tree-flow-inline.h (get_addr_base_and_unit_offset_1): Handle BIT_FIELD_REF.
[official-gcc.git] / gcc / loop-iv.c
blob0847307e1a879a12fe85267650f1a39d20218478
1 /* Rtl-level induction variable analysis.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is a simple analysis of induction variables of the loop. The major use
21 is for determining the number of iterations of a loop for loop unrolling,
22 doloop optimization and branch prediction. The iv information is computed
23 on demand.
25 Induction variables are analyzed by walking the use-def chains. When
26 a basic induction variable (biv) is found, it is cached in the bivs
27 hash table. When register is proved to be a biv, its description
28 is stored to DF_REF_DATA of the def reference.
30 The analysis works always with one loop -- you must call
31 iv_analysis_loop_init (loop) for it. All the other functions then work with
32 this loop. When you need to work with another loop, just call
33 iv_analysis_loop_init for it. When you no longer need iv analysis, call
34 iv_analysis_done () to clean up the memory.
36 The available functions are:
38 iv_analyze (insn, reg, iv): Stores the description of the induction variable
39 corresponding to the use of register REG in INSN to IV. Returns true if
40 REG is an induction variable in INSN. false otherwise.
41 If use of REG is not found in INSN, following insns are scanned (so that
42 we may call this function on insn returned by get_condition).
43 iv_analyze_result (insn, def, iv): Stores to IV the description of the iv
44 corresponding to DEF, which is a register defined in INSN.
45 iv_analyze_expr (insn, rhs, mode, iv): Stores to IV the description of iv
46 corresponding to expression EXPR evaluated at INSN. All registers used bu
47 EXPR must also be used in INSN.
50 #include "config.h"
51 #include "system.h"
52 #include "coretypes.h"
53 #include "tm.h"
54 #include "rtl.h"
55 #include "hard-reg-set.h"
56 #include "obstack.h"
57 #include "basic-block.h"
58 #include "cfgloop.h"
59 #include "expr.h"
60 #include "intl.h"
61 #include "diagnostic-core.h"
62 #include "df.h"
63 #include "hashtab.h"
64 #include "dumpfile.h"
66 /* Possible return values of iv_get_reaching_def. */
68 enum iv_grd_result
70 /* More than one reaching def, or reaching def that does not
71 dominate the use. */
72 GRD_INVALID,
74 /* The use is trivial invariant of the loop, i.e. is not changed
75 inside the loop. */
76 GRD_INVARIANT,
78 /* The use is reached by initial value and a value from the
79 previous iteration. */
80 GRD_MAYBE_BIV,
82 /* The use has single dominating def. */
83 GRD_SINGLE_DOM
86 /* Information about a biv. */
88 struct biv_entry
90 unsigned regno; /* The register of the biv. */
91 struct rtx_iv iv; /* Value of the biv. */
94 static bool clean_slate = true;
96 static unsigned int iv_ref_table_size = 0;
98 /* Table of rtx_ivs indexed by the df_ref uid field. */
99 static struct rtx_iv ** iv_ref_table;
101 /* Induction variable stored at the reference. */
102 #define DF_REF_IV(REF) iv_ref_table[DF_REF_ID(REF)]
103 #define DF_REF_IV_SET(REF, IV) iv_ref_table[DF_REF_ID(REF)] = (IV)
105 /* The current loop. */
107 static struct loop *current_loop;
109 /* Bivs of the current loop. */
111 static htab_t bivs;
113 static bool iv_analyze_op (rtx, rtx, struct rtx_iv *);
115 /* Return the RTX code corresponding to the IV extend code EXTEND. */
116 static inline enum rtx_code
117 iv_extend_to_rtx_code (enum iv_extend_code extend)
119 switch (extend)
121 case IV_SIGN_EXTEND:
122 return SIGN_EXTEND;
123 case IV_ZERO_EXTEND:
124 return ZERO_EXTEND;
125 case IV_UNKNOWN_EXTEND:
126 return UNKNOWN;
128 gcc_unreachable ();
131 /* Dumps information about IV to FILE. */
133 extern void dump_iv_info (FILE *, struct rtx_iv *);
134 void
135 dump_iv_info (FILE *file, struct rtx_iv *iv)
137 if (!iv->base)
139 fprintf (file, "not simple");
140 return;
143 if (iv->step == const0_rtx
144 && !iv->first_special)
145 fprintf (file, "invariant ");
147 print_rtl (file, iv->base);
148 if (iv->step != const0_rtx)
150 fprintf (file, " + ");
151 print_rtl (file, iv->step);
152 fprintf (file, " * iteration");
154 fprintf (file, " (in %s)", GET_MODE_NAME (iv->mode));
156 if (iv->mode != iv->extend_mode)
157 fprintf (file, " %s to %s",
158 rtx_name[iv_extend_to_rtx_code (iv->extend)],
159 GET_MODE_NAME (iv->extend_mode));
161 if (iv->mult != const1_rtx)
163 fprintf (file, " * ");
164 print_rtl (file, iv->mult);
166 if (iv->delta != const0_rtx)
168 fprintf (file, " + ");
169 print_rtl (file, iv->delta);
171 if (iv->first_special)
172 fprintf (file, " (first special)");
175 /* Generates a subreg to get the least significant part of EXPR (in mode
176 INNER_MODE) to OUTER_MODE. */
179 lowpart_subreg (enum machine_mode outer_mode, rtx expr,
180 enum machine_mode inner_mode)
182 return simplify_gen_subreg (outer_mode, expr, inner_mode,
183 subreg_lowpart_offset (outer_mode, inner_mode));
186 static void
187 check_iv_ref_table_size (void)
189 if (iv_ref_table_size < DF_DEFS_TABLE_SIZE())
191 unsigned int new_size = DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
192 iv_ref_table = XRESIZEVEC (struct rtx_iv *, iv_ref_table, new_size);
193 memset (&iv_ref_table[iv_ref_table_size], 0,
194 (new_size - iv_ref_table_size) * sizeof (struct rtx_iv *));
195 iv_ref_table_size = new_size;
200 /* Checks whether REG is a well-behaved register. */
202 static bool
203 simple_reg_p (rtx reg)
205 unsigned r;
207 if (GET_CODE (reg) == SUBREG)
209 if (!subreg_lowpart_p (reg))
210 return false;
211 reg = SUBREG_REG (reg);
214 if (!REG_P (reg))
215 return false;
217 r = REGNO (reg);
218 if (HARD_REGISTER_NUM_P (r))
219 return false;
221 if (GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
222 return false;
224 return true;
227 /* Clears the information about ivs stored in df. */
229 static void
230 clear_iv_info (void)
232 unsigned i, n_defs = DF_DEFS_TABLE_SIZE ();
233 struct rtx_iv *iv;
235 check_iv_ref_table_size ();
236 for (i = 0; i < n_defs; i++)
238 iv = iv_ref_table[i];
239 if (iv)
241 free (iv);
242 iv_ref_table[i] = NULL;
246 htab_empty (bivs);
249 /* Returns hash value for biv B. */
251 static hashval_t
252 biv_hash (const void *b)
254 return ((const struct biv_entry *) b)->regno;
257 /* Compares biv B and register R. */
259 static int
260 biv_eq (const void *b, const void *r)
262 return ((const struct biv_entry *) b)->regno == REGNO ((const_rtx) r);
265 /* Prepare the data for an induction variable analysis of a LOOP. */
267 void
268 iv_analysis_loop_init (struct loop *loop)
270 basic_block *body = get_loop_body_in_dom_order (loop), bb;
271 bitmap blocks = BITMAP_ALLOC (NULL);
272 unsigned i;
274 current_loop = loop;
276 /* Clear the information from the analysis of the previous loop. */
277 if (clean_slate)
279 df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN);
280 bivs = htab_create (10, biv_hash, biv_eq, free);
281 clean_slate = false;
283 else
284 clear_iv_info ();
286 for (i = 0; i < loop->num_nodes; i++)
288 bb = body[i];
289 bitmap_set_bit (blocks, bb->index);
291 /* Get rid of the ud chains before processing the rescans. Then add
292 the problem back. */
293 df_remove_problem (df_chain);
294 df_process_deferred_rescans ();
295 df_set_flags (DF_RD_PRUNE_DEAD_DEFS);
296 df_chain_add_problem (DF_UD_CHAIN);
297 df_note_add_problem ();
298 df_set_blocks (blocks);
299 df_analyze ();
300 if (dump_file)
301 df_dump_region (dump_file);
303 check_iv_ref_table_size ();
304 BITMAP_FREE (blocks);
305 free (body);
308 /* Finds the definition of REG that dominates loop latch and stores
309 it to DEF. Returns false if there is not a single definition
310 dominating the latch. If REG has no definition in loop, DEF
311 is set to NULL and true is returned. */
313 static bool
314 latch_dominating_def (rtx reg, df_ref *def)
316 df_ref single_rd = NULL, adef;
317 unsigned regno = REGNO (reg);
318 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (current_loop->latch);
320 for (adef = DF_REG_DEF_CHAIN (regno); adef; adef = DF_REF_NEXT_REG (adef))
322 if (!bitmap_bit_p (df->blocks_to_analyze, DF_REF_BBNO (adef))
323 || !bitmap_bit_p (&bb_info->out, DF_REF_ID (adef)))
324 continue;
326 /* More than one reaching definition. */
327 if (single_rd)
328 return false;
330 if (!just_once_each_iteration_p (current_loop, DF_REF_BB (adef)))
331 return false;
333 single_rd = adef;
336 *def = single_rd;
337 return true;
340 /* Gets definition of REG reaching its use in INSN and stores it to DEF. */
342 static enum iv_grd_result
343 iv_get_reaching_def (rtx insn, rtx reg, df_ref *def)
345 df_ref use, adef;
346 basic_block def_bb, use_bb;
347 rtx def_insn;
348 bool dom_p;
350 *def = NULL;
351 if (!simple_reg_p (reg))
352 return GRD_INVALID;
353 if (GET_CODE (reg) == SUBREG)
354 reg = SUBREG_REG (reg);
355 gcc_assert (REG_P (reg));
357 use = df_find_use (insn, reg);
358 gcc_assert (use != NULL);
360 if (!DF_REF_CHAIN (use))
361 return GRD_INVARIANT;
363 /* More than one reaching def. */
364 if (DF_REF_CHAIN (use)->next)
365 return GRD_INVALID;
367 adef = DF_REF_CHAIN (use)->ref;
369 /* We do not handle setting only part of the register. */
370 if (DF_REF_FLAGS (adef) & DF_REF_READ_WRITE)
371 return GRD_INVALID;
373 def_insn = DF_REF_INSN (adef);
374 def_bb = DF_REF_BB (adef);
375 use_bb = BLOCK_FOR_INSN (insn);
377 if (use_bb == def_bb)
378 dom_p = (DF_INSN_LUID (def_insn) < DF_INSN_LUID (insn));
379 else
380 dom_p = dominated_by_p (CDI_DOMINATORS, use_bb, def_bb);
