1 /* Early (pre-RA) rematerialization
2 Copyright (C) 2017-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
26 #include "tree-pass.h"
29 #include "insn-config.h"
31 /* FIXME: The next two are only needed for gen_move_insn. */
37 #include "print-rtl.h"
40 #include "function-abi.h"
42 /* This pass runs before register allocation and implements an aggressive
43 form of rematerialization. It looks for pseudo registers R of mode M
46 (a) there are no call-preserved registers of mode M; and
47 (b) spilling R to the stack is expensive.
49 The assumption is that it's better to recompute R after each call instead
50 of spilling it, even if this extends the live ranges of other registers.
52 The motivating example for which these conditions hold are AArch64 SVE
53 vectors and predicates. Spilling them to the stack makes the frame
54 variable-sized, which we'd like to avoid if possible. It's also very
55 rare for SVE values to be "naturally" live across a call: usually this
56 happens as a result of CSE or other code motion.
58 The pass is split into the following phases:
63 First we go through all pseudo registers looking for any that meet
64 the conditions above. For each such register R, we go through each
65 instruction that defines R to see whether any of them are suitable
66 rematerialization candidates. If at least one is, we treat all the
67 instructions that define R as candidates, but record which ones are
68 not in fact suitable. These unsuitable candidates exist only for the
69 sake of calculating reaching definitions (see below).
71 A "candidate" is a single instruction that we want to rematerialize
72 and a "candidate register" is a register that is set by at least one
78 Next we sort the candidates based on the cfg postorder, so that if
79 candidate C1 uses candidate C2, C1 has a lower index than C2.
80 This is useful when iterating through candidate bitmaps.
82 Reaching definition calculation
83 ===============================
85 We then compute standard reaching-definition sets for each candidate.
86 Each set specifies which candidates might provide the current definition
87 of a live candidate register.
89 From here on, a candidate C is "live" at a point P if the candidate
90 register defined by C is live at P and if C's definition reaches P.
91 An instruction I "uses" a candidate C if I takes the register defined by
92 C as input and if C is one of the reaching definitions of that register.
94 Candidate validation and value numbering
95 ========================================
97 Next we simultaneously decide which candidates are valid and look
98 for candidates that are equivalent to each other, assigning numbers
99 to each unique candidate value. A candidate C is invalid if:
101 (a) C uses an invalid candidate;
103 (b) there is a cycle of candidate uses involving C; or
105 (c) C takes a candidate register R as input and the reaching
106 definitions of R do not have the same value number.
108 We assign a "representative" candidate C to each value number and from
109 here on replace references to other candidates with that value number
110 with references to C. It is then only possible to rematerialize a
111 register R at point P if (after this replacement) there is a single
112 reaching definition of R at P.
117 During this phase we go through each block and look for cases in which:
119 (a) an instruction I comes between two call instructions CI1 and CI2;
121 (b) I uses a candidate register R;
123 (c) a candidate C provides the only reaching definition of R; and
125 (d) C does not come between CI1 and I.
127 We then emit a copy of C after CI1, as well as the transitive closure
128 TC of the candidates used by C. The copies of TC might use the original
129 candidate registers or new temporary registers, depending on circumstances.
131 For example, if elsewhere we have:
137 C1: R1 <- f1 (R2, R3, ...) // uses C2 and C3
139 then for a block containing:
152 C1': R1 <- f1 (R2', R3', ...)
158 where R2' and R3' might be fresh registers. If instead we had:
162 I1: use R1 // uses C1
164 I2: use R3 // uses C3
168 we would keep the original R3:
173 C1': R1 <- f1 (R2', R3, ...)
175 I1: use R1 // uses C1
177 I2: use R3 // uses C3
181 We also record the last call in each block (if any) and compute:
184 The set of candidates that either (a) are defined outside the block
185 and are live after the last call or (b) are defined within the block
186 and reach the end of the last call. (We don't track whether the
187 latter values are live or not.)
190 The set of candidates that need to be rematerialized after the
191 last call in order to satisfy uses in the block itself.
194 The set of candidates that are live on entry to the block and are
195 used without an intervening call.
197 In addition, we compute the initial values of the sets required by
198 the global phase below.
203 We next compute a maximal solution to the following availability
207 The set of candidates that are live on entry to a block and can
208 be used at that point without rematerialization.
211 The set of candidates that are live on exit from a block and can
212 be used at that point without rematerialization.
215 The subset of available_out that is due to code in the block itself.
216 It contains candidates that are defined or used in the block and
217 not invalidated by a later call.
219 We then go through each block B and look for an appropriate place
220 to insert copies of required_in - available_in. Conceptually we
221 start by placing the copies at the head of B, but then move the
222 copy of a candidate C to predecessors if:
224 (a) that seems cheaper;
226 (b) there is more than one reaching definition of C's register at
229 (c) copying C would clobber a hard register that is live on entry to B.
231 Moving a copy of C to a predecessor block PB involves:
233 (1) adding C to PB's required_after_call, if PB contains a call; or
235 (2) adding C PB's required_in otherwise.
237 C is then available on output from each PB and on input to B.
239 Once all this is done, we emit instructions for the final required_in
240 and required_after_call sets. */
244 /* An invalid candidate index, used to indicate that there is more than
245 one reaching definition. */
246 const unsigned int MULTIPLE_CANDIDATES
= -1U;
248 /* Pass-specific information about one basic block. */
249 struct remat_block_info
{
250 /* The last call instruction in the block. */
253 /* The set of candidates that are live on entry to the block. NULL is
254 equivalent to an empty set. */
257 /* The set of candidates that are live on exit from the block. This might
258 reuse rd_in. NULL is equivalent to an empty set. */
261 /* The subset of RD_OUT that comes from local definitions. NULL is
262 equivalent to an empty set. */
265 /* The set of candidates that the block invalidates (because it defines
266 the register to something else, or because the register's value is
267 no longer important). NULL is equivalent to an empty set. */
270 /* The set of candidates that either (a) are defined outside the block
271 and are live after LAST_CALL or (b) are defined within the block
272 and reach the instruction after LAST_CALL. (We don't track whether
273 the latter values are live or not.)
275 Only used if LAST_CALL is nonnull. NULL is equivalent to an
277 bitmap rd_after_call
;
279 /* Candidates that are live and available without rematerialization
280 on entry to the block. NULL is equivalent to an empty set. */
283 /* Candidates that become available without rematerialization within the
284 block, and remain so on exit. NULL is equivalent to an empty set. */
285 bitmap available_locally
;
287 /* Candidates that are available without rematerialization on exit from
288 the block. This might reuse available_in or available_locally. */
289 bitmap available_out
;
291 /* Candidates that need to be rematerialized either at the start of the
292 block or before entering the block. */
295 /* Candidates that need to be rematerialized after LAST_CALL.
296 Only used if LAST_CALL is nonnull. */
297 bitmap required_after_call
;
299 /* The number of candidates in the block. */
300 unsigned int num_candidates
;
302 /* The earliest candidate in the block (i.e. the one with the
303 highest index). Only valid if NUM_CANDIDATES is nonzero. */
304 unsigned int first_candidate
;
306 /* The best (lowest) execution frequency for rematerializing REQUIRED_IN.
307 This is the execution frequency of the block if LOCAL_REMAT_CHEAPER_P,
308 otherwise it is the sum of the execution frequencies of whichever
309 predecessor blocks would do the rematerialization. */
312 /* True if the block ends with an abnormal call. */
313 unsigned int abnormal_call_p
: 1;
315 /* Used to record whether a graph traversal has visited this block. */
316 unsigned int visited_p
: 1;
318 /* True if we have calculated REMAT_FREQUENCY. */
319 unsigned int remat_frequency_valid_p
: 1;
321 /* True if it is cheaper to rematerialize candidates at the start of
322 the block, rather than moving them to predecessor blocks. */
323 unsigned int local_remat_cheaper_p
: 1;
326 /* Information about a group of candidates with the same value number. */
327 struct remat_equiv_class
{
328 /* The candidates that have the same value number. */
331 /* The candidate that was first added to MEMBERS. */
332 unsigned int earliest
;
334 /* The candidate that represents the others. This is always the one
335 with the highest index. */
336 unsigned int representative
;
339 /* Information about an instruction that we might want to rematerialize. */
340 struct remat_candidate
{
341 /* The pseudo register that the instruction sets. */
344 /* A temporary register used when rematerializing uses of this candidate,
345 if REGNO doesn't have the right value or isn't worth using. */
346 unsigned int copy_regno
;
348 /* True if we intend to rematerialize this instruction by emitting
349 a move of a constant into REGNO, false if we intend to emit a
350 copy of the original instruction. */
351 unsigned int constant_p
: 1;
353 /* True if we still think it's possible to rematerialize INSN. */
354 unsigned int can_copy_p
: 1;
356 /* Used to record whether a graph traversal has visited this candidate. */
357 unsigned int visited_p
: 1;
359 /* True if we have verified that it's possible to rematerialize INSN.
