint
:= Expr_Value
(Right
);
1958 Result
:= Left_Int
+ Right_Int
;
1960 when N_Op_Subtract
=>
1961 Result
:= Left_Int
- Right_Int
;
1963 when N_Op_Multiply
=>
1966 (Num_Bits
(Left_Int
) + Num_Bits
(Right_Int
)))
1968 Result
:= Left_Int
* Right_Int
;
1975 -- The exception Constraint_Error is raised by integer
1976 -- division, rem and mod if the right operand is zero.
1978 if Right_Int
= 0 then
1980 -- When SPARK_Mode is On, force a warning instead of
1981 -- an error in that case, as this likely corresponds
1982 -- to deactivated code.
1984 Apply_Compile_Time_Constraint_Error
1985 (N
, "division by zero", CE_Divide_By_Zero
,
1986 Warn
=> not Stat
or SPARK_Mode
= On
);
1987 Set_Raises_Constraint_Error
(N
);
1990 -- Otherwise we can do the division
1993 Result
:= Left_Int
/ Right_Int
;
1998 -- The exception Constraint_Error is raised by integer
1999 -- division, rem and mod if the right operand is zero.
2001 if Right_Int
= 0 then
2003 -- When SPARK_Mode is On, force a warning instead of
2004 -- an error in that case, as this likely corresponds
2005 -- to deactivated code.
2007 Apply_Compile_Time_Constraint_Error
2008 (N
, "mod with zero divisor", CE_Divide_By_Zero
,
2009 Warn
=> not Stat
or SPARK_Mode
= On
);
2013 Result
:= Left_Int
mod Right_Int
;
2018 -- The exception Constraint_Error is raised by integer
2019 -- division, rem and mod if the right operand is zero.
2021 if Right_Int
= 0 then
2023 -- When SPARK_Mode is On, force a warning instead of
2024 -- an error in that case, as this likely corresponds
2025 -- to deactivated code.
2027 Apply_Compile_Time_Constraint_Error
2028 (N
, "rem with zero divisor", CE_Divide_By_Zero
,
2029 Warn
=> not Stat
or SPARK_Mode
= On
);
2033 Result
:= Left_Int
rem Right_Int
;
2037 raise Program_Error
;
2040 -- Adjust the result by the modulus if the type is a modular type
2042 if Is_Modular_Integer_Type
(Ltype
) then
2043 Result
:= Result
mod Modulus
(Ltype
);
2045 -- For a signed integer type, check non-static overflow
2047 elsif (not Stat
) and then Is_Signed_Integer_Type
(Ltype
) then
2049 BT
: constant Entity_Id
:= Base_Type
(Ltype
);
2050 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(BT
));
2051 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(BT
));
2053 if Result
< Lo
or else Result
> Hi
then
2054 Apply_Compile_Time_Constraint_Error
2055 (N
, "value not in range of }??",
2056 CE_Overflow_Check_Failed
,
2063 -- If we get here we can fold the result
2065 Fold_Uint
(N
, Result
, Stat
);
2068 -- Cases where at least one operand is a real. We handle the cases of
2069 -- both reals, or mixed/real integer cases (the latter happen only for
2070 -- divide and multiply, and the result is always real).
2072 elsif Is_Real_Type
(Ltype
) or else Is_Real_Type
(Rtype
) then
2079 if Is_Real_Type
(Ltype
) then
2080 Left_Real
:= Expr_Value_R
(Left
);
2082 Left_Real
:= UR_From_Uint
(Expr_Value
(Left
));
2085 if Is_Real_Type
(Rtype
) then
2086 Right_Real
:= Expr_Value_R
(Right
);
2088 Right_Real
:= UR_From_Uint
(Expr_Value
(Right
));
2091 if Nkind
(N
) = N_Op_Add
then
2092 Result
:= Left_Real
+ Right_Real
;
2094 elsif Nkind
(N
) = N_Op_Subtract
then
2095 Result
:= Left_Real
- Right_Real
;
2097 elsif Nkind
(N
) = N_Op_Multiply
then
2098 Result
:= Left_Real
* Right_Real
;
2100 else pragma Assert
(Nkind
(N
) = N_Op_Divide
);
2101 if UR_Is_Zero
(Right_Real
) then
2102 Apply_Compile_Time_Constraint_Error
2103 (N
, "division by zero", CE_Divide_By_Zero
);
2107 Result
:= Left_Real
/ Right_Real
;
2110 Fold_Ureal
(N
, Result
, Stat
);
2114 -- If the operator was resolved to a specific type, make sure that type
2115 -- is frozen even if the expression is folded into a literal (which has
2116 -- a universal type).
2118 if Present
(Otype
) then
2119 Freeze_Before
(N
, Otype
);
2121 end Eval_Arithmetic_Op
;
2123 ----------------------------
2124 -- Eval_Character_Literal --
2125 ----------------------------
2127 -- Nothing to be done
2129 procedure Eval_Character_Literal
(N
: Node_Id
) is
2130 pragma Warnings
(Off
, N
);
2133 end Eval_Character_Literal
;
2139 -- Static function calls are either calls to predefined operators
2140 -- with static arguments, or calls to functions that rename a literal.
2141 -- Only the latter case is handled here, predefined operators are
2142 -- constant-folded elsewhere.
2144 -- If the function is itself inherited (see 7423-001) the literal of
2145 -- the parent type must be explicitly converted to the return type
2148 procedure Eval_Call
(N
: Node_Id
) is
2149 Loc
: constant Source_Ptr
:= Sloc
(N
);
2150 Typ
: constant Entity_Id
:= Etype
(N
);
2154 if Nkind
(N
) = N_Function_Call
2155 and then No
(Parameter_Associations
(N
))
2156 and then Is_Entity_Name
(Name
(N
))
2157 and then Present
(Alias
(Entity
(Name
(N
))))
2158 and then Is_Enumeration_Type
(Base_Type
(Typ
))
2160 Lit
:= Ultimate_Alias
(Entity
(Name
(N
)));
2162 if Ekind
(Lit
) = E_Enumeration_Literal
then
2163 if Base_Type
(Etype
(Lit
)) /= Base_Type
(Typ
) then
2165 (N
, Convert_To
(Typ
, New_Occurrence_Of
(Lit
, Loc
)));
2167 Rewrite
(N
, New_Occurrence_Of
(Lit
, Loc
));
2175 --------------------------
2176 -- Eval_Case_Expression --
2177 --------------------------
2179 -- A conditional expression is static if all its conditions and dependent
2180 -- expressions are static. Note that we do not care if the dependent
2181 -- expressions raise CE, except for the one that will be selected.
2183 procedure Eval_Case_Expression
(N
: Node_Id
) is
2188 Set_Is_Static_Expression
(N
, False);
2190 if Error_Posted
(Expression
(N
))
2191 or else not Is_Static_Expression
(Expression
(N
))
2193 Check_Non_Static_Context
(Expression
(N
));
2197 -- First loop, make sure all the alternatives are static expressions
2198 -- none of which raise Constraint_Error. We make the constraint error
2199 -- check because part of the legality condition for a correct static
2200 -- case expression is that the cases are covered, like any other case
2201 -- expression. And we can't do that if any of the conditions raise an
2202 -- exception, so we don't even try to evaluate if that is the case.
2204 Alt
:= First
(Alternatives
(N
));
2205 while Present
(Alt
) loop
2207 -- The expression must be static, but we don't care at this stage
2208 -- if it raises Constraint_Error (the alternative might not match,
2209 -- in which case the expression is statically unevaluated anyway).
2211 if not Is_Static_Expression
(Expression
(Alt
)) then
2212 Check_Non_Static_Context
(Expression
(Alt
));
2216 -- The choices of a case always have to be static, and cannot raise
2217 -- an exception. If this condition is not met, then the expression
2218 -- is plain illegal, so just abandon evaluation attempts. No need
2219 -- to check non-static context when we have something illegal anyway.
2221 if not Is_OK_Static_Choice_List
(Discrete_Choices
(Alt
)) then
2228 -- OK, if the above loop gets through it means that all choices are OK
2229 -- static (don't raise exceptions), so the whole case is static, and we
2230 -- can find the matching alternative.
2232 Set_Is_Static_Expression
(N
);
2234 -- Now to deal with propagating a possible constraint error
2236 -- If the selecting expression raises CE, propagate and we are done
2238 if Raises_Constraint_Error
(Expression
(N
)) then
2239 Set_Raises_Constraint_Error
(N
);
2241 -- Otherwise we need to check the alternatives to find the matching
2242 -- one. CE's in other than the matching one are not relevant. But we
2243 -- do need to check the matching one. Unlike the first loop, we do not
2244 -- have to go all the way through, when we find the matching one, quit.
2247 Alt
:= First
(Alternatives
(N
));
2250 -- We must find a match among the alternatives. If not, this must
2251 -- be due to other errors, so just ignore, leaving as non-static.
2254 Set_Is_Static_Expression
(N
, False);
2258 -- Otherwise loop through choices of this alternative
2260 Choice
:= First
(Discrete_Choices
(Alt
));
2261 while Present
(Choice
) loop
2263 -- If we find a matching choice, then the Expression of this
2264 -- alternative replaces N (Raises_Constraint_Error flag is
2265 -- included, so we don't have to special case that).
2267 if Choice_Matches
(Expression
(N
), Choice
) = Match
then
2268 Rewrite
(N
, Relocate_Node
(Expression
(Alt
)));
2278 end Eval_Case_Expression
;
2280 ------------------------
2281 -- Eval_Concatenation --
2282 ------------------------
2284 -- Concatenation is a static function, so the result is static if both
2285 -- operands are static (RM 4.9(7), 4.9(21)).
2287 procedure Eval_Concatenation
(N
: Node_Id
) is
2288 Left
: constant Node_Id
:= Left_Opnd
(N
);
2289 Right
: constant Node_Id
:= Right_Opnd
(N
);
2290 C_Typ
: constant Entity_Id
:= Root_Type
(Component_Type
(Etype
(N
)));
2295 -- Concatenation is never static in Ada 83, so if Ada 83 check operand
2296 -- non-static context.
2298 if Ada_Version
= Ada_83
2299 and then Comes_From_Source
(N
)
2301 Check_Non_Static_Context
(Left
);
2302 Check_Non_Static_Context
(Right
);
2306 -- If not foldable we are done. In principle concatenation that yields
2307 -- any string type is static (i.e. an array type of character types).
2308 -- However, character types can include enumeration literals, and
2309 -- concatenation in that case cannot be described by a literal, so we
2310 -- only consider the operation static if the result is an array of
2311 -- (a descendant of) a predefined character type.
2313 Test_Expression_Is_Foldable
(N
, Left
, Right
, Stat
, Fold
);
2315 if not (Is_Standard_Character_Type
(C_Typ
) and then Fold
) then
2316 Set_Is_Static_Expression
(N
, False);
2320 -- Compile time string concatenation
2322 -- ??? Note that operands that are aggregates can be marked as static,
2323 -- so we should attempt at a later stage to fold concatenations with
2327 Left_Str
: constant Node_Id
:= Get_String_Val
(Left
);
2329 Right_Str
: constant Node_Id
:= Get_String_Val
(Right
);
2330 Folded_Val
: String_Id
:= No_String
;
2333 -- Establish new string literal, and store left operand. We make
2334 -- sure to use the special Start_String that takes an operand if
2335 -- the left operand is a string literal. Since this is optimized
2336 -- in the case where that is the most recently created string
2337 -- literal, we ensure efficient time/space behavior for the
2338 -- case of a concatenation of a series of string literals.
2340 if Nkind
(Left_Str
) = N_String_Literal
then
2341 Left_Len
:= String_Length
(Strval
(Left_Str
));
2343 -- If the left operand is the empty string, and the right operand
2344 -- is a string literal (the case of "" & "..."), the result is the
2345 -- value of the right operand. This optimization is important when
2346 -- Is_Folded_In_Parser, to avoid copying an enormous right
2349 if Left_Len
= 0 and then Nkind
(Right_Str
) = N_String_Literal
then
2350 Folded_Val
:= Strval
(Right_Str
);
2352 Start_String
(Strval
(Left_Str
));
2357 Store_String_Char
(UI_To_CC
(Char_Literal_Value
(Left_Str
)));
2361 -- Now append the characters of the right operand, unless we
2362 -- optimized the "" & "..." case above.
2364 if Nkind
(Right_Str
) = N_String_Literal
then
2365 if Left_Len
/= 0 then
2366 Store_String_Chars
(Strval
(Right_Str
));
2367 Folded_Val
:= End_String
;
2370 Store_String_Char
(UI_To_CC
(Char_Literal_Value
(Right_Str
)));
2371 Folded_Val
:= End_String
;
2374 Set_Is_Static_Expression
(N
, Stat
);
2376 -- If left operand is the empty string, the result is the
2377 -- right operand, including its bounds if anomalous.
2380 and then Is_Array_Type
(Etype
(Right
))
2381 and then Etype
(Right
) /= Any_String
2383 Set_Etype
(N
, Etype
(Right
));
2386 Fold_Str
(N
, Folded_Val
, Static
=> Stat
);
2388 end Eval_Concatenation
;
2390 ----------------------
2391 -- Eval_Entity_Name --
2392 ----------------------
2394 -- This procedure is used for identifiers and expanded names other than
2395 -- named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
2396 -- static if they denote a static constant (RM 4.9(6)) or if the name
2397 -- denotes an enumeration literal (RM 4.9(22)).
2399 procedure Eval_Entity_Name
(N
: Node_Id
) is
2400 Def_Id
: constant Entity_Id
:= Entity
(N
);
2404 -- Enumeration literals are always considered to be constants
2405 -- and cannot raise constraint error (RM 4.9(22)).
2407 if Ekind
(Def_Id
) = E_Enumeration_Literal
then
2408 Set_Is_Static_Expression
(N
);
2411 -- A name is static if it denotes a static constant (RM 4.9(5)), and
2412 -- we also copy Raise_Constraint_Error. Notice that even if non-static,
2413 -- it does not violate 10.2.1(8) here, since this is not a variable.
2415 elsif Ekind
(Def_Id
) = E_Constant
then
2417 -- Deferred constants must always be treated as nonstatic outside the
2418 -- scope of their full view.
2420 if Present
(Full_View
(Def_Id
))
2421 and then not In_Open_Scopes
(Scope
(Def_Id
))
2425 Val
:= Constant_Value
(Def_Id
);
2428 if Present
(Val
) then
2429 Set_Is_Static_Expression
2430 (N
, Is_Static_Expression
(Val
)
2431 and then Is_Static_Subtype
(Etype
(Def_Id
)));
2432 Set_Raises_Constraint_Error
(N
, Raises_Constraint_Error
(Val
));
2434 if not Is_Static_Expression
(N
)
2435 and then not Is_Generic_Type
(Etype
(N
))
2437 Validate_Static_Object_Name
(N
);
2440 -- Mark constant condition in SCOs
2443 and then Comes_From_Source
(N
)
2444 and then Is_Boolean_Type
(Etype
(Def_Id
))
2445 and then Compile_Time_Known_Value
(N
)
2447 Set_SCO_Condition
(N
, Expr_Value_E
(N
) = Standard_True
);
2454 -- Fall through if the name is not static
2456 Validate_Static_Object_Name
(N
);
2457 end Eval_Entity_Name
;
2459 ------------------------
2460 -- Eval_If_Expression --
2461 ------------------------
2463 -- We can fold to a static expression if the condition and both dependent
2464 -- expressions are static. Otherwise, the only required processing is to do
2465 -- the check for non-static context for the then and else expressions.
2467 procedure Eval_If_Expression
(N
: Node_Id
) is
2468 Condition
: constant Node_Id
:= First
(Expressions
(N
));
2469 Then_Expr
: constant Node_Id
:= Next
(Condition
);
2470 Else_Expr
: constant Node_Id
:= Next
(Then_Expr
);
2472 Non_Result
: Node_Id
;
2474 Rstat
: constant Boolean :=
2475 Is_Static_Expression
(Condition
)
2477 Is_Static_Expression
(Then_Expr
)
2479 Is_Static_Expression
(Else_Expr
);
2480 -- True if result is static
2483 -- If result not static, nothing to do, otherwise set static result
2488 Set_Is_Static_Expression
(N
);
2491 -- If any operand is Any_Type, just propagate to result and do not try
2492 -- to fold, this prevents cascaded errors.
2494 if Etype
(Condition
) = Any_Type
or else
2495 Etype
(Then_Expr
) = Any_Type
or else
2496 Etype
(Else_Expr
) = Any_Type
2498 Set_Etype
(N
, Any_Type
);
2499 Set_Is_Static_Expression
(N
, False);
2503 -- If condition raises constraint error then we have already signaled
2504 -- an error, and we just propagate to the result and do not fold.
2506 if Raises_Constraint_Error
(Condition
) then
2507 Set_Raises_Constraint_Error
(N
);
2511 -- Static case where we can fold. Note that we don't try to fold cases
2512 -- where the condition is known at compile time, but the result is
2513 -- non-static. This avoids possible cases of infinite recursion where
2514 -- the expander puts in a redundant test and we remove it. Instead we
2515 -- deal with these cases in the expander.
2517 -- Select result operand
2519 if Is_True
(Expr_Value
(Condition
)) then
2520 Result
:= Then_Expr
;
2521 Non_Result
:= Else_Expr
;
2523 Result
:= Else_Expr
;
2524 Non_Result
:= Then_Expr
;
2527 -- Note that it does not matter if the non-result operand raises a
2528 -- Constraint_Error, but if the result raises constraint error then we
2529 -- replace the node with a raise constraint error. This will properly
2530 -- propagate Raises_Constraint_Error since this flag is set in Result.
2532 if Raises_Constraint_Error
(Result
) then
2533 Rewrite_In_Raise_CE
(N
, Result
);
2534 Check_Non_Static_Context
(Non_Result
);
2536 -- Otherwise the result operand replaces the original node
2539 Rewrite
(N
, Relocate_Node
(Result
));
2540 Set_Is_Static_Expression
(N
);
2542 end Eval_If_Expression
;
2544 ----------------------------
2545 -- Eval_Indexed_Component --
2546 ----------------------------
2548 -- Indexed components are never static, so we need to perform the check
2549 -- for non-static context on the index values. Then, we check if the
2550 -- value can be obtained at compile time, even though it is non-static.