382 if (dom_p)
384 *def = adef;
385 return GRD_SINGLE_DOM;
388 /* The definition does not dominate the use. This is still OK if
389 this may be a use of a biv, i.e. if the def_bb dominates loop
390 latch. */
391 if (just_once_each_iteration_p (current_loop, def_bb))
392 return GRD_MAYBE_BIV;
394 return GRD_INVALID;
397 /* Sets IV to invariant CST in MODE. Always returns true (just for
398 consistency with other iv manipulation functions that may fail). */
400 static bool
401 iv_constant (struct rtx_iv *iv, rtx cst, enum machine_mode mode)
403 if (mode == VOIDmode)
404 mode = GET_MODE (cst);
406 iv->mode = mode;
407 iv->base = cst;
408 iv->step = const0_rtx;
409 iv->first_special = false;
410 iv->extend = IV_UNKNOWN_EXTEND;
411 iv->extend_mode = iv->mode;
412 iv->delta = const0_rtx;
413 iv->mult = const1_rtx;
415 return true;
418 /* Evaluates application of subreg to MODE on IV. */
420 static bool
421 iv_subreg (struct rtx_iv *iv, enum machine_mode mode)
423 /* If iv is invariant, just calculate the new value. */
424 if (iv->step == const0_rtx
425 && !iv->first_special)
427 rtx val = get_iv_value (iv, const0_rtx);
428 val = lowpart_subreg (mode, val, iv->extend_mode);
430 iv->base = val;
431 iv->extend = IV_UNKNOWN_EXTEND;
432 iv->mode = iv->extend_mode = mode;
433 iv->delta = const0_rtx;
434 iv->mult = const1_rtx;
435 return true;
438 if (iv->extend_mode == mode)
439 return true;
441 if (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (iv->mode))
442 return false;
444 iv->extend = IV_UNKNOWN_EXTEND;
445 iv->mode = mode;
447 iv->base = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
448 simplify_gen_binary (MULT, iv->extend_mode,
449 iv->base, iv->mult));
450 iv->step = simplify_gen_binary (MULT, iv->extend_mode, iv->step, iv->mult);
451 iv->mult = const1_rtx;
452 iv->delta = const0_rtx;
453 iv->first_special = false;
455 return true;
458 /* Evaluates application of EXTEND to MODE on IV. */
460 static bool
461 iv_extend (struct rtx_iv *iv, enum iv_extend_code extend, enum machine_mode mode)
463 /* If iv is invariant, just calculate the new value. */
464 if (iv->step == const0_rtx
465 && !iv->first_special)
467 rtx val = get_iv_value (iv, const0_rtx);
468 val = simplify_gen_unary (iv_extend_to_rtx_code (extend), mode,
469 val, iv->extend_mode);
470 iv->base = val;
471 iv->extend = IV_UNKNOWN_EXTEND;
472 iv->mode = iv->extend_mode = mode;
473 iv->delta = const0_rtx;
474 iv->mult = const1_rtx;
475 return true;
478 if (mode != iv->extend_mode)
479 return false;
481 if (iv->extend != IV_UNKNOWN_EXTEND
482 && iv->extend != extend)
483 return false;
485 iv->extend = extend;
487 return true;
490 /* Evaluates negation of IV. */
492 static bool
493 iv_neg (struct rtx_iv *iv)
495 if (iv->extend == IV_UNKNOWN_EXTEND)
497 iv->base = simplify_gen_unary (NEG, iv->extend_mode,
498 iv->base, iv->extend_mode);
499 iv->step = simplify_gen_unary (NEG, iv->extend_mode,
500 iv->step, iv->extend_mode);
502 else
504 iv->delta = simplify_gen_unary (NEG, iv->extend_mode,
505 iv->delta, iv->extend_mode);
506 iv->mult = simplify_gen_unary (NEG, iv->extend_mode,
507 iv->mult, iv->extend_mode);
510 return true;
513 /* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */
515 static bool
516 iv_add (struct rtx_iv *iv0, struct rtx_iv *iv1, enum rtx_code op)
518 enum machine_mode mode;
519 rtx arg;
521 /* Extend the constant to extend_mode of the other operand if necessary. */
522 if (iv0->extend == IV_UNKNOWN_EXTEND
523 && iv0->mode == iv0->extend_mode
524 && iv0->step == const0_rtx
525 && GET_MODE_SIZE (iv0->extend_mode) < GET_MODE_SIZE (iv1->extend_mode))
527 iv0->extend_mode = iv1->extend_mode;
528 iv0->base = simplify_gen_unary (ZERO_EXTEND, iv0->extend_mode,
529 iv0->base, iv0->mode);
531 if (iv1->extend == IV_UNKNOWN_EXTEND
532 && iv1->mode == iv1->extend_mode
533 && iv1->step == const0_rtx
534 && GET_MODE_SIZE (iv1->extend_mode) < GET_MODE_SIZE (iv0->extend_mode))
536 iv1->extend_mode = iv0->extend_mode;
537 iv1->base = simplify_gen_unary (ZERO_EXTEND, iv1->extend_mode,
538 iv1->base, iv1->mode);
541 mode = iv0->extend_mode;
542 if (mode != iv1->extend_mode)
543 return false;
545 if (iv0->extend == IV_UNKNOWN_EXTEND
546 && iv1->extend == IV_UNKNOWN_EXTEND)
548 if (iv0->mode != iv1->mode)
549 return false;
551 iv0->base = simplify_gen_binary (op, mode, iv0->base, iv1->base);
552 iv0->step = simplify_gen_binary (op, mode, iv0->step, iv1->step);
554 return true;
557 /* Handle addition of constant. */
558 if (iv1->extend == IV_UNKNOWN_EXTEND
559 && iv1->mode == mode
560 && iv1->step == const0_rtx)
562 iv0->delta = simplify_gen_binary (op, mode, iv0->delta, iv1->base);
563 return true;
566 if (iv0->extend == IV_UNKNOWN_EXTEND
567 && iv0->mode == mode
568 && iv0->step == const0_rtx)
570 arg = iv0->base;
571 *iv0 = *iv1;
572 if (op == MINUS
573 && !iv_neg (iv0))
574 return false;
576 iv0->delta = simplify_gen_binary (PLUS, mode, iv0->delta, arg);
577 return true;
580 return false;
583 /* Evaluates multiplication of IV by constant CST. */
585 static bool
586 iv_mult (struct rtx_iv *iv, rtx mby)
588 enum machine_mode mode = iv->extend_mode;
590 if (GET_MODE (mby) != VOIDmode
591 && GET_MODE (mby) != mode)
592 return false;
594 if (iv->extend == IV_UNKNOWN_EXTEND)
596 iv->base = simplify_gen_binary (MULT, mode, iv->base, mby);
597 iv->step = simplify_gen_binary (MULT, mode, iv->step, mby);
599 else
601 iv->delta = simplify_gen_binary (MULT, mode, iv->delta, mby);
602 iv->mult = simplify_gen_binary (MULT, mode, iv->mult, mby);
605 return true;
608 /* Evaluates shift of IV by constant CST. */
610 static bool
611 iv_shift (struct rtx_iv *iv, rtx mby)
613 enum machine_mode mode = iv->extend_mode;
615 if (GET_MODE (mby) != VOIDmode
616 && GET_MODE (mby) != mode)
617 return false;
619 if (iv->extend == IV_UNKNOWN_EXTEND)
621 iv->base = simplify_gen_binary (ASHIFT, mode, iv->base, mby);
622 iv->step = simplify_gen_binary (ASHIFT, mode, iv->step, mby);
624 else
626 iv->delta = simplify_gen_binary (ASHIFT, mode, iv->delta, mby);
627 iv->mult = simplify_gen_binary (ASHIFT, mode, iv->mult, mby);
630 return true;
633 /* The recursive part of get_biv_step. Gets the value of the single value
634 defined by DEF wrto initial value of REG inside loop, in shape described
635 at get_biv_step. */
637 static bool
638 get_biv_step_1 (df_ref def, rtx reg,
639 rtx *inner_step, enum machine_mode *inner_mode,
640 enum iv_extend_code *extend, enum machine_mode outer_mode,
641 rtx *outer_step)
643 rtx set, rhs, op0 = NULL_RTX, op1 = NULL_RTX;
644 rtx next, nextr, tmp;
645 enum rtx_code code;
646 rtx insn = DF_REF_INSN (def);
647 df_ref next_def;
648 enum iv_grd_result res;
650 set = single_set (insn);
651 if (!set)
652 return false;
654 rhs = find_reg_equal_equiv_note (insn);
655 if (rhs)
656 rhs = XEXP (rhs, 0);
657 else
658 rhs = SET_SRC (set);
660 code = GET_CODE (rhs);
661 switch (code)
663 case SUBREG:
664 case REG:
665 next = rhs;
666 break;
668 case PLUS:
669 case MINUS:
670 op0 = XEXP (rhs, 0);
671 op1 = XEXP (rhs, 1);
673 if (code == PLUS && CONSTANT_P (op0))
675 tmp = op0; op0 = op1; op1 = tmp;
678 if (!simple_reg_p (op0)
679 || !CONSTANT_P (op1))
680 return false;
682 if (GET_MODE (rhs) != outer_mode)
684 /* ppc64 uses expressions like
686 (set x:SI (plus:SI (subreg:SI y:DI) 1)).
688 this is equivalent to
690 (set x':DI (plus:DI y:DI 1))
691 (set x:SI (subreg:SI (x':DI)). */
692 if (GET_CODE (op0) != SUBREG)
693 return false;
694 if (GET_MODE (SUBREG_REG (op0)) != outer_mode)
695 return false;
698 next = op0;
699 break;
701 case SIGN_EXTEND:
702 case ZERO_EXTEND:
703 if (GET_MODE (rhs) != outer_mode)
704 return false;
706 op0 = XEXP (rhs, 0);
707 if (!simple_reg_p (op0))
708 return false;
710 next = op0;
711 break;
713 default:
714 return false;
717 if (GET_CODE (next) == SUBREG)
719 if (!subreg_lowpart_p (next))
720 return false;
722 nextr = SUBREG_REG (next);
723 if (GET_MODE (nextr) != outer_mode)
724 return false;
726 else
727 nextr = next;
729 res = iv_get_reaching_def (insn, nextr, &next_def);
731 if (res == GRD_INVALID || res == GRD_INVARIANT)
732 return false;
734 if (res == GRD_MAYBE_BIV)
736 if (!rtx_equal_p (nextr, reg))
737 return false;
739 *inner_step = const0_rtx;
740 *extend = IV_UNKNOWN_EXTEND;
741 *inner_mode = outer_mode;
742 *outer_step = const0_rtx;
744 else if (!get_biv_step_1 (next_def, reg,
745 inner_step, inner_mode, extend, outer_mode,
746 outer_step))
747 return false;
749 if (GET_CODE (next) == SUBREG)
751 enum machine_mode amode = GET_MODE (next);
753 if (GET_MODE_SIZE (amode) > GET_MODE_SIZE (*inner_mode))
754 return false;
756 *inner_mode = amode;
757 *inner_step = simplify_gen_binary (PLUS, outer_mode,
758 *inner_step, *outer_step);
759 *outer_step = const0_rtx;
760 *extend = IV_UNKNOWN_EXTEND;
763 switch (code)
765 case REG:
766 case SUBREG:
767 break;
769 case PLUS:
770 case MINUS:
771 if (*inner_mode == outer_mode
772 /* See comment in previous switch. */
773 || GET_MODE (rhs) != outer_mode)
774 *inner_step = simplify_gen_binary (code, outer_mode,
775 *inner_step, op1);
776 else
777 *outer_step = simplify_gen_binary (code, outer_mode,
778 *outer_step, op1);
779 break;
781 case SIGN_EXTEND:
782 case ZERO_EXTEND:
783 gcc_assert (GET_MODE (op0) == *inner_mode
784 && *extend == IV_UNKNOWN_EXTEND
785 && *outer_step == const0_rtx);
787 *extend = (code == SIGN_EXTEND) ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
788 break;
790 default:
791 return false;
794 return true;