360 Once this is true, both it and CAN_COPY_P remain true. */
361 unsigned int validated_p
: 1;
363 /* True if we have "stabilized" INSN, i.e. ensured that all non-candidate
364 registers read by INSN will have the same value when rematerializing INSN.
365 Only ever true if CAN_COPY_P. */
366 unsigned int stabilized_p
: 1;
368 /* Hash value used for value numbering. */
371 /* The instruction that sets REGNO. */
374 /* If CONSTANT_P, the value that should be moved into REGNO when
375 rematerializing, otherwise the pattern of the instruction that
379 /* The set of candidates that INSN takes as input. NULL is equivalent
380 to the empty set. All candidates in this set have a higher index
381 than the current candidate. */
384 /* The set of hard registers that would be clobbered by rematerializing
385 the candidate, including (transitively) all those that would be
386 clobbered by rematerializing USES. */
389 /* The equivalence class to which the candidate belongs, or null if none. */
390 remat_equiv_class
*equiv_class
;
393 /* Hash functions used for value numbering. */
394 struct remat_candidate_hasher
: nofree_ptr_hash
<remat_candidate
>
396 typedef value_type compare_type
;
397 static hashval_t
hash (const remat_candidate
*);
398 static bool equal (const remat_candidate
*, const remat_candidate
*);
401 /* Main class for this pass. */
404 early_remat (function
*, sbitmap
);
410 bitmap
alloc_bitmap (void);
411 bitmap
get_bitmap (bitmap
*);
412 void init_temp_bitmap (bitmap
*);
413 void copy_temp_bitmap (bitmap
*, bitmap
*);
415 void dump_insn_id (rtx_insn
*);
416 void dump_candidate_bitmap (bitmap
);
417 void dump_all_candidates (void);
418 void dump_edge_list (basic_block
, bool);
419 void dump_block_info (basic_block
);
420 void dump_all_blocks (void);
422 bool interesting_regno_p (unsigned int);
423 remat_candidate
*add_candidate (rtx_insn
*, unsigned int, bool);
424 bool maybe_add_candidate (rtx_insn
*, unsigned int);
425 bool collect_candidates (void);
426 void init_block_info (void);
427 void sort_candidates (void);
428 void finalize_candidate_indices (void);
429 void record_equiv_candidates (unsigned int, unsigned int);
430 static bool rd_confluence_n (edge
);
431 static bool rd_transfer (int);
432 void compute_rd (void);
433 unsigned int canon_candidate (unsigned int);
434 void canon_bitmap (bitmap
*);
435 unsigned int resolve_reaching_def (bitmap
);
436 bool check_candidate_uses (unsigned int);
437 void compute_clobbers (unsigned int);
438 void assign_value_number (unsigned int);
439 void decide_candidate_validity (void);
440 void restrict_remat_for_unavail_regs (bitmap
, const_bitmap
);
441 void restrict_remat_for_call (bitmap
, rtx_insn
*);
442 bool stable_use_p (unsigned int);
443 void emit_copy_before (unsigned int, rtx
, rtx
);
444 void stabilize_pattern (unsigned int);
445 void replace_dest_with_copy (unsigned int);
446 void stabilize_candidate_uses (unsigned int, bitmap
, bitmap
, bitmap
,
448 void emit_remat_insns (bitmap
, bitmap
, bitmap
, rtx_insn
*);
449 bool set_available_out (remat_block_info
*);
450 void process_block (basic_block
);
451 void local_phase (void);
452 static bool avail_confluence_n (edge
);
453 static bool avail_transfer (int);
454 void compute_availability (void);
455 void unshare_available_sets (remat_block_info
*);
456 bool can_move_across_edge_p (edge
);
457 bool local_remat_cheaper_p (unsigned int);
458 bool need_to_move_candidate_p (unsigned int, unsigned int);
459 void compute_minimum_move_set (unsigned int, bitmap
);
460 void move_to_predecessors (unsigned int, bitmap
, bitmap
);
461 void choose_rematerialization_points (void);
462 void emit_remat_insns_for_block (basic_block
);
463 void global_phase (void);
465 /* The function that we're optimizing. */
468 /* The modes that we want to rematerialize. */
469 sbitmap m_selected_modes
;
471 /* All rematerialization candidates, identified by their index into the
473 auto_vec
<remat_candidate
> m_candidates
;
475 /* The set of candidate registers. */
476 bitmap_head m_candidate_regnos
;
478 /* Temporary sets. */
479 bitmap_head m_tmp_bitmap
;
483 /* Information about each basic block. */
484 auto_vec
<remat_block_info
> m_block_info
;
486 /* A mapping from register numbers to the set of associated candidates.
487 Only valid for registers in M_CANDIDATE_REGNOS. */
488 auto_vec
<bitmap
> m_regno_to_candidates
;
490 /* An obstack used for allocating bitmaps, so that we can free them all
492 bitmap_obstack m_obstack
;
494 /* A hash table of candidates used for value numbering. If a candidate
495 in the table is in an equivalence class, the candidate is marked as
496 the earliest member of the class. */
497 hash_table
<remat_candidate_hasher
> m_value_table
;
499 /* Used temporarily by callback functions. */
500 static early_remat
*er
;
505 early_remat
*early_remat::er
;
507 /* rtx_equal_p_cb callback that treats any two SCRATCHes as equal.
