1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* This program is used to produce insn-recog.cc, which contains a
22 function called `recog' plus its subroutines. These functions
23 contain a decision tree that recognizes whether an rtx, the
24 argument given to recog, is a valid instruction.
26 recog returns -1 if the rtx is not valid. If the rtx is valid,
27 recog returns a nonnegative number which is the insn code number
28 for the pattern that matched. This is the same as the order in the
29 machine description of the entry that matched. This number can be
30 used as an index into various insn_* tables, such as insn_template,
31 insn_outfun, and insn_n_operands (found in insn-output.cc).
33 The third argument to recog is an optional pointer to an int. If
34 present, recog will accept a pattern if it matches except for
35 missing CLOBBER expressions at the end. In that case, the value
36 pointed to by the optional pointer will be set to the number of
37 CLOBBERs that need to be added (it should be initialized to zero by
38 the caller). If it is set nonzero, the caller should allocate a
39 PARALLEL of the appropriate size, copy the initial entries, and
40 call add_clobbers (found in insn-emit.cc) to fill in the CLOBBERs.
42 This program also generates the function `split_insns', which
43 returns 0 if the rtl could not be split, or it returns the split
46 This program also generates the function `peephole2_insns', which
47 returns 0 if the rtl could not be matched. If there was a match,
48 the new rtl is returned in an INSN list, and LAST_INSN will point
49 to the last recognized insn in the old sequence.
52 At a high level, the algorithm used in this file is as follows:
54 1. Build up a decision tree for each routine, using the following
55 approach to matching an rtx:
57 - First determine the "shape" of the rtx, based on GET_CODE,
58 XVECLEN and XINT. This phase examines SET_SRCs before SET_DESTs
59 since SET_SRCs tend to be more distinctive. It examines other
60 operands in numerical order, since the canonicalization rules
61 prefer putting complex operands of commutative operators first.
63 - Next check modes and predicates. This phase examines all
64 operands in numerical order, even for SETs, since the mode of a
65 SET_DEST is exact while the mode of a SET_SRC can be VOIDmode
66 for constant integers.
68 - Next check match_dups.
70 - Finally check the C condition and (where appropriate) pnum_clobbers.
72 2. Try to optimize the tree by removing redundant tests, CSEing tests,
73 folding tests together, etc.
75 3. Look for common subtrees and split them out into "pattern" routines.
76 These common subtrees can be identical or they can differ in mode,
77 code, or integer (usually an UNSPEC or UNSPEC_VOLATILE code).
78 In the latter case the users of the pattern routine pass the
79 appropriate mode, etc., as argument. For example, if two patterns
82 (plus:SI (match_operand:SI 1 "register_operand")
83 (match_operand:SI 2 "register_operand"))
85 we can split the associated matching code out into a subroutine.
86 If a pattern contains:
88 (minus:DI (match_operand:DI 1 "register_operand")
89 (match_operand:DI 2 "register_operand"))
91 then we can consider using the same matching routine for both
92 the plus and minus expressions, passing PLUS and SImode in the
93 former case and MINUS and DImode in the latter case.
95 The main aim of this phase is to reduce the compile time of the
96 insn-recog.cc code and to reduce the amount of object code in
99 4. Split the matching trees into functions, trying to limit the
100 size of each function to a sensible amount.
102 Again, the main aim of this phase is to reduce the compile time
103 of insn-recog.cc. (It doesn't help with the size of insn-recog.o.)
105 5. Write out C++ code for each function. */
108 #define INCLUDE_ALGORITHM
110 #include "coretypes.h"
115 #include "gensupport.h"
117 #undef GENERATOR_FILE
119 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) TRUE_##ENUM,
122 FIRST_GENERATOR_RTX_CODE
124 #define NUM_TRUE_RTX_CODE ((int) FIRST_GENERATOR_RTX_CODE)
125 #define GENERATOR_FILE 1
127 /* Debugging variables to control which optimizations are performed.
128 Note that disabling merge_states_p leads to very large output. */
129 static const bool merge_states_p
= true;
130 static const bool collapse_optional_decisions_p
= true;
131 static const bool cse_tests_p
= true;
132 static const bool simplify_tests_p
= true;
133 static const bool use_operand_variables_p
= true;
134 static const bool use_subroutines_p
= true;
135 static const bool use_pattern_routines_p
= true;
137 /* Whether to add comments for optional tests that we decided to keep.
138 Can be useful when debugging the generator itself but is noise when
139 debugging the generated code. */
140 static const bool mark_optional_transitions_p
= false;
142 /* Whether pattern routines should calculate positions relative to their
143 rtx parameter rather than use absolute positions. This e.g. allows
144 a pattern routine to be shared between a plain SET and a PARALLEL
147 In principle it sounds like this should be useful, especially for
148 recog_for_combine, where the plain SET form is generated automatically
149 from a PARALLEL of a single SET and some CLOBBERs. In practice it doesn't
150 seem to help much and leads to slightly bigger object files. */
151 static const bool relative_patterns_p
= false;
153 /* Whether pattern routines should be allowed to test whether pnum_clobbers
154 is null. This requires passing pnum_clobbers around as a parameter. */
155 static const bool pattern_have_num_clobbers_p
= true;
157 /* Whether pattern routines should be allowed to test .md file C conditions.
158 This requires passing insn around as a parameter, in case the C
159 condition refers to it. In practice this tends to lead to bigger
161 static const bool pattern_c_test_p
= false;
163 /* Whether to require each parameter passed to a pattern routine to be
164 unique. Disabling this check for example allows unary operators with
165 matching modes (like NEG) and unary operators with mismatched modes
166 (like ZERO_EXTEND) to be matched by a single pattern. However, we then
167 often have cases where the same value is passed too many times. */
168 static const bool force_unique_params_p
= true;
170 /* The maximum (approximate) depth of block nesting that an individual
171 routine or subroutine should have. This limit is about keeping the
172 output readable rather than reducing compile time. */
173 static const unsigned int MAX_DEPTH
= 6;
175 /* The minimum number of pseudo-statements that a state must have before
176 we split it out into a subroutine. */
177 static const unsigned int MIN_NUM_STATEMENTS
= 5;
179 /* The number of pseudo-statements a state can have before we consider
180 splitting out substates into subroutines. This limit is about avoiding
181 compile-time problems with very big functions (and also about keeping
182 functions within --param optimization limits, etc.). */
183 static const unsigned int MAX_NUM_STATEMENTS
= 200;
185 /* The minimum number of pseudo-statements that can be used in a pattern
187 static const unsigned int MIN_COMBINE_COST
= 4;
189 /* The maximum number of arguments that a pattern routine can have.
190 The idea is to prevent one pattern getting a ridiculous number of
191 arguments when it would be more beneficial to have a separate pattern
193 static const unsigned int MAX_PATTERN_PARAMS
= 5;
195 /* The maximum operand number plus one. */
198 /* Ways of obtaining an rtx to be tested. */
200 /* PATTERN (peep2_next_insn (ARG)). */
203 /* XEXP (BASE, ARG). */
206 /* XVECEXP (BASE, 0, ARG). */
210 /* The position of an rtx relative to X0. Each useful position is
211 represented by exactly one instance of this structure. */
214 /* The parent rtx. This is the root position for POS_PEEP2_INSNs. */
215 struct position
*base
;
217 /* A position with the same BASE and TYPE, but with the next value
219 struct position
*next
;
221 /* A list of all POS_XEXP positions that use this one as their base,
222 chained by NEXT fields. The first entry represents XEXP (this, 0),
223 the second represents XEXP (this, 1), and so on. */
224 struct position
*xexps
;
226 /* A list of POS_XVECEXP0 positions that use this one as their base,
227 chained by NEXT fields. The first entry represents XVECEXP (this, 0, 0),
228 the second represents XVECEXP (this, 0, 1), and so on. */
229 struct position
*xvecexp0s
;
231 /* The type of position. */
232 enum position_type type
;
234 /* The argument to TYPE (shown as ARG in the position_type comments). */
237 /* The instruction to which the position belongs. */
238 unsigned int insn_id
;
240 /* The depth of this position relative to the instruction pattern.
241 E.g. if the instruction pattern is a SET, the SET itself has a
242 depth of 0 while the SET_DEST and SET_SRC have depths of 1. */
245 /* A unique identifier for this position. */
250 SUBPATTERN
, RECOG
, SPLIT
, PEEPHOLE2
253 /* The root position (x0). */
254 static struct position root_pos
;
256 /* The number of positions created. Also one higher than the maximum
258 static unsigned int num_positions
= 1;
260 /* A list of all POS_PEEP2_INSNs. The entry for insn 0 is the root position,
261 since we are given that instruction's pattern as x0. */
262 static struct position
*peep2_insn_pos_list
= &root_pos
;
264 /* Return a position with the given BASE, TYPE and ARG. NEXT_PTR
265 points to where the unique object that represents the position
266 should be stored. Create the object if it doesn't already exist,
267 otherwise reuse the object that is already there. */
269 static struct position
*
270 next_position (struct position
**next_ptr
, struct position
*base
,
271 enum position_type type
, int arg
)
273 struct position
*pos
;
278 pos
= XCNEW (struct position
);
281 if (type
== POS_PEEP2_INSN
)
285 pos
->depth
= base
->depth
;
290 pos
->insn_id
= base
->insn_id
;
291 pos
->depth
= base
->depth
+ 1;
293 pos
->id
= num_positions
++;
299 /* Compare positions POS1 and POS2 lexicographically. */
302 compare_positions (struct position
*pos1
, struct position
*pos2
)
306 diff
= pos1
->depth
- pos2
->depth
;
310 while (pos1
->depth
!= pos2
->depth
);
314 while (pos1
->depth
!= pos2
->depth
);
317 diff
= (int) pos1
->type
- (int) pos2
->type
;
319 diff
= pos1
->arg
- pos2
->arg
;
326 /* Return the most deeply-nested position that is common to both
327 POS1 and POS2. If the positions are from different instructions,
328 return the one with the lowest insn_id. */
330 static struct position
*
331 common_position (struct position
*pos1
, struct position
*pos2
)
333 if (pos1
->insn_id
!= pos2
->insn_id
)
334 return pos1
->insn_id
< pos2
->insn_id
? pos1
: pos2
;
335 if (pos1
->depth
> pos2
->depth
)
336 std::swap (pos1
, pos2
);
337 while (pos1
->depth
!= pos2
->depth
)
347 /* Search for and return operand N, stop when reaching node STOP. */
350 find_operand (rtx pattern
, int n
, rtx stop
)
360 code
= GET_CODE (pattern
);
361 if ((code
== MATCH_SCRATCH
362 || code
== MATCH_OPERAND
363 || code
== MATCH_OPERATOR
364 || code
== MATCH_PARALLEL
)
365 && XINT (pattern
, 0) == n
)
368 fmt
= GET_RTX_FORMAT (code
);
369 len
= GET_RTX_LENGTH (code
);
370 for (i
= 0; i
< len
; i
++)
375 if ((r
= find_operand (XEXP (pattern
, i
), n
, stop
)) != NULL_RTX
)
380 if (! XVEC (pattern
, i
))
385 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
386 if ((r
= find_operand (XVECEXP (pattern
, i
, j
), n
, stop
))
391 case 'r': case 'p': case 'i': case 'w': case '0': case 's':
402 /* Search for and return operand M, such that it has a matching
403 constraint for operand N. */
406 find_matching_operand (rtx pattern
, int n
)
413 code
= GET_CODE (pattern
);
414 if (code
== MATCH_OPERAND
415 && (XSTR (pattern
, 2)[0] == '0' + n
416 || (XSTR (pattern
, 2)[0] == '%'
417 && XSTR (pattern
, 2)[1] == '0' + n
)))
420 fmt
= GET_RTX_FORMAT (code
);
421 len
= GET_RTX_LENGTH (code
);
422 for (i
= 0; i
< len
; i
++)
427 if ((r
= find_matching_operand (XEXP (pattern
, i
), n
)))
432 if (! XVEC (pattern
, i
))
437 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
438 if ((r
= find_matching_operand (XVECEXP (pattern
, i
, j
), n
)))
442 case 'r': case 'p': case 'i': case 'w': case '0': case 's':
453 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
454 don't use the MATCH_OPERAND constraint, only the predicate.
455 This is confusing to folks doing new ports, so help them
456 not make the mistake. */
459 constraints_supported_in_insn_p (rtx insn
)
461 return !(GET_CODE (insn
) == DEFINE_EXPAND
462 || GET_CODE (insn
) == DEFINE_SPLIT
463 || GET_CODE (insn
) == DEFINE_PEEPHOLE2
);
466 /* Return the name of the predicate matched by MATCH_RTX. */
469 predicate_name (rtx match_rtx
)
471 if (GET_CODE (match_rtx
) == MATCH_SCRATCH
)
472 return "scratch_operand";
474 return XSTR (match_rtx
, 1);
477 /* Return true if OPERAND is a MATCH_OPERAND using a special predicate
481 special_predicate_operand_p (rtx operand
)
483 if (GET_CODE (operand
) == MATCH_OPERAND
)
485 const char *pred_name
= predicate_name (operand
);
486 if (pred_name
[0] != 0)
488 const struct pred_data
*pred
;
490 pred
= lookup_predicate (pred_name
);
491 return pred
!= NULL
&& pred
->special
;
498 /* Check for various errors in PATTERN, which is part of INFO.
499 SET is nonnull for a destination, and is the complete set pattern.
500 SET_CODE is '=' for normal sets, and '+' within a context that
501 requires in-out constraints. */
504 validate_pattern (rtx pattern
, md_rtx_info
*info
, rtx set
, int set_code
)
511 code
= GET_CODE (pattern
);
516 const char constraints0
= XSTR (pattern
, 1)[0];
518 if (!constraints_supported_in_insn_p (info
->def
))
522 error_at (info
->loc
, "constraints not supported in %s",
523 GET_RTX_NAME (GET_CODE (info
->def
)));
528 /* If a MATCH_SCRATCH is used in a context requiring an write-only
529 or read/write register, validate that. */
532 && constraints0
!= '='
533 && constraints0
!= '+')
535 error_at (info
->loc
, "operand %d missing output reload",
543 if (find_operand (info
->def
, XINT (pattern
, 0), pattern
) == pattern
)
544 error_at (info
->loc
, "operand %i duplicated before defined",
550 const char *pred_name
= XSTR (pattern
, 1);
551 const struct pred_data
*pred
;
554 c_test
= get_c_test (info
->def
);
556 if (pred_name
[0] != 0)
558 pred
= lookup_predicate (pred_name
);
560 error_at (info
->loc
, "unknown predicate '%s'", pred_name
);
565 if (code
== MATCH_OPERAND
)
567 const char *constraints
= XSTR (pattern
, 2);
568 const char constraints0
= constraints
[0];
570 if (!constraints_supported_in_insn_p (info
->def
))
574 error_at (info
->loc
, "constraints not supported in %s",
575 GET_RTX_NAME (GET_CODE (info
->def
)));
579 /* A MATCH_OPERAND that is a SET should have an output reload. */
580 else if (set
&& constraints0
)
584 if (constraints0
== '+')
586 /* If we've only got an output reload for this operand,
587 we'd better have a matching input operand. */
588 else if (constraints0
== '='
589 && find_matching_operand (info
->def
,
593 error_at (info
->loc
, "operand %d missing in-out reload",
596 else if (constraints0
!= '=' && constraints0
!= '+')
597 error_at (info
->loc
, "operand %d missing output reload",
601 /* For matching constraint in MATCH_OPERAND, the digit must be a
602 smaller number than the number of the operand that uses it in the
606 while (constraints
[0]
607 && (constraints
[0] == ' ' || constraints
[0] == ','))
612 if (constraints
[0] >= '0' && constraints
[0] <= '9')
616 sscanf (constraints
, "%d", &val
);
617 if (val
>= XINT (pattern
, 0))
618 error_at (info
->loc
, "constraint digit %d is not"
619 " smaller than operand %d",
620 val
, XINT (pattern
, 0));
623 while (constraints
[0] && constraints
[0] != ',')
628 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
629 while not likely to occur at runtime, results in less efficient
630 code from insn-recog.cc. */
631 if (set
&& pred
&& pred
->allows_non_lvalue
)
632 error_at (info
->loc
, "destination operand %d allows non-lvalue",
635 /* A modeless MATCH_OPERAND can be handy when we can check for
636 multiple modes in the c_test. In most other cases, it is a
637 mistake. Only DEFINE_INSN is eligible, since SPLIT and
638 PEEP2 can FAIL within the output pattern. Exclude special
639 predicates, which check the mode themselves. Also exclude
640 predicates that allow only constants. Exclude the SET_DEST
641 of a call instruction, as that is a common idiom. */
643 if (GET_MODE (pattern
) == VOIDmode
644 && code
== MATCH_OPERAND
645 && GET_CODE (info
->def
) == DEFINE_INSN
648 && pred
->allows_non_const
649 && strstr (c_test
, "operands") == NULL
651 && GET_CODE (set
) == SET
652 && GET_CODE (SET_SRC (set
)) == CALL
))
653 message_at (info
->loc
, "warning: operand %d missing mode?",
660 machine_mode dmode
, smode
;
663 dest
= SET_DEST (pattern
);
664 src
= SET_SRC (pattern
);
666 /* STRICT_LOW_PART is a wrapper. Its argument is the real
667 destination, and it's mode should match the source. */
668 if (GET_CODE (dest
) == STRICT_LOW_PART
)
669 dest
= XEXP (dest
, 0);
671 /* Find the referent for a DUP. */
673 if (GET_CODE (dest
) == MATCH_DUP
674 || GET_CODE (dest
) == MATCH_OP_DUP
675 || GET_CODE (dest
) == MATCH_PAR_DUP
)
676 dest
= find_operand (info
->def
, XINT (dest
, 0), NULL
);
678 if (GET_CODE (src
) == MATCH_DUP
679 || GET_CODE (src
) == MATCH_OP_DUP
680 || GET_CODE (src
) == MATCH_PAR_DUP
)
681 src
= find_operand (info
->def
, XINT (src
, 0), NULL
);
683 dmode
= GET_MODE (dest
);
684 smode
= GET_MODE (src
);
686 /* Mode checking is not performed for special predicates. */
687 if (special_predicate_operand_p (src
)
688 || special_predicate_operand_p (dest
))
691 /* The operands of a SET must have the same mode unless one
693 else if (dmode
!= VOIDmode
&& smode
!= VOIDmode
&& dmode
!= smode
)
694 error_at (info
->loc
, "mode mismatch in set: %smode vs %smode",
695 GET_MODE_NAME (dmode
), GET_MODE_NAME (smode
));
697 /* If only one of the operands is VOIDmode, and PC is not involved,
698 it's probably a mistake. */
699 else if (dmode
!= smode
700 && GET_CODE (dest
) != PC
701 && GET_CODE (src
) != PC
702 && !CONST_INT_P (src
)
703 && !CONST_WIDE_INT_P (src
)
704 && GET_CODE (src
) != CALL
)
707 which
= (dmode
== VOIDmode
? "destination" : "source");
708 message_at (info
->loc
, "warning: %s missing a mode?", which
);
711 if (dest
!= SET_DEST (pattern
))
712 validate_pattern (dest
, info
, pattern
, '=');
713 validate_pattern (SET_DEST (pattern
), info
, pattern
, '=');
714 validate_pattern (SET_SRC (pattern
), info
, NULL_RTX
, 0);
719 validate_pattern (SET_DEST (pattern
), info
, pattern
, '=');
723 validate_pattern (XEXP (pattern
, 0), info
, set
, set
? '+' : 0);
724 validate_pattern (XEXP (pattern
, 1), info
, NULL_RTX
, 0);
725 validate_pattern (XEXP (pattern
, 2), info
, NULL_RTX
, 0);
728 case STRICT_LOW_PART
:
729 validate_pattern (XEXP (pattern
, 0), info
, set
, set
? '+' : 0);
733 if (GET_MODE (XEXP (pattern
, 0)) != VOIDmode
)
734 error_at (info
->loc
, "operand to label_ref %smode not VOIDmode",
735 GET_MODE_NAME (GET_MODE (XEXP (pattern
, 0))));
739 if (GET_MODE (pattern
) != VOIDmode
)
741 machine_mode mode
= GET_MODE (pattern
);
742 machine_mode imode
= GET_MODE (XEXP (pattern
, 0));
744 = VECTOR_MODE_P (mode
) ? GET_MODE_INNER (mode
) : mode
;
745 if (GET_CODE (XEXP (pattern
, 1)) == PARALLEL
)
749 if (VECTOR_MODE_P (mode
)
750 && !GET_MODE_NUNITS (mode
).is_constant (&expected
))
752 "vec_select with variable-sized mode %s",
753 GET_MODE_NAME (mode
));
754 else if (XVECLEN (XEXP (pattern
, 1), 0) != expected
)
756 "vec_select parallel with %d elements, expected %d",
757 XVECLEN (XEXP (pattern
, 1), 0), expected
);
758 else if (VECTOR_MODE_P (imode
)
759 && GET_MODE_NUNITS (imode
).is_constant (&nelems
))
762 for (i
= 0; i
< expected
; ++i
)
763 if (CONST_INT_P (XVECEXP (XEXP (pattern
, 1), 0, i
))
764 && (UINTVAL (XVECEXP (XEXP (pattern
, 1), 0, i
))
767 "out of bounds selector %u in vec_select, "
768 "expected at most %u",
770 UINTVAL (XVECEXP (XEXP (pattern
, 1), 0, i
)),
774 if (imode
!= VOIDmode
&& !VECTOR_MODE_P (imode
))
775 error_at (info
->loc
, "%smode of first vec_select operand is not a "
776 "vector mode", GET_MODE_NAME (imode
));
777 else if (imode
!= VOIDmode
&& GET_MODE_INNER (imode
) != emode
)
778 error_at (info
->loc
, "element mode mismatch between vec_select "
779 "%smode and its operand %smode",
780 GET_MODE_NAME (emode
),
781 GET_MODE_NAME (GET_MODE_INNER (imode
)));
789 fmt
= GET_RTX_FORMAT (code
);
790 len
= GET_RTX_LENGTH (code
);
791 for (i
= 0; i
< len
; i
++)
796 validate_pattern (XEXP (pattern
, i
), info
, NULL_RTX
, 0);
800 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
801 validate_pattern (XVECEXP (pattern
, i
, j
), info
, NULL_RTX
, 0);
804 case 'r': case 'p': case 'i': case 'w': case '0': case 's':
813 /* Simple list structure for items of type T, for use when being part
814 of a list is an inherent property of T. T must have members equivalent
815 to "T *prev, *next;" and a function "void set_parent (list_head <T> *)"
816 to set the parent list. */
817 template <typename T
>
821 /* A range of linked items. */
829 void set_parent (list_head
*);
834 void push_back (range
);
835 range
remove (range
);
836 void replace (range
, range
);
837 T
*singleton () const;
842 /* Create a range [START_IN, START_IN]. */
844 template <typename T
>
845 list_head
<T
>::range::range (T
*start_in
) : start (start_in
), end (start_in
) {}
847 /* Create a range [START_IN, END_IN], linked by next and prev fields. */
849 template <typename T
>
850 list_head
<T
>::range::range (T
*start_in
, T
*end_in
)
851 : start (start_in
), end (end_in
) {}
853 template <typename T
>
855 list_head
<T
>::range::set_parent (list_head
<T
> *owner
)
857 for (T
*item
= start
; item
!= end
; item
= item
->next
)
858 item
->set_parent (owner
);
859 end
->set_parent (owner
);
862 template <typename T
>
863 list_head
<T
>::list_head () : first (0), last (0) {}
865 /* Add R to the end of the list. */
867 template <typename T
>
869 list_head
<T
>::push_back (range r
)
872 last
->next
= r
.start
;
875 r
.start
->prev
= last
;
880 /* Remove R from the list. R remains valid and can be inserted into
883 template <typename T
>
884 typename list_head
<T
>::range
885 list_head
<T
>::remove (range r
)
888 r
.start
->prev
->next
= r
.end
->next
;
892 r
.end
->next
->prev
= r
.start
->prev
;
894 last
= r
.start
->prev
;
901 /* Replace OLDR with NEWR. OLDR remains valid and can be inserted into
904 template <typename T
>
906 list_head
<T
>::replace (range oldr
, range newr
)
908 newr
.start
->prev
= oldr
.start
->prev
;
909 newr
.end
->next
= oldr
.end
->next
;
911 oldr
.start
->prev
= 0;
915 if (newr
.start
->prev
)
916 newr
.start
->prev
->next
= newr
.start
;
920 newr
.end
->next
->prev
= newr
.end
;
923 newr
.set_parent (this);
926 /* Empty the list and return the previous contents as a range that can
927 be inserted into other lists. */
929 template <typename T
>
930 typename list_head
<T
>::range
931 list_head
<T
>::release ()
933 range
r (first
, last
);
940 /* If the list contains a single item, return that item, otherwise return
943 template <typename T
>
945 list_head
<T
>::singleton () const
947 return first
== last
? first
: 0;
952 /* Describes a possible successful return from a routine. */
953 struct acceptance_type
955 /* The type of routine we're returning from. */
956 routine_type type
: 16;
958 /* True if this structure only really represents a partial match,
959 and if we must call a subroutine of type TYPE to complete the match.