2552 procedure Eval_Indexed_Component
(N
: Node_Id
) is
2556 -- Check for non-static context on index values
2558 Expr
:= First
(Expressions
(N
));
2559 while Present
(Expr
) loop
2560 Check_Non_Static_Context
(Expr
);
2564 -- If the indexed component appears in an object renaming declaration
2565 -- then we do not want to try to evaluate it, since in this case we
2566 -- need the identity of the array element.
2568 if Nkind
(Parent
(N
)) = N_Object_Renaming_Declaration
then
2571 -- Similarly if the indexed component appears as the prefix of an
2572 -- attribute we don't want to evaluate it, because at least for
2573 -- some cases of attributes we need the identify (e.g. Access, Size)
2575 elsif Nkind
(Parent
(N
)) = N_Attribute_Reference
then
2579 -- Note: there are other cases, such as the left side of an assignment,
2580 -- or an OUT parameter for a call, where the replacement results in the
2581 -- illegal use of a constant, But these cases are illegal in the first
2582 -- place, so the replacement, though silly, is harmless.
2584 -- Now see if this is a constant array reference
2586 if List_Length
(Expressions
(N
)) = 1
2587 and then Is_Entity_Name
(Prefix
(N
))
2588 and then Ekind
(Entity
(Prefix
(N
))) = E_Constant
2589 and then Present
(Constant_Value
(Entity
(Prefix
(N
))))
2592 Loc
: constant Source_Ptr
:= Sloc
(N
);
2593 Arr
: constant Node_Id
:= Constant_Value
(Entity
(Prefix
(N
)));
2594 Sub
: constant Node_Id
:= First
(Expressions
(N
));
2600 -- Linear one's origin subscript value for array reference
2603 -- Lower bound of the first array index
2606 -- Value from constant array
2609 Atyp
:= Etype
(Arr
);
2611 if Is_Access_Type
(Atyp
) then
2612 Atyp
:= Designated_Type
(Atyp
);
2615 -- If we have an array type (we should have but perhaps there are
2616 -- error cases where this is not the case), then see if we can do
2617 -- a constant evaluation of the array reference.
2619 if Is_Array_Type
(Atyp
) and then Atyp
/= Any_Composite
then
2620 if Ekind
(Atyp
) = E_String_Literal_Subtype
then
2621 Lbd
:= String_Literal_Low_Bound
(Atyp
);
2623 Lbd
:= Type_Low_Bound
(Etype
(First_Index
(Atyp
)));
2626 if Compile_Time_Known_Value
(Sub
)
2627 and then Nkind
(Arr
) = N_Aggregate
2628 and then Compile_Time_Known_Value
(Lbd
)
2629 and then Is_Discrete_Type
(Component_Type
(Atyp
))
2631 Lin
:= UI_To_Int
(Expr_Value
(Sub
) - Expr_Value
(Lbd
)) + 1;
2633 if List_Length
(Expressions
(Arr
)) >= Lin
then
2634 Elm
:= Pick
(Expressions
(Arr
), Lin
);
2636 -- If the resulting expression is compile-time-known,
2637 -- then we can rewrite the indexed component with this
2638 -- value, being sure to mark the result as non-static.
2639 -- We also reset the Sloc, in case this generates an
2640 -- error later on (e.g. 136'Access).
2642 if Compile_Time_Known_Value
(Elm
) then
2643 Rewrite
(N
, Duplicate_Subexpr_No_Checks
(Elm
));
2644 Set_Is_Static_Expression
(N
, False);
2649 -- We can also constant-fold if the prefix is a string literal.
2650 -- This will be useful in an instantiation or an inlining.
2652 elsif Compile_Time_Known_Value
(Sub
)
2653 and then Nkind
(Arr
) = N_String_Literal
2654 and then Compile_Time_Known_Value
(Lbd
)
2655 and then Expr_Value
(Lbd
) = 1
2656 and then Expr_Value
(Sub
) <=
2657 String_Literal_Length
(Etype
(Arr
))
2660 C
: constant Char_Code
:=
2661 Get_String_Char
(Strval
(Arr
),
2662 UI_To_Int
(Expr_Value
(Sub
)));
2664 Set_Character_Literal_Name
(C
);
2667 Make_Character_Literal
(Loc
,
2669 Char_Literal_Value
=> UI_From_CC
(C
));
2670 Set_Etype
(Elm
, Component_Type
(Atyp
));
2671 Rewrite
(N
, Duplicate_Subexpr_No_Checks
(Elm
));
2672 Set_Is_Static_Expression
(N
, False);
2678 end Eval_Indexed_Component
;
2680 --------------------------
2681 -- Eval_Integer_Literal --
2682 --------------------------
2684 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2685 -- as static by the analyzer. The reason we did it that early is to allow
2686 -- the possibility of turning off the Is_Static_Expression flag after
2687 -- analysis, but before resolution, when integer literals are generated in
2688 -- the expander that do not correspond to static expressions.
2690 procedure Eval_Integer_Literal
(N
: Node_Id
) is
2691 function In_Any_Integer_Context
(Context
: Node_Id
) return Boolean;
2692 -- If the literal is resolved with a specific type in a context where
2693 -- the expected type is Any_Integer, there are no range checks on the
2694 -- literal. By the time the literal is evaluated, it carries the type
2695 -- imposed by the enclosing expression, and we must recover the context
2696 -- to determine that Any_Integer is meant.
2698 ----------------------------
2699 -- In_Any_Integer_Context --
2700 ----------------------------
2702 function In_Any_Integer_Context
(Context
: Node_Id
) return Boolean is
2704 -- Any_Integer also appears in digits specifications for real types,
2705 -- but those have bounds smaller that those of any integer base type,
2706 -- so we can safely ignore these cases.
2709 Nkind_In
(Context
, N_Attribute_Definition_Clause
,
2710 N_Attribute_Reference
,
2711 N_Modular_Type_Definition
,
2712 N_Number_Declaration
,
2713 N_Signed_Integer_Type_Definition
);
2714 end In_Any_Integer_Context
;
2718 Par
: constant Node_Id
:= Parent
(N
);
2719 Typ
: constant Entity_Id
:= Etype
(N
);
2721 -- Start of processing for Eval_Integer_Literal
2724 -- If the literal appears in a non-expression context, then it is
2725 -- certainly appearing in a non-static context, so check it. This is
2726 -- actually a redundant check, since Check_Non_Static_Context would
2727 -- check it, but it seems worthwhile to optimize out the call.
2729 -- Additionally, when the literal appears within an if or case
2730 -- expression it must be checked as well. However, due to the literal
2731 -- appearing within a conditional statement, expansion greatly changes
2732 -- the nature of its context and performing some of the checks within
2733 -- Check_Non_Static_Context on an expanded literal may lead to spurious
2734 -- and misleading warnings.
2736 if (Nkind_In
(Par
, N_If_Expression
, N_Case_Expression_Alternative
)
2737 or else Nkind
(Parent
(N
)) not in N_Subexpr
)
2738 and then (not Nkind_In
(Par
, N_Case_Expression_Alternative
,
2740 or else Comes_From_Source
(N
))
2741 and then not In_Any_Integer_Context
(Par
)
2743 Check_Non_Static_Context
(N
);
2746 -- Modular integer literals must be in their base range
2748 if Is_Modular_Integer_Type
(Typ
)
2749 and then Is_Out_Of_Range
(N
, Base_Type
(Typ
), Assume_Valid
=> True)
2753 end Eval_Integer_Literal
;
2755 ---------------------
2756 -- Eval_Logical_Op --
2757 ---------------------
2759 -- Logical operations are static functions, so the result is potentially
2760 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2762 procedure Eval_Logical_Op
(N
: Node_Id
) is
2763 Left
: constant Node_Id
:= Left_Opnd
(N
);
2764 Right
: constant Node_Id
:= Right_Opnd
(N
);
2769 -- If not foldable we are done
2771 Test_Expression_Is_Foldable
(N
, Left
, Right
, Stat
, Fold
);
2777 -- Compile time evaluation of logical operation
2780 Left_Int
: constant Uint
:= Expr_Value
(Left
);
2781 Right_Int
: constant Uint
:= Expr_Value
(Right
);
2784 if Is_Modular_Integer_Type
(Etype
(N
)) then
2786 Left_Bits
: Bits
(0 .. UI_To_Int
(Esize
(Etype
(N
))) - 1);
2787 Right_Bits
: Bits
(0 .. UI_To_Int
(Esize
(Etype
(N
))) - 1);
2790 To_Bits
(Left_Int
, Left_Bits
);
2791 To_Bits
(Right_Int
, Right_Bits
);
2793 -- Note: should really be able to use array ops instead of
2794 -- these loops, but they weren't working at the time ???
2796 if Nkind
(N
) = N_Op_And
then
2797 for J
in Left_Bits
'Range loop
2798 Left_Bits
(J
) := Left_Bits
(J
) and Right_Bits
(J
);
2801 elsif Nkind
(N
) = N_Op_Or
then
2802 for J
in Left_Bits
'Range loop
2803 Left_Bits
(J
) := Left_Bits
(J
) or Right_Bits
(J
);
2807 pragma Assert
(Nkind
(N
) = N_Op_Xor
);
2809 for J
in Left_Bits
'Range loop
2810 Left_Bits
(J
) := Left_Bits
(J
) xor Right_Bits
(J
);
2814 Fold_Uint
(N
, From_Bits
(Left_Bits
, Etype
(N
)), Stat
);
2818 pragma Assert
(Is_Boolean_Type
(Etype
(N
)));
2820 if Nkind
(N
) = N_Op_And
then
2822 Test
(Is_True
(Left_Int
) and then Is_True
(Right_Int
)), Stat
);
2824 elsif Nkind
(N
) = N_Op_Or
then
2826 Test
(Is_True
(Left_Int
) or else Is_True
(Right_Int
)), Stat
);
2829 pragma Assert
(Nkind
(N
) = N_Op_Xor
);
2831 Test
(Is_True
(Left_Int
) xor Is_True
(Right_Int
)), Stat
);
2835 end Eval_Logical_Op
;
2837 ------------------------
2838 -- Eval_Membership_Op --
2839 ------------------------
2841 -- A membership test is potentially static if the expression is static, and
2842 -- the range is a potentially static range, or is a subtype mark denoting a
2843 -- static subtype (RM 4.9(12)).
2845 procedure Eval_Membership_Op
(N
: Node_Id
) is
2846 Alts
: constant List_Id
:= Alternatives
(N
);
2847 Choice
: constant Node_Id
:= Right_Opnd
(N
);
2848 Expr
: constant Node_Id
:= Left_Opnd
(N
);
2849 Result
: Match_Result
;
2852 -- Ignore if error in either operand, except to make sure that Any_Type
2853 -- is properly propagated to avoid junk cascaded errors.
2855 if Etype
(Expr
) = Any_Type
2856 or else (Present
(Choice
) and then Etype
(Choice
) = Any_Type
)
2858 Set_Etype
(N
, Any_Type
);
2862 -- If left operand non-static, then nothing to do
2864 if not Is_Static_Expression
(Expr
) then
2868 -- If choice is non-static, left operand is in non-static context
2870 if (Present
(Choice
) and then not Is_Static_Choice
(Choice
))
2871 or else (Present
(Alts
) and then not Is_Static_Choice_List
(Alts
))
2873 Check_Non_Static_Context
(Expr
);
2877 -- Otherwise we definitely have a static expression
2879 Set_Is_Static_Expression
(N
);
2881 -- If left operand raises constraint error, propagate and we are done
2883 if Raises_Constraint_Error
(Expr
) then
2884 Set_Raises_Constraint_Error
(N
, True);
2889 if Present
(Choice
) then
2890 Result
:= Choice_Matches
(Expr
, Choice
);
2892 Result
:= Choices_Match
(Expr
, Alts
);
2895 -- If result is Non_Static, it means that we raise Constraint_Error,
2896 -- since we already tested that the operands were themselves static.
2898 if Result
= Non_Static
then
2899 Set_Raises_Constraint_Error
(N
);
2901 -- Otherwise we have our result (flipped if NOT IN case)
2905 (N
, Test
((Result
= Match
) xor (Nkind
(N
) = N_Not_In
)), True);
2906 Warn_On_Known_Condition
(N
);
2909 end Eval_Membership_Op
;
2911 ------------------------
2912 -- Eval_Named_Integer --
2913 ------------------------
2915 procedure Eval_Named_Integer
(N
: Node_Id
) is
2918 Expr_Value
(Expression
(Declaration_Node
(Entity
(N
)))), True);
2919 end Eval_Named_Integer
;
2921 ---------------------
2922 -- Eval_Named_Real --
2923 ---------------------
2925 procedure Eval_Named_Real
(N
: Node_Id
) is
2928 Expr_Value_R
(Expression
(Declaration_Node
(Entity
(N
)))), True);
2929 end Eval_Named_Real
;
2935 -- Exponentiation is a static functions, so the result is potentially
2936 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2938 procedure Eval_Op_Expon
(N
: Node_Id
) is
2939 Left
: constant Node_Id
:= Left_Opnd
(N
);
2940 Right
: constant Node_Id
:= Right_Opnd
(N
);
2945 -- If not foldable we are done
2947 Test_Expression_Is_Foldable
2948 (N
, Left
, Right
, Stat
, Fold
, CRT_Safe
=> True);
2950 -- Return if not foldable
2956 if Configurable_Run_Time_Mode
and not Stat
then
2960 -- Fold exponentiation operation
2963 Right_Int
: constant Uint
:= Expr_Value
(Right
);
2968 if Is_Integer_Type
(Etype
(Left
)) then
2970 Left_Int
: constant Uint
:= Expr_Value
(Left
);
2974 -- Exponentiation of an integer raises Constraint_Error for a
2975 -- negative exponent (RM 4.5.6).
2977 if Right_Int
< 0 then
2978 Apply_Compile_Time_Constraint_Error
2979 (N
, "integer exponent negative", CE_Range_Check_Failed
,
2984 if OK_Bits
(N
, Num_Bits
(Left_Int
) * Right_Int
) then
2985 Result
:= Left_Int
** Right_Int
;
2990 if Is_Modular_Integer_Type
(Etype
(N
)) then
2991 Result
:= Result
mod Modulus
(Etype
(N
));
2994 Fold_Uint
(N
, Result
, Stat
);
3002 Left_Real
: constant Ureal
:= Expr_Value_R
(Left
);
3005 -- Cannot have a zero base with a negative exponent
3007 if UR_Is_Zero
(Left_Real
) then
3009 if Right_Int
< 0 then
3010 Apply_Compile_Time_Constraint_Error
3011 (N
, "zero ** negative integer", CE_Range_Check_Failed
,
3015 Fold_Ureal
(N
, Ureal_0
, Stat
);
3019 Fold_Ureal
(N
, Left_Real
** Right_Int
, Stat
);
3030 -- The not operation is a static functions, so the result is potentially
3031 -- static if the operand is potentially static (RM 4.9(7), 4.9(20)).
3033 procedure Eval_Op_Not
(N
: Node_Id
) is
3034 Right
: constant Node_Id
:= Right_Opnd
(N
);
3039 -- If not foldable we are done
3041 Test_Expression_Is_Foldable
(N
, Right
, Stat
, Fold
);
3047 -- Fold not operation
3050 Rint
: constant Uint
:= Expr_Value
(Right
);
3051 Typ
: constant Entity_Id
:= Etype
(N
);
3054 -- Negation is equivalent to subtracting from the modulus minus one.
3055 -- For a binary modulus this is equivalent to the ones-complement of
3056 -- the original value. For a nonbinary modulus this is an arbitrary
3057 -- but consistent definition.
3059 if Is_Modular_Integer_Type
(Typ
) then
3060 Fold_Uint
(N
, Modulus
(Typ
) - 1 - Rint
, Stat
);
3061 else pragma Assert
(Is_Boolean_Type
(Typ
));
3062 Fold_Uint
(N
, Test
(not Is_True
(Rint
)), Stat
);
3065 Set_Is_Static_Expression
(N
, Stat
);
3069 -------------------------------
3070 -- Eval_Qualified_Expression --
3071 -------------------------------
3073 -- A qualified expression is potentially static if its subtype mark denotes
3074 -- a static subtype and its expression is potentially static (RM 4.9 (11)).
3076 procedure Eval_Qualified_Expression
(N
: Node_Id
) is
3077 Operand
: constant Node_Id
:= Expression
(N
);
3078 Target_Type
: constant Entity_Id
:= Entity
(Subtype_Mark
(N
));
3085 -- Can only fold if target is string or scalar and subtype is static.
3086 -- Also, do not fold if our parent is an allocator (this is because the
3087 -- qualified expression is really part of the syntactic structure of an
3088 -- allocator, and we do not want to end up with something that
3089 -- corresponds to "new 1" where the 1 is the result of folding a
3090 -- qualified expression).
3092 if not Is_Static_Subtype
(Target_Type
)
3093 or else Nkind
(Parent
(N
)) = N_Allocator
3095 Check_Non_Static_Context
(Operand
);
3097 -- If operand is known to raise constraint_error, set the flag on the
3098 -- expression so it does not get optimized away.
