1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
27 #include "stringpool.h"
28 #include "stor-layout.h"
33 #include "hard-reg-set.h"
36 #include "insn-config.h"
37 #include "insn-attr.h"
38 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
44 #include "typeclass.h"
46 #include "langhooks.h"
49 #include "tree-iterator.h"
50 #include "basic-block.h"
51 #include "tree-ssa-alias.h"
52 #include "internal-fn.h"
53 #include "gimple-expr.h"
56 #include "gimple-ssa.h"
58 #include "tree-ssanames.h"
60 #include "common/common-target.h"
63 #include "diagnostic.h"
64 #include "tree-ssa-live.h"
65 #include "tree-outof-ssa.h"
66 #include "target-globals.h"
68 #include "tree-ssa-address.h"
69 #include "cfgexpand.h"
71 /* Decide whether a function's arguments should be processed
72 from first to last or from last to first.
74 They should if the stack and args grow in opposite directions, but
75 only if we have push insns. */
79 #ifndef PUSH_ARGS_REVERSED
80 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
81 #define PUSH_ARGS_REVERSED /* If it's last to first. */
87 #ifndef STACK_PUSH_CODE
88 #ifdef STACK_GROWS_DOWNWARD
89 #define STACK_PUSH_CODE PRE_DEC
91 #define STACK_PUSH_CODE PRE_INC
96 /* If this is nonzero, we do not bother generating VOLATILE
97 around volatile memory references, and we are willing to
98 output indirect addresses. If cse is to follow, we reject
99 indirect addresses so a useful potential cse is generated;
100 if it is used only once, instruction combination will produce
101 the same indirect address eventually. */
102 int cse_not_expected
;
104 /* This structure is used by move_by_pieces to describe the move to
106 struct move_by_pieces_d
115 int explicit_inc_from
;
116 unsigned HOST_WIDE_INT len
;
117 HOST_WIDE_INT offset
;
121 /* This structure is used by store_by_pieces to describe the clear to
124 struct store_by_pieces_d
130 unsigned HOST_WIDE_INT len
;
131 HOST_WIDE_INT offset
;
132 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
);
137 static void move_by_pieces_1 (insn_gen_fn
, machine_mode
,
138 struct move_by_pieces_d
*);
139 static bool block_move_libcall_safe_for_call_parm (void);
140 static bool emit_block_move_via_movmem (rtx
, rtx
, rtx
, unsigned, unsigned, HOST_WIDE_INT
,
141 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
142 unsigned HOST_WIDE_INT
);
143 static tree
emit_block_move_libcall_fn (int);
144 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
145 static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT
, enum machine_mode
);
146 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
147 static void store_by_pieces_1 (struct store_by_pieces_d
*, unsigned int);
148 static void store_by_pieces_2 (insn_gen_fn
, machine_mode
,
149 struct store_by_pieces_d
*);
150 static tree
clear_storage_libcall_fn (int);
151 static rtx
compress_float_constant (rtx
, rtx
);
152 static rtx
get_subtarget (rtx
);
153 static void store_constructor_field (rtx
, unsigned HOST_WIDE_INT
,
154 HOST_WIDE_INT
, enum machine_mode
,
155 tree
, int, alias_set_type
);
156 static void store_constructor (tree
, rtx
, int, HOST_WIDE_INT
);
157 static rtx
store_field (rtx
, HOST_WIDE_INT
, HOST_WIDE_INT
,
158 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
159 enum machine_mode
, tree
, alias_set_type
, bool);
161 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (const_tree
, const_tree
);
163 static int is_aligning_offset (const_tree
, const_tree
);
164 static void expand_operands (tree
, tree
, rtx
, rtx
*, rtx
*,
165 enum expand_modifier
);
166 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
167 static rtx
do_store_flag (sepops
, rtx
, enum machine_mode
);
169 static void emit_single_push_insn (enum machine_mode
, rtx
, tree
);
171 static void do_tablejump (rtx
, enum machine_mode
, rtx
, rtx
, rtx
, int);
172 static rtx
const_vector_from_tree (tree
);
173 static void write_complex_part (rtx
, rtx
, bool);
175 /* This macro is used to determine whether move_by_pieces should be called
176 to perform a structure copy. */
177 #ifndef MOVE_BY_PIECES_P
178 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
179 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
180 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
183 /* This macro is used to determine whether clear_by_pieces should be
184 called to clear storage. */
185 #ifndef CLEAR_BY_PIECES_P
186 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
187 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
188 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
191 /* This macro is used to determine whether store_by_pieces should be
192 called to "memset" storage with byte values other than zero. */
193 #ifndef SET_BY_PIECES_P
194 #define SET_BY_PIECES_P(SIZE, ALIGN) \
195 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
196 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
199 /* This macro is used to determine whether store_by_pieces should be
200 called to "memcpy" storage when the source is a constant string. */
201 #ifndef STORE_BY_PIECES_P
202 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
203 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
204 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
207 /* This is run to set up which modes can be used
208 directly in memory and to initialize the block move optab. It is run
209 at the beginning of compilation and when the target is reinitialized. */
212 init_expr_target (void)
215 enum machine_mode mode
;
220 /* Try indexing by frame ptr and try by stack ptr.
221 It is known that on the Convex the stack ptr isn't a valid index.
222 With luck, one or the other is valid on any machine. */
223 mem
= gen_rtx_MEM (VOIDmode
, stack_pointer_rtx
);
224 mem1
= gen_rtx_MEM (VOIDmode
, frame_pointer_rtx
);
226 /* A scratch register we can modify in-place below to avoid
227 useless RTL allocations. */
228 reg
= gen_rtx_REG (VOIDmode
, -1);
230 insn
= rtx_alloc (INSN
);
231 pat
= gen_rtx_SET (VOIDmode
, NULL_RTX
, NULL_RTX
);
232 PATTERN (insn
) = pat
;
234 for (mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
235 mode
= (enum machine_mode
) ((int) mode
+ 1))
239 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
240 PUT_MODE (mem
, mode
);
241 PUT_MODE (mem1
, mode
);
242 PUT_MODE (reg
, mode
);
244 /* See if there is some register that can be used in this mode and
245 directly loaded or stored from memory. */
247 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
248 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
249 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
252 if (! HARD_REGNO_MODE_OK (regno
, mode
))
255 SET_REGNO (reg
, regno
);
258 SET_DEST (pat
) = reg
;
259 if (recog (pat
, insn
, &num_clobbers
) >= 0)
260 direct_load
[(int) mode
] = 1;
262 SET_SRC (pat
) = mem1
;
263 SET_DEST (pat
) = reg
;
264 if (recog (pat
, insn
, &num_clobbers
) >= 0)
265 direct_load
[(int) mode
] = 1;
268 SET_DEST (pat
) = mem
;
269 if (recog (pat
, insn
, &num_clobbers
) >= 0)
270 direct_store
[(int) mode
] = 1;
273 SET_DEST (pat
) = mem1
;
274 if (recog (pat
, insn
, &num_clobbers
) >= 0)
275 direct_store
[(int) mode
] = 1;
279 mem
= gen_rtx_MEM (VOIDmode
, gen_rtx_raw_REG (Pmode
, 10000));
281 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
282 mode
= GET_MODE_WIDER_MODE (mode
))
284 enum machine_mode srcmode
;
285 for (srcmode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); srcmode
!= mode
;
286 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
290 ic
= can_extend_p (mode
, srcmode
, 0);
291 if (ic
== CODE_FOR_nothing
)
294 PUT_MODE (mem
, srcmode
);
296 if (insn_operand_matches (ic
, 1, mem
))
297 float_extend_from_mem
[mode
][srcmode
] = true;
302 /* This is run at the start of compiling a function. */
307 memset (&crtl
->expr
, 0, sizeof (crtl
->expr
));
310 /* Copy data from FROM to TO, where the machine modes are not the same.
311 Both modes may be integer, or both may be floating, or both may be
313 UNSIGNEDP should be nonzero if FROM is an unsigned type.
314 This causes zero-extension instead of sign-extension. */
317 convert_move (rtx to
, rtx from
, int unsignedp
)
319 enum machine_mode to_mode
= GET_MODE (to
);
320 enum machine_mode from_mode
= GET_MODE (from
);
321 int to_real
= SCALAR_FLOAT_MODE_P (to_mode
);
322 int from_real
= SCALAR_FLOAT_MODE_P (from_mode
);
326 /* rtx code for making an equivalent value. */
327 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
328 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
331 gcc_assert (to_real
== from_real
);
332 gcc_assert (to_mode
!= BLKmode
);
333 gcc_assert (from_mode
!= BLKmode
);
335 /* If the source and destination are already the same, then there's
340 /* If FROM is a SUBREG that indicates that we have already done at least
341 the required extension, strip it. We don't handle such SUBREGs as
344 if (GET_CODE (from
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (from
)
345 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from
)))
346 >= GET_MODE_PRECISION (to_mode
))
347 && SUBREG_PROMOTED_UNSIGNED_P (from
) == unsignedp
)
348 from
= gen_lowpart (to_mode
, from
), from_mode
= to_mode
;
350 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
352 if (to_mode
== from_mode
353 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
355 emit_move_insn (to
, from
);
359 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
361 gcc_assert (GET_MODE_BITSIZE (from_mode
) == GET_MODE_BITSIZE (to_mode
));
363 if (VECTOR_MODE_P (to_mode
))
364 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
366 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
368 emit_move_insn (to
, from
);
372 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
374 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
375 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
384 gcc_assert ((GET_MODE_PRECISION (from_mode
)
385 != GET_MODE_PRECISION (to_mode
))
386 || (DECIMAL_FLOAT_MODE_P (from_mode
)
387 != DECIMAL_FLOAT_MODE_P (to_mode
)));
389 if (GET_MODE_PRECISION (from_mode
) == GET_MODE_PRECISION (to_mode
))
390 /* Conversion between decimal float and binary float, same size. */
391 tab
= DECIMAL_FLOAT_MODE_P (from_mode
) ? trunc_optab
: sext_optab
;
392 else if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
397 /* Try converting directly if the insn is supported. */
399 code
= convert_optab_handler (tab
, to_mode
, from_mode
);
400 if (code
!= CODE_FOR_nothing
)
402 emit_unop_insn (code
, to
, from
,
403 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
407 /* Otherwise use a libcall. */
408 libcall
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
410 /* Is this conversion implemented yet? */
411 gcc_assert (libcall
);
414 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
416 insns
= get_insns ();
418 emit_libcall_block (insns
, to
, value
,
419 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
421 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
425 /* Handle pointer conversion. */ /* SPEE 900220. */
426 /* Targets are expected to provide conversion insns between PxImode and
427 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
428 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
430 enum machine_mode full_mode
431 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode
), MODE_INT
);
433 gcc_assert (convert_optab_handler (trunc_optab
, to_mode
, full_mode
)
434 != CODE_FOR_nothing
);
436 if (full_mode
!= from_mode
)
437 from
= convert_to_mode (full_mode
, from
, unsignedp
);
438 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, full_mode
),
442 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
445 enum machine_mode full_mode
446 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode
), MODE_INT
);
447 convert_optab ctab
= unsignedp
? zext_optab
: sext_optab
;
448 enum insn_code icode
;
450 icode
= convert_optab_handler (ctab
, full_mode
, from_mode
);
451 gcc_assert (icode
!= CODE_FOR_nothing
);
453 if (to_mode
== full_mode
)
455 emit_unop_insn (icode
, to
, from
, UNKNOWN
);
459 new_from
= gen_reg_rtx (full_mode
);
460 emit_unop_insn (icode
, new_from
, from
, UNKNOWN
);
462 /* else proceed to integer conversions below. */
463 from_mode
= full_mode
;
467 /* Make sure both are fixed-point modes or both are not. */
468 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
) ==
469 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode
));
470 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
))
472 /* If we widen from_mode to to_mode and they are in the same class,
473 we won't saturate the result.
474 Otherwise, always saturate the result to play safe. */
475 if (GET_MODE_CLASS (from_mode
) == GET_MODE_CLASS (to_mode
)
476 && GET_MODE_SIZE (from_mode
) < GET_MODE_SIZE (to_mode
))
477 expand_fixed_convert (to
, from
, 0, 0);
479 expand_fixed_convert (to
, from
, 0, 1);
483 /* Now both modes are integers. */
485 /* Handle expanding beyond a word. */
486 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
)
487 && GET_MODE_PRECISION (to_mode
) > BITS_PER_WORD
)
494 enum machine_mode lowpart_mode
;
495 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
497 /* Try converting directly if the insn is supported. */
498 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
501 /* If FROM is a SUBREG, put it into a register. Do this
502 so that we always generate the same set of insns for
503 better cse'ing; if an intermediate assignment occurred,
504 we won't be doing the operation directly on the SUBREG. */
505 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
506 from
= force_reg (from_mode
, from
);
507 emit_unop_insn (code
, to
, from
, equiv_code
);
510 /* Next, try converting via full word. */
511 else if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
512 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
513 != CODE_FOR_nothing
))
515 rtx word_to
= gen_reg_rtx (word_mode
);
518 if (reg_overlap_mentioned_p (to
, from
))
519 from
= force_reg (from_mode
, from
);
522 convert_move (word_to
, from
, unsignedp
);
523 emit_unop_insn (code
, to
, word_to
, equiv_code
);
527 /* No special multiword conversion insn; do it by hand. */
530 /* Since we will turn this into a no conflict block, we must ensure the
531 the source does not overlap the target so force it into an isolated
532 register when maybe so. Likewise for any MEM input, since the
533 conversion sequence might require several references to it and we
534 must ensure we're getting the same value every time. */
536 if (MEM_P (from
) || reg_overlap_mentioned_p (to
, from
))
537 from
= force_reg (from_mode
, from
);
539 /* Get a copy of FROM widened to a word, if necessary. */
540 if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
)
541 lowpart_mode
= word_mode
;
543 lowpart_mode
= from_mode
;
545 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
547 lowpart
= gen_lowpart (lowpart_mode
, to
);
548 emit_move_insn (lowpart
, lowfrom
);
550 /* Compute the value to put in each remaining word. */
552 fill_value
= const0_rtx
;
554 fill_value
= emit_store_flag (gen_reg_rtx (word_mode
),
555 LT
, lowfrom
, const0_rtx
,
558 /* Fill the remaining words. */
559 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
561 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
562 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
564 gcc_assert (subword
);
566 if (fill_value
!= subword
)
567 emit_move_insn (subword
, fill_value
);
570 insns
= get_insns ();
577 /* Truncating multi-word to a word or less. */
578 if (GET_MODE_PRECISION (from_mode
) > BITS_PER_WORD
579 && GET_MODE_PRECISION (to_mode
) <= BITS_PER_WORD
)
582 && ! MEM_VOLATILE_P (from
)
583 && direct_load
[(int) to_mode
]
584 && ! mode_dependent_address_p (XEXP (from
, 0),
585 MEM_ADDR_SPACE (from
)))
587 || GET_CODE (from
) == SUBREG
))
588 from
= force_reg (from_mode
, from
);
589 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
593 /* Now follow all the conversions between integers
594 no more than a word long. */
596 /* For truncation, usually we can just refer to FROM in a narrower mode. */
597 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
598 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, from_mode
))
601 && ! MEM_VOLATILE_P (from
)
602 && direct_load
[(int) to_mode
]
603 && ! mode_dependent_address_p (XEXP (from
, 0),
604 MEM_ADDR_SPACE (from
)))
606 || GET_CODE (from
) == SUBREG
))
607 from
= force_reg (from_mode
, from
);
608 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
609 && ! HARD_REGNO_MODE_OK (REGNO (from
), to_mode
))
610 from
= copy_to_reg (from
);
611 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
615 /* Handle extension. */
616 if (GET_MODE_PRECISION (to_mode
) > GET_MODE_PRECISION (from_mode
))
618 /* Convert directly if that works. */
619 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
622 emit_unop_insn (code
, to
, from
, equiv_code
);
627 enum machine_mode intermediate
;
631 /* Search for a mode to convert via. */
632 for (intermediate
= from_mode
; intermediate
!= VOIDmode
;
633 intermediate
= GET_MODE_WIDER_MODE (intermediate
))
634 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
636 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
637 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, intermediate
)))
638 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
639 != CODE_FOR_nothing
))
641 convert_move (to
, convert_to_mode (intermediate
, from
,
642 unsignedp
), unsignedp
);
646 /* No suitable intermediate mode.
647 Generate what we need with shifts. */
648 shift_amount
= (GET_MODE_PRECISION (to_mode
)
649 - GET_MODE_PRECISION (from_mode
));
650 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
651 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
653 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
656 emit_move_insn (to
, tmp
);
661 /* Support special truncate insns for certain modes. */
662 if (convert_optab_handler (trunc_optab
, to_mode
,
663 from_mode
) != CODE_FOR_nothing
)
665 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, from_mode
),
670 /* Handle truncation of volatile memrefs, and so on;
671 the things that couldn't be truncated directly,
672 and for which there was no special instruction.
674 ??? Code above formerly short-circuited this, for most integer
675 mode pairs, with a force_reg in from_mode followed by a recursive
676 call to this routine. Appears always to have been wrong. */
677 if (GET_MODE_PRECISION (to_mode
) < GET_MODE_PRECISION (from_mode
))
679 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
680 emit_move_insn (to
, temp
);
684 /* Mode combination is not recognized. */
688 /* Return an rtx for a value that would result
689 from converting X to mode MODE.
690 Both X and MODE may be floating, or both integer.
691 UNSIGNEDP is nonzero if X is an unsigned value.
692 This can be done by referring to a part of X in place
693 or by copying to a new temporary with conversion. */
696 convert_to_mode (enum machine_mode mode
, rtx x
, int unsignedp
)
698 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
701 /* Return an rtx for a value that would result
702 from converting X from mode OLDMODE to mode MODE.
703 Both modes may be floating, or both integer.
704 UNSIGNEDP is nonzero if X is an unsigned value.
706 This can be done by referring to a part of X in place
707 or by copying to a new temporary with conversion.
709 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
712 convert_modes (enum machine_mode mode
, enum machine_mode oldmode
, rtx x
, int unsignedp
)
716 /* If FROM is a SUBREG that indicates that we have already done at least
717 the required extension, strip it. */
719 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
720 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) >= GET_MODE_SIZE (mode
)
721 && SUBREG_PROMOTED_UNSIGNED_P (x
) == unsignedp
)
722 x
= gen_lowpart (mode
, x
);
724 if (GET_MODE (x
) != VOIDmode
)
725 oldmode
= GET_MODE (x
);
730 /* There is one case that we must handle specially: If we are converting
731 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
732 we are to interpret the constant as unsigned, gen_lowpart will do
733 the wrong if the constant appears negative. What we want to do is
734 make the high-order word of the constant zero, not all ones. */
736 if (unsignedp
&& GET_MODE_CLASS (mode
) == MODE_INT
737 && GET_MODE_BITSIZE (mode
) == HOST_BITS_PER_DOUBLE_INT
738 && CONST_INT_P (x
) && INTVAL (x
) < 0)
740 double_int val
= double_int::from_uhwi (INTVAL (x
));
742 /* We need to zero extend VAL. */
743 if (oldmode
!= VOIDmode
)
744 val
= val
.zext (GET_MODE_BITSIZE (oldmode
));
746 return immed_double_int_const (val
, mode
);
749 /* We can do this with a gen_lowpart if both desired and current modes
750 are integer, and this is either a constant integer, a register, or a
751 non-volatile MEM. Except for the constant case where MODE is no
752 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
755 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
)
756 || (GET_MODE_CLASS (mode
) == MODE_INT
757 && GET_MODE_CLASS (oldmode
) == MODE_INT
758 && (CONST_DOUBLE_AS_INT_P (x
)
759 || (GET_MODE_PRECISION (mode
) <= GET_MODE_PRECISION (oldmode
)
760 && ((MEM_P (x
) && ! MEM_VOLATILE_P (x
)
761 && direct_load
[(int) mode
])
763 && (! HARD_REGISTER_P (x
)
764 || HARD_REGNO_MODE_OK (REGNO (x
), mode
))
765 && TRULY_NOOP_TRUNCATION_MODES_P (mode
,
768 /* ?? If we don't know OLDMODE, we have to assume here that
769 X does not need sign- or zero-extension. This may not be
770 the case, but it's the best we can do. */
771 if (CONST_INT_P (x
) && oldmode
!= VOIDmode
772 && GET_MODE_PRECISION (mode
) > GET_MODE_PRECISION (oldmode
))
774 HOST_WIDE_INT val
= INTVAL (x
);
776 /* We must sign or zero-extend in this case. Start by
777 zero-extending, then sign extend if we need to. */
778 val
&= GET_MODE_MASK (oldmode
);
780 && val_signbit_known_set_p (oldmode
, val
))
781 val
|= ~GET_MODE_MASK (oldmode
);
783 return gen_int_mode (val
, mode
);
786 return gen_lowpart (mode
, x
);
789 /* Converting from integer constant into mode is always equivalent to an
791 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
793 gcc_assert (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (oldmode
));
794 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
797 temp
= gen_reg_rtx (mode
);
798 convert_move (temp
, x
, unsignedp
);
802 /* Return the largest alignment we can use for doing a move (or store)
803 of MAX_PIECES. ALIGN is the largest alignment we could use. */
806 alignment_for_piecewise_move (unsigned int max_pieces
, unsigned int align
)
808 enum machine_mode tmode
;
810 tmode
= mode_for_size (max_pieces
* BITS_PER_UNIT
, MODE_INT
, 1);
811 if (align
>= GET_MODE_ALIGNMENT (tmode
))
812 align
= GET_MODE_ALIGNMENT (tmode
);
815 enum machine_mode tmode
, xmode
;
817 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
819 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
820 if (GET_MODE_SIZE (tmode
) > max_pieces
821 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
824 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
830 /* Return the widest integer mode no wider than SIZE. If no such mode
831 can be found, return VOIDmode. */
833 static enum machine_mode
834 widest_int_mode_for_size (unsigned int size
)
836 enum machine_mode tmode
, mode
= VOIDmode
;
838 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
839 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
840 if (GET_MODE_SIZE (tmode
) < size
)
846 /* STORE_MAX_PIECES is the number of bytes at a time that we can
847 store efficiently. Due to internal GCC limitations, this is
848 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
849 for an immediate constant. */
851 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
853 /* Determine whether the LEN bytes can be moved by using several move
854 instructions. Return nonzero if a call to move_by_pieces should
858 can_move_by_pieces (unsigned HOST_WIDE_INT len ATTRIBUTE_UNUSED
,
859 unsigned int align ATTRIBUTE_UNUSED
)
861 return MOVE_BY_PIECES_P (len
, align
);
864 /* Generate several move instructions to copy LEN bytes from block FROM to
865 block TO. (These are MEM rtx's with BLKmode).
867 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
868 used to push FROM to the stack.
870 ALIGN is maximum stack alignment we can assume.
872 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
873 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
877 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
878 unsigned int align
, int endp
)
880 struct move_by_pieces_d data
;
881 enum machine_mode to_addr_mode
;
882 enum machine_mode from_addr_mode
= get_address_mode (from
);
883 rtx to_addr
, from_addr
= XEXP (from
, 0);
884 unsigned int max_size
= MOVE_MAX_PIECES
+ 1;
885 enum insn_code icode
;
887 align
= MIN (to
? MEM_ALIGN (to
) : align
, MEM_ALIGN (from
));
890 data
.from_addr
= from_addr
;
893 to_addr_mode
= get_address_mode (to
);
894 to_addr
= XEXP (to
, 0);
897 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
898 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
900 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
904 to_addr_mode
= VOIDmode
;
908 #ifdef STACK_GROWS_DOWNWARD
914 data
.to_addr
= to_addr
;
917 = (GET_CODE (from_addr
) == PRE_INC
|| GET_CODE (from_addr
) == PRE_DEC
918 || GET_CODE (from_addr
) == POST_INC
919 || GET_CODE (from_addr
) == POST_DEC
);
921 data
.explicit_inc_from
= 0;
922 data
.explicit_inc_to
= 0;
923 if (data
.reverse
) data
.offset
= len
;
926 /* If copying requires more than two move insns,
927 copy addresses to registers (to make displacements shorter)
928 and use post-increment if available. */
929 if (!(data
.autinc_from
&& data
.autinc_to
)
930 && move_by_pieces_ninsns (len
, align
, max_size
) > 2)
932 /* Find the mode of the largest move...
933 MODE might not be used depending on the definitions of the
934 USE_* macros below. */
935 enum machine_mode mode ATTRIBUTE_UNUSED
936 = widest_int_mode_for_size (max_size
);
938 if (USE_LOAD_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_from
)
940 data
.from_addr
= copy_to_mode_reg (from_addr_mode
,
941 plus_constant (from_addr_mode
,
943 data
.autinc_from
= 1;
944 data
.explicit_inc_from
= -1;
946 if (USE_LOAD_POST_INCREMENT (mode
) && ! data
.autinc_from
)
948 data
.from_addr
= copy_to_mode_reg (from_addr_mode
, from_addr
);
949 data
.autinc_from
= 1;
950 data
.explicit_inc_from
= 1;
952 if (!data
.autinc_from
&& CONSTANT_P (from_addr
))
953 data
.from_addr
= copy_to_mode_reg (from_addr_mode
, from_addr
);
954 if (USE_STORE_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_to
)
956 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
957 plus_constant (to_addr_mode
,
960 data
.explicit_inc_to
= -1;
962 if (USE_STORE_POST_INCREMENT (mode
) && ! data
.reverse
&& ! data
.autinc_to
)
964 data
.to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
966 data
.explicit_inc_to
= 1;
968 if (!data
.autinc_to
&& CONSTANT_P (to_addr
))
969 data
.to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
972 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
974 /* First move what we can in the largest integer mode, then go to
975 successively smaller modes. */
977 while (max_size
> 1 && data
.len
> 0)
979 enum machine_mode mode
= widest_int_mode_for_size (max_size
);
981 if (mode
== VOIDmode
)
984 icode
= optab_handler (mov_optab
, mode
);
985 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
986 move_by_pieces_1 (GEN_FCN (icode
), mode
, &data
);
988 max_size
= GET_MODE_SIZE (mode
);
991 /* The code above should have handled everything. */
992 gcc_assert (!data
.len
);
998 gcc_assert (!data
.reverse
);
1003 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
1004 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
1006 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
1007 plus_constant (to_addr_mode
,
1011 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
1018 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
1026 /* Return number of insns required to move L bytes by pieces.
1027 ALIGN (in bits) is maximum alignment we can assume. */
1029 unsigned HOST_WIDE_INT
1030 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
1031 unsigned int max_size
)
1033 unsigned HOST_WIDE_INT n_insns
= 0;
1035 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
1037 while (max_size
> 1 && l
> 0)
1039 enum machine_mode mode
;
1040 enum insn_code icode
;
1042 mode
= widest_int_mode_for_size (max_size
);
1044 if (mode
== VOIDmode
)
1047 icode
= optab_handler (mov_optab
, mode
);
1048 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1049 n_insns
+= l
/ GET_MODE_SIZE (mode
), l
%= GET_MODE_SIZE (mode
);
1051 max_size
= GET_MODE_SIZE (mode
);
1058 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1059 with move instructions for mode MODE. GENFUN is the gen_... function
1060 to make a move insn for that mode. DATA has all the other info. */
1063 move_by_pieces_1 (insn_gen_fn genfun
, machine_mode mode
,
1064 struct move_by_pieces_d
*data
)
1066 unsigned int size
= GET_MODE_SIZE (mode
);
1067 rtx to1
= NULL_RTX
, from1
;
1069 while (data
->len
>= size
)
1072 data
->offset
-= size
;
1076 if (data
->autinc_to
)
1077 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
1080 to1
= adjust_address (data
->to
, mode
, data
->offset
);
1083 if (data
->autinc_from
)
1084 from1
= adjust_automodify_address (data
->from
, mode
, data
->from_addr
,
1087 from1
= adjust_address (data
->from
, mode
, data
->offset
);
1089 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
1090 emit_insn (gen_add2_insn (data
->to_addr
,
1091 gen_int_mode (-(HOST_WIDE_INT
) size
,
1092 GET_MODE (data
->to_addr
))));
1093 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_from
< 0)
1094 emit_insn (gen_add2_insn (data
->from_addr
,
1095 gen_int_mode (-(HOST_WIDE_INT
) size
,
1096 GET_MODE (data
->from_addr
))));
1099 emit_insn ((*genfun
) (to1
, from1
));
1102 #ifdef PUSH_ROUNDING
1103 emit_single_push_insn (mode
, from1
, NULL
);
1109 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
1110 emit_insn (gen_add2_insn (data
->to_addr
,
1112 GET_MODE (data
->to_addr
))));
1113 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_from
> 0)
1114 emit_insn (gen_add2_insn (data
->from_addr
,
1116 GET_MODE (data
->from_addr
))));
1118 if (! data
->reverse
)
1119 data
->offset
+= size
;
1125 /* Emit code to move a block Y to a block X. This may be done with
1126 string-move instructions, with multiple scalar move instructions,
1127 or with a library call.
1129 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1130 SIZE is an rtx that says how long they are.
1131 ALIGN is the maximum alignment we can assume they have.
1132 METHOD describes what kind of copy this is, and what mechanisms may be used.
1133 MIN_SIZE is the minimal size of block to move
1134 MAX_SIZE is the maximal size of block to move, if it can not be represented
1135 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1137 Return the address of the new block, if memcpy is called and returns it,
1141 emit_block_move_hints (rtx x
, rtx y
, rtx size
, enum block_op_methods method
,
1142 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
1143 unsigned HOST_WIDE_INT min_size
,
1144 unsigned HOST_WIDE_INT max_size
,
1145 unsigned HOST_WIDE_INT probable_max_size
)
1152 if (CONST_INT_P (size
)
1153 && INTVAL (size
) == 0)
1158 case BLOCK_OP_NORMAL
:
1159 case BLOCK_OP_TAILCALL
:
1160 may_use_call
= true;
1163 case BLOCK_OP_CALL_PARM
:
1164 may_use_call
= block_move_libcall_safe_for_call_parm ();
1166 /* Make inhibit_defer_pop nonzero around the library call
1167 to force it to pop the arguments right away. */
1171 case BLOCK_OP_NO_LIBCALL
:
1172 may_use_call
= false;
1179 gcc_assert (MEM_P (x
) && MEM_P (y
));
1180 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1181 gcc_assert (align
>= BITS_PER_UNIT
);
1183 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1184 block copy is more efficient for other large modes, e.g. DCmode. */
1185 x
= adjust_address (x
, BLKmode
, 0);
1186 y
= adjust_address (y
, BLKmode
, 0);
1188 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1189 can be incorrect is coming from __builtin_memcpy. */
1190 if (CONST_INT_P (size
))
1192 x
= shallow_copy_rtx (x
);
1193 y
= shallow_copy_rtx (y
);
1194 set_mem_size (x
, INTVAL (size
));
1195 set_mem_size (y
, INTVAL (size
));
1198 if (CONST_INT_P (size
) && MOVE_BY_PIECES_P (INTVAL (size
), align
))
1199 move_by_pieces (x
, y
, INTVAL (size
), align
, 0);
1200 else if (emit_block_move_via_movmem (x
, y
, size
, align
,
1201 expected_align
, expected_size
,
1202 min_size
, max_size
, probable_max_size
))
1204 else if (may_use_call
1205 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x
))
1206 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y
)))
1208 /* Since x and y are passed to a libcall, mark the corresponding
1209 tree EXPR as addressable. */
1210 tree y_expr
= MEM_EXPR (y
);
1211 tree x_expr
= MEM_EXPR (x
);
1213 mark_addressable (y_expr
);
1215 mark_addressable (x_expr
);
1216 retval
= emit_block_move_via_libcall (x
, y
, size
,
1217 method
== BLOCK_OP_TAILCALL
);
1221 emit_block_move_via_loop (x
, y
, size
, align
);
1223 if (method
== BLOCK_OP_CALL_PARM
)
1230 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1232 unsigned HOST_WIDE_INT max
, min
= 0;
1233 if (GET_CODE (size
) == CONST_INT
)
1234 min
= max
= UINTVAL (size
);
1236 max
= GET_MODE_MASK (GET_MODE (size
));
1237 return emit_block_move_hints (x
, y
, size
, method
, 0, -1,
1241 /* A subroutine of emit_block_move. Returns true if calling the
1242 block move libcall will not clobber any parameters which may have
1243 already been placed on the stack. */
1246 block_move_libcall_safe_for_call_parm (void)
1248 #if defined (REG_PARM_STACK_SPACE)
1252 /* If arguments are pushed on the stack, then they're safe. */
1256 /* If registers go on the stack anyway, any argument is sure to clobber
1257 an outgoing argument. */
1258 #if defined (REG_PARM_STACK_SPACE)
1259 fn
= emit_block_move_libcall_fn (false);
1260 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1261 depend on its argument. */
1263 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn
? NULL_TREE
: TREE_TYPE (fn
)))
1264 && REG_PARM_STACK_SPACE (fn
) != 0)
1268 /* If any argument goes in memory, then it might clobber an outgoing
1271 CUMULATIVE_ARGS args_so_far_v
;
1272 cumulative_args_t args_so_far
;
1275 fn
= emit_block_move_libcall_fn (false);
1276 INIT_CUMULATIVE_ARGS (args_so_far_v
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1277 args_so_far
= pack_cumulative_args (&args_so_far_v
);
1279 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1280 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1282 enum machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1283 rtx tmp
= targetm
.calls
.function_arg (args_so_far
, mode
,
1285 if (!tmp
|| !REG_P (tmp
))
1287 if (targetm
.calls
.arg_partial_bytes (args_so_far
, mode
, NULL
, 1))
1289 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
1296 /* A subroutine of emit_block_move. Expand a movmem pattern;
1297 return true if successful. */
1300 emit_block_move_via_movmem (rtx x
, rtx y
, rtx size
, unsigned int align
,
1301 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
1302 unsigned HOST_WIDE_INT min_size
,
1303 unsigned HOST_WIDE_INT max_size
,
1304 unsigned HOST_WIDE_INT probable_max_size
)
1306 int save_volatile_ok
= volatile_ok
;
1307 enum machine_mode mode
;
1309 if (expected_align
< align
)
1310 expected_align
= align
;
1311 if (expected_size
!= -1)
1313 if ((unsigned HOST_WIDE_INT
)expected_size
> probable_max_size
)
1314 expected_size
= probable_max_size
;
1315 if ((unsigned HOST_WIDE_INT
)expected_size
< min_size
)
1316 expected_size
= min_size
;
1319 /* Since this is a move insn, we don't care about volatility. */
1322 /* Try the most limited insn first, because there's no point
1323 including more than one in the machine description unless
1324 the more limited one has some advantage. */
1326 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1327 mode
= GET_MODE_WIDER_MODE (mode
))
1329 enum insn_code code
= direct_optab_handler (movmem_optab
, mode
);
1331 if (code
!= CODE_FOR_nothing
1332 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1333 here because if SIZE is less than the mode mask, as it is
1334 returned by the macro, it will definitely be less than the
1335 actual mode mask. Since SIZE is within the Pmode address
1336 space, we limit MODE to Pmode. */
1337 && ((CONST_INT_P (size
)
1338 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1339 <= (GET_MODE_MASK (mode
) >> 1)))
1340 || max_size
<= (GET_MODE_MASK (mode
) >> 1)
1341 || GET_MODE_BITSIZE (mode
) >= GET_MODE_BITSIZE (Pmode
)))
1343 struct expand_operand ops
[9];
1346 /* ??? When called via emit_block_move_for_call, it'd be
1347 nice if there were some way to inform the backend, so
1348 that it doesn't fail the expansion because it thinks
1349 emitting the libcall would be more efficient. */
1350 nops
= insn_data
[(int) code
].n_generator_args
;
1351 gcc_assert (nops
== 4 || nops
== 6 || nops
== 8 || nops
== 9);
1353 create_fixed_operand (&ops
[0], x
);
1354 create_fixed_operand (&ops
[1], y
);
1355 /* The check above guarantees that this size conversion is valid. */
1356 create_convert_operand_to (&ops
[2], size
, mode
, true);
1357 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
1360 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
1361 create_integer_operand (&ops
[5], expected_size
);
1365 create_integer_operand (&ops
[6], min_size
);
1366 /* If we can not represent the maximal size,
1367 make parameter NULL. */
1368 if ((HOST_WIDE_INT
) max_size
!= -1)
1369 create_integer_operand (&ops
[7], max_size
);
1371 create_fixed_operand (&ops
[7], NULL
);
1375 /* If we can not represent the maximal size,
1376 make parameter NULL. */
1377 if ((HOST_WIDE_INT
) probable_max_size
!= -1)
1378 create_integer_operand (&ops
[8], probable_max_size
);
1380 create_fixed_operand (&ops
[8], NULL
);
1382 if (maybe_expand_insn (code
, nops
, ops
))
1384 volatile_ok
= save_volatile_ok
;
1390 volatile_ok
= save_volatile_ok
;
1394 /* A subroutine of emit_block_move. Expand a call to memcpy.
1395 Return the return value from memcpy, 0 otherwise. */
1398 emit_block_move_via_libcall (rtx dst
, rtx src
, rtx size
, bool tailcall
)
1400 rtx dst_addr
, src_addr
;
1401 tree call_expr
, fn
, src_tree
, dst_tree
, size_tree
;
1402 enum machine_mode size_mode
;
1405 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1406 pseudos. We can then place those new pseudos into a VAR_DECL and
1409 dst_addr
= copy_addr_to_reg (XEXP (dst
, 0));
1410 src_addr
= copy_addr_to_reg (XEXP (src
, 0));
1412 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1413 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1415 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1416 src_tree
= make_tree (ptr_type_node
, src_addr
);
1418 size_mode
= TYPE_MODE (sizetype
);
1420 size
= convert_to_mode (size_mode
, size
, 1);
1421 size
= copy_to_mode_reg (size_mode
, size
);
1423 /* It is incorrect to use the libcall calling conventions to call
1424 memcpy in this context. This could be a user call to memcpy and
1425 the user may wish to examine the return value from memcpy. For
1426 targets where libcalls and normal calls have different conventions
1427 for returning pointers, we could end up generating incorrect code. */
1429 size_tree
= make_tree (sizetype
, size
);
1431 fn
= emit_block_move_libcall_fn (true);
1432 call_expr
= build_call_expr (fn
, 3, dst_tree
, src_tree
, size_tree
);
1433 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
1435 retval
= expand_normal (call_expr
);
1440 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1441 for the function we use for block copies. */
1443 static GTY(()) tree block_move_fn
;
1446 init_block_move_fn (const char *asmspec
)
1450 tree args
, fn
, attrs
, attr_args
;
1452 fn
= get_identifier ("memcpy");
1453 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
1454 const_ptr_type_node
, sizetype
,
1457 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
1458 DECL_EXTERNAL (fn
) = 1;
1459 TREE_PUBLIC (fn
) = 1;
1460 DECL_ARTIFICIAL (fn
) = 1;
1461 TREE_NOTHROW (fn
) = 1;
1462 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
1463 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
1465 attr_args
= build_tree_list (NULL_TREE
, build_string (1, "1"));
1466 attrs
= tree_cons (get_identifier ("fn spec"), attr_args
, NULL
);
1468 decl_attributes (&fn
, attrs
, ATTR_FLAG_BUILT_IN
);
1474 set_user_assembler_name (block_move_fn
, asmspec
);
1478 emit_block_move_libcall_fn (int for_call
)
1480 static bool emitted_extern
;
1483 init_block_move_fn (NULL
);
1485 if (for_call
&& !emitted_extern
)
1487 emitted_extern
= true;
1488 make_decl_rtl (block_move_fn
);
1491 return block_move_fn
;
1494 /* A subroutine of emit_block_move. Copy the data via an explicit
1495 loop. This is used only when libcalls are forbidden. */
1496 /* ??? It'd be nice to copy in hunks larger than QImode. */
1499 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1500 unsigned int align ATTRIBUTE_UNUSED
)
1502 rtx cmp_label
, top_label
, iter
, x_addr
, y_addr
, tmp
;
1503 enum machine_mode x_addr_mode
= get_address_mode (x
);
1504 enum machine_mode y_addr_mode
= get_address_mode (y
);
1505 enum machine_mode iter_mode
;
1507 iter_mode
= GET_MODE (size
);
1508 if (iter_mode
== VOIDmode
)
1509 iter_mode
= word_mode
;
1511 top_label
= gen_label_rtx ();
1512 cmp_label
= gen_label_rtx ();
1513 iter
= gen_reg_rtx (iter_mode
);
1515 emit_move_insn (iter
, const0_rtx
);
1517 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1518 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1519 do_pending_stack_adjust ();
1521 emit_jump (cmp_label
);
1522 emit_label (top_label
);
1524 tmp
= convert_modes (x_addr_mode
, iter_mode
, iter
, true);
1525 x_addr
= simplify_gen_binary (PLUS
, x_addr_mode
, x_addr
, tmp
);
1527 if (x_addr_mode
!= y_addr_mode
)
1528 tmp
= convert_modes (y_addr_mode
, iter_mode
, iter
, true);
1529 y_addr
= simplify_gen_binary (PLUS
, y_addr_mode
, y_addr
, tmp
);
1531 x
= change_address (x
, QImode
, x_addr
);
1532 y
= change_address (y
, QImode
, y_addr
);
1534 emit_move_insn (x
, y
);
1536 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1537 true, OPTAB_LIB_WIDEN
);
1539 emit_move_insn (iter
, tmp
);
1541 emit_label (cmp_label
);
1543 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1544 true, top_label
, REG_BR_PROB_BASE
* 90 / 100);
1547 /* Copy all or part of a value X into registers starting at REGNO.