960 In this case we'll call the subroutine and, if it succeeds, return
961 whatever the subroutine returned.
963 False if this structure presents a full match. */
964 unsigned int partial_p
: 1;
968 /* If PARTIAL_P, this is the number of the subroutine to call. */
971 /* Valid if !PARTIAL_P. */
974 /* The identifier of the matching pattern. For SUBPATTERNs this
975 value belongs to an ad-hoc routine-specific enum. For the
976 others it's the number of an .md file pattern. */
980 /* For RECOG, the number of clobbers that must be added to the
981 pattern in order for it to match CODE. */
984 /* For PEEPHOLE2, the number of additional instructions that were
985 included in the optimization. */
993 operator == (const acceptance_type
&a
, const acceptance_type
&b
)
995 if (a
.partial_p
!= b
.partial_p
)
998 return a
.u
.subroutine_id
== b
.u
.subroutine_id
;
1000 return a
.u
.full
.code
== b
.u
.full
.code
;
1004 operator != (const acceptance_type
&a
, const acceptance_type
&b
)
1006 return !operator == (a
, b
);
1009 /* Represents a parameter to a pattern routine. */
1013 /* The C type of parameter. */
1015 /* Represents an invalid parameter. */
1018 /* A machine_mode parameter. */
1021 /* An rtx_code parameter. */
1024 /* An int parameter. */
1027 /* An unsigned int parameter. */
1030 /* A HOST_WIDE_INT parameter. */
1035 parameter (type_enum
, bool, uint64_t);
1037 /* The type of the parameter. */
1040 /* True if the value passed is variable, false if it is constant. */
1043 /* If IS_PARAM, this is the number of the variable passed, for an "i%d"
1044 format string. If !IS_PARAM, this is the constant value passed. */
1048 parameter::parameter ()
1049 : type (UNSET
), is_param (false), value (0) {}
1051 parameter::parameter (type_enum type_in
, bool is_param_in
, uint64_t value_in
)
1052 : type (type_in
), is_param (is_param_in
), value (value_in
) {}
1055 operator == (const parameter
¶m1
, const parameter
¶m2
)
1057 return (param1
.type
== param2
.type
1058 && param1
.is_param
== param2
.is_param
1059 && param1
.value
== param2
.value
);
1063 operator != (const parameter
¶m1
, const parameter
¶m2
)
1065 return !operator == (param1
, param2
);
1068 /* Represents a routine that matches a partial rtx pattern, returning
1069 an ad-hoc enum value on success and -1 on failure. The routine can
1070 be used by any subroutine type. The match can be parameterized by
1071 things like mode, code and UNSPEC number. */
1072 class pattern_routine
1075 /* The state that implements the pattern. */
1078 /* The deepest root position from which S can access all the rtxes it needs.
1079 This is NULL if the pattern doesn't need an rtx input, usually because
1080 all matching is done on operands[] instead. */
1083 /* A unique identifier for the routine. */
1084 unsigned int pattern_id
;
1086 /* True if the routine takes pnum_clobbers as argument. */
1087 bool pnum_clobbers_p
;
1089 /* True if the routine takes the enclosing instruction as argument. */
1092 /* The types of the other parameters to the routine, if any. */
1093 auto_vec
<parameter::type_enum
, MAX_PATTERN_PARAMS
> param_types
;
1096 /* All defined patterns. */
1097 static vec
<pattern_routine
*> patterns
;
1099 /* Represents one use of a pattern routine. */
1103 /* The pattern routine to use. */
1104 pattern_routine
*routine
;
1106 /* The values to pass as parameters. This vector has the same length
1107 as ROUTINE->PARAM_TYPES. */
1108 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
1111 /* Represents a test performed by a decision. */
1117 /* The types of test that can be performed. Most of them take as input
1118 an rtx X. Some also take as input a transition label LABEL; the others
1119 are booleans for which the transition label is always "true".
1121 The order of the enum isn't important. */
1123 /* Check GET_CODE (X) == LABEL. */
1126 /* Check GET_MODE (X) == LABEL. */
1129 /* Check REGNO (X) == LABEL. */
1132 /* Check known_eq (SUBREG_BYTE (X), LABEL). */
1135 /* Check XINT (X, u.opno) == LABEL. */
1138 /* Check XWINT (X, u.opno) == LABEL. */
1141 /* Check XVECLEN (X, 0) == LABEL. */
1144 /* Check peep2_current_count >= u.min_len. */
1147 /* Check XVECLEN (X, 0) >= u.min_len. */
1150 /* Check whether X is a cached const_int with value u.integer. */
1153 /* Check u.predicate.data (X, u.predicate.mode). */
1156 /* Check rtx_equal_p (X, operands[u.opno]). */
1159 /* Check whether X matches pattern u.pattern. */
1162 /* Check whether pnum_clobbers is nonnull (RECOG only). */
1165 /* Check whether general C test u.string holds. In general the condition
1166 needs access to "insn" and the full operand list. */
1169 /* Execute operands[u.opno] = X. (Always succeeds.) */
1172 /* Accept u.acceptance. Always succeeds for SUBPATTERN, RECOG and SPLIT.
1173 May fail for PEEPHOLE2 if the define_peephole2 C code executes FAIL. */
1177 /* The position of rtx X in the above description, relative to the
1178 incoming instruction "insn". The position is null if the test
1179 doesn't take an X as input. */
1182 /* Which element of operands[] already contains POS, or -1 if no element
1183 is known to hold POS. */
1186 /* The type of test and its parameters, as described above. */
1199 const struct pred_data
*data
;
1200 /* True if the mode is taken from a machine_mode parameter
1201 to the routine rather than a constant machine_mode. If true,
1202 MODE is the number of the parameter (for an "i%d" format string),
1203 otherwise it is the mode itself. */
1207 pattern_use
*pattern
;
1209 acceptance_type acceptance
;
1212 static rtx_test
code (position
*);
1213 static rtx_test
mode (position
*);
1214 static rtx_test
regno_field (position
*);
1215 static rtx_test
subreg_field (position
*);
1216 static rtx_test
int_field (position
*, int);
1217 static rtx_test
wide_int_field (position
*, int);
1218 static rtx_test
veclen (position
*);
1219 static rtx_test
peep2_count (int);
1220 static rtx_test
veclen_ge (position
*, int);
1221 static rtx_test
predicate (position
*, const pred_data
*, machine_mode
);
1222 static rtx_test
duplicate (position
*, int);
1223 static rtx_test
pattern (position
*, pattern_use
*);
1224 static rtx_test
have_num_clobbers ();
1225 static rtx_test
c_test (const char *);
1226 static rtx_test
set_op (position
*, int);
1227 static rtx_test
accept (const acceptance_type
&);
1229 bool terminal_p () const;
1230 bool single_outcome_p () const;
1233 rtx_test (position
*, kind_enum
);
1236 rtx_test::rtx_test () {}
1238 rtx_test::rtx_test (position
*pos_in
, kind_enum kind_in
)
1239 : pos (pos_in
), pos_operand (-1), kind (kind_in
) {}
1242 rtx_test::code (position
*pos
)
1244 return rtx_test (pos
, rtx_test::CODE
);
1248 rtx_test::mode (position
*pos
)
1250 return rtx_test (pos
, rtx_test::MODE
);
1254 rtx_test::regno_field (position
*pos
)
1256 rtx_test
res (pos
, rtx_test::REGNO_FIELD
);
1261 rtx_test::subreg_field (position
*pos
)
1263 rtx_test
res (pos
, rtx_test::SUBREG_FIELD
);
1268 rtx_test::int_field (position
*pos
, int opno
)
1270 rtx_test
res (pos
, rtx_test::INT_FIELD
);
1276 rtx_test::wide_int_field (position
*pos
, int opno
)
1278 rtx_test
res (pos
, rtx_test::WIDE_INT_FIELD
);
1284 rtx_test::veclen (position
*pos
)
1286 return rtx_test (pos
, rtx_test::VECLEN
);
1290 rtx_test::peep2_count (int min_len
)
1292 rtx_test
res (0, rtx_test::PEEP2_COUNT
);
1293 res
.u
.min_len
= min_len
;
1298 rtx_test::veclen_ge (position
*pos
, int min_len
)
1300 rtx_test
res (pos
, rtx_test::VECLEN_GE
);
1301 res
.u
.min_len
= min_len
;
1306 rtx_test::predicate (position
*pos
, const struct pred_data
*data
,
1309 rtx_test
res (pos
, rtx_test::PREDICATE
);
1310 res
.u
.predicate
.data
= data
;
1311 res
.u
.predicate
.mode_is_param
= false;
1312 res
.u
.predicate
.mode
= mode
;
1317 rtx_test::duplicate (position
*pos
, int opno
)
1319 rtx_test
res (pos
, rtx_test::DUPLICATE
);
1325 rtx_test::pattern (position
*pos
, pattern_use
*pattern
)
1327 rtx_test
res (pos
, rtx_test::PATTERN
);
1328 res
.u
.pattern
= pattern
;
1333 rtx_test::have_num_clobbers ()
1335 return rtx_test (0, rtx_test::HAVE_NUM_CLOBBERS
);
1339 rtx_test::c_test (const char *string
)
1341 rtx_test
res (0, rtx_test::C_TEST
);
1342 res
.u
.string
= string
;
1347 rtx_test::set_op (position
*pos
, int opno
)
1349 rtx_test
res (pos
, rtx_test::SET_OP
);
1355 rtx_test::accept (const acceptance_type
&acceptance
)
1357 rtx_test
res (0, rtx_test::ACCEPT
);
1358 res
.u
.acceptance
= acceptance
;
1362 /* Return true if the test represents an unconditionally successful match. */
1365 rtx_test::terminal_p () const
1367 return kind
== rtx_test::ACCEPT
&& u
.acceptance
.type
!= PEEPHOLE2
;
1370 /* Return true if the test is a boolean that is always true. */
1373 rtx_test::single_outcome_p () const
1375 return terminal_p () || kind
== rtx_test::SET_OP
;
1379 operator == (const rtx_test
&a
, const rtx_test
&b
)
1381 if (a
.pos
!= b
.pos
|| a
.kind
!= b
.kind
)
1385 case rtx_test::CODE
:
1386 case rtx_test::MODE
:
1387 case rtx_test::REGNO_FIELD
:
1388 case rtx_test::SUBREG_FIELD
:
1389 case rtx_test::VECLEN
:
1390 case rtx_test::HAVE_NUM_CLOBBERS
:
1393 case rtx_test::PEEP2_COUNT
:
1394 case rtx_test::VECLEN_GE
:
1395 return a
.u
.min_len
== b
.u
.min_len
;
1397 case rtx_test::INT_FIELD
:
1398 case rtx_test::WIDE_INT_FIELD
:
1399 case rtx_test::DUPLICATE
:
1400 case rtx_test::SET_OP
:
1401 return a
.u
.opno
== b
.u
.opno
;
1403 case rtx_test::SAVED_CONST_INT
:
1404 return (a
.u
.integer
.is_param
== b
.u
.integer
.is_param
1405 && a
.u
.integer
.value
== b
.u
.integer
.value
);
1407 case rtx_test::PREDICATE
:
1408 return (a
.u
.predicate
.data
== b
.u
.predicate
.data
1409 && a
.u
.predicate
.mode_is_param
== b
.u
.predicate
.mode_is_param
1410 && a
.u
.predicate
.mode
== b
.u
.predicate
.mode
);
1412 case rtx_test::PATTERN
:
1413 return (a
.u
.pattern
->routine
== b
.u
.pattern
->routine
1414 && a
.u
.pattern
->params
== b
.u
.pattern
->params
);
1416 case rtx_test::C_TEST
:
1417 return strcmp (a
.u
.string
, b
.u
.string
) == 0;
1419 case rtx_test::ACCEPT
:
1420 return a
.u
.acceptance
== b
.u
.acceptance
;
1426 operator != (const rtx_test
&a
, const rtx_test
&b
)
1428 return !operator == (a
, b
);
1431 /* A simple set of transition labels. Most transitions have a singleton
1432 label, so try to make that case as efficient as possible. */
1433 class int_set
: public auto_vec
<uint64_t, 1>
1436 typedef uint64_t *iterator
;
1440 int_set (const int_set
&);
1442 int_set
&operator = (const int_set
&);
1448 int_set::int_set () : auto_vec
<uint64_t, 1> () {}
1450 int_set::int_set (uint64_t label
) :
1451 auto_vec
<uint64_t, 1> ()
1456 int_set::int_set (const int_set
&other
) :
1457 auto_vec
<uint64_t, 1> ()
1459 safe_splice (other
);
1463 int_set::operator = (const int_set
&other
)
1466 safe_splice (other
);
1479 return address () + length ();
1483 operator == (const int_set
&a
, const int_set
&b
)
1485 if (a
.length () != b
.length ())
1487 for (unsigned int i
= 0; i
< a
.length (); ++i
)
1494 operator != (const int_set
&a
, const int_set
&b
)
1496 return !operator == (a
, b
);
1501 /* Represents a transition between states, dependent on the result of
1506 transition (const int_set
&, state
*, bool);
1508 void set_parent (list_head
<transition
> *);
1510 /* Links to other transitions for T. Always null for boolean tests. */
1511 transition
*prev
, *next
;
1513 /* The transition should be taken when T has one of these values.
1514 E.g. for rtx_test::CODE this is a set of codes, while for booleans like
1515 rtx_test::PREDICATE it is always a singleton "true". The labels are
1516 sorted in ascending order. */
1519 /* The source decision. */
1522 /* The target state. */
1525 /* True if TO would function correctly even if TEST wasn't performed.
1526 E.g. it isn't necessary to check whether GET_MODE (x1) is SImode
1527 before calling register_operand (x1, SImode), since register_operand
1528 performs its own mode check. However, checking GET_MODE can be a cheap
1529 way of disambiguating SImode and DImode register operands. */
1532 /* True if LABELS contains parameter numbers rather than constants.
1533 E.g. if this is true for a rtx_test::CODE, the label is the number
1534 of an rtx_code parameter rather than an rtx_code itself.
1535 LABELS is always a singleton when this variable is true. */
1539 /* Represents a test and the action that should be taken on the result.
1540 If a transition exists for the test outcome, the machine switches
1541 to the transition's target state. If no suitable transition exists,
1542 the machine either falls through to the next decision or, if there are no
1543 more decisions to try, fails the match. */
1544 class decision
: public list_head
<transition
>
1547 decision (const rtx_test
&);
1549 void set_parent (list_head
<decision
> *s
);
1550 bool if_statement_p (uint64_t * = 0) const;
1552 /* The state to which this decision belongs. */
1555 /* Links to other decisions in the same state. */
1556 decision
*prev
, *next
;
1558 /* The test to perform. */
1562 /* Represents one machine state. For each state the machine tries a list
1563 of decisions, in order, and acts on the first match. It fails without
1564 further backtracking if no decisions match. */
1565 class state
: public list_head
<decision
>
1568 void set_parent (list_head
<state
> *) {}
1571 transition::transition (const int_set
&labels_in
, state
*to_in
,
1573 : prev (0), next (0), labels (labels_in
), from (0), to (to_in
),
1574 optional (optional_in
), is_param (false) {}
1576 /* Set the source decision of the transition. */
1579 transition::set_parent (list_head
<transition
> *from_in
)
1581 from
= static_cast <decision
*> (from_in
);
1584 decision::decision (const rtx_test
&test_in
)
1585 : prev (0), next (0), test (test_in
) {}
1587 /* Set the state to which this decision belongs. */
1590 decision::set_parent (list_head
<decision
> *s_in
)
1592 s
= static_cast <state
*> (s_in
);
1595 /* Return true if the decision has a single transition with a single label.