3100 if Nkind
(Operand
) = N_Raise_Constraint_Error
then
3101 Set_Raises_Constraint_Error
(N
);
3107 -- If not foldable we are done
3109 Test_Expression_Is_Foldable
(N
, Operand
, Stat
, Fold
);
3114 -- Don't try fold if target type has constraint error bounds
3116 elsif not Is_OK_Static_Subtype
(Target_Type
) then
3117 Set_Raises_Constraint_Error
(N
);
3121 -- Here we will fold, save Print_In_Hex indication
3123 Hex
:= Nkind
(Operand
) = N_Integer_Literal
3124 and then Print_In_Hex
(Operand
);
3126 -- Fold the result of qualification
3128 if Is_Discrete_Type
(Target_Type
) then
3129 Fold_Uint
(N
, Expr_Value
(Operand
), Stat
);
3131 -- Preserve Print_In_Hex indication
3133 if Hex
and then Nkind
(N
) = N_Integer_Literal
then
3134 Set_Print_In_Hex
(N
);
3137 elsif Is_Real_Type
(Target_Type
) then
3138 Fold_Ureal
(N
, Expr_Value_R
(Operand
), Stat
);
3141 Fold_Str
(N
, Strval
(Get_String_Val
(Operand
)), Stat
);
3144 Set_Is_Static_Expression
(N
, False);
3146 Check_String_Literal_Length
(N
, Target_Type
);
3152 -- The expression may be foldable but not static
3154 Set_Is_Static_Expression
(N
, Stat
);
3156 if Is_Out_Of_Range
(N
, Etype
(N
), Assume_Valid
=> True) then
3159 end Eval_Qualified_Expression
;
3161 -----------------------
3162 -- Eval_Real_Literal --
3163 -----------------------
3165 -- Numeric literals are static (RM 4.9(1)), and have already been marked
3166 -- as static by the analyzer. The reason we did it that early is to allow
3167 -- the possibility of turning off the Is_Static_Expression flag after
3168 -- analysis, but before resolution, when integer literals are generated
3169 -- in the expander that do not correspond to static expressions.
3171 procedure Eval_Real_Literal
(N
: Node_Id
) is
3172 PK
: constant Node_Kind
:= Nkind
(Parent
(N
));
3175 -- If the literal appears in a non-expression context and not as part of
3176 -- a number declaration, then it is appearing in a non-static context,
3179 if PK
not in N_Subexpr
and then PK
/= N_Number_Declaration
then
3180 Check_Non_Static_Context
(N
);
3182 end Eval_Real_Literal
;
3184 ------------------------
3185 -- Eval_Relational_Op --
3186 ------------------------
3188 -- Relational operations are static functions, so the result is static if
3189 -- both operands are static (RM 4.9(7), 4.9(20)), except that for strings,
3190 -- the result is never static, even if the operands are.
3192 -- However, for internally generated nodes, we allow string equality and
3193 -- inequality to be static. This is because we rewrite A in "ABC" as an
3194 -- equality test A = "ABC", and the former is definitely static.
3196 procedure Eval_Relational_Op
(N
: Node_Id
) is
3197 Left
: constant Node_Id
:= Left_Opnd
(N
);
3198 Right
: constant Node_Id
:= Right_Opnd
(N
);
3200 procedure Decompose_Expr
3202 Ent
: out Entity_Id
;
3203 Kind
: out Character;
3205 Orig
: Boolean := True);
3206 -- Given expression Expr, see if it is of the form X [+/- K]. If so, Ent
3207 -- is set to the entity in X, Kind is 'F','L','E' for 'First or 'Last or
3208 -- simple entity, and Cons is the value of K. If the expression is not
3209 -- of the required form, Ent is set to Empty.
3211 -- Orig indicates whether Expr is the original expression to consider,
3212 -- or if we are handling a subexpression (e.g. recursive call to
3215 procedure Fold_General_Op
(Is_Static
: Boolean);
3216 -- Attempt to fold arbitrary relational operator N. Flag Is_Static must
3217 -- be set when the operator denotes a static expression.
3219 procedure Fold_Static_Real_Op
;
3220 -- Attempt to fold static real type relational operator N
3222 function Static_Length
(Expr
: Node_Id
) return Uint
;
3223 -- If Expr is an expression for a constrained array whose length is
3224 -- known at compile time, return the non-negative length, otherwise
3227 --------------------
3228 -- Decompose_Expr --
3229 --------------------
3231 procedure Decompose_Expr
3233 Ent
: out Entity_Id
;
3234 Kind
: out Character;
3236 Orig
: Boolean := True)
3241 -- Assume that the expression does not meet the expected form
3247 if Nkind
(Expr
) = N_Op_Add
3248 and then Compile_Time_Known_Value
(Right_Opnd
(Expr
))
3250 Exp
:= Left_Opnd
(Expr
);
3251 Cons
:= Expr_Value
(Right_Opnd
(Expr
));
3253 elsif Nkind
(Expr
) = N_Op_Subtract
3254 and then Compile_Time_Known_Value
(Right_Opnd
(Expr
))
3256 Exp
:= Left_Opnd
(Expr
);
3257 Cons
:= -Expr_Value
(Right_Opnd
(Expr
));
3259 -- If the bound is a constant created to remove side effects, recover
3260 -- the original expression to see if it has one of the recognizable
3263 elsif Nkind
(Expr
) = N_Identifier
3264 and then not Comes_From_Source
(Entity
(Expr
))
3265 and then Ekind
(Entity
(Expr
)) = E_Constant
3266 and then Nkind
(Parent
(Entity
(Expr
))) = N_Object_Declaration
3268 Exp
:= Expression
(Parent
(Entity
(Expr
)));
3269 Decompose_Expr
(Exp
, Ent
, Kind
, Cons
, Orig
=> False);
3271 -- If original expression includes an entity, create a reference
3272 -- to it for use below.
3274 if Present
(Ent
) then
3275 Exp
:= New_Occurrence_Of
(Ent
, Sloc
(Ent
));
3281 -- Only consider the case of X + 0 for a full expression, and
3282 -- not when recursing, otherwise we may end up with evaluating
3283 -- expressions not known at compile time to 0.
3293 -- At this stage Exp is set to the potential X
3295 if Nkind
(Exp
) = N_Attribute_Reference
then
3296 if Attribute_Name
(Exp
) = Name_First
then
3298 elsif Attribute_Name
(Exp
) = Name_Last
then
3304 Exp
:= Prefix
(Exp
);
3310 if Is_Entity_Name
(Exp
) and then Present
(Entity
(Exp
)) then
3311 Ent
:= Entity
(Exp
);
3315 ---------------------
3316 -- Fold_General_Op --
3317 ---------------------
3319 procedure Fold_General_Op
(Is_Static
: Boolean) is
3320 CR
: constant Compare_Result
:=
3321 Compile_Time_Compare
(Left
, Right
, Assume_Valid
=> False);
3326 if CR
= Unknown
then
3334 elsif CR
= NE
or else CR
= GT
or else CR
= LT
then
3341 if CR
= GT
or else CR
= EQ
or else CR
= GE
then
3352 elsif CR
= EQ
or else CR
= LT
or else CR
= LE
then
3359 if CR
= LT
or else CR
= EQ
or else CR
= LE
then
3370 elsif CR
= EQ
or else CR
= GT
or else CR
= GE
then
3377 if CR
= NE
or else CR
= GT
or else CR
= LT
then
3386 raise Program_Error
;
3389 -- Determine the potential outcome of the relation assuming the
3390 -- operands are valid and emit a warning when the relation yields
3391 -- True or False only in the presence of invalid values.
3393 Warn_On_Constant_Valid_Condition
(N
);
3395 Fold_Uint
(N
, Test
(Result
), Is_Static
);
3396 end Fold_General_Op
;
3398 -------------------------
3399 -- Fold_Static_Real_Op --
3400 -------------------------
3402 procedure Fold_Static_Real_Op
is
3403 Left_Real
: constant Ureal
:= Expr_Value_R
(Left
);
3404 Right_Real
: constant Ureal
:= Expr_Value_R
(Right
);
3409 when N_Op_Eq
=> Result
:= (Left_Real
= Right_Real
);
3410 when N_Op_Ge
=> Result
:= (Left_Real
>= Right_Real
);
3411 when N_Op_Gt
=> Result
:= (Left_Real
> Right_Real
);
3412 when N_Op_Le
=> Result
:= (Left_Real
<= Right_Real
);
3413 when N_Op_Lt
=> Result
:= (Left_Real
< Right_Real
);
3414 when N_Op_Ne
=> Result
:= (Left_Real
/= Right_Real
);
3415 when others => raise Program_Error
;
3418 Fold_Uint
(N
, Test
(Result
), True);
3419 end Fold_Static_Real_Op
;
3425 function Static_Length
(Expr
: Node_Id
) return Uint
is
3435 -- First easy case string literal
3437 if Nkind
(Expr
) = N_String_Literal
then
3438 return UI_From_Int
(String_Length
(Strval
(Expr
)));
3440 -- With frontend inlining as performed in GNATprove mode, a variable
3441 -- may be inserted that has a string literal subtype. Deal with this
3442 -- specially as for the previous case.
3444 elsif Ekind
(Etype
(Expr
)) = E_String_Literal_Subtype
then
3445 return String_Literal_Length
(Etype
(Expr
));
3447 -- Second easy case, not constrained subtype, so no length
3449 elsif not Is_Constrained
(Etype
(Expr
)) then
3450 return Uint_Minus_1
;
3455 Typ
:= Etype
(First_Index
(Etype
(Expr
)));
3457 -- The simple case, both bounds are known at compile time
3459 if Is_Discrete_Type
(Typ
)
3460 and then Compile_Time_Known_Value
(Type_Low_Bound
(Typ
))
3461 and then Compile_Time_Known_Value
(Type_High_Bound
(Typ
))
3464 UI_Max
(Uint_0
, Expr_Value
(Type_High_Bound
(Typ
)) -
3465 Expr_Value
(Type_Low_Bound
(Typ
)) + 1);
3468 -- A more complex case, where the bounds are of the form X [+/- K1]
3469 -- .. X [+/- K2]), where X is an expression that is either A'First or
3470 -- A'Last (with A an entity name), or X is an entity name, and the
3471 -- two X's are the same and K1 and K2 are known at compile time, in
3472 -- this case, the length can also be computed at compile time, even
3473 -- though the bounds are not known. A common case of this is e.g.
3474 -- (X'First .. X'First+5).
3477 (Original_Node
(Type_Low_Bound
(Typ
)), Ent1
, Kind1
, Cons1
);
3479 (Original_Node
(Type_High_Bound
(Typ
)), Ent2
, Kind2
, Cons2
);
3481 if Present
(Ent1
) and then Ent1
= Ent2
and then Kind1
= Kind2
then
3482 return Cons2
- Cons1
+ 1;
3484 return Uint_Minus_1
;
3490 Left_Typ
: constant Entity_Id
:= Etype
(Left
);
3491 Right_Typ
: constant Entity_Id
:= Etype
(Right
);
3494 Op_Typ
: Entity_Id
:= Empty
;
3497 Is_Static_Expression
: Boolean;
3499 -- Start of processing for Eval_Relational_Op
3502 -- One special case to deal with first. If we can tell that the result
3503 -- will be false because the lengths of one or more index subtypes are
3504 -- compile-time known and different, then we can replace the entire
3505 -- result by False. We only do this for one-dimensional arrays, because
3506 -- the case of multidimensional arrays is rare and too much trouble. If
3507 -- one of the operands is an illegal aggregate, its type might still be
3508 -- an arbitrary composite type, so nothing to do.
3510 if Is_Array_Type
(Left_Typ
)
3511 and then Left_Typ
/= Any_Composite
3512 and then Number_Dimensions
(Left_Typ
) = 1
3513 and then Nkind_In
(N
, N_Op_Eq
, N_Op_Ne
)
3515 if Raises_Constraint_Error
(Left
)
3517 Raises_Constraint_Error
(Right
)
3521 -- OK, we have the case where we may be able to do this fold
3524 Left_Len
:= Static_Length
(Left
);
3525 Right_Len
:= Static_Length
(Right
);
3527 if Left_Len
/= Uint_Minus_1
3528 and then Right_Len
/= Uint_Minus_1
3529 and then Left_Len
/= Right_Len
3531 Fold_Uint
(N
, Test
(Nkind
(N
) = N_Op_Ne
), False);
3532 Warn_On_Known_Condition
(N
);
3540 -- Initialize the value of Is_Static_Expression. The value of Fold
3541 -- returned by Test_Expression_Is_Foldable is not needed since, even
3542 -- when some operand is a variable, we can still perform the static
3543 -- evaluation of the expression in some cases (for example, for a
3544 -- variable of a subtype of Integer we statically know that any value
3545 -- stored in such variable is smaller than Integer'Last).
3547 Test_Expression_Is_Foldable
3548 (N
, Left
, Right
, Is_Static_Expression
, Fold
);
3550 -- Only comparisons of scalars can give static results. A comparison
3551 -- of strings never yields a static result, even if both operands are
3552 -- static strings, except that as noted above, we allow equality and
3553 -- inequality for strings.
3555 if Is_String_Type
(Left_Typ
)
3556 and then not Comes_From_Source
(N
)
3557 and then Nkind_In
(N
, N_Op_Eq
, N_Op_Ne
)
3561 elsif not Is_Scalar_Type
(Left_Typ
) then
3562 Is_Static_Expression
:= False;
3563 Set_Is_Static_Expression
(N
, False);
3566 -- For operators on universal numeric types called as functions with
3567 -- an explicit scope, determine appropriate specific numeric type,
3568 -- and diagnose possible ambiguity.
3570 if Is_Universal_Numeric_Type
(Left_Typ
)
3572 Is_Universal_Numeric_Type
(Right_Typ
)
3574 Op_Typ
:= Find_Universal_Operator_Type
(N
);
3577 -- Attempt to fold the relational operator
3579 if Is_Static_Expression
and then Is_Real_Type
(Left_Typ
) then
3580 Fold_Static_Real_Op
;
3582 Fold_General_Op
(Is_Static_Expression
);
3586 -- For the case of a folded relational operator on a specific numeric
3587 -- type, freeze the operand type now.
3589 if Present
(Op_Typ
) then
3590 Freeze_Before
(N
, Op_Typ
);
3593 Warn_On_Known_Condition
(N
);
3594 end Eval_Relational_Op
;
3600 -- Shift operations are intrinsic operations that can never be static, so
3601 -- the only processing required is to perform the required check for a non
3602 -- static context for the two operands.
3604 -- Actually we could do some compile time evaluation here some time ???
3606 procedure Eval_Shift
(N
: Node_Id
) is
3608 Check_Non_Static_Context
(Left_Opnd
(N
));
3609 Check_Non_Static_Context
(Right_Opnd
(N
));
3612 ------------------------
3613 -- Eval_Short_Circuit --
3614 ------------------------
3616 -- A short circuit operation is potentially static if both operands are
3617 -- potentially static (RM 4.9 (13)).
3619 procedure Eval_Short_Circuit
(N
: Node_Id
) is
3620 Kind
: constant Node_Kind
:= Nkind
(N
);
3621 Left
: constant Node_Id
:= Left_Opnd
(N
);
3622 Right
: constant Node_Id
:= Right_Opnd
(N
);
3625 Rstat
: constant Boolean :=
3626 Is_Static_Expression
(Left
)
3628 Is_Static_Expression
(Right
);
3631 -- Short circuit operations are never static in Ada 83
3633 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
3634 Check_Non_Static_Context
(Left
);
3635 Check_Non_Static_Context
(Right
);
3639 -- Now look at the operands, we can't quite use the normal call to
3640 -- Test_Expression_Is_Foldable here because short circuit operations
3641 -- are a special case, they can still be foldable, even if the right
3642 -- operand raises constraint error.
3644 -- If either operand is Any_Type, just propagate to result and do not
3645 -- try to fold, this prevents cascaded errors.
3647 if Etype
(Left
) = Any_Type
or else Etype
(Right
) = Any_Type
then
3648 Set_Etype
(N
, Any_Type
);
3651 -- If left operand raises constraint error, then replace node N with
3652 -- the raise constraint error node, and we are obviously not foldable.
3653 -- Is_Static_Expression is set from the two operands in the normal way,
3654 -- and we check the right operand if it is in a non-static context.
3656 elsif Raises_Constraint_Error
(Left
) then
3658 Check_Non_Static_Context
(Right
);
3661 Rewrite_In_Raise_CE
(N
, Left
);
3662 Set_Is_Static_Expression
(N
, Rstat
);
3665 -- If the result is not static, then we won't in any case fold
3667 elsif not Rstat
then
3668 Check_Non_Static_Context
(Left
);
3669 Check_Non_Static_Context
(Right
);
3673 -- Here the result is static, note that, unlike the normal processing
3674 -- in Test_Expression_Is_Foldable, we did *not* check above to see if
3675 -- the right operand raises constraint error, that's because it is not
3676 -- significant if the left operand is decisive.
3678 Set_Is_Static_Expression
(N
);
3680 -- It does not matter if the right operand raises constraint error if
3681 -- it will not be evaluated. So deal specially with the cases where
3682 -- the right operand is not evaluated. Note that we will fold these
3683 -- cases even if the right operand is non-static, which is fine, but
3684 -- of course in these cases the result is not potentially static.
3686 Left_Int
:= Expr_Value
(Left
);
3688 if (Kind
= N_And_Then
and then Is_False
(Left_Int
))
3690 (Kind
= N_Or_Else
and then Is_True
(Left_Int
))
3692 Fold_Uint
(N
, Left_Int
, Rstat
);
3696 -- If first operand not decisive, then it does matter if the right
3697 -- operand raises constraint error, since it will be evaluated, so
3698 -- we simply replace the node with the right operand. Note that this
3699 -- properly propagates Is_Static_Expression and Raises_Constraint_Error
3700 -- (both are set to True in Right).
3702 if Raises_Constraint_Error
(Right
) then
3703 Rewrite_In_Raise_CE
(N
, Right
);
3704 Check_Non_Static_Context
(Left
);
3708 -- Otherwise the result depends on the right operand
3710 Fold_Uint
(N
, Expr_Value
(Right
), Rstat
);
3712 end Eval_Short_Circuit
;
3718 -- Slices can never be static, so the only processing required is to check
3719 -- for non-static context if an explicit range is given.
3721 procedure Eval_Slice
(N
: Node_Id
) is
3722 Drange
: constant Node_Id
:= Discrete_Range
(N
);
3725 if Nkind
(Drange
) = N_Range
then
3726 Check_Non_Static_Context
(Low_Bound
(Drange
));
3727 Check_Non_Static_Context
(High_Bound
(Drange
));
3730 -- A slice of the form A (subtype), when the subtype is the index of
3731 -- the type of A, is redundant, the slice can be replaced with A, and
3732 -- this is worth a warning.