1548 The number of registers to be filled is NREGS. */
1551 move_block_to_reg (int regno
, rtx x
, int nregs
, enum machine_mode mode
)
1554 #ifdef HAVE_load_multiple
1562 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
1563 x
= validize_mem (force_const_mem (mode
, x
));
1565 /* See if the machine can do this with a load multiple insn. */
1566 #ifdef HAVE_load_multiple
1567 if (HAVE_load_multiple
)
1569 last
= get_last_insn ();
1570 pat
= gen_load_multiple (gen_rtx_REG (word_mode
, regno
), x
,
1578 delete_insns_since (last
);
1582 for (i
= 0; i
< nregs
; i
++)
1583 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
1584 operand_subword_force (x
, i
, mode
));
1587 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1588 The number of registers to be filled is NREGS. */
1591 move_block_from_reg (int regno
, rtx x
, int nregs
)
1598 /* See if the machine can do this with a store multiple insn. */
1599 #ifdef HAVE_store_multiple
1600 if (HAVE_store_multiple
)
1602 rtx last
= get_last_insn ();
1603 rtx pat
= gen_store_multiple (x
, gen_rtx_REG (word_mode
, regno
),
1611 delete_insns_since (last
);
1615 for (i
= 0; i
< nregs
; i
++)
1617 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
1621 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
1625 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1626 ORIG, where ORIG is a non-consecutive group of registers represented by
1627 a PARALLEL. The clone is identical to the original except in that the
1628 original set of registers is replaced by a new set of pseudo registers.
1629 The new set has the same modes as the original set. */
1632 gen_group_rtx (rtx orig
)
1637 gcc_assert (GET_CODE (orig
) == PARALLEL
);
1639 length
= XVECLEN (orig
, 0);
1640 tmps
= XALLOCAVEC (rtx
, length
);
1642 /* Skip a NULL entry in first slot. */
1643 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
1648 for (; i
< length
; i
++)
1650 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
1651 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
1653 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
1656 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
1659 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1660 except that values are placed in TMPS[i], and must later be moved
1661 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1664 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
, int ssize
)
1668 enum machine_mode m
= GET_MODE (orig_src
);
1670 gcc_assert (GET_CODE (dst
) == PARALLEL
);
1673 && !SCALAR_INT_MODE_P (m
)
1674 && !MEM_P (orig_src
)
1675 && GET_CODE (orig_src
) != CONCAT
)
1677 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_src
));
1678 if (imode
== BLKmode
)
1679 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
);
1681 src
= gen_reg_rtx (imode
);
1682 if (imode
!= BLKmode
)
1683 src
= gen_lowpart (GET_MODE (orig_src
), src
);
1684 emit_move_insn (src
, orig_src
);
1685 /* ...and back again. */
1686 if (imode
!= BLKmode
)
1687 src
= gen_lowpart (imode
, src
);
1688 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1692 /* Check for a NULL entry, used to indicate that the parameter goes
1693 both on the stack and in registers. */
1694 if (XEXP (XVECEXP (dst
, 0, 0), 0))
1699 /* Process the pieces. */
1700 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
1702 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
1703 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (dst
, 0, i
), 1));
1704 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1707 /* Handle trailing fragments that run over the size of the struct. */
1708 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1710 /* Arrange to shift the fragment to where it belongs.
1711 extract_bit_field loads to the lsb of the reg. */
1713 #ifdef BLOCK_REG_PADDING
1714 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
1715 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1720 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1721 bytelen
= ssize
- bytepos
;
1722 gcc_assert (bytelen
> 0);
1725 /* If we won't be loading directly from memory, protect the real source
1726 from strange tricks we might play; but make sure that the source can
1727 be loaded directly into the destination. */
1729 if (!MEM_P (orig_src
)
1730 && (!CONSTANT_P (orig_src
)
1731 || (GET_MODE (orig_src
) != mode
1732 && GET_MODE (orig_src
) != VOIDmode
)))
1734 if (GET_MODE (orig_src
) == VOIDmode
)
1735 src
= gen_reg_rtx (mode
);
1737 src
= gen_reg_rtx (GET_MODE (orig_src
));
1739 emit_move_insn (src
, orig_src
);
1742 /* Optimize the access just a bit. */
1744 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (src
))
1745 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
1746 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1747 && bytelen
== GET_MODE_SIZE (mode
))
1749 tmps
[i
] = gen_reg_rtx (mode
);
1750 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
1752 else if (COMPLEX_MODE_P (mode
)
1753 && GET_MODE (src
) == mode
1754 && bytelen
== GET_MODE_SIZE (mode
))
1755 /* Let emit_move_complex do the bulk of the work. */
1757 else if (GET_CODE (src
) == CONCAT
)
1759 unsigned int slen
= GET_MODE_SIZE (GET_MODE (src
));
1760 unsigned int slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
1762 if ((bytepos
== 0 && bytelen
== slen0
)
1763 || (bytepos
!= 0 && bytepos
+ bytelen
<= slen
))
1765 /* The following assumes that the concatenated objects all
1766 have the same size. In this case, a simple calculation
1767 can be used to determine the object and the bit field
1769 tmps
[i
] = XEXP (src
, bytepos
/ slen0
);
1770 if (! CONSTANT_P (tmps
[i
])
1771 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
))
1772 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
1773 (bytepos
% slen0
) * BITS_PER_UNIT
,
1774 1, NULL_RTX
, mode
, mode
);
1780 gcc_assert (!bytepos
);
1781 mem
= assign_stack_temp (GET_MODE (src
), slen
);
1782 emit_move_insn (mem
, src
);
1783 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
1784 0, 1, NULL_RTX
, mode
, mode
);
1787 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1788 SIMD register, which is currently broken. While we get GCC
1789 to emit proper RTL for these cases, let's dump to memory. */
1790 else if (VECTOR_MODE_P (GET_MODE (dst
))
1793 int slen
= GET_MODE_SIZE (GET_MODE (src
));
1796 mem
= assign_stack_temp (GET_MODE (src
), slen
);
1797 emit_move_insn (mem
, src
);
1798 tmps
[i
] = adjust_address (mem
, mode
, (int) bytepos
);
1800 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
1801 && XVECLEN (dst
, 0) > 1)
1802 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE (dst
), bytepos
);
1803 else if (CONSTANT_P (src
))
1805 HOST_WIDE_INT len
= (HOST_WIDE_INT
) bytelen
;
1813 gcc_assert (2 * len
== ssize
);
1814 split_double (src
, &first
, &second
);
1821 else if (REG_P (src
) && GET_MODE (src
) == mode
)
1824 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
1825 bytepos
* BITS_PER_UNIT
, 1, NULL_RTX
,
1829 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
1834 /* Emit code to move a block SRC of type TYPE to a block DST,
1835 where DST is non-consecutive registers represented by a PARALLEL.
1836 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1840 emit_group_load (rtx dst
, rtx src
, tree type
, int ssize
)
1845 tmps
= XALLOCAVEC (rtx
, XVECLEN (dst
, 0));
1846 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1848 /* Copy the extracted pieces into the proper (probable) hard regs. */
1849 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
1851 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
1854 emit_move_insn (d
, tmps
[i
]);
1858 /* Similar, but load SRC into new pseudos in a format that looks like
1859 PARALLEL. This can later be fed to emit_group_move to get things
1860 in the right place. */
1863 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, int ssize
)
1868 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
1869 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
1871 /* Convert the vector to look just like the original PARALLEL, except
1872 with the computed values. */
1873 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
1875 rtx e
= XVECEXP (parallel
, 0, i
);
1876 rtx d
= XEXP (e
, 0);
1880 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
1881 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
1883 RTVEC_ELT (vec
, i
) = e
;
1886 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
1889 /* Emit code to move a block SRC to block DST, where SRC and DST are
1890 non-consecutive groups of registers, each represented by a PARALLEL. */
1893 emit_group_move (rtx dst
, rtx src
)
1897 gcc_assert (GET_CODE (src
) == PARALLEL
1898 && GET_CODE (dst
) == PARALLEL
1899 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
1901 /* Skip first entry if NULL. */
1902 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
1903 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
1904 XEXP (XVECEXP (src
, 0, i
), 0));
1907 /* Move a group of registers represented by a PARALLEL into pseudos. */
1910 emit_group_move_into_temps (rtx src
)
1912 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
1915 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
1917 rtx e
= XVECEXP (src
, 0, i
);
1918 rtx d
= XEXP (e
, 0);
1921 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
1922 RTVEC_ELT (vec
, i
) = e
;
1925 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
1928 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1929 where SRC is non-consecutive registers represented by a PARALLEL.
1930 SSIZE represents the total size of block ORIG_DST, or -1 if not
1934 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
1937 int start
, finish
, i
;
1938 enum machine_mode m
= GET_MODE (orig_dst
);
1940 gcc_assert (GET_CODE (src
) == PARALLEL
);
1942 if (!SCALAR_INT_MODE_P (m
)
1943 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
1945 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_dst
));
1946 if (imode
== BLKmode
)
1947 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
);
1949 dst
= gen_reg_rtx (imode
);
1950 emit_group_store (dst
, src
, type
, ssize
);
1951 if (imode
!= BLKmode
)
1952 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
1953 emit_move_insn (orig_dst
, dst
);
1957 /* Check for a NULL entry, used to indicate that the parameter goes
1958 both on the stack and in registers. */
1959 if (XEXP (XVECEXP (src
, 0, 0), 0))
1963 finish
= XVECLEN (src
, 0);
1965 tmps
= XALLOCAVEC (rtx
, finish
);
1967 /* Copy the (probable) hard regs into pseudos. */
1968 for (i
= start
; i
< finish
; i
++)
1970 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
1971 if (!REG_P (reg
) || REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
1973 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
1974 emit_move_insn (tmps
[i
], reg
);
1980 /* If we won't be storing directly into memory, protect the real destination
1981 from strange tricks we might play. */
1983 if (GET_CODE (dst
) == PARALLEL
)
1987 /* We can get a PARALLEL dst if there is a conditional expression in
1988 a return statement. In that case, the dst and src are the same,
1989 so no action is necessary. */
1990 if (rtx_equal_p (dst
, src
))
1993 /* It is unclear if we can ever reach here, but we may as well handle
1994 it. Allocate a temporary, and split this into a store/load to/from
1997 temp
= assign_stack_temp (GET_MODE (dst
), ssize
);
1998 emit_group_store (temp
, src
, type
, ssize
);
1999 emit_group_load (dst
, temp
, type
, ssize
);
2002 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
2004 enum machine_mode outer
= GET_MODE (dst
);
2005 enum machine_mode inner
;
2006 HOST_WIDE_INT bytepos
;
2010 if (!REG_P (dst
) || REGNO (dst
) < FIRST_PSEUDO_REGISTER
)
2011 dst
= gen_reg_rtx (outer
);
2013 /* Make life a bit easier for combine. */
2014 /* If the first element of the vector is the low part
2015 of the destination mode, use a paradoxical subreg to
2016 initialize the destination. */
2019 inner
= GET_MODE (tmps
[start
]);
2020 bytepos
= subreg_lowpart_offset (inner
, outer
);
2021 if (INTVAL (XEXP (XVECEXP (src
, 0, start
), 1)) == bytepos
)
2023 temp
= simplify_gen_subreg (outer
, tmps
[start
],
2027 emit_move_insn (dst
, temp
);
2034 /* If the first element wasn't the low part, try the last. */
2036 && start
< finish
- 1)
2038 inner
= GET_MODE (tmps
[finish
- 1]);
2039 bytepos
= subreg_lowpart_offset (inner
, outer
);
2040 if (INTVAL (XEXP (XVECEXP (src
, 0, finish
- 1), 1)) == bytepos
)
2042 temp
= simplify_gen_subreg (outer
, tmps
[finish
- 1],
2046 emit_move_insn (dst
, temp
);
2053 /* Otherwise, simply initialize the result to zero. */
2055 emit_move_insn (dst
, CONST0_RTX (outer
));
2058 /* Process the pieces. */
2059 for (i
= start
; i
< finish
; i
++)
2061 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (src
, 0, i
), 1));
2062 enum machine_mode mode
= GET_MODE (tmps
[i
]);
2063 unsigned int bytelen
= GET_MODE_SIZE (mode
);
2064 unsigned int adj_bytelen
;
2067 /* Handle trailing fragments that run over the size of the struct. */
2068 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2069 adj_bytelen
= ssize
- bytepos
;
2071 adj_bytelen
= bytelen
;
2073 if (GET_CODE (dst
) == CONCAT
)
2075 if (bytepos
+ adj_bytelen
2076 <= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2077 dest
= XEXP (dst
, 0);
2078 else if (bytepos
>= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2080 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
2081 dest
= XEXP (dst
, 1);
2085 enum machine_mode dest_mode
= GET_MODE (dest
);
2086 enum machine_mode tmp_mode
= GET_MODE (tmps
[i
]);
2088 gcc_assert (bytepos
== 0 && XVECLEN (src
, 0));
2090 if (GET_MODE_ALIGNMENT (dest_mode
)
2091 >= GET_MODE_ALIGNMENT (tmp_mode
))
2093 dest
= assign_stack_temp (dest_mode
,
2094 GET_MODE_SIZE (dest_mode
));
2095 emit_move_insn (adjust_address (dest
,
2103 dest
= assign_stack_temp (tmp_mode
,
2104 GET_MODE_SIZE (tmp_mode
));
2105 emit_move_insn (dest
, tmps
[i
]);
2106 dst
= adjust_address (dest
, dest_mode
, bytepos
);
2112 /* Handle trailing fragments that run over the size of the struct. */
2113 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2115 /* store_bit_field always takes its value from the lsb.
2116 Move the fragment to the lsb if it's not already there. */
2118 #ifdef BLOCK_REG_PADDING
2119 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
2120 == (BYTES_BIG_ENDIAN
? upward
: downward
)
2126 int shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
2127 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
2131 /* Make sure not to write past the end of the struct. */
2132 store_bit_field (dest
,
2133 adj_bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2134 bytepos
* BITS_PER_UNIT
, ssize
* BITS_PER_UNIT
- 1,
2138 /* Optimize the access just a bit. */
2139 else if (MEM_P (dest
)
2140 && (!SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (dest
))
2141 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
2142 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
2143 && bytelen
== GET_MODE_SIZE (mode
))
2144 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
2147 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2148 0, 0, mode
, tmps
[i
]);
2151 /* Copy from the pseudo into the (probable) hard reg. */
2152 if (orig_dst
!= dst
)
2153 emit_move_insn (orig_dst
, dst
);
2156 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2157 of the value stored in X. */
2160 maybe_emit_group_store (rtx x
, tree type
)
2162 enum machine_mode mode
= TYPE_MODE (type
);
2163 gcc_checking_assert (GET_MODE (x
) == VOIDmode
|| GET_MODE (x
) == mode
);
2164 if (GET_CODE (x
) == PARALLEL
)
2166 rtx result
= gen_reg_rtx (mode
);
2167 emit_group_store (result
, x
, type
, int_size_in_bytes (type
));
2173 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2175 This is used on targets that return BLKmode values in registers. */
2178 copy_blkmode_from_reg (rtx target
, rtx srcreg
, tree type
)
2180 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
2181 rtx src
= NULL
, dst
= NULL
;
2182 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
2183 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
2184 enum machine_mode mode
= GET_MODE (srcreg
);
2185 enum machine_mode tmode
= GET_MODE (target
);
2186 enum machine_mode copy_mode
;
2188 /* BLKmode registers created in the back-end shouldn't have survived. */
2189 gcc_assert (mode
!= BLKmode
);
2191 /* If the structure doesn't take up a whole number of words, see whether
2192 SRCREG is padded on the left or on the right. If it's on the left,
2193 set PADDING_CORRECTION to the number of bits to skip.
2195 In most ABIs, the structure will be returned at the least end of
2196 the register, which translates to right padding on little-endian
2197 targets and left padding on big-endian targets. The opposite
2198 holds if the structure is returned at the most significant
2199 end of the register. */
2200 if (bytes
% UNITS_PER_WORD
!= 0
2201 && (targetm
.calls
.return_in_msb (type
)
2203 : BYTES_BIG_ENDIAN
))
2205 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2207 /* We can use a single move if we have an exact mode for the size. */
2208 else if (MEM_P (target
)
2209 && (!SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
))
2210 || MEM_ALIGN (target
) >= GET_MODE_ALIGNMENT (mode
))
2211 && bytes
== GET_MODE_SIZE (mode
))
2213 emit_move_insn (adjust_address (target
, mode
, 0), srcreg
);
2217 /* And if we additionally have the same mode for a register. */
2218 else if (REG_P (target
)
2219 && GET_MODE (target
) == mode
2220 && bytes
== GET_MODE_SIZE (mode
))
2222 emit_move_insn (target
, srcreg
);
2226 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2227 into a new pseudo which is a full word. */
2228 if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
2230 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
2234 /* Copy the structure BITSIZE bits at a time. If the target lives in
2235 memory, take care of not reading/writing past its end by selecting
2236 a copy mode suited to BITSIZE. This should always be possible given
2239 If the target lives in register, make sure not to select a copy mode
2240 larger than the mode of the register.
2242 We could probably emit more efficient code for machines which do not use
2243 strict alignment, but it doesn't seem worth the effort at the current
2246 copy_mode
= word_mode
;
2249 enum machine_mode mem_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
2250 if (mem_mode
!= BLKmode
)
2251 copy_mode
= mem_mode
;
2253 else if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2256 for (bitpos
= 0, xbitpos
= padding_correction
;
2257 bitpos
< bytes
* BITS_PER_UNIT
;
2258 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2260 /* We need a new source operand each time xbitpos is on a
2261 word boundary and when xbitpos == padding_correction
2262 (the first time through). */
2263 if (xbitpos
% BITS_PER_WORD
== 0 || xbitpos
== padding_correction
)
2264 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
, mode
);
2266 /* We need a new destination operand each time bitpos is on
2268 if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2270 else if (bitpos
% BITS_PER_WORD
== 0)
2271 dst
= operand_subword (target
, bitpos
/ BITS_PER_WORD
, 1, tmode
);
2273 /* Use xbitpos for the source extraction (right justified) and
2274 bitpos for the destination store (left justified). */
2275 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, 0, 0, copy_mode
,
2276 extract_bit_field (src
, bitsize
,
2277 xbitpos
% BITS_PER_WORD
, 1,
2278 NULL_RTX
, copy_mode
, copy_mode
));
2282 /* Copy BLKmode value SRC into a register of mode MODE. Return the
2283 register if it contains any data, otherwise return null.
2285 This is used on targets that return BLKmode values in registers. */
2288 copy_blkmode_to_reg (enum machine_mode mode
, tree src
)
2291 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0, bytes
;
2292 unsigned int bitsize
;
2293 rtx
*dst_words
, dst
, x
, src_word
= NULL_RTX
, dst_word
= NULL_RTX
;
2294 enum machine_mode dst_mode
;
2296 gcc_assert (TYPE_MODE (TREE_TYPE (src
)) == BLKmode
);
2298 x
= expand_normal (src
);
2300 bytes
= int_size_in_bytes (TREE_TYPE (src
));
2304 /* If the structure doesn't take up a whole number of words, see
2305 whether the register value should be padded on the left or on
2306 the right. Set PADDING_CORRECTION to the number of padding
2307 bits needed on the left side.
2309 In most ABIs, the structure will be returned at the least end of
2310 the register, which translates to right padding on little-endian
2311 targets and left padding on big-endian targets. The opposite
2312 holds if the structure is returned at the most significant
2313 end of the register. */
2314 if (bytes
% UNITS_PER_WORD
!= 0
2315 && (targetm
.calls
.return_in_msb (TREE_TYPE (src
))
2317 : BYTES_BIG_ENDIAN
))
2318 padding_correction
= (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
)
2321 n_regs
= (bytes
+ UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
2322 dst_words
= XALLOCAVEC (rtx
, n_regs
);
2323 bitsize
= MIN (TYPE_ALIGN (TREE_TYPE (src
)), BITS_PER_WORD
);
2325 /* Copy the structure BITSIZE bits at a time. */
2326 for (bitpos
= 0, xbitpos
= padding_correction
;
2327 bitpos
< bytes
* BITS_PER_UNIT
;
2328 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2330 /* We need a new destination pseudo each time xbitpos is
2331 on a word boundary and when xbitpos == padding_correction
2332 (the first time through). */
2333 if (xbitpos
% BITS_PER_WORD
== 0
2334 || xbitpos
== padding_correction
)
2336 /* Generate an appropriate register. */
2337 dst_word
= gen_reg_rtx (word_mode
);
2338 dst_words
[xbitpos
/ BITS_PER_WORD
] = dst_word
;
2340 /* Clear the destination before we move anything into it. */
2341 emit_move_insn (dst_word
, CONST0_RTX (word_mode
));
2344 /* We need a new source operand each time bitpos is on a word
2346 if (bitpos
% BITS_PER_WORD
== 0)
2347 src_word
= operand_subword_force (x
, bitpos
/ BITS_PER_WORD
, BLKmode
);
2349 /* Use bitpos for the source extraction (left justified) and
2350 xbitpos for the destination store (right justified). */
2351 store_bit_field (dst_word
, bitsize
, xbitpos
% BITS_PER_WORD
,
2353 extract_bit_field (src_word
, bitsize
,
2354 bitpos
% BITS_PER_WORD
, 1,
2355 NULL_RTX
, word_mode
, word_mode
));
2358 if (mode
== BLKmode
)
2360 /* Find the smallest integer mode large enough to hold the
2361 entire structure. */
2362 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2364 mode
= GET_MODE_WIDER_MODE (mode
))
2365 /* Have we found a large enough mode? */
2366 if (GET_MODE_SIZE (mode
) >= bytes
)
2369 /* A suitable mode should have been found. */
2370 gcc_assert (mode
!= VOIDmode
);
2373 if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (word_mode
))
2374 dst_mode
= word_mode
;
2377 dst
= gen_reg_rtx (dst_mode
);
2379 for (i
= 0; i
< n_regs
; i
++)
2380 emit_move_insn (operand_subword (dst
, i
, 0, dst_mode
), dst_words
[i
]);
2382 if (mode
!= dst_mode
)
2383 dst
= gen_lowpart (mode
, dst
);
2388 /* Add a USE expression for REG to the (possibly empty) list pointed
2389 to by CALL_FUSAGE. REG must denote a hard register. */
2392 use_reg_mode (rtx
*call_fusage
, rtx reg
, enum machine_mode mode
)
2394 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2397 = gen_rtx_EXPR_LIST (mode
, gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2400 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2401 starting at REGNO. All of these registers must be hard registers. */
2404 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2408 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
2410 for (i
= 0; i
< nregs
; i
++)
2411 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2414 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2415 PARALLEL REGS. This is for calls that pass values in multiple
2416 non-contiguous locations. The Irix 6 ABI has examples of this. */
2419 use_group_regs (rtx
*call_fusage
, rtx regs
)
2423 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2425 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2427 /* A NULL entry means the parameter goes both on the stack and in
2428 registers. This can also be a MEM for targets that pass values
2429 partially on the stack and partially in registers. */
2430 if (reg
!= 0 && REG_P (reg
))
2431 use_reg (call_fusage
, reg
);
2435 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2436 assigment and the code of the expresion on the RHS is CODE. Return
2440 get_def_for_expr (tree name
, enum tree_code code
)
2444 if (TREE_CODE (name
) != SSA_NAME
)
2447 def_stmt
= get_gimple_for_ssa_name (name
);
2449 || gimple_assign_rhs_code (def_stmt
) != code
)
2455 #ifdef HAVE_conditional_move
2456 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2457 assigment and the class of the expresion on the RHS is CLASS. Return
2461 get_def_for_expr_class (tree name
, enum tree_code_class tclass
)
2465 if (TREE_CODE (name
) != SSA_NAME
)
2468 def_stmt
= get_gimple_for_ssa_name (name
);
2470 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
)) != tclass
)
2478 /* Determine whether the LEN bytes generated by CONSTFUN can be
2479 stored to memory using several move instructions. CONSTFUNDATA is
2480 a pointer which will be passed as argument in every CONSTFUN call.
2481 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2482 a memset operation and false if it's a copy of a constant string.
2483 Return nonzero if a call to store_by_pieces should succeed. */
2486 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
2487 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2488 void *constfundata
, unsigned int align
, bool memsetp
)
2490 unsigned HOST_WIDE_INT l
;
2491 unsigned int max_size
;
2492 HOST_WIDE_INT offset
= 0;
2493 enum machine_mode mode
;
2494 enum insn_code icode
;
2496 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2497 rtx cst ATTRIBUTE_UNUSED
;
2503 ? SET_BY_PIECES_P (len
, align
)
2504 : STORE_BY_PIECES_P (len
, align
)))
2507 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
2509 /* We would first store what we can in the largest integer mode, then go to
2510 successively smaller modes. */
2513 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
2517 max_size
= STORE_MAX_PIECES
+ 1;
2518 while (max_size
> 1 && l
> 0)
2520 mode
= widest_int_mode_for_size (max_size
);
2522 if (mode
== VOIDmode
)
2525 icode
= optab_handler (mov_optab
, mode
);
2526 if (icode
!= CODE_FOR_nothing
2527 && align
>= GET_MODE_ALIGNMENT (mode
))
2529 unsigned int size
= GET_MODE_SIZE (mode
);
2536 cst
= (*constfun
) (constfundata
, offset
, mode
);
2537 if (!targetm
.legitimate_constant_p (mode
, cst
))
2547 max_size
= GET_MODE_SIZE (mode
);
2550 /* The code above should have handled everything. */
2557 /* Generate several move instructions to store LEN bytes generated by
2558 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2559 pointer which will be passed as argument in every CONSTFUN call.
2560 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2561 a memset operation and false if it's a copy of a constant string.
2562 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2563 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2567 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
2568 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2569 void *constfundata
, unsigned int align
, bool memsetp
, int endp
)
2571 enum machine_mode to_addr_mode
= get_address_mode (to
);
2572 struct store_by_pieces_d data
;
2576 gcc_assert (endp
!= 2);
2581 ? SET_BY_PIECES_P (len
, align
)
2582 : STORE_BY_PIECES_P (len
, align
));
2583 data
.constfun
= constfun
;
2584 data
.constfundata
= constfundata
;
2587 store_by_pieces_1 (&data
, align
);
2592 gcc_assert (!data
.reverse
);
2597 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
2598 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
2600 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
2601 plus_constant (to_addr_mode
,
2605 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
2612 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
2620 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2621 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2624 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
2626 struct store_by_pieces_d data
;
2631 data
.constfun
= clear_by_pieces_1
;
2632 data
.constfundata
= NULL
;
2635 store_by_pieces_1 (&data
, align
);
2638 /* Callback routine for clear_by_pieces.
2639 Return const0_rtx unconditionally. */
2642 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED
,
2643 HOST_WIDE_INT offset ATTRIBUTE_UNUSED
,
2644 enum machine_mode mode ATTRIBUTE_UNUSED
)
2649 /* Subroutine of clear_by_pieces and store_by_pieces.
2650 Generate several move instructions to store LEN bytes of block TO. (A MEM
2651 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2654 store_by_pieces_1 (struct store_by_pieces_d
*data ATTRIBUTE_UNUSED
,
2655 unsigned int align ATTRIBUTE_UNUSED
)
2657 enum machine_mode to_addr_mode
= get_address_mode (data
->to
);
2658 rtx to_addr
= XEXP (data
->to
, 0);
2659 unsigned int max_size
= STORE_MAX_PIECES
+ 1;
2660 enum insn_code icode
;
2663 data
->to_addr
= to_addr
;
2665 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
2666 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
2668 data
->explicit_inc_to
= 0;
2670 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
2672 data
->offset
= data
->len
;
2674 /* If storing requires more than two move insns,
2675 copy addresses to registers (to make displacements shorter)
2676 and use post-increment if available. */
2677 if (!data
->autinc_to
2678 && move_by_pieces_ninsns (data
->len
, align
, max_size
) > 2)
2680 /* Determine the main mode we'll be using.
2681 MODE might not be used depending on the definitions of the
2682 USE_* macros below. */
2683 enum machine_mode mode ATTRIBUTE_UNUSED
2684 = widest_int_mode_for_size (max_size
);
2686 if (USE_STORE_PRE_DECREMENT (mode
) && data
->reverse
&& ! data
->autinc_to
)
2688 data
->to_addr
= copy_to_mode_reg (to_addr_mode
,
2689 plus_constant (to_addr_mode
,
2692 data
->autinc_to
= 1;
2693 data
->explicit_inc_to
= -1;
2696 if (USE_STORE_POST_INCREMENT (mode
) && ! data
->reverse
2697 && ! data
->autinc_to
)
2699 data
->to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
2700 data
->autinc_to
= 1;
2701 data
->explicit_inc_to
= 1;
2704 if ( !data
->autinc_to
&& CONSTANT_P (to_addr
))
2705 data
->to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
2708 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
2710 /* First store what we can in the largest integer mode, then go to
2711 successively smaller modes. */
2713 while (max_size
> 1 && data
->len
> 0)
2715 enum machine_mode mode
= widest_int_mode_for_size (max_size
);
2717 if (mode
== VOIDmode
)
2720 icode
= optab_handler (mov_optab
, mode
);
2721 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
2722 store_by_pieces_2 (GEN_FCN (icode
), mode
, data
);
2724 max_size
= GET_MODE_SIZE (mode
);
2727 /* The code above should have handled everything. */
2728 gcc_assert (!data
->len
);
2731 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2732 with move instructions for mode MODE. GENFUN is the gen_... function
2733 to make a move insn for that mode. DATA has all the other info. */
2736 store_by_pieces_2 (insn_gen_fn genfun
, machine_mode mode
,
2737 struct store_by_pieces_d
*data
)
2739 unsigned int size
= GET_MODE_SIZE (mode
);
2742 while (data
->len
>= size
)
2745 data
->offset
-= size
;
2747 if (data
->autinc_to
)
2748 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
2751 to1
= adjust_address (data
->to
, mode
, data
->offset
);
2753 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
2754 emit_insn (gen_add2_insn (data
->to_addr
,
2755 gen_int_mode (-(HOST_WIDE_INT
) size
,
2756 GET_MODE (data
->to_addr
))));
2758 cst
= (*data
->constfun
) (data
->constfundata
, data
->offset
, mode
);
2759 emit_insn ((*genfun
) (to1
, cst
));
2761 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
2762 emit_insn (gen_add2_insn (data
->to_addr
,
2764 GET_MODE (data
->to_addr
))));
2766 if (! data
->reverse
)
2767 data
->offset
+= size
;
2773 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2774 its length in bytes. */
2777 clear_storage_hints (rtx object
, rtx size
, enum block_op_methods method
,
2778 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
2779 unsigned HOST_WIDE_INT min_size
,
2780 unsigned HOST_WIDE_INT max_size
,
2781 unsigned HOST_WIDE_INT probable_max_size
)
2783 enum machine_mode mode
= GET_MODE (object
);
2786 gcc_assert (method
== BLOCK_OP_NORMAL
|| method
== BLOCK_OP_TAILCALL
);
2788 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2789 just move a zero. Otherwise, do this a piece at a time. */
2791 && CONST_INT_P (size
)
2792 && INTVAL (size
) == (HOST_WIDE_INT
) GET_MODE_SIZE (mode
))
2794 rtx zero
= CONST0_RTX (mode
);
2797 emit_move_insn (object
, zero
);
2801 if (COMPLEX_MODE_P (mode
))
2803 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
2806 write_complex_part (object
, zero
, 0);
2807 write_complex_part (object
, zero
, 1);
2813 if (size
== const0_rtx
)
2816 align
= MEM_ALIGN (object
);
2818 if (CONST_INT_P (size
)
2819 && CLEAR_BY_PIECES_P (INTVAL (size
), align
))
2820 clear_by_pieces (object
, INTVAL (size
), align
);
2821 else if (set_storage_via_setmem (object
, size
, const0_rtx
, align
,
2822 expected_align
, expected_size
,
2823 min_size
, max_size
, probable_max_size
))
2825 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object
)))
2826 return set_storage_via_libcall (object
, size
, const0_rtx
,
2827 method
== BLOCK_OP_TAILCALL
);
2835 clear_storage (rtx object
, rtx size
, enum block_op_methods method
)
2837 unsigned HOST_WIDE_INT max
, min
= 0;
2838 if (GET_CODE (size
) == CONST_INT
)
2839 min
= max
= UINTVAL (size
);
2841 max
= GET_MODE_MASK (GET_MODE (size
));
2842 return clear_storage_hints (object
, size
, method
, 0, -1, min
, max
, max
);
2846 /* A subroutine of clear_storage. Expand a call to memset.
2847 Return the return value of memset, 0 otherwise. */
2850 set_storage_via_libcall (rtx object
, rtx size
, rtx val
, bool tailcall
)
2852 tree call_expr
, fn
, object_tree
, size_tree
, val_tree
;
2853 enum machine_mode size_mode
;
2856 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2857 place those into new pseudos into a VAR_DECL and use them later. */
2859 object
= copy_addr_to_reg (XEXP (object
, 0));
2861 size_mode
= TYPE_MODE (sizetype
);
2862 size
= convert_to_mode (size_mode
, size
, 1);
2863 size
= copy_to_mode_reg (size_mode
, size
);
2865 /* It is incorrect to use the libcall calling conventions to call
2866 memset in this context. This could be a user call to memset and
2867 the user may wish to examine the return value from memset. For
2868 targets where libcalls and normal calls have different conventions
2869 for returning pointers, we could end up generating incorrect code. */
2871 object_tree
= make_tree (ptr_type_node
, object
);
2872 if (!CONST_INT_P (val
))
2873 val
= convert_to_mode (TYPE_MODE (integer_type_node
), val
, 1);
2874 size_tree
= make_tree (sizetype
, size
);
2875 val_tree
= make_tree (integer_type_node
, val
);
2877 fn
= clear_storage_libcall_fn (true);
2878 call_expr
= build_call_expr (fn
, 3, object_tree
, val_tree
, size_tree
);
2879 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
2881 retval
= expand_normal (call_expr
);
2886 /* A subroutine of set_storage_via_libcall. Create the tree node
2887 for the function we use for block clears. */
2889 tree block_clear_fn
;
2892 init_block_clear_fn (const char *asmspec
)
2894 if (!block_clear_fn
)
2898 fn
= get_identifier ("memset");
2899 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
2900 integer_type_node
, sizetype
,
2903 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
2904 DECL_EXTERNAL (fn
) = 1;
2905 TREE_PUBLIC (fn
) = 1;
2906 DECL_ARTIFICIAL (fn
) = 1;
2907 TREE_NOTHROW (fn
) = 1;
2908 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
2909 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
2911 block_clear_fn
= fn
;
2915 set_user_assembler_name (block_clear_fn
, asmspec
);
2919 clear_storage_libcall_fn (int for_call
)
2921 static bool emitted_extern
;
2923 if (!block_clear_fn
)
2924 init_block_clear_fn (NULL
);
2926 if (for_call
&& !emitted_extern
)
2928 emitted_extern
= true;
2929 make_decl_rtl (block_clear_fn
);
2932 return block_clear_fn
;
2935 /* Expand a setmem pattern; return true if successful. */
2938 set_storage_via_setmem (rtx object
, rtx size
, rtx val
, unsigned int align
,
2939 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
2940 unsigned HOST_WIDE_INT min_size
,
2941 unsigned HOST_WIDE_INT max_size
,
2942 unsigned HOST_WIDE_INT probable_max_size
)
2944 /* Try the most limited insn first, because there's no point
2945 including more than one in the machine description unless
2946 the more limited one has some advantage. */
2948 enum machine_mode mode
;
2950 if (expected_align
< align
)
2951 expected_align
= align
;
2952 if (expected_size
!= -1)
2954 if ((unsigned HOST_WIDE_INT
)expected_size
> max_size
)
2955 expected_size
= max_size
;
2956 if ((unsigned HOST_WIDE_INT
)expected_size
< min_size
)
2957 expected_size
= min_size
;
2960 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2961 mode
= GET_MODE_WIDER_MODE (mode
))
2963 enum insn_code code
= direct_optab_handler (setmem_optab
, mode
);
2965 if (code
!= CODE_FOR_nothing
2966 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
2967 here because if SIZE is less than the mode mask, as it is
2968 returned by the macro, it will definitely be less than the
2969 actual mode mask. Since SIZE is within the Pmode address
2970 space, we limit MODE to Pmode. */
2971 && ((CONST_INT_P (size
)
2972 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
2973 <= (GET_MODE_MASK (mode
) >> 1)))
2974 || max_size
<= (GET_MODE_MASK (mode
) >> 1)
2975 || GET_MODE_BITSIZE (mode
) >= GET_MODE_BITSIZE (Pmode
)))
2977 struct expand_operand ops
[9];
2980 nops
= insn_data
[(int) code
].n_generator_args
;
2981 gcc_assert (nops
== 4 || nops
== 6 || nops
== 8 || nops
== 9);
2983 create_fixed_operand (&ops
[0], object
);
2984 /* The check above guarantees that this size conversion is valid. */
2985 create_convert_operand_to (&ops
[1], size
, mode
, true);
2986 create_convert_operand_from (&ops
[2], val
, byte_mode
, true);
2987 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
2990 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
2991 create_integer_operand (&ops
[5], expected_size
);
2995 create_integer_operand (&ops
[6], min_size
);
2996 /* If we can not represent the maximal size,
2997 make parameter NULL. */
2998 if ((HOST_WIDE_INT
) max_size
!= -1)
2999 create_integer_operand (&ops
[7], max_size
);
3001 create_fixed_operand (&ops
[7], NULL
);
3005 /* If we can not represent the maximal size,
3006 make parameter NULL. */
3007 if ((HOST_WIDE_INT
) probable_max_size
!= -1)
3008 create_integer_operand (&ops
[8], probable_max_size
);
3010 create_fixed_operand (&ops
[8], NULL
);
3012 if (maybe_expand_insn (code
, nops
, ops
))
3021 /* Write to one of the components of the complex value CPLX. Write VAL to
3022 the real part if IMAG_P is false, and the imaginary part if its true. */
3025 write_complex_part (rtx cplx
, rtx val
, bool imag_p
)
3027 enum machine_mode cmode
;
3028 enum machine_mode imode
;
3031 if (GET_CODE (cplx
) == CONCAT
)
3033 emit_move_insn (XEXP (cplx
, imag_p
), val
);
3037 cmode
= GET_MODE (cplx
);
3038 imode
= GET_MODE_INNER (cmode
);
3039 ibitsize
= GET_MODE_BITSIZE (imode
);
3041 /* For MEMs simplify_gen_subreg may generate an invalid new address
3042 because, e.g., the original address is considered mode-dependent
3043 by the target, which restricts simplify_subreg from invoking
3044 adjust_address_nv. Instead of preparing fallback support for an
3045 invalid address, we call adjust_address_nv directly. */
3048 emit_move_insn (adjust_address_nv (cplx
, imode
,
3049 imag_p
? GET_MODE_SIZE (imode
) : 0),
3054 /* If the sub-object is at least word sized, then we know that subregging
3055 will work. This special case is important, since store_bit_field
3056 wants to operate on integer modes, and there's rarely an OImode to
3057 correspond to TCmode. */
3058 if (ibitsize
>= BITS_PER_WORD
3059 /* For hard regs we have exact predicates. Assume we can split
3060 the original object if it spans an even number of hard regs.