1596 If so, return the label in *LABEL if nonnull. */
1599 decision::if_statement_p (uint64_t *label
) const
1601 if (singleton () && first
->labels
.length () == 1)
1604 *label
= first
->labels
[0];
1610 /* Add to FROM a decision that performs TEST and has a single transition
1614 add_decision (state
*from
, const rtx_test
&test
, transition
*trans
)
1616 decision
*d
= new decision (test
);
1617 from
->push_back (d
);
1618 d
->push_back (trans
);
1621 /* Add a transition from FROM to a new, empty state that is taken
1622 when TEST == LABELS. OPTIONAL says whether the new transition
1623 should be optional. Return the new state. */
1626 add_decision (state
*from
, const rtx_test
&test
, int_set labels
, bool optional
)
1628 state
*to
= new state
;
1629 add_decision (from
, test
, new transition (labels
, to
, optional
));
1633 /* Insert a decision before decisions R to make them dependent on
1634 TEST == LABELS. OPTIONAL says whether the new transition should be
1638 insert_decision_before (state::range r
, const rtx_test
&test
,
1639 const int_set
&labels
, bool optional
)
1641 decision
*newd
= new decision (test
);
1642 state
*news
= new state
;
1643 newd
->push_back (new transition (labels
, news
, optional
));
1644 r
.start
->s
->replace (r
, newd
);
1645 news
->push_back (r
);
1649 /* Remove any optional transitions from S that turned out not to be useful. */
1652 collapse_optional_decisions (state
*s
)
1654 decision
*d
= s
->first
;
1657 decision
*next
= d
->next
;
1658 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
1659 collapse_optional_decisions (trans
->to
);
1660 /* A decision with a single optional transition doesn't help
1661 partition the potential matches and so is unlikely to be
1662 worthwhile. In particular, if the decision that performs the
1663 test is the last in the state, the best it could do is reject
1664 an invalid pattern slightly earlier. If instead the decision
1665 is not the last in the state, the condition it tests could hold
1666 even for the later decisions in the state. The best it can do
1667 is save work in some cases where only the later decisions can
1670 In both cases the optional transition would add extra work to
1671 successful matches when the tested condition holds. */
1672 if (transition
*trans
= d
->singleton ())
1673 if (trans
->optional
)
1674 s
->replace (d
, trans
->to
->release ());
1679 /* Try to squash several separate tests into simpler ones. */
1682 simplify_tests (state
*s
)
1684 for (decision
*d
= s
->first
; d
; d
= d
->next
)
1687 /* Convert checks for GET_CODE (x) == CONST_INT and XWINT (x, 0) == N
1688 into checks for const_int_rtx[N'], if N is suitably small. */
1689 if (d
->test
.kind
== rtx_test::CODE
1690 && d
->if_statement_p (&label
)
1691 && label
== CONST_INT
)
1692 if (decision
*second
= d
->first
->to
->singleton ())
1693 if (d
->test
.pos
== second
->test
.pos
1694 && second
->test
.kind
== rtx_test::WIDE_INT_FIELD
1695 && second
->test
.u
.opno
== 0
1696 && second
->if_statement_p (&label
)
1697 && IN_RANGE (int64_t (label
),
1698 -MAX_SAVED_CONST_INT
, MAX_SAVED_CONST_INT
))
1700 d
->test
.kind
= rtx_test::SAVED_CONST_INT
;
1701 d
->test
.u
.integer
.is_param
= false;
1702 d
->test
.u
.integer
.value
= label
;
1703 d
->replace (d
->first
, second
->release ());
1704 d
->first
->labels
[0] = true;
1706 /* If we have a CODE test followed by a PREDICATE test, rely on
1707 the predicate to test the code.
1709 This case exists for match_operators. We initially treat the
1710 CODE test for a match_operator as non-optional so that we can
1711 safely move down to its operands. It may turn out that all
1712 paths that reach that code test require the same predicate
1713 to be true. cse_tests will then put the predicate test in
1714 series with the code test. */
1715 if (d
->test
.kind
== rtx_test::CODE
)
1716 if (transition
*trans
= d
->singleton ())
1718 state
*s
= trans
->to
;
1719 while (decision
*d2
= s
->singleton ())
1721 if (d
->test
.pos
!= d2
->test
.pos
)
1723 transition
*trans2
= d2
->singleton ();
1726 if (d2
->test
.kind
== rtx_test::PREDICATE
)
1729 trans
->labels
= int_set (true);
1730 s
->replace (d2
, trans2
->to
->release ());
1736 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
1737 simplify_tests (trans
->to
);
1741 /* Return true if all successful returns passing through D require the
1742 condition tested by COMMON to be true.
1744 When returning true, add all transitions like COMMON in D to WHERE.
1745 WHERE may contain a partial result on failure. */
1748 common_test_p (decision
*d
, transition
*common
, vec
<transition
*> *where
)
1750 if (d
->test
.kind
== rtx_test::ACCEPT
)
1751 /* We found a successful return that didn't require COMMON. */
1753 if (d
->test
== common
->from
->test
)
1755 transition
*trans
= d
->singleton ();
1757 || trans
->optional
!= common
->optional
1758 || trans
->labels
!= common
->labels
)
1760 where
->safe_push (trans
);
1763 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
1764 for (decision
*subd
= trans
->to
->first
; subd
; subd
= subd
->next
)
1765 if (!common_test_p (subd
, common
, where
))
1770 /* Indicates that we have tested GET_CODE (X) for a particular rtx X. */
1771 const unsigned char TESTED_CODE
= 1;
1773 /* Indicates that we have tested XVECLEN (X, 0) for a particular rtx X. */
1774 const unsigned char TESTED_VECLEN
= 2;
1776 /* Represents a set of conditions that are known to hold. */
1777 class known_conditions
1780 /* A mask of TESTED_ values for each position, indexed by the position's
1782 auto_vec
<unsigned char> position_tests
;
1784 /* Index N says whether operands[N] has been set. */
1785 auto_vec
<bool> set_operands
;
1787 /* A guranteed lower bound on the value of peep2_current_count. */
1791 /* Return true if TEST can safely be performed at D, where
1792 the conditions in KC hold. TEST is known to occur along the
1793 first path from D (i.e. always following the first transition
1794 of the first decision). Any intervening tests can be used as
1795 negative proof that hoisting isn't safe, but only KC can be used
1796 as positive proof. */
1799 safe_to_hoist_p (decision
*d
, const rtx_test
&test
, known_conditions
*kc
)
1803 case rtx_test::C_TEST
:
1804 /* In general, C tests require everything else to have been
1805 verified and all operands to have been set up. */
1808 case rtx_test::ACCEPT
:
1809 /* Don't accept something before all conditions have been tested. */
1812 case rtx_test::PREDICATE
:
1813 /* Don't move a predicate over a test for VECLEN_GE, since the
1814 predicate used in a match_parallel can legitimately expect the
1815 length to be checked first. */
1816 for (decision
*subd
= d
;
1818 subd
= subd
->first
->to
->first
)
1819 if (subd
->test
.pos
== test
.pos
1820 && subd
->test
.kind
== rtx_test::VECLEN_GE
)
1824 case rtx_test::DUPLICATE
:
1825 /* Don't test for a match_dup until the associated operand has
1827 if (!kc
->set_operands
[test
.u
.opno
])
1831 case rtx_test::CODE
:
1832 case rtx_test::MODE
:
1833 case rtx_test::SAVED_CONST_INT
:
1834 case rtx_test::SET_OP
:
1836 /* Check whether it is safe to access the rtx under test. */
1837 switch (test
.pos
->type
)
1839 case POS_PEEP2_INSN
:
1840 return test
.pos
->arg
< kc
->peep2_count
;
1843 return kc
->position_tests
[test
.pos
->base
->id
] & TESTED_CODE
;
1846 return kc
->position_tests
[test
.pos
->base
->id
] & TESTED_VECLEN
;
1850 case rtx_test::REGNO_FIELD
:
1851 case rtx_test::SUBREG_FIELD
:
1852 case rtx_test::INT_FIELD
:
1853 case rtx_test::WIDE_INT_FIELD
:
1854 case rtx_test::VECLEN
:
1855 case rtx_test::VECLEN_GE
:
1856 /* These tests access a specific part of an rtx, so are only safe
1857 once we know what the rtx is. */
1858 return kc
->position_tests
[test
.pos
->id
] & TESTED_CODE
;
1860 case rtx_test::PEEP2_COUNT
:
1861 case rtx_test::HAVE_NUM_CLOBBERS
:
1862 /* These tests can be performed anywhere. */
1865 case rtx_test::PATTERN
:
1871 /* Look for a transition that is taken by all successful returns from a range
1872 of decisions starting at OUTER and that would be better performed by
1873 OUTER's state instead. On success, store all instances of that transition
1874 in WHERE and return the last decision in the range. The range could
1875 just be OUTER, or it could include later decisions as well.
1877 WITH_POSITION_P is true if only tests with position POS should be tried,
1878 false if any test should be tried. WORTHWHILE_SINGLE_P is true if the
1879 result is useful even when the range contains just a single decision
1880 with a single transition. KC are the conditions that are known to
1884 find_common_test (decision
*outer
, bool with_position_p
,
1885 position
*pos
, bool worthwhile_single_p
,
1886 known_conditions
*kc
, vec
<transition
*> *where
)
1888 /* After this, WORTHWHILE_SINGLE_P indicates whether a range that contains
1889 just a single decision is useful, regardless of the number of
1890 transitions it has. */
1891 if (!outer
->singleton ())
1892 worthwhile_single_p
= true;
1893 /* Quick exit if we don't have enough decisions to form a worthwhile
1895 if (!worthwhile_single_p
&& !outer
->next
)
1897 /* Follow the first chain down, as one example of a path that needs
1898 to contain the common test. */
1899 for (decision
*d
= outer
; d
; d
= d
->first
->to
->first
)
1901 transition
*trans
= d
->singleton ();
1903 && (!with_position_p
|| d
->test
.pos
== pos
)
1904 && safe_to_hoist_p (outer
, d
->test
, kc
))
1906 if (common_test_p (outer
, trans
, where
))
1909 /* We checked above whether the move is worthwhile. */
1911 /* See how many decisions in OUTER's chain could reuse
1913 decision
*outer_end
= outer
;
1916 unsigned int length
= where
->length ();
1917 if (!common_test_p (outer_end
->next
, trans
, where
))
1919 where
->truncate (length
);
1922 outer_end
= outer_end
->next
;
1924 while (outer_end
->next
);
1925 /* It is worth moving TRANS if it can be shared by more than
1927 if (outer_end
!= outer
|| worthwhile_single_p
)
1930 where
->truncate (0);
1936 /* Try to promote common subtests in S to a single, shared decision.
1937 Also try to bunch tests for the same position together. POS is the
1938 position of the rtx tested before reaching S. KC are the conditions
1939 that are known to hold on entry to S. */
1942 cse_tests (position
*pos
, state
*s
, known_conditions
*kc
)
1944 for (decision
*d
= s
->first
; d
; d
= d
->next
)
1946 auto_vec
<transition
*, 16> where
;
1949 /* Try to find conditions that don't depend on a particular rtx,
1950 such as pnum_clobbers != NULL or peep2_current_count >= X.
1951 It's usually better to check these conditions as soon as
1952 possible, so the change is worthwhile even if there is
1953 only one copy of the test. */
1954 decision
*endd
= find_common_test (d
, true, 0, true, kc
, &where
);
1955 if (!endd
&& d
->test
.pos
!= pos
)
1956 /* Try to find other conditions related to position POS
1957 before moving to the new position. Again, this is
1958 worthwhile even if there is only one copy of the test,
1959 since it means that fewer position variables are live
1961 endd
= find_common_test (d
, true, pos
, true, kc
, &where
);
1963 /* Try to find any condition that is used more than once. */
1964 endd
= find_common_test (d
, false, 0, false, kc
, &where
);
1967 transition
*common
= where
[0];
1968 /* Replace [D, ENDD] with a test like COMMON. We'll recurse
1969 on the common test and see the original D again next time. */
1970 d
= insert_decision_before (state::range (d
, endd
),
1974 /* Remove the old tests. */
1975 while (!where
.is_empty ())
1977 transition
*trans
= where
.pop ();
1978 trans
->from
->s
->replace (trans
->from
, trans
->to
->release ());
1983 /* Make sure that safe_to_hoist_p isn't being overly conservative.
1984 It should realize that D's test is safe in the current
1986 gcc_assert (d
->test
.kind
== rtx_test::C_TEST
1987 || d
->test
.kind
== rtx_test::ACCEPT
1988 || safe_to_hoist_p (d
, d
->test
, kc
));
1990 /* D won't be changed any further by the current optimization.
1991 Recurse with the state temporarily updated to include D. */
1993 switch (d
->test
.kind
)
1995 case rtx_test::CODE
:
1996 prev
= kc
->position_tests
[d
->test
.pos
->id
];
1997 kc
->position_tests
[d
->test
.pos
->id
] |= TESTED_CODE
;
2000 case rtx_test::VECLEN
:
2001 case rtx_test::VECLEN_GE
:
2002 prev
= kc
->position_tests
[d
->test
.pos
->id
];
2003 kc
->position_tests
[d
->test
.pos
->id
] |= TESTED_VECLEN
;
2006 case rtx_test::SET_OP
:
2007 prev
= kc
->set_operands
[d
->test
.u
.opno
];
2009 kc
->set_operands
[d
->test
.u
.opno
] = true;
2012 case rtx_test::PEEP2_COUNT
:
2013 prev
= kc
->peep2_count
;
2014 kc
->peep2_count
= MAX (prev
, d
->test
.u
.min_len
);
2020 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
2021 cse_tests (d
->test
.pos
? d
->test
.pos
: pos
, trans
->to
, kc
);
2022 switch (d
->test
.kind
)
2024 case rtx_test::CODE
:
2025 case rtx_test::VECLEN
:
2026 case rtx_test::VECLEN_GE
:
2027 kc
->position_tests
[d
->test
.pos
->id
] = prev
;
2030 case rtx_test::SET_OP
:
2031 kc
->set_operands
[d
->test
.u
.opno
] = prev
;
2034 case rtx_test::PEEP2_COUNT
:
2035 kc
->peep2_count
= prev
;
2044 /* Return the type of value that can be used to parameterize test KIND,
2045 or parameter::UNSET if none. */
2047 parameter::type_enum
2048 transition_parameter_type (rtx_test::kind_enum kind
)
2052 case rtx_test::CODE
:
2053 return parameter::CODE
;
2055 case rtx_test::MODE
:
2056 return parameter::MODE
;
2058 case rtx_test::REGNO_FIELD
:
2059 case rtx_test::SUBREG_FIELD
:
2060 return parameter::UINT
;
2062 case rtx_test::INT_FIELD
:
2063 case rtx_test::VECLEN
:
2064 case rtx_test::PATTERN
:
2065 return parameter::INT
;
2067 case rtx_test::WIDE_INT_FIELD
:
2068 return parameter::WIDE_INT
;
2070 case rtx_test::PEEP2_COUNT
:
2071 case rtx_test::VECLEN_GE
:
2072 case rtx_test::SAVED_CONST_INT
:
2073 case rtx_test::PREDICATE
:
2074 case rtx_test::DUPLICATE
:
2075 case rtx_test::HAVE_NUM_CLOBBERS
:
2076 case rtx_test::C_TEST
:
2077 case rtx_test::SET_OP
:
2078 case rtx_test::ACCEPT
:
2079 return parameter::UNSET
;
2084 /* Initialize the pos_operand fields of each state reachable from S.
2085 If OPERAND_POS[ID] >= 0, the position with id ID is stored in
2086 operands[OPERAND_POS[ID]] on entry to S. */
2089 find_operand_positions (state
*s
, vec
<int> &operand_pos
)
2091 for (decision
*d
= s
->first
; d
; d
= d
->next
)
2093 int this_operand
= (d
->test
.pos
? operand_pos
[d
->test
.pos
->id
] : -1);
2094 if (this_operand
>= 0)
2095 d
->test
.pos_operand
= this_operand
;
2096 if (d
->test
.kind
== rtx_test::SET_OP
)
2097 operand_pos
[d
->test
.pos
->id
] = d
->test
.u
.opno
;
2098 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
2099 find_operand_positions (trans
->to
, operand_pos
);
2100 if (d
->test
.kind
== rtx_test::SET_OP
)
2101 operand_pos
[d
->test
.pos
->id
] = this_operand
;
2105 /* Statistics about a matching routine. */
2111 /* The total number of decisions in the routine, excluding trivial
2112 ones that never fail. */
2113 unsigned int num_decisions
;
2115 /* The number of non-trivial decisions on the longest path through
2116 the routine, and the return value that contributes most to that
2118 unsigned int longest_path
;
2119 int longest_path_code
;
2121 /* The maximum number of times that a single call to the routine
2122 can backtrack, and the value returned at the end of that path.
2123 "Backtracking" here means failing one decision in state and
2124 going onto to the next. */
2125 unsigned int longest_backtrack
;
2126 int longest_backtrack_code
;
2130 : num_decisions (0), longest_path (0), longest_path_code (-1),
2131 longest_backtrack (0), longest_backtrack_code (-1) {}
2133 /* Return statistics about S. */
2136 get_stats (state
*s
)
2139 unsigned int longest_path
= 0;
2140 for (decision
*d
= s
->first
; d
; d
= d
->next
)
2142 /* Work out the statistics for D. */
2144 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
2146 stats for_trans
= get_stats (trans
->to
);
2147 for_d
.num_decisions
+= for_trans
.num_decisions
;
2148 /* Each transition is mutually-exclusive, so just pick the
2149 longest of the individual paths. */
2150 if (for_d
.longest_path
<= for_trans
.longest_path
)
2152 for_d
.longest_path
= for_trans
.longest_path
;
2153 for_d
.longest_path_code
= for_trans
.longest_path_code
;
2155 /* Likewise for backtracking. */
2156 if (for_d
.longest_backtrack
<= for_trans
.longest_backtrack
)
2158 for_d
.longest_backtrack
= for_trans
.longest_backtrack
;
2159 for_d
.longest_backtrack_code
= for_trans
.longest_backtrack_code
;
2163 /* Account for D's test in its statistics. */
2164 if (!d
->test
.single_outcome_p ())
2166 for_d
.num_decisions
+= 1;
2167 for_d
.longest_path
+= 1;
2169 if (d
->test
.kind
== rtx_test::ACCEPT
)
2171 for_d
.longest_path_code
= d
->test
.u
.acceptance
.u
.full
.code
;
2172 for_d
.longest_backtrack_code
= d
->test
.u
.acceptance
.u
.full
.code
;
2175 /* Keep a running count of the number of backtracks. */
2177 for_s
.longest_backtrack
+= 1;
2179 /* Accumulate D's statistics into S's. */
2180 for_s
.num_decisions
+= for_d
.num_decisions
;
2181 for_s
.longest_path
+= for_d
.longest_path
;
2182 for_s
.longest_backtrack
+= for_d
.longest_backtrack
;
2184 /* Use the code from the decision with the longest individual path,
2185 since that's more likely to be useful if trying to make the
2186 path shorter. In the event of a tie, pick the later decision,
2187 since that's closer to the end of the path. */
2188 if (longest_path
<= for_d
.longest_path
)
2190 longest_path
= for_d
.longest_path
;
2191 for_s
.longest_path_code
= for_d
.longest_path_code
;
2194 /* Later decisions in a state are necessarily in a longer backtrack
2195 than earlier decisions. */
2196 for_s
.longest_backtrack_code
= for_d
.longest_backtrack_code
;
2201 /* Optimize ROOT. Use TYPE to describe ROOT in status messages. */
2204 optimize_subroutine_group (const char *type
, state
*root
)
2206 /* Remove optional transitions that turned out not to be worthwhile. */
2207 if (collapse_optional_decisions_p
)
2208 collapse_optional_decisions (root
);
2210 /* Try to remove duplicated tests and to rearrange tests into a more
2214 known_conditions kc
;
2215 kc
.position_tests
.safe_grow_cleared (num_positions
, true);
2216 kc
.set_operands
.safe_grow_cleared (num_operands
, true);
2218 cse_tests (&root_pos
, root
, &kc
);
2221 /* Try to simplify two or more tests into one. */
2222 if (simplify_tests_p
)
2223 simplify_tests (root
);
2225 /* Try to use operands[] instead of xN variables. */
2226 if (use_operand_variables_p
)
2228 auto_vec
<int> operand_pos (num_positions
);
2229 for (unsigned int i
= 0; i
< num_positions
; ++i
)
2230 operand_pos
.quick_push (-1);
2231 find_operand_positions (root
, operand_pos
);
2234 /* Print a summary of the new state. */
2235 stats st
= get_stats (root
);
2236 fprintf (stderr
, "Statistics for %s:\n", type
);
2237 fprintf (stderr
, " Number of decisions: %6d\n", st
.num_decisions
);
2238 fprintf (stderr
, " longest path: %6d (code: %6d)\n",
2239 st
.longest_path
, st
.longest_path_code
);
2240 fprintf (stderr
, " longest backtrack: %6d (code: %6d)\n",
2241 st
.longest_backtrack
, st
.longest_backtrack_code
);
2244 class merge_pattern_info
;
2246 /* Represents a transition from one pattern to another. */
2247 class merge_pattern_transition
2250 merge_pattern_transition (merge_pattern_info
*);
2252 /* The target pattern. */
2253 merge_pattern_info
*to
;
2255 /* The parameters that the source pattern passes to the target pattern.
