1 ;; Predicate definitions for POWER and PowerPC.
2 ;; Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
3 ;; Free Software Foundation, Inc.
5 ;; This file is part of GCC.
7 ;; GCC is free software; you can redistribute it and/or modify
8 ;; it under the terms of the GNU General Public License as published by
9 ;; the Free Software Foundation; either version 3, or (at your option)
12 ;; GCC is distributed in the hope that it will be useful,
13 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
14 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 ;; GNU General Public License for more details.
17 ;; You should have received a copy of the GNU General Public License
18 ;; along with GCC; see the file COPYING3. If not see
19 ;; <http://www.gnu.org/licenses/>.
21 ;; Return 1 for anything except PARALLEL.
22 (define_predicate "any_operand"
23 (match_code "const_int,const_double,const,symbol_ref,label_ref,subreg,reg,mem"))
25 ;; Return 1 for any PARALLEL.
26 (define_predicate "any_parallel_operand"
27 (match_code "parallel"))
29 ;; Return 1 if op is COUNT register.
30 (define_predicate "count_register_operand"
31 (and (match_code "reg")
32 (match_test "REGNO (op) == CTR_REGNO
33 || REGNO (op) > LAST_VIRTUAL_REGISTER")))
35 ;; Return 1 if op is an Altivec register.
36 (define_predicate "altivec_register_operand"
37 (and (match_operand 0 "register_operand")
38 (match_test "GET_CODE (op) != REG
39 || ALTIVEC_REGNO_P (REGNO (op))
40 || REGNO (op) > LAST_VIRTUAL_REGISTER")))
42 ;; Return 1 if op is a VSX register.
43 (define_predicate "vsx_register_operand"
44 (and (match_operand 0 "register_operand")
45 (match_test "GET_CODE (op) != REG
46 || VSX_REGNO_P (REGNO (op))
47 || REGNO (op) > LAST_VIRTUAL_REGISTER")))
49 ;; Return 1 if op is a vector register that operates on floating point vectors
50 ;; (either altivec or VSX).
51 (define_predicate "vfloat_operand"
52 (and (match_operand 0 "register_operand")
53 (match_test "GET_CODE (op) != REG
54 || VFLOAT_REGNO_P (REGNO (op))
55 || REGNO (op) > LAST_VIRTUAL_REGISTER")))
57 ;; Return 1 if op is a vector register that operates on integer vectors
58 ;; (only altivec, VSX doesn't support integer vectors)
59 (define_predicate "vint_operand"
60 (and (match_operand 0 "register_operand")
61 (match_test "GET_CODE (op) != REG
62 || VINT_REGNO_P (REGNO (op))
63 || REGNO (op) > LAST_VIRTUAL_REGISTER")))
65 ;; Return 1 if op is a vector register to do logical operations on (and, or,
67 (define_predicate "vlogical_operand"
68 (and (match_operand 0 "register_operand")
69 (match_test "GET_CODE (op) != REG
70 || VLOGICAL_REGNO_P (REGNO (op))
71 || REGNO (op) > LAST_VIRTUAL_REGISTER")))
73 ;; Return 1 if op is the carry register.
74 (define_predicate "ca_operand"
75 (and (match_code "reg")
76 (match_test "CA_REGNO_P (REGNO (op))")))
78 ;; Return 1 if op is a signed 5-bit constant integer.
79 (define_predicate "s5bit_cint_operand"
80 (and (match_code "const_int")
81 (match_test "INTVAL (op) >= -16 && INTVAL (op) <= 15")))
83 ;; Return 1 if op is a unsigned 5-bit constant integer.
84 (define_predicate "u5bit_cint_operand"
85 (and (match_code "const_int")
86 (match_test "INTVAL (op) >= 0 && INTVAL (op) <= 31")))
88 ;; Return 1 if op is a signed 8-bit constant integer.
89 ;; Integer multiplication complete more quickly
90 (define_predicate "s8bit_cint_operand"
91 (and (match_code "const_int")
92 (match_test "INTVAL (op) >= -128 && INTVAL (op) <= 127")))
94 ;; Return 1 if op is a constant integer that can fit in a D field.
95 (define_predicate "short_cint_operand"
96 (and (match_code "const_int")
97 (match_test "satisfies_constraint_I (op)")))
99 ;; Return 1 if op is a constant integer that can fit in an unsigned D field.
100 (define_predicate "u_short_cint_operand"
101 (and (match_code "const_int")
102 (match_test "satisfies_constraint_K (op)")))
104 ;; Return 1 if op is a constant integer that cannot fit in a signed D field.
105 (define_predicate "non_short_cint_operand"
106 (and (match_code "const_int")
107 (match_test "(unsigned HOST_WIDE_INT)
108 (INTVAL (op) + 0x8000) >= 0x10000")))
110 ;; Return 1 if op is a positive constant integer that is an exact power of 2.
111 (define_predicate "exact_log2_cint_operand"
112 (and (match_code "const_int")
113 (match_test "INTVAL (op) > 0 && exact_log2 (INTVAL (op)) >= 0")))
115 ;; Return 1 if op is a register that is not special.
116 (define_predicate "gpc_reg_operand"
117 (and (match_operand 0 "register_operand")
118 (match_test "(GET_CODE (op) != REG
119 || (REGNO (op) >= ARG_POINTER_REGNUM
120 && !CA_REGNO_P (REGNO (op)))
121 || REGNO (op) < MQ_REGNO)
122 && !((TARGET_E500_DOUBLE || TARGET_SPE)
123 && invalid_e500_subreg (op, mode))")))
125 ;; Return 1 if op is a register that is a condition register field.
126 (define_predicate "cc_reg_operand"
127 (and (match_operand 0 "register_operand")
128 (match_test "GET_CODE (op) != REG
129 || REGNO (op) > LAST_VIRTUAL_REGISTER
130 || CR_REGNO_P (REGNO (op))")))
132 ;; Return 1 if op is a register that is a condition register field not cr0.
133 (define_predicate "cc_reg_not_cr0_operand"
134 (and (match_operand 0 "register_operand")
135 (match_test "GET_CODE (op) != REG
136 || REGNO (op) > LAST_VIRTUAL_REGISTER
137 || CR_REGNO_NOT_CR0_P (REGNO (op))")))
139 ;; Return 1 if op is a register that is a condition register field and if generating microcode, not cr0.