3061 This special case is important for SCmode on 64-bit platforms
3062 where the natural size of floating-point regs is 32-bit. */
3064 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
3065 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
3067 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
3068 imag_p
? GET_MODE_SIZE (imode
) : 0);
3071 emit_move_insn (part
, val
);
3075 /* simplify_gen_subreg may fail for sub-word MEMs. */
3076 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
3079 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, 0, 0, imode
, val
);
3082 /* Extract one of the components of the complex value CPLX. Extract the
3083 real part if IMAG_P is false, and the imaginary part if it's true. */
3086 read_complex_part (rtx cplx
, bool imag_p
)
3088 enum machine_mode cmode
, imode
;
3091 if (GET_CODE (cplx
) == CONCAT
)
3092 return XEXP (cplx
, imag_p
);
3094 cmode
= GET_MODE (cplx
);
3095 imode
= GET_MODE_INNER (cmode
);
3096 ibitsize
= GET_MODE_BITSIZE (imode
);
3098 /* Special case reads from complex constants that got spilled to memory. */
3099 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
3101 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
3102 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
3104 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
3105 if (CONSTANT_CLASS_P (part
))
3106 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
3110 /* For MEMs simplify_gen_subreg may generate an invalid new address
3111 because, e.g., the original address is considered mode-dependent
3112 by the target, which restricts simplify_subreg from invoking
3113 adjust_address_nv. Instead of preparing fallback support for an
3114 invalid address, we call adjust_address_nv directly. */
3116 return adjust_address_nv (cplx
, imode
,
3117 imag_p
? GET_MODE_SIZE (imode
) : 0);
3119 /* If the sub-object is at least word sized, then we know that subregging
3120 will work. This special case is important, since extract_bit_field
3121 wants to operate on integer modes, and there's rarely an OImode to
3122 correspond to TCmode. */
3123 if (ibitsize
>= BITS_PER_WORD
3124 /* For hard regs we have exact predicates. Assume we can split
3125 the original object if it spans an even number of hard regs.
3126 This special case is important for SCmode on 64-bit platforms
3127 where the natural size of floating-point regs is 32-bit. */
3129 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
3130 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
3132 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
3133 imag_p
? GET_MODE_SIZE (imode
) : 0);
3137 /* simplify_gen_subreg may fail for sub-word MEMs. */
3138 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
3141 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
3142 true, NULL_RTX
, imode
, imode
);
3145 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3146 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3147 represented in NEW_MODE. If FORCE is true, this will never happen, as
3148 we'll force-create a SUBREG if needed. */
3151 emit_move_change_mode (enum machine_mode new_mode
,
3152 enum machine_mode old_mode
, rtx x
, bool force
)
3156 if (push_operand (x
, GET_MODE (x
)))
3158 ret
= gen_rtx_MEM (new_mode
, XEXP (x
, 0));
3159 MEM_COPY_ATTRIBUTES (ret
, x
);
3163 /* We don't have to worry about changing the address since the
3164 size in bytes is supposed to be the same. */
3165 if (reload_in_progress
)
3167 /* Copy the MEM to change the mode and move any
3168 substitutions from the old MEM to the new one. */
3169 ret
= adjust_address_nv (x
, new_mode
, 0);
3170 copy_replacements (x
, ret
);
3173 ret
= adjust_address (x
, new_mode
, 0);
3177 /* Note that we do want simplify_subreg's behavior of validating
3178 that the new mode is ok for a hard register. If we were to use
3179 simplify_gen_subreg, we would create the subreg, but would
3180 probably run into the target not being able to implement it. */
3181 /* Except, of course, when FORCE is true, when this is exactly what
3182 we want. Which is needed for CCmodes on some targets. */
3184 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
3186 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
3192 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3193 an integer mode of the same size as MODE. Returns the instruction
3194 emitted, or NULL if such a move could not be generated. */
3197 emit_move_via_integer (enum machine_mode mode
, rtx x
, rtx y
, bool force
)
3199 enum machine_mode imode
;
3200 enum insn_code code
;
3202 /* There must exist a mode of the exact size we require. */
3203 imode
= int_mode_for_mode (mode
);
3204 if (imode
== BLKmode
)
3207 /* The target must support moves in this mode. */
3208 code
= optab_handler (mov_optab
, imode
);
3209 if (code
== CODE_FOR_nothing
)
3212 x
= emit_move_change_mode (imode
, mode
, x
, force
);
3215 y
= emit_move_change_mode (imode
, mode
, y
, force
);
3218 return emit_insn (GEN_FCN (code
) (x
, y
));
3221 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3222 Return an equivalent MEM that does not use an auto-increment. */
3225 emit_move_resolve_push (enum machine_mode mode
, rtx x
)
3227 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
3228 HOST_WIDE_INT adjust
;
3231 adjust
= GET_MODE_SIZE (mode
);
3232 #ifdef PUSH_ROUNDING
3233 adjust
= PUSH_ROUNDING (adjust
);
3235 if (code
== PRE_DEC
|| code
== POST_DEC
)
3237 else if (code
== PRE_MODIFY
|| code
== POST_MODIFY
)
3239 rtx expr
= XEXP (XEXP (x
, 0), 1);
3242 gcc_assert (GET_CODE (expr
) == PLUS
|| GET_CODE (expr
) == MINUS
);
3243 gcc_assert (CONST_INT_P (XEXP (expr
, 1)));
3244 val
= INTVAL (XEXP (expr
, 1));
3245 if (GET_CODE (expr
) == MINUS
)
3247 gcc_assert (adjust
== val
|| adjust
== -val
);
3251 /* Do not use anti_adjust_stack, since we don't want to update
3252 stack_pointer_delta. */
3253 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
3254 gen_int_mode (adjust
, Pmode
), stack_pointer_rtx
,
3255 0, OPTAB_LIB_WIDEN
);
3256 if (temp
!= stack_pointer_rtx
)
3257 emit_move_insn (stack_pointer_rtx
, temp
);
3264 temp
= stack_pointer_rtx
;
3269 temp
= plus_constant (Pmode
, stack_pointer_rtx
, -adjust
);
3275 return replace_equiv_address (x
, temp
);
3278 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3279 X is known to satisfy push_operand, and MODE is known to be complex.
3280 Returns the last instruction emitted. */
3283 emit_move_complex_push (enum machine_mode mode
, rtx x
, rtx y
)
3285 enum machine_mode submode
= GET_MODE_INNER (mode
);
3288 #ifdef PUSH_ROUNDING
3289 unsigned int submodesize
= GET_MODE_SIZE (submode
);
3291 /* In case we output to the stack, but the size is smaller than the
3292 machine can push exactly, we need to use move instructions. */
3293 if (PUSH_ROUNDING (submodesize
) != submodesize
)
3295 x
= emit_move_resolve_push (mode
, x
);
3296 return emit_move_insn (x
, y
);
3300 /* Note that the real part always precedes the imag part in memory
3301 regardless of machine's endianness. */
3302 switch (GET_CODE (XEXP (x
, 0)))
3316 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3317 read_complex_part (y
, imag_first
));
3318 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3319 read_complex_part (y
, !imag_first
));
3322 /* A subroutine of emit_move_complex. Perform the move from Y to X
3323 via two moves of the parts. Returns the last instruction emitted. */
3326 emit_move_complex_parts (rtx x
, rtx y
)
3328 /* Show the output dies here. This is necessary for SUBREGs
3329 of pseudos since we cannot track their lifetimes correctly;
3330 hard regs shouldn't appear here except as return values. */
3331 if (!reload_completed
&& !reload_in_progress
3332 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
3335 write_complex_part (x
, read_complex_part (y
, false), false);
3336 write_complex_part (x
, read_complex_part (y
, true), true);
3338 return get_last_insn ();
3341 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3342 MODE is known to be complex. Returns the last instruction emitted. */
3345 emit_move_complex (enum machine_mode mode
, rtx x
, rtx y
)
3349 /* Need to take special care for pushes, to maintain proper ordering
3350 of the data, and possibly extra padding. */
3351 if (push_operand (x
, mode
))
3352 return emit_move_complex_push (mode
, x
, y
);
3354 /* See if we can coerce the target into moving both values at once, except
3355 for floating point where we favor moving as parts if this is easy. */
3356 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
3357 && optab_handler (mov_optab
, GET_MODE_INNER (mode
)) != CODE_FOR_nothing
3359 && HARD_REGISTER_P (x
)
3360 && hard_regno_nregs
[REGNO (x
)][mode
] == 1)
3362 && HARD_REGISTER_P (y
)
3363 && hard_regno_nregs
[REGNO (y
)][mode
] == 1))
3365 /* Not possible if the values are inherently not adjacent. */
3366 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
3368 /* Is possible if both are registers (or subregs of registers). */
3369 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
3371 /* If one of the operands is a memory, and alignment constraints
3372 are friendly enough, we may be able to do combined memory operations.
3373 We do not attempt this if Y is a constant because that combination is
3374 usually better with the by-parts thing below. */
3375 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
3376 && (!STRICT_ALIGNMENT
3377 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
3386 /* For memory to memory moves, optimal behavior can be had with the
3387 existing block move logic. */
3388 if (MEM_P (x
) && MEM_P (y
))
3390 emit_block_move (x
, y
, GEN_INT (GET_MODE_SIZE (mode
)),
3391 BLOCK_OP_NO_LIBCALL
);
3392 return get_last_insn ();
3395 ret
= emit_move_via_integer (mode
, x
, y
, true);
3400 return emit_move_complex_parts (x
, y
);
3403 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3404 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3407 emit_move_ccmode (enum machine_mode mode
, rtx x
, rtx y
)
3411 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3414 enum insn_code code
= optab_handler (mov_optab
, CCmode
);
3415 if (code
!= CODE_FOR_nothing
)
3417 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
3418 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
3419 return emit_insn (GEN_FCN (code
) (x
, y
));
3423 /* Otherwise, find the MODE_INT mode of the same width. */
3424 ret
= emit_move_via_integer (mode
, x
, y
, false);
3425 gcc_assert (ret
!= NULL
);
3429 /* Return true if word I of OP lies entirely in the
3430 undefined bits of a paradoxical subreg. */
3433 undefined_operand_subword_p (const_rtx op
, int i
)
3435 enum machine_mode innermode
, innermostmode
;
3437 if (GET_CODE (op
) != SUBREG
)
3439 innermode
= GET_MODE (op
);
3440 innermostmode
= GET_MODE (SUBREG_REG (op
));
3441 offset
= i
* UNITS_PER_WORD
+ SUBREG_BYTE (op
);
3442 /* The SUBREG_BYTE represents offset, as if the value were stored in
3443 memory, except for a paradoxical subreg where we define
3444 SUBREG_BYTE to be 0; undo this exception as in
3446 if (SUBREG_BYTE (op
) == 0
3447 && GET_MODE_SIZE (innermostmode
) < GET_MODE_SIZE (innermode
))
3449 int difference
= (GET_MODE_SIZE (innermostmode
) - GET_MODE_SIZE (innermode
));
3450 if (WORDS_BIG_ENDIAN
)
3451 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3452 if (BYTES_BIG_ENDIAN
)
3453 offset
+= difference
% UNITS_PER_WORD
;
3455 if (offset
>= GET_MODE_SIZE (innermostmode
)
3456 || offset
<= -GET_MODE_SIZE (word_mode
))
3461 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3462 MODE is any multi-word or full-word mode that lacks a move_insn
3463 pattern. Note that you will get better code if you define such
3464 patterns, even if they must turn into multiple assembler instructions. */
3467 emit_move_multi_word (enum machine_mode mode
, rtx x
, rtx y
)
3474 gcc_assert (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
);
3476 /* If X is a push on the stack, do the push now and replace
3477 X with a reference to the stack pointer. */
3478 if (push_operand (x
, mode
))
3479 x
= emit_move_resolve_push (mode
, x
);
3481 /* If we are in reload, see if either operand is a MEM whose address
3482 is scheduled for replacement. */
3483 if (reload_in_progress
&& MEM_P (x
)
3484 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
3485 x
= replace_equiv_address_nv (x
, inner
);
3486 if (reload_in_progress
&& MEM_P (y
)
3487 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
3488 y
= replace_equiv_address_nv (y
, inner
);
3492 need_clobber
= false;
3494 i
< (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
3497 rtx xpart
= operand_subword (x
, i
, 1, mode
);
3500 /* Do not generate code for a move if it would come entirely
3501 from the undefined bits of a paradoxical subreg. */
3502 if (undefined_operand_subword_p (y
, i
))
3505 ypart
= operand_subword (y
, i
, 1, mode
);
3507 /* If we can't get a part of Y, put Y into memory if it is a
3508 constant. Otherwise, force it into a register. Then we must
3509 be able to get a part of Y. */
3510 if (ypart
== 0 && CONSTANT_P (y
))
3512 y
= use_anchored_address (force_const_mem (mode
, y
));
3513 ypart
= operand_subword (y
, i
, 1, mode
);
3515 else if (ypart
== 0)
3516 ypart
= operand_subword_force (y
, i
, mode
);
3518 gcc_assert (xpart
&& ypart
);
3520 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3522 last_insn
= emit_move_insn (xpart
, ypart
);
3528 /* Show the output dies here. This is necessary for SUBREGs
3529 of pseudos since we cannot track their lifetimes correctly;
3530 hard regs shouldn't appear here except as return values.
3531 We never want to emit such a clobber after reload. */
3533 && ! (reload_in_progress
|| reload_completed
)
3534 && need_clobber
!= 0)
3542 /* Low level part of emit_move_insn.
3543 Called just like emit_move_insn, but assumes X and Y
3544 are basically valid. */
3547 emit_move_insn_1 (rtx x
, rtx y
)
3549 enum machine_mode mode
= GET_MODE (x
);
3550 enum insn_code code
;
3552 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
3554 code
= optab_handler (mov_optab
, mode
);
3555 if (code
!= CODE_FOR_nothing
)
3556 return emit_insn (GEN_FCN (code
) (x
, y
));
3558 /* Expand complex moves by moving real part and imag part. */
3559 if (COMPLEX_MODE_P (mode
))
3560 return emit_move_complex (mode
, x
, y
);
3562 if (GET_MODE_CLASS (mode
) == MODE_DECIMAL_FLOAT
3563 || ALL_FIXED_POINT_MODE_P (mode
))
3565 rtx result
= emit_move_via_integer (mode
, x
, y
, true);
3567 /* If we can't find an integer mode, use multi words. */
3571 return emit_move_multi_word (mode
, x
, y
);
3574 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3575 return emit_move_ccmode (mode
, x
, y
);
3577 /* Try using a move pattern for the corresponding integer mode. This is
3578 only safe when simplify_subreg can convert MODE constants into integer
3579 constants. At present, it can only do this reliably if the value
3580 fits within a HOST_WIDE_INT. */
3581 if (!CONSTANT_P (y
) || GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3583 rtx ret
= emit_move_via_integer (mode
, x
, y
, lra_in_progress
);
3587 if (! lra_in_progress
|| recog (PATTERN (ret
), ret
, 0) >= 0)
3592 return emit_move_multi_word (mode
, x
, y
);
3595 /* Generate code to copy Y into X.
3596 Both Y and X must have the same mode, except that
3597 Y can be a constant with VOIDmode.
3598 This mode cannot be BLKmode; use emit_block_move for that.
3600 Return the last instruction emitted. */
3603 emit_move_insn (rtx x
, rtx y
)
3605 enum machine_mode mode
= GET_MODE (x
);
3606 rtx y_cst
= NULL_RTX
;
3609 gcc_assert (mode
!= BLKmode
3610 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
3615 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3616 && (last_insn
= compress_float_constant (x
, y
)))
3621 if (!targetm
.legitimate_constant_p (mode
, y
))
3623 y
= force_const_mem (mode
, y
);
3625 /* If the target's cannot_force_const_mem prevented the spill,
3626 assume that the target's move expanders will also take care
3627 of the non-legitimate constant. */
3631 y
= use_anchored_address (y
);
3635 /* If X or Y are memory references, verify that their addresses are valid
3638 && (! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
3640 && ! push_operand (x
, GET_MODE (x
))))
3641 x
= validize_mem (x
);
3644 && ! memory_address_addr_space_p (GET_MODE (y
), XEXP (y
, 0),
3645 MEM_ADDR_SPACE (y
)))
3646 y
= validize_mem (y
);
3648 gcc_assert (mode
!= BLKmode
);
3650 last_insn
= emit_move_insn_1 (x
, y
);
3652 if (y_cst
&& REG_P (x
)
3653 && (set
= single_set (last_insn
)) != NULL_RTX
3654 && SET_DEST (set
) == x
3655 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3656 set_unique_reg_note (last_insn
, REG_EQUAL
, copy_rtx (y_cst
));
3661 /* If Y is representable exactly in a narrower mode, and the target can
3662 perform the extension directly from constant or memory, then emit the
3663 move as an extension. */
3666 compress_float_constant (rtx x
, rtx y
)
3668 enum machine_mode dstmode
= GET_MODE (x
);
3669 enum machine_mode orig_srcmode
= GET_MODE (y
);
3670 enum machine_mode srcmode
;
3672 int oldcost
, newcost
;
3673 bool speed
= optimize_insn_for_speed_p ();
3675 REAL_VALUE_FROM_CONST_DOUBLE (r
, y
);
3677 if (targetm
.legitimate_constant_p (dstmode
, y
))
3678 oldcost
= set_src_cost (y
, speed
);
3680 oldcost
= set_src_cost (force_const_mem (dstmode
, y
), speed
);
3682 for (srcmode
= GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode
));
3683 srcmode
!= orig_srcmode
;
3684 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
3687 rtx trunc_y
, last_insn
;
3689 /* Skip if the target can't extend this way. */
3690 ic
= can_extend_p (dstmode
, srcmode
, 0);
3691 if (ic
== CODE_FOR_nothing
)
3694 /* Skip if the narrowed value isn't exact. */
3695 if (! exact_real_truncate (srcmode
, &r
))
3698 trunc_y
= CONST_DOUBLE_FROM_REAL_VALUE (r
, srcmode
);
3700 if (targetm
.legitimate_constant_p (srcmode
, trunc_y
))
3702 /* Skip if the target needs extra instructions to perform
3704 if (!insn_operand_matches (ic
, 1, trunc_y
))
3706 /* This is valid, but may not be cheaper than the original. */
3707 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3709 if (oldcost
< newcost
)
3712 else if (float_extend_from_mem
[dstmode
][srcmode
])
3714 trunc_y
= force_const_mem (srcmode
, trunc_y
);
3715 /* This is valid, but may not be cheaper than the original. */
3716 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3718 if (oldcost
< newcost
)
3720 trunc_y
= validize_mem (trunc_y
);
3725 /* For CSE's benefit, force the compressed constant pool entry
3726 into a new pseudo. This constant may be used in different modes,
3727 and if not, combine will put things back together for us. */
3728 trunc_y
= force_reg (srcmode
, trunc_y
);
3729 emit_unop_insn (ic
, x
, trunc_y
, UNKNOWN
);
3730 last_insn
= get_last_insn ();
3733 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3741 /* Pushing data onto the stack. */
3743 /* Push a block of length SIZE (perhaps variable)
3744 and return an rtx to address the beginning of the block.
3745 The value may be virtual_outgoing_args_rtx.
3747 EXTRA is the number of bytes of padding to push in addition to SIZE.
3748 BELOW nonzero means this padding comes at low addresses;
3749 otherwise, the padding comes at high addresses. */
3752 push_block (rtx size
, int extra
, int below
)
3756 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3757 if (CONSTANT_P (size
))
3758 anti_adjust_stack (plus_constant (Pmode
, size
, extra
));
3759 else if (REG_P (size
) && extra
== 0)
3760 anti_adjust_stack (size
);
3763 temp
= copy_to_mode_reg (Pmode
, size
);
3765 temp
= expand_binop (Pmode
, add_optab
, temp
,
3766 gen_int_mode (extra
, Pmode
),
3767 temp
, 0, OPTAB_LIB_WIDEN
);
3768 anti_adjust_stack (temp
);
3771 #ifndef STACK_GROWS_DOWNWARD
3777 temp
= virtual_outgoing_args_rtx
;
3778 if (extra
!= 0 && below
)
3779 temp
= plus_constant (Pmode
, temp
, extra
);
3783 if (CONST_INT_P (size
))
3784 temp
= plus_constant (Pmode
, virtual_outgoing_args_rtx
,
3785 -INTVAL (size
) - (below
? 0 : extra
));
3786 else if (extra
!= 0 && !below
)
3787 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3788 negate_rtx (Pmode
, plus_constant (Pmode
, size
,
3791 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3792 negate_rtx (Pmode
, size
));
3795 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT
), temp
);
3798 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3801 mem_autoinc_base (rtx mem
)
3805 rtx addr
= XEXP (mem
, 0);
3806 if (GET_RTX_CLASS (GET_CODE (addr
)) == RTX_AUTOINC
)
3807 return XEXP (addr
, 0);
3812 /* A utility routine used here, in reload, and in try_split. The insns
3813 after PREV up to and including LAST are known to adjust the stack,
3814 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3815 placing notes as appropriate. PREV may be NULL, indicating the
3816 entire insn sequence prior to LAST should be scanned.
3818 The set of allowed stack pointer modifications is small:
3819 (1) One or more auto-inc style memory references (aka pushes),
3820 (2) One or more addition/subtraction with the SP as destination,
3821 (3) A single move insn with the SP as destination,
3822 (4) A call_pop insn,
3823 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3825 Insns in the sequence that do not modify the SP are ignored,
3826 except for noreturn calls.
3828 The return value is the amount of adjustment that can be trivially
3829 verified, via immediate operand or auto-inc. If the adjustment
3830 cannot be trivially extracted, the return value is INT_MIN. */
3833 find_args_size_adjust (rtx insn
)
3838 pat
= PATTERN (insn
);
3841 /* Look for a call_pop pattern. */
3844 /* We have to allow non-call_pop patterns for the case
3845 of emit_single_push_insn of a TLS address. */
3846 if (GET_CODE (pat
) != PARALLEL
)
3849 /* All call_pop have a stack pointer adjust in the parallel.
3850 The call itself is always first, and the stack adjust is
3851 usually last, so search from the end. */
3852 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; --i
)
3854 set
= XVECEXP (pat
, 0, i
);
3855 if (GET_CODE (set
) != SET
)
3857 dest
= SET_DEST (set
);
3858 if (dest
== stack_pointer_rtx
)
3861 /* We'd better have found the stack pointer adjust. */
3864 /* Fall through to process the extracted SET and DEST
3865 as if it was a standalone insn. */
3867 else if (GET_CODE (pat
) == SET
)
3869 else if ((set
= single_set (insn
)) != NULL
)
3871 else if (GET_CODE (pat
) == PARALLEL
)
3873 /* ??? Some older ports use a parallel with a stack adjust
3874 and a store for a PUSH_ROUNDING pattern, rather than a
3875 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3876 /* ??? See h8300 and m68k, pushqi1. */
3877 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; --i
)
3879 set
= XVECEXP (pat
, 0, i
);
3880 if (GET_CODE (set
) != SET
)
3882 dest
= SET_DEST (set
);
3883 if (dest
== stack_pointer_rtx
)
3886 /* We do not expect an auto-inc of the sp in the parallel. */
3887 gcc_checking_assert (mem_autoinc_base (dest
) != stack_pointer_rtx
);
3888 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
3889 != stack_pointer_rtx
);
3897 dest
= SET_DEST (set
);
3899 /* Look for direct modifications of the stack pointer. */
3900 if (REG_P (dest
) && REGNO (dest
) == STACK_POINTER_REGNUM
)
3902 /* Look for a trivial adjustment, otherwise assume nothing. */
3903 /* Note that the SPU restore_stack_block pattern refers to
3904 the stack pointer in V4SImode. Consider that non-trivial. */
3905 if (SCALAR_INT_MODE_P (GET_MODE (dest
))
3906 && GET_CODE (SET_SRC (set
)) == PLUS
3907 && XEXP (SET_SRC (set
), 0) == stack_pointer_rtx
3908 && CONST_INT_P (XEXP (SET_SRC (set
), 1)))
3909 return INTVAL (XEXP (SET_SRC (set
), 1));
3910 /* ??? Reload can generate no-op moves, which will be cleaned
3911 up later. Recognize it and continue searching. */
3912 else if (rtx_equal_p (dest
, SET_SRC (set
)))
3915 return HOST_WIDE_INT_MIN
;
3921 /* Otherwise only think about autoinc patterns. */
3922 if (mem_autoinc_base (dest
) == stack_pointer_rtx
)
3925 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
3926 != stack_pointer_rtx
);
3928 else if (mem_autoinc_base (SET_SRC (set
)) == stack_pointer_rtx
)
3929 mem
= SET_SRC (set
);
3933 addr
= XEXP (mem
, 0);
3934 switch (GET_CODE (addr
))
3938 return GET_MODE_SIZE (GET_MODE (mem
));
3941 return -GET_MODE_SIZE (GET_MODE (mem
));
3944 addr
= XEXP (addr
, 1);
3945 gcc_assert (GET_CODE (addr
) == PLUS
);
3946 gcc_assert (XEXP (addr
, 0) == stack_pointer_rtx
);
3947 gcc_assert (CONST_INT_P (XEXP (addr
, 1)));
3948 return INTVAL (XEXP (addr
, 1));
3956 fixup_args_size_notes (rtx prev
, rtx last
, int end_args_size
)
3958 int args_size
= end_args_size
;
3959 bool saw_unknown
= false;
3962 for (insn
= last
; insn
!= prev
; insn
= PREV_INSN (insn
))
3964 HOST_WIDE_INT this_delta
;
3966 if (!NONDEBUG_INSN_P (insn
))
3969 this_delta
= find_args_size_adjust (insn
);
3970 if (this_delta
== 0)
3973 || ACCUMULATE_OUTGOING_ARGS
3974 || find_reg_note (insn
, REG_NORETURN
, NULL_RTX
) == NULL_RTX
)
3978 gcc_assert (!saw_unknown
);
3979 if (this_delta
== HOST_WIDE_INT_MIN
)
3982 add_reg_note (insn
, REG_ARGS_SIZE
, GEN_INT (args_size
));
3983 #ifdef STACK_GROWS_DOWNWARD
3984 this_delta
= -(unsigned HOST_WIDE_INT
) this_delta
;
3986 args_size
-= this_delta
;
3989 return saw_unknown
? INT_MIN
: args_size
;
3992 #ifdef PUSH_ROUNDING
3993 /* Emit single push insn. */
3996 emit_single_push_insn_1 (enum machine_mode mode
, rtx x
, tree type
)
3999 unsigned rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
4001 enum insn_code icode
;
4003 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
4004 /* If there is push pattern, use it. Otherwise try old way of throwing
4005 MEM representing push operation to move expander. */
4006 icode
= optab_handler (push_optab
, mode
);
4007 if (icode
!= CODE_FOR_nothing
)
4009 struct expand_operand ops
[1];
4011 create_input_operand (&ops
[0], x
, mode
);
4012 if (maybe_expand_insn (icode
, 1, ops
))
4015 if (GET_MODE_SIZE (mode
) == rounded_size
)
4016 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
4017 /* If we are to pad downward, adjust the stack pointer first and
4018 then store X into the stack location using an offset. This is
4019 because emit_move_insn does not know how to pad; it does not have
4021 else if (FUNCTION_ARG_PADDING (mode
, type
) == downward
)
4023 unsigned padding_size
= rounded_size
- GET_MODE_SIZE (mode
);
4024 HOST_WIDE_INT offset
;
4026 emit_move_insn (stack_pointer_rtx
,
4027 expand_binop (Pmode
,
4028 #ifdef STACK_GROWS_DOWNWARD
4034 gen_int_mode (rounded_size
, Pmode
),
4035 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
4037 offset
= (HOST_WIDE_INT
) padding_size
;
4038 #ifdef STACK_GROWS_DOWNWARD
4039 if (STACK_PUSH_CODE
== POST_DEC
)
4040 /* We have already decremented the stack pointer, so get the
4042 offset
+= (HOST_WIDE_INT
) rounded_size
;
4044 if (STACK_PUSH_CODE
== POST_INC
)
4045 /* We have already incremented the stack pointer, so get the
4047 offset
-= (HOST_WIDE_INT
) rounded_size
;
4049 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
4050 gen_int_mode (offset
, Pmode
));
4054 #ifdef STACK_GROWS_DOWNWARD
4055 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4056 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
4057 gen_int_mode (-(HOST_WIDE_INT
) rounded_size
,
4060 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4061 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
4062 gen_int_mode (rounded_size
, Pmode
));
4064 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
4067 dest
= gen_rtx_MEM (mode
, dest_addr
);
4071 set_mem_attributes (dest
, type
, 1);
4073 if (flag_optimize_sibling_calls
)
4074 /* Function incoming arguments may overlap with sibling call
4075 outgoing arguments and we cannot allow reordering of reads
4076 from function arguments with stores to outgoing arguments
4077 of sibling calls. */
4078 set_mem_alias_set (dest
, 0);
4080 emit_move_insn (dest
, x
);
4083 /* Emit and annotate a single push insn. */
4086 emit_single_push_insn (enum machine_mode mode
, rtx x
, tree type
)
4088 int delta
, old_delta
= stack_pointer_delta
;
4089 rtx prev
= get_last_insn ();
4092 emit_single_push_insn_1 (mode
, x
, type
);
4094 last
= get_last_insn ();
4096 /* Notice the common case where we emitted exactly one insn. */
4097 if (PREV_INSN (last
) == prev
)
4099 add_reg_note (last
, REG_ARGS_SIZE
, GEN_INT (stack_pointer_delta
));
4103 delta
= fixup_args_size_notes (prev
, last
, stack_pointer_delta
);
4104 gcc_assert (delta
== INT_MIN
|| delta
== old_delta
);
4108 /* Generate code to push X onto the stack, assuming it has mode MODE and
4110 MODE is redundant except when X is a CONST_INT (since they don't
4112 SIZE is an rtx for the size of data to be copied (in bytes),
4113 needed only if X is BLKmode.
4115 ALIGN (in bits) is maximum alignment we can assume.
4117 If PARTIAL and REG are both nonzero, then copy that many of the first
4118 bytes of X into registers starting with REG, and push the rest of X.
4119 The amount of space pushed is decreased by PARTIAL bytes.
4120 REG must be a hard register in this case.
4121 If REG is zero but PARTIAL is not, take any all others actions for an
4122 argument partially in registers, but do not actually load any
4125 EXTRA is the amount in bytes of extra space to leave next to this arg.
4126 This is ignored if an argument block has already been allocated.
4128 On a machine that lacks real push insns, ARGS_ADDR is the address of
4129 the bottom of the argument block for this call. We use indexing off there
4130 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4131 argument block has not been preallocated.
4133 ARGS_SO_FAR is the size of args previously pushed for this call.
4135 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4136 for arguments passed in registers. If nonzero, it will be the number
4137 of bytes required. */
4140 emit_push_insn (rtx x
, enum machine_mode mode
, tree type
, rtx size
,
4141 unsigned int align
, int partial
, rtx reg
, int extra
,
4142 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
4146 enum direction stack_direction
4147 #ifdef STACK_GROWS_DOWNWARD
4153 /* Decide where to pad the argument: `downward' for below,
4154 `upward' for above, or `none' for don't pad it.
4155 Default is below for small data on big-endian machines; else above. */
4156 enum direction where_pad
= FUNCTION_ARG_PADDING (mode
, type
);
4158 /* Invert direction if stack is post-decrement.
4160 if (STACK_PUSH_CODE
== POST_DEC
)
4161 if (where_pad
!= none
)
4162 where_pad
= (where_pad
== downward
? upward
: downward
);
4167 || (STRICT_ALIGNMENT
&& align
< GET_MODE_ALIGNMENT (mode
)))
4169 /* Copy a block into the stack, entirely or partially. */
4176 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4177 used
= partial
- offset
;
4179 if (mode
!= BLKmode
)
4181 /* A value is to be stored in an insufficiently aligned
4182 stack slot; copy via a suitably aligned slot if
4184 size
= GEN_INT (GET_MODE_SIZE (mode
));
4185 if (!MEM_P (xinner
))
4187 temp
= assign_temp (type
, 1, 1);
4188 emit_move_insn (temp
, xinner
);
4195 /* USED is now the # of bytes we need not copy to the stack
4196 because registers will take care of them. */
4199 xinner
= adjust_address (xinner
, BLKmode
, used
);
4201 /* If the partial register-part of the arg counts in its stack size,
4202 skip the part of stack space corresponding to the registers.
4203 Otherwise, start copying to the beginning of the stack space,
4204 by setting SKIP to 0. */
4205 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
4207 #ifdef PUSH_ROUNDING
4208 /* Do it with several push insns if that doesn't take lots of insns
4209 and if there is no difficulty with push insns that skip bytes
4210 on the stack for alignment purposes. */
4213 && CONST_INT_P (size
)
4215 && MEM_ALIGN (xinner
) >= align
4216 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size
) - used
, align
))
4217 /* Here we avoid the case of a structure whose weak alignment
4218 forces many pushes of a small amount of data,
4219 and such small pushes do rounding that causes trouble. */
4220 && ((! SLOW_UNALIGNED_ACCESS (word_mode
, align
))
4221 || align
>= BIGGEST_ALIGNMENT
4222 || (PUSH_ROUNDING (align
/ BITS_PER_UNIT
)
4223 == (align
/ BITS_PER_UNIT
)))
4224 && (HOST_WIDE_INT
) PUSH_ROUNDING (INTVAL (size
)) == INTVAL (size
))
4226 /* Push padding now if padding above and stack grows down,
4227 or if padding below and stack grows up.
4228 But if space already allocated, this has already been done. */
4229 if (extra
&& args_addr
== 0
4230 && where_pad
!= none
&& where_pad
!= stack_direction
)
4231 anti_adjust_stack (GEN_INT (extra
));
4233 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
, 0);
4236 #endif /* PUSH_ROUNDING */
4240 /* Otherwise make space on the stack and copy the data
4241 to the address of that space. */
4243 /* Deduct words put into registers from the size we must copy. */
4246 if (CONST_INT_P (size
))
4247 size
= GEN_INT (INTVAL (size
) - used
);
4249 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
4250 gen_int_mode (used
, GET_MODE (size
)),
4251 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
4254 /* Get the address of the stack space.
4255 In this case, we do not deal with EXTRA separately.
4256 A single stack adjust will do. */
4259 temp
= push_block (size
, extra
, where_pad
== downward
);
4262 else if (CONST_INT_P (args_so_far
))
4263 temp
= memory_address (BLKmode
,
4264 plus_constant (Pmode
, args_addr
,
4265 skip
+ INTVAL (args_so_far
)));
4267 temp
= memory_address (BLKmode
,
4268 plus_constant (Pmode
,
4269 gen_rtx_PLUS (Pmode
,
4274 if (!ACCUMULATE_OUTGOING_ARGS
)
4276 /* If the source is referenced relative to the stack pointer,
4277 copy it to another register to stabilize it. We do not need
4278 to do this if we know that we won't be changing sp. */
4280 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
4281 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
4282 temp
= copy_to_reg (temp
);
4285 target
= gen_rtx_MEM (BLKmode
, temp
);
4287 /* We do *not* set_mem_attributes here, because incoming arguments
4288 may overlap with sibling call outgoing arguments and we cannot
4289 allow reordering of reads from function arguments with stores
4290 to outgoing arguments of sibling calls. We do, however, want
4291 to record the alignment of the stack slot. */
4292 /* ALIGN may well be better aligned than TYPE, e.g. due to
4293 PARM_BOUNDARY. Assume the caller isn't lying. */
4294 set_mem_align (target
, align
);
4296 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
4299 else if (partial
> 0)
4301 /* Scalar partly in registers. */
4303 int size
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
4306 /* # bytes of start of argument
4307 that we must make space for but need not store. */
4308 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4309 int args_offset
= INTVAL (args_so_far
);
4312 /* Push padding now if padding above and stack grows down,
4313 or if padding below and stack grows up.
4314 But if space already allocated, this has already been done. */
4315 if (extra
&& args_addr
== 0
4316 && where_pad
!= none
&& where_pad
!= stack_direction
)
4317 anti_adjust_stack (GEN_INT (extra
));
4319 /* If we make space by pushing it, we might as well push
4320 the real data. Otherwise, we can leave OFFSET nonzero
4321 and leave the space uninitialized. */
4325 /* Now NOT_STACK gets the number of words that we don't need to
4326 allocate on the stack. Convert OFFSET to words too. */
4327 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
4328 offset
/= UNITS_PER_WORD
;
4330 /* If the partial register-part of the arg counts in its stack size,
4331 skip the part of stack space corresponding to the registers.
4332 Otherwise, start copying to the beginning of the stack space,
4333 by setting SKIP to 0. */
4334 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
4336 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
4337 x
= validize_mem (force_const_mem (mode
, x
));
4339 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4340 SUBREGs of such registers are not allowed. */
4341 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
4342 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
4343 x
= copy_to_reg (x
);
4345 /* Loop over all the words allocated on the stack for this arg. */
4346 /* We can do it by words, because any scalar bigger than a word
4347 has a size a multiple of a word. */
4348 #ifndef PUSH_ARGS_REVERSED
4349 for (i
= not_stack
; i
< size
; i
++)
4351 for (i
= size
- 1; i
>= not_stack
; i
--)
4353 if (i
>= not_stack
+ offset
)
4354 emit_push_insn (operand_subword_force (x
, i
, mode
),
4355 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
4357 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
4359 reg_parm_stack_space
, alignment_pad
);
4366 /* Push padding now if padding above and stack grows down,
4367 or if padding below and stack grows up.
4368 But if space already allocated, this has already been done. */
4369 if (extra
&& args_addr
== 0
4370 && where_pad
!= none
&& where_pad
!= stack_direction
)
4371 anti_adjust_stack (GEN_INT (extra
));
4373 #ifdef PUSH_ROUNDING
4374 if (args_addr
== 0 && PUSH_ARGS
)
4375 emit_single_push_insn (mode
, x
, type
);
4379 if (CONST_INT_P (args_so_far
))
4381 = memory_address (mode
,
4382 plus_constant (Pmode
, args_addr
,
4383 INTVAL (args_so_far
)));
4385 addr
= memory_address (mode
, gen_rtx_PLUS (Pmode
, args_addr
,
4387 dest
= gen_rtx_MEM (mode
, addr
);
4389 /* We do *not* set_mem_attributes here, because incoming arguments
4390 may overlap with sibling call outgoing arguments and we cannot
4391 allow reordering of reads from function arguments with stores
4392 to outgoing arguments of sibling calls. We do, however, want
4393 to record the alignment of the stack slot. */
4394 /* ALIGN may well be better aligned than TYPE, e.g. due to
4395 PARM_BOUNDARY. Assume the caller isn't lying. */
4396 set_mem_align (dest
, align
);
4398 emit_move_insn (dest
, x
);
4402 /* If part should go in registers, copy that part
4403 into the appropriate registers. Do this now, at the end,
4404 since mem-to-mem copies above may do function calls. */
4405 if (partial
> 0 && reg
!= 0)
4407 /* Handle calls that pass values in multiple non-contiguous locations.