508 This allows us to compare two copies of a pattern, even though their
509 SCRATCHes are always distinct. */
512 scratch_equal (const_rtx
*x
, const_rtx
*y
, rtx
*nx
, rtx
*ny
)
514 if (GET_CODE (*x
) == SCRATCH
&& GET_CODE (*y
) == SCRATCH
)
523 /* Hash callback functions for remat_candidate. */
526 remat_candidate_hasher::hash (const remat_candidate
*cand
)
532 remat_candidate_hasher::equal (const remat_candidate
*cand1
,
533 const remat_candidate
*cand2
)
535 return (cand1
->regno
== cand2
->regno
536 && cand1
->constant_p
== cand2
->constant_p
537 && (cand1
->constant_p
538 ? rtx_equal_p (cand1
->remat_rtx
, cand2
->remat_rtx
)
539 : rtx_equal_p_cb (cand1
->remat_rtx
, cand2
->remat_rtx
,
541 && (!cand1
->uses
|| bitmap_equal_p (cand1
->uses
, cand2
->uses
)));
544 /* Return true if B is null or empty. */
549 return !b
|| bitmap_empty_p (b
);
552 /* Allocate a new bitmap. It will be automatically freed at the end of
556 early_remat::alloc_bitmap (void)
558 return bitmap_alloc (&m_obstack
);
561 /* Initialize *PTR to an empty bitmap if it is currently null. */
564 early_remat::get_bitmap (bitmap
*ptr
)
567 *ptr
= alloc_bitmap ();
571 /* *PTR is either null or empty. If it is null, initialize it to an
575 early_remat::init_temp_bitmap (bitmap
*ptr
)
578 *ptr
= alloc_bitmap ();
580 gcc_checking_assert (bitmap_empty_p (*ptr
));
583 /* Move *SRC to *DEST and leave *SRC empty. */
586 early_remat::copy_temp_bitmap (bitmap
*dest
, bitmap
*src
)
597 /* Print INSN's identifier to the dump file. */
600 early_remat::dump_insn_id (rtx_insn
*insn
)
602 fprintf (dump_file
, "%d[bb:%d]", INSN_UID (insn
),
603 BLOCK_FOR_INSN (insn
)->index
);
606 /* Print candidate set CANDIDATES to the dump file, with a leading space. */
609 early_remat::dump_candidate_bitmap (bitmap candidates
)
611 if (empty_p (candidates
))
613 fprintf (dump_file
, " none");
617 unsigned int cand_index
;
619 EXECUTE_IF_SET_IN_BITMAP (candidates
, 0, cand_index
, bi
)
620 fprintf (dump_file
, " %d", cand_index
);
623 /* Print information about all candidates to the dump file. */
626 early_remat::dump_all_candidates (void)
628 fprintf (dump_file
, "\n;; Candidates:\n;;\n");
629 fprintf (dump_file
, ";; %5s %5s %8s %s\n", "#", "reg", "mode", "insn");
630 fprintf (dump_file
, ";; %5s %5s %8s %s\n", "=", "===", "====", "====");
631 unsigned int cand_index
;
632 remat_candidate
*cand
;
633 FOR_EACH_VEC_ELT (m_candidates
, cand_index
, cand
)
635 fprintf (dump_file
, ";; %5d %5d %8s ", cand_index
, cand
->regno
,
636 GET_MODE_NAME (GET_MODE (regno_reg_rtx
[cand
->regno
])));
637 dump_insn_id (cand
->insn
);
638 if (!cand
->can_copy_p
)
639 fprintf (dump_file
, " -- can't copy");
640 fprintf (dump_file
, "\n");
643 fprintf (dump_file
, "\n;; Register-to-candidate mapping:\n;;\n");
646 EXECUTE_IF_SET_IN_BITMAP (&m_candidate_regnos
, 0, regno
, bi
)
648 fprintf (dump_file
, ";; %5d:", regno
);
649 dump_candidate_bitmap (m_regno_to_candidates
[regno
]);
650 fprintf (dump_file
, "\n");
654 /* Print the predecessors or successors of BB to the dump file, with a
655 leading space. DO_SUCC is true to print successors and false to print
659 early_remat::dump_edge_list (basic_block bb
, bool do_succ
)
663 FOR_EACH_EDGE (e
, ei
, do_succ
? bb
->succs
: bb
->preds
)
664 dump_edge_info (dump_file
, e
, TDF_NONE
, do_succ
);
667 /* Print information about basic block BB to the dump file. */
670 early_remat::dump_block_info (basic_block bb
)
672 remat_block_info
*info
= &m_block_info
[bb
->index
];
673 fprintf (dump_file
, ";;\n;; Block %d:", bb
->index
);
676 fprintf (dump_file
, "\n;;%*s:", width
, "predecessors");
677 dump_edge_list (bb
, false);
679 fprintf (dump_file
, "\n;;%*s:", width
, "successors");
680 dump_edge_list (bb
, true);
682 fprintf (dump_file
, "\n;;%*s: %d", width
, "frequency",
683 bb
->count
.to_frequency (m_fn
));
686 fprintf (dump_file
, "\n;;%*s: %d", width
, "last call",
687 INSN_UID (info
->last_call
));
689 if (!empty_p (info
->rd_in
))
691 fprintf (dump_file
, "\n;;%*s:", width
, "RD in");
692 dump_candidate_bitmap (info
->rd_in
);
694 if (!empty_p (info
->rd_kill
))
696 fprintf (dump_file
, "\n;;%*s:", width
, "RD kill");
697 dump_candidate_bitmap (info
->rd_kill
);
699 if (!empty_p (info
->rd_gen
))
701 fprintf (dump_file
, "\n;;%*s:", width
, "RD gen");
702 dump_candidate_bitmap (info
->rd_gen
);
704 if (!empty_p (info
->rd_after_call
))
706 fprintf (dump_file
, "\n;;%*s:", width
, "RD after call");
707 dump_candidate_bitmap (info
->rd_after_call
);
709 if (!empty_p (info
->rd_out
))
711 fprintf (dump_file
, "\n;;%*s:", width
, "RD out");
712 if (info
->rd_in
== info
->rd_out
)
713 fprintf (dump_file
, " RD in");
715 dump_candidate_bitmap (info
->rd_out
);
717 if (!empty_p (info
->available_in
))
719 fprintf (dump_file
, "\n;;%*s:", width
, "available in");
720 dump_candidate_bitmap (info
->available_in
);
722 if (!empty_p (info
->available_locally
))
724 fprintf (dump_file
, "\n;;%*s:", width
, "available locally");
725 dump_candidate_bitmap (info
->available_locally
);
727 if (!empty_p (info
->available_out
))
729 fprintf (dump_file
, "\n;;%*s:", width
, "available out");
730 if (info
->available_in
== info
->available_out
)
731 fprintf (dump_file
, " available in");
732 else if (info
->available_locally
== info
->available_out
)
733 fprintf (dump_file
, " available locally");
735 dump_candidate_bitmap (info
->available_out
);
737 if (!empty_p (info
->required_in
))
739 fprintf (dump_file
, "\n;;%*s:", width
, "required in");
740 dump_candidate_bitmap (info
->required_in
);
742 if (!empty_p (info
->required_after_call
))
744 fprintf (dump_file
, "\n;;%*s:", width
, "required after call");
745 dump_candidate_bitmap (info
->required_after_call
);
747 fprintf (dump_file
, "\n");
750 /* Print information about all basic blocks to the dump file. */
753 early_remat::dump_all_blocks (void)
756 FOR_EACH_BB_FN (bb
, m_fn
)
757 dump_block_info (bb
);
760 /* Return true if REGNO is worth rematerializing. */
763 early_remat::interesting_regno_p (unsigned int regno
)
765 /* Ignore unused registers. */
766 rtx reg
= regno_reg_rtx
[regno
];
767 if (!reg
|| DF_REG_DEF_COUNT (regno
) == 0)
770 /* Make sure the register has a mode that we want to rematerialize. */
771 if (!bitmap_bit_p (m_selected_modes
, GET_MODE (reg
)))
774 /* Ignore values that might sometimes be used uninitialized. We could
775 instead add dummy candidates for the entry block definition, and so
776 handle uses that are definitely not uninitialized, but the combination
777 of the two should be rare in practice. */
778 if (bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (m_fn
)), regno
))
784 /* Record the set of register REGNO in instruction INSN as a
785 rematerialization candidate. CAN_COPY_P is true unless we already
786 know that rematerialization is impossible (in which case the candidate
787 only exists for the reaching definition calculation).