2256 "parameter (TYPE, true, I)" represents parameter I of the source
2258 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
2261 merge_pattern_transition::merge_pattern_transition (merge_pattern_info
*to_in
)
2266 /* Represents a pattern that can might match several states. The pattern
2267 may replace parts of the test with a parameter value. It may also
2268 replace transition labels with parameters. */
2269 class merge_pattern_info
2272 merge_pattern_info (unsigned int);
2274 /* If PARAM_TEST_P, the state's singleton test should be generalized
2275 to use the runtime value of PARAMS[PARAM_TEST]. */
2276 unsigned int param_test
: 8;
2278 /* If PARAM_TRANSITION_P, the state's single transition label should
2279 be replaced by the runtime value of PARAMS[PARAM_TRANSITION]. */
2280 unsigned int param_transition
: 8;
2282 /* True if we have decided to generalize the root decision's test,
2283 as per PARAM_TEST. */
2284 unsigned int param_test_p
: 1;
2286 /* Likewise for the root decision's transition, as per PARAM_TRANSITION. */
2287 unsigned int param_transition_p
: 1;
2289 /* True if the contents of the structure are completely filled in. */
2290 unsigned int complete_p
: 1;
2292 /* The number of pseudo-statements in the pattern. Used to decide
2293 whether it's big enough to break out into a subroutine. */
2294 unsigned int num_statements
;
2296 /* The number of states that use this pattern. */
2297 unsigned int num_users
;
2299 /* The number of distinct success values that the pattern returns. */
2300 unsigned int num_results
;
2302 /* This array has one element for each runtime parameter to the pattern.
2303 PARAMS[I] gives the default value of parameter I, which is always
2306 These default parameters are used in cases where we match the
2307 pattern against some state S1, then add more parameters while
2308 matching against some state S2. S1 is then left passing fewer
2309 parameters than S2. The array gives us enough informatino to
2310 construct a full parameter list for S1 (see update_parameters).
2312 If we decide to create a subroutine for this pattern,
2313 PARAMS[I].type determines the C type of parameter I. */
2314 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
2316 /* All states that match this pattern must have the same number of
2317 transitions. TRANSITIONS[I] describes the subpattern for transition
2318 number I; it is null if transition I represents a successful return
2319 from the pattern. */
2320 auto_vec
<merge_pattern_transition
*, 1> transitions
;
2322 /* The routine associated with the pattern, or null if we haven't generated
2324 pattern_routine
*routine
;
2327 merge_pattern_info::merge_pattern_info (unsigned int num_transitions
)
2329 param_transition (0),
2330 param_test_p (false),
2331 param_transition_p (false),
2338 transitions
.safe_grow_cleared (num_transitions
, true);
2341 /* Describes one way of matching a particular state to a particular
2343 class merge_state_result
2346 merge_state_result (merge_pattern_info
*, position
*, merge_state_result
*);
2348 /* A pattern that matches the state. */
2349 merge_pattern_info
*pattern
;
2351 /* If we decide to use this match and create a subroutine for PATTERN,
2352 the state should pass the rtx at position ROOT to the pattern's
2353 rtx parameter. A null root means that the pattern doesn't need
2354 an rtx parameter; all the rtxes it matches come from elsewhere. */
2357 /* The parameters that should be passed to PATTERN for this state.
2358 If the array is shorter than PATTERN->params, the missing entries
2359 should be taken from the corresponding element of PATTERN->params. */
2360 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
2362 /* An earlier match for the same state, or null if none. Patterns
2363 matched by earlier entries are smaller than PATTERN. */
2364 merge_state_result
*prev
;
2367 merge_state_result::merge_state_result (merge_pattern_info
*pattern_in
,
2369 merge_state_result
*prev_in
)
2370 : pattern (pattern_in
), root (root_in
), prev (prev_in
)
2373 /* Information about a state, used while trying to match it against
2375 class merge_state_info
2378 merge_state_info (state
*);
2380 /* The state itself. */
2383 /* Index I gives information about the target of transition I. */
2384 merge_state_info
*to_states
;
2386 /* The number of transitions in S. */
2387 unsigned int num_transitions
;
2389 /* True if the state has been deleted in favor of a call to a
2393 /* The previous state that might be a merge candidate for S, or null
2394 if no previous states could be merged with S. */
2395 merge_state_info
*prev_same_test
;
2397 /* A list of pattern matches for this state. */
2398 merge_state_result
*res
;
2401 merge_state_info::merge_state_info (state
*s_in
)
2404 num_transitions (0),
2409 /* True if PAT would be useful as a subroutine. */
2412 useful_pattern_p (merge_pattern_info
*pat
)
2414 return pat
->num_statements
>= MIN_COMBINE_COST
;
2417 /* PAT2 is a subpattern of PAT1. Return true if PAT2 should be inlined
2418 into PAT1's C routine. */
2421 same_pattern_p (merge_pattern_info
*pat1
, merge_pattern_info
*pat2
)
2423 return pat1
->num_users
== pat2
->num_users
|| !useful_pattern_p (pat2
);
2426 /* PAT was previously matched against SINFO based on tentative matches
2427 for the target states of SINFO's state. Return true if the match
2428 still holds; that is, if the target states of SINFO's state still
2429 match the corresponding transitions of PAT. */
2432 valid_result_p (merge_pattern_info
*pat
, merge_state_info
*sinfo
)
2434 for (unsigned int j
= 0; j
< sinfo
->num_transitions
; ++j
)
2435 if (merge_pattern_transition
*ptrans
= pat
->transitions
[j
])
2437 merge_state_result
*to_res
= sinfo
->to_states
[j
].res
;
2438 if (!to_res
|| to_res
->pattern
!= ptrans
->to
)
2444 /* Remove any matches that are no longer valid from the head of SINFO's
2448 prune_invalid_results (merge_state_info
*sinfo
)
2450 while (sinfo
->res
&& !valid_result_p (sinfo
->res
->pattern
, sinfo
))
2452 sinfo
->res
= sinfo
->res
->prev
;
2453 gcc_assert (sinfo
->res
);
2457 /* Return true if PAT represents the biggest posssible match for SINFO;
2458 that is, if the next action of SINFO's state on return from PAT will
2459 be something that cannot be merged with any other state. */
2462 complete_result_p (merge_pattern_info
*pat
, merge_state_info
*sinfo
)
2464 for (unsigned int j
= 0; j
< sinfo
->num_transitions
; ++j
)
2465 if (sinfo
->to_states
[j
].res
&& !pat
->transitions
[j
])
2470 /* Update TO for any parameters that have been added to FROM since TO
2471 was last set. The extra parameters in FROM will be constants or
2472 instructions to duplicate earlier parameters. */
2475 update_parameters (vec
<parameter
> &to
, const vec
<parameter
> &from
)
2477 for (unsigned int i
= to
.length (); i
< from
.length (); ++i
)
2478 to
.quick_push (from
[i
]);
2481 /* Return true if A and B can be tested by a single test. If the test
2482 can be parameterised, store the parameter value for A in *PARAMA and
2483 the parameter value for B in *PARAMB, otherwise leave PARAMA and
2487 compatible_tests_p (const rtx_test
&a
, const rtx_test
&b
,
2488 parameter
*parama
, parameter
*paramb
)
2490 if (a
.kind
!= b
.kind
)
2494 case rtx_test::PREDICATE
:
2495 if (a
.u
.predicate
.data
!= b
.u
.predicate
.data
)
2497 *parama
= parameter (parameter::MODE
, false, a
.u
.predicate
.mode
);
2498 *paramb
= parameter (parameter::MODE
, false, b
.u
.predicate
.mode
);
2501 case rtx_test::SAVED_CONST_INT
:
2502 *parama
= parameter (parameter::INT
, false, a
.u
.integer
.value
);
2503 *paramb
= parameter (parameter::INT
, false, b
.u
.integer
.value
);
2511 /* PARAMS is an array of the parameters that a state is going to pass
2512 to a pattern routine. It is still incomplete; index I has a kind of
2513 parameter::UNSET if we don't yet know what the state will pass
2514 as parameter I. Try to make parameter ID equal VALUE, returning
2518 set_parameter (vec
<parameter
> ¶ms
, unsigned int id
,
2519 const parameter
&value
)
2521 if (params
[id
].type
== parameter::UNSET
)
2523 if (force_unique_params_p
)
2524 for (unsigned int i
= 0; i
< params
.length (); ++i
)
2525 if (params
[i
] == value
)
2530 return params
[id
] == value
;
2533 /* PARAMS2 is the "params" array for a pattern and PARAMS1 is the
2534 set of parameters that a particular state is going to pass to
2537 Try to extend PARAMS1 and PARAMS2 so that there is a parameter
2538 that is equal to PARAM1 for the state and has a default value of
2539 PARAM2. Parameters beginning at START were added as part of the
2540 same match and so may be reused. */
2543 add_parameter (vec
<parameter
> ¶ms1
, vec
<parameter
> ¶ms2
,
2544 const parameter
¶m1
, const parameter
¶m2
,
2545 unsigned int start
, unsigned int *res
)
2547 gcc_assert (params1
.length () == params2
.length ());
2548 gcc_assert (!param1
.is_param
&& !param2
.is_param
);
2550 for (unsigned int i
= start
; i
< params2
.length (); ++i
)
2551 if (params1
[i
] == param1
&& params2
[i
] == param2
)
2557 if (force_unique_params_p
)
2558 for (unsigned int i
= 0; i
< params2
.length (); ++i
)
2559 if (params1
[i
] == param1
|| params2
[i
] == param2
)
2562 if (params2
.length () >= MAX_PATTERN_PARAMS
)
2565 *res
= params2
.length ();
2566 params1
.quick_push (param1
);
2567 params2
.quick_push (param2
);
2571 /* If *ROOTA is nonnull, return true if the same sequence of steps are
2572 required to reach A from *ROOTA as to reach B from ROOTB. If *ROOTA
2573 is null, update it if necessary in order to make the condition hold. */
2576 merge_relative_positions (position
**roota
, position
*a
,
2577 position
*rootb
, position
*b
)
2579 if (!relative_patterns_p
)
2588 return *roota
== rootb
;
2590 /* If B does not belong to the same instruction as ROOTB, we don't
2591 start with ROOTB but instead start with a call to peep2_next_insn.
2592 In that case the sequences for B and A are identical iff B and A
2593 are themselves identical. */
2594 if (rootb
->insn_id
!= b
->insn_id
)
2598 if (!a
|| b
->type
!= a
->type
|| b
->arg
!= a
->arg
)
2608 /* A hasher of states that treats two states as "equal" if they might be
2609 merged (but trying to be more discriminating than "return true"). */
2610 struct test_pattern_hasher
: nofree_ptr_hash
<merge_state_info
>
2612 static inline hashval_t
hash (const value_type
&);
2613 static inline bool equal (const value_type
&, const compare_type
&);
2617 test_pattern_hasher::hash (merge_state_info
*const &sinfo
)
2620 decision
*d
= sinfo
->s
->singleton ();
2621 h
.add_int (d
->test
.pos_operand
+ 1);
2622 if (!relative_patterns_p
)
2623 h
.add_int (d
->test
.pos
? d
->test
.pos
->id
+ 1 : 0);
2624 h
.add_int (d
->test
.kind
);
2625 h
.add_int (sinfo
->num_transitions
);
2630 test_pattern_hasher::equal (merge_state_info
*const &sinfo1
,
2631 merge_state_info
*const &sinfo2
)
2633 decision
*d1
= sinfo1
->s
->singleton ();
2634 decision
*d2
= sinfo2
->s
->singleton ();
2635 gcc_assert (d1
&& d2
);
2637 parameter new_param1
, new_param2
;
2638 return (d1
->test
.pos_operand
== d2
->test
.pos_operand
2639 && (relative_patterns_p
|| d1
->test
.pos
== d2
->test
.pos
)
2640 && compatible_tests_p (d1
->test
, d2
->test
, &new_param1
, &new_param2
)
2641 && sinfo1
->num_transitions
== sinfo2
->num_transitions
);
2644 /* Try to make the state described by SINFO1 use the same pattern as the
2645 state described by SINFO2. Return true on success.
2647 SINFO1 and SINFO2 are known to have the same hash value. */
2650 merge_patterns (merge_state_info
*sinfo1
, merge_state_info
*sinfo2
)
2652 merge_state_result
*res2
= sinfo2
->res
;
2653 merge_pattern_info
*pat
= res2
->pattern
;
2655 /* Write to temporary arrays while matching, in case we have to abort
2656 half way through. */
2657 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params1
;
2658 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params2
;
2659 params1
.quick_grow_cleared (pat
->params
.length ());
2660 params2
.splice (pat
->params
);
2661 unsigned int start_param
= params2
.length ();
2663 /* An array for recording changes to PAT->transitions[?].params.
2664 All changes involve replacing a constant parameter with some
2665 PAT->params[N], where N is the second element of the pending_param. */
2666 typedef std::pair
<parameter
*, unsigned int> pending_param
;
2667 auto_vec
<pending_param
, 32> pending_params
;
2669 decision
*d1
= sinfo1
->s
->singleton ();
2670 decision
*d2
= sinfo2
->s
->singleton ();
2671 gcc_assert (d1
&& d2
);
2673 /* If D2 tests a position, SINFO1's root relative to D1 is the same
2674 as SINFO2's root relative to D2. */
2675 position
*root1
= 0;
2676 position
*root2
= res2
->root
;
2677 if (d2
->test
.pos_operand
< 0
2679 && !merge_relative_positions (&root1
, d1
->test
.pos
,
2680 root2
, d2
->test
.pos
))
2683 /* Check whether the patterns have the same shape. */
2684 unsigned int num_transitions
= sinfo1
->num_transitions
;
2685 gcc_assert (num_transitions
== sinfo2
->num_transitions
);
2686 for (unsigned int i
= 0; i
< num_transitions
; ++i
)
2687 if (merge_pattern_transition
*ptrans
= pat
->transitions
[i
])
2689 merge_state_result
*to1_res
= sinfo1
->to_states
[i
].res
;
2690 merge_state_result
*to2_res
= sinfo2
->to_states
[i
].res
;
2691 merge_pattern_info
*to_pat
= ptrans
->to
;
2692 gcc_assert (to2_res
&& to2_res
->pattern
== to_pat
);
2693 if (!to1_res
|| to1_res
->pattern
!= to_pat
)
2696 && !merge_relative_positions (&root1
, to1_res
->root
,
2697 root2
, to2_res
->root
))
2699 /* Match the parameters that TO1_RES passes to TO_PAT with the
2700 parameters that PAT passes to TO_PAT. */
2701 update_parameters (to1_res
->params
, to_pat
->params
);
2702 for (unsigned int j
= 0; j
< to1_res
->params
.length (); ++j
)
2704 const parameter
¶m1
= to1_res
->params
[j
];
2705 const parameter
¶m2
= ptrans
->params
[j
];
2706 gcc_assert (!param1
.is_param
);
2707 if (param2
.is_param
)
2709 if (!set_parameter (params1
, param2
.value
, param1
))
2712 else if (param1
!= param2
)
2715 if (!add_parameter (params1
, params2
,
2716 param1
, param2
, start_param
, &id
))
2718 /* Record that PAT should now pass parameter ID to TO_PAT,
2719 instead of the current contents of *PARAM2. We only
2720 make the change if the rest of the match succeeds. */
2721 pending_params
.safe_push
2722 (pending_param (&ptrans
->params
[j
], id
));
2727 unsigned int param_test
= pat
->param_test
;
2728 unsigned int param_transition
= pat
->param_transition
;
2729 bool param_test_p
= pat
->param_test_p
;
2730 bool param_transition_p
= pat
->param_transition_p
;
2732 /* If the tests don't match exactly, try to parameterize them. */
2733 parameter new_param1
, new_param2
;
2734 if (!compatible_tests_p (d1
->test
, d2
->test
, &new_param1
, &new_param2
))
2736 if (new_param1
.type
!= parameter::UNSET
)
2738 /* If the test has not already been parameterized, all existing
2739 matches use constant NEW_PARAM2. */
2742 if (!set_parameter (params1
, param_test
, new_param1
))
2745 else if (new_param1
!= new_param2
)
2747 if (!add_parameter (params1
, params2
, new_param1
, new_param2
,
2748 start_param
, ¶m_test
))
2750 param_test_p
= true;
2754 /* Match the transitions. */
2755 transition
*trans1
= d1
->first
;
2756 transition
*trans2
= d2
->first
;
2757 for (unsigned int i
= 0; i
< num_transitions
; ++i
)
2759 if (param_transition_p
|| trans1
->labels
!= trans2
->labels
)
2761 /* We can only generalize a single transition with a single
2763 if (num_transitions
!= 1
2764 || trans1
->labels
.length () != 1
2765 || trans2
->labels
.length () != 1)
2768 /* Although we can match wide-int fields, in practice it leads
2769 to some odd results for const_vectors. We end up
2770 parameterizing the first N const_ints of the vector
2771 and then (once we reach the maximum number of parameters)
2772 we go on to match the other elements exactly. */
2773 if (d1
->test
.kind
== rtx_test::WIDE_INT_FIELD
)
2776 /* See whether the label has a generalizable type. */
2777 parameter::type_enum param_type
2778 = transition_parameter_type (d1
->test
.kind
);
2779 if (param_type
== parameter::UNSET
)
2782 /* Match the labels using parameters. */
2783 new_param1
= parameter (param_type
, false, trans1
->labels
[0]);
2784 if (param_transition_p
)
2786 if (!set_parameter (params1
, param_transition
, new_param1
))
2791 new_param2
= parameter (param_type
, false, trans2
->labels
[0]);
2792 if (!add_parameter (params1
, params2
, new_param1
, new_param2
,
2793 start_param
, ¶m_transition
))
2795 param_transition_p
= true;
2798 trans1
= trans1
->next
;
2799 trans2
= trans2
->next
;
2802 /* Set any unset parameters to their default values. This occurs if some
2803 other state needed something to be parameterized in order to match SINFO2,
2804 but SINFO1 on its own does not. */
2805 for (unsigned int i
= 0; i
< params1
.length (); ++i
)
2806 if (params1
[i
].type
== parameter::UNSET
)
2807 params1
[i
] = params2
[i
];
2809 /* The match was successful. Commit all pending changes to PAT. */
2810 update_parameters (pat
->params
, params2
);
2814 FOR_EACH_VEC_ELT (pending_params
, i
, pp
)
2815 *pp
->first
= parameter (pp
->first
->type
, true, pp
->second
);
2817 pat
->param_test
= param_test
;
2818 pat
->param_transition
= param_transition
;
2819 pat
->param_test_p
= param_test_p
;
2820 pat
->param_transition_p
= param_transition_p
;
2822 /* Record the match of SINFO1. */
2823 merge_state_result
*new_res1
= new merge_state_result (pat
, root1
,
2825 new_res1
->params
.splice (params1
);
2826 sinfo1
->res
= new_res1
;
2830 /* The number of states that were removed by calling pattern routines. */
2831 static unsigned int pattern_use_states
;
2833 /* The number of states used while defining pattern routines. */
2834 static unsigned int pattern_def_states
;
2836 /* Information used while constructing a use or definition of a pattern
2838 struct create_pattern_info
2840 /* The routine itself. */
2841 pattern_routine
*routine
;
2843 /* The first unclaimed return value for this particular use or definition.
2844 We walk the substates of uses and definitions in the same order
2845 so each return value always refers to the same position within
2847 unsigned int next_result
;
2850 static void populate_pattern_routine (create_pattern_info
*,
2851 merge_state_info
*, state
*,
2852 const vec
<parameter
> &);
2854 /* SINFO matches a pattern for which we've decided to create a C routine.
2855 Return a decision that performs a call to the pattern routine,
2856 but leave the caller to add the transitions to it. Initialize CPI
2857 for this purpose. Also create a definition for the pattern routine,
2858 if it doesn't already have one.
2860 PARAMS are the parameters that SINFO passes to its pattern. */
2863 init_pattern_use (create_pattern_info
*cpi
, merge_state_info
*sinfo
,
2864 const vec
<parameter
> ¶ms
)
2866 state
*s
= sinfo
->s
;
2867 merge_state_result
*res
= sinfo
->res
;
2868 merge_pattern_info
*pat
= res
->pattern
;
2869 cpi
->routine
= pat
->routine
;
2872 /* We haven't defined the pattern routine yet, so create
2873 a definition now. */
2874 pattern_routine
*routine
= new pattern_routine
;
2875 pat
->routine
= routine
;
2876 cpi
->routine
= routine
;
2877 routine
->s
= new state
;
2878 routine
->insn_p
= false;
2879 routine
->pnum_clobbers_p
= false;
2881 /* Create an "idempotent" mapping of parameter I to parameter I.