797 /* Gets the operation on register REG inside loop, in shape
799 OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP))
801 If the operation cannot be described in this shape, return false.
802 LAST_DEF is the definition of REG that dominates loop latch. */
804 static bool
805 get_biv_step (df_ref last_def, rtx reg, rtx *inner_step,
806 enum machine_mode *inner_mode, enum iv_extend_code *extend,
807 enum machine_mode *outer_mode, rtx *outer_step)
809 *outer_mode = GET_MODE (reg);
811 if (!get_biv_step_1 (last_def, reg,
812 inner_step, inner_mode, extend, *outer_mode,
813 outer_step))
814 return false;
816 gcc_assert ((*inner_mode == *outer_mode) != (*extend != IV_UNKNOWN_EXTEND));
817 gcc_assert (*inner_mode != *outer_mode || *outer_step == const0_rtx);
819 return true;
822 /* Records information that DEF is induction variable IV. */
824 static void
825 record_iv (df_ref def, struct rtx_iv *iv)
827 struct rtx_iv *recorded_iv = XNEW (struct rtx_iv);
829 *recorded_iv = *iv;
830 check_iv_ref_table_size ();
831 DF_REF_IV_SET (def, recorded_iv);
834 /* If DEF was already analyzed for bivness, store the description of the biv to
835 IV and return true. Otherwise return false. */
837 static bool
838 analyzed_for_bivness_p (rtx def, struct rtx_iv *iv)
840 struct biv_entry *biv =
841 (struct biv_entry *) htab_find_with_hash (bivs, def, REGNO (def));
843 if (!biv)
844 return false;
846 *iv = biv->iv;
847 return true;
850 static void
851 record_biv (rtx def, struct rtx_iv *iv)
853 struct biv_entry *biv = XNEW (struct biv_entry);
854 void **slot = htab_find_slot_with_hash (bivs, def, REGNO (def), INSERT);
856 biv->regno = REGNO (def);
857 biv->iv = *iv;
858 gcc_assert (!*slot);
859 *slot = biv;
862 /* Determines whether DEF is a biv and if so, stores its description
863 to *IV. */
865 static bool
866 iv_analyze_biv (rtx def, struct rtx_iv *iv)
868 rtx inner_step, outer_step;
869 enum machine_mode inner_mode, outer_mode;
870 enum iv_extend_code extend;
871 df_ref last_def;
873 if (dump_file)
875 fprintf (dump_file, "Analyzing ");
876 print_rtl (dump_file, def);
877 fprintf (dump_file, " for bivness.\n");
880 if (!REG_P (def))
882 if (!CONSTANT_P (def))
883 return false;
885 return iv_constant (iv, def, VOIDmode);
888 if (!latch_dominating_def (def, &last_def))
890 if (dump_file)
891 fprintf (dump_file, " not simple.\n");
892 return false;
895 if (!last_def)
896 return iv_constant (iv, def, VOIDmode);
898 if (analyzed_for_bivness_p (def, iv))
900 if (dump_file)
901 fprintf (dump_file, " already analysed.\n");
902 return iv->base != NULL_RTX;
905 if (!get_biv_step (last_def, def, &inner_step, &inner_mode, &extend,
906 &outer_mode, &outer_step))
908 iv->base = NULL_RTX;
909 goto end;
912 /* Loop transforms base to es (base + inner_step) + outer_step,
913 where es means extend of subreg between inner_mode and outer_mode.
914 The corresponding induction variable is
916 es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */
918 iv->base = simplify_gen_binary (MINUS, outer_mode, def, outer_step);
919 iv->step = simplify_gen_binary (PLUS, outer_mode, inner_step, outer_step);
920 iv->mode = inner_mode;
921 iv->extend_mode = outer_mode;
922 iv->extend = extend;
923 iv->mult = const1_rtx;
924 iv->delta = outer_step;
925 iv->first_special = inner_mode != outer_mode;
927 end:
928 if (dump_file)
930 fprintf (dump_file, " ");
931 dump_iv_info (dump_file, iv);
932 fprintf (dump_file, "\n");
935 record_biv (def, iv);
936 return iv->base != NULL_RTX;
939 /* Analyzes expression RHS used at INSN and stores the result to *IV.
940 The mode of the induction variable is MODE. */
942 bool
943 iv_analyze_expr (rtx insn, rtx rhs, enum machine_mode mode, struct rtx_iv *iv)
945 rtx mby = NULL_RTX, tmp;
946 rtx op0 = NULL_RTX, op1 = NULL_RTX;
947 struct rtx_iv iv0, iv1;
948 enum rtx_code code = GET_CODE (rhs);
949 enum machine_mode omode = mode;
951 iv->mode = VOIDmode;
952 iv->base = NULL_RTX;
953 iv->step = NULL_RTX;
955 gcc_assert (GET_MODE (rhs) == mode || GET_MODE (rhs) == VOIDmode);
957 if (CONSTANT_P (rhs)
958 || REG_P (rhs)
959 || code == SUBREG)
961 if (!iv_analyze_op (insn, rhs, iv))
962 return false;
964 if (iv->mode == VOIDmode)
966 iv->mode = mode;
967 iv->extend_mode = mode;
970 return true;
973 switch (code)
975 case REG:
976 op0 = rhs;
977 break;
979 case SIGN_EXTEND:
980 case ZERO_EXTEND:
981 case NEG:
982 op0 = XEXP (rhs, 0);
983 omode = GET_MODE (op0);
984 break;
986 case PLUS:
987 case MINUS:
988 op0 = XEXP (rhs, 0);
989 op1 = XEXP (rhs, 1);
990 break;
992 case MULT:
993 op0 = XEXP (rhs, 0);
994 mby = XEXP (rhs, 1);
995 if (!CONSTANT_P (mby))
997 tmp = op0;
998 op0 = mby;
999 mby = tmp;
1001 if (!CONSTANT_P (mby))
1002 return false;
1003 break;
1005 case ASHIFT:
1006 op0 = XEXP (rhs, 0);
1007 mby = XEXP (rhs, 1);
1008 if (!CONSTANT_P (mby))
1009 return false;
1010 break;
1012 default:
1013 return false;
1016 if (op0
1017 && !iv_analyze_expr (insn, op0, omode, &iv0))
1018 return false;
1020 if (op1
1021 && !iv_analyze_expr (insn, op1, omode, &iv1))
1022 return false;
1024 switch (code)
1026 case SIGN_EXTEND:
1027 if (!iv_extend (&iv0, IV_SIGN_EXTEND, mode))
1028 return false;
1029 break;
1031 case ZERO_EXTEND:
1032 if (!iv_extend (&iv0, IV_ZERO_EXTEND, mode))
1033 return false;
1034 break;
1036 case NEG:
1037 if (!iv_neg (&iv0))
1038 return false;
1039 break;
1041 case PLUS:
1042 case MINUS:
1043 if (!iv_add (&iv0, &iv1, code))
1044 return false;
1045 break;
1047 case MULT:
1048 if (!iv_mult (&iv0, mby))
1049 return false;
1050 break;
1052 case ASHIFT:
1053 if (!iv_shift (&iv0, mby))
1054 return false;
1055 break;
1057 default:
1058 break;
1061 *iv = iv0;
1062 return iv->base != NULL_RTX;
1065 /* Analyzes iv DEF and stores the result to *IV. */
1067 static bool
1068 iv_analyze_def (df_ref def, struct rtx_iv *iv)
1070 rtx insn = DF_REF_INSN (def);
1071 rtx reg = DF_REF_REG (def);
1072 rtx set, rhs;
1074 if (dump_file)
1076 fprintf (dump_file, "Analyzing def of ");
1077 print_rtl (dump_file, reg);
1078 fprintf (dump_file, " in insn ");
1079 print_rtl_single (dump_file, insn);
1082 check_iv_ref_table_size ();
1083 if (DF_REF_IV (def))
1085 if (dump_file)
1086 fprintf (dump_file, " already analysed.\n");
1087 *iv = *DF_REF_IV (def);
1088 return iv->base != NULL_RTX;
1091 iv->mode = VOIDmode;
1092 iv->base = NULL_RTX;
1093 iv->step = NULL_RTX;
1095 if (!REG_P (reg))
1096 return false;
1098 set = single_set (insn);
1099 if (!set)
1100 return false;
1102 if (!REG_P (SET_DEST (set)))
1103 return false;
1105 gcc_assert (SET_DEST (set) == reg);
1106 rhs = find_reg_equal_equiv_note (insn);
1107 if (rhs)
1108 rhs = XEXP (rhs, 0);
1109 else
1110 rhs = SET_SRC (set);
1112 iv_analyze_expr (insn, rhs, GET_MODE (reg), iv);
1113 record_iv (def, iv);
1115 if (dump_file)
1117 print_rtl (dump_file, reg);
1118 fprintf (dump_file, " in insn ");
1119 print_rtl_single (dump_file, insn);
1120 fprintf (dump_file, " is ");
1121 dump_iv_info (dump_file, iv);
1122 fprintf (dump_file, "\n");
1125 return iv->base != NULL_RTX;
1128 /* Analyzes operand OP of INSN and stores the result to *IV. */
1130 static bool
1131 iv_analyze_op (rtx insn, rtx op, struct rtx_iv *iv)
1133 df_ref def = NULL;
1134 enum iv_grd_result res;
1136 if (dump_file)
1138 fprintf (dump_file, "Analyzing operand ");
1139 print_rtl (dump_file, op);
1140 fprintf (dump_file, " of insn ");
1141 print_rtl_single (dump_file, insn);
1144 if (function_invariant_p (op))
1145 res = GRD_INVARIANT;
1146 else if (GET_CODE (op) == SUBREG)
1148 if (!subreg_lowpart_p (op))
1149 return false;
1151 if (!iv_analyze_op (insn, SUBREG_REG (op), iv))
1152 return false;
1154 return iv_subreg (iv, GET_MODE (op));
1156 else
1158 res = iv_get_reaching_def (insn, op, &def);
1159 if (res == GRD_INVALID)
1161 if (dump_file)
1162 fprintf (dump_file, " not simple.\n");
1163 return false;
1167 if (res == GRD_INVARIANT)
1169 iv_constant (iv, op, VOIDmode);
1171 if (dump_file)
1173 fprintf (dump_file, " ");
1174 dump_iv_info (dump_file, iv);
1175 fprintf (dump_file, "\n");
1177 return true;
1180 if (res == GRD_MAYBE_BIV)
1181 return iv_analyze_biv (op, iv);
1183 return iv_analyze_def (def, iv);
1186 /* Analyzes value VAL at INSN and stores the result to *IV. */
1188 bool
1189 iv_analyze (rtx insn, rtx val, struct rtx_iv *iv)
1191 rtx reg;
1193 /* We must find the insn in that val is used, so that we get to UD chains.