789 The candidate's index is not fixed at this stage. */
792 early_remat::add_candidate (rtx_insn
*insn
, unsigned int regno
,
795 remat_candidate cand
;
796 memset (&cand
, 0, sizeof (cand
));
799 cand
.remat_rtx
= PATTERN (insn
);
800 cand
.can_copy_p
= can_copy_p
;
801 m_candidates
.safe_push (cand
);
803 bitmap_set_bit (&m_candidate_regnos
, regno
);
805 return &m_candidates
.last ();
808 /* Return true if we can rematerialize the set of register REGNO in
809 instruction INSN, and add it as a candidate if so. When returning
810 false, print the reason to the dump file. */
813 early_remat::maybe_add_candidate (rtx_insn
*insn
, unsigned int regno
)
815 #define FAILURE_FORMAT ";; Can't rematerialize set of reg %d in %d[bb:%d]: "
816 #define FAILURE_ARGS regno, INSN_UID (insn), BLOCK_FOR_INSN (insn)->index
818 /* The definition must come from an ordinary instruction. */
819 basic_block bb
= BLOCK_FOR_INSN (insn
);
820 if (!NONJUMP_INSN_P (insn
)
821 || (insn
== BB_END (bb
)
822 && has_abnormal_or_eh_outgoing_edge_p (bb
)))
825 fprintf (dump_file
, FAILURE_FORMAT
"insn alters control flow\n",
830 /* Prefer to rematerialize constants directly -- it's much easier. */
831 machine_mode mode
= GET_MODE (regno_reg_rtx
[regno
]);
832 if (rtx note
= find_reg_equal_equiv_note (insn
))
834 rtx val
= XEXP (note
, 0);
836 && targetm
.legitimate_constant_p (mode
, val
))
838 remat_candidate
*cand
= add_candidate (insn
, regno
, true);
839 cand
->constant_p
= true;
840 cand
->remat_rtx
= val
;
845 /* See whether the target has reasons to prevent a copy. */
846 if (targetm
.cannot_copy_insn_p
&& targetm
.cannot_copy_insn_p (insn
))
849 fprintf (dump_file
, FAILURE_FORMAT
"target forbids copying\n",
854 /* We can't copy trapping instructions. */
855 rtx pat
= PATTERN (insn
);
856 if (may_trap_p (pat
))
859 fprintf (dump_file
, FAILURE_FORMAT
"insn might trap\n", FAILURE_ARGS
);
863 /* We can't copy instructions that read memory, unless we know that
864 the contents never change. */
865 subrtx_iterator::array_type array
;
866 FOR_EACH_SUBRTX (iter
, array
, pat
, ALL
)
867 if (MEM_P (*iter
) && !MEM_READONLY_P (*iter
))
870 fprintf (dump_file
, FAILURE_FORMAT
"insn references non-constant"
871 " memory\n", FAILURE_ARGS
);
875 /* Check each defined register. */
877 FOR_EACH_INSN_DEF (ref
, insn
)
879 unsigned int def_regno
= DF_REF_REGNO (ref
);
880 if (def_regno
== regno
)
882 /* Make sure the definition is write-only. (Partial definitions,
883 such as setting the low part and clobbering the high part,
884 are otherwise OK.) */
885 if (DF_REF_FLAGS_IS_SET (ref
, DF_REF_READ_WRITE
))
888 fprintf (dump_file
, FAILURE_FORMAT
"destination is"
889 " read-modify-write\n", FAILURE_ARGS
);
895 /* The instruction can set additional registers, provided that
896 they're hard registers. This is useful for instructions
897 that alter the condition codes. */
898 if (!HARD_REGISTER_NUM_P (def_regno
))
901 fprintf (dump_file
, FAILURE_FORMAT
"insn also sets"
902 " pseudo reg %d\n", FAILURE_ARGS
, def_regno
);
908 /* If the instruction uses fixed hard registers, check that those
909 registers have the same value throughout the function. If the
910 instruction uses non-fixed hard registers, check that we can
911 replace them with pseudos. */
912 FOR_EACH_INSN_USE (ref
, insn
)
914 unsigned int use_regno
= DF_REF_REGNO (ref
);
915 if (HARD_REGISTER_NUM_P (use_regno
) && fixed_regs
[use_regno
])
917 if (rtx_unstable_p (DF_REF_REAL_REG (ref
)))
920 fprintf (dump_file
, FAILURE_FORMAT
"insn uses fixed hard reg"
921 " %d\n", FAILURE_ARGS
, use_regno
);
925 else if (HARD_REGISTER_NUM_P (use_regno
))
927 /* Allocate a dummy pseudo register and temporarily install it.
928 Make the register number depend on the mode, which should
929 provide enough sharing for match_dup while also weeding
930 out cases in which operands with different modes are
932 rtx
*loc
= DF_REF_REAL_LOC (ref
);
933 unsigned int size
= RTX_CODE_SIZE (REG
);
934 rtx new_reg
= (rtx
) alloca (size
);
935 memset (new_reg
, 0, size
);
936 PUT_CODE (new_reg
, REG
);
937 set_mode_and_regno (new_reg
, GET_MODE (*loc
),
938 LAST_VIRTUAL_REGISTER
+ 1 + GET_MODE (*loc
));
939 validate_change (insn
, loc
, new_reg
, 1);
942 bool ok_p
= verify_changes (0);
947 fprintf (dump_file
, FAILURE_FORMAT
"insn does not allow hard"
948 " register inputs to be replaced\n", FAILURE_ARGS
);
953 #undef FAILURE_FORMAT
955 add_candidate (insn
, regno
, true);
959 /* Calculate the set of rematerialization candidates. Return true if
960 we find at least one. */
963 early_remat::collect_candidates (void)
965 unsigned int nregs
= DF_REG_SIZE (df
);
966 for (unsigned int regno
= FIRST_PSEUDO_REGISTER
; regno
< nregs
; ++regno
)
967 if (interesting_regno_p (regno
))
969 /* Create candidates for all suitable definitions. */
970 bitmap_clear (&m_tmp_bitmap
);
971 unsigned int bad
= 0;
973 for (df_ref ref
= DF_REG_DEF_CHAIN (regno
); ref
;
974 ref
= DF_REF_NEXT_REG (ref
))
976 rtx_insn
*insn
= DF_REF_INSN (ref
);
977 if (maybe_add_candidate (insn
, regno
))
978 bitmap_set_bit (&m_tmp_bitmap
, id
);
984 /* If we found at least one suitable definition, add dummy
985 candidates for the rest, so that we can see which definitions
987 if (!bitmap_empty_p (&m_tmp_bitmap
) && bad
)
990 for (df_ref ref
= DF_REG_DEF_CHAIN (regno
); ref
;
991 ref
= DF_REF_NEXT_REG (ref
))
993 if (!bitmap_bit_p (&m_tmp_bitmap
, id
))
994 add_candidate (DF_REF_INSN (ref
), regno
, false);
1001 return !m_candidates
.is_empty ();
1004 /* Initialize the m_block_info array. */
1007 early_remat::init_block_info (void)
1009 unsigned int n_blocks
= last_basic_block_for_fn (m_fn
);
1010 m_block_info
.safe_grow_cleared (n_blocks
, true);
1013 /* Maps basic block indices to their position in the forward RPO. */
1014 static unsigned int *rpo_index
;
1016 /* Order remat_candidates X_IN and Y_IN according to the cfg postorder. */
1019 compare_candidates (const void *x_in
, const void *y_in
)
1021 const remat_candidate
*x
= (const remat_candidate
*) x_in
;
1022 const remat_candidate
*y
= (const remat_candidate
*) y_in
;
1023 basic_block x_bb
= BLOCK_FOR_INSN (x
->insn
);
1024 basic_block y_bb
= BLOCK_FOR_INSN (y
->insn
);
1026 /* Make X and Y follow block postorder. */
1027 return rpo_index
[y_bb
->index
] - rpo_index
[x_bb
->index
];
1029 /* Make X and Y follow a backward traversal of the containing block. */
1030 return DF_INSN_LUID (y
->insn
) - DF_INSN_LUID (x
->insn
);
1033 /* Sort the collected rematerialization candidates so that they follow
1037 early_remat::sort_candidates (void)
1039 /* Make sure the DF LUIDs are up-to-date for all the blocks we
1041 bitmap_clear (&m_tmp_bitmap
);
1042 unsigned int cand_index
;
1043 remat_candidate
*cand
;
1044 FOR_EACH_VEC_ELT (m_candidates
, cand_index
, cand
)
1046 basic_block bb
= BLOCK_FOR_INSN (cand
->insn
);
1047 if (bitmap_set_bit (&m_tmp_bitmap
, bb
->index
))
1048 df_recompute_luids (bb
);
1051 /* Create a mapping from block numbers to their position in the
1053 unsigned int n_blocks
= last_basic_block_for_fn (m_fn
);
1054 int *rpo
= df_get_postorder (DF_FORWARD
);
1055 unsigned int rpo_len
= df_get_n_blocks (DF_FORWARD
);
1056 rpo_index
= new unsigned int[n_blocks
];
1057 for (unsigned int i
= 0; i
< rpo_len
; ++i
)
1058 rpo_index
[rpo
[i
]] = i
;
1060 m_candidates
.qsort (compare_candidates
);
1065 /* Commit to the current candidate indices and initialize cross-references. */
1068 early_remat::finalize_candidate_indices (void)
1070 /* Create a bitmap for each candidate register. */
1071 m_regno_to_candidates
.safe_grow (max_reg_num (), true);
1074 EXECUTE_IF_SET_IN_BITMAP (&m_candidate_regnos
, 0, regno
, bi
)
1075 m_regno_to_candidates
[regno
] = alloc_bitmap ();
1077 /* Go through each candidate and record its index. */
1078 unsigned int cand_index
;
1079 remat_candidate
*cand
;
1080 FOR_EACH_VEC_ELT (m_candidates
, cand_index
, cand
)
1082 basic_block bb
= BLOCK_FOR_INSN (cand
->insn
);
1083 remat_block_info
*info
= &m_block_info
[bb
->index
];
1084 info
->num_candidates
+= 1;
1085 info
->first_candidate
= cand_index
;
1086 bitmap_set_bit (m_regno_to_candidates
[cand
->regno
], cand_index
);
1090 /* Record that candidates CAND1_INDEX and CAND2_INDEX are equivalent.