2882 Also record the C type of each parameter to the routine. */
2883 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> def_params
;
2884 for (unsigned int i
= 0; i
< pat
->params
.length (); ++i
)
2886 def_params
.quick_push (parameter (pat
->params
[i
].type
, true, i
));
2887 routine
->param_types
.quick_push (pat
->params
[i
].type
);
2890 /* Any of the states that match the pattern could be used to
2891 create the routine definition. We might as well use SINFO
2892 since it's already to hand. This means that all positions
2893 in the definition will be relative to RES->root. */
2894 routine
->pos
= res
->root
;
2895 cpi
->next_result
= 0;
2896 populate_pattern_routine (cpi
, sinfo
, routine
->s
, def_params
);
2897 gcc_assert (cpi
->next_result
== pat
->num_results
);
2899 /* Add the routine to the global list, after the subroutines
2901 routine
->pattern_id
= patterns
.length ();
2902 patterns
.safe_push (routine
);
2905 /* Create a decision to call the routine, passing PARAMS to it. */
2906 pattern_use
*use
= new pattern_use
;
2907 use
->routine
= pat
->routine
;
2908 use
->params
.splice (params
);
2909 decision
*d
= new decision (rtx_test::pattern (res
->root
, use
));
2911 /* If the original decision could use an element of operands[] instead
2912 of an rtx variable, try to transfer it to the new decision. */
2913 if (s
->first
->test
.pos
&& res
->root
== s
->first
->test
.pos
)
2914 d
->test
.pos_operand
= s
->first
->test
.pos_operand
;
2916 cpi
->next_result
= 0;
2920 /* Make S return the next unclaimed pattern routine result for CPI. */
2923 add_pattern_acceptance (create_pattern_info
*cpi
, state
*s
)
2925 acceptance_type acceptance
;
2926 acceptance
.type
= SUBPATTERN
;
2927 acceptance
.partial_p
= false;
2928 acceptance
.u
.full
.code
= cpi
->next_result
;
2929 add_decision (s
, rtx_test::accept (acceptance
), true, false);
2930 cpi
->next_result
+= 1;
2933 /* Initialize new empty state NEWS so that it implements SINFO's pattern
2934 (here referred to as "P"). P may be the top level of a pattern routine
2935 or a subpattern that should be inlined into its parent pattern's routine
2936 (as per same_pattern_p). The choice of SINFO for a top-level pattern is
2937 arbitrary; it could be any of the states that use P. The choice for
2938 subpatterns follows the choice for the parent pattern.
2940 PARAMS gives the value of each parameter to P in terms of the parameters
2941 to the top-level pattern. If P itself is the top level pattern, PARAMS[I]
2942 is always "parameter (TYPE, true, I)". */
2945 populate_pattern_routine (create_pattern_info
*cpi
, merge_state_info
*sinfo
,
2946 state
*news
, const vec
<parameter
> ¶ms
)
2948 pattern_def_states
+= 1;
2950 decision
*d
= sinfo
->s
->singleton ();
2951 merge_pattern_info
*pat
= sinfo
->res
->pattern
;
2952 pattern_routine
*routine
= cpi
->routine
;
2954 /* Create a copy of D's test for the pattern routine and generalize it
2956 decision
*newd
= new decision (d
->test
);
2957 gcc_assert (newd
->test
.pos_operand
>= 0
2959 || common_position (newd
->test
.pos
,
2960 routine
->pos
) == routine
->pos
);
2961 if (pat
->param_test_p
)
2963 const parameter
¶m
= params
[pat
->param_test
];
2964 switch (newd
->test
.kind
)
2966 case rtx_test::PREDICATE
:
2967 newd
->test
.u
.predicate
.mode_is_param
= param
.is_param
;
2968 newd
->test
.u
.predicate
.mode
= param
.value
;
2971 case rtx_test::SAVED_CONST_INT
:
2972 newd
->test
.u
.integer
.is_param
= param
.is_param
;
2973 newd
->test
.u
.integer
.value
= param
.value
;
2981 if (d
->test
.kind
== rtx_test::C_TEST
)
2982 routine
->insn_p
= true;
2983 else if (d
->test
.kind
== rtx_test::HAVE_NUM_CLOBBERS
)
2984 routine
->pnum_clobbers_p
= true;
2985 news
->push_back (newd
);
2987 /* Fill in the transitions of NEWD. */
2989 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
2991 /* Create a new state to act as the target of the new transition. */
2992 state
*to_news
= new state
;
2993 if (merge_pattern_transition
*ptrans
= pat
->transitions
[i
])
2995 /* The pattern hasn't finished matching yet. Get the target
2996 pattern and the corresponding target state of SINFO. */
2997 merge_pattern_info
*to_pat
= ptrans
->to
;
2998 merge_state_info
*to
= sinfo
->to_states
+ i
;
2999 gcc_assert (to
->res
->pattern
== to_pat
);
3000 gcc_assert (ptrans
->params
.length () == to_pat
->params
.length ());
3002 /* Express the parameters to TO_PAT in terms of the parameters
3003 to the top-level pattern. */
3004 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> to_params
;
3005 for (unsigned int j
= 0; j
< ptrans
->params
.length (); ++j
)
3007 const parameter
¶m
= ptrans
->params
[j
];
3008 to_params
.quick_push (param
.is_param
3009 ? params
[param
.value
]
3013 if (same_pattern_p (pat
, to_pat
))
3014 /* TO_PAT is part of the current routine, so just recurse. */
3015 populate_pattern_routine (cpi
, to
, to_news
, to_params
);
3018 /* TO_PAT should be matched by calling a separate routine. */
3019 create_pattern_info sub_cpi
;
3020 decision
*subd
= init_pattern_use (&sub_cpi
, to
, to_params
);
3021 routine
->insn_p
|= sub_cpi
.routine
->insn_p
;
3022 routine
->pnum_clobbers_p
|= sub_cpi
.routine
->pnum_clobbers_p
;
3024 /* Add the pattern routine call to the new target state. */
3025 to_news
->push_back (subd
);
3027 /* Add a transition for each successful call result. */
3028 for (unsigned int j
= 0; j
< to_pat
->num_results
; ++j
)
3030 state
*res
= new state
;
3031 add_pattern_acceptance (cpi
, res
);
3032 subd
->push_back (new transition (j
, res
, false));
3037 /* This transition corresponds to a successful match. */
3038 add_pattern_acceptance (cpi
, to_news
);
3040 /* Create the transition itself, generalizing as necessary. */
3041 transition
*new_trans
= new transition (trans
->labels
, to_news
,
3043 if (pat
->param_transition_p
)
3045 const parameter
¶m
= params
[pat
->param_transition
];
3046 new_trans
->is_param
= param
.is_param
;
3047 new_trans
->labels
[0] = param
.value
;
3049 newd
->push_back (new_trans
);
3054 /* USE is a decision that calls a pattern routine and SINFO is part of the
3055 original state tree that the call is supposed to replace. Add the
3056 transitions for SINFO and its substates to USE. */
3059 populate_pattern_use (create_pattern_info
*cpi
, decision
*use
,
3060 merge_state_info
*sinfo
)
3062 pattern_use_states
+= 1;
3063 gcc_assert (!sinfo
->merged_p
);
3064 sinfo
->merged_p
= true;
3065 merge_state_result
*res
= sinfo
->res
;
3066 merge_pattern_info
*pat
= res
->pattern
;
3067 decision
*d
= sinfo
->s
->singleton ();
3069 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
3071 if (pat
->transitions
[i
])
3072 /* The target state is also part of the pattern. */
3073 populate_pattern_use (cpi
, use
, sinfo
->to_states
+ i
);
3076 /* The transition corresponds to a successful return from the
3078 use
->push_back (new transition (cpi
->next_result
, trans
->to
, false));
3079 cpi
->next_result
+= 1;
3085 /* We have decided to replace SINFO's state with a call to a pattern
3086 routine. Make the change, creating a definition of the pattern routine
3087 if it doesn't have one already. */
3090 use_pattern (merge_state_info
*sinfo
)
3092 merge_state_result
*res
= sinfo
->res
;
3093 merge_pattern_info
*pat
= res
->pattern
;
3094 state
*s
= sinfo
->s
;
3096 /* The pattern may have acquired new parameters after it was matched
3097 against SINFO. Update the parameters that SINFO passes accordingly. */
3098 update_parameters (res
->params
, pat
->params
);
3100 create_pattern_info cpi
;
3101 decision
*d
= init_pattern_use (&cpi
, sinfo
, res
->params
);
3102 populate_pattern_use (&cpi
, d
, sinfo
);
3107 /* Look through the state trees in STATES for common patterns and
3108 split them into subroutines. */
3111 split_out_patterns (vec
<merge_state_info
> &states
)
3113 unsigned int first_transition
= states
.length ();
3114 hash_table
<test_pattern_hasher
> hashtab (128);
3115 /* Stage 1: Create an order in which parent states come before their child
3116 states and in which sibling states are at consecutive locations.
3117 Having consecutive sibling states allows merge_state_info to have
3118 a single to_states pointer. */
3119 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3120 for (decision
*d
= states
[i
].s
->first
; d
; d
= d
->next
)
3121 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
3123 states
.safe_push (trans
->to
);
3124 states
[i
].num_transitions
+= 1;
3126 /* Stage 2: Now that the addresses are stable, set up the to_states
3127 pointers. Look for states that might be merged and enter them
3128 into the hash table. */
3129 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3131 merge_state_info
*sinfo
= &states
[i
];
3132 if (sinfo
->num_transitions
)
3134 sinfo
->to_states
= &states
[first_transition
];
3135 first_transition
+= sinfo
->num_transitions
;
3137 /* For simplicity, we only try to merge states that have a single
3138 decision. This is in any case the best we can do for peephole2,
3139 since whether a peephole2 ACCEPT succeeds or not depends on the
3140 specific peephole2 pattern (which is unique to each ACCEPT
3141 and so couldn't be shared between states). */
3142 if (decision
*d
= sinfo
->s
->singleton ())
3143 /* ACCEPT states are unique, so don't even try to merge them. */
3144 if (d
->test
.kind
!= rtx_test::ACCEPT
3145 && (pattern_have_num_clobbers_p
3146 || d
->test
.kind
!= rtx_test::HAVE_NUM_CLOBBERS
)
3147 && (pattern_c_test_p
3148 || d
->test
.kind
!= rtx_test::C_TEST
))
3150 merge_state_info
**slot
= hashtab
.find_slot (sinfo
, INSERT
);
3151 sinfo
->prev_same_test
= *slot
;
3155 /* Stage 3: Walk backwards through the list of states and try to merge
3156 them. This is a greedy, bottom-up match; parent nodes can only start
3157 a new leaf pattern if they fail to match when combined with all child
3158 nodes that have matching patterns.
3160 For each state we keep a list of potential matches, with each
3161 potential match being larger (and deeper) than the next match in
3162 the list. The final element in the list is a leaf pattern that
3163 matches just a single state.
3165 Each candidate pattern created in this loop is unique -- it won't
3166 have been seen by an earlier iteration. We try to match each pattern
3167 with every state that appears earlier in STATES.
3169 Because the patterns created in the loop are unique, any state
3170 that already has a match must have a final potential match that
3171 is different from any new leaf pattern. Therefore, when matching
3172 leaf patterns, we need only consider states whose list of matches
3175 The non-leaf patterns that we try are as deep as possible
3176 and are an extension of the state's previous best candidate match (PB).
3177 We need only consider states whose current potential match is also PB;
3178 any states that don't match as much as PB cannnot match the new pattern,
3179 while any states that already match more than PB must be different from
3181 for (unsigned int i2
= states
.length (); i2
-- > 0; )
3183 merge_state_info
*sinfo2
= &states
[i2
];
3185 /* Enforce the bottom-upness of the match: remove matches with later
3186 states if SINFO2's child states ended up finding a better match. */
3187 prune_invalid_results (sinfo2
);
3189 /* Do nothing if the state doesn't match a later one and if there are
3190 no earlier states it could match. */
3191 if (!sinfo2
->res
&& !sinfo2
->prev_same_test
)
3194 merge_state_result
*res2
= sinfo2
->res
;
3195 decision
*d2
= sinfo2
->s
->singleton ();
3196 position
*root2
= (d2
->test
.pos_operand
< 0 ? d2
->test
.pos
: 0);
3197 unsigned int num_transitions
= sinfo2
->num_transitions
;
3199 /* If RES2 is null then SINFO2's test in isolation has not been seen
3200 before. First try matching that on its own. */
3203 merge_pattern_info
*new_pat
3204 = new merge_pattern_info (num_transitions
);
3205 merge_state_result
*new_res2
3206 = new merge_state_result (new_pat
, root2
, res2
);
3207 sinfo2
->res
= new_res2
;
3209 new_pat
->num_statements
= !d2
->test
.single_outcome_p ();
3210 new_pat
->num_results
= num_transitions
;
3211 bool matched_p
= false;
3212 /* Look for states that don't currently match anything but
3213 can be made to match SINFO2 on its own. */
3214 for (merge_state_info
*sinfo1
= sinfo2
->prev_same_test
; sinfo1
;
3215 sinfo1
= sinfo1
->prev_same_test
)
3216 if (!sinfo1
->res
&& merge_patterns (sinfo1
, sinfo2
))
3220 /* No other states match. */
3230 /* Keep the existing pattern if it's as good as anything we'd
3231 create for SINFO2. */
3232 if (complete_result_p (res2
->pattern
, sinfo2
))
3234 res2
->pattern
->num_users
+= 1;
3238 /* Create a new pattern for SINFO2. */
3239 merge_pattern_info
*new_pat
= new merge_pattern_info (num_transitions
);
3240 merge_state_result
*new_res2
3241 = new merge_state_result (new_pat
, root2
, res2
);
3242 sinfo2
->res
= new_res2
;
3244 /* Fill in details about the pattern. */
3245 new_pat
->num_statements
= !d2
->test
.single_outcome_p ();
3246 new_pat
->num_results
= 0;
3247 for (unsigned int j
= 0; j
< num_transitions
; ++j
)
3248 if (merge_state_result
*to_res
= sinfo2
->to_states
[j
].res
)
3250 /* Count the target state as part of this pattern.
3251 First update the root position so that it can reach
3252 the target state's root. */
3256 new_res2
->root
= common_position (new_res2
->root
,
3259 new_res2
->root
= to_res
->root
;
3261 merge_pattern_info
*to_pat
= to_res
->pattern
;
3262 merge_pattern_transition
*ptrans
3263 = new merge_pattern_transition (to_pat
);
3265 /* TO_PAT may have acquired more parameters when matching
3266 states earlier in STATES than TO_RES's, but the list is
3267 now final. Make sure that TO_RES is up to date. */
3268 update_parameters (to_res
->params
, to_pat
->params
);
3270 /* Start out by assuming that every user of NEW_PAT will
3271 want to pass the same (constant) parameters as TO_RES. */
3272 update_parameters (ptrans
->params
, to_res
->params
);
3274 new_pat
->transitions
[j
] = ptrans
;
3275 new_pat
->num_statements
+= to_pat
->num_statements
;
3276 new_pat
->num_results
+= to_pat
->num_results
;
3279 /* The target state doesn't match anything and so is not part
3281 new_pat
->num_results
+= 1;
3283 /* See if any earlier states that match RES2's pattern also match
3285 bool matched_p
= false;
3286 for (merge_state_info
*sinfo1
= sinfo2
->prev_same_test
; sinfo1
;
3287 sinfo1
= sinfo1
->prev_same_test
)
3289 prune_invalid_results (sinfo1
);
3291 && sinfo1
->res
->pattern
== res2
->pattern
3292 && merge_patterns (sinfo1
, sinfo2
))
3297 /* Nothing else matches NEW_PAT, so go back to the previous
3298 pattern (possibly just a single-state one). */
3303 /* Assume that SINFO2 will use RES. At this point we don't know
3304 whether earlier states that match the same pattern will use
3305 that match or a different one. */
3306 sinfo2
->res
->pattern
->num_users
+= 1;
3308 /* Step 4: Finalize the choice of pattern for each state, ignoring
3309 patterns that were only used once. Update each pattern's size
3310 so that it doesn't include subpatterns that are going to be split
3311 out into subroutines. */
3312 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3314 merge_state_info
*sinfo
= &states
[i
];
3315 merge_state_result
*res
= sinfo
->res
;
3316 /* Wind past patterns that are only used by SINFO. */
3317 while (res
&& res
->pattern
->num_users
== 1)
3322 res
->pattern
->num_users
+= 1;
3327 /* We have a shared pattern and are now committed to the match. */
3328 merge_pattern_info
*pat
= res
->pattern
;
3329 gcc_assert (valid_result_p (pat
, sinfo
));
3331 if (!pat
->complete_p
)
3333 /* Look for subpatterns that are going to be split out and remove
3334 them from the number of statements. */
3335 for (unsigned int j
= 0; j
< sinfo
->num_transitions
; ++j
)
3336 if (merge_pattern_transition
*ptrans
= pat
->transitions
[j
])
3338 merge_pattern_info
*to_pat
= ptrans
->to
;
3339 if (!same_pattern_p (pat
, to_pat
))
3340 pat
->num_statements
-= to_pat
->num_statements
;
3342 pat
->complete_p
= true;
3345 /* Step 5: Split out the patterns. */
3346 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3348 merge_state_info
*sinfo
= &states
[i
];
3349 merge_state_result
*res
= sinfo
->res
;
3350 if (!sinfo
->merged_p
&& res
&& useful_pattern_p (res
->pattern
))
3351 use_pattern (sinfo
);
3353 fprintf (stderr
, "Shared %d out of %d states by creating %d new states,"
3355 pattern_use_states
, states
.length (), pattern_def_states
,
3356 pattern_use_states
- pattern_def_states
);
3359 /* Information about a state tree that we're considering splitting into a
3363 /* The number of pseudo-statements in the state tree. */
3364 unsigned int num_statements
;
3366 /* The approximate number of nested "if" and "switch" statements that
3367 would be required if control could fall through to a later state. */
3371 /* Pairs a transition with information about its target state. */
3372 typedef std::pair
<transition
*, state_size
> subroutine_candidate
;
3374 /* Sort two subroutine_candidates so that the one with the largest
3375 number of statements comes last. */
3378 subroutine_candidate_cmp (const void *a
, const void *b
)
3380 return int (((const subroutine_candidate
*) a
)->second
.num_statements
3381 - ((const subroutine_candidate
*) b
)->second
.num_statements
);
3384 /* Turn S into a subroutine of type TYPE and add it to PROCS. Return a new
3385 state that performs a subroutine call to S. */
3388 create_subroutine (routine_type type
, state
*s
, vec
<state
*> &procs
)
3390 procs
.safe_push (s
);
3391 acceptance_type acceptance
;
3392 acceptance
.type
= type
;
3393 acceptance
.partial_p
= true;
3394 acceptance
.u
.subroutine_id
= procs
.length ();
3395 state
*news
= new state
;
3396 add_decision (news
, rtx_test::accept (acceptance
), true, false);
3400 /* Walk state tree S, of type TYPE, and look for subtrees that would be
3401 better split into subroutines. Accumulate all such subroutines in PROCS.
3402 Return the size of the new state tree (excluding subroutines). */
3405 find_subroutines (routine_type type
, state
*s
, vec
<state
*> &procs
)
3407 auto_vec
<subroutine_candidate
, 16> candidates
;
3409 size
.num_statements
= 0;
3411 for (decision
*d
= s
->first
; d
; d
= d
->next
)
3413 if (!d
->test
.single_outcome_p ())
3414 size
.num_statements
+= 1;
3415 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
3417 /* Keep chains of simple decisions together if we know that no
3418 change of position is required. We'll output this chain as a
3419 single "if" statement, so it counts as a single nesting level. */
3420 if (d
->test
.pos
&& d
->if_statement_p ())
3423 decision
*newd
= trans
->to
->singleton ();
3426 && newd
->test
.pos_operand
< 0
3427 && newd
->test
.pos
!= d
->test
.pos
)
3428 || !newd
->if_statement_p ())
3430 if (!newd
->test
.single_outcome_p ())
3431 size
.num_statements
+= 1;
3432 trans
= newd
->singleton ();
3433 if (newd
->test
.kind
== rtx_test::SET_OP
3434 || newd
->test
.kind
== rtx_test::ACCEPT
)
3437 /* The target of TRANS is a subroutine candidate. First recurse
3438 on it to see how big it is after subroutines have been
3440 state_size to_size
= find_subroutines (type
, trans
->to
, procs
);
3441 if (d
->next
&& to_size
.depth
> MAX_DEPTH
)
3442 /* Keeping the target state in the same routine would lead
3443 to an excessive nesting of "if" and "switch" statements.
3444 Split it out into a subroutine so that it can use
3445 inverted tests that return early on failure. */
3446 trans
->to
= create_subroutine (type
, trans
->to
, procs
);
3449 size
.num_statements
+= to_size
.num_statements
;
3450 if (to_size
.num_statements
< MIN_NUM_STATEMENTS
)
3451 /* The target state is too small to be worth splitting.