1194 Since the function is sometimes called on result of get_condition,
1195 this does not necessarily have to be directly INSN; scan also the
1196 following insns. */
1197 if (simple_reg_p (val))
1199 if (GET_CODE (val) == SUBREG)
1200 reg = SUBREG_REG (val);
1201 else
1202 reg = val;
1204 while (!df_find_use (insn, reg))
1205 insn = NEXT_INSN (insn);
1208 return iv_analyze_op (insn, val, iv);
1211 /* Analyzes definition of DEF in INSN and stores the result to IV. */
1213 bool
1214 iv_analyze_result (rtx insn, rtx def, struct rtx_iv *iv)
1216 df_ref adef;
1218 adef = df_find_def (insn, def);
1219 if (!adef)
1220 return false;
1222 return iv_analyze_def (adef, iv);
1225 /* Checks whether definition of register REG in INSN is a basic induction
1226 variable. IV analysis must have been initialized (via a call to
1227 iv_analysis_loop_init) for this function to produce a result. */
1229 bool
1230 biv_p (rtx insn, rtx reg)
1232 struct rtx_iv iv;
1233 df_ref def, last_def;
1235 if (!simple_reg_p (reg))
1236 return false;
1238 def = df_find_def (insn, reg);
1239 gcc_assert (def != NULL);
1240 if (!latch_dominating_def (reg, &last_def))
1241 return false;
1242 if (last_def != def)
1243 return false;
1245 if (!iv_analyze_biv (reg, &iv))
1246 return false;
1248 return iv.step != const0_rtx;
1251 /* Calculates value of IV at ITERATION-th iteration. */
1254 get_iv_value (struct rtx_iv *iv, rtx iteration)
1256 rtx val;
1258 /* We would need to generate some if_then_else patterns, and so far
1259 it is not needed anywhere. */
1260 gcc_assert (!iv->first_special);
1262 if (iv->step != const0_rtx && iteration != const0_rtx)
1263 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->base,
1264 simplify_gen_binary (MULT, iv->extend_mode,
1265 iv->step, iteration));
1266 else
1267 val = iv->base;
1269 if (iv->extend_mode == iv->mode)
1270 return val;
1272 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
1274 if (iv->extend == IV_UNKNOWN_EXTEND)
1275 return val;
1277 val = simplify_gen_unary (iv_extend_to_rtx_code (iv->extend),
1278 iv->extend_mode, val, iv->mode);
1279 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
1280 simplify_gen_binary (MULT, iv->extend_mode,
1281 iv->mult, val));
1283 return val;
1286 /* Free the data for an induction variable analysis. */
1288 void
1289 iv_analysis_done (void)
1291 if (!clean_slate)
1293 clear_iv_info ();
1294 clean_slate = true;
1295 df_finish_pass (true);
1296 htab_delete (bivs);
1297 free (iv_ref_table);
1298 iv_ref_table = NULL;
1299 iv_ref_table_size = 0;
1300 bivs = NULL;
1304 /* Computes inverse to X modulo (1 << MOD). */
1306 static unsigned HOST_WIDEST_INT
1307 inverse (unsigned HOST_WIDEST_INT x, int mod)
1309 unsigned HOST_WIDEST_INT mask =
1310 ((unsigned HOST_WIDEST_INT) 1 << (mod - 1) << 1) - 1;
1311 unsigned HOST_WIDEST_INT rslt = 1;
1312 int i;
1314 for (i = 0; i < mod - 1; i++)
1316 rslt = (rslt * x) & mask;
1317 x = (x * x) & mask;
1320 return rslt;
1323 /* Checks whether register *REG is in set ALT. Callback for for_each_rtx. */
1325 static int
1326 altered_reg_used (rtx *reg, void *alt)
1328 if (!REG_P (*reg))
1329 return 0;
1331 return REGNO_REG_SET_P ((bitmap) alt, REGNO (*reg));
1334 /* Marks registers altered by EXPR in set ALT. */
1336 static void
1337 mark_altered (rtx expr, const_rtx by ATTRIBUTE_UNUSED, void *alt)
1339 if (GET_CODE (expr) == SUBREG)
1340 expr = SUBREG_REG (expr);
1341 if (!REG_P (expr))
1342 return;
1344 SET_REGNO_REG_SET ((bitmap) alt, REGNO (expr));
1347 /* Checks whether RHS is simple enough to process. */
1349 static bool
1350 simple_rhs_p (rtx rhs)
1352 rtx op0, op1;
1354 if (function_invariant_p (rhs)
1355 || (REG_P (rhs) && !HARD_REGISTER_P (rhs)))
1356 return true;
1358 switch (GET_CODE (rhs))
1360 case PLUS:
1361 case MINUS:
1362 case AND:
1363 op0 = XEXP (rhs, 0);
1364 op1 = XEXP (rhs, 1);
1365 /* Allow reg OP const and reg OP reg. */
1366 if (!(REG_P (op0) && !HARD_REGISTER_P (op0))
1367 && !function_invariant_p (op0))
1368 return false;
1369 if (!(REG_P (op1) && !HARD_REGISTER_P (op1))
1370 && !function_invariant_p (op1))
1371 return false;
1373 return true;
1375 case ASHIFT:
1376 case ASHIFTRT:
1377 case LSHIFTRT:
1378 case MULT:
1379 op0 = XEXP (rhs, 0);
1380 op1 = XEXP (rhs, 1);
1381 /* Allow reg OP const. */
1382 if (!(REG_P (op0) && !HARD_REGISTER_P (op0)))
1383 return false;
1384 if (!function_invariant_p (op1))
1385 return false;
1387 return true;
1389 default:
1390 return false;
1394 /* If REG has a single definition, replace it with its known value in EXPR.
1395 Callback for for_each_rtx. */
1397 static int
1398 replace_single_def_regs (rtx *reg, void *expr1)
1400 unsigned regno;
1401 df_ref adef;
1402 rtx set, src;
1403 rtx *expr = (rtx *)expr1;
1405 if (!REG_P (*reg))
1406 return 0;
1408 regno = REGNO (*reg);
1409 for (;;)
1411 rtx note;
1412 adef = DF_REG_DEF_CHAIN (regno);
1413 if (adef == NULL || DF_REF_NEXT_REG (adef) != NULL
1414 || DF_REF_IS_ARTIFICIAL (adef))
1415 return -1;
1417 set = single_set (DF_REF_INSN (adef));
1418 if (set == NULL || !REG_P (SET_DEST (set))
1419 || REGNO (SET_DEST (set)) != regno)
1420 return -1;
1422 note = find_reg_equal_equiv_note (DF_REF_INSN (adef));
1424 if (note && function_invariant_p (XEXP (note, 0)))
1426 src = XEXP (note, 0);
1427 break;
1429 src = SET_SRC (set);
1431 if (REG_P (src))
1433 regno = REGNO (src);
1434 continue;
1436 break;
1438 if (!function_invariant_p (src))
1439 return -1;
1441 *expr = simplify_replace_rtx (*expr, *reg, src);
1442 return 1;
1445 /* A subroutine of simplify_using_initial_values, this function examines INSN
1446 to see if it contains a suitable set that we can use to make a replacement.
1447 If it is suitable, return true and set DEST and SRC to the lhs and rhs of
1448 the set; return false otherwise. */
1450 static bool
1451 suitable_set_for_replacement (rtx insn, rtx *dest, rtx *src)
1453 rtx set = single_set (insn);
1454 rtx lhs = NULL_RTX, rhs;
1456 if (!set)
1457 return false;
1459 lhs = SET_DEST (set);
1460 if (!REG_P (lhs))
1461 return false;
1463 rhs = find_reg_equal_equiv_note (insn);
1464 if (rhs)
1465 rhs = XEXP (rhs, 0);
1466 else
1467 rhs = SET_SRC (set);
1469 if (!simple_rhs_p (rhs))
1470 return false;
1472 *dest = lhs;
1473 *src = rhs;
1474 return true;
1477 /* Using the data returned by suitable_set_for_replacement, replace DEST
1478 with SRC in *EXPR and return the new expression. Also call
1479 replace_single_def_regs if the replacement changed something. */
1480 static void
1481 replace_in_expr (rtx *expr, rtx dest, rtx src)
1483 rtx old = *expr;
1484 *expr = simplify_replace_rtx (*expr, dest, src);
1485 if (old == *expr)
1486 return;
1487 while (for_each_rtx (expr, replace_single_def_regs, expr) != 0)
1488 continue;
1491 /* Checks whether A implies B. */
1493 static bool
1494 implies_p (rtx a, rtx b)
1496 rtx op0, op1, opb0, opb1, r;
1497 enum machine_mode mode;
1499 if (rtx_equal_p (a, b))
1500 return true;
1502 if (GET_CODE (a) == EQ)
1504 op0 = XEXP (a, 0);
1505 op1 = XEXP (a, 1);
1507 if (REG_P (op0)
1508 || (GET_CODE (op0) == SUBREG
1509 && REG_P (SUBREG_REG (op0))))
1511 r = simplify_replace_rtx (b, op0, op1);
1512 if (r == const_true_rtx)
1513 return true;
1516 if (REG_P (op1)
1517 || (GET_CODE (op1) == SUBREG
1518 && REG_P (SUBREG_REG (op1))))
1520 r = simplify_replace_rtx (b, op1, op0);
1521 if (r == const_true_rtx)
1522 return true;
1526 if (b == const_true_rtx)
1527 return true;
1529 if ((GET_RTX_CLASS (GET_CODE (a)) != RTX_COMM_COMPARE
1530 && GET_RTX_CLASS (GET_CODE (a)) != RTX_COMPARE)
1531 || (GET_RTX_CLASS (GET_CODE (b)) != RTX_COMM_COMPARE
1532 && GET_RTX_CLASS (GET_CODE (b)) != RTX_COMPARE))
1533 return false;
1535 op0 = XEXP (a, 0);
1536 op1 = XEXP (a, 1);
1537 opb0 = XEXP (b, 0);
1538 opb1 = XEXP (b, 1);
1540 mode = GET_MODE (op0);
1541 if (mode != GET_MODE (opb0))
1542 mode = VOIDmode;
1543 else if (mode == VOIDmode)
1545 mode = GET_MODE (op1);
1546 if (mode != GET_MODE (opb1))
1547 mode = VOIDmode;
1550 /* A < B implies A + 1 <= B. */
1551 if ((GET_CODE (a) == GT || GET_CODE (a) == LT)
1552 && (GET_CODE (b) == GE || GET_CODE (b) == LE))
1555 if (GET_CODE (a) == GT)
1557 r = op0;
1558 op0 = op1;
1559 op1 = r;
1562 if (GET_CODE (b) == GE)
1564 r = opb0;
1565 opb0 = opb1;
1566 opb1 = r;
1569 if (SCALAR_INT_MODE_P (mode)
1570 && rtx_equal_p (op1, opb1)
1571 && simplify_gen_binary (MINUS, mode, opb0, op0) == const1_rtx)
1572 return true;
1573 return false;
1576 /* A < B or A > B imply A != B. TODO: Likewise
1577 A + n < B implies A != B + n if neither wraps. */
1578 if (GET_CODE (b) == NE
1579 && (GET_CODE (a) == GT || GET_CODE (a) == GTU
1580 || GET_CODE (a) == LT || GET_CODE (a) == LTU))
1582 if (rtx_equal_p (op0, opb0)
1583 && rtx_equal_p (op1, opb1))
1584 return true;
1587 /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */
1588 if (GET_CODE (a) == NE
1589 && op1 == const0_rtx)
1591 if ((GET_CODE (b) == GTU
1592 && opb1 == const0_rtx)
1593 || (GET_CODE (b) == GEU
1594 && opb1 == const1_rtx))
1595 return rtx_equal_p (op0, opb0);
1598 /* A != N is equivalent to A - (N + 1) <u -1. */
1599 if (GET_CODE (a) == NE
1600 && CONST_INT_P (op1)
1601 && GET_CODE (b) == LTU
1602 && opb1 == constm1_rtx
1603 && GET_CODE (opb0) == PLUS
1604 && CONST_INT_P (XEXP (opb0, 1))
1605 /* Avoid overflows. */
1606 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1607 != ((unsigned HOST_WIDE_INT)1
1608 << (HOST_BITS_PER_WIDE_INT - 1)) - 1)
1609 && INTVAL (XEXP (opb0, 1)) + 1 == -INTVAL (op1))
1610 return rtx_equal_p (op0, XEXP (opb0, 0));
1612 /* Likewise, A != N implies A - N > 0. */
1613 if (GET_CODE (a) == NE
1614 && CONST_INT_P (op1))
1616 if (GET_CODE (b) == GTU
1617 && GET_CODE (opb0) == PLUS
1618 && opb1 == const0_rtx
1619 && CONST_INT_P (XEXP (opb0, 1))
1620 /* Avoid overflows. */
1621 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1622 != ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
1623 && rtx_equal_p (XEXP (opb0, 0), op0))
1624 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1625 if (GET_CODE (b) == GEU
1626 && GET_CODE (opb0) == PLUS
1627 && opb1 == const1_rtx
1628 && CONST_INT_P (XEXP (opb0, 1))
1629 /* Avoid overflows. */
1630 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1631 != ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
1632 && rtx_equal_p (XEXP (opb0, 0), op0))
1633 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1636 /* A >s X, where X is positive, implies A <u Y, if Y is negative. */
1637 if ((GET_CODE (a) == GT || GET_CODE (a) == GE)
1638 && CONST_INT_P (op1)
1639 && ((GET_CODE (a) == GT && op1 == constm1_rtx)
1640 || INTVAL (op1) >= 0)
1641 && GET_CODE (b) == LTU
1642 && CONST_INT_P (opb1)
1643 && rtx_equal_p (op0, opb0))
1644 return INTVAL (opb1) < 0;
1646 return false;
1649 /* Canonicalizes COND so that
1651 (1) Ensure that operands are ordered according to
1652 swap_commutative_operands_p.