1091 CAND1_INDEX might already have an equivalence class, but CAND2_INDEX
1095 early_remat::record_equiv_candidates (unsigned int cand1_index
,
1096 unsigned int cand2_index
)
1099 fprintf (dump_file
, ";; Candidate %d is equivalent to candidate %d\n",
1100 cand2_index
, cand1_index
);
1102 remat_candidate
*cand1
= &m_candidates
[cand1_index
];
1103 remat_candidate
*cand2
= &m_candidates
[cand2_index
];
1104 gcc_checking_assert (!cand2
->equiv_class
);
1106 remat_equiv_class
*ec
= cand1
->equiv_class
;
1109 ec
= XOBNEW (&m_obstack
.obstack
, remat_equiv_class
);
1110 ec
->members
= alloc_bitmap ();
1111 bitmap_set_bit (ec
->members
, cand1_index
);
1112 ec
->earliest
= cand1_index
;
1113 ec
->representative
= cand1_index
;
1114 cand1
->equiv_class
= ec
;
1116 cand2
->equiv_class
= ec
;
1117 bitmap_set_bit (ec
->members
, cand2_index
);
1118 if (cand2_index
> ec
->representative
)
1119 ec
->representative
= cand2_index
;
1122 /* Propagate information from the rd_out set of E->src to the rd_in set
1123 of E->dest, when computing global reaching definitions. Return true
1124 if something changed. */
1127 early_remat::rd_confluence_n (edge e
)
1129 remat_block_info
*src
= &er
->m_block_info
[e
->src
->index
];
1130 remat_block_info
*dest
= &er
->m_block_info
[e
->dest
->index
];
1132 /* available_in temporarily contains the set of candidates whose
1133 registers are live on entry. */
1134 if (empty_p (src
->rd_out
) || empty_p (dest
->available_in
))
1137 return bitmap_ior_and_into (er
->get_bitmap (&dest
->rd_in
),
1138 src
->rd_out
, dest
->available_in
);
1141 /* Propagate information from the rd_in set of block BB_INDEX to rd_out.
1142 Return true if something changed. */
1145 early_remat::rd_transfer (int bb_index
)
1147 remat_block_info
*info
= &er
->m_block_info
[bb_index
];
1149 if (empty_p (info
->rd_in
))
1152 if (empty_p (info
->rd_kill
))
1154 gcc_checking_assert (empty_p (info
->rd_gen
));
1156 info
->rd_out
= info
->rd_in
;
1158 gcc_checking_assert (info
->rd_out
== info
->rd_in
);
1159 /* Assume that we only get called if something changed. */
1163 if (empty_p (info
->rd_gen
))
1164 return bitmap_and_compl (er
->get_bitmap (&info
->rd_out
),
1165 info
->rd_in
, info
->rd_kill
);
1167 return bitmap_ior_and_compl (er
->get_bitmap (&info
->rd_out
), info
->rd_gen
,
1168 info
->rd_in
, info
->rd_kill
);
1171 /* Calculate the rd_* sets for each block. */
1174 early_remat::compute_rd (void)
1176 /* First calculate the rd_kill and rd_gen sets, using the fact
1177 that m_candidates is sorted in order of decreasing LUID. */
1178 unsigned int cand_index
;
1179 remat_candidate
*cand
;
1180 FOR_EACH_VEC_ELT_REVERSE (m_candidates
, cand_index
, cand
)
1182 rtx_insn
*insn
= cand
->insn
;
1183 basic_block bb
= BLOCK_FOR_INSN (insn
);
1184 remat_block_info
*info
= &m_block_info
[bb
->index
];
1185 bitmap kill
= m_regno_to_candidates
[cand
->regno
];
1186 bitmap_ior_into (get_bitmap (&info
->rd_kill
), kill
);
1187 if (bitmap_bit_p (DF_LR_OUT (bb
), cand
->regno
))
1189 bitmap_and_compl_into (get_bitmap (&info
->rd_gen
), kill
);
1190 bitmap_set_bit (info
->rd_gen
, cand_index
);
1194 /* Set up the initial values of the other sets. */
1196 FOR_EACH_BB_FN (bb
, m_fn
)
1198 remat_block_info
*info
= &m_block_info
[bb
->index
];
1201 EXECUTE_IF_AND_IN_BITMAP (DF_LR_IN (bb
), &m_candidate_regnos
,
1204 /* Use available_in to record the set of candidates whose
1205 registers are live on entry (i.e. a maximum bound on rd_in). */
1206 bitmap_ior_into (get_bitmap (&info
->available_in
),
1207 m_regno_to_candidates
[regno
]);
1209 /* Add registers that die in a block to the block's kill set,
1210 so that we don't needlessly propagate them through the rest
1212 if (!bitmap_bit_p (DF_LR_OUT (bb
), regno
))
1213 bitmap_ior_into (get_bitmap (&info
->rd_kill
),
1214 m_regno_to_candidates
[regno
]);
1217 /* Initialize each block's rd_out to the minimal set (the set of
1218 local definitions). */
1219 if (!empty_p (info
->rd_gen
))
1220 bitmap_copy (get_bitmap (&info
->rd_out
), info
->rd_gen
);
1223 /* Iterate until we reach a fixed point. */
1225 bitmap_clear (&m_tmp_bitmap
);
1226 bitmap_set_range (&m_tmp_bitmap
, 0, last_basic_block_for_fn (m_fn
));
1227 df_simple_dataflow (DF_FORWARD
, NULL
, NULL
, rd_confluence_n
, rd_transfer
,
1228 &m_tmp_bitmap
, df_get_postorder (DF_FORWARD
),
1229 df_get_n_blocks (DF_FORWARD
));
1232 /* Work out which definitions reach which candidates, again taking
1233 advantage of the candidate order. */
1234 bitmap_head reaching
;
1235 bitmap_initialize (&reaching
, &m_obstack
);
1236 basic_block old_bb
= NULL
;
1237 FOR_EACH_VEC_ELT_REVERSE (m_candidates
, cand_index
, cand
)
1239 bb
= BLOCK_FOR_INSN (cand
->insn
);
1242 /* Get the definitions that reach the start of the new block. */
1243 remat_block_info
*info
= &m_block_info
[bb
->index
];
1245 bitmap_copy (&reaching
, info
->rd_in
);
1247 bitmap_clear (&reaching
);
1252 /* Process the definitions of the previous instruction. */
1253 bitmap kill
= m_regno_to_candidates
[cand
[1].regno
];
1254 bitmap_and_compl_into (&reaching
, kill
);
1255 bitmap_set_bit (&reaching
, cand_index
+ 1);
1258 if (cand
->can_copy_p
&& !cand
->constant_p
)
1261 FOR_EACH_INSN_USE (ref
, cand
->insn
)
1263 unsigned int regno
= DF_REF_REGNO (ref
);
1264 if (bitmap_bit_p (&m_candidate_regnos
, regno
))
1266 bitmap defs
= m_regno_to_candidates
[regno
];
1267 bitmap_and (&m_tmp_bitmap
, defs
, &reaching
);
1268 bitmap_ior_into (get_bitmap (&cand
->uses
), &m_tmp_bitmap
);
1273 bitmap_clear (&reaching
);
1276 /* If CAND_INDEX is in an equivalence class, return the representative
1277 of the class, otherwise return CAND_INDEX. */
1280 early_remat::canon_candidate (unsigned int cand_index
)
1282 if (remat_equiv_class
*ec
= m_candidates
[cand_index
].equiv_class
)
1283 return ec
->representative
;
1287 /* Make candidate set *PTR refer to candidates using the representative
1288 of each equivalence class. */
1291 early_remat::canon_bitmap (bitmap
*ptr
)
1293 bitmap old_set
= *ptr
;
1294 if (empty_p (old_set
))
1297 bitmap new_set
= NULL
;
1298 unsigned int old_index
;
1300 EXECUTE_IF_SET_IN_BITMAP (old_set
, 0, old_index
, bi
)
1302 unsigned int new_index
= canon_candidate (old_index
);
1303 if (old_index
!= new_index
)
1307 new_set
= alloc_bitmap ();
1308 bitmap_copy (new_set
, old_set
);
1310 bitmap_clear_bit (new_set
, old_index
);
1311 bitmap_set_bit (new_set
, new_index
);
1321 /* If the candidates in REACHING all have the same value, return the
1322 earliest instance of that value (i.e. the first one to be added
1323 to m_value_table), otherwise return MULTIPLE_CANDIDATES. */
1326 early_remat::resolve_reaching_def (bitmap reaching
)
1328 unsigned int cand_index