4408 The Irix 6 ABI has examples of this. */
4409 if (GET_CODE (reg
) == PARALLEL
)
4410 emit_group_load (reg
, x
, type
, -1);
4413 gcc_assert (partial
% UNITS_PER_WORD
== 0);
4414 move_block_to_reg (REGNO (reg
), x
, partial
/ UNITS_PER_WORD
, mode
);
4418 if (extra
&& args_addr
== 0 && where_pad
== stack_direction
)
4419 anti_adjust_stack (GEN_INT (extra
));
4421 if (alignment_pad
&& args_addr
== 0)
4422 anti_adjust_stack (alignment_pad
);
4425 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4429 get_subtarget (rtx x
)
4433 /* Only registers can be subtargets. */
4435 /* Don't use hard regs to avoid extending their life. */
4436 || REGNO (x
) < FIRST_PSEUDO_REGISTER
4440 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4441 FIELD is a bitfield. Returns true if the optimization was successful,
4442 and there's nothing else to do. */
4445 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize
,
4446 unsigned HOST_WIDE_INT bitpos
,
4447 unsigned HOST_WIDE_INT bitregion_start
,
4448 unsigned HOST_WIDE_INT bitregion_end
,
4449 enum machine_mode mode1
, rtx str_rtx
,
4452 enum machine_mode str_mode
= GET_MODE (str_rtx
);
4453 unsigned int str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4458 enum tree_code code
;
4460 if (mode1
!= VOIDmode
4461 || bitsize
>= BITS_PER_WORD
4462 || str_bitsize
> BITS_PER_WORD
4463 || TREE_SIDE_EFFECTS (to
)
4464 || TREE_THIS_VOLATILE (to
))
4468 if (TREE_CODE (src
) != SSA_NAME
)
4470 if (TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
4473 srcstmt
= get_gimple_for_ssa_name (src
);
4475 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt
)) != tcc_binary
)
4478 code
= gimple_assign_rhs_code (srcstmt
);
4480 op0
= gimple_assign_rhs1 (srcstmt
);
4482 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4483 to find its initialization. Hopefully the initialization will
4484 be from a bitfield load. */
4485 if (TREE_CODE (op0
) == SSA_NAME
)
4487 gimple op0stmt
= get_gimple_for_ssa_name (op0
);
4489 /* We want to eventually have OP0 be the same as TO, which
4490 should be a bitfield. */
4492 || !is_gimple_assign (op0stmt
)
4493 || gimple_assign_rhs_code (op0stmt
) != TREE_CODE (to
))
4495 op0
= gimple_assign_rhs1 (op0stmt
);
4498 op1
= gimple_assign_rhs2 (srcstmt
);
4500 if (!operand_equal_p (to
, op0
, 0))
4503 if (MEM_P (str_rtx
))
4505 unsigned HOST_WIDE_INT offset1
;
4507 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
4508 str_mode
= word_mode
;
4509 str_mode
= get_best_mode (bitsize
, bitpos
,
4510 bitregion_start
, bitregion_end
,
4511 MEM_ALIGN (str_rtx
), str_mode
, 0);
4512 if (str_mode
== VOIDmode
)
4514 str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4517 bitpos
%= str_bitsize
;
4518 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
4519 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
4521 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
4524 /* If the bit field covers the whole REG/MEM, store_field
4525 will likely generate better code. */
4526 if (bitsize
>= str_bitsize
)
4529 /* We can't handle fields split across multiple entities. */
4530 if (bitpos
+ bitsize
> str_bitsize
)
4533 if (BYTES_BIG_ENDIAN
)
4534 bitpos
= str_bitsize
- bitpos
- bitsize
;
4540 /* For now, just optimize the case of the topmost bitfield
4541 where we don't need to do any masking and also
4542 1 bit bitfields where xor can be used.
4543 We might win by one instruction for the other bitfields
4544 too if insv/extv instructions aren't used, so that
4545 can be added later. */
4546 if (bitpos
+ bitsize
!= str_bitsize
4547 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
4550 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4551 value
= convert_modes (str_mode
,
4552 TYPE_MODE (TREE_TYPE (op1
)), value
,
4553 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4555 /* We may be accessing data outside the field, which means
4556 we can alias adjacent data. */
4557 if (MEM_P (str_rtx
))
4559 str_rtx
= shallow_copy_rtx (str_rtx
);
4560 set_mem_alias_set (str_rtx
, 0);
4561 set_mem_expr (str_rtx
, 0);
4564 binop
= code
== PLUS_EXPR
? add_optab
: sub_optab
;
4565 if (bitsize
== 1 && bitpos
+ bitsize
!= str_bitsize
)
4567 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
4570 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4571 result
= expand_binop (str_mode
, binop
, str_rtx
,
4572 value
, str_rtx
, 1, OPTAB_WIDEN
);
4573 if (result
!= str_rtx
)
4574 emit_move_insn (str_rtx
, result
);
4579 if (TREE_CODE (op1
) != INTEGER_CST
)
4581 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4582 value
= convert_modes (str_mode
,
4583 TYPE_MODE (TREE_TYPE (op1
)), value
,
4584 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4586 /* We may be accessing data outside the field, which means
4587 we can alias adjacent data. */
4588 if (MEM_P (str_rtx
))
4590 str_rtx
= shallow_copy_rtx (str_rtx
);
4591 set_mem_alias_set (str_rtx
, 0);
4592 set_mem_expr (str_rtx
, 0);
4595 binop
= code
== BIT_IOR_EXPR
? ior_optab
: xor_optab
;
4596 if (bitpos
+ bitsize
!= str_bitsize
)
4598 rtx mask
= gen_int_mode (((unsigned HOST_WIDE_INT
) 1 << bitsize
) - 1,
4600 value
= expand_and (str_mode
, value
, mask
, NULL_RTX
);
4602 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4603 result
= expand_binop (str_mode
, binop
, str_rtx
,
4604 value
, str_rtx
, 1, OPTAB_WIDEN
);
4605 if (result
!= str_rtx
)
4606 emit_move_insn (str_rtx
, result
);
4616 /* In the C++ memory model, consecutive bit fields in a structure are
4617 considered one memory location.
4619 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4620 returns the bit range of consecutive bits in which this COMPONENT_REF
4621 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4622 and *OFFSET may be adjusted in the process.
4624 If the access does not need to be restricted, 0 is returned in both
4625 *BITSTART and *BITEND. */
4628 get_bit_range (unsigned HOST_WIDE_INT
*bitstart
,
4629 unsigned HOST_WIDE_INT
*bitend
,
4631 HOST_WIDE_INT
*bitpos
,
4634 HOST_WIDE_INT bitoffset
;
4637 gcc_assert (TREE_CODE (exp
) == COMPONENT_REF
);
4639 field
= TREE_OPERAND (exp
, 1);
4640 repr
= DECL_BIT_FIELD_REPRESENTATIVE (field
);
4641 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4642 need to limit the range we can access. */
4645 *bitstart
= *bitend
= 0;
4649 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4650 part of a larger bit field, then the representative does not serve any
4651 useful purpose. This can occur in Ada. */
4652 if (handled_component_p (TREE_OPERAND (exp
, 0)))
4654 enum machine_mode rmode
;
4655 HOST_WIDE_INT rbitsize
, rbitpos
;
4659 get_inner_reference (TREE_OPERAND (exp
, 0), &rbitsize
, &rbitpos
,
4660 &roffset
, &rmode
, &unsignedp
, &volatilep
, false);
4661 if ((rbitpos
% BITS_PER_UNIT
) != 0)
4663 *bitstart
= *bitend
= 0;
4668 /* Compute the adjustment to bitpos from the offset of the field
4669 relative to the representative. DECL_FIELD_OFFSET of field and
4670 repr are the same by construction if they are not constants,
4671 see finish_bitfield_layout. */
4672 if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field
))
4673 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr
)))
4674 bitoffset
= (tree_to_uhwi (DECL_FIELD_OFFSET (field
))
4675 - tree_to_uhwi (DECL_FIELD_OFFSET (repr
))) * BITS_PER_UNIT
;
4678 bitoffset
+= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
4679 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
)));
4681 /* If the adjustment is larger than bitpos, we would have a negative bit
4682 position for the lower bound and this may wreak havoc later. Adjust
4683 offset and bitpos to make the lower bound non-negative in that case. */
4684 if (bitoffset
> *bitpos
)
4686 HOST_WIDE_INT adjust
= bitoffset
- *bitpos
;
4687 gcc_assert ((adjust
% BITS_PER_UNIT
) == 0);
4690 if (*offset
== NULL_TREE
)
4691 *offset
= size_int (-adjust
/ BITS_PER_UNIT
);
4694 = size_binop (MINUS_EXPR
, *offset
, size_int (adjust
/ BITS_PER_UNIT
));
4698 *bitstart
= *bitpos
- bitoffset
;
4700 *bitend
= *bitstart
+ tree_to_uhwi (DECL_SIZE (repr
)) - 1;
4703 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4704 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4705 DECL_RTL was not set yet, return NORTL. */
4708 addr_expr_of_non_mem_decl_p_1 (tree addr
, bool nortl
)
4710 if (TREE_CODE (addr
) != ADDR_EXPR
)
4713 tree base
= TREE_OPERAND (addr
, 0);
4716 || TREE_ADDRESSABLE (base
)
4717 || DECL_MODE (base
) == BLKmode
)
4720 if (!DECL_RTL_SET_P (base
))
4723 return (!MEM_P (DECL_RTL (base
)));
4726 /* Returns true if the MEM_REF REF refers to an object that does not
4727 reside in memory and has non-BLKmode. */
4730 mem_ref_refers_to_non_mem_p (tree ref
)
4732 tree base
= TREE_OPERAND (ref
, 0);
4733 return addr_expr_of_non_mem_decl_p_1 (base
, false);
4736 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4737 is true, try generating a nontemporal store. */
4740 expand_assignment (tree to
, tree from
, bool nontemporal
)
4744 enum machine_mode mode
;
4746 enum insn_code icode
;
4748 /* Don't crash if the lhs of the assignment was erroneous. */
4749 if (TREE_CODE (to
) == ERROR_MARK
)
4751 expand_normal (from
);
4755 /* Optimize away no-op moves without side-effects. */
4756 if (operand_equal_p (to
, from
, 0))
4759 /* Handle misaligned stores. */
4760 mode
= TYPE_MODE (TREE_TYPE (to
));
4761 if ((TREE_CODE (to
) == MEM_REF
4762 || TREE_CODE (to
) == TARGET_MEM_REF
)
4764 && !mem_ref_refers_to_non_mem_p (to
)
4765 && ((align
= get_object_alignment (to
))
4766 < GET_MODE_ALIGNMENT (mode
))
4767 && (((icode
= optab_handler (movmisalign_optab
, mode
))
4768 != CODE_FOR_nothing
)
4769 || SLOW_UNALIGNED_ACCESS (mode
, align
)))
4773 reg
= expand_expr (from
, NULL_RTX
, VOIDmode
, EXPAND_NORMAL
);
4774 reg
= force_not_mem (reg
);
4775 mem
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4777 if (icode
!= CODE_FOR_nothing
)
4779 struct expand_operand ops
[2];
4781 create_fixed_operand (&ops
[0], mem
);
4782 create_input_operand (&ops
[1], reg
, mode
);
4783 /* The movmisalign<mode> pattern cannot fail, else the assignment
4784 would silently be omitted. */
4785 expand_insn (icode
, 2, ops
);
4788 store_bit_field (mem
, GET_MODE_BITSIZE (mode
), 0, 0, 0, mode
, reg
);
4792 /* Assignment of a structure component needs special treatment
4793 if the structure component's rtx is not simply a MEM.
4794 Assignment of an array element at a constant index, and assignment of
4795 an array element in an unaligned packed structure field, has the same
4796 problem. Same for (partially) storing into a non-memory object. */
4797 if (handled_component_p (to
)
4798 || (TREE_CODE (to
) == MEM_REF
4799 && mem_ref_refers_to_non_mem_p (to
))
4800 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
4802 enum machine_mode mode1
;
4803 HOST_WIDE_INT bitsize
, bitpos
;
4804 unsigned HOST_WIDE_INT bitregion_start
= 0;
4805 unsigned HOST_WIDE_INT bitregion_end
= 0;
4812 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
4813 &unsignedp
, &volatilep
, true);
4815 /* Make sure bitpos is not negative, it can wreak havoc later. */
4818 gcc_assert (offset
== NULL_TREE
);
4819 offset
= size_int (bitpos
>> (BITS_PER_UNIT
== 8
4820 ? 3 : exact_log2 (BITS_PER_UNIT
)));
4821 bitpos
&= BITS_PER_UNIT
- 1;
4824 if (TREE_CODE (to
) == COMPONENT_REF
4825 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to
, 1)))
4826 get_bit_range (&bitregion_start
, &bitregion_end
, to
, &bitpos
, &offset
);
4827 /* The C++ memory model naturally applies to byte-aligned fields.
4828 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
4829 BITSIZE are not byte-aligned, there is no need to limit the range
4830 we can access. This can occur with packed structures in Ada. */
4831 else if (bitsize
> 0
4832 && bitsize
% BITS_PER_UNIT
== 0
4833 && bitpos
% BITS_PER_UNIT
== 0)
4835 bitregion_start
= bitpos
;
4836 bitregion_end
= bitpos
+ bitsize
- 1;
4839 to_rtx
= expand_expr (tem
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4841 /* If the bitfield is volatile, we want to access it in the
4842 field's mode, not the computed mode.
4843 If a MEM has VOIDmode (external with incomplete type),
4844 use BLKmode for it instead. */
4847 if (volatilep
&& flag_strict_volatile_bitfields
> 0)
4848 to_rtx
= adjust_address (to_rtx
, mode1
, 0);
4849 else if (GET_MODE (to_rtx
) == VOIDmode
)
4850 to_rtx
= adjust_address (to_rtx
, BLKmode
, 0);
4855 enum machine_mode address_mode
;
4858 if (!MEM_P (to_rtx
))
4860 /* We can get constant negative offsets into arrays with broken
4861 user code. Translate this to a trap instead of ICEing. */
4862 gcc_assert (TREE_CODE (offset
) == INTEGER_CST
);
4863 expand_builtin_trap ();
4864 to_rtx
= gen_rtx_MEM (BLKmode
, const0_rtx
);
4867 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
4868 address_mode
= get_address_mode (to_rtx
);
4869 if (GET_MODE (offset_rtx
) != address_mode
)
4870 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
4872 /* The check for a constant address in TO_RTX not having VOIDmode
4873 is probably no longer necessary. */
4875 && GET_MODE (to_rtx
) == BLKmode
4876 && GET_MODE (XEXP (to_rtx
, 0)) != VOIDmode
4878 && (bitpos
% bitsize
) == 0
4879 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
4880 && MEM_ALIGN (to_rtx
) == GET_MODE_ALIGNMENT (mode1
))
4882 to_rtx
= adjust_address (to_rtx
, mode1
, bitpos
/ BITS_PER_UNIT
);
4886 to_rtx
= offset_address (to_rtx
, offset_rtx
,
4887 highest_pow2_factor_for_target (to
,
4891 /* No action is needed if the target is not a memory and the field
4892 lies completely outside that target. This can occur if the source
4893 code contains an out-of-bounds access to a small array. */
4895 && GET_MODE (to_rtx
) != BLKmode
4896 && (unsigned HOST_WIDE_INT
) bitpos
4897 >= GET_MODE_PRECISION (GET_MODE (to_rtx
)))
4899 expand_normal (from
);
4902 /* Handle expand_expr of a complex value returning a CONCAT. */
4903 else if (GET_CODE (to_rtx
) == CONCAT
)
4905 unsigned short mode_bitsize
= GET_MODE_BITSIZE (GET_MODE (to_rtx
));
4906 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from
)))
4908 && bitsize
== mode_bitsize
)
4909 result
= store_expr (from
, to_rtx
, false, nontemporal
);
4910 else if (bitsize
== mode_bitsize
/ 2
4911 && (bitpos
== 0 || bitpos
== mode_bitsize
/ 2))
4912 result
= store_expr (from
, XEXP (to_rtx
, bitpos
!= 0), false,
4914 else if (bitpos
+ bitsize
<= mode_bitsize
/ 2)
4915 result
= store_field (XEXP (to_rtx
, 0), bitsize
, bitpos
,
4916 bitregion_start
, bitregion_end
,
4918 get_alias_set (to
), nontemporal
);
4919 else if (bitpos
>= mode_bitsize
/ 2)
4920 result
= store_field (XEXP (to_rtx
, 1), bitsize
,
4921 bitpos
- mode_bitsize
/ 2,
4922 bitregion_start
, bitregion_end
,
4924 get_alias_set (to
), nontemporal
);
4925 else if (bitpos
== 0 && bitsize
== mode_bitsize
)
4928 result
= expand_normal (from
);
4929 from_rtx
= simplify_gen_subreg (GET_MODE (to_rtx
), result
,
4930 TYPE_MODE (TREE_TYPE (from
)), 0);
4931 emit_move_insn (XEXP (to_rtx
, 0),
4932 read_complex_part (from_rtx
, false));
4933 emit_move_insn (XEXP (to_rtx
, 1),
4934 read_complex_part (from_rtx
, true));
4938 rtx temp
= assign_stack_temp (GET_MODE (to_rtx
),
4939 GET_MODE_SIZE (GET_MODE (to_rtx
)));
4940 write_complex_part (temp
, XEXP (to_rtx
, 0), false);
4941 write_complex_part (temp
, XEXP (to_rtx
, 1), true);
4942 result
= store_field (temp
, bitsize
, bitpos
,
4943 bitregion_start
, bitregion_end
,
4945 get_alias_set (to
), nontemporal
);
4946 emit_move_insn (XEXP (to_rtx
, 0), read_complex_part (temp
, false));
4947 emit_move_insn (XEXP (to_rtx
, 1), read_complex_part (temp
, true));
4954 /* If the field is at offset zero, we could have been given the
4955 DECL_RTX of the parent struct. Don't munge it. */
4956 to_rtx
= shallow_copy_rtx (to_rtx
);
4957 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
4959 MEM_VOLATILE_P (to_rtx
) = 1;
4962 if (optimize_bitfield_assignment_op (bitsize
, bitpos
,
4963 bitregion_start
, bitregion_end
,
4968 result
= store_field (to_rtx
, bitsize
, bitpos
,
4969 bitregion_start
, bitregion_end
,
4971 get_alias_set (to
), nontemporal
);
4975 preserve_temp_slots (result
);
4980 /* If the rhs is a function call and its value is not an aggregate,
4981 call the function before we start to compute the lhs.
4982 This is needed for correct code for cases such as
4983 val = setjmp (buf) on machines where reference to val
4984 requires loading up part of an address in a separate insn.
4986 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4987 since it might be a promoted variable where the zero- or sign- extension
4988 needs to be done. Handling this in the normal way is safe because no
4989 computation is done before the call. The same is true for SSA names. */
4990 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
4991 && COMPLETE_TYPE_P (TREE_TYPE (from
))
4992 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
4993 && ! (((TREE_CODE (to
) == VAR_DECL
4994 || TREE_CODE (to
) == PARM_DECL
4995 || TREE_CODE (to
) == RESULT_DECL
)
4996 && REG_P (DECL_RTL (to
)))
4997 || TREE_CODE (to
) == SSA_NAME
))
5002 value
= expand_normal (from
);
5004 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5006 /* Handle calls that return values in multiple non-contiguous locations.
5007 The Irix 6 ABI has examples of this. */
5008 if (GET_CODE (to_rtx
) == PARALLEL
)
5010 if (GET_CODE (value
) == PARALLEL
)
5011 emit_group_move (to_rtx
, value
);
5013 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
5014 int_size_in_bytes (TREE_TYPE (from
)));
5016 else if (GET_CODE (value
) == PARALLEL
)
5017 emit_group_store (to_rtx
, value
, TREE_TYPE (from
),
5018 int_size_in_bytes (TREE_TYPE (from
)));
5019 else if (GET_MODE (to_rtx
) == BLKmode
)
5021 /* Handle calls that return BLKmode values in registers. */
5023 copy_blkmode_from_reg (to_rtx
, value
, TREE_TYPE (from
));
5025 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
5029 if (POINTER_TYPE_P (TREE_TYPE (to
)))
5030 value
= convert_memory_address_addr_space
5031 (GET_MODE (to_rtx
), value
,
5032 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to
))));
5034 emit_move_insn (to_rtx
, value
);
5036 preserve_temp_slots (to_rtx
);
5041 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5042 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5044 /* Don't move directly into a return register. */
5045 if (TREE_CODE (to
) == RESULT_DECL
5046 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
5052 /* If the source is itself a return value, it still is in a pseudo at
5053 this point so we can move it back to the return register directly. */
5055 && TYPE_MODE (TREE_TYPE (from
)) == BLKmode
5056 && TREE_CODE (from
) != CALL_EXPR
)
5057 temp
= copy_blkmode_to_reg (GET_MODE (to_rtx
), from
);
5059 temp
= expand_expr (from
, NULL_RTX
, GET_MODE (to_rtx
), EXPAND_NORMAL
);
5061 /* Handle calls that return values in multiple non-contiguous locations.
5062 The Irix 6 ABI has examples of this. */
5063 if (GET_CODE (to_rtx
) == PARALLEL
)
5065 if (GET_CODE (temp
) == PARALLEL
)
5066 emit_group_move (to_rtx
, temp
);
5068 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
5069 int_size_in_bytes (TREE_TYPE (from
)));
5072 emit_move_insn (to_rtx
, temp
);
5074 preserve_temp_slots (to_rtx
);
5079 /* In case we are returning the contents of an object which overlaps
5080 the place the value is being stored, use a safe function when copying
5081 a value through a pointer into a structure value return block. */
5082 if (TREE_CODE (to
) == RESULT_DECL
5083 && TREE_CODE (from
) == INDIRECT_REF
5084 && ADDR_SPACE_GENERIC_P
5085 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from
, 0)))))
5086 && refs_may_alias_p (to
, from
)
5087 && cfun
->returns_struct
5088 && !cfun
->returns_pcc_struct
)
5093 size
= expr_size (from
);
5094 from_rtx
= expand_normal (from
);
5096 emit_library_call (memmove_libfunc
, LCT_NORMAL
,
5097 VOIDmode
, 3, XEXP (to_rtx
, 0), Pmode
,
5098 XEXP (from_rtx
, 0), Pmode
,
5099 convert_to_mode (TYPE_MODE (sizetype
),
5100 size
, TYPE_UNSIGNED (sizetype
)),
5101 TYPE_MODE (sizetype
));
5103 preserve_temp_slots (to_rtx
);
5108 /* Compute FROM and store the value in the rtx we got. */
5111 result
= store_expr (from
, to_rtx
, 0, nontemporal
);
5112 preserve_temp_slots (result
);
5117 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5118 succeeded, false otherwise. */
5121 emit_storent_insn (rtx to
, rtx from
)
5123 struct expand_operand ops
[2];
5124 enum machine_mode mode
= GET_MODE (to
);
5125 enum insn_code code
= optab_handler (storent_optab
, mode
);
5127 if (code
== CODE_FOR_nothing
)
5130 create_fixed_operand (&ops
[0], to
);
5131 create_input_operand (&ops
[1], from
, mode
);
5132 return maybe_expand_insn (code
, 2, ops
);
5135 /* Generate code for computing expression EXP,
5136 and storing the value into TARGET.
5138 If the mode is BLKmode then we may return TARGET itself.
5139 It turns out that in BLKmode it doesn't cause a problem.
5140 because C has no operators that could combine two different
5141 assignments into the same BLKmode object with different values
5142 with no sequence point. Will other languages need this to
5145 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5146 stack, and block moves may need to be treated specially.
5148 If NONTEMPORAL is true, try using a nontemporal store instruction. */
5151 store_expr (tree exp
, rtx target
, int call_param_p
, bool nontemporal
)
5154 rtx alt_rtl
= NULL_RTX
;
5155 location_t loc
= curr_insn_location ();
5157 if (VOID_TYPE_P (TREE_TYPE (exp
)))
5159 /* C++ can generate ?: expressions with a throw expression in one
5160 branch and an rvalue in the other. Here, we resolve attempts to
5161 store the throw expression's nonexistent result. */
5162 gcc_assert (!call_param_p
);
5163 expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
5166 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
5168 /* Perform first part of compound expression, then assign from second
5170 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
5171 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5172 return store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
,
5175 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
5177 /* For conditional expression, get safe form of the target. Then
5178 test the condition, doing the appropriate assignment on either
5179 side. This avoids the creation of unnecessary temporaries.
5180 For non-BLKmode, it is more efficient not to do this. */
5182 rtx lab1
= gen_label_rtx (), lab2
= gen_label_rtx ();
5184 do_pending_stack_adjust ();
5186 jumpifnot (TREE_OPERAND (exp
, 0), lab1
, -1);
5187 store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
,
5189 emit_jump_insn (gen_jump (lab2
));
5192 store_expr (TREE_OPERAND (exp
, 2), target
, call_param_p
,
5199 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
5200 /* If this is a scalar in a register that is stored in a wider mode
5201 than the declared mode, compute the result into its declared mode
5202 and then convert to the wider mode. Our value is the computed
5205 rtx inner_target
= 0;
5207 /* We can do the conversion inside EXP, which will often result
5208 in some optimizations. Do the conversion in two steps: first
5209 change the signedness, if needed, then the extend. But don't
5210 do this if the type of EXP is a subtype of something else
5211 since then the conversion might involve more than just
5212 converting modes. */
5213 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
5214 && TREE_TYPE (TREE_TYPE (exp
)) == 0
5215 && GET_MODE_PRECISION (GET_MODE (target
))
5216 == TYPE_PRECISION (TREE_TYPE (exp
)))
5218 if (TYPE_UNSIGNED (TREE_TYPE (exp
))
5219 != SUBREG_PROMOTED_UNSIGNED_P (target
))
5221 /* Some types, e.g. Fortran's logical*4, won't have a signed
5222 version, so use the mode instead. */
5224 = (signed_or_unsigned_type_for
5225 (SUBREG_PROMOTED_UNSIGNED_P (target
), TREE_TYPE (exp
)));
5227 ntype
= lang_hooks
.types
.type_for_mode
5228 (TYPE_MODE (TREE_TYPE (exp
)),
5229 SUBREG_PROMOTED_UNSIGNED_P (target
));
5231 exp
= fold_convert_loc (loc
, ntype
, exp
);
5234 exp
= fold_convert_loc (loc
, lang_hooks
.types
.type_for_mode
5235 (GET_MODE (SUBREG_REG (target
)),
5236 SUBREG_PROMOTED_UNSIGNED_P (target
)),
5239 inner_target
= SUBREG_REG (target
);
5242 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
5243 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5245 /* If TEMP is a VOIDmode constant, use convert_modes to make
5246 sure that we properly convert it. */
5247 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
5249 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5250 temp
, SUBREG_PROMOTED_UNSIGNED_P (target
));
5251 temp
= convert_modes (GET_MODE (SUBREG_REG (target
)),
5252 GET_MODE (target
), temp
,
5253 SUBREG_PROMOTED_UNSIGNED_P (target
));
5256 convert_move (SUBREG_REG (target
), temp
,
5257 SUBREG_PROMOTED_UNSIGNED_P (target
));
5261 else if ((TREE_CODE (exp
) == STRING_CST
5262 || (TREE_CODE (exp
) == MEM_REF
5263 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
5264 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
5266 && integer_zerop (TREE_OPERAND (exp
, 1))))
5267 && !nontemporal
&& !call_param_p
5270 /* Optimize initialization of an array with a STRING_CST. */
5271 HOST_WIDE_INT exp_len
, str_copy_len
;
5273 tree str
= TREE_CODE (exp
) == STRING_CST
5274 ? exp
: TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
5276 exp_len
= int_expr_size (exp
);
5280 if (TREE_STRING_LENGTH (str
) <= 0)
5283 str_copy_len
= strlen (TREE_STRING_POINTER (str
));
5284 if (str_copy_len
< TREE_STRING_LENGTH (str
) - 1)
5287 str_copy_len
= TREE_STRING_LENGTH (str
);
5288 if ((STORE_MAX_PIECES
& (STORE_MAX_PIECES
- 1)) == 0
5289 && TREE_STRING_POINTER (str
)[TREE_STRING_LENGTH (str
) - 1] == '\0')
5291 str_copy_len
+= STORE_MAX_PIECES
- 1;
5292 str_copy_len
&= ~(STORE_MAX_PIECES
- 1);
5294 str_copy_len
= MIN (str_copy_len
, exp_len
);
5295 if (!can_store_by_pieces (str_copy_len
, builtin_strncpy_read_str
,
5296 CONST_CAST (char *, TREE_STRING_POINTER (str
)),
5297 MEM_ALIGN (target
), false))
5302 dest_mem
= store_by_pieces (dest_mem
,
5303 str_copy_len
, builtin_strncpy_read_str
,
5305 TREE_STRING_POINTER (str
)),
5306 MEM_ALIGN (target
), false,
5307 exp_len
> str_copy_len
? 1 : 0);
5308 if (exp_len
> str_copy_len
)
5309 clear_storage (adjust_address (dest_mem
, BLKmode
, 0),
5310 GEN_INT (exp_len
- str_copy_len
),
5319 /* If we want to use a nontemporal store, force the value to
5321 tmp_target
= nontemporal
? NULL_RTX
: target
;
5322 temp
= expand_expr_real (exp
, tmp_target
, GET_MODE (target
),
5324 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
5328 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5329 the same as that of TARGET, adjust the constant. This is needed, for
5330 example, in case it is a CONST_DOUBLE and we want only a word-sized
5332 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
5333 && TREE_CODE (exp
) != ERROR_MARK
5334 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
5335 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5336 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5338 /* If value was not generated in the target, store it there.
5339 Convert the value to TARGET's type first if necessary and emit the
5340 pending incrementations that have been queued when expanding EXP.
5341 Note that we cannot emit the whole queue blindly because this will
5342 effectively disable the POST_INC optimization later.
5344 If TEMP and TARGET compare equal according to rtx_equal_p, but
5345 one or both of them are volatile memory refs, we have to distinguish
5347 - expand_expr has used TARGET. In this case, we must not generate
5348 another copy. This can be detected by TARGET being equal according
5350 - expand_expr has not used TARGET - that means that the source just
5351 happens to have the same RTX form. Since temp will have been created
5352 by expand_expr, it will compare unequal according to == .
5353 We must generate a copy in this case, to reach the correct number
5354 of volatile memory references. */
5356 if ((! rtx_equal_p (temp
, target
)
5357 || (temp
!= target
&& (side_effects_p (temp
)
5358 || side_effects_p (target
))))
5359 && TREE_CODE (exp
) != ERROR_MARK
5360 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5361 but TARGET is not valid memory reference, TEMP will differ
5362 from TARGET although it is really the same location. */
5364 && rtx_equal_p (alt_rtl
, target
)
5365 && !side_effects_p (alt_rtl
)
5366 && !side_effects_p (target
))
5367 /* If there's nothing to copy, don't bother. Don't call
5368 expr_size unless necessary, because some front-ends (C++)
5369 expr_size-hook must not be given objects that are not
5370 supposed to be bit-copied or bit-initialized. */
5371 && expr_size (exp
) != const0_rtx
)
5373 if (GET_MODE (temp
) != GET_MODE (target
) && GET_MODE (temp
) != VOIDmode
)
5375 if (GET_MODE (target
) == BLKmode
)
5377 /* Handle calls that return BLKmode values in registers. */
5378 if (REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
5379 copy_blkmode_from_reg (target
, temp
, TREE_TYPE (exp
));
5381 store_bit_field (target
,
5382 INTVAL (expr_size (exp
)) * BITS_PER_UNIT
,
5383 0, 0, 0, GET_MODE (temp
), temp
);
5386 convert_move (target
, temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5389 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
5391 /* Handle copying a string constant into an array. The string
5392 constant may be shorter than the array. So copy just the string's
5393 actual length, and clear the rest. First get the size of the data
5394 type of the string, which is actually the size of the target. */
5395 rtx size
= expr_size (exp
);
5397 if (CONST_INT_P (size
)
5398 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
5399 emit_block_move (target
, temp
, size
,
5401 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5404 enum machine_mode pointer_mode
5405 = targetm
.addr_space
.pointer_mode (MEM_ADDR_SPACE (target
));
5406 enum machine_mode address_mode
= get_address_mode (target
);
5408 /* Compute the size of the data to copy from the string. */
5410 = size_binop_loc (loc
, MIN_EXPR
,
5411 make_tree (sizetype
, size
),
5412 size_int (TREE_STRING_LENGTH (exp
)));
5414 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
5416 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
5419 /* Copy that much. */
5420 copy_size_rtx
= convert_to_mode (pointer_mode
, copy_size_rtx
,
5421 TYPE_UNSIGNED (sizetype
));
5422 emit_block_move (target
, temp
, copy_size_rtx
,
5424 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5426 /* Figure out how much is left in TARGET that we have to clear.
5427 Do all calculations in pointer_mode. */
5428 if (CONST_INT_P (copy_size_rtx
))
5430 size
= plus_constant (address_mode
, size
,
5431 -INTVAL (copy_size_rtx
));
5432 target
= adjust_address (target
, BLKmode
,
5433 INTVAL (copy_size_rtx
));
5437 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
5438 copy_size_rtx
, NULL_RTX
, 0,
5441 if (GET_MODE (copy_size_rtx
) != address_mode
)
5442 copy_size_rtx
= convert_to_mode (address_mode
,
5444 TYPE_UNSIGNED (sizetype
));
5446 target
= offset_address (target
, copy_size_rtx
,
5447 highest_pow2_factor (copy_size
));
5448 label
= gen_label_rtx ();
5449 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
5450 GET_MODE (size
), 0, label
);
5453 if (size
!= const0_rtx
)
5454 clear_storage (target
, size
, BLOCK_OP_NORMAL
);
5460 /* Handle calls that return values in multiple non-contiguous locations.
5461 The Irix 6 ABI has examples of this. */
5462 else if (GET_CODE (target
) == PARALLEL
)
5464 if (GET_CODE (temp
) == PARALLEL
)
5465 emit_group_move (target
, temp
);
5467 emit_group_load (target
, temp
, TREE_TYPE (exp
),
5468 int_size_in_bytes (TREE_TYPE (exp
)));
5470 else if (GET_CODE (temp
) == PARALLEL
)
5471 emit_group_store (target
, temp
, TREE_TYPE (exp
),
5472 int_size_in_bytes (TREE_TYPE (exp
)));
5473 else if (GET_MODE (temp
) == BLKmode
)
5474 emit_block_move (target
, temp
, expr_size (exp
),
5476 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5477 /* If we emit a nontemporal store, there is nothing else to do. */
5478 else if (nontemporal
&& emit_storent_insn (target
, temp
))
5482 temp
= force_operand (temp
, target
);
5484 emit_move_insn (target
, temp
);
5491 /* Return true if field F of structure TYPE is a flexible array. */
5494 flexible_array_member_p (const_tree f
, const_tree type
)
5499 return (DECL_CHAIN (f
) == NULL
5500 && TREE_CODE (tf
) == ARRAY_TYPE
5502 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf
))
5503 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf
)))
5504 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf
))
5505 && int_size_in_bytes (type
) >= 0);
5508 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5509 must have in order for it to completely initialize a value of type TYPE.
5510 Return -1 if the number isn't known.
5512 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5514 static HOST_WIDE_INT
5515 count_type_elements (const_tree type
, bool for_ctor_p
)
5517 switch (TREE_CODE (type
))
5523 nelts
= array_type_nelts (type
);
5524 if (nelts
&& tree_fits_uhwi_p (nelts
))
5526 unsigned HOST_WIDE_INT n
;
5528 n
= tree_to_uhwi (nelts
) + 1;
5529 if (n
== 0 || for_ctor_p
)
5532 return n
* count_type_elements (TREE_TYPE (type
), false);
5534 return for_ctor_p
? -1 : 1;
5539 unsigned HOST_WIDE_INT n
;
5543 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5544 if (TREE_CODE (f
) == FIELD_DECL
)
5547 n
+= count_type_elements (TREE_TYPE (f
), false);
5548 else if (!flexible_array_member_p (f
, type
))
5549 /* Don't count flexible arrays, which are not supposed
5550 to be initialized. */
5558 case QUAL_UNION_TYPE
:
5563 gcc_assert (!for_ctor_p
);
5564 /* Estimate the number of scalars in each field and pick the
5565 maximum. Other estimates would do instead; the idea is simply
5566 to make sure that the estimate is not sensitive to the ordering
5569 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5570 if (TREE_CODE (f
) == FIELD_DECL
)
5572 m
= count_type_elements (TREE_TYPE (f
), false);
5573 /* If the field doesn't span the whole union, add an extra
5574 scalar for the rest. */
5575 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f
)),
5576 TYPE_SIZE (type
)) != 1)
5588 return TYPE_VECTOR_SUBPARTS (type
);
5592 case FIXED_POINT_TYPE
:
5597 case REFERENCE_TYPE
:
5613 /* Helper for categorize_ctor_elements. Identical interface. */
5616 categorize_ctor_elements_1 (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
5617 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
5619 unsigned HOST_WIDE_INT idx
;
5620 HOST_WIDE_INT nz_elts
, init_elts
, num_fields
;
5621 tree value
, purpose
, elt_type
;
5623 /* Whether CTOR is a valid constant initializer, in accordance with what
5624 initializer_constant_valid_p does. If inferred from the constructor
5625 elements, true until proven otherwise. */
5626 bool const_from_elts_p
= constructor_static_from_elts_p (ctor
);
5627 bool const_p
= const_from_elts_p
? true : TREE_STATIC (ctor
);
5632 elt_type
= NULL_TREE
;
5634 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), idx
, purpose
, value
)
5636 HOST_WIDE_INT mult
= 1;
5638 if (purpose
&& TREE_CODE (purpose
) == RANGE_EXPR
)
5640 tree lo_index
= TREE_OPERAND (purpose
, 0);
5641 tree hi_index
= TREE_OPERAND (purpose
, 1);
5643 if (tree_fits_uhwi_p (lo_index
) && tree_fits_uhwi_p (hi_index
))
5644 mult
= (tree_to_uhwi (hi_index
)
5645 - tree_to_uhwi (lo_index
) + 1);
5648 elt_type
= TREE_TYPE (value
);
5650 switch (TREE_CODE (value
))
5654 HOST_WIDE_INT nz
= 0, ic
= 0;
5656 bool const_elt_p
= categorize_ctor_elements_1 (value
, &nz
, &ic
,
5659 nz_elts
+= mult
* nz
;
5660 init_elts
+= mult
* ic
;
5662 if (const_from_elts_p
&& const_p
)
5663 const_p
= const_elt_p
;
5670 if (!initializer_zerop (value
))
5676 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
5677 init_elts
+= mult
* TREE_STRING_LENGTH (value
);
5681 if (!initializer_zerop (TREE_REALPART (value
)))
5683 if (!initializer_zerop (TREE_IMAGPART (value
)))
5691 for (i
= 0; i
< VECTOR_CST_NELTS (value
); ++i
)
5693 tree v
= VECTOR_CST_ELT (value
, i
);
5694 if (!initializer_zerop (v
))
5703 HOST_WIDE_INT tc
= count_type_elements (elt_type
, false);
5704 nz_elts
+= mult
* tc
;
5705 init_elts
+= mult
* tc
;
5707 if (const_from_elts_p
&& const_p
)
5708 const_p
= initializer_constant_valid_p (value
, elt_type
)
5715 if (*p_complete
&& !complete_ctor_at_level_p (TREE_TYPE (ctor
),
5716 num_fields
, elt_type
))
5717 *p_complete
= false;
5719 *p_nz_elts
+= nz_elts
;
5720 *p_init_elts
+= init_elts
;
5725 /* Examine CTOR to discover:
5726 * how many scalar fields are set to nonzero values,
5727 and place it in *P_NZ_ELTS;
5728 * how many scalar fields in total are in CTOR,
5729 and place it in *P_ELT_COUNT.
5730 * whether the constructor is complete -- in the sense that every
5731 meaningful byte is explicitly given a value --
5732 and place it in *P_COMPLETE.
5734 Return whether or not CTOR is a valid static constant initializer, the same
5735 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5738 categorize_ctor_elements (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
5739 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
5745 return categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_init_elts
, p_complete
);
5748 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
5749 of which had type LAST_TYPE. Each element was itself a complete
5750 initializer, in the sense that every meaningful byte was explicitly
5751 given a value. Return true if the same is true for the constructor
5755 complete_ctor_at_level_p (const_tree type
, HOST_WIDE_INT num_elts
,
5756 const_tree last_type
)
5758 if (TREE_CODE (type
) == UNION_TYPE
5759 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5764 gcc_assert (num_elts
== 1 && last_type
);
5766 /* ??? We could look at each element of the union, and find the
5767 largest element. Which would avoid comparing the size of the
5768 initialized element against any tail padding in the union.
5769 Doesn't seem worth the effort... */
5770 return simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (last_type
)) == 1;
5773 return count_type_elements (type
, true) == num_elts
;
5776 /* Return 1 if EXP contains mostly (3/4) zeros. */
5779 mostly_zeros_p (const_tree exp
)
5781 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5783 HOST_WIDE_INT nz_elts
, init_elts
;
5786 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
5787 return !complete_p
|| nz_elts
< init_elts
/ 4;
5790 return initializer_zerop (exp
);
5793 /* Return 1 if EXP contains all zeros. */
5796 all_zeros_p (const_tree exp
)
5798 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5800 HOST_WIDE_INT nz_elts
, init_elts
;
5803 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
5804 return nz_elts
== 0;
5807 return initializer_zerop (exp
);
5810 /* Helper function for store_constructor.