1653 (2) (LE x const) will be replaced with (LT x <const+1>) and similarly
1654 for GE, GEU, and LEU. */
1657 canon_condition (rtx cond)
1659 rtx tem;
1660 rtx op0, op1;
1661 enum rtx_code code;
1662 enum machine_mode mode;
1664 code = GET_CODE (cond);
1665 op0 = XEXP (cond, 0);
1666 op1 = XEXP (cond, 1);
1668 if (swap_commutative_operands_p (op0, op1))
1670 code = swap_condition (code);
1671 tem = op0;
1672 op0 = op1;
1673 op1 = tem;
1676 mode = GET_MODE (op0);
1677 if (mode == VOIDmode)
1678 mode = GET_MODE (op1);
1679 gcc_assert (mode != VOIDmode);
1681 if (CONST_INT_P (op1)
1682 && GET_MODE_CLASS (mode) != MODE_CC
1683 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
1685 HOST_WIDE_INT const_val = INTVAL (op1);
1686 unsigned HOST_WIDE_INT uconst_val = const_val;
1687 unsigned HOST_WIDE_INT max_val
1688 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode);
1690 switch (code)
1692 case LE:
1693 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
1694 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
1695 break;
1697 /* When cross-compiling, const_val might be sign-extended from
1698 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
1699 case GE:
1700 if ((HOST_WIDE_INT) (const_val & max_val)
1701 != (((HOST_WIDE_INT) 1
1702 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
1703 code = GT, op1 = gen_int_mode (const_val - 1, mode);
1704 break;
1706 case LEU:
1707 if (uconst_val < max_val)
1708 code = LTU, op1 = gen_int_mode (uconst_val + 1, mode);
1709 break;
1711 case GEU:
1712 if (uconst_val != 0)
1713 code = GTU, op1 = gen_int_mode (uconst_val - 1, mode);
1714 break;
1716 default:
1717 break;
1721 if (op0 != XEXP (cond, 0)
1722 || op1 != XEXP (cond, 1)
1723 || code != GET_CODE (cond)
1724 || GET_MODE (cond) != SImode)
1725 cond = gen_rtx_fmt_ee (code, SImode, op0, op1);
1727 return cond;
1730 /* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the
1731 set of altered regs. */
1733 void
1734 simplify_using_condition (rtx cond, rtx *expr, regset altered)
1736 rtx rev, reve, exp = *expr;
1738 /* If some register gets altered later, we do not really speak about its
1739 value at the time of comparison. */
1740 if (altered
1741 && for_each_rtx (&cond, altered_reg_used, altered))
1742 return;
1744 if (GET_CODE (cond) == EQ
1745 && REG_P (XEXP (cond, 0)) && CONSTANT_P (XEXP (cond, 1)))
1747 *expr = simplify_replace_rtx (*expr, XEXP (cond, 0), XEXP (cond, 1));
1748 return;
1751 if (!COMPARISON_P (exp))
1752 return;
1754 rev = reversed_condition (cond);
1755 reve = reversed_condition (exp);
1757 cond = canon_condition (cond);
1758 exp = canon_condition (exp);
1759 if (rev)
1760 rev = canon_condition (rev);
1761 if (reve)
1762 reve = canon_condition (reve);
1764 if (rtx_equal_p (exp, cond))
1766 *expr = const_true_rtx;
1767 return;
1770 if (rev && rtx_equal_p (exp, rev))
1772 *expr = const0_rtx;
1773 return;
1776 if (implies_p (cond, exp))
1778 *expr = const_true_rtx;
1779 return;
1782 if (reve && implies_p (cond, reve))
1784 *expr = const0_rtx;
1785 return;
1788 /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must
1789 be false. */
1790 if (rev && implies_p (exp, rev))
1792 *expr = const0_rtx;
1793 return;
1796 /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */
1797 if (rev && reve && implies_p (reve, rev))
1799 *expr = const_true_rtx;
1800 return;
1803 /* We would like to have some other tests here. TODO. */
1805 return;
1808 /* Use relationship between A and *B to eventually eliminate *B.
1809 OP is the operation we consider. */
1811 static void
1812 eliminate_implied_condition (enum rtx_code op, rtx a, rtx *b)
1814 switch (op)
1816 case AND:
1817 /* If A implies *B, we may replace *B by true. */
1818 if (implies_p (a, *b))
1819 *b = const_true_rtx;
1820 break;
1822 case IOR:
1823 /* If *B implies A, we may replace *B by false. */
1824 if (implies_p (*b, a))
1825 *b = const0_rtx;
1826 break;
1828 default:
1829 gcc_unreachable ();
1833 /* Eliminates the conditions in TAIL that are implied by HEAD. OP is the
1834 operation we consider. */
1836 static void
1837 eliminate_implied_conditions (enum rtx_code op, rtx *head, rtx tail)
1839 rtx elt;
1841 for (elt = tail; elt; elt = XEXP (elt, 1))
1842 eliminate_implied_condition (op, *head, &XEXP (elt, 0));
1843 for (elt = tail; elt; elt = XEXP (elt, 1))
1844 eliminate_implied_condition (op, XEXP (elt, 0), head);
1847 /* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR
1848 is a list, its elements are assumed to be combined using OP. */
1850 static void
1851 simplify_using_initial_values (struct loop *loop, enum rtx_code op, rtx *expr)
1853 bool expression_valid;
1854 rtx head, tail, insn, cond_list, last_valid_expr;
1855 rtx neutral, aggr;
1856 regset altered, this_altered;
1857 edge e;
1859 if (!*expr)
1860 return;
1862 if (CONSTANT_P (*expr))
1863 return;
1865 if (GET_CODE (*expr) == EXPR_LIST)
1867 head = XEXP (*expr, 0);
1868 tail = XEXP (*expr, 1);
1870 eliminate_implied_conditions (op, &head, tail);
1872 switch (op)
1874 case AND:
1875 neutral = const_true_rtx;
1876 aggr = const0_rtx;
1877 break;
1879 case IOR:
1880 neutral = const0_rtx;
1881 aggr = const_true_rtx;
1882 break;
1884 default:
1885 gcc_unreachable ();
1888 simplify_using_initial_values (loop, UNKNOWN, &head);
1889 if (head == aggr)
1891 XEXP (*expr, 0) = aggr;
1892 XEXP (*expr, 1) = NULL_RTX;
1893 return;
1895 else if (head == neutral)
1897 *expr = tail;
1898 simplify_using_initial_values (loop, op, expr);
1899 return;
1901 simplify_using_initial_values (loop, op, &tail);
1903 if (tail && XEXP (tail, 0) == aggr)
1905 *expr = tail;
1906 return;
1909 XEXP (*expr, 0) = head;
1910 XEXP (*expr, 1) = tail;
1911 return;
1914 gcc_assert (op == UNKNOWN);
1916 for (;;)
1917 if (for_each_rtx (expr, replace_single_def_regs, expr) == 0)
1918 break;
1919 if (CONSTANT_P (*expr))
1920 return;
1922 e = loop_preheader_edge (loop);
1923 if (e->src == ENTRY_BLOCK_PTR)
1924 return;
1926 altered = ALLOC_REG_SET (&reg_obstack);
1927 this_altered = ALLOC_REG_SET (&reg_obstack);
1929 expression_valid = true;
1930 last_valid_expr = *expr;
1931 cond_list = NULL_RTX;
1932 while (1)
1934 insn = BB_END (e->src);
1935 if (any_condjump_p (insn))
1937 rtx cond = get_condition (BB_END (e->src), NULL, false, true);
1939 if (cond && (e->flags & EDGE_FALLTHRU))
1940 cond = reversed_condition (cond);
1941 if (cond)
1943 rtx old = *expr;
1944 simplify_using_condition (cond, expr, altered);
1945 if (old != *expr)
1947 rtx note;
1948 if (CONSTANT_P (*expr))
1949 goto out;
1950 for (note = cond_list; note; note = XEXP (note, 1))
1952 simplify_using_condition (XEXP (note, 0), expr, altered);
1953 if (CONSTANT_P (*expr))
1954 goto out;
1957 cond_list = alloc_EXPR_LIST (0, cond, cond_list);
1961 FOR_BB_INSNS_REVERSE (e->src, insn)
1963 rtx src, dest;
1964 rtx old = *expr;
1966 if (!INSN_P (insn))
1967 continue;
1969 CLEAR_REG_SET (this_altered);
1970 note_stores (PATTERN (insn), mark_altered, this_altered);
1971 if (CALL_P (insn))
1973 /* Kill all call clobbered registers. */
1974 unsigned int i;
1975 hard_reg_set_iterator hrsi;
1976 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1977 0, i, hrsi)
1978 SET_REGNO_REG_SET (this_altered, i);
1981 if (suitable_set_for_replacement (insn, &dest, &src))
1983 rtx *pnote, *pnote_next;
1985 replace_in_expr (expr, dest, src);
1986 if (CONSTANT_P (*expr))
1987 goto out;
1989 for (pnote = &cond_list; *pnote; pnote = pnote_next)
1991 rtx note = *pnote;
1992 rtx old_cond = XEXP (note, 0);
1994 pnote_next = &XEXP (note, 1);
1995 replace_in_expr (&XEXP (note, 0), dest, src);
1997 /* We can no longer use a condition that has been simplified
1998 to a constant, and simplify_using_condition will abort if
1999 we try. */
2000 if (CONSTANT_P (XEXP (note, 0)))
2002 *pnote = *pnote_next;
2003 pnote_next = pnote;
2004 free_EXPR_LIST_node (note);
2006 /* Retry simplifications with this condition if either the
2007 expression or the condition changed. */
2008 else if (old_cond != XEXP (note, 0) || old != *expr)
2009 simplify_using_condition (XEXP (note, 0), expr, altered);
2012 else
2014 rtx *pnote, *pnote_next;
2016 /* If we did not use this insn to make a replacement, any overlap
2017 between stores in this insn and our expression will cause the
2018 expression to become invalid. */
2019 if (for_each_rtx (expr, altered_reg_used, this_altered))
2020 goto out;
2022 /* Likewise for the conditions. */
2023 for (pnote = &cond_list; *pnote; pnote = pnote_next)
2025 rtx note = *pnote;
2026 rtx old_cond = XEXP (note, 0);
2028 pnote_next = &XEXP (note, 1);
2029 if (for_each_rtx (&old_cond, altered_reg_used, this_altered))
2031 *pnote = *pnote_next;
2032 pnote_next = pnote;
2033 free_EXPR_LIST_node (note);
2038 if (CONSTANT_P (*expr))
2039 goto out;
2041 IOR_REG_SET (altered, this_altered);
2043 /* If the expression now contains regs that have been altered, we
2044 can't return it to the caller. However, it is still valid for
2045 further simplification, so keep searching to see if we can
2046 eventually turn it into a constant. */
2047 if (for_each_rtx (expr, altered_reg_used, altered))
2048 expression_valid = false;
2049 if (expression_valid)
2050 last_valid_expr = *expr;
2053 if (!single_pred_p (e->src)
2054 || single_pred (e->src) == ENTRY_BLOCK_PTR)
2055 break;
2056 e = single_pred_edge (e->src);
2059 out:
2060 free_EXPR_LIST_list (&cond_list);
2061 if (!CONSTANT_P (*expr))
2062 *expr = last_valid_expr;
2063 FREE_REG_SET (altered);
2064 FREE_REG_SET (this_altered);
2067 /* Transforms invariant IV into MODE. Adds assumptions based on the fact
2068 that IV occurs as left operands of comparison COND and its signedness
2069 is SIGNED_P to DESC. */
2071 static void
2072 shorten_into_mode (struct rtx_iv *iv, enum machine_mode mode,
2073 enum rtx_code cond, bool signed_p, struct niter_desc *desc)
2075 rtx mmin, mmax, cond_over, cond_under;
2077 get_mode_bounds (mode, signed_p, iv->extend_mode, &mmin, &mmax);
2078 cond_under = simplify_gen_relational (LT, SImode, iv->extend_mode,
2079 iv->base, mmin);