3734 if Is_Entity_Name
(Prefix
(N
)) then
3736 E
: constant Entity_Id
:= Entity
(Prefix
(N
));
3737 T
: constant Entity_Id
:= Etype
(E
);
3740 if Ekind
(E
) = E_Constant
3741 and then Is_Array_Type
(T
)
3742 and then Is_Entity_Name
(Drange
)
3744 if Is_Entity_Name
(Original_Node
(First_Index
(T
)))
3745 and then Entity
(Original_Node
(First_Index
(T
)))
3748 if Warn_On_Redundant_Constructs
then
3749 Error_Msg_N
("redundant slice denotes whole array?r?", N
);
3752 -- The following might be a useful optimization???
3754 -- Rewrite (N, New_Occurrence_Of (E, Sloc (N)));
3761 -------------------------
3762 -- Eval_String_Literal --
3763 -------------------------
3765 procedure Eval_String_Literal
(N
: Node_Id
) is
3766 Typ
: constant Entity_Id
:= Etype
(N
);
3767 Bas
: constant Entity_Id
:= Base_Type
(Typ
);
3773 -- Nothing to do if error type (handles cases like default expressions
3774 -- or generics where we have not yet fully resolved the type).
3776 if Bas
= Any_Type
or else Bas
= Any_String
then
3780 -- String literals are static if the subtype is static (RM 4.9(2)), so
3781 -- reset the static expression flag (it was set unconditionally in
3782 -- Analyze_String_Literal) if the subtype is non-static. We tell if
3783 -- the subtype is static by looking at the lower bound.
3785 if Ekind
(Typ
) = E_String_Literal_Subtype
then
3786 if not Is_OK_Static_Expression
(String_Literal_Low_Bound
(Typ
)) then
3787 Set_Is_Static_Expression
(N
, False);
3791 -- Here if Etype of string literal is normal Etype (not yet possible,
3792 -- but may be possible in future).
3794 elsif not Is_OK_Static_Expression
3795 (Type_Low_Bound
(Etype
(First_Index
(Typ
))))
3797 Set_Is_Static_Expression
(N
, False);
3801 -- If original node was a type conversion, then result if non-static
3803 if Nkind
(Original_Node
(N
)) = N_Type_Conversion
then
3804 Set_Is_Static_Expression
(N
, False);
3808 -- Test for illegal Ada 95 cases. A string literal is illegal in Ada 95
3809 -- if its bounds are outside the index base type and this index type is
3810 -- static. This can happen in only two ways. Either the string literal
3811 -- is too long, or it is null, and the lower bound is type'First. Either
3812 -- way it is the upper bound that is out of range of the index type.
3814 if Ada_Version
>= Ada_95
then
3815 if Is_Standard_String_Type
(Bas
) then
3816 Xtp
:= Standard_Positive
;
3818 Xtp
:= Etype
(First_Index
(Bas
));
3821 if Ekind
(Typ
) = E_String_Literal_Subtype
then
3822 Lo
:= String_Literal_Low_Bound
(Typ
);
3824 Lo
:= Type_Low_Bound
(Etype
(First_Index
(Typ
)));
3827 -- Check for string too long
3829 Len
:= String_Length
(Strval
(N
));
3831 if UI_From_Int
(Len
) > String_Type_Len
(Bas
) then
3833 -- Issue message. Note that this message is a warning if the
3834 -- string literal is not marked as static (happens in some cases
3835 -- of folding strings known at compile time, but not static).
3836 -- Furthermore in such cases, we reword the message, since there
3837 -- is no string literal in the source program.
3839 if Is_Static_Expression
(N
) then
3840 Apply_Compile_Time_Constraint_Error
3841 (N
, "string literal too long for}", CE_Length_Check_Failed
,
3843 Typ
=> First_Subtype
(Bas
));
3845 Apply_Compile_Time_Constraint_Error
3846 (N
, "string value too long for}", CE_Length_Check_Failed
,
3848 Typ
=> First_Subtype
(Bas
),
3852 -- Test for null string not allowed
3855 and then not Is_Generic_Type
(Xtp
)
3857 Expr_Value
(Lo
) = Expr_Value
(Type_Low_Bound
(Base_Type
(Xtp
)))
3859 -- Same specialization of message
3861 if Is_Static_Expression
(N
) then
3862 Apply_Compile_Time_Constraint_Error
3863 (N
, "null string literal not allowed for}",
3864 CE_Length_Check_Failed
,
3866 Typ
=> First_Subtype
(Bas
));
3868 Apply_Compile_Time_Constraint_Error
3869 (N
, "null string value not allowed for}",
3870 CE_Length_Check_Failed
,
3872 Typ
=> First_Subtype
(Bas
),
3877 end Eval_String_Literal
;
3879 --------------------------
3880 -- Eval_Type_Conversion --
3881 --------------------------
3883 -- A type conversion is potentially static if its subtype mark is for a
3884 -- static scalar subtype, and its operand expression is potentially static
3887 procedure Eval_Type_Conversion
(N
: Node_Id
) is
3888 Operand
: constant Node_Id
:= Expression
(N
);
3889 Source_Type
: constant Entity_Id
:= Etype
(Operand
);
3890 Target_Type
: constant Entity_Id
:= Etype
(N
);
3892 function To_Be_Treated_As_Integer
(T
: Entity_Id
) return Boolean;
3893 -- Returns true if type T is an integer type, or if it is a fixed-point
3894 -- type to be treated as an integer (i.e. the flag Conversion_OK is set
3895 -- on the conversion node).
3897 function To_Be_Treated_As_Real
(T
: Entity_Id
) return Boolean;
3898 -- Returns true if type T is a floating-point type, or if it is a
3899 -- fixed-point type that is not to be treated as an integer (i.e. the
3900 -- flag Conversion_OK is not set on the conversion node).
3902 ------------------------------
3903 -- To_Be_Treated_As_Integer --
3904 ------------------------------
3906 function To_Be_Treated_As_Integer
(T
: Entity_Id
) return Boolean is
3910 or else (Is_Fixed_Point_Type
(T
) and then Conversion_OK
(N
));
3911 end To_Be_Treated_As_Integer
;
3913 ---------------------------
3914 -- To_Be_Treated_As_Real --
3915 ---------------------------
3917 function To_Be_Treated_As_Real
(T
: Entity_Id
) return Boolean is
3920 Is_Floating_Point_Type
(T
)
3921 or else (Is_Fixed_Point_Type
(T
) and then not Conversion_OK
(N
));
3922 end To_Be_Treated_As_Real
;
3929 -- Start of processing for Eval_Type_Conversion
3932 -- Cannot fold if target type is non-static or if semantic error
3934 if not Is_Static_Subtype
(Target_Type
) then
3935 Check_Non_Static_Context
(Operand
);
3937 elsif Error_Posted
(N
) then
3941 -- If not foldable we are done
3943 Test_Expression_Is_Foldable
(N
, Operand
, Stat
, Fold
);
3948 -- Don't try fold if target type has constraint error bounds
3950 elsif not Is_OK_Static_Subtype
(Target_Type
) then
3951 Set_Raises_Constraint_Error
(N
);
3955 -- Remaining processing depends on operand types. Note that in the
3956 -- following type test, fixed-point counts as real unless the flag
3957 -- Conversion_OK is set, in which case it counts as integer.
3959 -- Fold conversion, case of string type. The result is not static
3961 if Is_String_Type
(Target_Type
) then
3962 Fold_Str
(N
, Strval
(Get_String_Val
(Operand
)), Static
=> False);
3965 -- Fold conversion, case of integer target type
3967 elsif To_Be_Treated_As_Integer
(Target_Type
) then
3972 -- Integer to integer conversion
3974 if To_Be_Treated_As_Integer
(Source_Type
) then
3975 Result
:= Expr_Value
(Operand
);
3977 -- Real to integer conversion
3980 Result
:= UR_To_Uint
(Expr_Value_R
(Operand
));
3983 -- If fixed-point type (Conversion_OK must be set), then the
3984 -- result is logically an integer, but we must replace the
3985 -- conversion with the corresponding real literal, since the
3986 -- type from a semantic point of view is still fixed-point.
3988 if Is_Fixed_Point_Type
(Target_Type
) then
3990 (N
, UR_From_Uint
(Result
) * Small_Value
(Target_Type
), Stat
);
3992 -- Otherwise result is integer literal
3995 Fold_Uint
(N
, Result
, Stat
);
3999 -- Fold conversion, case of real target type
4001 elsif To_Be_Treated_As_Real
(Target_Type
) then
4006 if To_Be_Treated_As_Real
(Source_Type
) then
4007 Result
:= Expr_Value_R
(Operand
);
4009 Result
:= UR_From_Uint
(Expr_Value
(Operand
));
4012 Fold_Ureal
(N
, Result
, Stat
);
4015 -- Enumeration types
4018 Fold_Uint
(N
, Expr_Value
(Operand
), Stat
);
4021 if Is_Out_Of_Range
(N
, Etype
(N
), Assume_Valid
=> True) then
4025 end Eval_Type_Conversion
;
4031 -- Predefined unary operators are static functions (RM 4.9(20)) and thus
4032 -- are potentially static if the operand is potentially static (RM 4.9(7)).
4034 procedure Eval_Unary_Op
(N
: Node_Id
) is
4035 Right
: constant Node_Id
:= Right_Opnd
(N
);
4036 Otype
: Entity_Id
:= Empty
;
4041 -- If not foldable we are done
4043 Test_Expression_Is_Foldable
(N
, Right
, Stat
, Fold
);
4049 if Etype
(Right
) = Universal_Integer
4051 Etype
(Right
) = Universal_Real
4053 Otype
:= Find_Universal_Operator_Type
(N
);
4056 -- Fold for integer case
4058 if Is_Integer_Type
(Etype
(N
)) then
4060 Rint
: constant Uint
:= Expr_Value
(Right
);
4064 -- In the case of modular unary plus and abs there is no need
4065 -- to adjust the result of the operation since if the original
4066 -- operand was in bounds the result will be in the bounds of the
4067 -- modular type. However, in the case of modular unary minus the
4068 -- result may go out of the bounds of the modular type and needs
4071 if Nkind
(N
) = N_Op_Plus
then
4074 elsif Nkind
(N
) = N_Op_Minus
then
4075 if Is_Modular_Integer_Type
(Etype
(N
)) then
4076 Result
:= (-Rint
) mod Modulus
(Etype
(N
));
4082 pragma Assert
(Nkind
(N
) = N_Op_Abs
);
4086 Fold_Uint
(N
, Result
, Stat
);
4089 -- Fold for real case
4091 elsif Is_Real_Type
(Etype
(N
)) then
4093 Rreal
: constant Ureal
:= Expr_Value_R
(Right
);
4097 if Nkind
(N
) = N_Op_Plus
then
4099 elsif Nkind
(N
) = N_Op_Minus
then
4100 Result
:= UR_Negate
(Rreal
);
4102 pragma Assert
(Nkind
(N
) = N_Op_Abs
);
4103 Result
:= abs Rreal
;
4106 Fold_Ureal
(N
, Result
, Stat
);
4110 -- If the operator was resolved to a specific type, make sure that type
4111 -- is frozen even if the expression is folded into a literal (which has
4112 -- a universal type).
4114 if Present
(Otype
) then
4115 Freeze_Before
(N
, Otype
);
4119 -------------------------------
4120 -- Eval_Unchecked_Conversion --
4121 -------------------------------
4123 -- Unchecked conversions can never be static, so the only required
4124 -- processing is to check for a non-static context for the operand.
4126 procedure Eval_Unchecked_Conversion
(N
: Node_Id
) is
4128 Check_Non_Static_Context
(Expression
(N
));
4129 end Eval_Unchecked_Conversion
;
4131 --------------------
4132 -- Expr_Rep_Value --
4133 --------------------
4135 function Expr_Rep_Value
(N
: Node_Id
) return Uint
is
4136 Kind
: constant Node_Kind
:= Nkind
(N
);
4140 if Is_Entity_Name
(N
) then
4143 -- An enumeration literal that was either in the source or created
4144 -- as a result of static evaluation.
4146 if Ekind
(Ent
) = E_Enumeration_Literal
then
4147 return Enumeration_Rep
(Ent
);
4149 -- A user defined static constant
4152 pragma Assert
(Ekind
(Ent
) = E_Constant
);
4153 return Expr_Rep_Value
(Constant_Value
(Ent
));
4156 -- An integer literal that was either in the source or created as a
4157 -- result of static evaluation.
4159 elsif Kind
= N_Integer_Literal
then
4162 -- A real literal for a fixed-point type. This must be the fixed-point
4163 -- case, either the literal is of a fixed-point type, or it is a bound
4164 -- of a fixed-point type, with type universal real. In either case we
4165 -- obtain the desired value from Corresponding_Integer_Value.
4167 elsif Kind
= N_Real_Literal
then
4168 pragma Assert
(Is_Fixed_Point_Type
(Underlying_Type
(Etype
(N
))));
4169 return Corresponding_Integer_Value
(N
);
4171 -- Otherwise must be character literal
4174 pragma Assert
(Kind
= N_Character_Literal
);
4177 -- Since Character literals of type Standard.Character don't have any
4178 -- defining character literals built for them, they do not have their
4179 -- Entity set, so just use their Char code. Otherwise for user-
4180 -- defined character literals use their Pos value as usual which is
4181 -- the same as the Rep value.
4184 return Char_Literal_Value
(N
);
4186 return Enumeration_Rep
(Ent
);
4195 function Expr_Value
(N
: Node_Id
) return Uint
is
4196 Kind
: constant Node_Kind
:= Nkind
(N
);
4197 CV_Ent
: CV_Entry
renames CV_Cache
(Nat
(N
) mod CV_Cache_Size
);
4202 -- If already in cache, then we know it's compile-time-known and we can
4203 -- return the value that was previously stored in the cache since
4204 -- compile-time-known values cannot change.
4206 if CV_Ent
.N
= N
then
4210 -- Otherwise proceed to test value
4212 if Is_Entity_Name
(N
) then
4215 -- An enumeration literal that was either in the source or created as
4216 -- a result of static evaluation.
4218 if Ekind
(Ent
) = E_Enumeration_Literal
then
4219 Val
:= Enumeration_Pos
(Ent
);
4221 -- A user defined static constant
4224 pragma Assert
(Ekind
(Ent
) = E_Constant
);
4225 Val
:= Expr_Value
(Constant_Value
(Ent
));
4228 -- An integer literal that was either in the source or created as a
4229 -- result of static evaluation.
4231 elsif Kind
= N_Integer_Literal
then
4234 -- A real literal for a fixed-point type. This must be the fixed-point
4235 -- case, either the literal is of a fixed-point type, or it is a bound
4236 -- of a fixed-point type, with type universal real. In either case we
4237 -- obtain the desired value from Corresponding_Integer_Value.
4239 elsif Kind
= N_Real_Literal
then
4240 pragma Assert
(Is_Fixed_Point_Type
(Underlying_Type
(Etype
(N
))));
4241 Val
:= Corresponding_Integer_Value
(N
);
4243 -- The NULL access value
4245 elsif Kind
= N_Null
then
4246 pragma Assert
(Is_Access_Type
(Underlying_Type
(Etype
(N
))));
4249 -- Otherwise must be character literal
4252 pragma Assert
(Kind
= N_Character_Literal
);
4255 -- Since Character literals of type Standard.Character don't
4256 -- have any defining character literals built for them, they
4257 -- do not have their Entity set, so just use their Char
4258 -- code. Otherwise for user-defined character literals use
4259 -- their Pos value as usual.
4262 Val
:= Char_Literal_Value
(N
);
4264 Val
:= Enumeration_Pos
(Ent
);
4268 -- Come here with Val set to value to be returned, set cache
4279 function Expr_Value_E
(N
: Node_Id
) return Entity_Id
is
4280 Ent
: constant Entity_Id
:= Entity
(N
);
4282 if Ekind
(Ent
) = E_Enumeration_Literal
then
4285 pragma Assert
(Ekind
(Ent
) = E_Constant
);
4286 return Expr_Value_E
(Constant_Value
(Ent
));
4294 function Expr_Value_R
(N
: Node_Id
) return Ureal
is
4295 Kind
: constant Node_Kind
:= Nkind
(N
);
4299 if Kind
= N_Real_Literal
then
4302 elsif Kind
= N_Identifier
or else Kind
= N_Expanded_Name
then
4304 pragma Assert
(Ekind
(Ent
) = E_Constant
);
4305 return Expr_Value_R
(Constant_Value
(Ent
));
4307 elsif Kind
= N_Integer_Literal
then
4308 return UR_From_Uint
(Expr_Value
(N
));
4310 -- Here, we have a node that cannot be interpreted as a compile time
4311 -- constant. That is definitely an error.
4314 raise Program_Error
;
4322 function Expr_Value_S
(N
: Node_Id
) return Node_Id
is
4324 if Nkind
(N
) = N_String_Literal
then
4327 pragma Assert
(Ekind
(Entity
(N
)) = E_Constant
);
4328 return Expr_Value_S
(Constant_Value
(Entity
(N
)));
4332 ----------------------------------
4333 -- Find_Universal_Operator_Type --
4334 ----------------------------------
4336 function Find_Universal_Operator_Type
(N
: Node_Id
) return Entity_Id
is
4337 PN
: constant Node_Id
:= Parent
(N
);
4338 Call
: constant Node_Id
:= Original_Node
(N
);
4339 Is_Int
: constant Boolean := Is_Integer_Type
(Etype
(N
));
4341 Is_Fix
: constant Boolean :=
4342 Nkind
(N
) in N_Binary_Op
4343 and then Nkind
(Right_Opnd
(N
)) /= Nkind
(Left_Opnd
(N
));
4344 -- A mixed-mode operation in this context indicates the presence of
4345 -- fixed-point type in the designated package.
4347 Is_Relational
: constant Boolean := Etype
(N
) = Standard_Boolean
;
4348 -- Case where N is a relational (or membership) operator (else it is an
4351 In_Membership
: constant Boolean :=
4352 Nkind
(PN
) in N_Membership_Test
4354 Nkind
(Right_Opnd
(PN
)) = N_Range
4356 Is_Universal_Numeric_Type
(Etype
(Left_Opnd
(PN
)))
4358 Is_Universal_Numeric_Type
4359 (Etype
(Low_Bound
(Right_Opnd
(PN
))))
4361 Is_Universal_Numeric_Type
4362 (Etype
(High_Bound
(Right_Opnd
(PN
))));
4363 -- Case where N is part of a membership test with a universal range
4367 Typ1
: Entity_Id
:= Empty
;
4370 function Is_Mixed_Mode_Operand
(Op
: Node_Id
) return Boolean;
4371 -- Check whether one operand is a mixed-mode operation that requires the
4372 -- presence of a fixed-point type. Given that all operands are universal
4373 -- and have been constant-folded, retrieve the original function call.