140 (define_predicate "cc_reg_not_micro_cr0_operand"
141 (and (match_operand 0 "register_operand")
142 (match_test "GET_CODE (op) != REG
143 || REGNO (op) > LAST_VIRTUAL_REGISTER
144 || (rs6000_gen_cell_microcode && CR_REGNO_NOT_CR0_P (REGNO (op)))
145 || (!rs6000_gen_cell_microcode && CR_REGNO_P (REGNO (op)))")))
147 ;; Return 1 if op is a constant integer valid for D field
148 ;; or non-special register register.
149 (define_predicate "reg_or_short_operand"
150 (if_then_else (match_code "const_int")
151 (match_operand 0 "short_cint_operand")
152 (match_operand 0 "gpc_reg_operand")))
154 ;; Return 1 if op is a constant integer valid whose negation is valid for
155 ;; D field or non-special register register.
156 ;; Do not allow a constant zero because all patterns that call this
157 ;; predicate use "addic r1,r2,-const" to set carry when r2 is greater than
158 ;; or equal to const, which does not work for zero.
159 (define_predicate "reg_or_neg_short_operand"
160 (if_then_else (match_code "const_int")
161 (match_test "satisfies_constraint_P (op)
162 && INTVAL (op) != 0")
163 (match_operand 0 "gpc_reg_operand")))
165 ;; Return 1 if op is a constant integer valid for DS field
166 ;; or non-special register.
167 (define_predicate "reg_or_aligned_short_operand"
168 (if_then_else (match_code "const_int")
169 (and (match_operand 0 "short_cint_operand")
170 (match_test "!(INTVAL (op) & 3)"))
171 (match_operand 0 "gpc_reg_operand")))
173 ;; Return 1 if op is a constant integer whose high-order 16 bits are zero
174 ;; or non-special register.
175 (define_predicate "reg_or_u_short_operand"
176 (if_then_else (match_code "const_int")
177 (match_operand 0 "u_short_cint_operand")
178 (match_operand 0 "gpc_reg_operand")))
180 ;; Return 1 if op is any constant integer
181 ;; or non-special register.
182 (define_predicate "reg_or_cint_operand"
183 (ior (match_code "const_int")
184 (match_operand 0 "gpc_reg_operand")))
186 ;; Return 1 if op is a constant integer valid for addition
187 ;; or non-special register.
188 (define_predicate "reg_or_add_cint_operand"
189 (if_then_else (match_code "const_int")
190 (match_test "(HOST_BITS_PER_WIDE_INT == 32
191 && (mode == SImode || INTVAL (op) < 0x7fff8000))
192 || ((unsigned HOST_WIDE_INT) (INTVAL (op) + 0x80008000)
193 < (unsigned HOST_WIDE_INT) 0x100000000ll)")
194 (match_operand 0 "gpc_reg_operand")))
196 ;; Return 1 if op is a constant integer valid for subtraction
197 ;; or non-special register.
198 (define_predicate "reg_or_sub_cint_operand"
199 (if_then_else (match_code "const_int")
200 (match_test "(HOST_BITS_PER_WIDE_INT == 32
201 && (mode == SImode || - INTVAL (op) < 0x7fff8000))
202 || ((unsigned HOST_WIDE_INT) (- INTVAL (op)
204 ? 0x80000000 : 0x80008000))
205 < (unsigned HOST_WIDE_INT) 0x100000000ll)")
206 (match_operand 0 "gpc_reg_operand")))
208 ;; Return 1 if op is any 32-bit unsigned constant integer
209 ;; or non-special register.
210 (define_predicate "reg_or_logical_cint_operand"
211 (if_then_else (match_code "const_int")
212 (match_test "(GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
214 || ((INTVAL (op) & GET_MODE_MASK (mode)
215 & (~ (unsigned HOST_WIDE_INT) 0xffffffff)) == 0)")
216 (if_then_else (match_code "const_double")
217 (match_test "GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
219 && CONST_DOUBLE_HIGH (op) == 0")
220 (match_operand 0 "gpc_reg_operand"))))
222 ;; Return 1 if operand is a CONST_DOUBLE that can be set in a register
223 ;; with no more than one instruction per word.
224 (define_predicate "easy_fp_constant"
225 (match_code "const_double")
230 if (GET_MODE (op) != mode
231 || (!SCALAR_FLOAT_MODE_P (mode) && mode != DImode))
234 /* Consider all constants with -msoft-float to be easy. */
235 if ((TARGET_SOFT_FLOAT || TARGET_E500_SINGLE
236 || (TARGET_HARD_FLOAT && (TARGET_SINGLE_FLOAT && ! TARGET_DOUBLE_FLOAT)))
240 if (DECIMAL_FLOAT_MODE_P (mode))
243 /* If we are using V.4 style PIC, consider all constants to be hard. */
244 if (flag_pic && DEFAULT_ABI == ABI_V4)
247 #ifdef TARGET_RELOCATABLE
248 /* Similarly if we are using -mrelocatable, consider all constants
250 if (TARGET_RELOCATABLE)
257 if (TARGET_E500_DOUBLE)
260 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
261 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
263 return (num_insns_constant_wide ((HOST_WIDE_INT) k[0]) == 1
264 && num_insns_constant_wide ((HOST_WIDE_INT) k[1]) == 1
265 && num_insns_constant_wide ((HOST_WIDE_INT) k[2]) == 1
266 && num_insns_constant_wide ((HOST_WIDE_INT) k[3]) == 1);
269 /* The constant 0.f is easy under VSX. */
270 if (op == CONST0_RTX (DFmode) && VECTOR_UNIT_VSX_P (DFmode))
273 /* Force constants to memory before reload to utilize
274 compress_float_constant.
275 Avoid this when flag_unsafe_math_optimizations is enabled
276 because RDIV division to reciprocal optimization is not able
277 to regenerate the division. */
278 if (TARGET_E500_DOUBLE
279 || (!reload_in_progress && !reload_completed
280 && !flag_unsafe_math_optimizations))
283 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
284 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
286 return (num_insns_constant_wide ((HOST_WIDE_INT) k[0]) == 1
287 && num_insns_constant_wide ((HOST_WIDE_INT) k[1]) == 1);
290 /* The constant 0.f is easy. */
291 if (op == CONST0_RTX (SFmode))
294 /* Force constants to memory before reload to utilize
295 compress_float_constant.