2080 cond_over = simplify_gen_relational (GT, SImode, iv->extend_mode,
2081 iv->base, mmax);
2083 switch (cond)
2085 case LE:
2086 case LT:
2087 case LEU:
2088 case LTU:
2089 if (cond_under != const0_rtx)
2090 desc->infinite =
2091 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2092 if (cond_over != const0_rtx)
2093 desc->noloop_assumptions =
2094 alloc_EXPR_LIST (0, cond_over, desc->noloop_assumptions);
2095 break;
2097 case GE:
2098 case GT:
2099 case GEU:
2100 case GTU:
2101 if (cond_over != const0_rtx)
2102 desc->infinite =
2103 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2104 if (cond_under != const0_rtx)
2105 desc->noloop_assumptions =
2106 alloc_EXPR_LIST (0, cond_under, desc->noloop_assumptions);
2107 break;
2109 case NE:
2110 if (cond_over != const0_rtx)
2111 desc->infinite =
2112 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2113 if (cond_under != const0_rtx)
2114 desc->infinite =
2115 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2116 break;
2118 default:
2119 gcc_unreachable ();
2122 iv->mode = mode;
2123 iv->extend = signed_p ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
2126 /* Transforms IV0 and IV1 compared by COND so that they are both compared as
2127 subregs of the same mode if possible (sometimes it is necessary to add
2128 some assumptions to DESC). */
2130 static bool
2131 canonicalize_iv_subregs (struct rtx_iv *iv0, struct rtx_iv *iv1,
2132 enum rtx_code cond, struct niter_desc *desc)
2134 enum machine_mode comp_mode;
2135 bool signed_p;
2137 /* If the ivs behave specially in the first iteration, or are
2138 added/multiplied after extending, we ignore them. */
2139 if (iv0->first_special || iv0->mult != const1_rtx || iv0->delta != const0_rtx)
2140 return false;
2141 if (iv1->first_special || iv1->mult != const1_rtx || iv1->delta != const0_rtx)
2142 return false;
2144 /* If there is some extend, it must match signedness of the comparison. */
2145 switch (cond)
2147 case LE:
2148 case LT:
2149 if (iv0->extend == IV_ZERO_EXTEND
2150 || iv1->extend == IV_ZERO_EXTEND)
2151 return false;
2152 signed_p = true;
2153 break;
2155 case LEU:
2156 case LTU:
2157 if (iv0->extend == IV_SIGN_EXTEND
2158 || iv1->extend == IV_SIGN_EXTEND)
2159 return false;
2160 signed_p = false;
2161 break;
2163 case NE:
2164 if (iv0->extend != IV_UNKNOWN_EXTEND
2165 && iv1->extend != IV_UNKNOWN_EXTEND
2166 && iv0->extend != iv1->extend)
2167 return false;
2169 signed_p = false;
2170 if (iv0->extend != IV_UNKNOWN_EXTEND)
2171 signed_p = iv0->extend == IV_SIGN_EXTEND;
2172 if (iv1->extend != IV_UNKNOWN_EXTEND)
2173 signed_p = iv1->extend == IV_SIGN_EXTEND;
2174 break;
2176 default:
2177 gcc_unreachable ();
2180 /* Values of both variables should be computed in the same mode. These
2181 might indeed be different, if we have comparison like
2183 (compare (subreg:SI (iv0)) (subreg:SI (iv1)))
2185 and iv0 and iv1 are both ivs iterating in SI mode, but calculated
2186 in different modes. This does not seem impossible to handle, but
2187 it hardly ever occurs in practice.
2189 The only exception is the case when one of operands is invariant.
2190 For example pentium 3 generates comparisons like
2191 (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we
2192 definitely do not want this prevent the optimization. */
2193 comp_mode = iv0->extend_mode;
2194 if (GET_MODE_BITSIZE (comp_mode) < GET_MODE_BITSIZE (iv1->extend_mode))
2195 comp_mode = iv1->extend_mode;
2197 if (iv0->extend_mode != comp_mode)
2199 if (iv0->mode != iv0->extend_mode
2200 || iv0->step != const0_rtx)
2201 return false;
2203 iv0->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2204 comp_mode, iv0->base, iv0->mode);
2205 iv0->extend_mode = comp_mode;
2208 if (iv1->extend_mode != comp_mode)
2210 if (iv1->mode != iv1->extend_mode
2211 || iv1->step != const0_rtx)
2212 return false;
2214 iv1->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2215 comp_mode, iv1->base, iv1->mode);
2216 iv1->extend_mode = comp_mode;
2219 /* Check that both ivs belong to a range of a single mode. If one of the
2220 operands is an invariant, we may need to shorten it into the common
2221 mode. */
2222 if (iv0->mode == iv0->extend_mode
2223 && iv0->step == const0_rtx
2224 && iv0->mode != iv1->mode)
2225 shorten_into_mode (iv0, iv1->mode, cond, signed_p, desc);
2227 if (iv1->mode == iv1->extend_mode
2228 && iv1->step == const0_rtx
2229 && iv0->mode != iv1->mode)
2230 shorten_into_mode (iv1, iv0->mode, swap_condition (cond), signed_p, desc);
2232 if (iv0->mode != iv1->mode)
2233 return false;
2235 desc->mode = iv0->mode;
2236 desc->signed_p = signed_p;
2238 return true;
2241 /* Tries to estimate the maximum number of iterations in LOOP, and return the
2242 result. This function is called from iv_number_of_iterations with
2243 a number of fields in DESC already filled in. OLD_NITER is the original
2244 expression for the number of iterations, before we tried to simplify it. */
2246 static unsigned HOST_WIDEST_INT
2247 determine_max_iter (struct loop *loop, struct niter_desc *desc, rtx old_niter)
2249 rtx niter = desc->niter_expr;
2250 rtx mmin, mmax, cmp;
2251 unsigned HOST_WIDEST_INT nmax, inc;
2252 unsigned HOST_WIDEST_INT andmax = 0;
2254 /* We used to look for constant operand 0 of AND,
2255 but canonicalization should always make this impossible. */
2256 gcc_checking_assert (GET_CODE (niter) != AND
2257 || !CONST_INT_P (XEXP (niter, 0)));
2259 if (GET_CODE (niter) == AND
2260 && CONST_INT_P (XEXP (niter, 1)))
2262 andmax = UINTVAL (XEXP (niter, 1));
2263 niter = XEXP (niter, 0);
2266 get_mode_bounds (desc->mode, desc->signed_p, desc->mode, &mmin, &mmax);
2267 nmax = INTVAL (mmax) - INTVAL (mmin);
2269 if (GET_CODE (niter) == UDIV)
2271 if (!CONST_INT_P (XEXP (niter, 1)))
2272 return nmax;
2273 inc = INTVAL (XEXP (niter, 1));
2274 niter = XEXP (niter, 0);
2276 else
2277 inc = 1;
2279 /* We could use a binary search here, but for now improving the upper
2280 bound by just one eliminates one important corner case. */
2281 cmp = simplify_gen_relational (desc->signed_p ? LT : LTU, VOIDmode,
2282 desc->mode, old_niter, mmax);
2283 simplify_using_initial_values (loop, UNKNOWN, &cmp);
2284 if (cmp == const_true_rtx)
2286 nmax--;
2288 if (dump_file)
2289 fprintf (dump_file, ";; improved upper bound by one.\n");
2291 nmax /= inc;
2292 if (andmax)
2293 nmax = MIN (nmax, andmax);
2294 if (dump_file)
2295 fprintf (dump_file, ";; Determined upper bound "HOST_WIDEST_INT_PRINT_DEC".\n",
2296 nmax);
2297 return nmax;
2300 /* Computes number of iterations of the CONDITION in INSN in LOOP and stores
2301 the result into DESC. Very similar to determine_number_of_iterations
2302 (basically its rtl version), complicated by things like subregs. */
2304 static void
2305 iv_number_of_iterations (struct loop *loop, rtx insn, rtx condition,
2306 struct niter_desc *desc)
2308 rtx op0, op1, delta, step, bound, may_xform, tmp, tmp0, tmp1;
2309 struct rtx_iv iv0, iv1, tmp_iv;
2310 rtx assumption, may_not_xform;
2311 enum rtx_code cond;
2312 enum machine_mode mode, comp_mode;
2313 rtx mmin, mmax, mode_mmin, mode_mmax;
2314 unsigned HOST_WIDEST_INT s, size, d, inv, max;
2315 HOST_WIDEST_INT up, down, inc, step_val;
2316 int was_sharp = false;
2317 rtx old_niter;
2318 bool step_is_pow2;
2320 /* The meaning of these assumptions is this:
2321 if !assumptions
2322 then the rest of information does not have to be valid
2323 if noloop_assumptions then the loop does not roll
2324 if infinite then this exit is never used */
2326 desc->assumptions = NULL_RTX;
2327 desc->noloop_assumptions = NULL_RTX;
2328 desc->infinite = NULL_RTX;
2329 desc->simple_p = true;
2331 desc->const_iter = false;
2332 desc->niter_expr = NULL_RTX;
2334 cond = GET_CODE (condition);
2335 gcc_assert (COMPARISON_P (condition));
2337 mode = GET_MODE (XEXP (condition, 0));
2338 if (mode == VOIDmode)
2339 mode = GET_MODE (XEXP (condition, 1));
2340 /* The constant comparisons should be folded. */
2341 gcc_assert (mode != VOIDmode);
2343 /* We only handle integers or pointers. */
2344 if (GET_MODE_CLASS (mode) != MODE_INT
2345 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
2346 goto fail;
2348 op0 = XEXP (condition, 0);
2349 if (!iv_analyze (insn, op0, &iv0))
2350 goto fail;
2351 if (iv0.extend_mode == VOIDmode)
2352 iv0.mode = iv0.extend_mode = mode;
2354 op1 = XEXP (condition, 1);
2355 if (!iv_analyze (insn, op1, &iv1))
2356 goto fail;
2357 if (iv1.extend_mode == VOIDmode)
2358 iv1.mode = iv1.extend_mode = mode;
2360 if (GET_MODE_BITSIZE (iv0.extend_mode) > HOST_BITS_PER_WIDE_INT
2361 || GET_MODE_BITSIZE (iv1.extend_mode) > HOST_BITS_PER_WIDE_INT)
2362 goto fail;
2364 /* Check condition and normalize it. */
2366 switch (cond)
2368 case GE:
2369 case GT:
2370 case GEU:
2371 case GTU:
2372 tmp_iv = iv0; iv0 = iv1; iv1 = tmp_iv;
2373 cond = swap_condition (cond);
2374 break;
2375 case NE:
2376 case LE:
2377 case LEU:
2378 case LT:
2379 case LTU:
2380 break;
2381 default:
2382 goto fail;
2385 /* Handle extends. This is relatively nontrivial, so we only try in some
2386 easy cases, when we can canonicalize the ivs (possibly by adding some
2387 assumptions) to shape subreg (base + i * step). This function also fills
2388 in desc->mode and desc->signed_p. */
2390 if (!canonicalize_iv_subregs (&iv0, &iv1, cond, desc))
2391 goto fail;
2393 comp_mode = iv0.extend_mode;
2394 mode = iv0.mode;
2395 size = GET_MODE_BITSIZE (mode);
2396 get_mode_bounds (mode, (cond == LE || cond == LT), comp_mode, &mmin, &mmax);
2397 mode_mmin = lowpart_subreg (mode, mmin, comp_mode);
2398 mode_mmax = lowpart_subreg (mode, mmax, comp_mode);
2400 if (!CONST_INT_P (iv0.step) || !CONST_INT_P (iv1.step))
2401 goto fail;
2403 /* We can take care of the case of two induction variables chasing each other
2404 if the test is NE. I have never seen a loop using it, but still it is
2405 cool. */
2406 if (iv0.step != const0_rtx && iv1.step != const0_rtx)
2408 if (cond != NE)
2409 goto fail;
2411 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2412 iv1.step = const0_rtx;