= bitmap_first_set_bit (reaching
);
1329 if (remat_equiv_class
*ec
= m_candidates
[cand_index
].equiv_class
)
1331 if (!bitmap_intersect_compl_p (reaching
, ec
->members
))
1332 return ec
->earliest
;
1334 else if (bitmap_single_bit_set_p (reaching
))
1337 return MULTIPLE_CANDIDATES
;
1340 /* Check whether all candidate registers used by candidate CAND_INDEX have
1341 unique definitions. Return true if so, replacing the candidate's uses
1342 set with the appropriate form for value numbering. */
1345 early_remat::check_candidate_uses (unsigned int cand_index
)
1347 remat_candidate
*cand
= &m_candidates
[cand_index
];
1349 /* Process the uses for each register in turn. */
1351 bitmap_initialize (&uses
, &m_obstack
);
1352 bitmap_copy (&uses
, cand
->uses
);
1353 bitmap uses_ec
= alloc_bitmap ();
1354 while (!bitmap_empty_p (&uses
))
1356 /* Get the register for the lowest-indexed candidate remaining,
1357 and the reaching definitions of that register. */
1358 unsigned int first
= bitmap_first_set_bit (&uses
);
1359 unsigned int regno
= m_candidates
[first
].regno
;
1360 bitmap_and (&m_tmp_bitmap
, &uses
, m_regno_to_candidates
[regno
]);
1362 /* See whether all reaching definitions have the same value and if
1363 so get the index of the first candidate we saw with that value. */
1364 unsigned int def
= resolve_reaching_def (&m_tmp_bitmap
);
1365 if (def
== MULTIPLE_CANDIDATES
)
1368 fprintf (dump_file
, ";; Removing candidate %d because there is"
1369 " more than one reaching definition of reg %d\n",
1371 cand
->can_copy_p
= false;
1374 bitmap_set_bit (uses_ec
, def
);
1375 bitmap_and_compl_into (&uses
, &m_tmp_bitmap
);
1377 BITMAP_FREE (cand
->uses
);
1378 cand
->uses
= uses_ec
;
1379 return cand
->can_copy_p
;
1382 /* Calculate the set of hard registers that would be clobbered by
1383 rematerializing candidate CAND_INDEX. At this point the candidate's
1384 set of uses is final. */
1387 early_remat::compute_clobbers (unsigned int cand_index
)
1389 remat_candidate
*cand
= &m_candidates
[cand_index
];
1392 unsigned int use_index
;
1394 EXECUTE_IF_SET_IN_BITMAP (cand
->uses
, 0, use_index
, bi
)
1395 if (bitmap clobbers
= m_candidates
[use_index
].clobbers
)
1396 bitmap_ior_into (get_bitmap (&cand
->clobbers
), clobbers
);
1400 FOR_EACH_INSN_DEF (ref
, cand
->insn
)
1402 unsigned int def_regno
= DF_REF_REGNO (ref
);
1403 if (def_regno
!= cand
->regno
)
1404 bitmap_set_bit (get_bitmap (&cand
->clobbers
), def_regno
);
1408 /* Mark candidate CAND_INDEX as validated and add it to the value table. */
1411 early_remat::assign_value_number (unsigned int cand_index
)
1413 remat_candidate
*cand
= &m_candidates
[cand_index
];
1414 gcc_checking_assert (cand
->can_copy_p
&& !cand
->validated_p
);
1416 compute_clobbers (cand_index
);
1417 cand
->validated_p
= true;
1420 h
.add_int (cand
->regno
);
1421 inchash::add_rtx (cand
->remat_rtx
, h
);
1422 cand
->hash
= h
.end ();
1424 remat_candidate
**slot
1425 = m_value_table
.find_slot_with_hash (cand
, cand
->hash
, INSERT
);
1430 fprintf (dump_file
, ";; Candidate %d is not equivalent to"
1431 " others seen so far\n", cand_index
);
1434 record_equiv_candidates (*slot
- m_candidates
.address (), cand_index
);
1437 /* Make a final decision about which candidates are valid and assign
1438 value numbers to those that are. */
1441 early_remat::decide_candidate_validity (void)
1443 auto_vec
<unsigned int, 16> stack
;
1444 unsigned int cand1_index
;
1445 remat_candidate
*cand1
;
1446 FOR_EACH_VEC_ELT_REVERSE (m_candidates
, cand1_index
, cand1
)
1448 if (!cand1
->can_copy_p
|| cand1
->validated_p
)
1451 if (empty_p (cand1
->uses
))
1453 assign_value_number (cand1_index
);
1457 stack
.safe_push (cand1_index
);
1458 while (!stack
.is_empty ())
1460 unsigned int cand2_index
= stack
.last ();
1461 unsigned int watermark
= stack
.length ();
1462 remat_candidate
*cand2
= &m_candidates
[cand2_index
];
1463 if (!cand2
->can_copy_p
|| cand2
->validated_p
)
1468 cand2
->visited_p
= true;
1469 unsigned int cand3_index
;
1471 EXECUTE_IF_SET_IN_BITMAP (cand2
->uses
, 0, cand3_index
, bi
)
1473 remat_candidate
*cand3
= &m_candidates
[cand3_index
];
1474 if (!cand3
->can_copy_p
)
1477 fprintf (dump_file
, ";; Removing candidate %d because"
1478 " it uses removed candidate %d\n", cand2_index
,
1480 cand2
->can_copy_p
= false;
1483 if (!cand3
->validated_p
)
1485 if (empty_p (cand3
->uses
))
1486 assign_value_number (cand3_index
);
1487 else if (cand3
->visited_p
)
1490 fprintf (dump_file
, ";; Removing candidate %d"
1491 " because its definition is cyclic\n",
1493 cand2
->can_copy_p
= false;
1497 stack
.safe_push (cand3_index
);
1500 if (!cand2
->can_copy_p
)
1502 cand2
->visited_p
= false;
1503 stack
.truncate (watermark
- 1);
1505 else if (watermark
== stack
.length ())
1507 cand2
->visited_p
= false;
1508 if (check_candidate_uses (cand2_index
))
1509 assign_value_number (cand2_index
);
1515 /* Ensure that the candidates always use the same candidate index
1516 to refer to an equivalence class. */
1517 FOR_EACH_VEC_ELT_REVERSE (m_candidates
, cand1_index
, cand1
)
1518 if (cand1
->can_copy_p
&& !empty_p (cand1
->uses
))
1520 canon_bitmap (&cand1
->uses
);
1521 gcc_checking_assert (bitmap_first_set_bit (cand1
->uses
) > cand1_index
);
1525 /* Remove any candidates in CANDIDATES that would clobber a register in
1529 early_remat::restrict_remat_for_unavail_regs (bitmap candidates
,
1530 const_bitmap unavail_regs
)
1532 bitmap_clear (&m_tmp_bitmap
);
1533 unsigned int cand_index
;
1535 EXECUTE_IF_SET_IN_BITMAP (candidates
, 0, cand_index
, bi
)
1537 remat_candidate
*cand
= &m_candidates
[cand_index
];
1539 && bitmap_intersect_p (cand
->clobbers
, unavail_regs
))
1540 bitmap_set_bit (&m_tmp_bitmap
, cand_index
);
1542 bitmap_and_compl_into (candidates
, &m_tmp_bitmap
);
1545 /* Remove any candidates in CANDIDATES that would clobber a register
1546 that is potentially live across CALL. */
1549 early_remat::restrict_remat_for_call (bitmap candidates
, rtx_insn
*call
)
1551 /* We don't know whether partially-clobbered registers are live
1552 across the call or not, so assume that they are. */
1553 bitmap_view
<HARD_REG_SET
> call_preserved_regs
1554 (~insn_callee_abi (call
).full_reg_clobbers ());
1555 restrict_remat_for_unavail_regs (candidates
, call_preserved_regs
);
1558 /* Assuming that every path reaching a point P contains a copy of a
1559 use U of REGNO, return true if another copy of U at P would have
1560 access to the same value of REGNO. */
1563 early_remat::stable_use_p (unsigned int regno
)
1565 /* Conservatively assume not for hard registers. */
1566 if (HARD_REGISTER_NUM_P (regno
))
1569 /* See if REGNO has a single definition and is never used uninitialized.