5811 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5812 CLEARED is as for store_constructor.
5813 ALIAS_SET is the alias set to use for any stores.
5815 This provides a recursive shortcut back to store_constructor when it isn't
5816 necessary to go through store_field. This is so that we can pass through
5817 the cleared field to let store_constructor know that we may not have to
5818 clear a substructure if the outer structure has already been cleared. */
5821 store_constructor_field (rtx target
, unsigned HOST_WIDE_INT bitsize
,
5822 HOST_WIDE_INT bitpos
, enum machine_mode mode
,
5823 tree exp
, int cleared
, alias_set_type alias_set
)
5825 if (TREE_CODE (exp
) == CONSTRUCTOR
5826 /* We can only call store_constructor recursively if the size and
5827 bit position are on a byte boundary. */
5828 && bitpos
% BITS_PER_UNIT
== 0
5829 && (bitsize
> 0 && bitsize
% BITS_PER_UNIT
== 0)
5830 /* If we have a nonzero bitpos for a register target, then we just
5831 let store_field do the bitfield handling. This is unlikely to
5832 generate unnecessary clear instructions anyways. */
5833 && (bitpos
== 0 || MEM_P (target
)))
5837 = adjust_address (target
,
5838 GET_MODE (target
) == BLKmode
5840 % GET_MODE_ALIGNMENT (GET_MODE (target
)))
5841 ? BLKmode
: VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5844 /* Update the alias set, if required. */
5845 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
5846 && MEM_ALIAS_SET (target
) != 0)
5848 target
= copy_rtx (target
);
5849 set_mem_alias_set (target
, alias_set
);
5852 store_constructor (exp
, target
, cleared
, bitsize
/ BITS_PER_UNIT
);
5855 store_field (target
, bitsize
, bitpos
, 0, 0, mode
, exp
, alias_set
, false);
5859 /* Returns the number of FIELD_DECLs in TYPE. */
5862 fields_length (const_tree type
)
5864 tree t
= TYPE_FIELDS (type
);
5867 for (; t
; t
= DECL_CHAIN (t
))
5868 if (TREE_CODE (t
) == FIELD_DECL
)
5875 /* Store the value of constructor EXP into the rtx TARGET.
5876 TARGET is either a REG or a MEM; we know it cannot conflict, since
5877 safe_from_p has been called.
5878 CLEARED is true if TARGET is known to have been zero'd.
5879 SIZE is the number of bytes of TARGET we are allowed to modify: this
5880 may not be the same as the size of EXP if we are assigning to a field
5881 which has been packed to exclude padding bits. */
5884 store_constructor (tree exp
, rtx target
, int cleared
, HOST_WIDE_INT size
)
5886 tree type
= TREE_TYPE (exp
);
5887 #ifdef WORD_REGISTER_OPERATIONS
5888 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
5891 switch (TREE_CODE (type
))
5895 case QUAL_UNION_TYPE
:
5897 unsigned HOST_WIDE_INT idx
;
5900 /* If size is zero or the target is already cleared, do nothing. */
5901 if (size
== 0 || cleared
)
5903 /* We either clear the aggregate or indicate the value is dead. */
5904 else if ((TREE_CODE (type
) == UNION_TYPE
5905 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5906 && ! CONSTRUCTOR_ELTS (exp
))
5907 /* If the constructor is empty, clear the union. */
5909 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
5913 /* If we are building a static constructor into a register,
5914 set the initial value as zero so we can fold the value into
5915 a constant. But if more than one register is involved,
5916 this probably loses. */
5917 else if (REG_P (target
) && TREE_STATIC (exp
)
5918 && GET_MODE_SIZE (GET_MODE (target
)) <= UNITS_PER_WORD
)
5920 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5924 /* If the constructor has fewer fields than the structure or
5925 if we are initializing the structure to mostly zeros, clear
5926 the whole structure first. Don't do this if TARGET is a
5927 register whose mode size isn't equal to SIZE since
5928 clear_storage can't handle this case. */
5930 && (((int)vec_safe_length (CONSTRUCTOR_ELTS (exp
))
5931 != fields_length (type
))
5932 || mostly_zeros_p (exp
))
5934 || ((HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (target
))
5937 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
5941 if (REG_P (target
) && !cleared
)
5942 emit_clobber (target
);
5944 /* Store each element of the constructor into the
5945 corresponding field of TARGET. */
5946 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, field
, value
)
5948 enum machine_mode mode
;
5949 HOST_WIDE_INT bitsize
;
5950 HOST_WIDE_INT bitpos
= 0;
5952 rtx to_rtx
= target
;
5954 /* Just ignore missing fields. We cleared the whole
5955 structure, above, if any fields are missing. */
5959 if (cleared
&& initializer_zerop (value
))
5962 if (tree_fits_uhwi_p (DECL_SIZE (field
)))
5963 bitsize
= tree_to_uhwi (DECL_SIZE (field
));
5967 mode
= DECL_MODE (field
);
5968 if (DECL_BIT_FIELD (field
))
5971 offset
= DECL_FIELD_OFFSET (field
);
5972 if (tree_fits_shwi_p (offset
)
5973 && tree_fits_shwi_p (bit_position (field
)))
5975 bitpos
= int_bit_position (field
);
5979 bitpos
= tree_to_shwi (DECL_FIELD_BIT_OFFSET (field
));
5983 enum machine_mode address_mode
;
5987 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset
,
5988 make_tree (TREE_TYPE (exp
),
5991 offset_rtx
= expand_normal (offset
);
5992 gcc_assert (MEM_P (to_rtx
));
5994 address_mode
= get_address_mode (to_rtx
);
5995 if (GET_MODE (offset_rtx
) != address_mode
)
5996 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
5998 to_rtx
= offset_address (to_rtx
, offset_rtx
,
5999 highest_pow2_factor (offset
));
6002 #ifdef WORD_REGISTER_OPERATIONS
6003 /* If this initializes a field that is smaller than a
6004 word, at the start of a word, try to widen it to a full
6005 word. This special case allows us to output C++ member
6006 function initializations in a form that the optimizers
6009 && bitsize
< BITS_PER_WORD
6010 && bitpos
% BITS_PER_WORD
== 0
6011 && GET_MODE_CLASS (mode
) == MODE_INT
6012 && TREE_CODE (value
) == INTEGER_CST
6014 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
6016 tree type
= TREE_TYPE (value
);
6018 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
6020 type
= lang_hooks
.types
.type_for_mode
6021 (word_mode
, TYPE_UNSIGNED (type
));
6022 value
= fold_convert (type
, value
);
6025 if (BYTES_BIG_ENDIAN
)
6027 = fold_build2 (LSHIFT_EXPR
, type
, value
,
6028 build_int_cst (type
,
6029 BITS_PER_WORD
- bitsize
));
6030 bitsize
= BITS_PER_WORD
;
6035 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
6036 && DECL_NONADDRESSABLE_P (field
))
6038 to_rtx
= copy_rtx (to_rtx
);
6039 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
6042 store_constructor_field (to_rtx
, bitsize
, bitpos
, mode
,
6044 get_alias_set (TREE_TYPE (field
)));
6051 unsigned HOST_WIDE_INT i
;
6054 tree elttype
= TREE_TYPE (type
);
6056 HOST_WIDE_INT minelt
= 0;
6057 HOST_WIDE_INT maxelt
= 0;
6059 domain
= TYPE_DOMAIN (type
);
6060 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
6061 && TYPE_MAX_VALUE (domain
)
6062 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain
))
6063 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain
)));
6065 /* If we have constant bounds for the range of the type, get them. */
6068 minelt
= tree_to_shwi (TYPE_MIN_VALUE (domain
));
6069 maxelt
= tree_to_shwi (TYPE_MAX_VALUE (domain
));
6072 /* If the constructor has fewer elements than the array, clear
6073 the whole array first. Similarly if this is static
6074 constructor of a non-BLKmode object. */
6077 else if (REG_P (target
) && TREE_STATIC (exp
))
6081 unsigned HOST_WIDE_INT idx
;
6083 HOST_WIDE_INT count
= 0, zero_count
= 0;
6084 need_to_clear
= ! const_bounds_p
;
6086 /* This loop is a more accurate version of the loop in
6087 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6088 is also needed to check for missing elements. */
6089 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, index
, value
)
6091 HOST_WIDE_INT this_node_count
;
6096 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
6098 tree lo_index
= TREE_OPERAND (index
, 0);
6099 tree hi_index
= TREE_OPERAND (index
, 1);
6101 if (! tree_fits_uhwi_p (lo_index
)
6102 || ! tree_fits_uhwi_p (hi_index
))
6108 this_node_count
= (tree_to_uhwi (hi_index
)
6109 - tree_to_uhwi (lo_index
) + 1);
6112 this_node_count
= 1;
6114 count
+= this_node_count
;
6115 if (mostly_zeros_p (value
))
6116 zero_count
+= this_node_count
;
6119 /* Clear the entire array first if there are any missing
6120 elements, or if the incidence of zero elements is >=
6123 && (count
< maxelt
- minelt
+ 1
6124 || 4 * zero_count
>= 3 * count
))
6128 if (need_to_clear
&& size
> 0)
6131 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6133 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6137 if (!cleared
&& REG_P (target
))
6138 /* Inform later passes that the old value is dead. */
6139 emit_clobber (target
);
6141 /* Store each element of the constructor into the
6142 corresponding element of TARGET, determined by counting the
6144 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), i
, index
, value
)
6146 enum machine_mode mode
;
6147 HOST_WIDE_INT bitsize
;
6148 HOST_WIDE_INT bitpos
;
6149 rtx xtarget
= target
;
6151 if (cleared
&& initializer_zerop (value
))
6154 mode
= TYPE_MODE (elttype
);
6155 if (mode
== BLKmode
)
6156 bitsize
= (tree_fits_uhwi_p (TYPE_SIZE (elttype
))
6157 ? tree_to_uhwi (TYPE_SIZE (elttype
))
6160 bitsize
= GET_MODE_BITSIZE (mode
);
6162 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
6164 tree lo_index
= TREE_OPERAND (index
, 0);
6165 tree hi_index
= TREE_OPERAND (index
, 1);
6166 rtx index_r
, pos_rtx
;
6167 HOST_WIDE_INT lo
, hi
, count
;
6170 /* If the range is constant and "small", unroll the loop. */
6172 && tree_fits_shwi_p (lo_index
)
6173 && tree_fits_shwi_p (hi_index
)
6174 && (lo
= tree_to_shwi (lo_index
),
6175 hi
= tree_to_shwi (hi_index
),
6176 count
= hi
- lo
+ 1,
6179 || (tree_fits_uhwi_p (TYPE_SIZE (elttype
))
6180 && (tree_to_uhwi (TYPE_SIZE (elttype
)) * count
6183 lo
-= minelt
; hi
-= minelt
;
6184 for (; lo
<= hi
; lo
++)
6186 bitpos
= lo
* tree_to_shwi (TYPE_SIZE (elttype
));
6189 && !MEM_KEEP_ALIAS_SET_P (target
)
6190 && TREE_CODE (type
) == ARRAY_TYPE
6191 && TYPE_NONALIASED_COMPONENT (type
))
6193 target
= copy_rtx (target
);
6194 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6197 store_constructor_field
6198 (target
, bitsize
, bitpos
, mode
, value
, cleared
,
6199 get_alias_set (elttype
));
6204 rtx loop_start
= gen_label_rtx ();
6205 rtx loop_end
= gen_label_rtx ();
6208 expand_normal (hi_index
);
6210 index
= build_decl (EXPR_LOCATION (exp
),
6211 VAR_DECL
, NULL_TREE
, domain
);
6212 index_r
= gen_reg_rtx (promote_decl_mode (index
, NULL
));
6213 SET_DECL_RTL (index
, index_r
);
6214 store_expr (lo_index
, index_r
, 0, false);
6216 /* Build the head of the loop. */
6217 do_pending_stack_adjust ();
6218 emit_label (loop_start
);
6220 /* Assign value to element index. */
6222 fold_convert (ssizetype
,
6223 fold_build2 (MINUS_EXPR
,
6226 TYPE_MIN_VALUE (domain
)));
6229 size_binop (MULT_EXPR
, position
,
6230 fold_convert (ssizetype
,
6231 TYPE_SIZE_UNIT (elttype
)));
6233 pos_rtx
= expand_normal (position
);
6234 xtarget
= offset_address (target
, pos_rtx
,
6235 highest_pow2_factor (position
));
6236 xtarget
= adjust_address (xtarget
, mode
, 0);
6237 if (TREE_CODE (value
) == CONSTRUCTOR
)
6238 store_constructor (value
, xtarget
, cleared
,
6239 bitsize
/ BITS_PER_UNIT
);
6241 store_expr (value
, xtarget
, 0, false);
6243 /* Generate a conditional jump to exit the loop. */
6244 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
6246 jumpif (exit_cond
, loop_end
, -1);
6248 /* Update the loop counter, and jump to the head of
6250 expand_assignment (index
,
6251 build2 (PLUS_EXPR
, TREE_TYPE (index
),
6252 index
, integer_one_node
),
6255 emit_jump (loop_start
);
6257 /* Build the end of the loop. */
6258 emit_label (loop_end
);
6261 else if ((index
!= 0 && ! tree_fits_shwi_p (index
))
6262 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype
)))
6267 index
= ssize_int (1);
6270 index
= fold_convert (ssizetype
,
6271 fold_build2 (MINUS_EXPR
,
6274 TYPE_MIN_VALUE (domain
)));
6277 size_binop (MULT_EXPR
, index
,
6278 fold_convert (ssizetype
,
6279 TYPE_SIZE_UNIT (elttype
)));
6280 xtarget
= offset_address (target
,
6281 expand_normal (position
),
6282 highest_pow2_factor (position
));
6283 xtarget
= adjust_address (xtarget
, mode
, 0);
6284 store_expr (value
, xtarget
, 0, false);
6289 bitpos
= ((tree_to_shwi (index
) - minelt
)
6290 * tree_to_uhwi (TYPE_SIZE (elttype
)));
6292 bitpos
= (i
* tree_to_uhwi (TYPE_SIZE (elttype
)));
6294 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
6295 && TREE_CODE (type
) == ARRAY_TYPE
6296 && TYPE_NONALIASED_COMPONENT (type
))
6298 target
= copy_rtx (target
);
6299 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6301 store_constructor_field (target
, bitsize
, bitpos
, mode
, value
,
6302 cleared
, get_alias_set (elttype
));
6310 unsigned HOST_WIDE_INT idx
;
6311 constructor_elt
*ce
;
6314 int icode
= CODE_FOR_nothing
;
6315 tree elttype
= TREE_TYPE (type
);
6316 int elt_size
= tree_to_uhwi (TYPE_SIZE (elttype
));
6317 enum machine_mode eltmode
= TYPE_MODE (elttype
);
6318 HOST_WIDE_INT bitsize
;
6319 HOST_WIDE_INT bitpos
;
6320 rtvec vector
= NULL
;
6322 alias_set_type alias
;
6324 gcc_assert (eltmode
!= BLKmode
);
6326 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
6327 if (REG_P (target
) && VECTOR_MODE_P (GET_MODE (target
)))
6329 enum machine_mode mode
= GET_MODE (target
);
6331 icode
= (int) optab_handler (vec_init_optab
, mode
);
6332 /* Don't use vec_init<mode> if some elements have VECTOR_TYPE. */
6333 if (icode
!= CODE_FOR_nothing
)
6337 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
6338 if (TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
)
6340 icode
= CODE_FOR_nothing
;
6344 if (icode
!= CODE_FOR_nothing
)
6348 vector
= rtvec_alloc (n_elts
);
6349 for (i
= 0; i
< n_elts
; i
++)
6350 RTVEC_ELT (vector
, i
) = CONST0_RTX (GET_MODE_INNER (mode
));
6354 /* If the constructor has fewer elements than the vector,
6355 clear the whole array first. Similarly if this is static
6356 constructor of a non-BLKmode object. */
6359 else if (REG_P (target
) && TREE_STATIC (exp
))
6363 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
6366 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
6368 int n_elts_here
= tree_to_uhwi
6369 (int_const_binop (TRUNC_DIV_EXPR
,
6370 TYPE_SIZE (TREE_TYPE (value
)),
6371 TYPE_SIZE (elttype
)));
6373 count
+= n_elts_here
;
6374 if (mostly_zeros_p (value
))
6375 zero_count
+= n_elts_here
;
6378 /* Clear the entire vector first if there are any missing elements,
6379 or if the incidence of zero elements is >= 75%. */
6380 need_to_clear
= (count
< n_elts
|| 4 * zero_count
>= 3 * count
);
6383 if (need_to_clear
&& size
> 0 && !vector
)
6386 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6388 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6392 /* Inform later passes that the old value is dead. */
6393 if (!cleared
&& !vector
&& REG_P (target
))
6394 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6397 alias
= MEM_ALIAS_SET (target
);
6399 alias
= get_alias_set (elttype
);
6401 /* Store each element of the constructor into the corresponding
6402 element of TARGET, determined by counting the elements. */
6403 for (idx
= 0, i
= 0;
6404 vec_safe_iterate (CONSTRUCTOR_ELTS (exp
), idx
, &ce
);
6405 idx
++, i
+= bitsize
/ elt_size
)
6407 HOST_WIDE_INT eltpos
;
6408 tree value
= ce
->value
;
6410 bitsize
= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value
)));
6411 if (cleared
&& initializer_zerop (value
))
6415 eltpos
= tree_to_uhwi (ce
->index
);
6421 /* vec_init<mode> should not be used if there are VECTOR_TYPE
6423 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
6424 RTVEC_ELT (vector
, eltpos
)
6425 = expand_normal (value
);
6429 enum machine_mode value_mode
=
6430 TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
6431 ? TYPE_MODE (TREE_TYPE (value
))
6433 bitpos
= eltpos
* elt_size
;
6434 store_constructor_field (target
, bitsize
, bitpos
, value_mode
,
6435 value
, cleared
, alias
);
6440 emit_insn (GEN_FCN (icode
)
6442 gen_rtx_PARALLEL (GET_MODE (target
), vector
)));
6451 /* Store the value of EXP (an expression tree)
6452 into a subfield of TARGET which has mode MODE and occupies
6453 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6454 If MODE is VOIDmode, it means that we are storing into a bit-field.
6456 BITREGION_START is bitpos of the first bitfield in this region.
6457 BITREGION_END is the bitpos of the ending bitfield in this region.
6458 These two fields are 0, if the C++ memory model does not apply,
6459 or we are not interested in keeping track of bitfield regions.
6461 Always return const0_rtx unless we have something particular to
6464 ALIAS_SET is the alias set for the destination. This value will
6465 (in general) be different from that for TARGET, since TARGET is a
6466 reference to the containing structure.
6468 If NONTEMPORAL is true, try generating a nontemporal store. */
6471 store_field (rtx target
, HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
6472 unsigned HOST_WIDE_INT bitregion_start
,
6473 unsigned HOST_WIDE_INT bitregion_end
,
6474 enum machine_mode mode
, tree exp
,
6475 alias_set_type alias_set
, bool nontemporal
)
6477 if (TREE_CODE (exp
) == ERROR_MARK
)
6480 /* If we have nothing to store, do nothing unless the expression has
6483 return expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
6485 if (GET_CODE (target
) == CONCAT
)
6487 /* We're storing into a struct containing a single __complex. */
6489 gcc_assert (!bitpos
);
6490 return store_expr (exp
, target
, 0, nontemporal
);
6493 /* If the structure is in a register or if the component
6494 is a bit field, we cannot use addressing to access it.
6495 Use bit-field techniques or SUBREG to store in it. */
6497 if (mode
== VOIDmode
6498 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
6499 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
6500 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
6502 || GET_CODE (target
) == SUBREG
6503 /* If the field isn't aligned enough to store as an ordinary memref,
6504 store it as a bit field. */
6506 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
6507 || bitpos
% GET_MODE_ALIGNMENT (mode
))
6508 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
)))
6509 || (bitpos
% BITS_PER_UNIT
!= 0)))
6510 || (bitsize
>= 0 && mode
!= BLKmode
6511 && GET_MODE_BITSIZE (mode
) > bitsize
)
6512 /* If the RHS and field are a constant size and the size of the
6513 RHS isn't the same size as the bitfield, we must use bitfield
6516 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
6517 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) != 0)
6518 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6519 decl we must use bitfield operations. */
6521 && TREE_CODE (exp
) == MEM_REF
6522 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
6523 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
6524 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp
, 0),0 ))
6525 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)) != BLKmode
))
6530 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6531 implies a mask operation. If the precision is the same size as
6532 the field we're storing into, that mask is redundant. This is
6533 particularly common with bit field assignments generated by the
6535 nop_def
= get_def_for_expr (exp
, NOP_EXPR
);
6538 tree type
= TREE_TYPE (exp
);
6539 if (INTEGRAL_TYPE_P (type
)
6540 && TYPE_PRECISION (type
) < GET_MODE_BITSIZE (TYPE_MODE (type
))
6541 && bitsize
== TYPE_PRECISION (type
))
6543 tree op
= gimple_assign_rhs1 (nop_def
);
6544 type
= TREE_TYPE (op
);
6545 if (INTEGRAL_TYPE_P (type
) && TYPE_PRECISION (type
) >= bitsize
)
6550 temp
= expand_normal (exp
);
6552 /* If BITSIZE is narrower than the size of the type of EXP
6553 we will be narrowing TEMP. Normally, what's wanted are the
6554 low-order bits. However, if EXP's type is a record and this is
6555 big-endian machine, we want the upper BITSIZE bits. */
6556 if (BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (temp
)) == MODE_INT
6557 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (temp
))
6558 && TREE_CODE (TREE_TYPE (exp
)) == RECORD_TYPE
)
6559 temp
= expand_shift (RSHIFT_EXPR
, GET_MODE (temp
), temp
,
6560 GET_MODE_BITSIZE (GET_MODE (temp
)) - bitsize
,
6563 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
6564 if (mode
!= VOIDmode
&& mode
!= BLKmode
6565 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
6566 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
6568 /* If the modes of TEMP and TARGET are both BLKmode, both
6569 must be in memory and BITPOS must be aligned on a byte
6570 boundary. If so, we simply do a block copy. Likewise
6571 for a BLKmode-like TARGET. */
6572 if (GET_MODE (temp
) == BLKmode
6573 && (GET_MODE (target
) == BLKmode
6575 && GET_MODE_CLASS (GET_MODE (target
)) == MODE_INT
6576 && (bitpos
% BITS_PER_UNIT
) == 0
6577 && (bitsize
% BITS_PER_UNIT
) == 0)))
6579 gcc_assert (MEM_P (target
) && MEM_P (temp
)
6580 && (bitpos
% BITS_PER_UNIT
) == 0);
6582 target
= adjust_address (target
, VOIDmode
, bitpos
/ BITS_PER_UNIT
);
6583 emit_block_move (target
, temp
,
6584 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
6591 /* Handle calls that return values in multiple non-contiguous locations.
6592 The Irix 6 ABI has examples of this. */
6593 if (GET_CODE (temp
) == PARALLEL
)
6595 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
6597 if (mode
== BLKmode
)
6598 mode
= smallest_mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
);
6599 temp_target
= gen_reg_rtx (mode
);
6600 emit_group_store (temp_target
, temp
, TREE_TYPE (exp
), size
);
6603 else if (mode
== BLKmode
)
6605 /* Handle calls that return BLKmode values in registers. */
6606 if (REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
6608 rtx temp_target
= gen_reg_rtx (GET_MODE (temp
));
6609 copy_blkmode_from_reg (temp_target
, temp
, TREE_TYPE (exp
));
6614 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
6616 mode
= smallest_mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
);
6617 temp_target
= gen_reg_rtx (mode
);
6619 = extract_bit_field (temp
, size
* BITS_PER_UNIT
, 0, 1,
6620 temp_target
, mode
, mode
);
6625 /* Store the value in the bitfield. */
6626 store_bit_field (target
, bitsize
, bitpos
,
6627 bitregion_start
, bitregion_end
,
6634 /* Now build a reference to just the desired component. */
6635 rtx to_rtx
= adjust_address (target
, mode
, bitpos
/ BITS_PER_UNIT
);
6637 if (to_rtx
== target
)
6638 to_rtx
= copy_rtx (to_rtx
);
6640 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
6641 set_mem_alias_set (to_rtx
, alias_set
);
6643 return store_expr (exp
, to_rtx
, 0, nontemporal
);
6647 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6648 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6649 codes and find the ultimate containing object, which we return.
6651 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6652 bit position, and *PUNSIGNEDP to the signedness of the field.
6653 If the position of the field is variable, we store a tree
6654 giving the variable offset (in units) in *POFFSET.
6655 This offset is in addition to the bit position.
6656 If the position is not variable, we store 0 in *POFFSET.
6658 If any of the extraction expressions is volatile,
6659 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6661 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6662 Otherwise, it is a mode that can be used to access the field.
6664 If the field describes a variable-sized object, *PMODE is set to
6665 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6666 this case, but the address of the object can be found.
6668 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
6669 look through nodes that serve as markers of a greater alignment than
6670 the one that can be deduced from the expression. These nodes make it
6671 possible for front-ends to prevent temporaries from being created by
6672 the middle-end on alignment considerations. For that purpose, the
6673 normal operating mode at high-level is to always pass FALSE so that
6674 the ultimate containing object is really returned; moreover, the
6675 associated predicate handled_component_p will always return TRUE
6676 on these nodes, thus indicating that they are essentially handled
6677 by get_inner_reference. TRUE should only be passed when the caller
6678 is scanning the expression in order to build another representation
6679 and specifically knows how to handle these nodes; as such, this is
6680 the normal operating mode in the RTL expanders. */
6683 get_inner_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
6684 HOST_WIDE_INT
*pbitpos
, tree
*poffset
,
6685 enum machine_mode
*pmode
, int *punsignedp
,
6686 int *pvolatilep
, bool keep_aligning
)
6689 enum machine_mode mode
= VOIDmode
;
6690 bool blkmode_bitfield
= false;
6691 tree offset
= size_zero_node
;
6692 double_int bit_offset
= double_int_zero
;
6694 /* First get the mode, signedness, and size. We do this from just the
6695 outermost expression. */
6697 if (TREE_CODE (exp
) == COMPONENT_REF
)
6699 tree field
= TREE_OPERAND (exp
, 1);
6700 size_tree
= DECL_SIZE (field
);
6701 if (flag_strict_volatile_bitfields
> 0
6702 && TREE_THIS_VOLATILE (exp
)
6703 && DECL_BIT_FIELD_TYPE (field
)
6704 && DECL_MODE (field
) != BLKmode
)
6705 /* Volatile bitfields should be accessed in the mode of the
6706 field's type, not the mode computed based on the bit
6708 mode
= TYPE_MODE (DECL_BIT_FIELD_TYPE (field
));
6709 else if (!DECL_BIT_FIELD (field
))
6710 mode
= DECL_MODE (field
);
6711 else if (DECL_MODE (field
) == BLKmode
)
6712 blkmode_bitfield
= true;
6714 *punsignedp
= DECL_UNSIGNED (field
);
6716 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
6718 size_tree
= TREE_OPERAND (exp
, 1);
6719 *punsignedp
= (! INTEGRAL_TYPE_P (TREE_TYPE (exp
))
6720 || TYPE_UNSIGNED (TREE_TYPE (exp
)));
6722 /* For vector types, with the correct size of access, use the mode of
6724 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == VECTOR_TYPE
6725 && TREE_TYPE (exp
) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6726 && tree_int_cst_equal (size_tree
, TYPE_SIZE (TREE_TYPE (exp
))))
6727 mode
= TYPE_MODE (TREE_TYPE (exp
));
6731 mode
= TYPE_MODE (TREE_TYPE (exp
));
6732 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
6734 if (mode
== BLKmode
)
6735 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
6737 *pbitsize
= GET_MODE_BITSIZE (mode
);
6742 if (! tree_fits_uhwi_p (size_tree
))
6743 mode
= BLKmode
, *pbitsize
= -1;
6745 *pbitsize
= tree_to_uhwi (size_tree
);
6748 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6749 and find the ultimate containing object. */
6752 switch (TREE_CODE (exp
))
6755 bit_offset
+= tree_to_double_int (TREE_OPERAND (exp
, 2));
6760 tree field
= TREE_OPERAND (exp
, 1);
6761 tree this_offset
= component_ref_field_offset (exp
);
6763 /* If this field hasn't been filled in yet, don't go past it.
6764 This should only happen when folding expressions made during
6765 type construction. */
6766 if (this_offset
== 0)
6769 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
6770 bit_offset
+= tree_to_double_int (DECL_FIELD_BIT_OFFSET (field
));
6772 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6777 case ARRAY_RANGE_REF
:
6779 tree index
= TREE_OPERAND (exp
, 1);
6780 tree low_bound
= array_ref_low_bound (exp
);
6781 tree unit_size
= array_ref_element_size (exp
);
6783 /* We assume all arrays have sizes that are a multiple of a byte.
6784 First subtract the lower bound, if any, in the type of the
6785 index, then convert to sizetype and multiply by the size of
6786 the array element. */
6787 if (! integer_zerop (low_bound
))
6788 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
6791 offset
= size_binop (PLUS_EXPR
, offset
,
6792 size_binop (MULT_EXPR
,
6793 fold_convert (sizetype
, index
),
6802 bit_offset
+= double_int::from_uhwi (*pbitsize
);
6805 case VIEW_CONVERT_EXPR
:
6806 if (keep_aligning
&& STRICT_ALIGNMENT
6807 && (TYPE_ALIGN (TREE_TYPE (exp
))
6808 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0))))
6809 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6810 < BIGGEST_ALIGNMENT
)
6811 && (TYPE_ALIGN_OK (TREE_TYPE (exp
))
6812 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
6817 /* Hand back the decl for MEM[&decl, off]. */
6818 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
)
6820 tree off
= TREE_OPERAND (exp
, 1);
6821 if (!integer_zerop (off
))
6823 double_int boff
, coff
= mem_ref_offset (exp
);
6824 boff
= coff
.lshift (BITS_PER_UNIT
== 8
6825 ? 3 : exact_log2 (BITS_PER_UNIT
));
6828 exp
= TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
6836 /* If any reference in the chain is volatile, the effect is volatile. */
6837 if (TREE_THIS_VOLATILE (exp
))
6840 exp
= TREE_OPERAND (exp
, 0);
6844 /* If OFFSET is constant, see if we can return the whole thing as a
6845 constant bit position. Make sure to handle overflow during
6847 if (TREE_CODE (offset
) == INTEGER_CST
)
6849 double_int tem
= tree_to_double_int (offset
);
6850 tem
= tem
.sext (TYPE_PRECISION (sizetype
));
6851 tem
= tem
.lshift (BITS_PER_UNIT
== 8 ? 3 : exact_log2 (BITS_PER_UNIT
));
6853 if (tem
.fits_shwi ())
6855 *pbitpos
= tem
.to_shwi ();
6856 *poffset
= offset
= NULL_TREE
;
6860 /* Otherwise, split it up. */
6863 /* Avoid returning a negative bitpos as this may wreak havoc later. */
6864 if (bit_offset
.is_negative ())
6867 = double_int::mask (BITS_PER_UNIT
== 8
6868 ? 3 : exact_log2 (BITS_PER_UNIT
));
6869 double_int tem
= bit_offset
.and_not (mask
);
6870 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
6871 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
6873 tem
= tem
.arshift (BITS_PER_UNIT
== 8
6874 ? 3 : exact_log2 (BITS_PER_UNIT
),
6875 HOST_BITS_PER_DOUBLE_INT
);
6876 offset
= size_binop (PLUS_EXPR
, offset
,
6877 double_int_to_tree (sizetype
, tem
));
6880 *pbitpos
= bit_offset
.to_shwi ();
6884 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6885 if (mode
== VOIDmode
6887 && (*pbitpos
% BITS_PER_UNIT
) == 0
6888 && (*pbitsize
% BITS_PER_UNIT
) == 0)
6896 /* Return a tree of sizetype representing the size, in bytes, of the element
6897 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6900 array_ref_element_size (tree exp
)
6902 tree aligned_size
= TREE_OPERAND (exp
, 3);
6903 tree elmt_type
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6904 location_t loc
= EXPR_LOCATION (exp
);
6906 /* If a size was specified in the ARRAY_REF, it's the size measured
6907 in alignment units of the element type. So multiply by that value. */
6910 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6911 sizetype from another type of the same width and signedness. */
6912 if (TREE_TYPE (aligned_size
) != sizetype
)
6913 aligned_size
= fold_convert_loc (loc
, sizetype
, aligned_size
);
6914 return size_binop_loc (loc
, MULT_EXPR
, aligned_size
,
6915 size_int (TYPE_ALIGN_UNIT (elmt_type
)));
6918 /* Otherwise, take the size from that of the element type. Substitute
6919 any PLACEHOLDER_EXPR that we have. */
6921 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type
), exp
);
6924 /* Return a tree representing the lower bound of the array mentioned in
6925 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6928 array_ref_low_bound (tree exp
)
6930 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6932 /* If a lower bound is specified in EXP, use it. */
6933 if (TREE_OPERAND (exp
, 2))
6934 return TREE_OPERAND (exp
, 2);
6936 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6937 substituting for a PLACEHOLDER_EXPR as needed. */
6938 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
6939 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type
), exp
);
6941 /* Otherwise, return a zero of the appropriate type. */
6942 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp
, 1)), 0);
6945 /* Returns true if REF is an array reference to an array at the end of
6946 a structure. If this is the case, the array may be allocated larger
6947 than its upper bound implies. */
6950 array_at_struct_end_p (tree ref
)
6952 if (TREE_CODE (ref
) != ARRAY_REF
6953 && TREE_CODE (ref
) != ARRAY_RANGE_REF
)
6956 while (handled_component_p (ref
))
6958 /* If the reference chain contains a component reference to a
6959 non-union type and there follows another field the reference
6960 is not at the end of a structure. */
6961 if (TREE_CODE (ref
) == COMPONENT_REF
6962 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref
, 0))) == RECORD_TYPE
)
6964 tree nextf
= DECL_CHAIN (TREE_OPERAND (ref
, 1));
6965 while (nextf
&& TREE_CODE (nextf
) != FIELD_DECL
)
6966 nextf
= DECL_CHAIN (nextf
);
6971 ref
= TREE_OPERAND (ref
, 0);
6974 /* If the reference is based on a declared entity, the size of the array
6975 is constrained by its given domain. */
6982 /* Return a tree representing the upper bound of the array mentioned in
6983 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6986 array_ref_up_bound (tree exp
)
6988 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6990 /* If there is a domain type and it has an upper bound, use it, substituting
6991 for a PLACEHOLDER_EXPR as needed. */
6992 if (domain_type
&& TYPE_MAX_VALUE (domain_type
))
6993 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type
), exp
);
6995 /* Otherwise fail. */
6999 /* Return a tree representing the offset, in bytes, of the field referenced
7000 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
7003 component_ref_field_offset (tree exp
)
7005 tree aligned_offset
= TREE_OPERAND (exp
, 2);
7006 tree field
= TREE_OPERAND (exp
, 1);
7007 location_t loc
= EXPR_LOCATION (exp
);
7009 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
7010 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
7014 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
7015 sizetype from another type of the same width and signedness. */
7016 if (TREE_TYPE (aligned_offset
) != sizetype
)
7017 aligned_offset
= fold_convert_loc (loc
, sizetype
, aligned_offset
);
7018 return size_binop_loc (loc
, MULT_EXPR
, aligned_offset
,
7019 size_int (DECL_OFFSET_ALIGN (field
)
7023 /* Otherwise, take the offset from that of the field. Substitute
7024 any PLACEHOLDER_EXPR that we have. */
7026 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field
), exp
);
7029 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7031 static unsigned HOST_WIDE_INT
7032 target_align (const_tree target
)
7034 /* We might have a chain of nested references with intermediate misaligning
7035 bitfields components, so need to recurse to find out. */
7037 unsigned HOST_WIDE_INT this_align
, outer_align
;
7039 switch (TREE_CODE (target
))
7045 this_align
= DECL_ALIGN (TREE_OPERAND (target
, 1));
7046 outer_align
= target_align (TREE_OPERAND (target
, 0));
7047 return MIN (this_align
, outer_align
);
7050 case ARRAY_RANGE_REF
:
7051 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
7052 outer_align
= target_align (TREE_OPERAND (target
, 0));
7053 return MIN (this_align
, outer_align
);
7056 case NON_LVALUE_EXPR
:
7057 case VIEW_CONVERT_EXPR
:
7058 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
7059 outer_align
= target_align (TREE_OPERAND (target
, 0));
7060 return MAX (this_align
, outer_align
);
7063 return TYPE_ALIGN (TREE_TYPE (target
));
7068 /* Given an rtx VALUE that may contain additions and multiplications, return
7069 an equivalent value that just refers to a register, memory, or constant.
7070 This is done by generating instructions to perform the arithmetic and
7071 returning a pseudo-register containing the value.
7073 The returned value may be a REG, SUBREG, MEM or constant. */
7076 force_operand (rtx value
, rtx target
)
7079 /* Use subtarget as the target for operand 0 of a binary operation. */
7080 rtx subtarget
= get_subtarget (target
);
7081 enum rtx_code code
= GET_CODE (value
);
7083 /* Check for subreg applied to an expression produced by loop optimizer. */
7085 && !REG_P (SUBREG_REG (value
))
7086 && !MEM_P (SUBREG_REG (value
)))
7089 = simplify_gen_subreg (GET_MODE (value
),
7090 force_reg (GET_MODE (SUBREG_REG (value
)),
7091 force_operand (SUBREG_REG (value
),
7093 GET_MODE (SUBREG_REG (value
)),
7094 SUBREG_BYTE (value
));
7095 code
= GET_CODE (value
);
7098 /* Check for a PIC address load. */
7099 if ((code
== PLUS
|| code
== MINUS
)
7100 && XEXP (value
, 0) == pic_offset_table_rtx
7101 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
7102 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
7103 || GET_CODE (XEXP (value
, 1)) == CONST
))
7106 subtarget
= gen_reg_rtx (GET_MODE (value
));
7107 emit_move_insn (subtarget
, value
);
7111 if (ARITHMETIC_P (value
))
7113 op2
= XEXP (value
, 1);
7114 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
7116 if (code
== MINUS
&& CONST_INT_P (op2
))
7119 op2
= negate_rtx (GET_MODE (value
), op2
);
7122 /* Check for an addition with OP2 a constant integer and our first
7123 operand a PLUS of a virtual register and something else. In that
7124 case, we want to emit the sum of the virtual register and the
7125 constant first and then add the other value. This allows virtual
7126 register instantiation to simply modify the constant rather than
7127 creating another one around this addition. */
7128 if (code
== PLUS
&& CONST_INT_P (op2
)
7129 && GET_CODE (XEXP (value
, 0)) == PLUS
7130 && REG_P (XEXP (XEXP (value
, 0), 0))
7131 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7132 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
7134 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
7135 XEXP (XEXP (value
, 0), 0), op2
,
7136 subtarget
, 0, OPTAB_LIB_WIDEN
);
7137 return expand_simple_binop (GET_MODE (value
), code
, temp
,
7138 force_operand (XEXP (XEXP (value
,
7140 target
, 0, OPTAB_LIB_WIDEN
);
7143 op1
= force_operand (XEXP (value
, 0), subtarget
);
7144 op2
= force_operand (op2
, NULL_RTX
);
7148 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
7150 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
7151 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7152 target
, 1, OPTAB_LIB_WIDEN
);
7154 return expand_divmod (0,
7155 FLOAT_MODE_P (GET_MODE (value
))
7156 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
7157 GET_MODE (value
), op1
, op2
, target
, 0);
7159 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7162 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
7165 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7168 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7169 target
, 0, OPTAB_LIB_WIDEN
);
7171 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7172 target
, 1, OPTAB_LIB_WIDEN
);
7175 if (UNARY_P (value
))
7178 target
= gen_reg_rtx (GET_MODE (value
));
7179 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
7186 case FLOAT_TRUNCATE
:
7187 convert_move (target
, op1
, code
== ZERO_EXTEND
);
7192 expand_fix (target
, op1
, code
== UNSIGNED_FIX
);
7196 case UNSIGNED_FLOAT
:
7197 expand_float (target
, op1
, code
== UNSIGNED_FLOAT
);
7201 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
7205 #ifdef INSN_SCHEDULING
7206 /* On machines that have insn scheduling, we want all memory reference to be
7207 explicit, so we need to deal with such paradoxical SUBREGs. */
7208 if (paradoxical_subreg_p (value
) && MEM_P (SUBREG_REG (value
)))
7210 = simplify_gen_subreg (GET_MODE (value
),
7211 force_reg (GET_MODE (SUBREG_REG (value
)),
7212 force_operand (SUBREG_REG (value
),
7214 GET_MODE (SUBREG_REG (value
)),
7215 SUBREG_BYTE (value
));
7221 /* Subroutine of expand_expr: return nonzero iff there is no way that
7222 EXP can reference X, which is being modified. TOP_P is nonzero if this
7223 call is going to be used to determine whether we need a temporary
7224 for EXP, as opposed to a recursive call to this function.