4375 ---------------------------
4376 -- Is_Mixed_Mode_Operand --
4377 ---------------------------
4379 function Is_Mixed_Mode_Operand
(Op
: Node_Id
) return Boolean is
4380 Onod
: constant Node_Id
:= Original_Node
(Op
);
4382 return Nkind
(Onod
) = N_Function_Call
4383 and then Present
(Next_Actual
(First_Actual
(Onod
)))
4384 and then Etype
(First_Actual
(Onod
)) /=
4385 Etype
(Next_Actual
(First_Actual
(Onod
)));
4386 end Is_Mixed_Mode_Operand
;
4388 -- Start of processing for Find_Universal_Operator_Type
4391 if Nkind
(Call
) /= N_Function_Call
4392 or else Nkind
(Name
(Call
)) /= N_Expanded_Name
4396 -- There are several cases where the context does not imply the type of
4398 -- - the universal expression appears in a type conversion;
4399 -- - the expression is a relational operator applied to universal
4401 -- - the expression is a membership test with a universal operand
4402 -- and a range with universal bounds.
4404 elsif Nkind
(Parent
(N
)) = N_Type_Conversion
4405 or else Is_Relational
4406 or else In_Membership
4408 Pack
:= Entity
(Prefix
(Name
(Call
)));
4410 -- If the prefix is a package declared elsewhere, iterate over its
4411 -- visible entities, otherwise iterate over all declarations in the
4412 -- designated scope.
4414 if Ekind
(Pack
) = E_Package
4415 and then not In_Open_Scopes
(Pack
)
4417 Priv_E
:= First_Private_Entity
(Pack
);
4423 E
:= First_Entity
(Pack
);
4424 while Present
(E
) and then E
/= Priv_E
loop
4425 if Is_Numeric_Type
(E
)
4426 and then Nkind
(Parent
(E
)) /= N_Subtype_Declaration
4427 and then Comes_From_Source
(E
)
4428 and then Is_Integer_Type
(E
) = Is_Int
4429 and then (Nkind
(N
) in N_Unary_Op
4430 or else Is_Relational
4431 or else Is_Fixed_Point_Type
(E
) = Is_Fix
)
4436 -- Before emitting an error, check for the presence of a
4437 -- mixed-mode operation that specifies a fixed point type.
4441 (Is_Mixed_Mode_Operand
(Left_Opnd
(N
))
4442 or else Is_Mixed_Mode_Operand
(Right_Opnd
(N
)))
4443 and then Is_Fixed_Point_Type
(E
) /= Is_Fixed_Point_Type
(Typ1
)
4446 if Is_Fixed_Point_Type
(E
) then
4451 -- More than one type of the proper class declared in P
4453 Error_Msg_N
("ambiguous operation", N
);
4454 Error_Msg_Sloc
:= Sloc
(Typ1
);
4455 Error_Msg_N
("\possible interpretation (inherited)#", N
);
4456 Error_Msg_Sloc
:= Sloc
(E
);
4457 Error_Msg_N
("\possible interpretation (inherited)#", N
);
4467 end Find_Universal_Operator_Type
;
4469 --------------------------
4470 -- Flag_Non_Static_Expr --
4471 --------------------------
4473 procedure Flag_Non_Static_Expr
(Msg
: String; Expr
: Node_Id
) is
4475 if Error_Posted
(Expr
) and then not All_Errors_Mode
then
4478 Error_Msg_F
(Msg
, Expr
);
4479 Why_Not_Static
(Expr
);
4481 end Flag_Non_Static_Expr
;
4487 procedure Fold_Str
(N
: Node_Id
; Val
: String_Id
; Static
: Boolean) is
4488 Loc
: constant Source_Ptr
:= Sloc
(N
);
4489 Typ
: constant Entity_Id
:= Etype
(N
);
4492 if Raises_Constraint_Error
(N
) then
4493 Set_Is_Static_Expression
(N
, Static
);
4497 Rewrite
(N
, Make_String_Literal
(Loc
, Strval
=> Val
));
4499 -- We now have the literal with the right value, both the actual type
4500 -- and the expected type of this literal are taken from the expression
4501 -- that was evaluated. So now we do the Analyze and Resolve.
4503 -- Note that we have to reset Is_Static_Expression both after the
4504 -- analyze step (because Resolve will evaluate the literal, which
4505 -- will cause semantic errors if it is marked as static), and after
4506 -- the Resolve step (since Resolve in some cases resets this flag).
4509 Set_Is_Static_Expression
(N
, Static
);
4512 Set_Is_Static_Expression
(N
, Static
);
4519 procedure Fold_Uint
(N
: Node_Id
; Val
: Uint
; Static
: Boolean) is
4520 Loc
: constant Source_Ptr
:= Sloc
(N
);
4521 Typ
: Entity_Id
:= Etype
(N
);
4525 if Raises_Constraint_Error
(N
) then
4526 Set_Is_Static_Expression
(N
, Static
);
4530 -- If we are folding a named number, retain the entity in the literal,
4533 if Is_Entity_Name
(N
) and then Ekind
(Entity
(N
)) = E_Named_Integer
then
4539 if Is_Private_Type
(Typ
) then
4540 Typ
:= Full_View
(Typ
);
4543 -- For a result of type integer, substitute an N_Integer_Literal node
4544 -- for the result of the compile time evaluation of the expression.
4545 -- For ASIS use, set a link to the original named number when not in
4546 -- a generic context.
4548 if Is_Integer_Type
(Typ
) then
4549 Rewrite
(N
, Make_Integer_Literal
(Loc
, Val
));
4550 Set_Original_Entity
(N
, Ent
);
4552 -- Otherwise we have an enumeration type, and we substitute either
4553 -- an N_Identifier or N_Character_Literal to represent the enumeration
4554 -- literal corresponding to the given value, which must always be in
4555 -- range, because appropriate tests have already been made for this.
4557 else pragma Assert
(Is_Enumeration_Type
(Typ
));
4558 Rewrite
(N
, Get_Enum_Lit_From_Pos
(Etype
(N
), Val
, Loc
));
4561 -- We now have the literal with the right value, both the actual type
4562 -- and the expected type of this literal are taken from the expression
4563 -- that was evaluated. So now we do the Analyze and Resolve.
4565 -- Note that we have to reset Is_Static_Expression both after the
4566 -- analyze step (because Resolve will evaluate the literal, which
4567 -- will cause semantic errors if it is marked as static), and after
4568 -- the Resolve step (since Resolve in some cases sets this flag).
4571 Set_Is_Static_Expression
(N
, Static
);
4574 Set_Is_Static_Expression
(N
, Static
);
4581 procedure Fold_Ureal
(N
: Node_Id
; Val
: Ureal
; Static
: Boolean) is
4582 Loc
: constant Source_Ptr
:= Sloc
(N
);
4583 Typ
: constant Entity_Id
:= Etype
(N
);
4587 if Raises_Constraint_Error
(N
) then
4588 Set_Is_Static_Expression
(N
, Static
);
4592 -- If we are folding a named number, retain the entity in the literal,
4595 if Is_Entity_Name
(N
) and then Ekind
(Entity
(N
)) = E_Named_Real
then
4601 Rewrite
(N
, Make_Real_Literal
(Loc
, Realval
=> Val
));
4603 -- Set link to original named number, for ASIS use
4605 Set_Original_Entity
(N
, Ent
);
4607 -- We now have the literal with the right value, both the actual type
4608 -- and the expected type of this literal are taken from the expression
4609 -- that was evaluated. So now we do the Analyze and Resolve.
4611 -- Note that we have to reset Is_Static_Expression both after the
4612 -- analyze step (because Resolve will evaluate the literal, which
4613 -- will cause semantic errors if it is marked as static), and after
4614 -- the Resolve step (since Resolve in some cases sets this flag).
4617 Set_Is_Static_Expression
(N
, Static
);
4620 Set_Is_Static_Expression
(N
, Static
);
4627 function From_Bits
(B
: Bits
; T
: Entity_Id
) return Uint
is
4631 for J
in 0 .. B
'Last loop
4637 if Non_Binary_Modulus
(T
) then
4638 V
:= V
mod Modulus
(T
);
4644 --------------------
4645 -- Get_String_Val --
4646 --------------------
4648 function Get_String_Val
(N
: Node_Id
) return Node_Id
is
4650 if Nkind_In
(N
, N_String_Literal
, N_Character_Literal
) then
4653 pragma Assert
(Is_Entity_Name
(N
));
4654 return Get_String_Val
(Constant_Value
(Entity
(N
)));
4662 procedure Initialize
is
4664 CV_Cache
:= (others => (Node_High_Bound
, Uint_0
));
4667 --------------------
4668 -- In_Subrange_Of --
4669 --------------------
4671 function In_Subrange_Of
4674 Fixed_Int
: Boolean := False) return Boolean
4683 if T1
= T2
or else Is_Subtype_Of
(T1
, T2
) then
4686 -- Never in range if both types are not scalar. Don't know if this can
4687 -- actually happen, but just in case.
4689 elsif not Is_Scalar_Type
(T1
) or else not Is_Scalar_Type
(T2
) then
4692 -- If T1 has infinities but T2 doesn't have infinities, then T1 is
4693 -- definitely not compatible with T2.
4695 elsif Is_Floating_Point_Type
(T1
)
4696 and then Has_Infinities
(T1
)
4697 and then Is_Floating_Point_Type
(T2
)
4698 and then not Has_Infinities
(T2
)
4703 L1
:= Type_Low_Bound
(T1
);
4704 H1
:= Type_High_Bound
(T1
);
4706 L2
:= Type_Low_Bound
(T2
);
4707 H2
:= Type_High_Bound
(T2
);
4709 -- Check bounds to see if comparison possible at compile time
4711 if Compile_Time_Compare
(L1
, L2
, Assume_Valid
=> True) in Compare_GE
4713 Compile_Time_Compare
(H1
, H2
, Assume_Valid
=> True) in Compare_LE
4718 -- If bounds not comparable at compile time, then the bounds of T2
4719 -- must be compile-time-known or we cannot answer the query.
4721 if not Compile_Time_Known_Value
(L2
)
4722 or else not Compile_Time_Known_Value
(H2
)
4727 -- If the bounds of T1 are know at compile time then use these
4728 -- ones, otherwise use the bounds of the base type (which are of
4729 -- course always static).
4731 if not Compile_Time_Known_Value
(L1
) then
4732 L1
:= Type_Low_Bound
(Base_Type
(T1
));
4735 if not Compile_Time_Known_Value
(H1
) then
4736 H1
:= Type_High_Bound
(Base_Type
(T1
));
4739 -- Fixed point types should be considered as such only if
4740 -- flag Fixed_Int is set to False.
4742 if Is_Floating_Point_Type
(T1
) or else Is_Floating_Point_Type
(T2
)
4743 or else (Is_Fixed_Point_Type
(T1
) and then not Fixed_Int
)
4744 or else (Is_Fixed_Point_Type
(T2
) and then not Fixed_Int
)
4747 Expr_Value_R
(L2
) <= Expr_Value_R
(L1
)
4749 Expr_Value_R
(H2
) >= Expr_Value_R
(H1
);
4753 Expr_Value
(L2
) <= Expr_Value
(L1
)
4755 Expr_Value
(H2
) >= Expr_Value
(H1
);
4760 -- If any exception occurs, it means that we have some bug in the compiler
4761 -- possibly triggered by a previous error, or by some unforeseen peculiar
4762 -- occurrence. However, this is only an optimization attempt, so there is
4763 -- really no point in crashing the compiler. Instead we just decide, too
4764 -- bad, we can't figure out the answer in this case after all.
4769 -- Debug flag K disables this behavior (useful for debugging)
4771 if Debug_Flag_K
then
4782 function Is_In_Range
4785 Assume_Valid
: Boolean := False;
4786 Fixed_Int
: Boolean := False;
4787 Int_Real
: Boolean := False) return Boolean
4791 Test_In_Range
(N
, Typ
, Assume_Valid
, Fixed_Int
, Int_Real
) = In_Range
;
4798 function Is_Null_Range
(Lo
: Node_Id
; Hi
: Node_Id
) return Boolean is
4800 if Compile_Time_Known_Value
(Lo
)
4801 and then Compile_Time_Known_Value
(Hi
)
4804 Typ
: Entity_Id
:= Etype
(Lo
);
4806 -- When called from the frontend, as part of the analysis of
4807 -- potentially static expressions, Typ will be the full view of a
4808 -- type with all the info needed to answer this query. When called
4809 -- from the backend, for example to know whether a range of a loop
4810 -- is null, Typ might be a private type and we need to explicitly
4811 -- switch to its corresponding full view to access the same info.
4813 if Is_Incomplete_Or_Private_Type
(Typ
)
4814 and then Present
(Full_View
(Typ
))
4816 Typ
:= Full_View
(Typ
);
4819 if Is_Discrete_Type
(Typ
) then
4820 return Expr_Value
(Lo
) > Expr_Value
(Hi
);
4821 else pragma Assert
(Is_Real_Type
(Typ
));
4822 return Expr_Value_R
(Lo
) > Expr_Value_R
(Hi
);
4830 -------------------------
4831 -- Is_OK_Static_Choice --
4832 -------------------------
4834 function Is_OK_Static_Choice
(Choice
: Node_Id
) return Boolean is
4836 -- Check various possibilities for choice
4838 -- Note: for membership tests, we test more cases than are possible
4839 -- (in particular subtype indication), but it doesn't matter because
4840 -- it just won't occur (we have already done a syntax check).
4842 if Nkind
(Choice
) = N_Others_Choice
then
4845 elsif Nkind
(Choice
) = N_Range
then
4846 return Is_OK_Static_Range
(Choice
);
4848 elsif Nkind
(Choice
) = N_Subtype_Indication
4849 or else (Is_Entity_Name
(Choice
) and then Is_Type
(Entity
(Choice
)))
4851 return Is_OK_Static_Subtype
(Etype
(Choice
));
4854 return Is_OK_Static_Expression
(Choice
);
4856 end Is_OK_Static_Choice
;
4858 ------------------------------
4859 -- Is_OK_Static_Choice_List --
4860 ------------------------------
4862 function Is_OK_Static_Choice_List
(Choices
: List_Id
) return Boolean is
4866 if not Is_Static_Choice_List
(Choices
) then
4870 Choice
:= First
(Choices
);
4871 while Present
(Choice
) loop
4872 if not Is_OK_Static_Choice
(Choice
) then
4873 Set_Raises_Constraint_Error
(Choice
);
4881 end Is_OK_Static_Choice_List
;
4883 -----------------------------
4884 -- Is_OK_Static_Expression --
4885 -----------------------------
4887 function Is_OK_Static_Expression
(N
: Node_Id
) return Boolean is
4889 return Is_Static_Expression
(N
) and then not Raises_Constraint_Error
(N
);
4890 end Is_OK_Static_Expression
;
4892 ------------------------
4893 -- Is_OK_Static_Range --
4894 ------------------------
4896 -- A static range is a range whose bounds are static expressions, or a
4897 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4898 -- We have already converted range attribute references, so we get the
4899 -- "or" part of this rule without needing a special test.
4901 function Is_OK_Static_Range
(N
: Node_Id
) return Boolean is
4903 return Is_OK_Static_Expression
(Low_Bound
(N
))
4904 and then Is_OK_Static_Expression
(High_Bound
(N
));
4905 end Is_OK_Static_Range
;
4907 --------------------------
4908 -- Is_OK_Static_Subtype --
4909 --------------------------
4911 -- Determines if Typ is a static subtype as defined in (RM 4.9(26)) where
4912 -- neither bound raises constraint error when evaluated.
4914 function Is_OK_Static_Subtype
(Typ
: Entity_Id
) return Boolean is
4915 Base_T
: constant Entity_Id
:= Base_Type
(Typ
);
4916 Anc_Subt
: Entity_Id
;
4919 -- First a quick check on the non static subtype flag. As described
4920 -- in further detail in Einfo, this flag is not decisive in all cases,
4921 -- but if it is set, then the subtype is definitely non-static.
4923 if Is_Non_Static_Subtype
(Typ
) then
4927 Anc_Subt
:= Ancestor_Subtype
(Typ
);
4929 if Anc_Subt
= Empty
then
4933 if Is_Generic_Type
(Root_Type
(Base_T
))
4934 or else Is_Generic_Actual_Type
(Base_T
)
4938 elsif Has_Dynamic_Predicate_Aspect
(Typ
) then
4943 elsif Is_String_Type
(Typ
) then
4945 Ekind
(Typ
) = E_String_Literal_Subtype
4947 (Is_OK_Static_Subtype
(Component_Type
(Typ
))
4948 and then Is_OK_Static_Subtype
(Etype
(First_Index
(Typ
))));
4952 elsif Is_Scalar_Type
(Typ
) then
4953 if Base_T
= Typ
then
4957 -- Scalar_Range (Typ) might be an N_Subtype_Indication, so use
4958 -- Get_Type_{Low,High}_Bound.
4960 return Is_OK_Static_Subtype
(Anc_Subt
)
4961 and then Is_OK_Static_Expression
(Type_Low_Bound
(Typ
))
4962 and then Is_OK_Static_Expression
(Type_High_Bound
(Typ
));
4965 -- Types other than string and scalar types are never static
4970 end Is_OK_Static_Subtype
;
4972 ---------------------
4973 -- Is_Out_Of_Range --
4974 ---------------------
4976 function Is_Out_Of_Range
4979 Assume_Valid
: Boolean := False;
4980 Fixed_Int
: Boolean := False;
4981 Int_Real
: Boolean := False) return Boolean
4984 return Test_In_Range
(N
, Typ
, Assume_Valid
, Fixed_Int
, Int_Real
) =
4986 end Is_Out_Of_Range
;
4988 ----------------------
4989 -- Is_Static_Choice --
4990 ----------------------
4992 function Is_Static_Choice
(Choice
: Node_Id
) return Boolean is
4994 -- Check various possibilities for choice
4996 -- Note: for membership tests, we test more cases than are possible
4997 -- (in particular subtype indication), but it doesn't matter because
4998 -- it just won't occur (we have already done a syntax check).