296 Avoid this when flag_unsafe_math_optimizations is enabled
297 because RDIV division to reciprocal optimization is not able
298 to regenerate the division. */
299 if (!reload_in_progress && !reload_completed
300 && !flag_unsafe_math_optimizations)
303 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
304 REAL_VALUE_TO_TARGET_SINGLE (rv, k[0]);
306 return num_insns_constant_wide (k[0]) == 1;
309 return ((TARGET_POWERPC64
310 && GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_LOW (op) == 0)
311 || (num_insns_constant (op, DImode) <= 2));
321 ;; Return 1 if the operand is a CONST_VECTOR and can be loaded into a
322 ;; vector register without using memory.
323 (define_predicate "easy_vector_constant"
324 (match_code "const_vector")
326 /* As the paired vectors are actually FPRs it seems that there is
327 no easy way to load a CONST_VECTOR without using memory. */
328 if (TARGET_PAIRED_FLOAT)
331 if ((VSX_VECTOR_MODE (mode) || mode == TImode) && zero_constant (op, mode))
334 if (ALTIVEC_VECTOR_MODE (mode))
336 if (zero_constant (op, mode))
338 return easy_altivec_constant (op, mode);
341 if (SPE_VECTOR_MODE (mode))
344 if (zero_constant (op, mode))
346 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
349 /* Limit SPE vectors to 15 bits signed. These we can generate with:
354 I don't know how efficient it would be to allow bigger constants,
355 considering we'll have an extra 'ori' for every 'li'. I doubt 5
356 instructions is better than a 64-bit memory load, but I don't
357 have the e500 timing specs. */
358 if (mode == V2SImode)
360 cst = INTVAL (CONST_VECTOR_ELT (op, 0));
361 cst2 = INTVAL (CONST_VECTOR_ELT (op, 1));
362 return cst >= -0x7fff && cst <= 0x7fff
363 && cst2 >= -0x7fff && cst2 <= 0x7fff;
370 ;; Same as easy_vector_constant but only for EASY_VECTOR_15_ADD_SELF.
371 (define_predicate "easy_vector_constant_add_self"
372 (and (match_code "const_vector")
373 (and (match_test "TARGET_ALTIVEC")
374 (match_test "easy_altivec_constant (op, mode)")))
376 HOST_WIDE_INT val = const_vector_elt_as_int (op, GET_MODE_NUNITS (mode) - 1);
377 val = ((val & 0xff) ^ 0x80) - 0x80;
378 return EASY_VECTOR_15_ADD_SELF (val);
381 ;; Same as easy_vector_constant but only for EASY_VECTOR_MSB.
382 (define_predicate "easy_vector_constant_msb"
383 (and (match_code "const_vector")
384 (and (match_test "TARGET_ALTIVEC")
385 (match_test "easy_altivec_constant (op, mode)")))
387 HOST_WIDE_INT val = const_vector_elt_as_int (op, GET_MODE_NUNITS (mode) - 1);
388 return EASY_VECTOR_MSB (val, GET_MODE_INNER (mode));
391 ;; Return 1 if operand is constant zero (scalars and vectors).
392 (define_predicate "zero_constant"
393 (and (match_code "const_int,const_double,const_vector")
394 (match_test "op == CONST0_RTX (mode)")))
396 ;; Return 1 if operand is 0.0.
397 ;; or non-special register register field no cr0
398 (define_predicate "zero_fp_constant"
399 (and (match_code "const_double")
400 (match_test "SCALAR_FLOAT_MODE_P (mode)
401 && op == CONST0_RTX (mode)")))
403 ;; Return 1 if the operand is in volatile memory. Note that during the
404 ;; RTL generation phase, memory_operand does not return TRUE for volatile
405 ;; memory references. So this function allows us to recognize volatile
406 ;; references where it's safe.
407 (define_predicate "volatile_mem_operand"
408 (and (and (match_code "mem")
409 (match_test "MEM_VOLATILE_P (op)"))
410 (if_then_else (match_test "reload_completed")
411 (match_operand 0 "memory_operand")
412 (if_then_else (match_test "reload_in_progress")
413 (match_test "strict_memory_address_p (mode, XEXP (op, 0))")
414 (match_test "memory_address_p (mode, XEXP (op, 0))")))))
416 ;; Return 1 if the operand is an offsettable memory operand.
417 (define_predicate "offsettable_mem_operand"
418 (and (match_operand 0 "memory_operand")
419 (match_test "offsettable_nonstrict_memref_p (op)")))
421 ;; Return 1 if the operand is a memory operand with an address divisible by 4
422 (define_predicate "word_offset_memref_operand"
423 (match_operand 0 "memory_operand")
425 /* Address inside MEM. */
428 /* Extract address from auto-inc/dec. */
429 if (GET_CODE (op) == PRE_INC
430 || GET_CODE (op) == PRE_DEC)
432 else if (GET_CODE (op) == PRE_MODIFY)
435 return (GET_CODE (op) != PLUS
436 || ! REG_P (XEXP (op, 0))
437 || GET_CODE (XEXP (op, 1)) != CONST_INT
438 || INTVAL (XEXP (op, 1)) % 4 == 0);
441 ;; Return 1 if the operand is an indexed or indirect memory operand.
442 (define_predicate "indexed_or_indirect_operand"
446 if (VECTOR_MEM_ALTIVEC_P (mode)
447 && GET_CODE (op) == AND
448 && GET_CODE (XEXP (op, 1)) == CONST_INT
449 && INTVAL (XEXP (op, 1)) == -16)
452 return indexed_or_indirect_address (op, mode);
455 ;; Return 1 if the operand is an indexed or indirect memory operand with an
456 ;; AND -16 in it, used to recognize when we need to switch to Altivec loads
457 ;; to realign loops instead of VSX (altivec silently ignores the bottom bits,
458 ;; while VSX uses the full address and traps)
459 (define_predicate "altivec_indexed_or_indirect_operand"
463 if (VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)
464 && GET_CODE (op) == AND
465 && GET_CODE (XEXP (op, 1)) == CONST_INT
466 && INTVAL (XEXP (op, 1)) == -16)
467 return indexed_or_indirect_address (XEXP (op, 0), mode);
472 ;; Return 1 if the operand is an indexed or indirect address.