7226 It is always safe for this routine to return zero since it merely
7227 searches for optimization opportunities. */
7230 safe_from_p (const_rtx x
, tree exp
, int top_p
)
7236 /* If EXP has varying size, we MUST use a target since we currently
7237 have no way of allocating temporaries of variable size
7238 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7239 So we assume here that something at a higher level has prevented a
7240 clash. This is somewhat bogus, but the best we can do. Only
7241 do this when X is BLKmode and when we are at the top level. */
7242 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
7243 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
7244 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
7245 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
7246 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
7248 && GET_MODE (x
) == BLKmode
)
7249 /* If X is in the outgoing argument area, it is always safe. */
7251 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
7252 || (GET_CODE (XEXP (x
, 0)) == PLUS
7253 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
7256 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7257 find the underlying pseudo. */
7258 if (GET_CODE (x
) == SUBREG
)
7261 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7265 /* Now look at our tree code and possibly recurse. */
7266 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
7268 case tcc_declaration
:
7269 exp_rtl
= DECL_RTL_IF_SET (exp
);
7275 case tcc_exceptional
:
7276 if (TREE_CODE (exp
) == TREE_LIST
)
7280 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
7282 exp
= TREE_CHAIN (exp
);
7285 if (TREE_CODE (exp
) != TREE_LIST
)
7286 return safe_from_p (x
, exp
, 0);
7289 else if (TREE_CODE (exp
) == CONSTRUCTOR
)
7291 constructor_elt
*ce
;
7292 unsigned HOST_WIDE_INT idx
;
7294 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp
), idx
, ce
)
7295 if ((ce
->index
!= NULL_TREE
&& !safe_from_p (x
, ce
->index
, 0))
7296 || !safe_from_p (x
, ce
->value
, 0))
7300 else if (TREE_CODE (exp
) == ERROR_MARK
)
7301 return 1; /* An already-visited SAVE_EXPR? */
7306 /* The only case we look at here is the DECL_INITIAL inside a
7308 return (TREE_CODE (exp
) != DECL_EXPR
7309 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
7310 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
7311 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
7314 case tcc_comparison
:
7315 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
7320 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7322 case tcc_expression
:
7325 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7326 the expression. If it is set, we conflict iff we are that rtx or
7327 both are in memory. Otherwise, we check all operands of the
7328 expression recursively. */
7330 switch (TREE_CODE (exp
))
7333 /* If the operand is static or we are static, we can't conflict.
7334 Likewise if we don't conflict with the operand at all. */
7335 if (staticp (TREE_OPERAND (exp
, 0))
7336 || TREE_STATIC (exp
)
7337 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
7340 /* Otherwise, the only way this can conflict is if we are taking
7341 the address of a DECL a that address if part of X, which is
7343 exp
= TREE_OPERAND (exp
, 0);
7346 if (!DECL_RTL_SET_P (exp
)
7347 || !MEM_P (DECL_RTL (exp
)))
7350 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
7356 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
7357 get_alias_set (exp
)))
7362 /* Assume that the call will clobber all hard registers and
7364 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7369 case WITH_CLEANUP_EXPR
:
7370 case CLEANUP_POINT_EXPR
:
7371 /* Lowered by gimplify.c. */
7375 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7381 /* If we have an rtx, we do not need to scan our operands. */
7385 nops
= TREE_OPERAND_LENGTH (exp
);
7386 for (i
= 0; i
< nops
; i
++)
7387 if (TREE_OPERAND (exp
, i
) != 0
7388 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
7394 /* Should never get a type here. */
7398 /* If we have an rtl, find any enclosed object. Then see if we conflict
7402 if (GET_CODE (exp_rtl
) == SUBREG
)
7404 exp_rtl
= SUBREG_REG (exp_rtl
);
7406 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
7410 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7411 are memory and they conflict. */
7412 return ! (rtx_equal_p (x
, exp_rtl
)
7413 || (MEM_P (x
) && MEM_P (exp_rtl
)
7414 && true_dependence (exp_rtl
, VOIDmode
, x
)));
7417 /* If we reach here, it is safe. */
7422 /* Return the highest power of two that EXP is known to be a multiple of.
7423 This is used in updating alignment of MEMs in array references. */
7425 unsigned HOST_WIDE_INT
7426 highest_pow2_factor (const_tree exp
)
7428 unsigned HOST_WIDE_INT ret
;
7429 int trailing_zeros
= tree_ctz (exp
);
7430 if (trailing_zeros
>= HOST_BITS_PER_WIDE_INT
)
7431 return BIGGEST_ALIGNMENT
;
7432 ret
= (unsigned HOST_WIDE_INT
) 1 << trailing_zeros
;
7433 if (ret
> BIGGEST_ALIGNMENT
)
7434 return BIGGEST_ALIGNMENT
;
7438 /* Similar, except that the alignment requirements of TARGET are
7439 taken into account. Assume it is at least as aligned as its
7440 type, unless it is a COMPONENT_REF in which case the layout of
7441 the structure gives the alignment. */
7443 static unsigned HOST_WIDE_INT
7444 highest_pow2_factor_for_target (const_tree target
, const_tree exp
)
7446 unsigned HOST_WIDE_INT talign
= target_align (target
) / BITS_PER_UNIT
;
7447 unsigned HOST_WIDE_INT factor
= highest_pow2_factor (exp
);
7449 return MAX (factor
, talign
);
7452 #ifdef HAVE_conditional_move
7453 /* Convert the tree comparison code TCODE to the rtl one where the
7454 signedness is UNSIGNEDP. */
7456 static enum rtx_code
7457 convert_tree_comp_to_rtx (enum tree_code tcode
, int unsignedp
)
7469 code
= unsignedp
? LTU
: LT
;
7472 code
= unsignedp
? LEU
: LE
;
7475 code
= unsignedp
? GTU
: GT
;
7478 code
= unsignedp
? GEU
: GE
;
7480 case UNORDERED_EXPR
:
7512 /* Subroutine of expand_expr. Expand the two operands of a binary
7513 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7514 The value may be stored in TARGET if TARGET is nonzero. The
7515 MODIFIER argument is as documented by expand_expr. */
7518 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
7519 enum expand_modifier modifier
)
7521 if (! safe_from_p (target
, exp1
, 1))
7523 if (operand_equal_p (exp0
, exp1
, 0))
7525 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7526 *op1
= copy_rtx (*op0
);
7530 /* If we need to preserve evaluation order, copy exp0 into its own
7531 temporary variable so that it can't be clobbered by exp1. */
7532 if (flag_evaluation_order
&& TREE_SIDE_EFFECTS (exp1
))
7533 exp0
= save_expr (exp0
);
7534 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7535 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
7540 /* Return a MEM that contains constant EXP. DEFER is as for
7541 output_constant_def and MODIFIER is as for expand_expr. */
7544 expand_expr_constant (tree exp
, int defer
, enum expand_modifier modifier
)
7548 mem
= output_constant_def (exp
, defer
);
7549 if (modifier
!= EXPAND_INITIALIZER
)
7550 mem
= use_anchored_address (mem
);
7554 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7555 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7558 expand_expr_addr_expr_1 (tree exp
, rtx target
, enum machine_mode tmode
,
7559 enum expand_modifier modifier
, addr_space_t as
)
7561 rtx result
, subtarget
;
7563 HOST_WIDE_INT bitsize
, bitpos
;
7564 int volatilep
, unsignedp
;
7565 enum machine_mode mode1
;
7567 /* If we are taking the address of a constant and are at the top level,
7568 we have to use output_constant_def since we can't call force_const_mem
7570 /* ??? This should be considered a front-end bug. We should not be
7571 generating ADDR_EXPR of something that isn't an LVALUE. The only
7572 exception here is STRING_CST. */
7573 if (CONSTANT_CLASS_P (exp
))
7575 result
= XEXP (expand_expr_constant (exp
, 0, modifier
), 0);
7576 if (modifier
< EXPAND_SUM
)
7577 result
= force_operand (result
, target
);
7581 /* Everything must be something allowed by is_gimple_addressable. */
7582 switch (TREE_CODE (exp
))
7585 /* This case will happen via recursion for &a->b. */
7586 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, modifier
);
7590 tree tem
= TREE_OPERAND (exp
, 0);
7591 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
7592 tem
= fold_build_pointer_plus (tem
, TREE_OPERAND (exp
, 1));
7593 return expand_expr (tem
, target
, tmode
, modifier
);
7597 /* Expand the initializer like constants above. */
7598 result
= XEXP (expand_expr_constant (DECL_INITIAL (exp
),
7600 if (modifier
< EXPAND_SUM
)
7601 result
= force_operand (result
, target
);
7605 /* The real part of the complex number is always first, therefore
7606 the address is the same as the address of the parent object. */
7609 inner
= TREE_OPERAND (exp
, 0);
7613 /* The imaginary part of the complex number is always second.
7614 The expression is therefore always offset by the size of the
7617 bitpos
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)));
7618 inner
= TREE_OPERAND (exp
, 0);
7621 case COMPOUND_LITERAL_EXPR
:
7622 /* Allow COMPOUND_LITERAL_EXPR in initializers, if e.g.
7623 rtl_for_decl_init is called on DECL_INITIAL with
7624 COMPOUNT_LITERAL_EXPRs in it, they aren't gimplified. */
7625 if (modifier
== EXPAND_INITIALIZER
7626 && COMPOUND_LITERAL_EXPR_DECL (exp
))
7627 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp
),
7628 target
, tmode
, modifier
, as
);
7631 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7632 expand_expr, as that can have various side effects; LABEL_DECLs for
7633 example, may not have their DECL_RTL set yet. Expand the rtl of
7634 CONSTRUCTORs too, which should yield a memory reference for the
7635 constructor's contents. Assume language specific tree nodes can
7636 be expanded in some interesting way. */
7637 gcc_assert (TREE_CODE (exp
) < LAST_AND_UNUSED_TREE_CODE
);
7639 || TREE_CODE (exp
) == CONSTRUCTOR
7640 || TREE_CODE (exp
) == COMPOUND_LITERAL_EXPR
)
7642 result
= expand_expr (exp
, target
, tmode
,
7643 modifier
== EXPAND_INITIALIZER
7644 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
7646 /* If the DECL isn't in memory, then the DECL wasn't properly
7647 marked TREE_ADDRESSABLE, which will be either a front-end
7648 or a tree optimizer bug. */
7650 if (TREE_ADDRESSABLE (exp
)
7652 && ! targetm
.calls
.allocate_stack_slots_for_args ())
7654 error ("local frame unavailable (naked function?)");
7658 gcc_assert (MEM_P (result
));
7659 result
= XEXP (result
, 0);
7661 /* ??? Is this needed anymore? */
7663 TREE_USED (exp
) = 1;
7665 if (modifier
!= EXPAND_INITIALIZER
7666 && modifier
!= EXPAND_CONST_ADDRESS
7667 && modifier
!= EXPAND_SUM
)
7668 result
= force_operand (result
, target
);
7672 /* Pass FALSE as the last argument to get_inner_reference although
7673 we are expanding to RTL. The rationale is that we know how to
7674 handle "aligning nodes" here: we can just bypass them because
7675 they won't change the final object whose address will be returned
7676 (they actually exist only for that purpose). */
7677 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
7678 &mode1
, &unsignedp
, &volatilep
, false);
7682 /* We must have made progress. */
7683 gcc_assert (inner
!= exp
);
7685 subtarget
= offset
|| bitpos
? NULL_RTX
: target
;
7686 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7687 inner alignment, force the inner to be sufficiently aligned. */
7688 if (CONSTANT_CLASS_P (inner
)
7689 && TYPE_ALIGN (TREE_TYPE (inner
)) < TYPE_ALIGN (TREE_TYPE (exp
)))
7691 inner
= copy_node (inner
);
7692 TREE_TYPE (inner
) = copy_node (TREE_TYPE (inner
));
7693 TYPE_ALIGN (TREE_TYPE (inner
)) = TYPE_ALIGN (TREE_TYPE (exp
));
7694 TYPE_USER_ALIGN (TREE_TYPE (inner
)) = 1;
7696 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
, as
);
7702 if (modifier
!= EXPAND_NORMAL
)
7703 result
= force_operand (result
, NULL
);
7704 tmp
= expand_expr (offset
, NULL_RTX
, tmode
,
7705 modifier
== EXPAND_INITIALIZER
7706 ? EXPAND_INITIALIZER
: EXPAND_NORMAL
);
7708 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7709 tmp
= convert_memory_address_addr_space (tmode
, tmp
, as
);
7711 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7712 result
= simplify_gen_binary (PLUS
, tmode
, result
, tmp
);
7715 subtarget
= bitpos
? NULL_RTX
: target
;
7716 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
7717 1, OPTAB_LIB_WIDEN
);
7723 /* Someone beforehand should have rejected taking the address
7724 of such an object. */
7725 gcc_assert ((bitpos
% BITS_PER_UNIT
) == 0);
7727 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7728 result
= plus_constant (tmode
, result
, bitpos
/ BITS_PER_UNIT
);
7729 if (modifier
< EXPAND_SUM
)
7730 result
= force_operand (result
, target
);
7736 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7737 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7740 expand_expr_addr_expr (tree exp
, rtx target
, enum machine_mode tmode
,
7741 enum expand_modifier modifier
)
7743 addr_space_t as
= ADDR_SPACE_GENERIC
;
7744 enum machine_mode address_mode
= Pmode
;
7745 enum machine_mode pointer_mode
= ptr_mode
;
7746 enum machine_mode rmode
;
7749 /* Target mode of VOIDmode says "whatever's natural". */
7750 if (tmode
== VOIDmode
)
7751 tmode
= TYPE_MODE (TREE_TYPE (exp
));
7753 if (POINTER_TYPE_P (TREE_TYPE (exp
)))
7755 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp
)));
7756 address_mode
= targetm
.addr_space
.address_mode (as
);
7757 pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
7760 /* We can get called with some Weird Things if the user does silliness
7761 like "(short) &a". In that case, convert_memory_address won't do
7762 the right thing, so ignore the given target mode. */
7763 if (tmode
!= address_mode
&& tmode
!= pointer_mode
)
7764 tmode
= address_mode
;
7766 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
7767 tmode
, modifier
, as
);
7769 /* Despite expand_expr claims concerning ignoring TMODE when not
7770 strictly convenient, stuff breaks if we don't honor it. Note
7771 that combined with the above, we only do this for pointer modes. */
7772 rmode
= GET_MODE (result
);
7773 if (rmode
== VOIDmode
)
7776 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7781 /* Generate code for computing CONSTRUCTOR EXP.
7782 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7783 is TRUE, instead of creating a temporary variable in memory
7784 NULL is returned and the caller needs to handle it differently. */
7787 expand_constructor (tree exp
, rtx target
, enum expand_modifier modifier
,
7788 bool avoid_temp_mem
)
7790 tree type
= TREE_TYPE (exp
);
7791 enum machine_mode mode
= TYPE_MODE (type
);
7793 /* Try to avoid creating a temporary at all. This is possible
7794 if all of the initializer is zero.
7795 FIXME: try to handle all [0..255] initializers we can handle
7797 if (TREE_STATIC (exp
)
7798 && !TREE_ADDRESSABLE (exp
)
7799 && target
!= 0 && mode
== BLKmode
7800 && all_zeros_p (exp
))
7802 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
7806 /* All elts simple constants => refer to a constant in memory. But
7807 if this is a non-BLKmode mode, let it store a field at a time
7808 since that should make a CONST_INT or CONST_DOUBLE when we
7809 fold. Likewise, if we have a target we can use, it is best to
7810 store directly into the target unless the type is large enough
7811 that memcpy will be used. If we are making an initializer and
7812 all operands are constant, put it in memory as well.
7814 FIXME: Avoid trying to fill vector constructors piece-meal.
7815 Output them with output_constant_def below unless we're sure
7816 they're zeros. This should go away when vector initializers
7817 are treated like VECTOR_CST instead of arrays. */
7818 if ((TREE_STATIC (exp
)
7819 && ((mode
== BLKmode
7820 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
7821 || TREE_ADDRESSABLE (exp
)
7822 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type
))
7823 && (! MOVE_BY_PIECES_P
7824 (tree_to_uhwi (TYPE_SIZE_UNIT (type
)),
7826 && ! mostly_zeros_p (exp
))))
7827 || ((modifier
== EXPAND_INITIALIZER
|| modifier
== EXPAND_CONST_ADDRESS
)
7828 && TREE_CONSTANT (exp
)))
7835 constructor
= expand_expr_constant (exp
, 1, modifier
);
7837 if (modifier
!= EXPAND_CONST_ADDRESS
7838 && modifier
!= EXPAND_INITIALIZER
7839 && modifier
!= EXPAND_SUM
)
7840 constructor
= validize_mem (constructor
);
7845 /* Handle calls that pass values in multiple non-contiguous
7846 locations. The Irix 6 ABI has examples of this. */
7847 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
7848 || GET_CODE (target
) == PARALLEL
|| modifier
== EXPAND_STACK_PARM
)
7854 = assign_temp (build_qualified_type (type
, (TYPE_QUALS (type
)
7855 | (TREE_READONLY (exp
)
7856 * TYPE_QUAL_CONST
))),
7857 TREE_ADDRESSABLE (exp
), 1);
7860 store_constructor (exp
, target
, 0, int_expr_size (exp
));
7865 /* expand_expr: generate code for computing expression EXP.
7866 An rtx for the computed value is returned. The value is never null.
7867 In the case of a void EXP, const0_rtx is returned.
7869 The value may be stored in TARGET if TARGET is nonzero.
7870 TARGET is just a suggestion; callers must assume that
7871 the rtx returned may not be the same as TARGET.
7873 If TARGET is CONST0_RTX, it means that the value will be ignored.
7875 If TMODE is not VOIDmode, it suggests generating the
7876 result in mode TMODE. But this is done only when convenient.
7877 Otherwise, TMODE is ignored and the value generated in its natural mode.
7878 TMODE is just a suggestion; callers must assume that
7879 the rtx returned may not have mode TMODE.
7881 Note that TARGET may have neither TMODE nor MODE. In that case, it
7882 probably will not be used.
7884 If MODIFIER is EXPAND_SUM then when EXP is an addition
7885 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7886 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7887 products as above, or REG or MEM, or constant.
7888 Ordinarily in such cases we would output mul or add instructions
7889 and then return a pseudo reg containing the sum.
7891 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7892 it also marks a label as absolutely required (it can't be dead).
7893 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7894 This is used for outputting expressions used in initializers.
7896 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7897 with a constant address even if that address is not normally legitimate.
7898 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7900 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7901 a call parameter. Such targets require special care as we haven't yet
7902 marked TARGET so that it's safe from being trashed by libcalls. We
7903 don't want to use TARGET for anything but the final result;
7904 Intermediate values must go elsewhere. Additionally, calls to
7905 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7907 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7908 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7909 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7910 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7914 expand_expr_real (tree exp
, rtx target
, enum machine_mode tmode
,
7915 enum expand_modifier modifier
, rtx
*alt_rtl
)
7919 /* Handle ERROR_MARK before anybody tries to access its type. */
7920 if (TREE_CODE (exp
) == ERROR_MARK
7921 || (TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
))
7923 ret
= CONST0_RTX (tmode
);
7924 return ret
? ret
: const0_rtx
;
7927 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
7931 /* Try to expand the conditional expression which is represented by
7932 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If succeseds
7933 return the rtl reg which repsents the result. Otherwise return
7937 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED
,
7938 tree treeop1 ATTRIBUTE_UNUSED
,
7939 tree treeop2 ATTRIBUTE_UNUSED
)
7941 #ifdef HAVE_conditional_move
7943 rtx op00
, op01
, op1
, op2
;
7944 enum rtx_code comparison_code
;
7945 enum machine_mode comparison_mode
;
7948 tree type
= TREE_TYPE (treeop1
);
7949 int unsignedp
= TYPE_UNSIGNED (type
);
7950 enum machine_mode mode
= TYPE_MODE (type
);
7951 enum machine_mode orig_mode
= mode
;
7953 /* If we cannot do a conditional move on the mode, try doing it
7954 with the promoted mode. */
7955 if (!can_conditionally_move_p (mode
))
7957 mode
= promote_mode (type
, mode
, &unsignedp
);
7958 if (!can_conditionally_move_p (mode
))
7960 temp
= assign_temp (type
, 0, 0); /* Use promoted mode for temp. */
7963 temp
= assign_temp (type
, 0, 1);
7966 expand_operands (treeop1
, treeop2
,
7967 temp
, &op1
, &op2
, EXPAND_NORMAL
);
7969 if (TREE_CODE (treeop0
) == SSA_NAME
7970 && (srcstmt
= get_def_for_expr_class (treeop0
, tcc_comparison
)))
7972 tree type
= TREE_TYPE (gimple_assign_rhs1 (srcstmt
));
7973 enum tree_code cmpcode
= gimple_assign_rhs_code (srcstmt
);
7974 op00
= expand_normal (gimple_assign_rhs1 (srcstmt
));
7975 op01
= expand_normal (gimple_assign_rhs2 (srcstmt
));
7976 comparison_mode
= TYPE_MODE (type
);
7977 unsignedp
= TYPE_UNSIGNED (type
);
7978 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
7980 else if (TREE_CODE_CLASS (TREE_CODE (treeop0
)) == tcc_comparison
)
7982 tree type
= TREE_TYPE (TREE_OPERAND (treeop0
, 0));
7983 enum tree_code cmpcode
= TREE_CODE (treeop0
);
7984 op00
= expand_normal (TREE_OPERAND (treeop0
, 0));
7985 op01
= expand_normal (TREE_OPERAND (treeop0
, 1));
7986 unsignedp
= TYPE_UNSIGNED (type
);
7987 comparison_mode
= TYPE_MODE (type
);
7988 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
7992 op00
= expand_normal (treeop0
);
7994 comparison_code
= NE
;
7995 comparison_mode
= TYPE_MODE (TREE_TYPE (treeop0
));
7998 if (GET_MODE (op1
) != mode
)
7999 op1
= gen_lowpart (mode
, op1
);
8001 if (GET_MODE (op2
) != mode
)
8002 op2
= gen_lowpart (mode
, op2
);
8004 /* Try to emit the conditional move. */
8005 insn
= emit_conditional_move (temp
, comparison_code
,
8006 op00
, op01
, comparison_mode
,
8010 /* If we could do the conditional move, emit the sequence,
8014 rtx seq
= get_insns ();
8017 return convert_modes (orig_mode
, mode
, temp
, 0);
8020 /* Otherwise discard the sequence and fall back to code with
8028 expand_expr_real_2 (sepops ops
, rtx target
, enum machine_mode tmode
,
8029 enum expand_modifier modifier
)
8031 rtx op0
, op1
, op2
, temp
;
8034 enum machine_mode mode
;
8035 enum tree_code code
= ops
->code
;
8037 rtx subtarget
, original_target
;
8039 bool reduce_bit_field
;
8040 location_t loc
= ops
->location
;
8041 tree treeop0
, treeop1
, treeop2
;
8042 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8043 ? reduce_to_bit_field_precision ((expr), \
8049 mode
= TYPE_MODE (type
);
8050 unsignedp
= TYPE_UNSIGNED (type
);
8056 /* We should be called only on simple (binary or unary) expressions,
8057 exactly those that are valid in gimple expressions that aren't
8058 GIMPLE_SINGLE_RHS (or invalid). */
8059 gcc_assert (get_gimple_rhs_class (code
) == GIMPLE_UNARY_RHS
8060 || get_gimple_rhs_class (code
) == GIMPLE_BINARY_RHS
8061 || get_gimple_rhs_class (code
) == GIMPLE_TERNARY_RHS
);
8063 ignore
= (target
== const0_rtx
8064 || ((CONVERT_EXPR_CODE_P (code
)
8065 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
8066 && TREE_CODE (type
) == VOID_TYPE
));
8068 /* We should be called only if we need the result. */
8069 gcc_assert (!ignore
);
8071 /* An operation in what may be a bit-field type needs the
8072 result to be reduced to the precision of the bit-field type,
8073 which is narrower than that of the type's mode. */
8074 reduce_bit_field
= (INTEGRAL_TYPE_P (type
)
8075 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
8077 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
8080 /* Use subtarget as the target for operand 0 of a binary operation. */
8081 subtarget
= get_subtarget (target
);
8082 original_target
= target
;
8086 case NON_LVALUE_EXPR
:
8089 if (treeop0
== error_mark_node
)
8092 if (TREE_CODE (type
) == UNION_TYPE
)
8094 tree valtype
= TREE_TYPE (treeop0
);
8096 /* If both input and output are BLKmode, this conversion isn't doing
8097 anything except possibly changing memory attribute. */
8098 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
8100 rtx result
= expand_expr (treeop0
, target
, tmode
,
8103 result
= copy_rtx (result
);
8104 set_mem_attributes (result
, type
, 0);
8110 if (TYPE_MODE (type
) != BLKmode
)
8111 target
= gen_reg_rtx (TYPE_MODE (type
));
8113 target
= assign_temp (type
, 1, 1);
8117 /* Store data into beginning of memory target. */
8118 store_expr (treeop0
,
8119 adjust_address (target
, TYPE_MODE (valtype
), 0),
8120 modifier
== EXPAND_STACK_PARM
,
8125 gcc_assert (REG_P (target
));
8127 /* Store this field into a union of the proper type. */
8128 store_field (target
,
8129 MIN ((int_size_in_bytes (TREE_TYPE
8132 (HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)),
8133 0, 0, 0, TYPE_MODE (valtype
), treeop0
, 0, false);
8136 /* Return the entire union. */
8140 if (mode
== TYPE_MODE (TREE_TYPE (treeop0
)))
8142 op0
= expand_expr (treeop0
, target
, VOIDmode
,
8145 /* If the signedness of the conversion differs and OP0 is
8146 a promoted SUBREG, clear that indication since we now
8147 have to do the proper extension. */
8148 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)) != unsignedp
8149 && GET_CODE (op0
) == SUBREG
)
8150 SUBREG_PROMOTED_VAR_P (op0
) = 0;
8152 return REDUCE_BIT_FIELD (op0
);
8155 op0
= expand_expr (treeop0
, NULL_RTX
, mode
,
8156 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
8157 if (GET_MODE (op0
) == mode
)
8160 /* If OP0 is a constant, just convert it into the proper mode. */
8161 else if (CONSTANT_P (op0
))
8163 tree inner_type
= TREE_TYPE (treeop0
);
8164 enum machine_mode inner_mode
= GET_MODE (op0
);
8166 if (inner_mode
== VOIDmode
)
8167 inner_mode
= TYPE_MODE (inner_type
);
8169 if (modifier
== EXPAND_INITIALIZER
)
8170 op0
= simplify_gen_subreg (mode
, op0
, inner_mode
,
8171 subreg_lowpart_offset (mode
,
8174 op0
= convert_modes (mode
, inner_mode
, op0
,
8175 TYPE_UNSIGNED (inner_type
));
8178 else if (modifier
== EXPAND_INITIALIZER
)
8179 op0
= gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
8181 else if (target
== 0)
8182 op0
= convert_to_mode (mode
, op0
,
8183 TYPE_UNSIGNED (TREE_TYPE
8187 convert_move (target
, op0
,
8188 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8192 return REDUCE_BIT_FIELD (op0
);
8194 case ADDR_SPACE_CONVERT_EXPR
:
8196 tree treeop0_type
= TREE_TYPE (treeop0
);
8198 addr_space_t as_from
;
8200 gcc_assert (POINTER_TYPE_P (type
));
8201 gcc_assert (POINTER_TYPE_P (treeop0_type
));
8203 as_to
= TYPE_ADDR_SPACE (TREE_TYPE (type
));
8204 as_from
= TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type
));
8206 /* Conversions between pointers to the same address space should
8207 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8208 gcc_assert (as_to
!= as_from
);
8210 /* Ask target code to handle conversion between pointers
8211 to overlapping address spaces. */
8212 if (targetm
.addr_space
.subset_p (as_to
, as_from
)
8213 || targetm
.addr_space
.subset_p (as_from
, as_to
))
8215 op0
= expand_expr (treeop0
, NULL_RTX
, VOIDmode
, modifier
);
8216 op0
= targetm
.addr_space
.convert (op0
, treeop0_type
, type
);
8221 /* For disjoint address spaces, converting anything but
8222 a null pointer invokes undefined behaviour. We simply
8223 always return a null pointer here. */
8224 return CONST0_RTX (mode
);
8227 case POINTER_PLUS_EXPR
:
8228 /* Even though the sizetype mode and the pointer's mode can be different
8229 expand is able to handle this correctly and get the correct result out
8230 of the PLUS_EXPR code. */
8231 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8232 if sizetype precision is smaller than pointer precision. */
8233 if (TYPE_PRECISION (sizetype
) < TYPE_PRECISION (type
))
8234 treeop1
= fold_convert_loc (loc
, type
,
8235 fold_convert_loc (loc
, ssizetype
,
8237 /* If sizetype precision is larger than pointer precision, truncate the
8238 offset to have matching modes. */
8239 else if (TYPE_PRECISION (sizetype
) > TYPE_PRECISION (type
))
8240 treeop1
= fold_convert_loc (loc
, type
, treeop1
);
8243 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8244 something else, make sure we add the register to the constant and
8245 then to the other thing. This case can occur during strength
8246 reduction and doing it this way will produce better code if the
8247 frame pointer or argument pointer is eliminated.
8249 fold-const.c will ensure that the constant is always in the inner
8250 PLUS_EXPR, so the only case we need to do anything about is if
8251 sp, ap, or fp is our second argument, in which case we must swap
8252 the innermost first argument and our second argument. */
8254 if (TREE_CODE (treeop0
) == PLUS_EXPR
8255 && TREE_CODE (TREE_OPERAND (treeop0
, 1)) == INTEGER_CST
8256 && TREE_CODE (treeop1
) == VAR_DECL
8257 && (DECL_RTL (treeop1
) == frame_pointer_rtx
8258 || DECL_RTL (treeop1
) == stack_pointer_rtx
8259 || DECL_RTL (treeop1
) == arg_pointer_rtx
))
8264 /* If the result is to be ptr_mode and we are adding an integer to
8265 something, we might be forming a constant. So try to use
8266 plus_constant. If it produces a sum and we can't accept it,
8267 use force_operand. This allows P = &ARR[const] to generate
8268 efficient code on machines where a SYMBOL_REF is not a valid
8271 If this is an EXPAND_SUM call, always return the sum. */
8272 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
8273 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
8275 if (modifier
== EXPAND_STACK_PARM
)
8277 if (TREE_CODE (treeop0
) == INTEGER_CST
8278 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
8279 && TREE_CONSTANT (treeop1
))
8283 op1
= expand_expr (treeop1
, subtarget
, VOIDmode
,
8285 /* Use immed_double_const to ensure that the constant is
8286 truncated according to the mode of OP1, then sign extended
8287 to a HOST_WIDE_INT. Using the constant directly can result
8288 in non-canonical RTL in a 64x32 cross compile. */
8290 = immed_double_const (TREE_INT_CST_LOW (treeop0
),
8292 TYPE_MODE (TREE_TYPE (treeop1
)));
8293 op1
= plus_constant (mode
, op1
, INTVAL (constant_part
));
8294 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8295 op1
= force_operand (op1
, target
);
8296 return REDUCE_BIT_FIELD (op1
);
8299 else if (TREE_CODE (treeop1
) == INTEGER_CST
8300 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
8301 && TREE_CONSTANT (treeop0
))
8305 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8306 (modifier
== EXPAND_INITIALIZER
8307 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
8308 if (! CONSTANT_P (op0
))
8310 op1
= expand_expr (treeop1
, NULL_RTX
,
8311 VOIDmode
, modifier
);
8312 /* Return a PLUS if modifier says it's OK. */
8313 if (modifier
== EXPAND_SUM
8314 || modifier
== EXPAND_INITIALIZER
)
8315 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
8318 /* Use immed_double_const to ensure that the constant is
8319 truncated according to the mode of OP1, then sign extended
8320 to a HOST_WIDE_INT. Using the constant directly can result
8321 in non-canonical RTL in a 64x32 cross compile. */
8323 = immed_double_const (TREE_INT_CST_LOW (treeop1
),
8325 TYPE_MODE (TREE_TYPE (treeop0
)));
8326 op0
= plus_constant (mode
, op0
, INTVAL (constant_part
));
8327 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8328 op0
= force_operand (op0
, target
);
8329 return REDUCE_BIT_FIELD (op0
);
8333 /* Use TER to expand pointer addition of a negated value
8334 as pointer subtraction. */
8335 if ((POINTER_TYPE_P (TREE_TYPE (treeop0
))
8336 || (TREE_CODE (TREE_TYPE (treeop0
)) == VECTOR_TYPE
8337 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0
)))))
8338 && TREE_CODE (treeop1
) == SSA_NAME
8339 && TYPE_MODE (TREE_TYPE (treeop0
))
8340 == TYPE_MODE (TREE_TYPE (treeop1
)))
8342 gimple def
= get_def_for_expr (treeop1
, NEGATE_EXPR
);
8345 treeop1
= gimple_assign_rhs1 (def
);
8351 /* No sense saving up arithmetic to be done
8352 if it's all in the wrong mode to form part of an address.
8353 And force_operand won't know whether to sign-extend or
8355 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8356 || mode
!= ptr_mode
)
8358 expand_operands (treeop0
, treeop1
,
8359 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8360 if (op0
== const0_rtx
)
8362 if (op1
== const0_rtx
)
8367 expand_operands (treeop0
, treeop1
,
8368 subtarget
, &op0
, &op1
, modifier
);
8369 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8373 /* For initializers, we are allowed to return a MINUS of two
8374 symbolic constants. Here we handle all cases when both operands
8376 /* Handle difference of two symbolic constants,
8377 for the sake of an initializer. */
8378 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
8379 && really_constant_p (treeop0
)
8380 && really_constant_p (treeop1
))
8382 expand_operands (treeop0
, treeop1
,
8383 NULL_RTX
, &op0
, &op1
, modifier
);
8385 /* If the last operand is a CONST_INT, use plus_constant of
8386 the negated constant. Else make the MINUS. */
8387 if (CONST_INT_P (op1
))
8388 return REDUCE_BIT_FIELD (plus_constant (mode
, op0
,
8391 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode
, op0
, op1
));
8394 /* No sense saving up arithmetic to be done
8395 if it's all in the wrong mode to form part of an address.
8396 And force_operand won't know whether to sign-extend or
8398 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8399 || mode
!= ptr_mode
)
8402 expand_operands (treeop0
, treeop1
,
8403 subtarget
, &op0
, &op1
, modifier
);
8405 /* Convert A - const to A + (-const). */
8406 if (CONST_INT_P (op1
))
8408 op1
= negate_rtx (mode
, op1
);
8409 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8414 case WIDEN_MULT_PLUS_EXPR
:
8415 case WIDEN_MULT_MINUS_EXPR
:
8416 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8417 op2
= expand_normal (treeop2
);
8418 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
8422 case WIDEN_MULT_EXPR
:
8423 /* If first operand is constant, swap them.
8424 Thus the following special case checks need only
8425 check the second operand. */
8426 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8433 /* First, check if we have a multiplication of one signed and one
8434 unsigned operand. */
8435 if (TREE_CODE (treeop1
) != INTEGER_CST
8436 && (TYPE_UNSIGNED (TREE_TYPE (treeop0
))
8437 != TYPE_UNSIGNED (TREE_TYPE (treeop1
))))
8439 enum machine_mode innermode
= TYPE_MODE (TREE_TYPE (treeop0
));
8440 this_optab
= usmul_widen_optab
;
8441 if (find_widening_optab_handler (this_optab
, mode
, innermode
, 0)
8442 != CODE_FOR_nothing
)
8444 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8445 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8448 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op1
, &op0
,
8450 /* op0 and op1 might still be constant, despite the above
8451 != INTEGER_CST check. Handle it. */
8452 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8454 op0
= convert_modes (innermode
, mode
, op0
, true);
8455 op1
= convert_modes (innermode
, mode
, op1
, false);
8456 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
8457 target
, unsignedp
));
8462 /* Check for a multiplication with matching signedness. */
8463 else if ((TREE_CODE (treeop1
) == INTEGER_CST
8464 && int_fits_type_p (treeop1
, TREE_TYPE (treeop0
)))
8465 || (TYPE_UNSIGNED (TREE_TYPE (treeop1
))
8466 == TYPE_UNSIGNED (TREE_TYPE (treeop0
))))
8468 tree op0type
= TREE_TYPE (treeop0
);
8469 enum machine_mode innermode
= TYPE_MODE (op0type
);
8470 bool zextend_p
= TYPE_UNSIGNED (op0type
);
8471 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
8472 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
8474 if (TREE_CODE (treeop0
) != INTEGER_CST
)
8476 if (find_widening_optab_handler (this_optab
, mode
, innermode
, 0)
8477 != CODE_FOR_nothing
)
8479 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8481 /* op0 and op1 might still be constant, despite the above
8482 != INTEGER_CST check. Handle it. */
8483 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8486 op0
= convert_modes (innermode
, mode
, op0
, zextend_p
);
8488 = convert_modes (innermode
, mode
, op1
,
8489 TYPE_UNSIGNED (TREE_TYPE (treeop1
)));
8490 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
8494 temp
= expand_widening_mult (mode
, op0
, op1
, target
,
8495 unsignedp
, this_optab
);
8496 return REDUCE_BIT_FIELD (temp
);
8498 if (find_widening_optab_handler (other_optab
, mode
, innermode
, 0)
8500 && innermode
== word_mode
)
8503 op0
= expand_normal (treeop0
);
8504 if (TREE_CODE (treeop1
) == INTEGER_CST
)
8505 op1
= convert_modes (innermode
, mode
,
8506 expand_normal (treeop1
),
8507 TYPE_UNSIGNED (TREE_TYPE (treeop1
)));
8509 op1
= expand_normal (treeop1
);
8510 /* op0 and op1 might still be constant, despite the above
8511 != INTEGER_CST check. Handle it. */
8512 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8513 goto widen_mult_const
;
8514 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
8515 unsignedp
, OPTAB_LIB_WIDEN
);
8516 hipart
= gen_highpart (innermode
, temp
);
8517 htem
= expand_mult_highpart_adjust (innermode
, hipart
,
8521 emit_move_insn (hipart
, htem
);
8522 return REDUCE_BIT_FIELD (temp
);
8526 treeop0
= fold_build1 (CONVERT_EXPR
, type
, treeop0
);
8527 treeop1
= fold_build1 (CONVERT_EXPR
, type
, treeop1
);
8528 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8529 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8533 optab opt
= fma_optab
;
8536 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8538 if (optab_handler (fma_optab
, mode
) == CODE_FOR_nothing
)
8540 tree fn
= mathfn_built_in (TREE_TYPE (treeop0
), BUILT_IN_FMA
);
8543 gcc_assert (fn
!= NULL_TREE
);
8544 call_expr
= build_call_expr (fn
, 3, treeop0
, treeop1
, treeop2
);
8545 return expand_builtin (call_expr
, target
, subtarget
, mode
, false);
8548 def0
= get_def_for_expr (treeop0
, NEGATE_EXPR
);
8549 def2
= get_def_for_expr (treeop2
, NEGATE_EXPR
);
8554 && optab_handler (fnms_optab
, mode
) != CODE_FOR_nothing
)
8557 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8558 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8561 && optab_handler (fnma_optab
, mode
) != CODE_FOR_nothing
)
8564 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8567 && optab_handler (fms_optab
, mode
) != CODE_FOR_nothing
)
8570 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8574 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
, EXPAND_NORMAL
);
8576 op2
= expand_normal (treeop2
);
8577 op1
= expand_normal (treeop1
);
8579 return expand_ternary_op (TYPE_MODE (type
), opt
,
8580 op0
, op1
, op2
, target
, 0);
8584 /* If this is a fixed-point operation, then we cannot use the code
8585 below because "expand_mult" doesn't support sat/no-sat fixed-point
8587 if (ALL_FIXED_POINT_MODE_P (mode
))
8590 /* If first operand is constant, swap them.