5000 if Nkind
(Choice
) = N_Others_Choice
then
5003 elsif Nkind
(Choice
) = N_Range
then
5004 return Is_Static_Range
(Choice
);
5006 elsif Nkind
(Choice
) = N_Subtype_Indication
5007 or else (Is_Entity_Name
(Choice
) and then Is_Type
(Entity
(Choice
)))
5009 return Is_Static_Subtype
(Etype
(Choice
));
5012 return Is_Static_Expression
(Choice
);
5014 end Is_Static_Choice
;
5016 ---------------------------
5017 -- Is_Static_Choice_List --
5018 ---------------------------
5020 function Is_Static_Choice_List
(Choices
: List_Id
) return Boolean is
5024 Choice
:= First
(Choices
);
5025 while Present
(Choice
) loop
5026 if not Is_Static_Choice
(Choice
) then
5034 end Is_Static_Choice_List
;
5036 ---------------------
5037 -- Is_Static_Range --
5038 ---------------------
5040 -- A static range is a range whose bounds are static expressions, or a
5041 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
5042 -- We have already converted range attribute references, so we get the
5043 -- "or" part of this rule without needing a special test.
5045 function Is_Static_Range
(N
: Node_Id
) return Boolean is
5047 return Is_Static_Expression
(Low_Bound
(N
))
5049 Is_Static_Expression
(High_Bound
(N
));
5050 end Is_Static_Range
;
5052 -----------------------
5053 -- Is_Static_Subtype --
5054 -----------------------
5056 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
5058 function Is_Static_Subtype
(Typ
: Entity_Id
) return Boolean is
5059 Base_T
: constant Entity_Id
:= Base_Type
(Typ
);
5060 Anc_Subt
: Entity_Id
;
5063 -- First a quick check on the non static subtype flag. As described
5064 -- in further detail in Einfo, this flag is not decisive in all cases,
5065 -- but if it is set, then the subtype is definitely non-static.
5067 if Is_Non_Static_Subtype
(Typ
) then
5071 Anc_Subt
:= Ancestor_Subtype
(Typ
);
5073 if Anc_Subt
= Empty
then
5077 if Is_Generic_Type
(Root_Type
(Base_T
))
5078 or else Is_Generic_Actual_Type
(Base_T
)
5082 -- If there is a dynamic predicate for the type (declared or inherited)
5083 -- the expression is not static.
5085 elsif Has_Dynamic_Predicate_Aspect
(Typ
)
5086 or else (Is_Derived_Type
(Typ
)
5087 and then Has_Aspect
(Typ
, Aspect_Dynamic_Predicate
))
5093 elsif Is_String_Type
(Typ
) then
5095 Ekind
(Typ
) = E_String_Literal_Subtype
5096 or else (Is_Static_Subtype
(Component_Type
(Typ
))
5097 and then Is_Static_Subtype
(Etype
(First_Index
(Typ
))));
5101 elsif Is_Scalar_Type
(Typ
) then
5102 if Base_T
= Typ
then
5106 return Is_Static_Subtype
(Anc_Subt
)
5107 and then Is_Static_Expression
(Type_Low_Bound
(Typ
))
5108 and then Is_Static_Expression
(Type_High_Bound
(Typ
));
5111 -- Types other than string and scalar types are never static
5116 end Is_Static_Subtype
;
5118 -------------------------------
5119 -- Is_Statically_Unevaluated --
5120 -------------------------------
5122 function Is_Statically_Unevaluated
(Expr
: Node_Id
) return Boolean is
5123 function Check_Case_Expr_Alternative
5124 (CEA
: Node_Id
) return Match_Result
;
5125 -- We have a message emanating from the Expression of a case expression
5126 -- alternative. We examine this alternative, as follows:
5128 -- If the selecting expression of the parent case is non-static, or
5129 -- if any of the discrete choices of the given case alternative are
5130 -- non-static or raise Constraint_Error, return Non_Static.
5132 -- Otherwise check if the selecting expression matches any of the given
5133 -- discrete choices. If so, the alternative is executed and we return
5134 -- Match, otherwise, the alternative can never be executed, and so we
5137 ---------------------------------
5138 -- Check_Case_Expr_Alternative --
5139 ---------------------------------
5141 function Check_Case_Expr_Alternative
5142 (CEA
: Node_Id
) return Match_Result
5144 Case_Exp
: constant Node_Id
:= Parent
(CEA
);
5149 pragma Assert
(Nkind
(Case_Exp
) = N_Case_Expression
);
5151 -- Check that selecting expression is static
5153 if not Is_OK_Static_Expression
(Expression
(Case_Exp
)) then
5157 if not Is_OK_Static_Choice_List
(Discrete_Choices
(CEA
)) then
5161 -- All choices are now known to be static. Now see if alternative
5162 -- matches one of the choices.
5164 Choice
:= First
(Discrete_Choices
(CEA
));
5165 while Present
(Choice
) loop
5167 -- Check various possibilities for choice, returning Match if we
5168 -- find the selecting value matches any of the choices. Note that
5169 -- we know we are the last choice, so we don't have to keep going.
5171 if Nkind
(Choice
) = N_Others_Choice
then
5173 -- Others choice is a bit annoying, it matches if none of the
5174 -- previous alternatives matches (note that we know we are the
5175 -- last alternative in this case, so we can just go backwards
5176 -- from us to see if any previous one matches).
5178 Prev_CEA
:= Prev
(CEA
);
5179 while Present
(Prev_CEA
) loop
5180 if Check_Case_Expr_Alternative
(Prev_CEA
) = Match
then
5189 -- Else we have a normal static choice
5191 elsif Choice_Matches
(Expression
(Case_Exp
), Choice
) = Match
then
5195 -- If we fall through, it means that the discrete choice did not
5196 -- match the selecting expression, so continue.
5201 -- If we get through that loop then all choices were static, and none
5202 -- of them matched the selecting expression. So return No_Match.
5205 end Check_Case_Expr_Alternative
;
5213 -- Start of processing for Is_Statically_Unevaluated
5216 -- The (32.x) references here are from RM section 4.9
5218 -- (32.1) An expression is statically unevaluated if it is part of ...
5220 -- This means we have to climb the tree looking for one of the cases
5227 -- (32.2) The right operand of a static short-circuit control form
5228 -- whose value is determined by its left operand.
5230 -- AND THEN with False as left operand
5232 if Nkind
(P
) = N_And_Then
5233 and then Compile_Time_Known_Value
(Left_Opnd
(P
))
5234 and then Is_False
(Expr_Value
(Left_Opnd
(P
)))
5238 -- OR ELSE with True as left operand
5240 elsif Nkind
(P
) = N_Or_Else
5241 and then Compile_Time_Known_Value
(Left_Opnd
(P
))
5242 and then Is_True
(Expr_Value
(Left_Opnd
(P
)))
5246 -- (32.3) A dependent_expression of an if_expression whose associated
5247 -- condition is static and equals False.
5249 elsif Nkind
(P
) = N_If_Expression
then
5251 Cond
: constant Node_Id
:= First
(Expressions
(P
));
5252 Texp
: constant Node_Id
:= Next
(Cond
);
5253 Fexp
: constant Node_Id
:= Next
(Texp
);
5256 if Compile_Time_Known_Value
(Cond
) then
5258 -- Condition is True and we are in the right operand
5260 if Is_True
(Expr_Value
(Cond
)) and then OldP
= Fexp
then
5263 -- Condition is False and we are in the left operand
5265 elsif Is_False
(Expr_Value
(Cond
)) and then OldP
= Texp
then
5271 -- (32.4) A condition or dependent_expression of an if_expression
5272 -- where the condition corresponding to at least one preceding
5273 -- dependent_expression of the if_expression is static and equals
5276 -- This refers to cases like
5278 -- (if True then 1 elsif 1/0=2 then 2 else 3)
5280 -- But we expand elsif's out anyway, so the above looks like:
5282 -- (if True then 1 else (if 1/0=2 then 2 else 3))
5284 -- So for us this is caught by the above check for the 32.3 case.
5286 -- (32.5) A dependent_expression of a case_expression whose
5287 -- selecting_expression is static and whose value is not covered
5288 -- by the corresponding discrete_choice_list.
5290 elsif Nkind
(P
) = N_Case_Expression_Alternative
then
5292 -- First, we have to be in the expression to suppress messages.
5293 -- If we are within one of the choices, we want the message.
5295 if OldP
= Expression
(P
) then
5297 -- Statically unevaluated if alternative does not match
5299 if Check_Case_Expr_Alternative
(P
) = No_Match
then
5304 -- (32.6) A choice_expression (or a simple_expression of a range
5305 -- that occurs as a membership_choice of a membership_choice_list)
5306 -- of a static membership test that is preceded in the enclosing
5307 -- membership_choice_list by another item whose individual
5308 -- membership test (see (RM 4.5.2)) statically yields True.
5310 elsif Nkind
(P
) in N_Membership_Test
then
5312 -- Only possibly unevaluated if simple expression is static
5314 if not Is_OK_Static_Expression
(Left_Opnd
(P
)) then
5317 -- All members of the choice list must be static
5319 elsif (Present
(Right_Opnd
(P
))
5320 and then not Is_OK_Static_Choice
(Right_Opnd
(P
)))
5321 or else (Present
(Alternatives
(P
))
5323 not Is_OK_Static_Choice_List
(Alternatives
(P
)))
5327 -- If expression is the one and only alternative, then it is
5328 -- definitely not statically unevaluated, so we only have to
5329 -- test the case where there are alternatives present.
5331 elsif Present
(Alternatives
(P
)) then
5333 -- Look for previous matching Choice
5335 Choice
:= First
(Alternatives
(P
));
5336 while Present
(Choice
) loop
5338 -- If we reached us and no previous choices matched, this
5339 -- is not the case where we are statically unevaluated.
5341 exit when OldP
= Choice
;
5343 -- If a previous choice matches, then that is the case where
5344 -- we know our choice is statically unevaluated.
5346 if Choice_Matches
(Left_Opnd
(P
), Choice
) = Match
then
5353 -- If we fall through the loop, we were not one of the choices,
5354 -- we must have been the expression, so that is not covered by
5355 -- this rule, and we keep going.
5361 -- OK, not statically unevaluated at this level, see if we should
5362 -- keep climbing to look for a higher level reason.
5364 -- Special case for component association in aggregates, where
5365 -- we want to keep climbing up to the parent aggregate.
5367 if Nkind
(P
) = N_Component_Association
5368 and then Nkind
(Parent
(P
)) = N_Aggregate
5372 -- All done if not still within subexpression
5375 exit when Nkind
(P
) not in N_Subexpr
;
5379 -- If we fall through the loop, not one of the cases covered!
5382 end Is_Statically_Unevaluated
;
5384 --------------------
5385 -- Not_Null_Range --
5386 --------------------
5388 function Not_Null_Range
(Lo
: Node_Id
; Hi
: Node_Id
) return Boolean is
5390 if Compile_Time_Known_Value
(Lo
)
5391 and then Compile_Time_Known_Value
(Hi
)
5394 Typ
: Entity_Id
:= Etype
(Lo
);
5396 -- When called from the frontend, as part of the analysis of
5397 -- potentially static expressions, Typ will be the full view of a
5398 -- type with all the info needed to answer this query. When called
5399 -- from the backend, for example to know whether a range of a loop
5400 -- is null, Typ might be a private type and we need to explicitly
5401 -- switch to its corresponding full view to access the same info.
5403 if Is_Incomplete_Or_Private_Type
(Typ
)
5404 and then Present
(Full_View
(Typ
))
5406 Typ
:= Full_View
(Typ
);
5409 if Is_Discrete_Type
(Typ
) then
5410 return Expr_Value
(Lo
) <= Expr_Value
(Hi
);
5411 else pragma Assert
(Is_Real_Type
(Typ
));
5412 return Expr_Value_R
(Lo
) <= Expr_Value_R
(Hi
);
5425 function OK_Bits
(N
: Node_Id
; Bits
: Uint
) return Boolean is
5427 -- We allow a maximum of 500,000 bits which seems a reasonable limit
5429 if Bits
< 500_000
then
5432 -- Error if this maximum is exceeded
5435 Error_Msg_N
("static value too large, capacity exceeded", N
);
5444 procedure Out_Of_Range
(N
: Node_Id
) is
5446 -- If we have the static expression case, then this is an illegality
5447 -- in Ada 95 mode, except that in an instance, we never generate an
5448 -- error (if the error is legitimate, it was already diagnosed in the
5451 if Is_Static_Expression
(N
)
5452 and then not In_Instance
5453 and then not In_Inlined_Body
5454 and then Ada_Version
>= Ada_95
5456 -- No message if we are statically unevaluated
5458 if Is_Statically_Unevaluated
(N
) then
5461 -- The expression to compute the length of a packed array is attached
5462 -- to the array type itself, and deserves a separate message.
5464 elsif Nkind
(Parent
(N
)) = N_Defining_Identifier
5465 and then Is_Array_Type
(Parent
(N
))
5466 and then Present
(Packed_Array_Impl_Type
(Parent
(N
)))
5467 and then Present
(First_Rep_Item
(Parent
(N
)))
5470 ("length of packed array must not exceed Integer''Last",
5471 First_Rep_Item
(Parent
(N
)));
5472 Rewrite
(N
, Make_Integer_Literal
(Sloc
(N
), Uint_1
));
5474 -- All cases except the special array case.
5475 -- No message if we are dealing with System.Priority values in
5476 -- CodePeer mode where the target runtime may have more priorities.
5478 elsif not CodePeer_Mode
or else Etype
(N
) /= RTE
(RE_Priority
) then
5479 Apply_Compile_Time_Constraint_Error
5480 (N
, "value not in range of}", CE_Range_Check_Failed
);
5483 -- Here we generate a warning for the Ada 83 case, or when we are in an
5484 -- instance, or when we have a non-static expression case.
5487 Apply_Compile_Time_Constraint_Error
5488 (N
, "value not in range of}??", CE_Range_Check_Failed
);
5492 ----------------------
5493 -- Predicates_Match --
5494 ----------------------
5496 function Predicates_Match
(T1
, T2
: Entity_Id
) return Boolean is
5501 if Ada_Version
< Ada_2012
then
5504 -- Both types must have predicates or lack them
5506 elsif Has_Predicates
(T1
) /= Has_Predicates
(T2
) then
5509 -- Check matching predicates
5514 (T1
, Name_Static_Predicate
, Check_Parents
=> False);
5517 (T2
, Name_Static_Predicate
, Check_Parents
=> False);
5519 -- Subtypes statically match if the predicate comes from the
5520 -- same declaration, which can only happen if one is a subtype
5521 -- of the other and has no explicit predicate.
5523 -- Suppress warnings on order of actuals, which is otherwise
5524 -- triggered by one of the two calls below.
5526 pragma Warnings
(Off
);
5527 return Pred1
= Pred2
5528 or else (No
(Pred1
) and then Is_Subtype_Of
(T1
, T2
))
5529 or else (No
(Pred2
) and then Is_Subtype_Of
(T2
, T1
));
5530 pragma Warnings
(On
);
5532 end Predicates_Match
;
5534 ---------------------------------------------
5535 -- Real_Or_String_Static_Predicate_Matches --
5536 ---------------------------------------------
5538 function Real_Or_String_Static_Predicate_Matches
5540 Typ
: Entity_Id
) return Boolean
5542 Expr
: constant Node_Id
:= Static_Real_Or_String_Predicate
(Typ
);
5543 -- The predicate expression from the type
5545 Pfun
: constant Entity_Id
:= Predicate_Function
(Typ
);
5546 -- The entity for the predicate function
5548 Ent_Name
: constant Name_Id
:= Chars
(First_Formal
(Pfun
));
5549 -- The name of the formal of the predicate function. Occurrences of the
5550 -- type name in Expr have been rewritten as references to this formal,
5551 -- and it has a unique name, so we can identify references by this name.
5554 -- Copy of the predicate function tree
5556 function Process
(N
: Node_Id
) return Traverse_Result
;
5557 -- Function used to process nodes during the traversal in which we will
5558 -- find occurrences of the entity name, and replace such occurrences
5559 -- by a real literal with the value to be tested.
5561 procedure Traverse
is new Traverse_Proc
(Process
);
5562 -- The actual traversal procedure
5568 function Process
(N
: Node_Id
) return Traverse_Result
is
5570 if Nkind
(N
) = N_Identifier
and then Chars
(N
) = Ent_Name
then
5572 Nod
: constant Node_Id
:= New_Copy
(Val
);
5574 Set_Sloc
(Nod
, Sloc
(N
));
5579 -- The predicate function may contain string-comparison operations
5580 -- that have been converted into calls to run-time array-comparison
5581 -- routines. To evaluate the predicate statically, we recover the
5582 -- original comparison operation and replace the occurrence of the
5583 -- formal by the static string value. The actuals of the generated
5584 -- call are of the form X'Address.
5586 elsif Nkind
(N
) in N_Op_Compare
5587 and then Nkind
(Left_Opnd
(N
)) = N_Function_Call
5590 C
: constant Node_Id
:= Left_Opnd
(N
);
5591 F
: constant Node_Id
:= First
(Parameter_Associations
(C
));
5592 L
: constant Node_Id
:= Prefix
(F
);
5593 R
: constant Node_Id
:= Prefix
(Next
(F
));
5596 -- If an operand is an entity name, it is the formal of the
5597 -- predicate function, so replace it with the string value.
5598 -- It may be either operand in the call. The other operand
5599 -- is a static string from the original predicate.