2415 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2416 iv1.step = lowpart_subreg (mode, iv1.step, comp_mode);
2418 /* This is either infinite loop or the one that ends immediately, depending
2419 on initial values. Unswitching should remove this kind of conditions. */
2420 if (iv0.step == const0_rtx && iv1.step == const0_rtx)
2421 goto fail;
2423 if (cond != NE)
2425 if (iv0.step == const0_rtx)
2426 step_val = -INTVAL (iv1.step);
2427 else
2428 step_val = INTVAL (iv0.step);
2430 /* Ignore loops of while (i-- < 10) type. */
2431 if (step_val < 0)
2432 goto fail;
2434 step_is_pow2 = !(step_val & (step_val - 1));
2436 else
2438 /* We do not care about whether the step is power of two in this
2439 case. */
2440 step_is_pow2 = false;
2441 step_val = 0;
2444 /* Some more condition normalization. We must record some assumptions
2445 due to overflows. */
2446 switch (cond)
2448 case LT:
2449 case LTU:
2450 /* We want to take care only of non-sharp relationals; this is easy,
2451 as in cases the overflow would make the transformation unsafe
2452 the loop does not roll. Seemingly it would make more sense to want
2453 to take care of sharp relationals instead, as NE is more similar to
2454 them, but the problem is that here the transformation would be more
2455 difficult due to possibly infinite loops. */
2456 if (iv0.step == const0_rtx)
2458 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2459 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2460 mode_mmax);
2461 if (assumption == const_true_rtx)
2462 goto zero_iter_simplify;
2463 iv0.base = simplify_gen_binary (PLUS, comp_mode,
2464 iv0.base, const1_rtx);
2466 else
2468 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2469 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2470 mode_mmin);
2471 if (assumption == const_true_rtx)
2472 goto zero_iter_simplify;
2473 iv1.base = simplify_gen_binary (PLUS, comp_mode,
2474 iv1.base, constm1_rtx);
2477 if (assumption != const0_rtx)
2478 desc->noloop_assumptions =
2479 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2480 cond = (cond == LT) ? LE : LEU;
2482 /* It will be useful to be able to tell the difference once more in
2483 LE -> NE reduction. */
2484 was_sharp = true;
2485 break;
2486 default: ;
2489 /* Take care of trivially infinite loops. */
2490 if (cond != NE)
2492 if (iv0.step == const0_rtx)
2494 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2495 if (rtx_equal_p (tmp, mode_mmin))
2497 desc->infinite =
2498 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
2499 /* Fill in the remaining fields somehow. */
2500 goto zero_iter_simplify;
2503 else
2505 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2506 if (rtx_equal_p (tmp, mode_mmax))
2508 desc->infinite =
2509 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
2510 /* Fill in the remaining fields somehow. */
2511 goto zero_iter_simplify;
2516 /* If we can we want to take care of NE conditions instead of size
2517 comparisons, as they are much more friendly (most importantly
2518 this takes care of special handling of loops with step 1). We can
2519 do it if we first check that upper bound is greater or equal to
2520 lower bound, their difference is constant c modulo step and that
2521 there is not an overflow. */
2522 if (cond != NE)
2524 if (iv0.step == const0_rtx)
2525 step = simplify_gen_unary (NEG, comp_mode, iv1.step, comp_mode);
2526 else
2527 step = iv0.step;
2528 step = lowpart_subreg (mode, step, comp_mode);
2529 delta = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2530 delta = lowpart_subreg (mode, delta, comp_mode);
2531 delta = simplify_gen_binary (UMOD, mode, delta, step);
2532 may_xform = const0_rtx;
2533 may_not_xform = const_true_rtx;
2535 if (CONST_INT_P (delta))
2537 if (was_sharp && INTVAL (delta) == INTVAL (step) - 1)
2539 /* A special case. We have transformed condition of type
2540 for (i = 0; i < 4; i += 4)
2541 into
2542 for (i = 0; i <= 3; i += 4)
2543 obviously if the test for overflow during that transformation
2544 passed, we cannot overflow here. Most importantly any
2545 loop with sharp end condition and step 1 falls into this
2546 category, so handling this case specially is definitely
2547 worth the troubles. */
2548 may_xform = const_true_rtx;
2550 else if (iv0.step == const0_rtx)
2552 bound = simplify_gen_binary (PLUS, comp_mode, mmin, step);
2553 bound = simplify_gen_binary (MINUS, comp_mode, bound, delta);
2554 bound = lowpart_subreg (mode, bound, comp_mode);
2555 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2556 may_xform = simplify_gen_relational (cond, SImode, mode,
2557 bound, tmp);
2558 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2559 SImode, mode,
2560 bound, tmp);
2562 else
2564 bound = simplify_gen_binary (MINUS, comp_mode, mmax, step);
2565 bound = simplify_gen_binary (PLUS, comp_mode, bound, delta);
2566 bound = lowpart_subreg (mode, bound, comp_mode);
2567 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2568 may_xform = simplify_gen_relational (cond, SImode, mode,
2569 tmp, bound);
2570 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2571 SImode, mode,
2572 tmp, bound);
2576 if (may_xform != const0_rtx)
2578 /* We perform the transformation always provided that it is not
2579 completely senseless. This is OK, as we would need this assumption
2580 to determine the number of iterations anyway. */
2581 if (may_xform != const_true_rtx)
2583 /* If the step is a power of two and the final value we have
2584 computed overflows, the cycle is infinite. Otherwise it
2585 is nontrivial to compute the number of iterations. */
2586 if (step_is_pow2)
2587 desc->infinite = alloc_EXPR_LIST (0, may_not_xform,
2588 desc->infinite);
2589 else
2590 desc->assumptions = alloc_EXPR_LIST (0, may_xform,
2591 desc->assumptions);
2594 /* We are going to lose some information about upper bound on
2595 number of iterations in this step, so record the information
2596 here. */
2597 inc = INTVAL (iv0.step) - INTVAL (iv1.step);
2598 if (CONST_INT_P (iv1.base))
2599 up = INTVAL (iv1.base);
2600 else
2601 up = INTVAL (mode_mmax) - inc;
2602 down = INTVAL (CONST_INT_P (iv0.base)
2603 ? iv0.base
2604 : mode_mmin);
2605 max = (up - down) / inc + 1;
2606 if (!desc->infinite
2607 && !desc->assumptions)
2608 record_niter_bound (loop, double_int::from_uhwi (max),
2609 false, true);
2611 if (iv0.step == const0_rtx)
2613 iv0.base = simplify_gen_binary (PLUS, comp_mode, iv0.base, delta);
2614 iv0.base = simplify_gen_binary (MINUS, comp_mode, iv0.base, step);
2616 else
2618 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, delta);
2619 iv1.base = simplify_gen_binary (PLUS, comp_mode, iv1.base, step);
2622 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2623 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2624 assumption = simplify_gen_relational (reverse_condition (cond),
2625 SImode, mode, tmp0, tmp1);
2626 if (assumption == const_true_rtx)
2627 goto zero_iter_simplify;
2628 else if (assumption != const0_rtx)
2629 desc->noloop_assumptions =
2630 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2631 cond = NE;
2635 /* Count the number of iterations. */
2636 if (cond == NE)
2638 /* Everything we do here is just arithmetics modulo size of mode. This
2639 makes us able to do more involved computations of number of iterations
2640 than in other cases. First transform the condition into shape
2641 s * i <> c, with s positive. */
2642 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2643 iv0.base = const0_rtx;
2644 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2645 iv1.step = const0_rtx;
2646 if (INTVAL (iv0.step) < 0)
2648 iv0.step = simplify_gen_unary (NEG, comp_mode, iv0.step, mode);
2649 iv1.base = simplify_gen_unary (NEG, comp_mode, iv1.base, mode);
2651 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2653 /* Let nsd (s, size of mode) = d. If d does not divide c, the loop
2654 is infinite. Otherwise, the number of iterations is
2655 (inverse(s/d) * (c/d)) mod (size of mode/d). */
2656 s = INTVAL (iv0.step); d = 1;
2657 while (s % 2 != 1)
2659 s /= 2;
2660 d *= 2;
2661 size--;
2663 bound = GEN_INT (((unsigned HOST_WIDEST_INT) 1 << (size - 1 ) << 1) - 1);
2665 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2666 tmp = simplify_gen_binary (UMOD, mode, tmp1, GEN_INT (d));
2667 assumption = simplify_gen_relational (NE, SImode, mode, tmp, const0_rtx);
2668 desc->infinite = alloc_EXPR_LIST (0, assumption, desc->infinite);
2670 tmp = simplify_gen_binary (UDIV, mode, tmp1, GEN_INT (d));
2671 inv = inverse (s, size);
2672 tmp = simplify_gen_binary (MULT, mode, tmp, gen_int_mode (inv, mode));
2673 desc->niter_expr = simplify_gen_binary (AND, mode, tmp, bound);
2675 else
2677 if (iv1.step == const0_rtx)
2678 /* Condition in shape a + s * i <= b
2679 We must know that b + s does not overflow and a <= b + s and then we
2680 can compute number of iterations as (b + s - a) / s. (It might
2681 seem that we in fact could be more clever about testing the b + s
2682 overflow condition using some information about b - a mod s,
2683 but it was already taken into account during LE -> NE transform). */
2685 step = iv0.step;
2686 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2687 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2689 bound = simplify_gen_binary (MINUS, mode, mode_mmax,
2690 lowpart_subreg (mode, step,
2691 comp_mode));
2692 if (step_is_pow2)
2694 rtx t0, t1;
2696 /* If s is power of 2, we know that the loop is infinite if
2697 a % s <= b % s and b + s overflows. */
2698 assumption = simplify_gen_relational (reverse_condition (cond),
2699 SImode, mode,
2700 tmp1, bound);
2702 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2703 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2704 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2705 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2706 desc->infinite =
2707 alloc_EXPR_LIST (0, assumption, desc->infinite);
2709 else
2711 assumption = simplify_gen_relational (cond, SImode, mode,