8591 Thus the following special case checks need only
8592 check the second operand. */
8593 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8600 /* Attempt to return something suitable for generating an
8601 indexed address, for machines that support that. */
8603 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
8604 && tree_fits_shwi_p (treeop1
))
8606 tree exp1
= treeop1
;
8608 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8612 op0
= force_operand (op0
, NULL_RTX
);
8614 op0
= copy_to_mode_reg (mode
, op0
);
8616 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
8617 gen_int_mode (tree_to_shwi (exp1
),
8618 TYPE_MODE (TREE_TYPE (exp1
)))));
8621 if (modifier
== EXPAND_STACK_PARM
)
8624 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8625 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8627 case TRUNC_DIV_EXPR
:
8628 case FLOOR_DIV_EXPR
:
8630 case ROUND_DIV_EXPR
:
8631 case EXACT_DIV_EXPR
:
8632 /* If this is a fixed-point operation, then we cannot use the code
8633 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8635 if (ALL_FIXED_POINT_MODE_P (mode
))
8638 if (modifier
== EXPAND_STACK_PARM
)
8640 /* Possible optimization: compute the dividend with EXPAND_SUM
8641 then if the divisor is constant can optimize the case
8642 where some terms of the dividend have coeffs divisible by it. */
8643 expand_operands (treeop0
, treeop1
,
8644 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8645 return expand_divmod (0, code
, mode
, op0
, op1
, target
, unsignedp
);
8650 case MULT_HIGHPART_EXPR
:
8651 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8652 temp
= expand_mult_highpart (mode
, op0
, op1
, target
, unsignedp
);
8656 case TRUNC_MOD_EXPR
:
8657 case FLOOR_MOD_EXPR
:
8659 case ROUND_MOD_EXPR
:
8660 if (modifier
== EXPAND_STACK_PARM
)
8662 expand_operands (treeop0
, treeop1
,
8663 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8664 return expand_divmod (1, code
, mode
, op0
, op1
, target
, unsignedp
);
8666 case FIXED_CONVERT_EXPR
:
8667 op0
= expand_normal (treeop0
);
8668 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8669 target
= gen_reg_rtx (mode
);
8671 if ((TREE_CODE (TREE_TYPE (treeop0
)) == INTEGER_TYPE
8672 && TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8673 || (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_UNSIGNED (type
)))
8674 expand_fixed_convert (target
, op0
, 1, TYPE_SATURATING (type
));
8676 expand_fixed_convert (target
, op0
, 0, TYPE_SATURATING (type
));
8679 case FIX_TRUNC_EXPR
:
8680 op0
= expand_normal (treeop0
);
8681 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8682 target
= gen_reg_rtx (mode
);
8683 expand_fix (target
, op0
, unsignedp
);
8687 op0
= expand_normal (treeop0
);
8688 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8689 target
= gen_reg_rtx (mode
);
8690 /* expand_float can't figure out what to do if FROM has VOIDmode.
8691 So give it the correct mode. With -O, cse will optimize this. */
8692 if (GET_MODE (op0
) == VOIDmode
)
8693 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0
)),
8695 expand_float (target
, op0
,
8696 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8700 op0
= expand_expr (treeop0
, subtarget
,
8701 VOIDmode
, EXPAND_NORMAL
);
8702 if (modifier
== EXPAND_STACK_PARM
)
8704 temp
= expand_unop (mode
,
8705 optab_for_tree_code (NEGATE_EXPR
, type
,
8709 return REDUCE_BIT_FIELD (temp
);
8712 op0
= expand_expr (treeop0
, subtarget
,
8713 VOIDmode
, EXPAND_NORMAL
);
8714 if (modifier
== EXPAND_STACK_PARM
)
8717 /* ABS_EXPR is not valid for complex arguments. */
8718 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
8719 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
8721 /* Unsigned abs is simply the operand. Testing here means we don't
8722 risk generating incorrect code below. */
8723 if (TYPE_UNSIGNED (type
))
8726 return expand_abs (mode
, op0
, target
, unsignedp
,
8727 safe_from_p (target
, treeop0
, 1));
8731 target
= original_target
;
8733 || modifier
== EXPAND_STACK_PARM
8734 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
8735 || GET_MODE (target
) != mode
8737 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
8738 target
= gen_reg_rtx (mode
);
8739 expand_operands (treeop0
, treeop1
,
8740 target
, &op0
, &op1
, EXPAND_NORMAL
);
8742 /* First try to do it with a special MIN or MAX instruction.
8743 If that does not win, use a conditional jump to select the proper
8745 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
8746 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
8751 /* At this point, a MEM target is no longer useful; we will get better
8754 if (! REG_P (target
))
8755 target
= gen_reg_rtx (mode
);
8757 /* If op1 was placed in target, swap op0 and op1. */
8758 if (target
!= op0
&& target
== op1
)
8765 /* We generate better code and avoid problems with op1 mentioning
8766 target by forcing op1 into a pseudo if it isn't a constant. */
8767 if (! CONSTANT_P (op1
))
8768 op1
= force_reg (mode
, op1
);
8771 enum rtx_code comparison_code
;
8774 if (code
== MAX_EXPR
)
8775 comparison_code
= unsignedp
? GEU
: GE
;
8777 comparison_code
= unsignedp
? LEU
: LE
;
8779 /* Canonicalize to comparisons against 0. */
8780 if (op1
== const1_rtx
)
8782 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8783 or (a != 0 ? a : 1) for unsigned.
8784 For MIN we are safe converting (a <= 1 ? a : 1)
8785 into (a <= 0 ? a : 1) */
8786 cmpop1
= const0_rtx
;
8787 if (code
== MAX_EXPR
)
8788 comparison_code
= unsignedp
? NE
: GT
;
8790 if (op1
== constm1_rtx
&& !unsignedp
)
8792 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8793 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8794 cmpop1
= const0_rtx
;
8795 if (code
== MIN_EXPR
)
8796 comparison_code
= LT
;
8798 #ifdef HAVE_conditional_move
8799 /* Use a conditional move if possible. */
8800 if (can_conditionally_move_p (mode
))
8806 /* Try to emit the conditional move. */
8807 insn
= emit_conditional_move (target
, comparison_code
,
8812 /* If we could do the conditional move, emit the sequence,
8816 rtx seq
= get_insns ();
8822 /* Otherwise discard the sequence and fall back to code with
8828 emit_move_insn (target
, op0
);
8830 temp
= gen_label_rtx ();
8831 do_compare_rtx_and_jump (target
, cmpop1
, comparison_code
,
8832 unsignedp
, mode
, NULL_RTX
, NULL_RTX
, temp
,
8835 emit_move_insn (target
, op1
);
8840 op0
= expand_expr (treeop0
, subtarget
,
8841 VOIDmode
, EXPAND_NORMAL
);
8842 if (modifier
== EXPAND_STACK_PARM
)
8844 /* In case we have to reduce the result to bitfield precision
8845 for unsigned bitfield expand this as XOR with a proper constant
8847 if (reduce_bit_field
&& TYPE_UNSIGNED (type
))
8848 temp
= expand_binop (mode
, xor_optab
, op0
,
8849 immed_double_int_const
8850 (double_int::mask (TYPE_PRECISION (type
)), mode
),
8851 target
, 1, OPTAB_LIB_WIDEN
);
8853 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
8857 /* ??? Can optimize bitwise operations with one arg constant.
8858 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8859 and (a bitwise1 b) bitwise2 b (etc)
8860 but that is probably not worth while. */
8869 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type
))
8870 || (GET_MODE_PRECISION (TYPE_MODE (type
))
8871 == TYPE_PRECISION (type
)));
8876 /* If this is a fixed-point operation, then we cannot use the code
8877 below because "expand_shift" doesn't support sat/no-sat fixed-point
8879 if (ALL_FIXED_POINT_MODE_P (mode
))
8882 if (! safe_from_p (subtarget
, treeop1
, 1))
8884 if (modifier
== EXPAND_STACK_PARM
)
8886 op0
= expand_expr (treeop0
, subtarget
,
8887 VOIDmode
, EXPAND_NORMAL
);
8888 temp
= expand_variable_shift (code
, mode
, op0
, treeop1
, target
,
8890 if (code
== LSHIFT_EXPR
)
8891 temp
= REDUCE_BIT_FIELD (temp
);
8894 /* Could determine the answer when only additive constants differ. Also,
8895 the addition of one can be handled by changing the condition. */
8902 case UNORDERED_EXPR
:
8910 temp
= do_store_flag (ops
,
8911 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
8912 tmode
!= VOIDmode
? tmode
: mode
);
8916 /* Use a compare and a jump for BLKmode comparisons, or for function
8917 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8920 || modifier
== EXPAND_STACK_PARM
8921 || ! safe_from_p (target
, treeop0
, 1)
8922 || ! safe_from_p (target
, treeop1
, 1)
8923 /* Make sure we don't have a hard reg (such as function's return
8924 value) live across basic blocks, if not optimizing. */
8925 || (!optimize
&& REG_P (target
)
8926 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
8927 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
8929 emit_move_insn (target
, const0_rtx
);
8931 op1
= gen_label_rtx ();
8932 jumpifnot_1 (code
, treeop0
, treeop1
, op1
, -1);
8934 if (TYPE_PRECISION (type
) == 1 && !TYPE_UNSIGNED (type
))
8935 emit_move_insn (target
, constm1_rtx
);
8937 emit_move_insn (target
, const1_rtx
);
8943 /* Get the rtx code of the operands. */
8944 op0
= expand_normal (treeop0
);
8945 op1
= expand_normal (treeop1
);
8948 target
= gen_reg_rtx (TYPE_MODE (type
));
8950 /* If target overlaps with op1, then either we need to force
8951 op1 into a pseudo (if target also overlaps with op0),
8952 or write the complex parts in reverse order. */
8953 switch (GET_CODE (target
))
8956 if (reg_overlap_mentioned_p (XEXP (target
, 0), op1
))
8958 if (reg_overlap_mentioned_p (XEXP (target
, 1), op0
))
8960 complex_expr_force_op1
:
8961 temp
= gen_reg_rtx (GET_MODE_INNER (GET_MODE (target
)));
8962 emit_move_insn (temp
, op1
);
8966 complex_expr_swap_order
:
8967 /* Move the imaginary (op1) and real (op0) parts to their
8969 write_complex_part (target
, op1
, true);
8970 write_complex_part (target
, op0
, false);
8976 temp
= adjust_address_nv (target
,
8977 GET_MODE_INNER (GET_MODE (target
)), 0);
8978 if (reg_overlap_mentioned_p (temp
, op1
))
8980 enum machine_mode imode
= GET_MODE_INNER (GET_MODE (target
));
8981 temp
= adjust_address_nv (target
, imode
,
8982 GET_MODE_SIZE (imode
));
8983 if (reg_overlap_mentioned_p (temp
, op0
))
8984 goto complex_expr_force_op1
;
8985 goto complex_expr_swap_order
;
8989 if (reg_overlap_mentioned_p (target
, op1
))
8991 if (reg_overlap_mentioned_p (target
, op0
))
8992 goto complex_expr_force_op1
;
8993 goto complex_expr_swap_order
;
8998 /* Move the real (op0) and imaginary (op1) parts to their location. */
8999 write_complex_part (target
, op0
, false);
9000 write_complex_part (target
, op1
, true);
9004 case WIDEN_SUM_EXPR
:
9006 tree oprnd0
= treeop0
;
9007 tree oprnd1
= treeop1
;
9009 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9010 target
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, op1
,
9015 case REDUC_MAX_EXPR
:
9016 case REDUC_MIN_EXPR
:
9017 case REDUC_PLUS_EXPR
:
9019 op0
= expand_normal (treeop0
);
9020 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9021 temp
= expand_unop (mode
, this_optab
, op0
, target
, unsignedp
);
9026 case VEC_LSHIFT_EXPR
:
9027 case VEC_RSHIFT_EXPR
:
9029 target
= expand_vec_shift_expr (ops
, target
);
9033 case VEC_UNPACK_HI_EXPR
:
9034 case VEC_UNPACK_LO_EXPR
:
9036 op0
= expand_normal (treeop0
);
9037 temp
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, NULL_RTX
,
9043 case VEC_UNPACK_FLOAT_HI_EXPR
:
9044 case VEC_UNPACK_FLOAT_LO_EXPR
:
9046 op0
= expand_normal (treeop0
);
9047 /* The signedness is determined from input operand. */
9048 temp
= expand_widen_pattern_expr
9049 (ops
, op0
, NULL_RTX
, NULL_RTX
,
9050 target
, TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
9056 case VEC_WIDEN_MULT_HI_EXPR
:
9057 case VEC_WIDEN_MULT_LO_EXPR
:
9058 case VEC_WIDEN_MULT_EVEN_EXPR
:
9059 case VEC_WIDEN_MULT_ODD_EXPR
:
9060 case VEC_WIDEN_LSHIFT_HI_EXPR
:
9061 case VEC_WIDEN_LSHIFT_LO_EXPR
:
9062 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9063 target
= expand_widen_pattern_expr (ops
, op0
, op1
, NULL_RTX
,
9065 gcc_assert (target
);
9068 case VEC_PACK_TRUNC_EXPR
:
9069 case VEC_PACK_SAT_EXPR
:
9070 case VEC_PACK_FIX_TRUNC_EXPR
:
9071 mode
= TYPE_MODE (TREE_TYPE (treeop0
));
9075 expand_operands (treeop0
, treeop1
, target
, &op0
, &op1
, EXPAND_NORMAL
);
9076 op2
= expand_normal (treeop2
);
9078 /* Careful here: if the target doesn't support integral vector modes,
9079 a constant selection vector could wind up smooshed into a normal
9080 integral constant. */
9081 if (CONSTANT_P (op2
) && GET_CODE (op2
) != CONST_VECTOR
)
9083 tree sel_type
= TREE_TYPE (treeop2
);
9084 enum machine_mode vmode
9085 = mode_for_vector (TYPE_MODE (TREE_TYPE (sel_type
)),
9086 TYPE_VECTOR_SUBPARTS (sel_type
));
9087 gcc_assert (GET_MODE_CLASS (vmode
) == MODE_VECTOR_INT
);
9088 op2
= simplify_subreg (vmode
, op2
, TYPE_MODE (sel_type
), 0);
9089 gcc_assert (op2
&& GET_CODE (op2
) == CONST_VECTOR
);
9092 gcc_assert (GET_MODE_CLASS (GET_MODE (op2
)) == MODE_VECTOR_INT
);
9094 temp
= expand_vec_perm (mode
, op0
, op1
, op2
, target
);
9100 tree oprnd0
= treeop0
;
9101 tree oprnd1
= treeop1
;
9102 tree oprnd2
= treeop2
;
9105 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9106 op2
= expand_normal (oprnd2
);
9107 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
9112 case REALIGN_LOAD_EXPR
:
9114 tree oprnd0
= treeop0
;
9115 tree oprnd1
= treeop1
;
9116 tree oprnd2
= treeop2
;
9119 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9120 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9121 op2
= expand_normal (oprnd2
);
9122 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
9129 /* A COND_EXPR with its type being VOID_TYPE represents a
9130 conditional jump and is handled in
9131 expand_gimple_cond_expr. */
9132 gcc_assert (!VOID_TYPE_P (type
));
9134 /* Note that COND_EXPRs whose type is a structure or union
9135 are required to be constructed to contain assignments of
9136 a temporary variable, so that we can evaluate them here
9137 for side effect only. If type is void, we must do likewise. */
9139 gcc_assert (!TREE_ADDRESSABLE (type
)
9141 && TREE_TYPE (treeop1
) != void_type_node
9142 && TREE_TYPE (treeop2
) != void_type_node
);
9144 temp
= expand_cond_expr_using_cmove (treeop0
, treeop1
, treeop2
);
9148 /* If we are not to produce a result, we have no target. Otherwise,
9149 if a target was specified use it; it will not be used as an
9150 intermediate target unless it is safe. If no target, use a
9153 if (modifier
!= EXPAND_STACK_PARM
9155 && safe_from_p (original_target
, treeop0
, 1)
9156 && GET_MODE (original_target
) == mode
9157 && !MEM_P (original_target
))
9158 temp
= original_target
;
9160 temp
= assign_temp (type
, 0, 1);
9162 do_pending_stack_adjust ();
9164 op0
= gen_label_rtx ();
9165 op1
= gen_label_rtx ();
9166 jumpifnot (treeop0
, op0
, -1);
9167 store_expr (treeop1
, temp
,
9168 modifier
== EXPAND_STACK_PARM
,
9171 emit_jump_insn (gen_jump (op1
));
9174 store_expr (treeop2
, temp
,
9175 modifier
== EXPAND_STACK_PARM
,
9183 target
= expand_vec_cond_expr (type
, treeop0
, treeop1
, treeop2
, target
);
9190 /* Here to do an ordinary binary operator. */
9192 expand_operands (treeop0
, treeop1
,
9193 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9195 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9197 if (modifier
== EXPAND_STACK_PARM
)
9199 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
9200 unsignedp
, OPTAB_LIB_WIDEN
);
9202 /* Bitwise operations do not need bitfield reduction as we expect their
9203 operands being properly truncated. */
9204 if (code
== BIT_XOR_EXPR
9205 || code
== BIT_AND_EXPR
9206 || code
== BIT_IOR_EXPR
)
9208 return REDUCE_BIT_FIELD (temp
);
9210 #undef REDUCE_BIT_FIELD
9213 /* Return TRUE if expression STMT is suitable for replacement.
9214 Never consider memory loads as replaceable, because those don't ever lead
9215 into constant expressions. */
9218 stmt_is_replaceable_p (gimple stmt
)
9220 if (ssa_is_replaceable_p (stmt
))
9222 /* Don't move around loads. */
9223 if (!gimple_assign_single_p (stmt
)
9224 || is_gimple_val (gimple_assign_rhs1 (stmt
)))
9231 expand_expr_real_1 (tree exp
, rtx target
, enum machine_mode tmode
,
9232 enum expand_modifier modifier
, rtx
*alt_rtl
)
9234 rtx op0
, op1
, temp
, decl_rtl
;
9237 enum machine_mode mode
;
9238 enum tree_code code
= TREE_CODE (exp
);
9239 rtx subtarget
, original_target
;
9242 bool reduce_bit_field
;
9243 location_t loc
= EXPR_LOCATION (exp
);
9244 struct separate_ops ops
;
9245 tree treeop0
, treeop1
, treeop2
;
9246 tree ssa_name
= NULL_TREE
;
9249 type
= TREE_TYPE (exp
);
9250 mode
= TYPE_MODE (type
);
9251 unsignedp
= TYPE_UNSIGNED (type
);
9253 treeop0
= treeop1
= treeop2
= NULL_TREE
;
9254 if (!VL_EXP_CLASS_P (exp
))
9255 switch (TREE_CODE_LENGTH (code
))
9258 case 3: treeop2
= TREE_OPERAND (exp
, 2);
9259 case 2: treeop1
= TREE_OPERAND (exp
, 1);
9260 case 1: treeop0
= TREE_OPERAND (exp
, 0);
9270 ignore
= (target
== const0_rtx
9271 || ((CONVERT_EXPR_CODE_P (code
)
9272 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
9273 && TREE_CODE (type
) == VOID_TYPE
));
9275 /* An operation in what may be a bit-field type needs the
9276 result to be reduced to the precision of the bit-field type,
9277 which is narrower than that of the type's mode. */
9278 reduce_bit_field
= (!ignore
9279 && INTEGRAL_TYPE_P (type
)
9280 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
9282 /* If we are going to ignore this result, we need only do something
9283 if there is a side-effect somewhere in the expression. If there
9284 is, short-circuit the most common cases here. Note that we must
9285 not call expand_expr with anything but const0_rtx in case this
9286 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9290 if (! TREE_SIDE_EFFECTS (exp
))
9293 /* Ensure we reference a volatile object even if value is ignored, but
9294 don't do this if all we are doing is taking its address. */
9295 if (TREE_THIS_VOLATILE (exp
)
9296 && TREE_CODE (exp
) != FUNCTION_DECL
9297 && mode
!= VOIDmode
&& mode
!= BLKmode
9298 && modifier
!= EXPAND_CONST_ADDRESS
)
9300 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
9306 if (TREE_CODE_CLASS (code
) == tcc_unary
9307 || code
== BIT_FIELD_REF
9308 || code
== COMPONENT_REF
9309 || code
== INDIRECT_REF
)
9310 return expand_expr (treeop0
, const0_rtx
, VOIDmode
,
9313 else if (TREE_CODE_CLASS (code
) == tcc_binary
9314 || TREE_CODE_CLASS (code
) == tcc_comparison
9315 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
9317 expand_expr (treeop0
, const0_rtx
, VOIDmode
, modifier
);
9318 expand_expr (treeop1
, const0_rtx
, VOIDmode
, modifier
);
9325 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
9328 /* Use subtarget as the target for operand 0 of a binary operation. */
9329 subtarget
= get_subtarget (target
);
9330 original_target
= target
;
9336 tree function
= decl_function_context (exp
);
9338 temp
= label_rtx (exp
);
9339 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
9341 if (function
!= current_function_decl
9343 LABEL_REF_NONLOCAL_P (temp
) = 1;
9345 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
9350 /* ??? ivopts calls expander, without any preparation from
9351 out-of-ssa. So fake instructions as if this was an access to the
9352 base variable. This unnecessarily allocates a pseudo, see how we can
9353 reuse it, if partition base vars have it set already. */
9354 if (!currently_expanding_to_rtl
)
9356 tree var
= SSA_NAME_VAR (exp
);
9357 if (var
&& DECL_RTL_SET_P (var
))
9358 return DECL_RTL (var
);
9359 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp
)),
9360 LAST_VIRTUAL_REGISTER
+ 1);
9363 g
= get_gimple_for_ssa_name (exp
);
9364 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9366 && modifier
== EXPAND_INITIALIZER
9367 && !SSA_NAME_IS_DEFAULT_DEF (exp
)
9368 && (optimize
|| DECL_IGNORED_P (SSA_NAME_VAR (exp
)))
9369 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp
)))
9370 g
= SSA_NAME_DEF_STMT (exp
);
9374 location_t saved_loc
= curr_insn_location ();
9376 set_curr_insn_location (gimple_location (g
));
9377 r
= expand_expr_real (gimple_assign_rhs_to_tree (g
), target
,
9378 tmode
, modifier
, NULL
);
9379 set_curr_insn_location (saved_loc
);
9380 if (REG_P (r
) && !REG_EXPR (r
))
9381 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp
), r
);
9386 decl_rtl
= get_rtx_for_ssa_name (ssa_name
);
9387 exp
= SSA_NAME_VAR (ssa_name
);
9388 goto expand_decl_rtl
;
9392 /* If a static var's type was incomplete when the decl was written,
9393 but the type is complete now, lay out the decl now. */
9394 if (DECL_SIZE (exp
) == 0
9395 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
9396 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
9397 layout_decl (exp
, 0);
9399 /* ... fall through ... */
9403 decl_rtl
= DECL_RTL (exp
);
9405 gcc_assert (decl_rtl
);
9406 decl_rtl
= copy_rtx (decl_rtl
);
9407 /* Record writes to register variables. */
9408 if (modifier
== EXPAND_WRITE
9410 && HARD_REGISTER_P (decl_rtl
))
9411 add_to_hard_reg_set (&crtl
->asm_clobbers
,
9412 GET_MODE (decl_rtl
), REGNO (decl_rtl
));
9414 /* Ensure variable marked as used even if it doesn't go through
9415 a parser. If it hasn't be used yet, write out an external
9417 TREE_USED (exp
) = 1;
9419 /* Show we haven't gotten RTL for this yet. */
9422 /* Variables inherited from containing functions should have
9423 been lowered by this point. */
9424 context
= decl_function_context (exp
);
9425 gcc_assert (SCOPE_FILE_SCOPE_P (context
)
9426 || context
== current_function_decl
9427 || TREE_STATIC (exp
)
9428 || DECL_EXTERNAL (exp
)
9429 /* ??? C++ creates functions that are not TREE_STATIC. */
9430 || TREE_CODE (exp
) == FUNCTION_DECL
);
9432 /* This is the case of an array whose size is to be determined
9433 from its initializer, while the initializer is still being parsed.
9434 ??? We aren't parsing while expanding anymore. */
9436 if (MEM_P (decl_rtl
) && REG_P (XEXP (decl_rtl
, 0)))
9437 temp
= validize_mem (decl_rtl
);
9439 /* If DECL_RTL is memory, we are in the normal case and the
9440 address is not valid, get the address into a register. */
9442 else if (MEM_P (decl_rtl
) && modifier
!= EXPAND_INITIALIZER
)
9445 *alt_rtl
= decl_rtl
;
9446 decl_rtl
= use_anchored_address (decl_rtl
);
9447 if (modifier
!= EXPAND_CONST_ADDRESS
9448 && modifier
!= EXPAND_SUM
9449 && !memory_address_addr_space_p (DECL_MODE (exp
),
9451 MEM_ADDR_SPACE (decl_rtl
)))
9452 temp
= replace_equiv_address (decl_rtl
,
9453 copy_rtx (XEXP (decl_rtl
, 0)));
9456 /* If we got something, return it. But first, set the alignment
9457 if the address is a register. */
9460 if (MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
9461 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
9466 /* If the mode of DECL_RTL does not match that of the decl,
9467 there are two cases: we are dealing with a BLKmode value
9468 that is returned in a register, or we are dealing with
9469 a promoted value. In the latter case, return a SUBREG
9470 of the wanted mode, but mark it so that we know that it
9471 was already extended. */
9472 if (REG_P (decl_rtl
)
9473 && DECL_MODE (exp
) != BLKmode
9474 && GET_MODE (decl_rtl
) != DECL_MODE (exp
))
9476 enum machine_mode pmode
;
9478 /* Get the signedness to be used for this variable. Ensure we get
9479 the same mode we got when the variable was declared. */
9480 if (code
== SSA_NAME
9481 && (g
= SSA_NAME_DEF_STMT (ssa_name
))
9482 && gimple_code (g
) == GIMPLE_CALL
)
9484 gcc_assert (!gimple_call_internal_p (g
));
9485 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
9486 gimple_call_fntype (g
),
9490 pmode
= promote_decl_mode (exp
, &unsignedp
);
9491 gcc_assert (GET_MODE (decl_rtl
) == pmode
);
9493 temp
= gen_lowpart_SUBREG (mode
, decl_rtl
);
9494 SUBREG_PROMOTED_VAR_P (temp
) = 1;
9495 SUBREG_PROMOTED_UNSIGNED_SET (temp
, unsignedp
);
9502 temp
= immed_double_const (TREE_INT_CST_LOW (exp
),
9503 TREE_INT_CST_HIGH (exp
), mode
);
9509 tree tmp
= NULL_TREE
;
9510 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
9511 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
9512 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FRACT
9513 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UFRACT
9514 || GET_MODE_CLASS (mode
) == MODE_VECTOR_ACCUM
9515 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UACCUM
)
9516 return const_vector_from_tree (exp
);
9517 if (GET_MODE_CLASS (mode
) == MODE_INT
)
9519 tree type_for_mode
= lang_hooks
.types
.type_for_mode (mode
, 1);
9521 tmp
= fold_unary_loc (loc
, VIEW_CONVERT_EXPR
, type_for_mode
, exp
);
9525 vec
<constructor_elt
, va_gc
> *v
;
9527 vec_alloc (v
, VECTOR_CST_NELTS (exp
));
9528 for (i
= 0; i
< VECTOR_CST_NELTS (exp
); ++i
)
9529 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, VECTOR_CST_ELT (exp
, i
));
9530 tmp
= build_constructor (type
, v
);
9532 return expand_expr (tmp
, ignore
? const0_rtx
: target
,
9537 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
9540 /* If optimized, generate immediate CONST_DOUBLE
9541 which will be turned into memory by reload if necessary.
9543 We used to force a register so that loop.c could see it. But
9544 this does not allow gen_* patterns to perform optimizations with
9545 the constants. It also produces two insns in cases like "x = 1.0;".
9546 On most machines, floating-point constants are not permitted in
9547 many insns, so we'd end up copying it to a register in any case.
9549 Now, we do the copying in expand_binop, if appropriate. */
9550 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp
),
9551 TYPE_MODE (TREE_TYPE (exp
)));
9554 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp
),
9555 TYPE_MODE (TREE_TYPE (exp
)));
9558 /* Handle evaluating a complex constant in a CONCAT target. */
9559 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
9561 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
9564 rtarg
= XEXP (original_target
, 0);
9565 itarg
= XEXP (original_target
, 1);
9567 /* Move the real and imaginary parts separately. */
9568 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, EXPAND_NORMAL
);
9569 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, EXPAND_NORMAL
);
9572 emit_move_insn (rtarg
, op0
);
9574 emit_move_insn (itarg
, op1
);
9576 return original_target
;
9579 /* ... fall through ... */
9582 temp
= expand_expr_constant (exp
, 1, modifier
);
9584 /* temp contains a constant address.
9585 On RISC machines where a constant address isn't valid,
9586 make some insns to get that address into a register. */
9587 if (modifier
!= EXPAND_CONST_ADDRESS
9588 && modifier
!= EXPAND_INITIALIZER
9589 && modifier
!= EXPAND_SUM
9590 && ! memory_address_addr_space_p (mode
, XEXP (temp
, 0),
9591 MEM_ADDR_SPACE (temp
)))
9592 return replace_equiv_address (temp
,
9593 copy_rtx (XEXP (temp
, 0)));
9599 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
);
9601 if (!SAVE_EXPR_RESOLVED_P (exp
))
9603 /* We can indeed still hit this case, typically via builtin
9604 expanders calling save_expr immediately before expanding
9605 something. Assume this means that we only have to deal
9606 with non-BLKmode values. */
9607 gcc_assert (GET_MODE (ret
) != BLKmode
);
9609 val
= build_decl (curr_insn_location (),
9610 VAR_DECL
, NULL
, TREE_TYPE (exp
));
9611 DECL_ARTIFICIAL (val
) = 1;
9612 DECL_IGNORED_P (val
) = 1;
9614 TREE_OPERAND (exp
, 0) = treeop0
;
9615 SAVE_EXPR_RESOLVED_P (exp
) = 1;
9617 if (!CONSTANT_P (ret
))
9618 ret
= copy_to_reg (ret
);
9619 SET_DECL_RTL (val
, ret
);
9627 /* If we don't need the result, just ensure we evaluate any
9631 unsigned HOST_WIDE_INT idx
;
9634 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
9635 expand_expr (value
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
9640 return expand_constructor (exp
, target
, modifier
, false);
9642 case TARGET_MEM_REF
:
9645 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9646 enum insn_code icode
;
9649 op0
= addr_for_mem_ref (exp
, as
, true);
9650 op0
= memory_address_addr_space (mode
, op0
, as
);
9651 temp
= gen_rtx_MEM (mode
, op0
);
9652 set_mem_attributes (temp
, exp
, 0);
9653 set_mem_addr_space (temp
, as
);
9654 align
= get_object_alignment (exp
);
9655 if (modifier
!= EXPAND_WRITE
9656 && modifier
!= EXPAND_MEMORY
9658 && align
< GET_MODE_ALIGNMENT (mode
)
9659 /* If the target does not have special handling for unaligned
9660 loads of mode then it can use regular moves for them. */
9661 && ((icode
= optab_handler (movmisalign_optab
, mode
))
9662 != CODE_FOR_nothing
))
9664 struct expand_operand ops
[2];
9666 /* We've already validated the memory, and we're creating a
9667 new pseudo destination. The predicates really can't fail,
9668 nor can the generator. */
9669 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9670 create_fixed_operand (&ops
[1], temp
);
9671 expand_insn (icode
, 2, ops
);
9672 temp
= ops
[0].value
;
9680 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9681 enum machine_mode address_mode
;
9682 tree base
= TREE_OPERAND (exp
, 0);
9684 enum insn_code icode
;
9686 /* Handle expansion of non-aliased memory with non-BLKmode. That
9687 might end up in a register. */
9688 if (mem_ref_refers_to_non_mem_p (exp
))
9690 HOST_WIDE_INT offset
= mem_ref_offset (exp
).low
;
9691 base
= TREE_OPERAND (base
, 0);
9693 && tree_fits_uhwi_p (TYPE_SIZE (type
))
9694 && (GET_MODE_BITSIZE (DECL_MODE (base
))
9695 == tree_to_uhwi (TYPE_SIZE (type
))))
9696 return expand_expr (build1 (VIEW_CONVERT_EXPR
, type
, base
),
9697 target
, tmode
, modifier
);
9698 if (TYPE_MODE (type
) == BLKmode
)
9700 temp
= assign_stack_temp (DECL_MODE (base
),
9701 GET_MODE_SIZE (DECL_MODE (base
)));
9702 store_expr (base
, temp
, 0, false);
9703 temp
= adjust_address (temp
, BLKmode
, offset
);
9704 set_mem_size (temp
, int_size_in_bytes (type
));
9707 exp
= build3 (BIT_FIELD_REF
, type
, base
, TYPE_SIZE (type
),
9708 bitsize_int (offset
* BITS_PER_UNIT
));
9709 return expand_expr (exp
, target
, tmode
, modifier
);
9711 address_mode
= targetm
.addr_space
.address_mode (as
);
9712 base
= TREE_OPERAND (exp
, 0);
9713 if ((def_stmt
= get_def_for_expr (base
, BIT_AND_EXPR
)))
9715 tree mask
= gimple_assign_rhs2 (def_stmt
);
9716 base
= build2 (BIT_AND_EXPR
, TREE_TYPE (base
),
9717 gimple_assign_rhs1 (def_stmt
), mask
);
9718 TREE_OPERAND (exp
, 0) = base
;
9720 align
= get_object_alignment (exp
);
9721 op0
= expand_expr (base
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
9722 op0
= memory_address_addr_space (mode
, op0
, as
);
9723 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
9726 = immed_double_int_const (mem_ref_offset (exp
), address_mode
);
9727 op0
= simplify_gen_binary (PLUS
, address_mode
, op0
, off
);
9728 op0
= memory_address_addr_space (mode
, op0
, as
);
9730 temp
= gen_rtx_MEM (mode
, op0
);
9731 set_mem_attributes (temp
, exp
, 0);
9732 set_mem_addr_space (temp
, as
);
9733 if (TREE_THIS_VOLATILE (exp
))
9734 MEM_VOLATILE_P (temp
) = 1;
9735 if (modifier
!= EXPAND_WRITE
9736 && modifier
!= EXPAND_MEMORY
9738 && align
< GET_MODE_ALIGNMENT (mode
))
9740 if ((icode
= optab_handler (movmisalign_optab
, mode
))
9741 != CODE_FOR_nothing
)
9743 struct expand_operand ops
[2];
9745 /* We've already validated the memory, and we're creating a
9746 new pseudo destination. The predicates really can't fail,
9747 nor can the generator. */
9748 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9749 create_fixed_operand (&ops
[1], temp
);
9750 expand_insn (icode
, 2, ops
);
9751 temp
= ops
[0].value
;
9753 else if (SLOW_UNALIGNED_ACCESS (mode
, align
))
9754 temp
= extract_bit_field (temp
, GET_MODE_BITSIZE (mode
),
9755 0, TYPE_UNSIGNED (TREE_TYPE (exp
)),
9756 (modifier
== EXPAND_STACK_PARM
9757 ? NULL_RTX
: target
),
9766 tree array
= treeop0
;
9767 tree index
= treeop1
;
9770 /* Fold an expression like: "foo"[2].
9771 This is not done in fold so it won't happen inside &.
9772 Don't fold if this is for wide characters since it's too
9773 difficult to do correctly and this is a very rare case. */
9775 if (modifier
!= EXPAND_CONST_ADDRESS
9776 && modifier
!= EXPAND_INITIALIZER
9777 && modifier
!= EXPAND_MEMORY
)
9779 tree t
= fold_read_from_constant_string (exp
);
9782 return expand_expr (t
, target
, tmode
, modifier
);
9785 /* If this is a constant index into a constant array,
9786 just get the value from the array. Handle both the cases when
9787 we have an explicit constructor and when our operand is a variable
9788 that was declared const. */
9790 if (modifier
!= EXPAND_CONST_ADDRESS
9791 && modifier
!= EXPAND_INITIALIZER
9792 && modifier
!= EXPAND_MEMORY
9793 && TREE_CODE (array
) == CONSTRUCTOR
9794 && ! TREE_SIDE_EFFECTS (array
)
9795 && TREE_CODE (index
) == INTEGER_CST
)
9797 unsigned HOST_WIDE_INT ix
;
9800 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array
), ix
,
9802 if (tree_int_cst_equal (field
, index
))
9804 if (!TREE_SIDE_EFFECTS (value
))
9805 return expand_expr (fold (value
), target
, tmode
, modifier
);
9810 else if (optimize
>= 1
9811 && modifier
!= EXPAND_CONST_ADDRESS
9812 && modifier
!= EXPAND_INITIALIZER
9813 && modifier
!= EXPAND_MEMORY
9814 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
9815 && TREE_CODE (index
) == INTEGER_CST
9816 && (TREE_CODE (array
) == VAR_DECL
9817 || TREE_CODE (array
) == CONST_DECL
)
9818 && (init
= ctor_for_folding (array
)) != error_mark_node
)
9820 if (TREE_CODE (init
) == CONSTRUCTOR
)
9822 unsigned HOST_WIDE_INT ix
;
9825 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init
), ix
,
9827 if (tree_int_cst_equal (field
, index
))
9829 if (TREE_SIDE_EFFECTS (value
))
9832 if (TREE_CODE (value
) == CONSTRUCTOR
)
9834 /* If VALUE is a CONSTRUCTOR, this
9835 optimization is only useful if
9836 this doesn't store the CONSTRUCTOR
9837 into memory. If it does, it is more
9838 efficient to just load the data from
9839 the array directly. */
9840 rtx ret
= expand_constructor (value
, target
,
9842 if (ret
== NULL_RTX
)
9847 expand_expr (fold (value
), target
, tmode
, modifier
);
9850 else if (TREE_CODE (init
) == STRING_CST
)
9852 tree low_bound
= array_ref_low_bound (exp
);
9853 tree index1
= fold_convert_loc (loc
, sizetype
, treeop1
);
9855 /* Optimize the special case of a zero lower bound.