1570 In this case the definition of REGNO dominates the common dominator
1571 of the uses U, which in turn dominates P. */
1572 if (DF_REG_DEF_COUNT (regno
) == 1
1573 && !bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (m_fn
)), regno
))
1579 /* Emit a copy from register DEST to register SRC before candidate
1580 CAND_INDEX's instruction. */
1583 early_remat::emit_copy_before (unsigned int cand_index
, rtx dest
, rtx src
)
1585 remat_candidate
*cand
= &m_candidates
[cand_index
];
1588 fprintf (dump_file
, ";; Stabilizing insn ");
1589 dump_insn_id (cand
->insn
);
1590 fprintf (dump_file
, " by copying source reg %d:%s to temporary reg %d\n",
1591 REGNO (src
), GET_MODE_NAME (GET_MODE (src
)), REGNO (dest
));
1593 emit_insn_before (gen_move_insn (dest
, src
), cand
->insn
);
1596 /* Check whether any inputs to candidate CAND_INDEX's instruction could
1597 change at rematerialization points and replace them with new pseudo
1601 early_remat::stabilize_pattern (unsigned int cand_index
)
1603 remat_candidate
*cand
= &m_candidates
[cand_index
];
1604 if (cand
->stabilized_p
)
1607 remat_equiv_class
*ec
= cand
->equiv_class
;
1608 gcc_checking_assert (!ec
|| cand_index
== ec
->representative
);
1610 /* Record the replacements we've made so far, so that we don't
1611 create two separate registers for match_dups. Lookup is O(n),
1612 but the n is very small. */
1613 typedef std::pair
<rtx
, rtx
> reg_pair
;
1614 auto_vec
<reg_pair
, 16> reg_map
;
1616 rtx_insn
*insn
= cand
->insn
;
1618 FOR_EACH_INSN_USE (ref
, insn
)
1620 unsigned int old_regno
= DF_REF_REGNO (ref
);
1621 rtx
*loc
= DF_REF_REAL_LOC (ref
);
1623 if (HARD_REGISTER_NUM_P (old_regno
) && fixed_regs
[old_regno
])
1625 /* We checked when adding the candidate that the value is stable. */
1626 gcc_checking_assert (!rtx_unstable_p (*loc
));
1630 if (bitmap_bit_p (&m_candidate_regnos
, old_regno
))
1631 /* We already know which candidate provides the definition
1632 and will handle it during copying. */
1635 if (stable_use_p (old_regno
))
1636 /* We can continue to use the existing register. */
1639 /* We need to replace the register. See whether we've already
1640 created a suitable copy. */
1642 rtx new_reg
= NULL_RTX
;
1643 machine_mode mode
= GET_MODE (old_reg
);
1646 FOR_EACH_VEC_ELT (reg_map
, pi
, p
)
1647 if (REGNO (p
->first
) == old_regno
1648 && GET_MODE (p
->first
) == mode
)
1650 new_reg
= p
->second
;
1656 /* Create a new register and initialize it just before
1658 new_reg
= gen_reg_rtx (mode
);
1659 reg_map
.safe_push (reg_pair (old_reg
, new_reg
));
1662 unsigned int member_index
;
1664 EXECUTE_IF_SET_IN_BITMAP (ec
->members
, 0, member_index
, bi
)
1665 emit_copy_before (member_index
, new_reg
, old_reg
);
1668 emit_copy_before (cand_index
, new_reg
, old_reg
);
1670 validate_change (insn
, loc
, new_reg
, true);
1672 if (num_changes_pending ())
1674 if (!apply_change_group ())
1675 /* We checked when adding the candidates that the pattern allows
1676 hard registers to be replaced. Nothing else should make the
1682 /* Copy the new pattern to other members of the equivalence
1684 unsigned int member_index
;
1686 EXECUTE_IF_SET_IN_BITMAP (ec
->members
, 0, member_index
, bi
)
1687 if (cand_index
!= member_index
)
1689 rtx_insn
*other_insn
= m_candidates
[member_index
].insn
;
1690 if (!validate_change (other_insn
, &PATTERN (other_insn
),
1691 copy_insn (PATTERN (insn
)), 0))
1692 /* If the original instruction was valid then the copy
1699 cand
->stabilized_p
= true;
1702 /* Change CAND's instruction so that it sets CAND->copy_regno instead
1706 early_remat::replace_dest_with_copy (unsigned int cand_index
)
1708 remat_candidate
*cand
= &m_candidates
[cand_index
];
1710 FOR_EACH_INSN_DEF (def
, cand
->insn
)
1711 if (DF_REF_REGNO (def
) == cand
->regno
)
1712 validate_change (cand
->insn
, DF_REF_REAL_LOC (def
),
1713 regno_reg_rtx
[cand
->copy_regno
], 1);
1716 /* Make sure that the candidates used by candidate CAND_INDEX are available.
1717 There are two ways of doing this for an input candidate I:
1719 (1) Using the existing register number and ensuring that I is available.
1721 (2) Using a new register number (recorded in copy_regno) and adding I
1722 to VIA_COPY. This guarantees that making I available does not
1723 conflict with other uses of the original register.
1725 REQUIRED is the set of candidates that are required but not available
1726 before the copy of CAND_INDEX. AVAILABLE is the set of candidates
1727 that are already available before the copy of CAND_INDEX. REACHING
1728 is the set of candidates that reach the copy of CAND_INDEX. VIA_COPY
1729 is the set of candidates that will use new register numbers recorded
1730 in copy_regno instead of the original ones. */
1733 early_remat::stabilize_candidate_uses (unsigned int cand_index
,
1734 bitmap required
, bitmap available
,
1735 bitmap reaching
, bitmap via_copy
)
1737 remat_candidate
*cand
= &m_candidates
[cand_index
];
1739 FOR_EACH_INSN_USE (use
, cand
->insn
)
1741 unsigned int regno
= DF_REF_REGNO (use
);
1742 if (!bitmap_bit_p (&m_candidate_regnos
, regno
))
1745 /* Work out which candidate provides the definition. */
1746 bitmap defs
= m_regno_to_candidates
[regno
];
1747 bitmap_and (&m_tmp_bitmap
, cand
->uses
, defs
);
1748 gcc_checking_assert (bitmap_single_bit_set_p (&m_tmp_bitmap
));
1749 unsigned int def_index
= bitmap_first_set_bit (&m_tmp_bitmap
);
1751 /* First see if DEF_INDEX is the only reaching definition of REGNO
1752 at this point too and if it is or will become available. We can
1753 continue to use REGNO if so. */
1754 bitmap_and (&m_tmp_bitmap
, reaching
, defs
);
1755 if (bitmap_single_bit_set_p (&m_tmp_bitmap
)
1756 && bitmap_first_set_bit (&m_tmp_bitmap
) == def_index
1757 && ((available
&& bitmap_bit_p (available
, def_index
))
1758 || bitmap_bit_p (required
, def_index
)))
1761 fprintf (dump_file
, ";; Keeping reg %d for use of candidate %d"
1762 " in candidate %d\n", regno
, def_index
, cand_index
);
1766 /* Otherwise fall back to using a copy. There are other cases
1767 in which we *could* continue to use REGNO, but there's not
1768 really much point. Using a separate register ought to make
1769 things easier for the register allocator. */
1770 remat_candidate
*def_cand
= &m_candidates
[def_index
];
1771 rtx
*loc
= DF_REF_REAL_LOC (use
);
1773 if (bitmap_set_bit (via_copy
, def_index
))
1775 new_reg
= gen_reg_rtx (GET_MODE (*loc
));
1776 def_cand
->copy_regno
= REGNO (new_reg
);
1778 fprintf (dump_file
, ";; Creating reg %d for use of candidate %d"
1779 " in candidate %d\n", REGNO (new_reg
), def_index
,
1783 new_reg
= regno_reg_rtx
[def_cand
->copy_regno
];
1784 validate_change (cand
->insn
, loc
, new_reg
, 1);
1788 /* Rematerialize the candidates in REQUIRED after instruction INSN,
1789 given that the candidates in AVAILABLE are already available
1790 and that REACHING is the set of candidates live after INSN.