473 (define_special_predicate "indexed_or_indirect_address"
474 (and (match_test "REG_P (op)
475 || (GET_CODE (op) == PLUS
476 /* Omit testing REG_P (XEXP (op, 0)). */
477 && REG_P (XEXP (op, 1)))")
478 (match_operand 0 "address_operand")))
480 ;; Used for the destination of the fix_truncdfsi2 expander.
481 ;; If stfiwx will be used, the result goes to memory; otherwise,
482 ;; we're going to emit a store and a load of a subreg, so the dest is a
484 (define_predicate "fix_trunc_dest_operand"
485 (if_then_else (match_test "! TARGET_E500_DOUBLE && TARGET_PPC_GFXOPT")
486 (match_operand 0 "memory_operand")
487 (match_operand 0 "gpc_reg_operand")))
489 ;; Return 1 if the operand is either a non-special register or can be used
490 ;; as the operand of a `mode' add insn.
491 (define_predicate "add_operand"
492 (if_then_else (match_code "const_int")
493 (match_test "satisfies_constraint_I (op)
494 || satisfies_constraint_L (op)")
495 (match_operand 0 "gpc_reg_operand")))
497 ;; Return 1 if OP is a constant but not a valid add_operand.
498 (define_predicate "non_add_cint_operand"
499 (and (match_code "const_int")
500 (match_test "!satisfies_constraint_I (op)
501 && !satisfies_constraint_L (op)")))
503 ;; Return 1 if the operand is a constant that can be used as the operand
505 (define_predicate "logical_const_operand"
506 (match_code "const_int,const_double")
508 HOST_WIDE_INT opl, oph;
510 if (GET_CODE (op) == CONST_INT)
512 opl = INTVAL (op) & GET_MODE_MASK (mode);
514 if (HOST_BITS_PER_WIDE_INT <= 32
515 && GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT && opl < 0)
518 else if (GET_CODE (op) == CONST_DOUBLE)
520 gcc_assert (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT);
522 opl = CONST_DOUBLE_LOW (op);
523 oph = CONST_DOUBLE_HIGH (op);
530 return ((opl & ~ (unsigned HOST_WIDE_INT) 0xffff) == 0
531 || (opl & ~ (unsigned HOST_WIDE_INT) 0xffff0000) == 0);
534 ;; Return 1 if the operand is a non-special register or a constant that
535 ;; can be used as the operand of an OR or XOR.
536 (define_predicate "logical_operand"
537 (ior (match_operand 0 "gpc_reg_operand")
538 (match_operand 0 "logical_const_operand")))
540 ;; Return 1 if op is a constant that is not a logical operand, but could
541 ;; be split into one.
542 (define_predicate "non_logical_cint_operand"
543 (and (match_code "const_int,const_double")
544 (and (not (match_operand 0 "logical_operand"))
545 (match_operand 0 "reg_or_logical_cint_operand"))))
547 ;; Return 1 if op is a constant that can be encoded in a 32-bit mask,
548 ;; suitable for use with rlwinm (no more than two 1->0 or 0->1
549 ;; transitions). Reject all ones and all zeros, since these should have
550 ;; been optimized away and confuse the making of MB and ME.
551 (define_predicate "mask_operand"
552 (match_code "const_int")
554 HOST_WIDE_INT c, lsb;
558 if (TARGET_POWERPC64)
560 /* Fail if the mask is not 32-bit. */
561 if (mode == DImode && (c & ~(unsigned HOST_WIDE_INT) 0xffffffff) != 0)
564 /* Fail if the mask wraps around because the upper 32-bits of the
565 mask will all be 1s, contrary to GCC's internal view. */
566 if ((c & 0x80000001) == 0x80000001)
570 /* We don't change the number of transitions by inverting,
571 so make sure we start with the LS bit zero. */
575 /* Reject all zeros or all ones. */
579 /* Find the first transition. */
582 /* Invert to look for a second transition. */
585 /* Erase first transition. */
588 /* Find the second transition (if any). */
591 /* Match if all the bits above are 1's (or c is zero). */
595 ;; Return 1 for the PowerPC64 rlwinm corner case.
596 (define_predicate "mask_operand_wrap"
597 (match_code "const_int")
599 HOST_WIDE_INT c, lsb;
603 if ((c & 0x80000001) != 0x80000001)
617 ;; Return 1 if the operand is a constant that is a PowerPC64 mask
618 ;; suitable for use with rldicl or rldicr (no more than one 1->0 or 0->1
619 ;; transition). Reject all zeros, since zero should have been
620 ;; optimized away and confuses the making of MB and ME.
621 (define_predicate "mask64_operand"
622 (match_code "const_int")
624 HOST_WIDE_INT c, lsb;
628 /* Reject all zeros. */
632 /* We don't change the number of transitions by inverting,
633 so make sure we start with the LS bit zero. */
637 /* Find the first transition. */
640 /* Match if all the bits above are 1's (or c is zero). */
644 ;; Like mask64_operand, but allow up to three transitions. This
645 ;; predicate is used by insn patterns that generate two rldicl or
646 ;; rldicr machine insns.
647 (define_predicate "mask64_2_operand"
648 (match_code "const_int")
650 HOST_WIDE_INT c, lsb;
654 /* Disallow all zeros. */
658 /* We don't change the number of transitions by inverting,
659 so make sure we start with the LS bit zero. */
663 /* Find the first transition. */
666 /* Invert to look for a second transition. */
669 /* Erase first transition. */
672 /* Find the second transition. */
675 /* Invert to look for a third transition. */
678 /* Erase second transition. */
681 /* Find the third transition (if any). */
684 /* Match if all the bits above are 1's (or c is zero). */
688 ;; Like and_operand, but also match constants that can be implemented
689 ;; with two rldicl or rldicr insns.
690 (define_predicate "and64_2_operand"
691 (ior (match_operand 0 "mask64_2_operand")
692 (if_then_else (match_test "fixed_regs[CR0_REGNO]")
693 (match_operand 0 "gpc_reg_operand")
694 (match_operand 0 "logical_operand"))))
696 ;; Return 1 if the operand is either a non-special register or a
697 ;; constant that can be used as the operand of a logical AND.