9857 We convert the lower bound to sizetype to avoid problems
9858 with constant folding. E.g. suppose the lower bound is
9859 1 and its mode is QI. Without the conversion
9860 (ARRAY + (INDEX - (unsigned char)1))
9862 (ARRAY + (-(unsigned char)1) + INDEX)
9864 (ARRAY + 255 + INDEX). Oops! */
9865 if (!integer_zerop (low_bound
))
9866 index1
= size_diffop_loc (loc
, index1
,
9867 fold_convert_loc (loc
, sizetype
,
9870 if (compare_tree_int (index1
, TREE_STRING_LENGTH (init
)) < 0)
9872 tree type
= TREE_TYPE (TREE_TYPE (init
));
9873 enum machine_mode mode
= TYPE_MODE (type
);
9875 if (GET_MODE_CLASS (mode
) == MODE_INT
9876 && GET_MODE_SIZE (mode
) == 1)
9877 return gen_int_mode (TREE_STRING_POINTER (init
)
9878 [TREE_INT_CST_LOW (index1
)],
9884 goto normal_inner_ref
;
9887 /* If the operand is a CONSTRUCTOR, we can just extract the
9888 appropriate field if it is present. */
9889 if (TREE_CODE (treeop0
) == CONSTRUCTOR
)
9891 unsigned HOST_WIDE_INT idx
;
9894 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0
),
9896 if (field
== treeop1
9897 /* We can normally use the value of the field in the
9898 CONSTRUCTOR. However, if this is a bitfield in
9899 an integral mode that we can fit in a HOST_WIDE_INT,
9900 we must mask only the number of bits in the bitfield,
9901 since this is done implicitly by the constructor. If
9902 the bitfield does not meet either of those conditions,
9903 we can't do this optimization. */
9904 && (! DECL_BIT_FIELD (field
)
9905 || ((GET_MODE_CLASS (DECL_MODE (field
)) == MODE_INT
)
9906 && (GET_MODE_PRECISION (DECL_MODE (field
))
9907 <= HOST_BITS_PER_WIDE_INT
))))
9909 if (DECL_BIT_FIELD (field
)
9910 && modifier
== EXPAND_STACK_PARM
)
9912 op0
= expand_expr (value
, target
, tmode
, modifier
);
9913 if (DECL_BIT_FIELD (field
))
9915 HOST_WIDE_INT bitsize
= TREE_INT_CST_LOW (DECL_SIZE (field
));
9916 enum machine_mode imode
= TYPE_MODE (TREE_TYPE (field
));
9918 if (TYPE_UNSIGNED (TREE_TYPE (field
)))
9920 op1
= gen_int_mode (((HOST_WIDE_INT
) 1 << bitsize
) - 1,
9922 op0
= expand_and (imode
, op0
, op1
, target
);
9926 int count
= GET_MODE_PRECISION (imode
) - bitsize
;
9928 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
9930 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
9938 goto normal_inner_ref
;
9941 case ARRAY_RANGE_REF
:
9944 enum machine_mode mode1
, mode2
;
9945 HOST_WIDE_INT bitsize
, bitpos
;
9947 int volatilep
= 0, must_force_mem
;
9948 tree tem
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
9949 &mode1
, &unsignedp
, &volatilep
, true);
9950 rtx orig_op0
, memloc
;
9951 bool mem_attrs_from_type
= false;
9953 /* If we got back the original object, something is wrong. Perhaps
9954 we are evaluating an expression too early. In any event, don't
9955 infinitely recurse. */
9956 gcc_assert (tem
!= exp
);
9958 /* If TEM's type is a union of variable size, pass TARGET to the inner
9959 computation, since it will need a temporary and TARGET is known
9960 to have to do. This occurs in unchecked conversion in Ada. */
9963 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
9964 && COMPLETE_TYPE_P (TREE_TYPE (tem
))
9965 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
9967 && modifier
!= EXPAND_STACK_PARM
9968 ? target
: NULL_RTX
),
9970 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
9972 /* If the bitfield is volatile, we want to access it in the
9973 field's mode, not the computed mode.
9974 If a MEM has VOIDmode (external with incomplete type),
9975 use BLKmode for it instead. */
9978 if (volatilep
&& flag_strict_volatile_bitfields
> 0)
9979 op0
= adjust_address (op0
, mode1
, 0);
9980 else if (GET_MODE (op0
) == VOIDmode
)
9981 op0
= adjust_address (op0
, BLKmode
, 0);
9985 = CONSTANT_P (op0
) ? TYPE_MODE (TREE_TYPE (tem
)) : GET_MODE (op0
);
9987 /* If we have either an offset, a BLKmode result, or a reference
9988 outside the underlying object, we must force it to memory.
9989 Such a case can occur in Ada if we have unchecked conversion
9990 of an expression from a scalar type to an aggregate type or
9991 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
9992 passed a partially uninitialized object or a view-conversion
9993 to a larger size. */
9994 must_force_mem
= (offset
9996 || bitpos
+ bitsize
> GET_MODE_BITSIZE (mode2
));
9998 /* Handle CONCAT first. */
9999 if (GET_CODE (op0
) == CONCAT
&& !must_force_mem
)
10002 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
10005 && bitsize
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
10008 op0
= XEXP (op0
, 0);
10009 mode2
= GET_MODE (op0
);
10011 else if (bitpos
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
10012 && bitsize
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 1)))
10016 op0
= XEXP (op0
, 1);
10018 mode2
= GET_MODE (op0
);
10021 /* Otherwise force into memory. */
10022 must_force_mem
= 1;
10025 /* If this is a constant, put it in a register if it is a legitimate
10026 constant and we don't need a memory reference. */
10027 if (CONSTANT_P (op0
)
10028 && mode2
!= BLKmode
10029 && targetm
.legitimate_constant_p (mode2
, op0
)
10030 && !must_force_mem
)
10031 op0
= force_reg (mode2
, op0
);
10033 /* Otherwise, if this is a constant, try to force it to the constant
10034 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10035 is a legitimate constant. */
10036 else if (CONSTANT_P (op0
) && (memloc
= force_const_mem (mode2
, op0
)))
10037 op0
= validize_mem (memloc
);
10039 /* Otherwise, if this is a constant or the object is not in memory
10040 and need be, put it there. */
10041 else if (CONSTANT_P (op0
) || (!MEM_P (op0
) && must_force_mem
))
10043 tree nt
= build_qualified_type (TREE_TYPE (tem
),
10044 (TYPE_QUALS (TREE_TYPE (tem
))
10045 | TYPE_QUAL_CONST
));
10046 memloc
= assign_temp (nt
, 1, 1);
10047 emit_move_insn (memloc
, op0
);
10049 mem_attrs_from_type
= true;
10054 enum machine_mode address_mode
;
10055 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
10058 gcc_assert (MEM_P (op0
));
10060 address_mode
= get_address_mode (op0
);
10061 if (GET_MODE (offset_rtx
) != address_mode
)
10062 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
10064 if (GET_MODE (op0
) == BLKmode
10065 /* The check for a constant address in OP0 not having VOIDmode
10066 is probably no longer necessary. */
10067 && GET_MODE (XEXP (op0
, 0)) != VOIDmode
10069 && (bitpos
% bitsize
) == 0
10070 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
10071 && MEM_ALIGN (op0
) == GET_MODE_ALIGNMENT (mode1
))
10073 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10077 op0
= offset_address (op0
, offset_rtx
,
10078 highest_pow2_factor (offset
));
10081 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10082 record its alignment as BIGGEST_ALIGNMENT. */
10083 if (MEM_P (op0
) && bitpos
== 0 && offset
!= 0
10084 && is_aligning_offset (offset
, tem
))
10085 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
10087 /* Don't forget about volatility even if this is a bitfield. */
10088 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
10090 if (op0
== orig_op0
)
10091 op0
= copy_rtx (op0
);
10093 MEM_VOLATILE_P (op0
) = 1;
10096 /* In cases where an aligned union has an unaligned object
10097 as a field, we might be extracting a BLKmode value from
10098 an integer-mode (e.g., SImode) object. Handle this case
10099 by doing the extract into an object as wide as the field
10100 (which we know to be the width of a basic mode), then
10101 storing into memory, and changing the mode to BLKmode. */
10102 if (mode1
== VOIDmode
10103 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
10104 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
10105 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
10106 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
10107 && modifier
!= EXPAND_CONST_ADDRESS
10108 && modifier
!= EXPAND_INITIALIZER
10109 && modifier
!= EXPAND_MEMORY
)
10110 /* If the field is volatile, we always want an aligned
10111 access. Do this in following two situations:
10112 1. the access is not already naturally
10113 aligned, otherwise "normal" (non-bitfield) volatile fields
10114 become non-addressable.
10115 2. the bitsize is narrower than the access size. Need
10116 to extract bitfields from the access. */
10117 || (volatilep
&& flag_strict_volatile_bitfields
> 0
10118 && (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0
10119 || (mode1
!= BLKmode
10120 && bitsize
< GET_MODE_SIZE (mode1
) * BITS_PER_UNIT
)))
10121 /* If the field isn't aligned enough to fetch as a memref,
10122 fetch it as a bit field. */
10123 || (mode1
!= BLKmode
10124 && (((TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
10125 || (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0)
10127 && (MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
10128 || (bitpos
% GET_MODE_ALIGNMENT (mode1
) != 0))))
10129 && modifier
!= EXPAND_MEMORY
10130 && ((modifier
== EXPAND_CONST_ADDRESS
10131 || modifier
== EXPAND_INITIALIZER
)
10133 : SLOW_UNALIGNED_ACCESS (mode1
, MEM_ALIGN (op0
))))
10134 || (bitpos
% BITS_PER_UNIT
!= 0)))
10135 /* If the type and the field are a constant size and the
10136 size of the type isn't the same size as the bitfield,
10137 we must use bitfield operations. */
10139 && TYPE_SIZE (TREE_TYPE (exp
))
10140 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
10141 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)),
10144 enum machine_mode ext_mode
= mode
;
10146 if (ext_mode
== BLKmode
10147 && ! (target
!= 0 && MEM_P (op0
)
10149 && bitpos
% BITS_PER_UNIT
== 0))
10150 ext_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
10152 if (ext_mode
== BLKmode
)
10155 target
= assign_temp (type
, 1, 1);
10160 /* In this case, BITPOS must start at a byte boundary and
10161 TARGET, if specified, must be a MEM. */
10162 gcc_assert (MEM_P (op0
)
10163 && (!target
|| MEM_P (target
))
10164 && !(bitpos
% BITS_PER_UNIT
));
10166 emit_block_move (target
,
10167 adjust_address (op0
, VOIDmode
,
10168 bitpos
/ BITS_PER_UNIT
),
10169 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
10171 (modifier
== EXPAND_STACK_PARM
10172 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10177 op0
= validize_mem (op0
);
10179 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
10180 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10182 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
,
10183 (modifier
== EXPAND_STACK_PARM
10184 ? NULL_RTX
: target
),
10185 ext_mode
, ext_mode
);
10187 /* If the result is a record type and BITSIZE is narrower than
10188 the mode of OP0, an integral mode, and this is a big endian
10189 machine, we must put the field into the high-order bits. */
10190 if (TREE_CODE (type
) == RECORD_TYPE
&& BYTES_BIG_ENDIAN
10191 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
10192 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (op0
)))
10193 op0
= expand_shift (LSHIFT_EXPR
, GET_MODE (op0
), op0
,
10194 GET_MODE_BITSIZE (GET_MODE (op0
))
10195 - bitsize
, op0
, 1);
10197 /* If the result type is BLKmode, store the data into a temporary
10198 of the appropriate type, but with the mode corresponding to the
10199 mode for the data we have (op0's mode). It's tempting to make
10200 this a constant type, since we know it's only being stored once,
10201 but that can cause problems if we are taking the address of this
10202 COMPONENT_REF because the MEM of any reference via that address
10203 will have flags corresponding to the type, which will not
10204 necessarily be constant. */
10205 if (mode
== BLKmode
)
10209 new_rtx
= assign_stack_temp_for_type (ext_mode
,
10210 GET_MODE_BITSIZE (ext_mode
),
10212 emit_move_insn (new_rtx
, op0
);
10213 op0
= copy_rtx (new_rtx
);
10214 PUT_MODE (op0
, BLKmode
);
10220 /* If the result is BLKmode, use that to access the object
10222 if (mode
== BLKmode
)
10225 /* Get a reference to just this component. */
10226 if (modifier
== EXPAND_CONST_ADDRESS
10227 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
10228 op0
= adjust_address_nv (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10230 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10232 if (op0
== orig_op0
)
10233 op0
= copy_rtx (op0
);
10235 /* If op0 is a temporary because of forcing to memory, pass only the
10236 type to set_mem_attributes so that the original expression is never
10237 marked as ADDRESSABLE through MEM_EXPR of the temporary. */
10238 if (mem_attrs_from_type
)
10239 set_mem_attributes (op0
, type
, 0);
10241 set_mem_attributes (op0
, exp
, 0);
10243 if (REG_P (XEXP (op0
, 0)))
10244 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10246 MEM_VOLATILE_P (op0
) |= volatilep
;
10247 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
10248 || modifier
== EXPAND_CONST_ADDRESS
10249 || modifier
== EXPAND_INITIALIZER
)
10253 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
10255 convert_move (target
, op0
, unsignedp
);
10260 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
10263 /* All valid uses of __builtin_va_arg_pack () are removed during
10265 if (CALL_EXPR_VA_ARG_PACK (exp
))
10266 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp
);
10268 tree fndecl
= get_callee_fndecl (exp
), attr
;
10271 && (attr
= lookup_attribute ("error",
10272 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10273 error ("%Kcall to %qs declared with attribute error: %s",
10274 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10275 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10277 && (attr
= lookup_attribute ("warning",
10278 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10279 warning_at (tree_nonartificial_location (exp
),
10280 0, "%Kcall to %qs declared with attribute warning: %s",
10281 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10282 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10284 /* Check for a built-in function. */
10285 if (fndecl
&& DECL_BUILT_IN (fndecl
))
10287 gcc_assert (DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_FRONTEND
);
10288 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
10291 return expand_call (exp
, target
, ignore
);
10293 case VIEW_CONVERT_EXPR
:
10296 /* If we are converting to BLKmode, try to avoid an intermediate
10297 temporary by fetching an inner memory reference. */
10298 if (mode
== BLKmode
10299 && TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
10300 && TYPE_MODE (TREE_TYPE (treeop0
)) != BLKmode
10301 && handled_component_p (treeop0
))
10303 enum machine_mode mode1
;
10304 HOST_WIDE_INT bitsize
, bitpos
;
10309 = get_inner_reference (treeop0
, &bitsize
, &bitpos
,
10310 &offset
, &mode1
, &unsignedp
, &volatilep
,
10314 /* ??? We should work harder and deal with non-zero offsets. */
10316 && (bitpos
% BITS_PER_UNIT
) == 0
10318 && compare_tree_int (TYPE_SIZE (type
), bitsize
) == 0)
10320 /* See the normal_inner_ref case for the rationale. */
10322 = expand_expr (tem
,
10323 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
10324 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
10326 && modifier
!= EXPAND_STACK_PARM
10327 ? target
: NULL_RTX
),
10329 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
10331 if (MEM_P (orig_op0
))
10335 /* Get a reference to just this component. */
10336 if (modifier
== EXPAND_CONST_ADDRESS
10337 || modifier
== EXPAND_SUM
10338 || modifier
== EXPAND_INITIALIZER
)
10339 op0
= adjust_address_nv (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
10341 op0
= adjust_address (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
10343 if (op0
== orig_op0
)
10344 op0
= copy_rtx (op0
);
10346 set_mem_attributes (op0
, treeop0
, 0);
10347 if (REG_P (XEXP (op0
, 0)))
10348 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10350 MEM_VOLATILE_P (op0
) |= volatilep
;
10356 op0
= expand_expr (treeop0
, NULL_RTX
, VOIDmode
, modifier
);
10358 /* If the input and output modes are both the same, we are done. */
10359 if (mode
== GET_MODE (op0
))
10361 /* If neither mode is BLKmode, and both modes are the same size
10362 then we can use gen_lowpart. */
10363 else if (mode
!= BLKmode
&& GET_MODE (op0
) != BLKmode
10364 && (GET_MODE_PRECISION (mode
)
10365 == GET_MODE_PRECISION (GET_MODE (op0
)))
10366 && !COMPLEX_MODE_P (GET_MODE (op0
)))
10368 if (GET_CODE (op0
) == SUBREG
)
10369 op0
= force_reg (GET_MODE (op0
), op0
);
10370 temp
= gen_lowpart_common (mode
, op0
);
10375 if (!REG_P (op0
) && !MEM_P (op0
))
10376 op0
= force_reg (GET_MODE (op0
), op0
);
10377 op0
= gen_lowpart (mode
, op0
);
10380 /* If both types are integral, convert from one mode to the other. */
10381 else if (INTEGRAL_TYPE_P (type
) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0
)))
10382 op0
= convert_modes (mode
, GET_MODE (op0
), op0
,
10383 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
10384 /* As a last resort, spill op0 to memory, and reload it in a
10386 else if (!MEM_P (op0
))
10388 /* If the operand is not a MEM, force it into memory. Since we
10389 are going to be changing the mode of the MEM, don't call
10390 force_const_mem for constants because we don't allow pool
10391 constants to change mode. */
10392 tree inner_type
= TREE_TYPE (treeop0
);
10394 gcc_assert (!TREE_ADDRESSABLE (exp
));
10396 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
10398 = assign_stack_temp_for_type
10399 (TYPE_MODE (inner_type
),
10400 GET_MODE_SIZE (TYPE_MODE (inner_type
)), inner_type
);
10402 emit_move_insn (target
, op0
);
10406 /* At this point, OP0 is in the correct mode. If the output type is
10407 such that the operand is known to be aligned, indicate that it is.
10408 Otherwise, we need only be concerned about alignment for non-BLKmode
10412 enum insn_code icode
;
10414 if (TYPE_ALIGN_OK (type
))
10416 /* ??? Copying the MEM without substantially changing it might
10417 run afoul of the code handling volatile memory references in
10418 store_expr, which assumes that TARGET is returned unmodified
10419 if it has been used. */
10420 op0
= copy_rtx (op0
);
10421 set_mem_align (op0
, MAX (MEM_ALIGN (op0
), TYPE_ALIGN (type
)));
10423 else if (mode
!= BLKmode
10424 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode
)
10425 /* If the target does have special handling for unaligned
10426 loads of mode then use them. */
10427 && ((icode
= optab_handler (movmisalign_optab
, mode
))
10428 != CODE_FOR_nothing
))
10432 op0
= adjust_address (op0
, mode
, 0);
10433 /* We've already validated the memory, and we're creating a
10434 new pseudo destination. The predicates really can't
10436 reg
= gen_reg_rtx (mode
);
10438 /* Nor can the insn generator. */
10439 insn
= GEN_FCN (icode
) (reg
, op0
);
10443 else if (STRICT_ALIGNMENT
10445 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode
))
10447 tree inner_type
= TREE_TYPE (treeop0
);
10448 HOST_WIDE_INT temp_size
10449 = MAX (int_size_in_bytes (inner_type
),
10450 (HOST_WIDE_INT
) GET_MODE_SIZE (mode
));
10452 = assign_stack_temp_for_type (mode
, temp_size
, type
);
10453 rtx new_with_op0_mode
10454 = adjust_address (new_rtx
, GET_MODE (op0
), 0);
10456 gcc_assert (!TREE_ADDRESSABLE (exp
));
10458 if (GET_MODE (op0
) == BLKmode
)
10459 emit_block_move (new_with_op0_mode
, op0
,
10460 GEN_INT (GET_MODE_SIZE (mode
)),
10461 (modifier
== EXPAND_STACK_PARM
10462 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10464 emit_move_insn (new_with_op0_mode
, op0
);
10469 op0
= adjust_address (op0
, mode
, 0);
10476 tree lhs
= treeop0
;
10477 tree rhs
= treeop1
;
10478 gcc_assert (ignore
);
10480 /* Check for |= or &= of a bitfield of size one into another bitfield
10481 of size 1. In this case, (unless we need the result of the
10482 assignment) we can do this more efficiently with a
10483 test followed by an assignment, if necessary.
10485 ??? At this point, we can't get a BIT_FIELD_REF here. But if
10486 things change so we do, this code should be enhanced to
10488 if (TREE_CODE (lhs
) == COMPONENT_REF
10489 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
10490 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
10491 && TREE_OPERAND (rhs
, 0) == lhs
10492 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
10493 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
10494 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
10496 rtx label
= gen_label_rtx ();
10497 int value
= TREE_CODE (rhs
) == BIT_IOR_EXPR
;
10498 do_jump (TREE_OPERAND (rhs
, 1),
10500 value
? 0 : label
, -1);
10501 expand_assignment (lhs
, build_int_cst (TREE_TYPE (rhs
), value
),
10503 do_pending_stack_adjust ();
10504 emit_label (label
);
10508 expand_assignment (lhs
, rhs
, false);
10513 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
10515 case REALPART_EXPR
:
10516 op0
= expand_normal (treeop0
);
10517 return read_complex_part (op0
, false);
10519 case IMAGPART_EXPR
:
10520 op0
= expand_normal (treeop0
);
10521 return read_complex_part (op0
, true);
10528 /* Expanded in cfgexpand.c. */
10529 gcc_unreachable ();
10531 case TRY_CATCH_EXPR
:
10533 case EH_FILTER_EXPR
:
10534 case TRY_FINALLY_EXPR
:
10535 /* Lowered by tree-eh.c. */
10536 gcc_unreachable ();
10538 case WITH_CLEANUP_EXPR
:
10539 case CLEANUP_POINT_EXPR
:
10541 case CASE_LABEL_EXPR
:
10546 case COMPOUND_EXPR
:
10547 case PREINCREMENT_EXPR
:
10548 case PREDECREMENT_EXPR
:
10549 case POSTINCREMENT_EXPR
:
10550 case POSTDECREMENT_EXPR
:
10553 case COMPOUND_LITERAL_EXPR
:
10554 /* Lowered by gimplify.c. */
10555 gcc_unreachable ();
10558 /* Function descriptors are not valid except for as
10559 initialization constants, and should not be expanded. */
10560 gcc_unreachable ();
10562 case WITH_SIZE_EXPR
:
10563 /* WITH_SIZE_EXPR expands to its first argument. The caller should
10564 have pulled out the size to use in whatever context it needed. */
10565 return expand_expr_real (treeop0
, original_target
, tmode
,
10566 modifier
, alt_rtl
);
10569 return expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
10573 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
10574 signedness of TYPE), possibly returning the result in TARGET. */
10576 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
10578 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
10579 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
10581 /* For constant values, reduce using build_int_cst_type. */
10582 if (CONST_INT_P (exp
))
10584 HOST_WIDE_INT value
= INTVAL (exp
);
10585 tree t
= build_int_cst_type (type
, value
);
10586 return expand_expr (t
, target
, VOIDmode
, EXPAND_NORMAL
);
10588 else if (TYPE_UNSIGNED (type
))
10590 rtx mask
= immed_double_int_const (double_int::mask (prec
),
10592 return expand_and (GET_MODE (exp
), exp
, mask
, target
);
10596 int count
= GET_MODE_PRECISION (GET_MODE (exp
)) - prec
;
10597 exp
= expand_shift (LSHIFT_EXPR
, GET_MODE (exp
),
10598 exp
, count
, target
, 0);
10599 return expand_shift (RSHIFT_EXPR
, GET_MODE (exp
),
10600 exp
, count
, target
, 0);
10604 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
10605 when applied to the address of EXP produces an address known to be
10606 aligned more than BIGGEST_ALIGNMENT. */
10609 is_aligning_offset (const_tree offset
, const_tree exp
)
10611 /* Strip off any conversions. */
10612 while (CONVERT_EXPR_P (offset
))
10613 offset
= TREE_OPERAND (offset
, 0);
10615 /* We must now have a BIT_AND_EXPR with a constant that is one less than
10616 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
10617 if (TREE_CODE (offset
) != BIT_AND_EXPR
10618 || !tree_fits_uhwi_p (TREE_OPERAND (offset
, 1))
10619 || compare_tree_int (TREE_OPERAND (offset
, 1),
10620 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
10621 || !exact_log2 (tree_to_uhwi (TREE_OPERAND (offset
, 1)) + 1) < 0)
10624 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
10625 It must be NEGATE_EXPR. Then strip any more conversions. */
10626 offset
= TREE_OPERAND (offset
, 0);
10627 while (CONVERT_EXPR_P (offset
))
10628 offset
= TREE_OPERAND (offset
, 0);
10630 if (TREE_CODE (offset
) != NEGATE_EXPR
)
10633 offset
= TREE_OPERAND (offset
, 0);
10634 while (CONVERT_EXPR_P (offset
))
10635 offset
= TREE_OPERAND (offset
, 0);
10637 /* This must now be the address of EXP. */
10638 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
10641 /* Return the tree node if an ARG corresponds to a string constant or zero
10642 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
10643 in bytes within the string that ARG is accessing. The type of the
10644 offset will be `sizetype'. */
10647 string_constant (tree arg
, tree
*ptr_offset
)
10649 tree array
, offset
, lower_bound
;
10652 if (TREE_CODE (arg
) == ADDR_EXPR
)
10654 if (TREE_CODE (TREE_OPERAND (arg
, 0)) == STRING_CST
)
10656 *ptr_offset
= size_zero_node
;
10657 return TREE_OPERAND (arg
, 0);
10659 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == VAR_DECL
)
10661 array
= TREE_OPERAND (arg
, 0);
10662 offset
= size_zero_node
;
10664 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == ARRAY_REF
)
10666 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
10667 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
10668 if (TREE_CODE (array
) != STRING_CST
10669 && TREE_CODE (array
) != VAR_DECL
)
10672 /* Check if the array has a nonzero lower bound. */
10673 lower_bound
= array_ref_low_bound (TREE_OPERAND (arg
, 0));
10674 if (!integer_zerop (lower_bound
))
10676 /* If the offset and base aren't both constants, return 0. */
10677 if (TREE_CODE (lower_bound
) != INTEGER_CST
)
10679 if (TREE_CODE (offset
) != INTEGER_CST
)
10681 /* Adjust offset by the lower bound. */
10682 offset
= size_diffop (fold_convert (sizetype
, offset
),
10683 fold_convert (sizetype
, lower_bound
));
10686 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == MEM_REF
)
10688 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
10689 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
10690 if (TREE_CODE (array
) != ADDR_EXPR
)
10692 array
= TREE_OPERAND (array
, 0);
10693 if (TREE_CODE (array
) != STRING_CST
10694 && TREE_CODE (array
) != VAR_DECL
)
10700 else if (TREE_CODE (arg
) == PLUS_EXPR
|| TREE_CODE (arg
) == POINTER_PLUS_EXPR
)
10702 tree arg0
= TREE_OPERAND (arg
, 0);
10703 tree arg1
= TREE_OPERAND (arg
, 1);
10708 if (TREE_CODE (arg0
) == ADDR_EXPR
10709 && (TREE_CODE (TREE_OPERAND (arg0
, 0)) == STRING_CST
10710 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == VAR_DECL
))
10712 array
= TREE_OPERAND (arg0
, 0);
10715 else if (TREE_CODE (arg1
) == ADDR_EXPR
10716 && (TREE_CODE (TREE_OPERAND (arg1
, 0)) == STRING_CST
10717 || TREE_CODE (TREE_OPERAND (arg1
, 0)) == VAR_DECL
))
10719 array
= TREE_OPERAND (arg1
, 0);
10728 if (TREE_CODE (array
) == STRING_CST
)
10730 *ptr_offset
= fold_convert (sizetype
, offset
);
10733 else if (TREE_CODE (array
) == VAR_DECL
10734 || TREE_CODE (array
) == CONST_DECL
)
10737 tree init
= ctor_for_folding (array
);
10739 /* Variables initialized to string literals can be handled too. */
10740 if (init
== error_mark_node
10742 || TREE_CODE (init
) != STRING_CST
)
10745 /* Avoid const char foo[4] = "abcde"; */
10746 if (DECL_SIZE_UNIT (array
) == NULL_TREE
10747 || TREE_CODE (DECL_SIZE_UNIT (array
)) != INTEGER_CST
10748 || (length
= TREE_STRING_LENGTH (init
)) <= 0
10749 || compare_tree_int (DECL_SIZE_UNIT (array
), length
) < 0)
10752 /* If variable is bigger than the string literal, OFFSET must be constant
10753 and inside of the bounds of the string literal. */
10754 offset
= fold_convert (sizetype
, offset
);
10755 if (compare_tree_int (DECL_SIZE_UNIT (array
), length
) > 0
10756 && (! tree_fits_uhwi_p (offset
)
10757 || compare_tree_int (offset
, length
) >= 0))
10760 *ptr_offset
= offset
;
10767 /* Generate code to calculate OPS, and exploded expression
10768 using a store-flag instruction and return an rtx for the result.
10769 OPS reflects a comparison.
10771 If TARGET is nonzero, store the result there if convenient.
10773 Return zero if there is no suitable set-flag instruction
10774 available on this machine.
10776 Once expand_expr has been called on the arguments of the comparison,
10777 we are committed to doing the store flag, since it is not safe to
10778 re-evaluate the expression. We emit the store-flag insn by calling
10779 emit_store_flag, but only expand the arguments if we have a reason
10780 to believe that emit_store_flag will be successful. If we think that
10781 it will, but it isn't, we have to simulate the store-flag with a
10782 set/jump/set sequence. */
10785 do_store_flag (sepops ops
, rtx target
, enum machine_mode mode
)
10787 enum rtx_code code
;
10788 tree arg0
, arg1
, type
;
10790 enum machine_mode operand_mode
;
10793 rtx subtarget
= target
;
10794 location_t loc
= ops
->location
;
10799 /* Don't crash if the comparison was erroneous. */
10800 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
10803 type
= TREE_TYPE (arg0
);
10804 operand_mode
= TYPE_MODE (type
);
10805 unsignedp
= TYPE_UNSIGNED (type
);
10807 /* We won't bother with BLKmode store-flag operations because it would mean
10808 passing a lot of information to emit_store_flag. */
10809 if (operand_mode
== BLKmode
)
10812 /* We won't bother with store-flag operations involving function pointers
10813 when function pointers must be canonicalized before comparisons. */
10814 #ifdef HAVE_canonicalize_funcptr_for_compare
10815 if (HAVE_canonicalize_funcptr_for_compare
10816 && ((TREE_CODE (TREE_TYPE (arg0
)) == POINTER_TYPE
10817 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0
)))
10819 || (TREE_CODE (TREE_TYPE (arg1
)) == POINTER_TYPE
10820 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1
)))
10821 == FUNCTION_TYPE
))))
10828 /* For vector typed comparisons emit code to generate the desired
10829 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
10830 expander for this. */
10831 if (TREE_CODE (ops
->type
) == VECTOR_TYPE
)
10833 tree ifexp
= build2 (ops
->code
, ops
->type
, arg0
, arg1
);
10834 tree if_true
= constant_boolean_node (true, ops
->type
);
10835 tree if_false
= constant_boolean_node (false, ops
->type
);
10836 return expand_vec_cond_expr (ops
->type
, ifexp
, if_true
, if_false
, target
);
10839 /* Get the rtx comparison code to use. We know that EXP is a comparison
10840 operation of some type. Some comparisons against 1 and -1 can be
10841 converted to comparisons with zero. Do so here so that the tests
10842 below will be aware that we have a comparison with zero. These
10843 tests will not catch constants in the first operand, but constants
10844 are rarely passed as the first operand. */
10855 if (integer_onep (arg1
))
10856 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
10858 code
= unsignedp
? LTU
: LT
;
10861 if (! unsignedp
&& integer_all_onesp (arg1
))
10862 arg1
= integer_zero_node
, code
= LT
;
10864 code
= unsignedp
? LEU
: LE
;
10867 if (! unsignedp
&& integer_all_onesp (arg1
))
10868 arg1
= integer_zero_node
, code
= GE
;
10870 code
= unsignedp
? GTU
: GT
;
10873 if (integer_onep (arg1
))
10874 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
10876 code
= unsignedp
? GEU
: GE
;
10879 case UNORDERED_EXPR
:
10905 gcc_unreachable ();
10908 /* Put a constant second. */
10909 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
10910 || TREE_CODE (arg0
) == FIXED_CST
)
10912 tem
= arg0
; arg0
= arg1
; arg1
= tem
;
10913 code
= swap_condition (code
);
10916 /* If this is an equality or inequality test of a single bit, we can
10917 do this by shifting the bit being tested to the low-order bit and
10918 masking the result with the constant 1. If the condition was EQ,
10919 we xor it with 1. This does not require an scc insn and is faster
10920 than an scc insn even if we have it.
10922 The code to make this transformation was moved into fold_single_bit_test,
10923 so we just call into the folder and expand its result. */
10925 if ((code
== NE
|| code
== EQ
)
10926 && integer_zerop (arg1
)
10927 && (TYPE_PRECISION (ops
->type
) != 1 || TYPE_UNSIGNED (ops
->type
)))
10929 gimple srcstmt
= get_def_for_expr (arg0
, BIT_AND_EXPR
);
10931 && integer_pow2p (gimple_assign_rhs2 (srcstmt
)))
10933 enum tree_code tcode
= code
== NE
? NE_EXPR
: EQ_EXPR
;
10934 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
10935 tree temp
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg1
),
10936 gimple_assign_rhs1 (srcstmt
),
10937 gimple_assign_rhs2 (srcstmt
));
10938 temp
= fold_single_bit_test (loc
, tcode
, temp
, arg1
, type
);
10940 return expand_expr (temp
, target
, VOIDmode
, EXPAND_NORMAL
);
10944 if (! get_subtarget (target
)
10945 || GET_MODE (subtarget
) != operand_mode
)
10948 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
10951 target
= gen_reg_rtx (mode
);
10953 /* Try a cstore if possible. */
10954 return emit_store_flag_force (target
, code
, op0
, op1
,
10955 operand_mode
, unsignedp
,
10956 (TYPE_PRECISION (ops
->type
) == 1
10957 && !TYPE_UNSIGNED (ops
->type
)) ? -1 : 1);
10961 /* Stubs in case we haven't got a casesi insn. */
10962 #ifndef HAVE_casesi
10963 # define HAVE_casesi 0
10964 # define gen_casesi(a, b, c, d, e) (0)
10965 # define CODE_FOR_casesi CODE_FOR_nothing
10968 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10969 0 otherwise (i.e. if there is no casesi instruction).
10971 DEFAULT_PROBABILITY is the probability of jumping to the default
10974 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
10975 rtx table_label
, rtx default_label
, rtx fallback_label
,
10976 int default_probability
)
10978 struct expand_operand ops
[5];
10979 enum machine_mode index_mode
= SImode
;
10980 rtx op1
, op2
, index
;
10985 /* Convert the index to SImode. */
10986 if (GET_MODE_BITSIZE (TYPE_MODE (index_type
)) > GET_MODE_BITSIZE (index_mode
))
10988 enum machine_mode omode
= TYPE_MODE (index_type
);
10989 rtx rangertx
= expand_normal (range
);
10991 /* We must handle the endpoints in the original mode. */
10992 index_expr
= build2 (MINUS_EXPR
, index_type
,
10993 index_expr
, minval
);
10994 minval
= integer_zero_node
;
10995 index
= expand_normal (index_expr
);
10997 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
10998 omode
, 1, default_label
,
10999 default_probability
);
11000 /* Now we can safely truncate. */
11001 index
= convert_to_mode (index_mode
, index
, 0);
11005 if (TYPE_MODE (index_type
) != index_mode
)
11007 index_type
= lang_hooks
.types
.type_for_mode (index_mode
, 0);
11008 index_expr
= fold_convert (index_type
, index_expr
);
11011 index
= expand_normal (index_expr
);
11014 do_pending_stack_adjust ();
11016 op1
= expand_normal (minval
);
11017 op2
= expand_normal (range
);
11019 create_input_operand (&ops
[0], index
, index_mode
);
11020 create_convert_operand_from_type (&ops
[1], op1
, TREE_TYPE (minval
));
11021 create_convert_operand_from_type (&ops
[2], op2
, TREE_TYPE (range
));
11022 create_fixed_operand (&ops
[3], table_label
);
11023 create_fixed_operand (&ops
[4], (default_label
11025 : fallback_label
));
11026 expand_jump_insn (CODE_FOR_casesi
, 5, ops
);
11030 /* Attempt to generate a tablejump instruction; same concept. */
11031 #ifndef HAVE_tablejump
11032 #define HAVE_tablejump 0
11033 #define gen_tablejump(x, y) (0)
11036 /* Subroutine of the next function.
11038 INDEX is the value being switched on, with the lowest value
11039 in the table already subtracted.
11040 MODE is its expected mode (needed if INDEX is constant).
11041 RANGE is the length of the jump table.
11042 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
11044 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
11045 index value is out of range.
11046 DEFAULT_PROBABILITY is the probability of jumping to
11047 the default label. */
11050 do_tablejump (rtx index
, enum machine_mode mode
, rtx range
, rtx table_label
,
11051 rtx default_label
, int default_probability
)
11055 if (INTVAL (range
) > cfun
->cfg
->max_jumptable_ents
)
11056 cfun
->cfg
->max_jumptable_ents
= INTVAL (range
);
11058 /* Do an unsigned comparison (in the proper mode) between the index
11059 expression and the value which represents the length of the range.
11060 Since we just finished subtracting the lower bound of the range
11061 from the index expression, this comparison allows us to simultaneously
11062 check that the original index expression value is both greater than
11063 or equal to the minimum value of the range and less than or equal to
11064 the maximum value of the range. */
11067 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
11068 default_label
, default_probability
);
11071 /* If index is in range, it must fit in Pmode.
11072 Convert to Pmode so we can index with it. */
11074 index
= convert_to_mode (Pmode
, index
, 1);
11076 /* Don't let a MEM slip through, because then INDEX that comes
11077 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
11078 and break_out_memory_refs will go to work on it and mess it up. */
11079 #ifdef PIC_CASE_VECTOR_ADDRESS
11080 if (flag_pic
&& !REG_P (index
))
11081 index
= copy_to_mode_reg (Pmode
, index
);
11084 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
11085 GET_MODE_SIZE, because this indicates how large insns are. The other
11086 uses should all be Pmode, because they are addresses. This code
11087 could fail if addresses and insns are not the same size. */
11088 index
= gen_rtx_PLUS
11090 gen_rtx_MULT (Pmode
, index
,
11091 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE
), Pmode
)),
11092 gen_rtx_LABEL_REF (Pmode
, table_label
));
11093 #ifdef PIC_CASE_VECTOR_ADDRESS
11095 index
= PIC_CASE_VECTOR_ADDRESS (index
);
11098 index
= memory_address (CASE_VECTOR_MODE
, index
);
11099 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
11100 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
11101 convert_move (temp
, vector
, 0);
11103 emit_jump_insn (gen_tablejump (temp
, table_label
));
11105 /* If we are generating PIC code or if the table is PC-relative, the
11106 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
11107 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
11112 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
11113 rtx table_label
, rtx default_label
, int default_probability
)
11117 if (! HAVE_tablejump
)
11120 index_expr
= fold_build2 (MINUS_EXPR
, index_type
,
11121 fold_convert (index_type
, index_expr
),
11122 fold_convert (index_type
, minval
));
11123 index
= expand_normal (index_expr
);
11124 do_pending_stack_adjust ();
11126 do_tablejump (index
, TYPE_MODE (index_type
),
11127 convert_modes (TYPE_MODE (index_type
),
11128 TYPE_MODE (TREE_TYPE (range
)),
11129 expand_normal (range
),
11130 TYPE_UNSIGNED (TREE_TYPE (range
))),
11131 table_label
, default_label
, default_probability
);
11135 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11137 const_vector_from_tree (tree exp
)
11143 enum machine_mode inner
, mode
;
11145 mode
= TYPE_MODE (TREE_TYPE (exp
));
11147 if (initializer_zerop (exp
))
11148 return CONST0_RTX (mode
);
11150 units
= GET_MODE_NUNITS (mode
);
11151 inner
= GET_MODE_INNER (mode
);
11153 v
= rtvec_alloc (units
);
11155 for (i
= 0; i
< VECTOR_CST_NELTS (exp
); ++i
)
11157 elt
= VECTOR_CST_ELT (exp
, i
);
11159 if (TREE_CODE (elt
) == REAL_CST
)
11160 RTVEC_ELT (v
, i
) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt
),
11162 else if (TREE_CODE (elt
) == FIXED_CST
)
11163 RTVEC_ELT (v
, i
) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt
),
11166 RTVEC_ELT (v
, i
) = immed_double_int_const (tree_to_double_int (elt
),
11170 return gen_rtx_CONST_VECTOR (mode
, v
);
11173 /* Build a decl for a personality function given a language prefix. */
11176 build_personality_function (const char *lang
)
11178 const char *unwind_and_version
;
11182 switch (targetm_common
.except_unwind_info (&global_options
))
11187 unwind_and_version
= "_sj0";
11191 unwind_and_version
= "_v0";
11194 unwind_and_version
= "_seh0";
11197 gcc_unreachable ();
11200 name
= ACONCAT (("__", lang
, "_personality", unwind_and_version
, NULL
));
11202 type
= build_function_type_list (integer_type_node
, integer_type_node
,
11203 long_long_unsigned_type_node
,
11204 ptr_type_node
, ptr_type_node
, NULL_TREE
);
11205 decl
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
,
11206 get_identifier (name
), type
);
11207 DECL_ARTIFICIAL (decl
) = 1;
11208 DECL_EXTERNAL (decl
) = 1;
11209 TREE_PUBLIC (decl
) = 1;
11211 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11212 are the flags assigned by targetm.encode_section_info. */
11213 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl
), 0), NULL
);
11218 /* Extracts the personality function of DECL and returns the corresponding
11222 get_personality_function (tree decl
)
11224 tree personality
= DECL_FUNCTION_PERSONALITY (decl
);
11225 enum eh_personality_kind pk
;
11227 pk
= function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl
));
11228 if (pk
== eh_personality_none
)
11232 && pk
== eh_personality_any
)
11233 personality
= lang_hooks
.eh_personality ();
11235 if (pk
== eh_personality_lang
)
11236 gcc_assert (personality
!= NULL_TREE
);
11238 return XEXP (DECL_RTL (personality
), 0);
11241 #include "gt-expr.h"