5601 if Is_Entity_Name
(L
) then
5602 Rewrite
(Left_Opnd
(N
), New_Copy
(Val
));
5603 Rewrite
(Right_Opnd
(N
), New_Copy
(R
));
5606 Rewrite
(Left_Opnd
(N
), New_Copy
(L
));
5607 Rewrite
(Right_Opnd
(N
), New_Copy
(Val
));
5618 -- Start of processing for Real_Or_String_Static_Predicate_Matches
5621 -- First deal with special case of inherited predicate, where the
5622 -- predicate expression looks like:
5624 -- xxPredicate (typ (Ent)) and then Expr
5626 -- where Expr is the predicate expression for this level, and the
5627 -- left operand is the call to evaluate the inherited predicate.
5629 if Nkind
(Expr
) = N_And_Then
5630 and then Nkind
(Left_Opnd
(Expr
)) = N_Function_Call
5631 and then Is_Predicate_Function
(Entity
(Name
(Left_Opnd
(Expr
))))
5633 -- OK we have the inherited case, so make a call to evaluate the
5634 -- inherited predicate. If that fails, so do we!
5637 Real_Or_String_Static_Predicate_Matches
5639 Typ
=> Etype
(First_Formal
(Entity
(Name
(Left_Opnd
(Expr
))))))
5644 -- Use the right operand for the continued processing
5646 Copy
:= Copy_Separate_Tree
(Right_Opnd
(Expr
));
5648 -- Case where call to predicate function appears on its own (this means
5649 -- that the predicate at this level is just inherited from the parent).
5651 elsif Nkind
(Expr
) = N_Function_Call
then
5653 Typ
: constant Entity_Id
:=
5654 Etype
(First_Formal
(Entity
(Name
(Expr
))));
5657 -- If the inherited predicate is dynamic, just ignore it. We can't
5658 -- go trying to evaluate a dynamic predicate as a static one!
5660 if Has_Dynamic_Predicate_Aspect
(Typ
) then
5663 -- Otherwise inherited predicate is static, check for match
5666 return Real_Or_String_Static_Predicate_Matches
(Val
, Typ
);
5670 -- If not just an inherited predicate, copy whole expression
5673 Copy
:= Copy_Separate_Tree
(Expr
);
5676 -- Now we replace occurrences of the entity by the value
5680 -- And analyze the resulting static expression to see if it is True
5682 Analyze_And_Resolve
(Copy
, Standard_Boolean
);
5683 return Is_True
(Expr_Value
(Copy
));
5684 end Real_Or_String_Static_Predicate_Matches
;
5686 -------------------------
5687 -- Rewrite_In_Raise_CE --
5688 -------------------------
5690 procedure Rewrite_In_Raise_CE
(N
: Node_Id
; Exp
: Node_Id
) is
5691 Typ
: constant Entity_Id
:= Etype
(N
);
5692 Stat
: constant Boolean := Is_Static_Expression
(N
);
5695 -- If we want to raise CE in the condition of a N_Raise_CE node, we
5696 -- can just clear the condition if the reason is appropriate. We do
5697 -- not do this operation if the parent has a reason other than range
5698 -- check failed, because otherwise we would change the reason.
5700 if Present
(Parent
(N
))
5701 and then Nkind
(Parent
(N
)) = N_Raise_Constraint_Error
5702 and then Reason
(Parent
(N
)) =
5703 UI_From_Int
(RT_Exception_Code
'Pos (CE_Range_Check_Failed
))
5705 Set_Condition
(Parent
(N
), Empty
);
5707 -- Else build an explicit N_Raise_CE
5711 Make_Raise_Constraint_Error
(Sloc
(Exp
),
5712 Reason
=> CE_Range_Check_Failed
));
5713 Set_Raises_Constraint_Error
(N
);
5717 -- Set proper flags in result
5719 Set_Raises_Constraint_Error
(N
, True);
5720 Set_Is_Static_Expression
(N
, Stat
);
5721 end Rewrite_In_Raise_CE
;
5723 ---------------------
5724 -- String_Type_Len --
5725 ---------------------
5727 function String_Type_Len
(Stype
: Entity_Id
) return Uint
is
5728 NT
: constant Entity_Id
:= Etype
(First_Index
(Stype
));
5732 if Is_OK_Static_Subtype
(NT
) then
5735 T
:= Base_Type
(NT
);
5738 return Expr_Value
(Type_High_Bound
(T
)) -
5739 Expr_Value
(Type_Low_Bound
(T
)) + 1;
5740 end String_Type_Len
;
5742 ------------------------------------
5743 -- Subtypes_Statically_Compatible --
5744 ------------------------------------
5746 function Subtypes_Statically_Compatible
5749 Formal_Derived_Matching
: Boolean := False) return Boolean
5754 if Is_Scalar_Type
(T1
) then
5756 -- Definitely compatible if we match
5758 if Subtypes_Statically_Match
(T1
, T2
) then
5761 -- If either subtype is nonstatic then they're not compatible
5763 elsif not Is_OK_Static_Subtype
(T1
)
5765 not Is_OK_Static_Subtype
(T2
)
5769 -- Base types must match, but we don't check that (should we???) but
5770 -- we do at least check that both types are real, or both types are
5773 elsif Is_Real_Type
(T1
) /= Is_Real_Type
(T2
) then
5776 -- Here we check the bounds
5780 LB1
: constant Node_Id
:= Type_Low_Bound
(T1
);
5781 HB1
: constant Node_Id
:= Type_High_Bound
(T1
);
5782 LB2
: constant Node_Id
:= Type_Low_Bound
(T2
);
5783 HB2
: constant Node_Id
:= Type_High_Bound
(T2
);
5786 if Is_Real_Type
(T1
) then
5788 Expr_Value_R
(LB1
) > Expr_Value_R
(HB1
)
5790 (Expr_Value_R
(LB2
) <= Expr_Value_R
(LB1
)
5791 and then Expr_Value_R
(HB1
) <= Expr_Value_R
(HB2
));
5795 Expr_Value
(LB1
) > Expr_Value
(HB1
)
5797 (Expr_Value
(LB2
) <= Expr_Value
(LB1
)
5798 and then Expr_Value
(HB1
) <= Expr_Value
(HB2
));
5805 elsif Is_Access_Type
(T1
) then
5807 (not Is_Constrained
(T2
)
5808 or else Subtypes_Statically_Match
5809 (Designated_Type
(T1
), Designated_Type
(T2
)))
5810 and then not (Can_Never_Be_Null
(T2
)
5811 and then not Can_Never_Be_Null
(T1
));
5817 (Is_Composite_Type
(T1
) and then not Is_Constrained
(T2
))
5818 or else Subtypes_Statically_Match
5819 (T1
, T2
, Formal_Derived_Matching
);
5821 end Subtypes_Statically_Compatible
;
5823 -------------------------------
5824 -- Subtypes_Statically_Match --
5825 -------------------------------
5827 -- Subtypes statically match if they have statically matching constraints
5828 -- (RM 4.9.1(2)). Constraints statically match if there are none, or if
5829 -- they are the same identical constraint, or if they are static and the
5830 -- values match (RM 4.9.1(1)).
5832 -- In addition, in GNAT, the object size (Esize) values of the types must
5833 -- match if they are set (unless checking an actual for a formal derived
5834 -- type). The use of 'Object_Size can cause this to be false even if the
5835 -- types would otherwise match in the RM sense.
5837 function Subtypes_Statically_Match
5840 Formal_Derived_Matching
: Boolean := False) return Boolean
5843 -- A type always statically matches itself
5848 -- No match if sizes different (from use of 'Object_Size). This test
5849 -- is excluded if Formal_Derived_Matching is True, as the base types
5850 -- can be different in that case and typically have different sizes.
5851 -- ??? Frontend_Layout_On_Target used to set Esizes but this is no
5852 -- longer the case, consider removing the last test below.
5854 elsif not Formal_Derived_Matching
5855 and then Known_Static_Esize
(T1
)
5856 and then Known_Static_Esize
(T2
)
5857 and then Esize
(T1
) /= Esize
(T2
)
5861 -- No match if predicates do not match
5863 elsif not Predicates_Match
(T1
, T2
) then
5868 elsif Is_Scalar_Type
(T1
) then
5870 -- Base types must be the same
5872 if Base_Type
(T1
) /= Base_Type
(T2
) then
5876 -- A constrained numeric subtype never matches an unconstrained
5877 -- subtype, i.e. both types must be constrained or unconstrained.
5879 -- To understand the requirement for this test, see RM 4.9.1(1).
5880 -- As is made clear in RM 3.5.4(11), type Integer, for example is
5881 -- a constrained subtype with constraint bounds matching the bounds
5882 -- of its corresponding unconstrained base type. In this situation,
5883 -- Integer and Integer'Base do not statically match, even though
5884 -- they have the same bounds.
5886 -- We only apply this test to types in Standard and types that appear
5887 -- in user programs. That way, we do not have to be too careful about
5888 -- setting Is_Constrained right for Itypes.
5890 if Is_Numeric_Type
(T1
)
5891 and then (Is_Constrained
(T1
) /= Is_Constrained
(T2
))
5892 and then (Scope
(T1
) = Standard_Standard
5893 or else Comes_From_Source
(T1
))
5894 and then (Scope
(T2
) = Standard_Standard
5895 or else Comes_From_Source
(T2
))
5899 -- A generic scalar type does not statically match its base type
5900 -- (AI-311). In this case we make sure that the formals, which are
5901 -- first subtypes of their bases, are constrained.
5903 elsif Is_Generic_Type
(T1
)
5904 and then Is_Generic_Type
(T2
)
5905 and then (Is_Constrained
(T1
) /= Is_Constrained
(T2
))
5910 -- If there was an error in either range, then just assume the types
5911 -- statically match to avoid further junk errors.
5913 if No
(Scalar_Range
(T1
)) or else No
(Scalar_Range
(T2
))
5914 or else Error_Posted
(Scalar_Range
(T1
))
5915 or else Error_Posted
(Scalar_Range
(T2
))
5920 -- Otherwise both types have bounds that can be compared
5923 LB1
: constant Node_Id
:= Type_Low_Bound
(T1
);
5924 HB1
: constant Node_Id
:= Type_High_Bound
(T1
);
5925 LB2
: constant Node_Id
:= Type_Low_Bound
(T2
);
5926 HB2
: constant Node_Id
:= Type_High_Bound
(T2
);
5929 -- If the bounds are the same tree node, then match (common case)
5931 if LB1
= LB2
and then HB1
= HB2
then
5934 -- Otherwise bounds must be static and identical value
5937 if not Is_OK_Static_Subtype
(T1
)
5939 not Is_OK_Static_Subtype
(T2
)
5943 elsif Is_Real_Type
(T1
) then
5945 Expr_Value_R
(LB1
) = Expr_Value_R
(LB2
)
5947 Expr_Value_R
(HB1
) = Expr_Value_R
(HB2
);
5951 Expr_Value
(LB1
) = Expr_Value
(LB2
)
5953 Expr_Value
(HB1
) = Expr_Value
(HB2
);
5958 -- Type with discriminants
5960 elsif Has_Discriminants
(T1
) or else Has_Discriminants
(T2
) then
5962 -- Because of view exchanges in multiple instantiations, conformance
5963 -- checking might try to match a partial view of a type with no
5964 -- discriminants with a full view that has defaulted discriminants.
5965 -- In such a case, use the discriminant constraint of the full view,
5966 -- which must exist because we know that the two subtypes have the
5969 if Has_Discriminants
(T1
) /= Has_Discriminants
(T2
) then
5970 -- A generic actual type is declared through a subtype declaration
5971 -- and may have an inconsistent indication of the presence of
5972 -- discriminants, so check the type it renames.
5974 if Is_Generic_Actual_Type
(T1
)
5975 and then not Has_Discriminants
(Etype
(T1
))
5976 and then not Has_Discriminants
(T2
)
5980 elsif In_Instance
then
5981 if Is_Private_Type
(T2
)
5982 and then Present
(Full_View
(T2
))
5983 and then Has_Discriminants
(Full_View
(T2
))
5985 return Subtypes_Statically_Match
(T1
, Full_View
(T2
));
5987 elsif Is_Private_Type
(T1
)
5988 and then Present
(Full_View
(T1
))
5989 and then Has_Discriminants
(Full_View
(T1
))
5991 return Subtypes_Statically_Match
(Full_View
(T1
), T2
);
6002 DL1
: constant Elist_Id
:= Discriminant_Constraint
(T1
);
6003 DL2
: constant Elist_Id
:= Discriminant_Constraint
(T2
);
6011 elsif Is_Constrained
(T1
) /= Is_Constrained
(T2
) then
6015 -- Now loop through the discriminant constraints
6017 -- Note: the guard here seems necessary, since it is possible at
6018 -- least for DL1 to be No_Elist. Not clear this is reasonable ???
6020 if Present
(DL1
) and then Present
(DL2
) then
6021 DA1
:= First_Elmt
(DL1
);
6022 DA2
:= First_Elmt
(DL2
);
6023 while Present
(DA1
) loop
6025 Expr1
: constant Node_Id
:= Node
(DA1
);
6026 Expr2
: constant Node_Id
:= Node
(DA2
);
6029 if not Is_OK_Static_Expression
(Expr1
)
6030 or else not Is_OK_Static_Expression
(Expr2
)
6034 -- If either expression raised a constraint error,
6035 -- consider the expressions as matching, since this
6036 -- helps to prevent cascading errors.
6038 elsif Raises_Constraint_Error
(Expr1
)
6039 or else Raises_Constraint_Error
(Expr2
)
6043 elsif Expr_Value
(Expr1
) /= Expr_Value
(Expr2
) then
6056 -- A definite type does not match an indefinite or classwide type.
6057 -- However, a generic type with unknown discriminants may be
6058 -- instantiated with a type with no discriminants, and conformance
6059 -- checking on an inherited operation may compare the actual with the
6060 -- subtype that renames it in the instance.
6062 elsif Has_Unknown_Discriminants
(T1
) /= Has_Unknown_Discriminants
(T2
)
6065 Is_Generic_Actual_Type
(T1
) or else Is_Generic_Actual_Type
(T2
);
6069 elsif Is_Array_Type
(T1
) then
6071 -- If either subtype is unconstrained then both must be, and if both
6072 -- are unconstrained then no further checking is needed.
6074 if not Is_Constrained
(T1
) or else not Is_Constrained
(T2
) then
6075 return not (Is_Constrained
(T1
) or else Is_Constrained
(T2
));
6078 -- Both subtypes are constrained, so check that the index subtypes
6079 -- statically match.
6082 Index1
: Node_Id
:= First_Index
(T1
);
6083 Index2
: Node_Id
:= First_Index
(T2
);
6086 while Present
(Index1
) loop
6088 Subtypes_Statically_Match
(Etype
(Index1
), Etype
(Index2
))
6093 Next_Index
(Index1
);
6094 Next_Index
(Index2
);
6100 elsif Is_Access_Type
(T1
) then
6101 if Can_Never_Be_Null
(T1
) /= Can_Never_Be_Null
(T2
) then
6104 elsif Ekind_In
(T1
, E_Access_Subprogram_Type
,
6105 E_Anonymous_Access_Subprogram_Type
)
6109 (Designated_Type
(T1
),
6110 Designated_Type
(T2
));
6113 Subtypes_Statically_Match
6114 (Designated_Type
(T1
),
6115 Designated_Type
(T2
))
6116 and then Is_Access_Constant
(T1
) = Is_Access_Constant
(T2
);
6119 -- All other types definitely match
6124 end Subtypes_Statically_Match
;
6130 function Test
(Cond
: Boolean) return Uint
is
6139 ---------------------
6140 -- Test_Comparison --
6141 ---------------------
6143 procedure Test_Comparison
6145 Assume_Valid
: Boolean;
6146 True_Result
: out Boolean;
6147 False_Result
: out Boolean)
6149 Left
: constant Node_Id
:= Left_Opnd
(Op
);
6150 Left_Typ
: constant Entity_Id
:= Etype
(Left
);
6151 Orig_Op
: constant Node_Id
:= Original_Node
(Op
);
6153 procedure Replacement_Warning
(Msg
: String);
6154 -- Emit a warning on a comparison that can be replaced by '='
6156 -------------------------
6157 -- Replacement_Warning --
6158 -------------------------
6160 procedure Replacement_Warning
(Msg
: String) is
6162 if Constant_Condition_Warnings
6163 and then Comes_From_Source
(Orig_Op
)
6164 and then Is_Integer_Type
(Left_Typ
)
6165 and then not Error_Posted
(Op
)
6166 and then not Has_Warnings_Off
(Left_Typ
)
6167 and then not In_Instance
6169 Error_Msg_N
(Msg
, Op
);
6171 end Replacement_Warning
;
6175 Res
: constant Compare_Result
:=
6176 Compile_Time_Compare
(Left
, Right_Opnd
(Op
), Assume_Valid
);
6178 -- Start of processing for Test_Comparison
6181 case N_Op_Compare
(Nkind
(Op
)) is
6183 True_Result
:= Res
= EQ
;
6184 False_Result
:= Res
= LT
or else Res
= GT
or else Res
= NE
;
6187 True_Result
:= Res
in Compare_GE
;
6188 False_Result
:= Res
= LT
;
6190 if Res
= LE
and then Nkind
(Orig_Op
) = N_Op_Ge
then
6192 ("can never be greater than, could replace by ""'=""?c?");
6196 True_Result
:= Res
= GT
;
6197 False_Result
:= Res
in Compare_LE
;
6200 True_Result
:= Res
in Compare_LE
;
6201 False_Result
:= Res
= GT
;
6203 if Res
= GE
and then Nkind
(Orig_Op
) = N_Op_Le
then
6205 ("can never be less than, could replace by ""'=""?c?");
6209 True_Result
:= Res
= LT
;
6210 False_Result
:= Res
in Compare_GE
;
6213 True_Result
:= Res
= NE
or else Res
= GT
or else Res
= LT
;
6214 False_Result
:= Res
= EQ
;
6216 end Test_Comparison
;
6218 ---------------------------------
6219 -- Test_Expression_Is_Foldable --
6220 ---------------------------------
6224 procedure Test_Expression_Is_Foldable
6234 if Debug_Flag_Dot_F
and then In_Extended_Main_Source_Unit
(N
) then
6238 -- If operand is Any_Type, just propagate to result and do not
6239 -- try to fold, this prevents cascaded errors.