3452 Keep it in the same routine as S. */
3453 size
.depth
= MAX (size
.depth
, to_size
.depth
);
3455 /* Assume for now that we'll keep the target state in the
3456 same routine as S, but record it as a subroutine candidate
3457 if S grows too big. */
3458 candidates
.safe_push (subroutine_candidate (trans
, to_size
));
3462 if (size
.num_statements
> MAX_NUM_STATEMENTS
)
3464 /* S is too big. Sort the subroutine candidates so that bigger ones
3465 are nearer the end. */
3466 candidates
.qsort (subroutine_candidate_cmp
);
3467 while (!candidates
.is_empty ()
3468 && size
.num_statements
> MAX_NUM_STATEMENTS
)
3470 /* Peel off a candidate and force it into a subroutine. */
3471 subroutine_candidate cand
= candidates
.pop ();
3472 size
.num_statements
-= cand
.second
.num_statements
;
3473 cand
.first
->to
= create_subroutine (type
, cand
.first
->to
, procs
);
3476 /* Update the depth for subroutine candidates that we decided not to
3478 for (unsigned int i
= 0; i
< candidates
.length (); ++i
)
3479 size
.depth
= MAX (size
.depth
, candidates
[i
].second
.depth
);
3484 /* Return true if, for all X, PRED (X, MODE) implies that X has mode MODE. */
3487 safe_predicate_mode (const struct pred_data
*pred
, machine_mode mode
)
3489 /* Scalar integer constants have VOIDmode. */
3490 if (GET_MODE_CLASS (mode
) == MODE_INT
3491 && (pred
->codes
[CONST_INT
]
3492 || pred
->codes
[CONST_DOUBLE
]
3493 || pred
->codes
[CONST_WIDE_INT
]
3494 || pred
->codes
[LABEL_REF
]))
3497 return !pred
->special
&& mode
!= VOIDmode
;
3500 /* Fill CODES with the set of codes that could be matched by PRED. */
3503 get_predicate_codes (const struct pred_data
*pred
, int_set
*codes
)
3505 for (int i
= 0; i
< NUM_TRUE_RTX_CODE
; ++i
)
3506 if (!pred
|| pred
->codes
[i
])
3507 codes
->safe_push (i
);
3510 /* Return true if the first path through D1 tests the same thing as D2. */
3513 has_same_test_p (decision
*d1
, decision
*d2
)
3517 if (d1
->test
== d2
->test
)
3519 d1
= d1
->first
->to
->first
;
3525 /* Return true if D1 and D2 cannot match the same rtx. All states reachable
3526 from D2 have single decisions and all those decisions have single
3530 mutually_exclusive_p (decision
*d1
, decision
*d2
)
3532 /* If one path through D1 fails to test the same thing as D2, assume
3533 that D2's test could be true for D1 and look for a later, more useful,
3534 test. This isn't as expensive as it looks in practice. */
3535 while (!has_same_test_p (d1
, d2
))
3537 d2
= d2
->singleton ()->to
->singleton ();
3541 if (d1
->test
== d2
->test
)
3543 /* Look for any transitions from D1 that have the same labels as
3544 the transition from D2. */
3545 transition
*trans2
= d2
->singleton ();
3546 for (transition
*trans1
= d1
->first
; trans1
; trans1
= trans1
->next
)
3548 int_set::iterator i1
= trans1
->labels
.begin ();
3549 int_set::iterator end1
= trans1
->labels
.end ();
3550 int_set::iterator i2
= trans2
->labels
.begin ();
3551 int_set::iterator end2
= trans2
->labels
.end ();
3552 while (i1
!= end1
&& i2
!= end2
)
3559 /* TRANS1 has some labels in common with TRANS2. Assume
3560 that D1 and D2 could match the same rtx if the target
3561 of TRANS1 could match the same rtx as D2. */
3562 for (decision
*subd1
= trans1
->to
->first
;
3563 subd1
; subd1
= subd1
->next
)
3564 if (!mutually_exclusive_p (subd1
, d2
))
3571 for (transition
*trans1
= d1
->first
; trans1
; trans1
= trans1
->next
)
3572 for (decision
*subd1
= trans1
->to
->first
; subd1
; subd1
= subd1
->next
)
3573 if (!mutually_exclusive_p (subd1
, d2
))
3578 /* Try to merge S2's decision into D1, given that they have the same test.
3579 Fail only if EXCLUDE is nonnull and the new transition would have the
3580 same labels as *EXCLUDE. When returning true, set *NEXT_S1, *NEXT_S2
3581 and *NEXT_EXCLUDE as for merge_into_state_1, or set *NEXT_S2 to null
3582 if the merge is complete. */
3585 merge_into_decision (decision
*d1
, state
*s2
, const int_set
*exclude
,
3586 state
**next_s1
, state
**next_s2
,
3587 const int_set
**next_exclude
)
3589 decision
*d2
= s2
->singleton ();
3590 transition
*trans2
= d2
->singleton ();
3592 /* Get a list of the transitions that intersect TRANS2. */
3593 auto_vec
<transition
*, 32> intersecting
;
3594 for (transition
*trans1
= d1
->first
; trans1
; trans1
= trans1
->next
)
3596 int_set::iterator i1
= trans1
->labels
.begin ();
3597 int_set::iterator end1
= trans1
->labels
.end ();
3598 int_set::iterator i2
= trans2
->labels
.begin ();
3599 int_set::iterator end2
= trans2
->labels
.end ();
3600 bool trans1_is_subset
= true;
3601 bool trans2_is_subset
= true;
3602 bool intersect_p
= false;
3603 while (i1
!= end1
&& i2
!= end2
)
3606 trans1_is_subset
= false;
3611 trans2_is_subset
= false;
3621 trans1_is_subset
= false;
3623 trans2_is_subset
= false;
3624 if (trans1_is_subset
&& trans2_is_subset
)
3626 /* There's already a transition that matches exactly.
3627 Merge the target states. */
3628 trans1
->optional
&= trans2
->optional
;
3629 *next_s1
= trans1
->to
;
3630 *next_s2
= trans2
->to
;
3634 if (trans2_is_subset
)
3636 /* TRANS1 has all the labels that TRANS2 needs. Merge S2 into
3637 the target of TRANS1, but (to avoid infinite recursion)
3638 make sure that we don't end up creating another transition
3640 *next_s1
= trans1
->to
;
3642 *next_exclude
= &trans1
->labels
;
3646 intersecting
.safe_push (trans1
);
3649 if (intersecting
.is_empty ())
3651 /* No existing labels intersect the new ones. We can just add
3653 d1
->push_back (d2
->release ());
3660 /* Take the union of the labels in INTERSECTING and TRANS2. Store the
3661 result in COMBINED and use NEXT as a temporary. */
3662 int_set tmp1
= trans2
->labels
, tmp2
;
3663 int_set
*combined
= &tmp1
, *next
= &tmp2
;
3664 for (unsigned int i
= 0; i
< intersecting
.length (); ++i
)
3666 transition
*trans1
= intersecting
[i
];
3668 next
->safe_grow (trans1
->labels
.length () + combined
->length (), true);
3669 int_set::iterator end
3670 = std::set_union (trans1
->labels
.begin (), trans1
->labels
.end (),
3671 combined
->begin (), combined
->end (),
3673 next
->truncate (end
- next
->begin ());
3674 std::swap (next
, combined
);
3677 /* Stop now if we've been told not to create a transition with these
3679 if (exclude
&& *combined
== *exclude
)
3682 /* Get the transition that should carry the new labels. */
3683 transition
*new_trans
= intersecting
[0];
3684 if (intersecting
.length () == 1)
3686 /* We're merging with one existing transition whose labels are a
3687 subset of those required. If both transitions are optional,
3688 we can just expand the set of labels so that it's suitable
3689 for both transitions. It isn't worth preserving the original
3690 transitions since we know that they can't be merged; we would
3691 need to backtrack to S2 if TRANS1->to fails. In contrast,
3692 we might be able to merge the targets of the transitions
3693 without any backtracking.
3695 If instead the existing transition is not optional, ensure that
3696 all target decisions are suitably protected. Some decisions
3697 might already have a more specific requirement than NEW_TRANS,
3698 in which case there's no point testing NEW_TRANS as well. E.g. this
3699 would have happened if a test for an (eq ...) rtx had been
3700 added to a decision that tested whether the code is suitable
3701 for comparison_operator. The original comparison_operator
3702 transition would have been non-optional and the (eq ...) test
3703 would be performed by a second decision in the target of that
3706 The remaining case -- keeping the original optional transition
3707 when adding a non-optional TRANS2 -- is a wash. Preserving
3708 the optional transition only helps if we later merge another
3709 state S3 that is mutually exclusive with S2 and whose labels
3710 belong to *COMBINED - TRANS1->labels. We can then test the
3711 original NEW_TRANS and S3 in the same decision. We keep the
3712 optional transition around for that case, but it occurs very
3714 gcc_assert (new_trans
->labels
!= *combined
);
3715 if (!new_trans
->optional
|| !trans2
->optional
)
3717 decision
*start
= 0;
3718 for (decision
*end
= new_trans
->to
->first
; end
; end
= end
->next
)
3720 if (!start
&& end
->test
!= d1
->test
)
3721 /* END belongs to a range of decisions that need to be
3722 protected by NEW_TRANS. */
3724 if (start
&& (!end
->next
|| end
->next
->test
== d1
->test
))
3726 /* Protect [START, END] with NEW_TRANS. The decisions
3727 move to NEW_S and NEW_D becomes part of NEW_TRANS->to. */
3728 state
*new_s
= new state
;
3729 decision
*new_d
= new decision (d1
->test
);
3730 new_d
->push_back (new transition (new_trans
->labels
, new_s
,
3731 new_trans
->optional
));
3732 state::range
r (start
, end
);
3733 new_trans
->to
->replace (r
, new_d
);
3734 new_s
->push_back (r
);
3736 /* Continue with an empty range. */
3739 /* Continue from the decision after NEW_D. */
3744 new_trans
->optional
= true;
3745 new_trans
->labels
= *combined
;
3749 /* We're merging more than one existing transition together.
3750 Those transitions are successfully dividing the matching space
3751 and so we want to preserve them, even if they're optional.
3753 Create a new transition with the union set of labels and make
3754 it go to a state that has the original transitions. */
3755 decision
*new_d
= new decision (d1
->test
);
3756 for (unsigned int i
= 0; i
< intersecting
.length (); ++i
)
3757 new_d
->push_back (d1
->remove (intersecting
[i
]));
3759 state
*new_s
= new state
;
3760 new_s
->push_back (new_d
);
3762 new_trans
= new transition (*combined
, new_s
, true);
3763 d1
->push_back (new_trans
);
3766 /* We now have an optional transition with labels *COMBINED. Decide
3767 whether we can use it as TRANS2 or whether we need to merge S2
3768 into the target of NEW_TRANS. */
3769 gcc_assert (new_trans
->optional
);
3770 if (new_trans
->labels
== trans2
->labels
)
3772 /* NEW_TRANS matches TRANS2. Just merge the target states. */
3773 new_trans
->optional
= trans2
->optional
;
3774 *next_s1
= new_trans
->to
;
3775 *next_s2
= trans2
->to
;
3780 /* Try to merge TRANS2 into the target of the overlapping transition,
3781 but (to prevent infinite recursion or excessive redundancy) without
3782 creating another transition of the same type. */
3783 *next_s1
= new_trans
->to
;
3785 *next_exclude
= &new_trans
->labels
;
3790 /* Make progress in merging S2 into S1, given that each state in S2
3791 has a single decision. If EXCLUDE is nonnull, avoid creating a new
3792 transition with the same test as S2's decision and with the labels
3795 Return true if there is still work to do. When returning true,
3796 set *NEXT_S1, *NEXT_S2 and *NEXT_EXCLUDE to the values that
3797 S1, S2 and EXCLUDE should have next time round.
3799 If S1 and S2 both match a particular rtx, give priority to S1. */
3802 merge_into_state_1 (state
*s1
, state
*s2
, const int_set
*exclude
,
3803 state
**next_s1
, state
**next_s2
,
3804 const int_set
**next_exclude
)
3806 decision
*d2
= s2
->singleton ();
3807 if (decision
*d1
= s1
->last
)
3809 if (d1
->test
.terminal_p ())
3810 /* D1 is an unconditional return, so S2 can never match. This can
3811 sometimes be a bug in the .md description, but might also happen
3812 if genconditions forces some conditions to true for certain
3816 /* Go backwards through the decisions in S1, stopping once we find one
3817 that could match the same thing as S2. */
3818 while (d1
->prev
&& mutually_exclusive_p (d1
, d2
))
3821 /* Search forwards from that point, merging D2 into the first
3823 for (; d1
; d1
= d1
->next
)
3825 /* If S2 performs some optional tests before testing the same thing
3826 as D1, those tests do not help to distinguish D1 and S2, so it's
3827 better to drop them. Search through such optional decisions
3828 until we find something that tests the same thing as D1. */
3832 decision
*sub_d2
= sub_s2
->singleton ();
3833 if (d1
->test
== sub_d2
->test
)
3835 /* Only apply EXCLUDE if we're testing the same thing
3837 const int_set
*sub_exclude
= (d2
== sub_d2
? exclude
: 0);
3839 /* Try to merge SUB_S2 into D1. This can only fail if
3840 it would involve creating a new transition with
3841 labels SUB_EXCLUDE. */
3842 if (merge_into_decision (d1
, sub_s2
, sub_exclude
,
3843 next_s1
, next_s2
, next_exclude
))
3844 return *next_s2
!= 0;
3846 /* Can't merge with D1; try a later decision. */
3849 transition
*sub_trans2
= sub_d2
->singleton ();
3850 if (!sub_trans2
->optional
)
3851 /* Can't merge with D1; try a later decision. */
3853 sub_s2
= sub_trans2
->to
;
3858 /* We can't merge D2 with any existing decision. Just add it to the end. */
3859 s1
->push_back (s2
->release ());
3863 /* Merge S2 into S1. If they both match a particular rtx, give
3864 priority to S1. Each state in S2 has a single decision. */
3867 merge_into_state (state
*s1
, state
*s2
)
3869 const int_set
*exclude
= 0;
3870 while (s2
&& merge_into_state_1 (s1
, s2
, exclude
, &s1
, &s2
, &exclude
))
3874 /* Pairs a pattern that needs to be matched with the rtx position at
3875 which the pattern should occur. */
3879 pattern_pos (rtx
, position
*);
3885 pattern_pos::pattern_pos (rtx pattern_in
, position
*pos_in
)
3886 : pattern (pattern_in
), pos (pos_in
)
3889 /* Compare entries according to their depth-first order. There shouldn't
3890 be two entries at the same position. */
3893 operator < (const pattern_pos
&e1
, const pattern_pos
&e2
)
3895 int diff
= compare_positions (e1
.pos
, e2
.pos
);
3896 gcc_assert (diff
!= 0 || e1
.pattern
== e2
.pattern
);
3900 /* Add new decisions to S that check whether the rtx at position POS
3901 matches PATTERN. Return the state that is reached in that case.
3902 TOP_PATTERN is the overall pattern, as passed to match_pattern_1. */
3905 match_pattern_2 (state
*s
, md_rtx_info
*info
, position
*pos
, rtx pattern
)
3907 auto_vec
<pattern_pos
, 32> worklist
;
3908 auto_vec
<pattern_pos
, 32> pred_and_mode_tests
;
3909 auto_vec
<pattern_pos
, 32> dup_tests
;
3911 worklist
.safe_push (pattern_pos (pattern
, pos
));
3912 while (!worklist
.is_empty ())
3914 pattern_pos next
= worklist
.pop ();
3915 pattern
= next
.pattern
;
3917 unsigned int reverse_s
= worklist
.length ();
3919 enum rtx_code code
= GET_CODE (pattern
);
3925 /* Add a test that the rtx matches the earlier one, but only
3926 after the structure and predicates have been checked. */
3927 dup_tests
.safe_push (pattern_pos (pattern
, pos
));
3929 /* Use the same code check as the original operand. */
3930 pattern
= find_operand (info
->def
, XINT (pattern
, 0), NULL_RTX
);
3933 case MATCH_PARALLEL
:
3936 case MATCH_OPERATOR
:
3938 const char *pred_name
= predicate_name (pattern
);
3939 const struct pred_data
*pred
= 0;
3940 if (pred_name
[0] != 0)
3942 pred
= lookup_predicate (pred_name
);
3943 /* Only report errors once per rtx. */
3944 if (code
== GET_CODE (pattern
))
3947 error_at (info
->loc
, "unknown predicate '%s' used in %s",
3948 pred_name
, GET_RTX_NAME (code
));
3949 else if (code
== MATCH_PARALLEL
3950 && pred
->singleton
!= PARALLEL
)
3951 error_at (info
->loc
, "predicate '%s' used in"
3952 " match_parallel does not allow only PARALLEL",
3957 if (code
== MATCH_PARALLEL
|| code
== MATCH_PAR_DUP
)
3959 /* Check that we have a parallel with enough elements. */
3960 s
= add_decision (s
, rtx_test::code (pos
), PARALLEL
, false);
3961 int min_len
= XVECLEN (pattern
, 2);
3962 s
= add_decision (s
, rtx_test::veclen_ge (pos
, min_len
),
3967 /* Check that the rtx has one of codes accepted by the
3968 predicate. This is necessary when matching suboperands
3969 of a MATCH_OPERATOR or MATCH_OP_DUP, since we can't
3970 call XEXP (X, N) without checking that X has at least
3973 get_predicate_codes (pred
, &codes
);
3974 bool need_codes
= (pred
3975 && (code
== MATCH_OPERATOR
3976 || code
== MATCH_OP_DUP
));
3977 s
= add_decision (s
, rtx_test::code (pos
), codes
, !need_codes
);
3980 /* Postpone the predicate check until we've checked the rest
3981 of the rtx structure. */
3982 if (code
== GET_CODE (pattern
))
3983 pred_and_mode_tests
.safe_push (pattern_pos (pattern
, pos
));
3985 /* If we need to match suboperands, add them to the worklist. */
3986 if (code
== MATCH_OPERATOR
|| code
== MATCH_PARALLEL
)
3988 position
**subpos_ptr
;
3989 enum position_type pos_type
;
3991 if (code
== MATCH_OPERATOR
|| code
== MATCH_OP_DUP
)
3993 pos_type
= POS_XEXP
;
3994 subpos_ptr
= &pos
->xexps
;
3995 i
= (code
== MATCH_OPERATOR
? 2 : 1);
3999 pos_type
= POS_XVECEXP0
;
4000 subpos_ptr
= &pos
->xvecexp0s
;
4003 for (int j
= 0; j
< XVECLEN (pattern
, i
); ++j
)
4005 position
*subpos
= next_position (subpos_ptr
, pos
,
4007 worklist
.safe_push (pattern_pos (XVECEXP (pattern
, i
, j
),
4009 subpos_ptr
= &subpos
->next
;
4017 /* Check that the rtx has the right code. */
4018 s
= add_decision (s
, rtx_test::code (pos
), code
, false);
4020 /* Queue a test for the mode if one is specified. */
4021 if (GET_MODE (pattern
) != VOIDmode
)
4022 pred_and_mode_tests
.safe_push (pattern_pos (pattern
, pos
));
4024 /* Push subrtxes onto the worklist. Match nonrtx operands now. */
4025 const char *fmt
= GET_RTX_FORMAT (code
);
4026 position
**subpos_ptr
= &pos
->xexps
;
4027 for (size_t i
= 0; fmt
[i
]; ++i
)
4029 position
*subpos
= next_position (subpos_ptr
, pos
,
4034 worklist
.safe_push (pattern_pos (XEXP (pattern
, i
),
4040 /* Make sure the vector has the right number of
4042 int length
= XVECLEN (pattern
, i
);
4043 s
= add_decision (s
, rtx_test::veclen (pos
),
4046 position
**subpos2_ptr
= &pos
->xvecexp0s
;
4047 for (int j
= 0; j
< length
; j
++)
4049 position
*subpos2
= next_position (subpos2_ptr
, pos
,
4051 rtx x
= XVECEXP (pattern
, i
, j
);
4052 worklist
.safe_push (pattern_pos (x
, subpos2
));
4053 subpos2_ptr
= &subpos2
->next
;
4059 /* Make sure that XINT (X, I) has the right value. */
4060 s
= add_decision (s
, rtx_test::int_field (pos
, i
),
4061 XINT (pattern
, i
), false);
4065 /* Make sure that REGNO (X) has the right value. */
4066 gcc_assert (i
== 0);
4067 s
= add_decision (s
, rtx_test::regno_field (pos
),
4068 REGNO (pattern
), false);
4072 /* Make sure that XWINT (X, I) has the right value. */
4073 s
= add_decision (s
, rtx_test::wide_int_field (pos
, i
),
4074 XWINT (pattern
, 0), false);
4078 /* We don't have a way of parsing polynomial offsets yet,
4079 and hopefully never will. */
4080 s
= add_decision (s
, rtx_test::subreg_field (pos
),
4081 SUBREG_BYTE (pattern
).to_constant (),
4091 subpos_ptr
= &subpos
->next
;
4096 /* Operands are pushed onto the worklist so that later indices are
4097 nearer the top. That's what we want for SETs, since a SET_SRC
4098 is a better discriminator than a SET_DEST. In other cases it's
4099 usually better to match earlier indices first. This is especially
4100 true of PARALLELs, where the first element tends to be the most
4101 individual. It's also true for commutative operators, where the
4102 canonicalization rules say that the more complex operand should
4104 if (code
!= SET
&& worklist
.length () > reverse_s
)
4105 std::reverse (&worklist
[0] + reverse_s
,
4106 &worklist
[0] + worklist
.length ());
4109 /* Sort the predicate and mode tests so that they're in depth-first order.