698 (define_predicate "and_operand"
699 (ior (match_operand 0 "mask_operand")
700 (ior (and (match_test "TARGET_POWERPC64 && mode == DImode")
701 (match_operand 0 "mask64_operand"))
702 (if_then_else (match_test "fixed_regs[CR0_REGNO]")
703 (match_operand 0 "gpc_reg_operand")
704 (match_operand 0 "logical_operand")))))
706 ;; Return 1 if the operand is either a logical operand or a short cint operand.
707 (define_predicate "scc_eq_operand"
708 (ior (match_operand 0 "logical_operand")
709 (match_operand 0 "short_cint_operand")))
711 ;; Return 1 if the operand is a general non-special register or memory operand.
712 (define_predicate "reg_or_mem_operand"
713 (ior (match_operand 0 "memory_operand")
714 (ior (and (match_code "mem")
715 (match_test "macho_lo_sum_memory_operand (op, mode)"))
716 (ior (match_operand 0 "volatile_mem_operand")
717 (match_operand 0 "gpc_reg_operand")))))
719 ;; Return 1 if the operand is either an easy FP constant or memory or reg.
720 (define_predicate "reg_or_none500mem_operand"
721 (if_then_else (match_code "mem")
722 (and (match_test "!TARGET_E500_DOUBLE")
723 (ior (match_operand 0 "memory_operand")
724 (ior (match_test "macho_lo_sum_memory_operand (op, mode)")
725 (match_operand 0 "volatile_mem_operand"))))
726 (match_operand 0 "gpc_reg_operand")))
728 ;; Return 1 if the operand is CONST_DOUBLE 0, register or memory operand.
729 (define_predicate "zero_reg_mem_operand"
730 (ior (match_operand 0 "zero_fp_constant")
731 (match_operand 0 "reg_or_mem_operand")))
733 ;; Return 1 if the operand is a general register or memory operand without
734 ;; pre_inc or pre_dec or pre_modify, which produces invalid form of PowerPC
736 (define_predicate "lwa_operand"
737 (match_code "reg,subreg,mem")
741 if (reload_completed && GET_CODE (inner) == SUBREG)
742 inner = SUBREG_REG (inner);
744 return gpc_reg_operand (inner, mode)
745 || (memory_operand (inner, mode)
746 && GET_CODE (XEXP (inner, 0)) != PRE_INC
747 && GET_CODE (XEXP (inner, 0)) != PRE_DEC
748 && (GET_CODE (XEXP (inner, 0)) != PRE_MODIFY
749 || legitimate_indexed_address_p (XEXP (XEXP (inner, 0), 1), 0))
750 && (GET_CODE (XEXP (inner, 0)) != PLUS
751 || GET_CODE (XEXP (XEXP (inner, 0), 1)) != CONST_INT
752 || INTVAL (XEXP (XEXP (inner, 0), 1)) % 4 == 0));
755 ;; Return 1 if the operand, used inside a MEM, is a SYMBOL_REF.
756 (define_predicate "symbol_ref_operand"
757 (and (match_code "symbol_ref")
758 (match_test "(mode == VOIDmode || GET_MODE (op) == mode)
759 && (DEFAULT_ABI != ABI_AIX || SYMBOL_REF_FUNCTION_P (op))")))
761 ;; Return 1 if op is an operand that can be loaded via the GOT.
762 ;; or non-special register register field no cr0
763 (define_predicate "got_operand"
764 (match_code "symbol_ref,const,label_ref"))
766 ;; Return 1 if op is a simple reference that can be loaded via the GOT,
767 ;; excluding labels involving addition.
768 (define_predicate "got_no_const_operand"
769 (match_code "symbol_ref,label_ref"))
771 ;; Return 1 if op is a SYMBOL_REF for a TLS symbol.
772 (define_predicate "rs6000_tls_symbol_ref"
773 (and (match_code "symbol_ref")
774 (match_test "RS6000_SYMBOL_REF_TLS_P (op)")))
776 ;; Return 1 if the operand, used inside a MEM, is a valid first argument
777 ;; to CALL. This is a SYMBOL_REF, a pseudo-register, LR or CTR.
778 (define_predicate "call_operand"
779 (if_then_else (match_code "reg")
780 (match_test "REGNO (op) == LR_REGNO
781 || REGNO (op) == CTR_REGNO
782 || REGNO (op) >= FIRST_PSEUDO_REGISTER")
783 (match_code "symbol_ref")))
785 ;; Return 1 if the operand is a SYMBOL_REF for a function known to be in
787 (define_predicate "current_file_function_operand"
788 (and (match_code "symbol_ref")
789 (match_test "(DEFAULT_ABI != ABI_AIX || SYMBOL_REF_FUNCTION_P (op))
790 && ((SYMBOL_REF_LOCAL_P (op)
791 && (DEFAULT_ABI != ABI_AIX
792 || !SYMBOL_REF_EXTERNAL_P (op)))
793 || (op == XEXP (DECL_RTL (current_function_decl),
796 ;; Return 1 if this operand is a valid input for a move insn.
797 (define_predicate "input_operand"
798 (match_code "label_ref,symbol_ref,const,high,reg,subreg,mem,
799 const_double,const_vector,const_int,plus")
801 /* Memory is always valid. */
802 if (memory_operand (op, mode))
805 /* For floating-point, easy constants are valid. */
806 if (SCALAR_FLOAT_MODE_P (mode)
808 && easy_fp_constant (op, mode))
811 /* Allow any integer constant. */
812 if (GET_MODE_CLASS (mode) == MODE_INT
813 && (GET_CODE (op) == CONST_INT
814 || GET_CODE (op) == CONST_DOUBLE))
817 /* Allow easy vector constants. */
818 if (GET_CODE (op) == CONST_VECTOR
819 && easy_vector_constant (op, mode))
822 /* Do not allow invalid E500 subregs. */
823 if ((TARGET_E500_DOUBLE || TARGET_SPE)
824 && GET_CODE (op) == SUBREG
825 && invalid_e500_subreg (op, mode))
828 /* For floating-point or multi-word mode, the only remaining valid type
830 if (SCALAR_FLOAT_MODE_P (mode)
831 || GET_MODE_SIZE (mode) > UNITS_PER_WORD)
832 return register_operand (op, mode);
834 /* The only cases left are integral modes one word or smaller (we
835 do not get called for MODE_CC values). These can be in any
837 if (register_operand (op, mode))
840 /* A SYMBOL_REF referring to the TOC is valid. */
841 if (legitimate_constant_pool_address_p (op, false))
844 /* A constant pool expression (relative to the TOC) is valid */
845 if (toc_relative_expr_p (op))
848 /* V.4 allows SYMBOL_REFs and CONSTs that are in the small data region
850 if (DEFAULT_ABI == ABI_V4
851 && (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST)
852 && small_data_operand (op, Pmode))
858 ;; Return true if OP is an invalid SUBREG operation on the e500.