6241 if Etype
(Op1
) = Any_Type
then
6242 Set_Etype
(N
, Any_Type
);
6245 -- If operand raises constraint error, then replace node N with the
6246 -- raise constraint error node, and we are obviously not foldable.
6247 -- Note that this replacement inherits the Is_Static_Expression flag
6248 -- from the operand.
6250 elsif Raises_Constraint_Error
(Op1
) then
6251 Rewrite_In_Raise_CE
(N
, Op1
);
6254 -- If the operand is not static, then the result is not static, and
6255 -- all we have to do is to check the operand since it is now known
6256 -- to appear in a non-static context.
6258 elsif not Is_Static_Expression
(Op1
) then
6259 Check_Non_Static_Context
(Op1
);
6260 Fold
:= Compile_Time_Known_Value
(Op1
);
6263 -- An expression of a formal modular type is not foldable because
6264 -- the modulus is unknown.
6266 elsif Is_Modular_Integer_Type
(Etype
(Op1
))
6267 and then Is_Generic_Type
(Etype
(Op1
))
6269 Check_Non_Static_Context
(Op1
);
6272 -- Here we have the case of an operand whose type is OK, which is
6273 -- static, and which does not raise constraint error, we can fold.
6276 Set_Is_Static_Expression
(N
);
6280 end Test_Expression_Is_Foldable
;
6284 procedure Test_Expression_Is_Foldable
6290 CRT_Safe
: Boolean := False)
6292 Rstat
: constant Boolean := Is_Static_Expression
(Op1
)
6294 Is_Static_Expression
(Op2
);
6300 -- Inhibit folding if -gnatd.f flag set
6302 if Debug_Flag_Dot_F
and then In_Extended_Main_Source_Unit
(N
) then
6306 -- If either operand is Any_Type, just propagate to result and
6307 -- do not try to fold, this prevents cascaded errors.
6309 if Etype
(Op1
) = Any_Type
or else Etype
(Op2
) = Any_Type
then
6310 Set_Etype
(N
, Any_Type
);
6313 -- If left operand raises constraint error, then replace node N with the
6314 -- Raise_Constraint_Error node, and we are obviously not foldable.
6315 -- Is_Static_Expression is set from the two operands in the normal way,
6316 -- and we check the right operand if it is in a non-static context.
6318 elsif Raises_Constraint_Error
(Op1
) then
6320 Check_Non_Static_Context
(Op2
);
6323 Rewrite_In_Raise_CE
(N
, Op1
);
6324 Set_Is_Static_Expression
(N
, Rstat
);
6327 -- Similar processing for the case of the right operand. Note that we
6328 -- don't use this routine for the short-circuit case, so we do not have
6329 -- to worry about that special case here.
6331 elsif Raises_Constraint_Error
(Op2
) then
6333 Check_Non_Static_Context
(Op1
);
6336 Rewrite_In_Raise_CE
(N
, Op2
);
6337 Set_Is_Static_Expression
(N
, Rstat
);
6340 -- Exclude expressions of a generic modular type, as above
6342 elsif Is_Modular_Integer_Type
(Etype
(Op1
))
6343 and then Is_Generic_Type
(Etype
(Op1
))
6345 Check_Non_Static_Context
(Op1
);
6348 -- If result is not static, then check non-static contexts on operands
6349 -- since one of them may be static and the other one may not be static.
6351 elsif not Rstat
then
6352 Check_Non_Static_Context
(Op1
);
6353 Check_Non_Static_Context
(Op2
);
6356 Fold
:= CRT_Safe_Compile_Time_Known_Value
(Op1
)
6357 and then CRT_Safe_Compile_Time_Known_Value
(Op2
);
6359 Fold
:= Compile_Time_Known_Value
(Op1
)
6360 and then Compile_Time_Known_Value
(Op2
);
6365 -- Else result is static and foldable. Both operands are static, and
6366 -- neither raises constraint error, so we can definitely fold.
6369 Set_Is_Static_Expression
(N
);
6374 end Test_Expression_Is_Foldable
;
6380 function Test_In_Range
6383 Assume_Valid
: Boolean;
6384 Fixed_Int
: Boolean;
6385 Int_Real
: Boolean) return Range_Membership
6390 pragma Warnings
(Off
, Assume_Valid
);
6391 -- For now Assume_Valid is unreferenced since the current implementation
6392 -- always returns Unknown if N is not a compile-time-known value, but we
6393 -- keep the parameter to allow for future enhancements in which we try
6394 -- to get the information in the variable case as well.
6397 -- If an error was posted on expression, then return Unknown, we do not
6398 -- want cascaded errors based on some false analysis of a junk node.
6400 if Error_Posted
(N
) then
6403 -- Expression that raises constraint error is an odd case. We certainly
6404 -- do not want to consider it to be in range. It might make sense to
6405 -- consider it always out of range, but this causes incorrect error
6406 -- messages about static expressions out of range. So we just return
6407 -- Unknown, which is always safe.
6409 elsif Raises_Constraint_Error
(N
) then
6412 -- Universal types have no range limits, so always in range
6414 elsif Typ
= Universal_Integer
or else Typ
= Universal_Real
then
6417 -- Never known if not scalar type. Don't know if this can actually
6418 -- happen, but our spec allows it, so we must check.
6420 elsif not Is_Scalar_Type
(Typ
) then
6423 -- Never known if this is a generic type, since the bounds of generic
6424 -- types are junk. Note that if we only checked for static expressions
6425 -- (instead of compile-time-known values) below, we would not need this
6426 -- check, because values of a generic type can never be static, but they
6427 -- can be known at compile time.
6429 elsif Is_Generic_Type
(Typ
) then
6432 -- Case of a known compile time value, where we can check if it is in
6433 -- the bounds of the given type.
6435 elsif Compile_Time_Known_Value
(N
) then
6444 Lo
:= Type_Low_Bound
(Typ
);
6445 Hi
:= Type_High_Bound
(Typ
);
6447 LB_Known
:= Compile_Time_Known_Value
(Lo
);
6448 HB_Known
:= Compile_Time_Known_Value
(Hi
);
6450 -- Fixed point types should be considered as such only if flag
6451 -- Fixed_Int is set to False.
6453 if Is_Floating_Point_Type
(Typ
)
6454 or else (Is_Fixed_Point_Type
(Typ
) and then not Fixed_Int
)
6457 Valr
:= Expr_Value_R
(N
);
6459 if LB_Known
and HB_Known
then
6460 if Valr
>= Expr_Value_R
(Lo
)
6462 Valr
<= Expr_Value_R
(Hi
)
6466 return Out_Of_Range
;
6469 elsif (LB_Known
and then Valr
< Expr_Value_R
(Lo
))
6471 (HB_Known
and then Valr
> Expr_Value_R
(Hi
))
6473 return Out_Of_Range
;
6480 Val
:= Expr_Value
(N
);
6482 if LB_Known
and HB_Known
then
6483 if Val
>= Expr_Value
(Lo
) and then Val
<= Expr_Value
(Hi
)
6487 return Out_Of_Range
;
6490 elsif (LB_Known
and then Val
< Expr_Value
(Lo
))
6492 (HB_Known
and then Val
> Expr_Value
(Hi
))
6494 return Out_Of_Range
;
6502 -- Here for value not known at compile time. Case of expression subtype
6503 -- is Typ or is a subtype of Typ, and we can assume expression is valid.
6504 -- In this case we know it is in range without knowing its value.
6507 and then (Etype
(N
) = Typ
or else Is_Subtype_Of
(Etype
(N
), Typ
))
6511 -- Another special case. For signed integer types, if the target type
6512 -- has Is_Known_Valid set, and the source type does not have a larger
6513 -- size, then the source value must be in range. We exclude biased
6514 -- types, because they bizarrely can generate out of range values.
6516 elsif Is_Signed_Integer_Type
(Etype
(N
))
6517 and then Is_Known_Valid
(Typ
)
6518 and then Esize
(Etype
(N
)) <= Esize
(Typ
)
6519 and then not Has_Biased_Representation
(Etype
(N
))
6523 -- For all other cases, result is unknown
6534 procedure To_Bits
(U
: Uint
; B
: out Bits
) is
6536 for J
in 0 .. B
'Last loop
6537 B
(J
) := (U
/ (2 ** J
)) mod 2 /= 0;
6541 --------------------
6542 -- Why_Not_Static --
6543 --------------------
6545 procedure Why_Not_Static
(Expr
: Node_Id
) is
6546 N
: constant Node_Id
:= Original_Node
(Expr
);
6547 Typ
: Entity_Id
:= Empty
;
6552 procedure Why_Not_Static_List
(L
: List_Id
);
6553 -- A version that can be called on a list of expressions. Finds all
6554 -- non-static violations in any element of the list.
6556 -------------------------
6557 -- Why_Not_Static_List --
6558 -------------------------
6560 procedure Why_Not_Static_List
(L
: List_Id
) is
6563 if Is_Non_Empty_List
(L
) then
6565 while Present
(N
) loop
6570 end Why_Not_Static_List
;
6572 -- Start of processing for Why_Not_Static
6575 -- Ignore call on error or empty node
6577 if No
(Expr
) or else Nkind
(Expr
) = N_Error
then
6581 -- Preprocessing for sub expressions
6583 if Nkind
(Expr
) in N_Subexpr
then
6585 -- Nothing to do if expression is static
6587 if Is_OK_Static_Expression
(Expr
) then
6591 -- Test for constraint error raised
6593 if Raises_Constraint_Error
(Expr
) then
6595 -- Special case membership to find out which piece to flag
6597 if Nkind
(N
) in N_Membership_Test
then
6598 if Raises_Constraint_Error
(Left_Opnd
(N
)) then
6599 Why_Not_Static
(Left_Opnd
(N
));
6602 elsif Present
(Right_Opnd
(N
))
6603 and then Raises_Constraint_Error
(Right_Opnd
(N
))
6605 Why_Not_Static
(Right_Opnd
(N
));
6609 pragma Assert
(Present
(Alternatives
(N
)));
6611 Alt
:= First
(Alternatives
(N
));
6612 while Present
(Alt
) loop
6613 if Raises_Constraint_Error
(Alt
) then
6614 Why_Not_Static
(Alt
);
6622 -- Special case a range to find out which bound to flag
6624 elsif Nkind
(N
) = N_Range
then
6625 if Raises_Constraint_Error
(Low_Bound
(N
)) then
6626 Why_Not_Static
(Low_Bound
(N
));
6629 elsif Raises_Constraint_Error
(High_Bound
(N
)) then
6630 Why_Not_Static
(High_Bound
(N
));
6634 -- Special case attribute to see which part to flag
6636 elsif Nkind
(N
) = N_Attribute_Reference
then
6637 if Raises_Constraint_Error
(Prefix
(N
)) then
6638 Why_Not_Static
(Prefix
(N
));
6642 if Present
(Expressions
(N
)) then
6643 Exp
:= First
(Expressions
(N
));
6644 while Present
(Exp
) loop
6645 if Raises_Constraint_Error
(Exp
) then
6646 Why_Not_Static
(Exp
);
6654 -- Special case a subtype name
6656 elsif Is_Entity_Name
(Expr
) and then Is_Type
(Entity
(Expr
)) then
6658 ("!& is not a static subtype (RM 4.9(26))", N
, Entity
(Expr
));
6662 -- End of special cases
6665 ("!expression raises exception, cannot be static (RM 4.9(34))",
6670 -- If no type, then something is pretty wrong, so ignore
6672 Typ
:= Etype
(Expr
);
6678 -- Type must be scalar or string type (but allow Bignum, since this
6679 -- is really a scalar type from our point of view in this diagnosis).
6681 if not Is_Scalar_Type
(Typ
)
6682 and then not Is_String_Type
(Typ
)
6683 and then not Is_RTE
(Typ
, RE_Bignum
)
6686 ("!static expression must have scalar or string type " &
6692 -- If we got through those checks, test particular node kind
6698 when N_Expanded_Name
6704 if Is_Named_Number
(E
) then
6707 elsif Ekind
(E
) = E_Constant
then
6709 -- One case we can give a metter message is when we have a
6710 -- string literal created by concatenating an aggregate with
6711 -- an others expression.
6713 Entity_Case
: declare
6714 CV
: constant Node_Id
:= Constant_Value
(E
);
6715 CO
: constant Node_Id
:= Original_Node
(CV
);
6717 function Is_Aggregate
(N
: Node_Id
) return Boolean;
6718 -- See if node N came from an others aggregate, if so
6719 -- return True and set Error_Msg_Sloc to aggregate.
6725 function Is_Aggregate
(N
: Node_Id
) return Boolean is
6727 if Nkind
(Original_Node
(N
)) = N_Aggregate
then
6728 Error_Msg_Sloc
:= Sloc
(Original_Node
(N
));
6731 elsif Is_Entity_Name
(N
)
6732 and then Ekind
(Entity
(N
)) = E_Constant
6734 Nkind
(Original_Node
(Constant_Value
(Entity
(N
)))) =
6738 Sloc
(Original_Node
(Constant_Value
(Entity
(N
))));
6746 -- Start of processing for Entity_Case
6749 if Is_Aggregate
(CV
)
6750 or else (Nkind
(CO
) = N_Op_Concat
6751 and then (Is_Aggregate
(Left_Opnd
(CO
))
6753 Is_Aggregate
(Right_Opnd
(CO
))))
6755 Error_Msg_N
("!aggregate (#) is never static", N
);
6757 elsif No
(CV
) or else not Is_Static_Expression
(CV
) then
6759 ("!& is not a static constant (RM 4.9(5))", N
, E
);
6763 elsif Is_Type
(E
) then
6765 ("!& is not a static subtype (RM 4.9(26))", N
, E
);
6769 ("!& is not static constant or named number "
6770 & "(RM 4.9(5))", N
, E
);
6779 if Nkind
(N
) in N_Op_Shift
then
6781 ("!shift functions are never static (RM 4.9(6,18))", N
);
6783 Why_Not_Static
(Left_Opnd
(N
));
6784 Why_Not_Static
(Right_Opnd
(N
));
6790 Why_Not_Static
(Right_Opnd
(N
));
6792 -- Attribute reference
6794 when N_Attribute_Reference
=>
6795 Why_Not_Static_List
(Expressions
(N
));
6797 E
:= Etype
(Prefix
(N
));
6799 if E
= Standard_Void_Type
then
6803 -- Special case non-scalar'Size since this is a common error
6805 if Attribute_Name
(N
) = Name_Size
then
6807 ("!size attribute is only static for static scalar type "
6808 & "(RM 4.9(7,8))", N
);
6812 elsif Is_Array_Type
(E
) then
6813 if not Nam_In
(Attribute_Name
(N
), Name_First
,
6818 ("!static array attribute must be Length, First, or Last "
6819 & "(RM 4.9(8))", N
);
6821 -- Since we know the expression is not-static (we already
6822 -- tested for this, must mean array is not static).
6826 ("!prefix is non-static array (RM 4.9(8))", Prefix
(N
));
6831 -- Special case generic types, since again this is a common source
6834 elsif Is_Generic_Actual_Type
(E
) or else Is_Generic_Type
(E
) then
6836 ("!attribute of generic type is never static "
6837 & "(RM 4.9(7,8))", N
);
6839 elsif Is_OK_Static_Subtype
(E
) then
6842 elsif Is_Scalar_Type
(E
) then
6844 ("!prefix type for attribute is not static scalar subtype "
6845 & "(RM 4.9(7))", N
);
6849 ("!static attribute must apply to array/scalar type "
6850 & "(RM 4.9(7,8))", N
);
6855 when N_String_Literal
=>
6857 ("!subtype of string literal is non-static (RM 4.9(4))", N
);
6859 -- Explicit dereference
6861 when N_Explicit_Dereference
=>
6863 ("!explicit dereference is never static (RM 4.9)", N
);
6867 when N_Function_Call
=>
6868 Why_Not_Static_List
(Parameter_Associations
(N
));
6870 -- Complain about non-static function call unless we have Bignum
6871 -- which means that the underlying expression is really some
6872 -- scalar arithmetic operation.
6874 if not Is_RTE
(Typ
, RE_Bignum
) then
6875 Error_Msg_N
("!non-static function call (RM 4.9(6,18))", N
);
6878 -- Parameter assocation (test actual parameter)
6880 when N_Parameter_Association
=>
6881 Why_Not_Static
(Explicit_Actual_Parameter
(N
));
6883 -- Indexed component
6885 when N_Indexed_Component
=>
6886 Error_Msg_N
("!indexed component is never static (RM 4.9)", N
);
6890 when N_Procedure_Call_Statement
=>
6891 Error_Msg_N
("!procedure call is never static (RM 4.9)", N
);
6893 -- Qualified expression (test expression)
6895 when N_Qualified_Expression
=>
6896 Why_Not_Static
(Expression
(N
));
6901 | N_Extension_Aggregate
6903 Error_Msg_N
("!an aggregate is never static (RM 4.9)", N
);
6908 Why_Not_Static
(Low_Bound
(N
));
6909 Why_Not_Static
(High_Bound
(N
));
6911 -- Range constraint, test range expression
6913 when N_Range_Constraint
=>
6914 Why_Not_Static
(Range_Expression
(N
));
6916 -- Subtype indication, test constraint
6918 when N_Subtype_Indication
=>
6919 Why_Not_Static
(Constraint
(N
));
6921 -- Selected component
6923 when N_Selected_Component
=>
6924 Error_Msg_N
("!selected component is never static (RM 4.9)", N
);
6929 Error_Msg_N
("!slice is never static (RM 4.9)", N
);
6931 when N_Type_Conversion
=>
6932 Why_Not_Static
(Expression
(N
));
6934 if not Is_Scalar_Type
(Entity
(Subtype_Mark
(N
)))
6935 or else not Is_OK_Static_Subtype
(Entity
(Subtype_Mark
(N
)))
6938 ("!static conversion requires static scalar subtype result "
6939 & "(RM 4.9(9))", N
);
6942 -- Unchecked type conversion
6944 when N_Unchecked_Type_Conversion
=>
6946 ("!unchecked type conversion is never static (RM 4.9)", N
);
6948 -- All other cases, no reason to give