2712 tmp1, bound);
2713 desc->assumptions =
2714 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2717 tmp = simplify_gen_binary (PLUS, comp_mode, iv1.base, iv0.step);
2718 tmp = lowpart_subreg (mode, tmp, comp_mode);
2719 assumption = simplify_gen_relational (reverse_condition (cond),
2720 SImode, mode, tmp0, tmp);
2722 delta = simplify_gen_binary (PLUS, mode, tmp1, step);
2723 delta = simplify_gen_binary (MINUS, mode, delta, tmp0);
2725 else
2727 /* Condition in shape a <= b - s * i
2728 We must know that a - s does not overflow and a - s <= b and then
2729 we can again compute number of iterations as (b - (a - s)) / s. */
2730 step = simplify_gen_unary (NEG, mode, iv1.step, mode);
2731 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2732 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2734 bound = simplify_gen_binary (PLUS, mode, mode_mmin,
2735 lowpart_subreg (mode, step, comp_mode));
2736 if (step_is_pow2)
2738 rtx t0, t1;
2740 /* If s is power of 2, we know that the loop is infinite if
2741 a % s <= b % s and a - s overflows. */
2742 assumption = simplify_gen_relational (reverse_condition (cond),
2743 SImode, mode,
2744 bound, tmp0);
2746 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2747 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2748 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2749 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2750 desc->infinite =
2751 alloc_EXPR_LIST (0, assumption, desc->infinite);
2753 else
2755 assumption = simplify_gen_relational (cond, SImode, mode,
2756 bound, tmp0);
2757 desc->assumptions =
2758 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2761 tmp = simplify_gen_binary (PLUS, comp_mode, iv0.base, iv1.step);
2762 tmp = lowpart_subreg (mode, tmp, comp_mode);
2763 assumption = simplify_gen_relational (reverse_condition (cond),
2764 SImode, mode,
2765 tmp, tmp1);
2766 delta = simplify_gen_binary (MINUS, mode, tmp0, step);
2767 delta = simplify_gen_binary (MINUS, mode, tmp1, delta);
2769 if (assumption == const_true_rtx)
2770 goto zero_iter_simplify;
2771 else if (assumption != const0_rtx)
2772 desc->noloop_assumptions =
2773 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2774 delta = simplify_gen_binary (UDIV, mode, delta, step);
2775 desc->niter_expr = delta;
2778 old_niter = desc->niter_expr;
2780 simplify_using_initial_values (loop, AND, &desc->assumptions);
2781 if (desc->assumptions
2782 && XEXP (desc->assumptions, 0) == const0_rtx)
2783 goto fail;
2784 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2785 simplify_using_initial_values (loop, IOR, &desc->infinite);
2786 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2788 /* Rerun the simplification. Consider code (created by copying loop headers)
2790 i = 0;
2792 if (0 < n)
2796 i++;
2797 } while (i < n);
2800 The first pass determines that i = 0, the second pass uses it to eliminate
2801 noloop assumption. */
2803 simplify_using_initial_values (loop, AND, &desc->assumptions);
2804 if (desc->assumptions
2805 && XEXP (desc->assumptions, 0) == const0_rtx)
2806 goto fail;
2807 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2808 simplify_using_initial_values (loop, IOR, &desc->infinite);
2809 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2811 if (desc->noloop_assumptions
2812 && XEXP (desc->noloop_assumptions, 0) == const_true_rtx)
2813 goto zero_iter;
2815 if (CONST_INT_P (desc->niter_expr))
2817 unsigned HOST_WIDEST_INT val = INTVAL (desc->niter_expr);
2819 desc->const_iter = true;
2820 desc->niter = val & GET_MODE_MASK (desc->mode);
2821 if (!desc->infinite
2822 && !desc->assumptions)
2823 record_niter_bound (loop, double_int::from_uhwi (desc->niter),
2824 false, true);
2826 else
2828 max = determine_max_iter (loop, desc, old_niter);
2829 if (!max)
2830 goto zero_iter_simplify;
2831 if (!desc->infinite
2832 && !desc->assumptions)
2833 record_niter_bound (loop, double_int::from_uhwi (max),
2834 false, true);
2836 /* simplify_using_initial_values does a copy propagation on the registers
2837 in the expression for the number of iterations. This prolongs life
2838 ranges of registers and increases register pressure, and usually
2839 brings no gain (and if it happens to do, the cse pass will take care
2840 of it anyway). So prevent this behavior, unless it enabled us to
2841 derive that the number of iterations is a constant. */
2842 desc->niter_expr = old_niter;
2845 return;
2847 zero_iter_simplify:
2848 /* Simplify the assumptions. */
2849 simplify_using_initial_values (loop, AND, &desc->assumptions);
2850 if (desc->assumptions
2851 && XEXP (desc->assumptions, 0) == const0_rtx)
2852 goto fail;
2853 simplify_using_initial_values (loop, IOR, &desc->infinite);
2855 /* Fallthru. */
2856 zero_iter:
2857 desc->const_iter = true;
2858 desc->niter = 0;
2859 record_niter_bound (loop, double_int_zero,
2860 true, true);
2861 desc->noloop_assumptions = NULL_RTX;
2862 desc->niter_expr = const0_rtx;
2863 return;
2865 fail:
2866 desc->simple_p = false;
2867 return;
2870 /* Checks whether E is a simple exit from LOOP and stores its description
2871 into DESC. */
2873 static void
2874 check_simple_exit (struct loop *loop, edge e, struct niter_desc *desc)
2876 basic_block exit_bb;
2877 rtx condition, at;
2878 edge ein;
2880 exit_bb = e->src;
2881 desc->simple_p = false;
2883 /* It must belong directly to the loop. */
2884 if (exit_bb->loop_father != loop)
2885 return;
2887 /* It must be tested (at least) once during any iteration. */
2888 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit_bb))
2889 return;
2891 /* It must end in a simple conditional jump. */
2892 if (!any_condjump_p (BB_END (exit_bb)))
2893 return;
2895 ein = EDGE_SUCC (exit_bb, 0);
2896 if (ein == e)
2897 ein = EDGE_SUCC (exit_bb, 1);
2899 desc->out_edge = e;
2900 desc->in_edge = ein;
2902 /* Test whether the condition is suitable. */
2903 if (!(condition = get_condition (BB_END (ein->src), &at, false, false)))
2904 return;
2906 if (ein->flags & EDGE_FALLTHRU)
2908 condition = reversed_condition (condition);
2909 if (!condition)
2910 return;
2913 /* Check that we are able to determine number of iterations and fill
2914 in information about it. */
2915 iv_number_of_iterations (loop, at, condition, desc);
2918 /* Finds a simple exit of LOOP and stores its description into DESC. */
2920 void
2921 find_simple_exit (struct loop *loop, struct niter_desc *desc)
2923 unsigned i;
2924 basic_block *body;
2925 edge e;
2926 struct niter_desc act;
2927 bool any = false;
2928 edge_iterator ei;
2930 desc->simple_p = false;
2931 body = get_loop_body (loop);
2933 for (i = 0; i < loop->num_nodes; i++)
2935 FOR_EACH_EDGE (e, ei, body[i]->succs)
2937 if (flow_bb_inside_loop_p (loop, e->dest))
2938 continue;
2940 check_simple_exit (loop, e, &act);
2941 if (!act.simple_p)
2942 continue;
2944 if (!any)
2945 any = true;
2946 else
2948 /* Prefer constant iterations; the less the better. */
2949 if (!act.const_iter
2950 || (desc->const_iter && act.niter >= desc->niter))
2951 continue;
2953 /* Also if the actual exit may be infinite, while the old one
2954 not, prefer the old one. */
2955 if (act.infinite && !desc->infinite)
2956 continue;
2959 *desc = act;
2963 if (dump_file)
2965 if (desc->simple_p)
2967 fprintf (dump_file, "Loop %d is simple:\n", loop->num);
2968 fprintf (dump_file, " simple exit %d -> %d\n",
2969 desc->out_edge->src->index,
2970 desc->out_edge->dest->index);
2971 if (desc->assumptions)
2973 fprintf (dump_file, " assumptions: ");
2974 print_rtl (dump_file, desc->assumptions);
2975 fprintf (dump_file, "\n");
2977 if (desc->noloop_assumptions)
2979 fprintf (dump_file, " does not roll if: ");
2980 print_rtl (dump_file, desc->noloop_assumptions);
2981 fprintf (dump_file, "\n");
2983 if (desc->infinite)
2985 fprintf (dump_file, " infinite if: ");
2986 print_rtl (dump_file, desc->infinite);
2987 fprintf (dump_file, "\n");
2990 fprintf (dump_file, " number of iterations: ");
2991 print_rtl (dump_file, desc->niter_expr);
2992 fprintf (dump_file, "\n");
2994 fprintf (dump_file, " upper bound: %li\n",
2995 (long)max_loop_iterations_int (loop));
2996 fprintf (dump_file, " realistic bound: %li\n",
2997 (long)estimated_loop_iterations_int (loop));
2999 else
3000 fprintf (dump_file, "Loop %d is not simple.\n", loop->num);
3003 free (body);
3006 /* Creates a simple loop description of LOOP if it was not computed
3007 already. */
3009 struct niter_desc *
3010 get_simple_loop_desc (struct loop *loop)
3012 struct niter_desc *desc = simple_loop_desc (loop);
3014 if (desc)
3015 return desc;
3017 /* At least desc->infinite is not always initialized by
3018 find_simple_loop_exit. */
3019 desc = XCNEW (struct niter_desc);
3020 iv_analysis_loop_init (loop);
3021 find_simple_exit (loop, desc);
3022 loop->aux = desc;
3024 if (desc->simple_p && (desc->assumptions || desc->infinite))
3026 const char *wording;
3028 /* Assume that no overflow happens and that the loop is finite.
3029 We already warned at the tree level if we ran optimizations there. */
3030 if (!flag_tree_loop_optimize && warn_unsafe_loop_optimizations)
3032 if (desc->infinite)
3034 wording =
3035 flag_unsafe_loop_optimizations
3036 ? N_("assuming that the loop is not infinite")
3037 : N_("cannot optimize possibly infinite loops");
3038 warning (OPT_Wunsafe_loop_optimizations, "%s",
3039 gettext (wording));
3041 if (desc->assumptions)
3043 wording =
3044 flag_unsafe_loop_optimizations
3045 ? N_("assuming that the loop counter does not overflow")
3046 : N_("cannot optimize loop, the loop counter may overflow");
3047 warning (OPT_Wunsafe_loop_optimizations, "%s",
3048 gettext (wording));
3052 if (flag_unsafe_loop_optimizations)
3054 desc->assumptions = NULL_RTX;
3055 desc->infinite = NULL_RTX;
3059 return desc;
3062 /* Releases simple loop description for LOOP. */
3064 void
3065 free_simple_loop_desc (struct loop *loop)
3067 struct niter_desc *desc = simple_loop_desc (loop);
3069 if (!desc)
3070 return;
3072 free (desc);
3073 loop->aux = NULL;