859 (define_predicate "rs6000_nonimmediate_operand"
860 (match_code "reg,subreg,mem")
862 if ((TARGET_E500_DOUBLE || TARGET_SPE)
863 && GET_CODE (op) == SUBREG
864 && invalid_e500_subreg (op, mode))
867 return nonimmediate_operand (op, mode);
870 ;; Return true if operand is boolean operator.
871 (define_predicate "boolean_operator"
872 (match_code "and,ior,xor"))
874 ;; Return true if operand is OR-form of boolean operator.
875 (define_predicate "boolean_or_operator"
876 (match_code "ior,xor"))
878 ;; Return true if operand is an equality operator.
879 (define_special_predicate "equality_operator"
880 (match_code "eq,ne"))
882 ;; Return true if operand is MIN or MAX operator.
883 (define_predicate "min_max_operator"
884 (match_code "smin,smax,umin,umax"))
886 ;; Return 1 if OP is a comparison operation that is valid for a branch
887 ;; instruction. We check the opcode against the mode of the CC value.
888 ;; validate_condition_mode is an assertion.
889 (define_predicate "branch_comparison_operator"
890 (and (match_operand 0 "comparison_operator")
891 (and (match_test "GET_MODE_CLASS (GET_MODE (XEXP (op, 0))) == MODE_CC")
892 (match_test "validate_condition_mode (GET_CODE (op),
893 GET_MODE (XEXP (op, 0))),
896 (define_predicate "rs6000_cbranch_operator"
897 (if_then_else (match_test "TARGET_HARD_FLOAT && !TARGET_FPRS")
898 (match_operand 0 "ordered_comparison_operator")
899 (match_operand 0 "comparison_operator")))
901 ;; Return 1 if OP is a comparison operation that is valid for an SCC insn --
902 ;; it must be a positive comparison.
903 (define_predicate "scc_comparison_operator"
904 (and (match_operand 0 "branch_comparison_operator")
905 (match_code "eq,lt,gt,ltu,gtu,unordered")))
907 ;; Return 1 if OP is a comparison operation whose inverse would be valid for
909 (define_predicate "scc_rev_comparison_operator"
910 (and (match_operand 0 "branch_comparison_operator")
911 (match_code "ne,le,ge,leu,geu,ordered")))
913 ;; Return 1 if OP is a comparison operation that is valid for a branch
914 ;; insn, which is true if the corresponding bit in the CC register is set.
915 (define_predicate "branch_positive_comparison_operator"
916 (and (match_operand 0 "branch_comparison_operator")
917 (match_code "eq,lt,gt,ltu,gtu,unordered")))
919 ;; Return 1 if OP is a load multiple operation, known to be a PARALLEL.
920 (define_predicate "load_multiple_operation"
921 (match_code "parallel")
923 int count = XVECLEN (op, 0);
924 unsigned int dest_regno;
928 /* Perform a quick check so we don't blow up below. */
930 || GET_CODE (XVECEXP (op, 0, 0)) != SET
931 || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG
932 || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != MEM)
935 dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0)));
936 src_addr = XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0);
938 for (i = 1; i < count; i++)
940 rtx elt = XVECEXP (op, 0, i);
942 if (GET_CODE (elt) != SET
943 || GET_CODE (SET_DEST (elt)) != REG
944 || GET_MODE (SET_DEST (elt)) != SImode
945 || REGNO (SET_DEST (elt)) != dest_regno + i
946 || GET_CODE (SET_SRC (elt)) != MEM
947 || GET_MODE (SET_SRC (elt)) != SImode
948 || GET_CODE (XEXP (SET_SRC (elt), 0)) != PLUS
949 || ! rtx_equal_p (XEXP (XEXP (SET_SRC (elt), 0), 0), src_addr)
950 || GET_CODE (XEXP (XEXP (SET_SRC (elt), 0), 1)) != CONST_INT
951 || INTVAL (XEXP (XEXP (SET_SRC (elt), 0), 1)) != i * 4)
958 ;; Return 1 if OP is a store multiple operation, known to be a PARALLEL.
959 ;; The second vector element is a CLOBBER.