4110 The main goal of this is to put SET_SRC match_operands after SET_DEST
4111 match_operands and after mode checks for the enclosing SET_SRC operators
4112 (such as the mode of a PLUS in an addition instruction). The latter
4113 two types of test can determine the mode exactly, whereas a SET_SRC
4114 match_operand often has to cope with the possibility of the operand
4115 being a modeless constant integer. E.g. something that matches
4116 register_operand (x, SImode) never matches register_operand (x, DImode),
4117 but a const_int that matches immediate_operand (x, SImode) also matches
4118 immediate_operand (x, DImode). The register_operand cases can therefore
4119 be distinguished by a switch on the mode, but the immediate_operand
4121 if (pred_and_mode_tests
.length () > 1)
4122 std::sort (&pred_and_mode_tests
[0],
4123 &pred_and_mode_tests
[0] + pred_and_mode_tests
.length ());
4125 /* Add the mode and predicate tests. */
4128 FOR_EACH_VEC_ELT (pred_and_mode_tests
, i
, e
)
4130 switch (GET_CODE (e
->pattern
))
4132 case MATCH_PARALLEL
:
4135 case MATCH_OPERATOR
:
4137 int opno
= XINT (e
->pattern
, 0);
4138 num_operands
= MAX (num_operands
, opno
+ 1);
4139 const char *pred_name
= predicate_name (e
->pattern
);
4142 const struct pred_data
*pred
= lookup_predicate (pred_name
);
4143 /* Check the mode first, to distinguish things like SImode
4144 and DImode register_operands, as described above. */
4145 machine_mode mode
= GET_MODE (e
->pattern
);
4146 if (pred
&& safe_predicate_mode (pred
, mode
))
4147 s
= add_decision (s
, rtx_test::mode (e
->pos
), mode
, true);
4149 /* Assign to operands[] first, so that the rtx usually doesn't
4150 need to be live across the call to the predicate.
4152 This shouldn't cause a problem with dirtying the page,
4153 since we fully expect to assign to operands[] at some point,
4154 and since the caller usually writes to other parts of
4155 recog_data anyway. */
4156 s
= add_decision (s
, rtx_test::set_op (e
->pos
, opno
),
4158 s
= add_decision (s
, rtx_test::predicate (e
->pos
, pred
, mode
),
4162 /* Historically we've ignored the mode when there's no
4163 predicate. Just set up operands[] unconditionally. */
4164 s
= add_decision (s
, rtx_test::set_op (e
->pos
, opno
),
4170 s
= add_decision (s
, rtx_test::mode (e
->pos
),
4171 GET_MODE (e
->pattern
), false);
4176 /* Finally add rtx_equal_p checks for duplicated operands. */
4177 FOR_EACH_VEC_ELT (dup_tests
, i
, e
)
4178 s
= add_decision (s
, rtx_test::duplicate (e
->pos
, XINT (e
->pattern
, 0)),
4183 /* Add new decisions to S that make it return ACCEPTANCE if:
4185 (1) the rtx doesn't match anything already matched by S
4186 (2) the rtx matches TOP_PATTERN and
4187 (3) the C test required by INFO->def is true
4189 For peephole2, TOP_PATTERN is a SEQUENCE of the instruction patterns
4190 to match, otherwise it is a single instruction pattern. */
4193 match_pattern_1 (state
*s
, md_rtx_info
*info
, rtx pattern
,
4194 acceptance_type acceptance
)
4196 if (acceptance
.type
== PEEPHOLE2
)
4198 /* Match each individual instruction. */
4199 position
**subpos_ptr
= &peep2_insn_pos_list
;
4201 for (int i
= 0; i
< XVECLEN (pattern
, 0); ++i
)
4203 rtx x
= XVECEXP (pattern
, 0, i
);
4204 position
*subpos
= next_position (subpos_ptr
, &root_pos
,
4205 POS_PEEP2_INSN
, count
);
4207 s
= add_decision (s
, rtx_test::peep2_count (count
+ 1),
4209 s
= match_pattern_2 (s
, info
, subpos
, x
);
4210 subpos_ptr
= &subpos
->next
;
4213 acceptance
.u
.full
.u
.match_len
= count
- 1;
4217 /* Make the rtx itself. */
4218 s
= match_pattern_2 (s
, info
, &root_pos
, pattern
);
4220 /* If the match is only valid when extra clobbers are added,
4221 make sure we're able to pass that information to the caller. */
4222 if (acceptance
.type
== RECOG
&& acceptance
.u
.full
.u
.num_clobbers
)
4223 s
= add_decision (s
, rtx_test::have_num_clobbers (), true, false);
4226 /* Make sure that the C test is true. */
4227 const char *c_test
= get_c_test (info
->def
);
4228 if (maybe_eval_c_test (c_test
) != 1)
4229 s
= add_decision (s
, rtx_test::c_test (c_test
), true, false);
4231 /* Accept the pattern. */
4232 add_decision (s
, rtx_test::accept (acceptance
), true, false);
4235 /* Like match_pattern_1, but (if merge_states_p) try to merge the
4236 decisions with what's already in S, to reduce the amount of
4240 match_pattern (state
*s
, md_rtx_info
*info
, rtx pattern
,
4241 acceptance_type acceptance
)
4246 /* Add the decisions to a fresh state and then merge the full tree
4247 into the existing one. */
4248 match_pattern_1 (&root
, info
, pattern
, acceptance
);
4249 merge_into_state (s
, &root
);
4252 match_pattern_1 (s
, info
, pattern
, acceptance
);
4255 /* Begin the output file. */
4261 /* Generated automatically by the program `genrecog' from the target\n\
4262 machine description file. */\n\
4264 #define IN_TARGET_CODE 1\n\
4266 #include \"config.h\"\n\
4267 #include \"system.h\"\n\
4268 #include \"coretypes.h\"\n\
4269 #include \"backend.h\"\n\
4270 #include \"predict.h\"\n\
4271 #include \"rtl.h\"\n\
4272 #include \"memmodel.h\"\n\
4273 #include \"tm_p.h\"\n\
4274 #include \"emit-rtl.h\"\n\
4275 #include \"insn-config.h\"\n\
4276 #include \"recog.h\"\n\
4277 #include \"output.h\"\n\
4278 #include \"flags.h\"\n\
4279 #include \"df.h\"\n\
4280 #include \"resource.h\"\n\
4281 #include \"diagnostic-core.h\"\n\
4282 #include \"reload.h\"\n\
4283 #include \"regs.h\"\n\
4284 #include \"tm-constrs.h\"\n\
4288 /* `recog' contains a decision tree that recognizes whether the rtx\n\
4289 X0 is a valid instruction.\n\
4291 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
4292 returns a nonnegative number which is the insn code number for the\n\
4293 pattern that matched. This is the same as the order in the machine\n\
4294 description of the entry that matched. This number can be used as an\n\
4295 index into `insn_data' and other tables.\n");
4297 The third parameter to recog is an optional pointer to an int. If\n\
4298 present, recog will accept a pattern if it matches except for missing\n\
4299 CLOBBER expressions at the end. In that case, the value pointed to by\n\
4300 the optional pointer will be set to the number of CLOBBERs that need\n\
4301 to be added (it should be initialized to zero by the caller). If it");
4303 is set nonzero, the caller should allocate a PARALLEL of the\n\
4304 appropriate size, copy the initial entries, and call add_clobbers\n\
4305 (found in insn-emit.cc) to fill in the CLOBBERs.\n\
4309 The function split_insns returns 0 if the rtl could not\n\
4310 be split or the split rtl as an INSN list if it can be.\n\
4312 The function peephole2_insns returns 0 if the rtl could not\n\
4313 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
4314 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
4318 /* Return the C type of a parameter with type TYPE. */
4321 parameter_type_string (parameter::type_enum type
)
4325 case parameter::UNSET
:
4328 case parameter::CODE
:
4331 case parameter::MODE
:
4332 return "machine_mode";
4334 case parameter::INT
:
4337 case parameter::UINT
:
4338 return "unsigned int";
4340 case parameter::WIDE_INT
:
4341 return "HOST_WIDE_INT";
4346 /* Return true if ACCEPTANCE requires only a single C statement even in
4347 a backtracking context. */
4350 single_statement_p (const acceptance_type
&acceptance
)
4352 if (acceptance
.partial_p
)
4353 /* We need to handle failures of the subroutine. */
4355 switch (acceptance
.type
)
4362 /* False if we need to assign to pnum_clobbers. */
4363 return acceptance
.u
.full
.u
.num_clobbers
== 0;
4366 /* We need to assign to pmatch_len_ and handle null returns from the
4367 peephole2 routine. */
4373 /* Return the C failure value for a routine of type TYPE. */
4376 get_failure_return (routine_type type
)
4391 /* Indicates whether a block of code always returns or whether it can fall
4399 /* Information used while writing out code. */
4404 /* The type of routine that we're generating. */
4407 /* Maps position ids to xN variable numbers. The entry is only valid if
4408 it is less than the length of VAR_TO_ID, but this holds for every position
4409 tested by a state when writing out that state. */
4410 auto_vec
<unsigned int> id_to_var
;
4412 /* Maps xN variable numbers to position ids. */
4413 auto_vec
<unsigned int> var_to_id
;
4415 /* Index N is true if variable xN has already been set. */
4416 auto_vec
<bool> seen_vars
;
4419 /* Return true if D is a call to a pattern routine and if there is some X
4420 such that the transition for pattern result N goes to a successful return
4421 with code X+N. When returning true, set *BASE_OUT to this X and *COUNT_OUT
4422 to the number of return values. (We know that every PATTERN decision has
4423 a transition for every successful return.) */
4426 terminal_pattern_p (decision
*d
, unsigned int *base_out
,
4427 unsigned int *count_out
)
4429 if (d
->test
.kind
!= rtx_test::PATTERN
)
4431 unsigned int base
= 0;
4432 unsigned int count
= 0;
4433 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
4435 if (trans
->is_param
|| trans
->labels
.length () != 1)
4437 decision
*subd
= trans
->to
->singleton ();
4438 if (!subd
|| subd
->test
.kind
!= rtx_test::ACCEPT
)
4440 unsigned int this_base
= (subd
->test
.u
.acceptance
.u
.full
.code
4441 - trans
->labels
[0]);
4442 if (trans
== d
->first
)
4444 else if (base
!= this_base
)
4453 /* Return true if TEST doesn't test an rtx or if the rtx it tests is
4454 already available in state OS. */
4457 test_position_available_p (output_state
*os
, const rtx_test
&test
)
4460 || test
.pos_operand
>= 0
4461 || os
->seen_vars
[os
->id_to_var
[test
.pos
->id
]]);
4464 /* Like printf, but print INDENT spaces at the beginning. */
4466 static void ATTRIBUTE_PRINTF_2
4467 printf_indent (unsigned int indent
, const char *format
, ...)
4470 va_start (ap
, format
);
4471 printf ("%*s", indent
, "");
4472 vprintf (format
, ap
);
4476 /* Emit code to initialize the variable associated with POS, if it isn't
4477 already valid in state OS. Indent each line by INDENT spaces. Update
4478 OS with the new state. */
4481 change_state (output_state
*os
, position
*pos
, unsigned int indent
)
4483 unsigned int var
= os
->id_to_var
[pos
->id
];
4484 gcc_assert (var
< os
->var_to_id
.length () && os
->var_to_id
[var
] == pos
->id
);
4485 if (os
->seen_vars
[var
])
4489 case POS_PEEP2_INSN
:
4490 printf_indent (indent
, "x%d = PATTERN (peep2_next_insn (%d));\n",
4495 change_state (os
, pos
->base
, indent
);
4496 printf_indent (indent
, "x%d = XEXP (x%d, %d);\n",
4497 var
, os
->id_to_var
[pos
->base
->id
], pos
->arg
);
4501 change_state (os
, pos
->base
, indent
);
4502 printf_indent (indent
, "x%d = XVECEXP (x%d, 0, %d);\n",
4503 var
, os
->id_to_var
[pos
->base
->id
], pos
->arg
);
4506 os
->seen_vars
[var
] = true;
4509 /* Print the enumerator constant for CODE -- the upcase version of
4513 print_code (enum rtx_code code
)
4516 for (p
= GET_RTX_NAME (code
); *p
; p
++)
4517 putchar (TOUPPER (*p
));
4520 /* Emit a uint64_t as an integer constant expression. We need to take
4521 special care to avoid "decimal constant is so large that it is unsigned"
4522 warnings in the resulting code. */
4525 print_host_wide_int (uint64_t val
)
4527 uint64_t min
= uint64_t (1) << (HOST_BITS_PER_WIDE_INT
- 1);
4529 printf ("(" HOST_WIDE_INT_PRINT_DEC_C
" - 1)", val
+ 1);
4531 printf (HOST_WIDE_INT_PRINT_DEC_C
, val
);
4534 /* Print the C expression for actual parameter PARAM. */
4537 print_parameter_value (const parameter
¶m
)
4540 printf ("i%d", (int) param
.value
+ 1);
4544 case parameter::UNSET
:
4548 case parameter::CODE
:
4549 print_code ((enum rtx_code
) param
.value
);
4552 case parameter::MODE
:
4553 printf ("E_%smode", GET_MODE_NAME ((machine_mode
) param
.value
));
4556 case parameter::INT
:
4557 printf ("%d", (int) param
.value
);
4560 case parameter::UINT
:
4561 printf ("%u", (unsigned int) param
.value
);
4564 case parameter::WIDE_INT
:
4565 print_host_wide_int (param
.value
);
4570 /* Print the C expression for the rtx tested by TEST. */
4573 print_test_rtx (output_state
*os
, const rtx_test
&test
)
4575 if (test
.pos_operand
>= 0)
4576 printf ("operands[%d]", test
.pos_operand
);
4578 printf ("x%d", os
->id_to_var
[test
.pos
->id
]);
4581 /* Print the C expression for non-boolean test TEST. */
4584 print_nonbool_test (output_state
*os
, const rtx_test
&test
)
4588 case rtx_test::CODE
:
4589 printf ("GET_CODE (");
4590 print_test_rtx (os
, test
);
4594 case rtx_test::MODE
:
4595 printf ("GET_MODE (");
4596 print_test_rtx (os
, test
);
4600 case rtx_test::VECLEN
:
4601 printf ("XVECLEN (");
4602 print_test_rtx (os
, test
);
4606 case rtx_test::INT_FIELD
:
4608 print_test_rtx (os
, test
);
4609 printf (", %d)", test
.u
.opno
);
4612 case rtx_test::REGNO_FIELD
:
4614 print_test_rtx (os
, test
);
4618 case rtx_test::SUBREG_FIELD
:
4619 printf ("SUBREG_BYTE (");
4620 print_test_rtx (os
, test
);
4622 printf (".to_constant ()");
4625 case rtx_test::WIDE_INT_FIELD
:
4627 print_test_rtx (os
, test
);
4628 printf (", %d)", test
.u
.opno
);
4631 case rtx_test::PATTERN
:
4633 pattern_routine
*routine
= test
.u
.pattern
->routine
;
4634 printf ("pattern%d (", routine
->pattern_id
);
4635 const char *sep
= "";
4638 print_test_rtx (os
, test
);
4641 if (routine
->insn_p
)
4643 printf ("%sinsn", sep
);
4646 if (routine
->pnum_clobbers_p
)
4648 printf ("%spnum_clobbers", sep
);
4651 for (unsigned int i
= 0; i
< test
.u
.pattern
->params
.length (); ++i
)
4653 fputs (sep
, stdout
);
4654 print_parameter_value (test
.u
.pattern
->params
[i
]);
4661 case rtx_test::PEEP2_COUNT
:
4662 case rtx_test::VECLEN_GE
:
4663 case rtx_test::SAVED_CONST_INT
:
4664 case rtx_test::DUPLICATE
:
4665 case rtx_test::PREDICATE
:
4666 case rtx_test::SET_OP
:
4667 case rtx_test::HAVE_NUM_CLOBBERS
:
4668 case rtx_test::C_TEST
:
4669 case rtx_test::ACCEPT
:
4674 /* IS_PARAM and LABEL are taken from a transition whose source
4675 decision performs TEST. Print the C code for the label. */
4678 print_label_value (const rtx_test
&test
, bool is_param
, uint64_t value
)
4680 print_parameter_value (parameter (transition_parameter_type (test
.kind
),
4684 /* If IS_PARAM, print code to compare TEST with the C variable i<VALUE+1>.
4685 If !IS_PARAM, print code to compare TEST with the C constant VALUE.
4686 Test for inequality if INVERT_P, otherwise test for equality. */
4689 print_test (output_state
*os
, const rtx_test
&test
, bool is_param
,
4690 uint64_t value
, bool invert_p
)
4694 /* Handle the non-boolean TESTs. */
4695 case rtx_test::CODE
:
4696 case rtx_test::MODE
:
4697 case rtx_test::VECLEN
:
4698 case rtx_test::REGNO_FIELD
:
4699 case rtx_test::INT_FIELD
:
4700 case rtx_test::WIDE_INT_FIELD
:
4701 case rtx_test::PATTERN
:
4702 print_nonbool_test (os
, test
);
4703 printf (" %s ", invert_p
? "!=" : "==");
4704 print_label_value (test
, is_param
, value
);
4707 case rtx_test::SUBREG_FIELD
:
4708 printf ("%s (", invert_p
? "maybe_ne" : "known_eq");
4709 print_nonbool_test (os
, test
);
4711 print_label_value (test
, is_param
, value
);
4715 case rtx_test::SAVED_CONST_INT
:
4716 gcc_assert (!is_param
&& value
== 1);
4717 print_test_rtx (os
, test
);
4718 printf (" %s const_int_rtx[MAX_SAVED_CONST_INT + ",
4719 invert_p
? "!=" : "==");
4720 print_parameter_value (parameter (parameter::INT
,
4721 test
.u
.integer
.is_param
,
4722 test
.u
.integer
.value
));
4726 case rtx_test::PEEP2_COUNT
:
4727 gcc_assert (!is_param
&& value
== 1);
4728 printf ("peep2_current_count %s %d", invert_p
? "<" : ">=",
4732 case rtx_test::VECLEN_GE
:
4733 gcc_assert (!is_param
&& value
== 1);
4734 printf ("XVECLEN (");
4735 print_test_rtx (os
, test
);
4736 printf (", 0) %s %d", invert_p
? "<" : ">=", test
.u
.min_len
);
4739 case rtx_test::PREDICATE
:
4740 gcc_assert (!is_param
&& value
== 1);
4741 printf ("%s%s (", invert_p
? "!" : "", test
.u
.predicate
.data
->name
);
4742 print_test_rtx (os
, test
);
4744 print_parameter_value (parameter (parameter::MODE
,
4745 test
.u
.predicate
.mode_is_param
,
4746 test
.u
.predicate
.mode
));
4750 case rtx_test::DUPLICATE
:
4751 gcc_assert (!is_param
&& value
== 1);
4752 printf ("%srtx_equal_p (", invert_p
? "!" : "");
4753 print_test_rtx (os
, test
);
4754 printf (", operands[%d])", test
.u
.opno
);
4757 case rtx_test::HAVE_NUM_CLOBBERS
:
4758 gcc_assert (!is_param
&& value
== 1);
4759 printf ("pnum_clobbers %s NULL", invert_p
? "==" : "!=");
4762 case rtx_test::C_TEST
:
4763 gcc_assert (!is_param
&& value
== 1);
4766 rtx_reader_ptr
->print_c_condition (test
.u
.string
);
4769 case rtx_test::ACCEPT
:
4770 case rtx_test::SET_OP
:
4775 static exit_state
print_decision (output_state
*, decision
*,
4776 unsigned int, bool);
4778 /* Print code to perform S, indent each line by INDENT spaces.
4779 IS_FINAL is true if there are no fallback decisions to test on failure;
4780 if the state fails then the entire routine fails. */
4783 print_state (output_state
*os
, state
*s
, unsigned int indent
, bool is_final
)
4785 exit_state es
= ES_FALLTHROUGH
;
4786 for (decision
*d
= s
->first
; d
; d
= d
->next
)
4787 es
= print_decision (os
, d
, indent
, is_final
&& !d
->next
);
4788 if (es
!= ES_RETURNED
&& is_final
)
4790 printf_indent (indent
, "return %s;\n", get_failure_return (os
->type
));
4796 /* Print the code for subroutine call ACCEPTANCE (for which partial_p
4797 is known to be true). Return the C condition that indicates a successful
4801 print_subroutine_call (const acceptance_type
&acceptance
)
4803 switch (acceptance
.type
)
4809 printf ("recog_%d (x1, insn, pnum_clobbers)",
4810 acceptance
.u
.subroutine_id
);
4814 printf ("split_%d (x1, insn)", acceptance
.u
.subroutine_id
);
4815 return "!= NULL_RTX";
4818 printf ("peephole2_%d (x1, insn, pmatch_len_)",
4819 acceptance
.u
.subroutine_id
);
4820 return "!= NULL_RTX";
4825 /* Print code for the successful match described by ACCEPTANCE.