960 (define_predicate "store_multiple_operation"
961 (match_code "parallel")
963 int count = XVECLEN (op, 0) - 1;
964 unsigned int src_regno;
968 /* Perform a quick check so we don't blow up below. */
970 || GET_CODE (XVECEXP (op, 0, 0)) != SET
971 || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != MEM
972 || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != REG)
975 src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0)));
976 dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, 0)), 0);
978 for (i = 1; i < count; i++)
980 rtx elt = XVECEXP (op, 0, i + 1);
982 if (GET_CODE (elt) != SET
983 || GET_CODE (SET_SRC (elt)) != REG
984 || GET_MODE (SET_SRC (elt)) != SImode
985 || REGNO (SET_SRC (elt)) != src_regno + i
986 || GET_CODE (SET_DEST (elt)) != MEM
987 || GET_MODE (SET_DEST (elt)) != SImode
988 || GET_CODE (XEXP (SET_DEST (elt), 0)) != PLUS
989 || ! rtx_equal_p (XEXP (XEXP (SET_DEST (elt), 0), 0), dest_addr)
990 || GET_CODE (XEXP (XEXP (SET_DEST (elt), 0), 1)) != CONST_INT
991 || INTVAL (XEXP (XEXP (SET_DEST (elt), 0), 1)) != i * 4)
998 ;; Return 1 if OP is valid for a save_world call in prologue, known to be
1000 (define_predicate "save_world_operation"
1001 (match_code "parallel")
1006 int count = XVECLEN (op, 0);
1012 if (GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
1013 || GET_CODE (XVECEXP (op, 0, index++)) != USE)
1016 for (i=1; i <= 18; i++)
1018 elt = XVECEXP (op, 0, index++);
1019 if (GET_CODE (elt) != SET
1020 || GET_CODE (SET_DEST (elt)) != MEM
1021 || ! memory_operand (SET_DEST (elt), DFmode)
1022 || GET_CODE (SET_SRC (elt)) != REG
1023 || GET_MODE (SET_SRC (elt)) != DFmode)
1027 for (i=1; i <= 12; i++)
1029 elt = XVECEXP (op, 0, index++);
1030 if (GET_CODE (elt) != SET
1031 || GET_CODE (SET_DEST (elt)) != MEM
1032 || GET_CODE (SET_SRC (elt)) != REG
1033 || GET_MODE (SET_SRC (elt)) != V4SImode)
1037 for (i=1; i <= 19; i++)
1039 elt = XVECEXP (op, 0, index++);
1040 if (GET_CODE (elt) != SET
1041 || GET_CODE (SET_DEST (elt)) != MEM
1042 || ! memory_operand (SET_DEST (elt), Pmode)
1043 || GET_CODE (SET_SRC (elt)) != REG
1044 || GET_MODE (SET_SRC (elt)) != Pmode)
1048 elt = XVECEXP (op, 0, index++);
1049 if (GET_CODE (elt) != SET
1050 || GET_CODE (SET_DEST (elt)) != MEM
1051 || ! memory_operand (SET_DEST (elt), Pmode)
1052 || GET_CODE (SET_SRC (elt)) != REG
1053 || REGNO (SET_SRC (elt)) != CR2_REGNO
1054 || GET_MODE (SET_SRC (elt)) != Pmode)
1057 if (GET_CODE (XVECEXP (op, 0, index++)) != SET
1058 || GET_CODE (XVECEXP (op, 0, index++)) != SET)
1063 ;; Return 1 if OP is valid for a restore_world call in epilogue, known to be
1065 (define_predicate "restore_world_operation"
1066 (match_code "parallel")
1071 int count = XVECLEN (op, 0);
1077 if (GET_CODE (XVECEXP (op, 0, index++)) != RETURN
1078 || GET_CODE (XVECEXP (op, 0, index++)) != USE
1079 || GET_CODE (XVECEXP (op, 0, index++)) != USE
1080 || GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER)
1083 elt = XVECEXP (op, 0, index++);
1084 if (GET_CODE (elt) != SET
1085 || GET_CODE (SET_SRC (elt)) != MEM
1086 || ! memory_operand (SET_SRC (elt), Pmode)
1087 || GET_CODE (SET_DEST (elt)) != REG
1088 || REGNO (SET_DEST (elt)) != CR2_REGNO
1089 || GET_MODE (SET_DEST (elt)) != Pmode)
1092 for (i=1; i <= 19; i++)
1094 elt = XVECEXP (op, 0, index++);
1095 if (GET_CODE (elt) != SET
1096 || GET_CODE (SET_SRC (elt)) != MEM
1097 || ! memory_operand (SET_SRC (elt), Pmode)
1098 || GET_CODE (SET_DEST (elt)) != REG
1099 || GET_MODE (SET_DEST (elt)) != Pmode)
1103 for (i=1; i <= 12; i++)
1105 elt = XVECEXP (op, 0, index++);
1106 if (GET_CODE (elt) != SET
1107 || GET_CODE (SET_SRC (elt)) != MEM
1108 || GET_CODE (SET_DEST (elt)) != REG
1109 || GET_MODE (SET_DEST (elt)) != V4SImode)
1113 for (i=1; i <= 18; i++)
1115 elt = XVECEXP (op, 0, index++);
1116 if (GET_CODE (elt) != SET
1117 || GET_CODE (SET_SRC (elt)) != MEM
1118 || ! memory_operand (SET_SRC (elt), DFmode)
1119 || GET_CODE (SET_DEST (elt)) != REG
1120 || GET_MODE (SET_DEST (elt)) != DFmode)
1124 if (GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
1125 || GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
1126 || GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
1127 || GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
1128 || GET_CODE (XVECEXP (op, 0, index++)) != USE)
1133 ;; Return 1 if OP is valid for a vrsave call, known to be a PARALLEL.
1134 (define_predicate "vrsave_operation"
1135 (match_code "parallel")
1137 int count = XVECLEN (op, 0);
1138 unsigned int dest_regno, src_regno;
1142 || GET_CODE (XVECEXP (op, 0, 0)) != SET
1143 || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG
1144 || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != UNSPEC_VOLATILE
1145 || XINT (SET_SRC (XVECEXP (op, 0, 0)), 1) != UNSPECV_SET_VRSAVE)
1148 dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0)));
1149 src_regno = REGNO (XVECEXP (SET_SRC (XVECEXP (op, 0, 0)), 0, 1));
1151 if (dest_regno != VRSAVE_REGNO || src_regno != VRSAVE_REGNO)
1154 for (i = 1; i < count; i++)
1156 rtx elt = XVECEXP (op, 0, i);
1158 if (GET_CODE (elt) != CLOBBER
1159 && GET_CODE (elt) != SET)
1166 ;; Return 1 if OP is valid for mfcr insn, known to be a PARALLEL.
1167 (define_predicate "mfcr_operation"
1168 (match_code "parallel")
1170 int count = XVECLEN (op, 0);
1173 /* Perform a quick check so we don't blow up below. */
1175 || GET_CODE (XVECEXP (op, 0, 0)) != SET
1176 || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != UNSPEC
1177 || XVECLEN (SET_SRC (XVECEXP (op, 0, 0)), 0) != 2)
1180 for (i = 0; i < count; i++)
1182 rtx exp = XVECEXP (op, 0, i);
1187 src_reg = XVECEXP (SET_SRC (exp), 0, 0);
1189 if (GET_CODE (src_reg) != REG
1190 || GET_MODE (src_reg) != CCmode
1191 || ! CR_REGNO_P (REGNO (src_reg)))
1194 if (GET_CODE (exp) != SET
1195 || GET_CODE (SET_DEST (exp)) != REG
1196 || GET_MODE (SET_DEST (exp)) != SImode
1197 || ! INT_REGNO_P (REGNO (SET_DEST (exp))))
1199 unspec = SET_SRC (exp);
1200 maskval = 1 << (MAX_CR_REGNO - REGNO (src_reg));
1202 if (GET_CODE (unspec) != UNSPEC
1203 || XINT (unspec, 1) != UNSPEC_MOVESI_FROM_CR
1204 || XVECLEN (unspec, 0) != 2
1205 || XVECEXP (unspec, 0, 0) != src_reg
1206 || GET_CODE (XVECEXP (unspec, 0, 1)) != CONST_INT
1207 || INTVAL (XVECEXP (unspec, 0, 1)) != maskval)
1213 ;; Return 1 if OP is valid for mtcrf insn, known to be a PARALLEL.