4826 INDENT and IS_FINAL are as for print_state. */
4829 print_acceptance (const acceptance_type
&acceptance
, unsigned int indent
,
4832 if (acceptance
.partial_p
)
4834 /* Defer the rest of the match to a subroutine. */
4837 printf_indent (indent
, "return ");
4838 print_subroutine_call (acceptance
);
4844 printf_indent (indent
, "res = ");
4845 const char *res_test
= print_subroutine_call (acceptance
);
4847 printf_indent (indent
, "if (res %s)\n", res_test
);
4848 printf_indent (indent
+ 2, "return res;\n");
4849 return ES_FALLTHROUGH
;
4852 switch (acceptance
.type
)
4855 printf_indent (indent
, "return %d;\n", acceptance
.u
.full
.code
);
4859 if (acceptance
.u
.full
.u
.num_clobbers
!= 0)
4860 printf_indent (indent
, "*pnum_clobbers = %d;\n",
4861 acceptance
.u
.full
.u
.num_clobbers
);
4862 printf_indent (indent
, "return %d; /* %s */\n", acceptance
.u
.full
.code
,
4863 get_insn_name (acceptance
.u
.full
.code
));
4867 printf_indent (indent
, "return gen_split_%d (insn, operands);\n",
4868 acceptance
.u
.full
.code
);
4872 printf_indent (indent
, "*pmatch_len_ = %d;\n",
4873 acceptance
.u
.full
.u
.match_len
);
4876 printf_indent (indent
, "return gen_peephole2_%d (insn, operands);\n",
4877 acceptance
.u
.full
.code
);
4882 printf_indent (indent
, "res = gen_peephole2_%d (insn, operands);\n",
4883 acceptance
.u
.full
.code
);
4884 printf_indent (indent
, "if (res != NULL_RTX)\n");
4885 printf_indent (indent
+ 2, "return res;\n");
4886 return ES_FALLTHROUGH
;
4892 /* Print code to perform D. INDENT and IS_FINAL are as for print_state. */
4895 print_decision (output_state
*os
, decision
*d
, unsigned int indent
,
4899 unsigned int base
, count
;
4901 /* Make sure the rtx under test is available either in operands[] or
4902 in an xN variable. */
4903 if (d
->test
.pos
&& d
->test
.pos_operand
< 0)
4904 change_state (os
, d
->test
.pos
, indent
);
4906 /* Look for cases where a pattern routine P1 calls another pattern routine
4907 P2 and where P1 returns X + BASE whenever P2 returns X. If IS_FINAL
4908 is true and BASE is zero we can simply use:
4910 return patternN (...);
4912 Otherwise we can use:
4914 res = patternN (...);
4918 However, if BASE is nonzero and patternN only returns 0 or -1,
4919 the usual "return BASE;" is better than "return res + BASE;".
4920 If BASE is zero, "return res;" should be better than "return 0;",
4921 since no assignment to the return register is required. */
4922 if (os
->type
== SUBPATTERN
4923 && terminal_pattern_p (d
, &base
, &count
)
4924 && (base
== 0 || count
> 1))
4926 if (is_final
&& base
== 0)
4928 printf_indent (indent
, "return ");
4929 print_nonbool_test (os
, d
->test
);
4930 printf ("; /* [-1, %d] */\n", count
- 1);
4935 printf_indent (indent
, "res = ");
4936 print_nonbool_test (os
, d
->test
);
4938 printf_indent (indent
, "if (res >= 0)\n");
4939 printf_indent (indent
+ 2, "return res");
4941 printf (" + %d", base
);
4942 printf ("; /* [%d, %d] */\n", base
, base
+ count
- 1);
4943 return ES_FALLTHROUGH
;
4946 else if (d
->test
.kind
== rtx_test::ACCEPT
)
4947 return print_acceptance (d
->test
.u
.acceptance
, indent
, is_final
);
4948 else if (d
->test
.kind
== rtx_test::SET_OP
)
4950 printf_indent (indent
, "operands[%d] = ", d
->test
.u
.opno
);
4951 print_test_rtx (os
, d
->test
);
4953 return print_state (os
, d
->singleton ()->to
, indent
, is_final
);
4955 /* Handle decisions with a single transition and a single transition
4957 else if (d
->if_statement_p (&label
))
4959 transition
*trans
= d
->singleton ();
4960 if (mark_optional_transitions_p
&& trans
->optional
)
4961 printf_indent (indent
, "/* OPTIONAL IF */\n");
4963 /* Print the condition associated with TRANS. Invert it if IS_FINAL,
4964 so that we return immediately on failure and fall through on
4966 printf_indent (indent
, "if (");
4967 print_test (os
, d
->test
, trans
->is_param
, label
, is_final
);
4969 /* Look for following states that would be handled by this code
4970 on recursion. If they don't need any preparatory statements,
4971 include them in the current "if" statement rather than creating
4975 d
= trans
->to
->singleton ();
4977 || d
->test
.kind
== rtx_test::ACCEPT
4978 || d
->test
.kind
== rtx_test::SET_OP
4979 || !d
->if_statement_p (&label
)
4980 || !test_position_available_p (os
, d
->test
))
4984 if (mark_optional_transitions_p
&& trans
->optional
)
4985 printf_indent (indent
+ 4, "/* OPTIONAL IF */\n");
4986 printf_indent (indent
+ 4, "%s ", is_final
? "||" : "&&");
4987 print_test (os
, d
->test
, trans
->is_param
, label
, is_final
);
4991 /* Print the conditional code with INDENT + 2 and the fallthrough
4992 code with indent INDENT. */
4993 state
*to
= trans
->to
;
4996 /* We inverted the condition above, so return failure in the
4997 "if" body and fall through to the target of the transition. */
4998 printf_indent (indent
+ 2, "return %s;\n",
4999 get_failure_return (os
->type
));
5000 return print_state (os
, to
, indent
, is_final
);
5002 else if (to
->singleton ()
5003 && to
->first
->test
.kind
== rtx_test::ACCEPT
5004 && single_statement_p (to
->first
->test
.u
.acceptance
))
5006 /* The target of the transition is a simple "return" statement.
5007 It doesn't need any braces and doesn't fall through. */
5008 if (print_acceptance (to
->first
->test
.u
.acceptance
,
5009 indent
+ 2, true) != ES_RETURNED
)
5011 return ES_FALLTHROUGH
;
5015 /* The general case. Output code for the target of the transition
5016 in braces. This will not invalidate any of the xN variables
5017 that are already valid, but we mustn't rely on any that are
5018 set by the "if" body. */
5019 auto_vec
<bool, 32> old_seen
;
5020 old_seen
.safe_splice (os
->seen_vars
);
5022 printf_indent (indent
+ 2, "{\n");
5023 print_state (os
, trans
->to
, indent
+ 4, is_final
);
5024 printf_indent (indent
+ 2, "}\n");
5026 os
->seen_vars
.truncate (0);
5027 os
->seen_vars
.splice (old_seen
);
5028 return ES_FALLTHROUGH
;
5033 /* Output the decision as a switch statement. */
5034 printf_indent (indent
, "switch (");
5035 print_nonbool_test (os
, d
->test
);
5038 /* Each case statement starts with the same set of valid variables.
5039 These are also the only variables will be valid on fallthrough. */
5040 auto_vec
<bool, 32> old_seen
;
5041 old_seen
.safe_splice (os
->seen_vars
);
5043 printf_indent (indent
+ 2, "{\n");
5044 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
5046 gcc_assert (!trans
->is_param
);
5047 if (mark_optional_transitions_p
&& trans
->optional
)
5048 printf_indent (indent
+ 2, "/* OPTIONAL CASE */\n");
5049 for (int_set::iterator j
= trans
->labels
.begin ();
5050 j
!= trans
->labels
.end (); ++j
)
5052 printf_indent (indent
+ 2, "case ");
5053 print_label_value (d
->test
, trans
->is_param
, *j
);
5056 if (print_state (os
, trans
->to
, indent
+ 4, is_final
))
5058 /* The state can fall through. Add an explicit break. */
5059 gcc_assert (!is_final
);
5060 printf_indent (indent
+ 4, "break;\n");
5064 /* Restore the original set of valid variables. */
5065 os
->seen_vars
.truncate (0);
5066 os
->seen_vars
.splice (old_seen
);
5068 /* Add a default case. */
5069 printf_indent (indent
+ 2, "default:\n");
5071 printf_indent (indent
+ 4, "return %s;\n",
5072 get_failure_return (os
->type
));
5074 printf_indent (indent
+ 4, "break;\n");
5075 printf_indent (indent
+ 2, "}\n");
5076 return is_final
? ES_RETURNED
: ES_FALLTHROUGH
;
5080 /* Make sure that OS has a position variable for POS. ROOT_P is true if
5081 POS is the root position for the routine. */
5084 assign_position_var (output_state
*os
, position
*pos
, bool root_p
)
5086 unsigned int idx
= os
->id_to_var
[pos
->id
];
5087 if (idx
< os
->var_to_id
.length () && os
->var_to_id
[idx
] == pos
->id
)
5089 if (!root_p
&& pos
->type
!= POS_PEEP2_INSN
)
5090 assign_position_var (os
, pos
->base
, false);
5091 os
->id_to_var
[pos
->id
] = os
->var_to_id
.length ();
5092 os
->var_to_id
.safe_push (pos
->id
);
5095 /* Make sure that OS has the position variables required by S. */
5098 assign_position_vars (output_state
*os
, state
*s
)
5100 for (decision
*d
= s
->first
; d
; d
= d
->next
)
5102 /* Positions associated with operands can be read from the
5103 operands[] array. */
5104 if (d
->test
.pos
&& d
->test
.pos_operand
< 0)
5105 assign_position_var (os
, d
->test
.pos
, false);
5106 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
5107 assign_position_vars (os
, trans
->to
);
5111 /* Print the open brace and variable definitions for a routine that
5112 implements S. ROOT is the deepest rtx from which S can access all
5113 relevant parts of the first instruction it matches. Initialize OS
5114 so that every relevant position has an rtx variable xN and so that
5115 only ROOT's variable has a valid value. */
5118 print_subroutine_start (output_state
*os
, state
*s
, position
*root
)
5120 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED"
5121 " = &recog_data.operand[0];\n");
5122 os
->var_to_id
.truncate (0);
5123 os
->seen_vars
.truncate (0);
5126 /* Create a fake entry for position 0 so that an id_to_var of 0
5127 is always invalid. This also makes the xN variables naturally
5128 1-based rather than 0-based. */
5129 os
->var_to_id
.safe_push (num_positions
);
5131 /* Associate ROOT with x1. */
5132 assign_position_var (os
, root
, true);
5134 /* Assign xN variables to all other relevant positions. */
5135 assign_position_vars (os
, s
);
5137 /* Output the variable declarations (except for ROOT's, which is
5138 passed in as a parameter). */
5139 unsigned int num_vars
= os
->var_to_id
.length ();
5142 for (unsigned int i
= 2; i
< num_vars
; ++i
)
5143 /* Print 8 rtx variables to a line. */
5145 i
== 2 ? " rtx" : (i
- 2) % 8 == 0 ? ";\n rtx" : ",", i
);
5149 /* Say that x1 is valid and the rest aren't. */
5150 os
->seen_vars
.safe_grow_cleared (num_vars
, true);
5151 os
->seen_vars
[1] = true;
5153 if (os
->type
== SUBPATTERN
|| os
->type
== RECOG
)
5154 printf (" int res ATTRIBUTE_UNUSED;\n");
5156 printf (" rtx_insn *res ATTRIBUTE_UNUSED;\n");
5159 /* Output the definition of pattern routine ROUTINE. */
5162 print_pattern (output_state
*os
, pattern_routine
*routine
)
5164 printf ("\nstatic int\npattern%d (", routine
->pattern_id
);
5165 const char *sep
= "";
5166 /* Add the top-level rtx parameter, if any. */
5169 printf ("%srtx x1", sep
);
5172 /* Add the optional parameters. */
5173 if (routine
->insn_p
)
5175 /* We can't easily tell whether a C condition actually reads INSN,
5176 so add an ATTRIBUTE_UNUSED just in case. */
5177 printf ("%srtx_insn *insn ATTRIBUTE_UNUSED", sep
);
5180 if (routine
->pnum_clobbers_p
)
5182 printf ("%sint *pnum_clobbers", sep
);
5185 /* Add the "i" parameters. */
5186 for (unsigned int i
= 0; i
< routine
->param_types
.length (); ++i
)
5188 printf ("%s%s i%d", sep
,
5189 parameter_type_string (routine
->param_types
[i
]), i
+ 1);
5193 os
->type
= SUBPATTERN
;
5194 print_subroutine_start (os
, routine
->s
, routine
->pos
);
5195 print_state (os
, routine
->s
, 2, true);
5199 /* Output a routine of type TYPE that implements S. PROC_ID is the
5200 number of the subroutine associated with S, or 0 if S is the main
5204 print_subroutine (output_state
*os
, state
*s
, int proc_id
)
5214 printf ("static int\nrecog_%d", proc_id
);
5216 printf ("int\nrecog");
5217 printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
5218 "\trtx_insn *insn ATTRIBUTE_UNUSED,\n"
5219 "\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n");
5224 printf ("static rtx_insn *\nsplit_%d", proc_id
);
5226 printf ("rtx_insn *\nsplit_insns");
5227 printf (" (rtx x1 ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED)\n");
5232 printf ("static rtx_insn *\npeephole2_%d", proc_id
);
5234 printf ("rtx_insn *\npeephole2_insns");
5235 printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
5236 "\trtx_insn *insn ATTRIBUTE_UNUSED,\n"
5237 "\tint *pmatch_len_ ATTRIBUTE_UNUSED)\n");
5240 print_subroutine_start (os
, s
, &root_pos
);
5243 printf (" recog_data.insn = NULL;\n");
5245 print_state (os
, s
, 2, true);
5249 /* Print out a routine of type TYPE that performs ROOT. */
5252 print_subroutine_group (output_state
*os
, routine_type type
, state
*root
)
5255 if (use_subroutines_p
)
5257 /* Split ROOT up into smaller pieces, both for readability and to
5258 help the compiler. */
5259 auto_vec
<state
*> subroutines
;
5260 find_subroutines (type
, root
, subroutines
);
5262 /* Output the subroutines (but not ROOT itself). */
5265 FOR_EACH_VEC_ELT (subroutines
, i
, s
)
5266 print_subroutine (os
, s
, i
+ 1);
5268 /* Output the main routine. */
5269 print_subroutine (os
, root
, 0);
5272 /* Return the rtx pattern for the list of rtxes in a define_peephole2. */
5275 get_peephole2_pattern (md_rtx_info
*info
)
5278 rtvec vec
= XVEC (info
->def
, 0);
5279 rtx pattern
= rtx_alloc (SEQUENCE
);
5280 XVEC (pattern
, 0) = rtvec_alloc (GET_NUM_ELEM (vec
));
5281 for (i
= j
= 0; i
< GET_NUM_ELEM (vec
); i
++)
5283 rtx x
= RTVEC_ELT (vec
, i
);
5284 /* Ignore scratch register requirements. */
5285 if (GET_CODE (x
) != MATCH_SCRATCH
&& GET_CODE (x
) != MATCH_DUP
)
5287 XVECEXP (pattern
, 0, j
) = x
;
5291 XVECLEN (pattern
, 0) = j
;
5293 error_at (info
->loc
, "empty define_peephole2");
5297 /* Return true if *PATTERN_PTR is a PARALLEL in which at least one trailing
5298 rtx can be added automatically by add_clobbers. If so, update
5299 *ACCEPTANCE_PTR so that its num_clobbers field contains the number
5300 of such trailing rtxes and update *PATTERN_PTR so that it contains
5301 the pattern without those rtxes. */
5304 remove_clobbers (acceptance_type
*acceptance_ptr
, rtx
*pattern_ptr
)
5309 /* Find the last non-clobber in the parallel. */
5310 rtx pattern
= *pattern_ptr
;
5311 for (i
= XVECLEN (pattern
, 0); i
> 0; i
--)
5313 rtx x
= XVECEXP (pattern
, 0, i
- 1);
5314 if (GET_CODE (x
) != CLOBBER
5315 || (!REG_P (XEXP (x
, 0))
5316 && GET_CODE (XEXP (x
, 0)) != MATCH_SCRATCH
))
5320 if (i
== XVECLEN (pattern
, 0))
5323 /* Build a similar insn without the clobbers. */
5325 new_pattern
= XVECEXP (pattern
, 0, 0);
5328 new_pattern
= rtx_alloc (PARALLEL
);
5329 XVEC (new_pattern
, 0) = rtvec_alloc (i
);
5330 for (int j
= 0; j
< i
; ++j
)
5331 XVECEXP (new_pattern
, 0, j
) = XVECEXP (pattern
, 0, j
);
5335 acceptance_ptr
->u
.full
.u
.num_clobbers
= XVECLEN (pattern
, 0) - i
;
5336 *pattern_ptr
= new_pattern
;
5341 main (int argc
, const char **argv
)
5343 state insn_root
, split_root
, peephole2_root
;
5345 progname
= "genrecog";
5347 if (!init_rtx_reader_args (argc
, argv
))
5348 return (FATAL_EXIT_CODE
);
5352 /* Read the machine description. */
5355 while (read_md_rtx (&info
))
5359 acceptance_type acceptance
;
5360 acceptance
.partial_p
= false;
5361 acceptance
.u
.full
.code
= info
.index
;
5364 switch (GET_CODE (def
))
5368 /* Match the instruction in the original .md form. */
5369 acceptance
.type
= RECOG
;
5370 acceptance
.u
.full
.u
.num_clobbers
= 0;
5371 pattern
= add_implicit_parallel (XVEC (def
, 1));
5372 validate_pattern (pattern
, &info
, NULL_RTX
, 0);
5373 match_pattern (&insn_root
, &info
, pattern
, acceptance
);
5375 /* If the pattern is a PARALLEL with trailing CLOBBERs,
5376 allow recog_for_combine to match without the clobbers. */
5377 if (GET_CODE (pattern
) == PARALLEL
5378 && remove_clobbers (&acceptance
, &pattern
))
5379 match_pattern (&insn_root
, &info
, pattern
, acceptance
);
5384 acceptance
.type
= SPLIT
;
5385 pattern
= add_implicit_parallel (XVEC (def
, 0));
5386 validate_pattern (pattern
, &info
, NULL_RTX
, 0);
5387 match_pattern (&split_root
, &info
, pattern
, acceptance
);
5389 /* Declare the gen_split routine that we'll call if the
5390 pattern matches. The definition comes from insn-emit.cc. */
5391 printf ("extern rtx_insn *gen_split_%d (rtx_insn *, rtx *);\n",
5395 case DEFINE_PEEPHOLE2
:
5396 acceptance
.type
= PEEPHOLE2
;
5397 pattern
= get_peephole2_pattern (&info
);
5398 validate_pattern (pattern
, &info
, NULL_RTX
, 0);
5399 match_pattern (&peephole2_root
, &info
, pattern
, acceptance
);
5401 /* Declare the gen_peephole2 routine that we'll call if the
5402 pattern matches. The definition comes from insn-emit.cc. */
5403 printf ("extern rtx_insn *gen_peephole2_%d (rtx_insn *, rtx *);\n",
5413 return FATAL_EXIT_CODE
;
5417 /* Optimize each routine in turn. */
5418 optimize_subroutine_group ("recog", &insn_root
);
5419 optimize_subroutine_group ("split_insns", &split_root
);
5420 optimize_subroutine_group ("peephole2_insns", &peephole2_root
);
5423 os
.id_to_var
.safe_grow_cleared (num_positions
, true);
5425 if (use_pattern_routines_p
)
5427 /* Look for common patterns and split them out into subroutines. */
5428 auto_vec
<merge_state_info
> states
;
5429 states
.safe_push (&insn_root
);
5430 states
.safe_push (&split_root
);
5431 states
.safe_push (&peephole2_root
);
5432 split_out_patterns (states
);
5434 /* Print out the routines that we just created. */
5436 pattern_routine
*routine
;
5437 FOR_EACH_VEC_ELT (patterns
, i
, routine
)
5438 print_pattern (&os
, routine
);
5441 /* Print out the matching routines. */
5442 print_subroutine_group (&os
, RECOG
, &insn_root
);
5443 print_subroutine_group (&os
, SPLIT
, &split_root
);
5444 print_subroutine_group (&os
, PEEPHOLE2
, &peephole2_root
);
5447 return (ferror (stdout
) != 0 ? FATAL_EXIT_CODE
: SUCCESS_EXIT_CODE
);