1214 (define_predicate "mtcrf_operation"
1215 (match_code "parallel")
1217 int count = XVECLEN (op, 0);
1221 /* Perform a quick check so we don't blow up below. */
1223 || GET_CODE (XVECEXP (op, 0, 0)) != SET
1224 || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != UNSPEC
1225 || XVECLEN (SET_SRC (XVECEXP (op, 0, 0)), 0) != 2)
1227 src_reg = XVECEXP (SET_SRC (XVECEXP (op, 0, 0)), 0, 0);
1229 if (GET_CODE (src_reg) != REG
1230 || GET_MODE (src_reg) != SImode
1231 || ! INT_REGNO_P (REGNO (src_reg)))
1234 for (i = 0; i < count; i++)
1236 rtx exp = XVECEXP (op, 0, i);
1240 if (GET_CODE (exp) != SET
1241 || GET_CODE (SET_DEST (exp)) != REG
1242 || GET_MODE (SET_DEST (exp)) != CCmode
1243 || ! CR_REGNO_P (REGNO (SET_DEST (exp))))
1245 unspec = SET_SRC (exp);
1246 maskval = 1 << (MAX_CR_REGNO - REGNO (SET_DEST (exp)));
1248 if (GET_CODE (unspec) != UNSPEC
1249 || XINT (unspec, 1) != UNSPEC_MOVESI_TO_CR
1250 || XVECLEN (unspec, 0) != 2
1251 || XVECEXP (unspec, 0, 0) != src_reg
1252 || GET_CODE (XVECEXP (unspec, 0, 1)) != CONST_INT
1253 || INTVAL (XVECEXP (unspec, 0, 1)) != maskval)
1259 ;; Return 1 if OP is valid for lmw insn, known to be a PARALLEL.
1260 (define_predicate "lmw_operation"
1261 (match_code "parallel")
1263 int count = XVECLEN (op, 0);
1264 unsigned int dest_regno;
1266 unsigned int base_regno;
1267 HOST_WIDE_INT offset;
1270 /* Perform a quick check so we don't blow up below. */
1272 || GET_CODE (XVECEXP (op, 0, 0)) != SET
1273 || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG
1274 || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != MEM)
1277 dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0)));
1278 src_addr = XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0);
1281 || count != 32 - (int) dest_regno)
1284 if (legitimate_indirect_address_p (src_addr, 0))
1287 base_regno = REGNO (src_addr);
1288 if (base_regno == 0)
1291 else if (rs6000_legitimate_offset_address_p (SImode, src_addr, 0))
1293 offset = INTVAL (XEXP (src_addr, 1));
1294 base_regno = REGNO (XEXP (src_addr, 0));
1299 for (i = 0; i < count; i++)
1301 rtx elt = XVECEXP (op, 0, i);
1304 HOST_WIDE_INT newoffset;
1306 if (GET_CODE (elt) != SET
1307 || GET_CODE (SET_DEST (elt)) != REG
1308 || GET_MODE (SET_DEST (elt)) != SImode
1309 || REGNO (SET_DEST (elt)) != dest_regno + i
1310 || GET_CODE (SET_SRC (elt)) != MEM
1311 || GET_MODE (SET_SRC (elt)) != SImode)
1313 newaddr = XEXP (SET_SRC (elt), 0);
1314 if (legitimate_indirect_address_p (newaddr, 0))
1319 else if (rs6000_legitimate_offset_address_p (SImode, newaddr, 0))
1321 addr_reg = XEXP (newaddr, 0);
1322 newoffset = INTVAL (XEXP (newaddr, 1));
1326 if (REGNO (addr_reg) != base_regno
1327 || newoffset != offset + 4 * i)
1334 ;; Return 1 if OP is valid for stmw insn, known to be a PARALLEL.
1335 (define_predicate "stmw_operation"
1336 (match_code "parallel")
1338 int count = XVECLEN (op, 0);
1339 unsigned int src_regno;
1341 unsigned int base_regno;
1342 HOST_WIDE_INT offset;
1345 /* Perform a quick check so we don't blow up below. */
1347 || GET_CODE (XVECEXP (op, 0, 0)) != SET
1348 || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != MEM
1349 || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != REG)
1352 src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0)));
1353 dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, 0)), 0);
1356 || count != 32 - (int) src_regno)
1359 if (legitimate_indirect_address_p (dest_addr, 0))
1362 base_regno = REGNO (dest_addr);
1363 if (base_regno == 0)
1366 else if (rs6000_legitimate_offset_address_p (SImode, dest_addr, 0))
1368 offset = INTVAL (XEXP (dest_addr, 1));
1369 base_regno = REGNO (XEXP (dest_addr, 0));
1374 for (i = 0; i < count; i++)
1376 rtx elt = XVECEXP (op, 0, i);
1379 HOST_WIDE_INT newoffset;
1381 if (GET_CODE (elt) != SET
1382 || GET_CODE (SET_SRC (elt)) != REG
1383 || GET_MODE (SET_SRC (elt)) != SImode
1384 || REGNO (SET_SRC (elt)) != src_regno + i
1385 || GET_CODE (SET_DEST (elt)) != MEM
1386 || GET_MODE (SET_DEST (elt)) != SImode)
1388 newaddr = XEXP (SET_DEST (elt), 0);
1389 if (legitimate_indirect_address_p (newaddr, 0))
1394 else if (rs6000_legitimate_offset_address_p (SImode, newaddr, 0))
1396 addr_reg = XEXP (newaddr, 0);
1397 newoffset = INTVAL (XEXP (newaddr, 1));
1401 if (REGNO (addr_reg) != base_regno
1402 || newoffset != offset + 4 * i)