1791 REQUIRED and AVAILABLE are disjoint on entry.
1793 Clear REQUIRED on exit. */
1796 early_remat::emit_remat_insns (bitmap required
, bitmap available
,
1797 bitmap reaching
, rtx_insn
*insn
)
1799 /* Quick exit if there's nothing to do. */
1800 if (empty_p (required
))
1803 /* Only reaching definitions should be available or required. */
1804 gcc_checking_assert (!bitmap_intersect_compl_p (required
, reaching
));
1806 gcc_checking_assert (!bitmap_intersect_compl_p (available
, reaching
));
1808 bitmap_head via_copy
;
1809 bitmap_initialize (&via_copy
, &m_obstack
);
1810 while (!bitmap_empty_p (required
) || !bitmap_empty_p (&via_copy
))
1812 /* Pick the lowest-indexed candidate left. */
1813 unsigned int required_index
= (bitmap_empty_p (required
)
1814 ? ~0U : bitmap_first_set_bit (required
));
1815 unsigned int via_copy_index
= (bitmap_empty_p (&via_copy
)
1816 ? ~0U : bitmap_first_set_bit (&via_copy
));
1817 unsigned int cand_index
= MIN (required_index
, via_copy_index
);
1818 remat_candidate
*cand
= &m_candidates
[cand_index
];
1820 bool via_copy_p
= (cand_index
== via_copy_index
);
1822 bitmap_clear_bit (&via_copy
, cand_index
);
1825 /* Remove all candidates for the same register from REQUIRED. */
1826 bitmap_and (&m_tmp_bitmap
, reaching
,
1827 m_regno_to_candidates
[cand
->regno
]);
1828 bitmap_and_compl_into (required
, &m_tmp_bitmap
);
1829 gcc_checking_assert (!bitmap_bit_p (required
, cand_index
));
1831 /* Only rematerialize if we have a single reaching definition
1833 if (!bitmap_single_bit_set_p (&m_tmp_bitmap
))
1837 fprintf (dump_file
, ";; Can't rematerialize reg %d after ",
1839 dump_insn_id (insn
);
1840 fprintf (dump_file
, ": more than one reaching definition\n");
1845 /* Skip candidates that can't be rematerialized. */
1846 if (!cand
->can_copy_p
)
1849 /* Check the function precondition. */
1850 gcc_checking_assert (!available
1851 || !bitmap_bit_p (available
, cand_index
));
1854 /* Invalid candidates should have been weeded out by now. */
1855 gcc_assert (cand
->can_copy_p
);
1858 if (cand
->constant_p
)
1860 /* Emit a simple move. */
1861 unsigned int regno
= via_copy_p
? cand
->copy_regno
: cand
->regno
;
1862 new_pattern
= gen_move_insn (regno_reg_rtx
[regno
], cand
->remat_rtx
);
1866 /* If this is the first time we've copied the instruction, make
1867 sure that any inputs will have the same value after INSN. */
1868 stabilize_pattern (cand_index
);
1870 /* Temporarily adjust the original instruction so that it has
1871 the right form for the copy. */
1873 replace_dest_with_copy (cand_index
);
1875 stabilize_candidate_uses (cand_index
, required
, available
,
1876 reaching
, &via_copy
);
1878 /* Get the new instruction pattern. */
1879 new_pattern
= copy_insn (cand
->remat_rtx
);
1881 /* Undo the temporary changes. */
1885 /* Emit the new instruction. */
1886 rtx_insn
*new_insn
= emit_insn_after (new_pattern
, insn
);
1890 fprintf (dump_file
, ";; Rematerializing candidate %d after ",
1892 dump_insn_id (insn
);
1894 fprintf (dump_file
, " with new destination reg %d",
1896 fprintf (dump_file
, ":\n\n");
1897 print_rtl_single (dump_file
, new_insn
);
1898 fprintf (dump_file
, "\n");
1903 /* Recompute INFO's available_out set, given that it's distinct from
1904 available_in and available_locally. */
1907 early_remat::set_available_out (remat_block_info
*info
)
1909 if (empty_p (info
->available_locally
))
1910 return bitmap_and_compl (get_bitmap (&info
->available_out
),
1911 info
->available_in
, info
->rd_kill
);
1913 if (empty_p (info
->rd_kill
))
1914 return bitmap_ior (get_bitmap (&info
->available_out
),
1915 info
->available_locally
, info
->available_in
);
1917 return bitmap_ior_and_compl (get_bitmap (&info
->available_out
),
1918 info
->available_locally
, info
->available_in
,
1922 /* If BB has more than one call, decide which candidates should be
1923 rematerialized after the non-final calls and emit the associated
1924 instructions. Record other information about the block in preparation
1925 for the global phase. */
1928 early_remat::process_block (basic_block bb
)
1930 remat_block_info
*info
= &m_block_info
[bb
->index
];
1931 rtx_insn
*last_call
= NULL
;
1934 /* Ensure that we always use the same candidate index to refer to an
1935 equivalence class. */
1936 if (info
->rd_out
== info
->rd_in
)
1938 canon_bitmap (&info
->rd_in
);
1939 info
->rd_out
= info
->rd_in
;
1943 canon_bitmap (&info
->rd_in
);
1944 canon_bitmap (&info
->rd_out
);
1946 canon_bitmap (&info
->rd_kill
);
1947 canon_bitmap (&info
->rd_gen
);
1949 /* The set of candidates that should be rematerialized on entry to the
1950 block or after the previous call (whichever is more recent). */
1951 init_temp_bitmap (&m_required
);
1953 /* The set of candidates that reach the current instruction (i.e. are
1954 live just before the instruction). */
1955 bitmap_head reaching
;
1956 bitmap_initialize (&reaching
, &m_obstack
);
1958 bitmap_copy (&reaching
, info
->rd_in
);
1960 /* The set of candidates that are live and available without
1961 rematerialization just before the current instruction. This only
1962 accounts for earlier candidates in the block, or those that become
1963 available by being added to M_REQUIRED. */
1964 init_temp_bitmap (&m_available
);
1966 /* Get the range of candidates in the block. */
1967 unsigned int next_candidate
= info
->first_candidate
;
1968 unsigned int num_candidates
= info
->num_candidates
;
1969 remat_candidate
*next_def
= (num_candidates
> 0
1970 ? &m_candidates
[next_candidate
]
1973 FOR_BB_INSNS (bb
, insn
)
1975 if (!NONDEBUG_INSN_P (insn
))
1978 /* First process uses, since this is a forward walk. */
1980 FOR_EACH_INSN_USE (ref
, insn
)
1982 unsigned int regno
= DF_REF_REGNO (ref
);
1983 if (bitmap_bit_p (&m_candidate_regnos
, regno
))
1985 bitmap defs
= m_regno_to_candidates
[regno
];
1986 bitmap_and (&m_tmp_bitmap
, defs
, &reaching
);
1987 gcc_checking_assert (!bitmap_empty_p (&m_tmp_bitmap
));
1988 if (!bitmap_intersect_p (defs
, m_available
))
1990 /* There has been no definition of the register since
1991 the last call or the start of the block (whichever
1992 is most recent). Mark the reaching definitions
1993 as required at that point and thus available here. */
1994 bitmap_ior_into (m_required
, &m_tmp_bitmap
);
1995 bitmap_ior_into (m_available
, &m_tmp_bitmap
);
2004 /* The first call in the block. Record which candidates are
2005 required at the start of the block. */
2006 copy_temp_bitmap (&info
->required_in
, &m_required
);
2007 init_temp_bitmap (&m_required
);
2011 /* The fully-local case: candidates that need to be
2012 rematerialized after a previous call in the block. */
2013 restrict_remat_for_call (m_required
, last_call
);
2014 emit_remat_insns (m_required
, NULL
, info
->rd_after_call
,
2018 bitmap_clear (m_available
);
2019 gcc_checking_assert (empty_p (m_required
));
2022 /* Now process definitions. */
2023 while (next_def
&& insn
== next_def
->insn
)
2025 unsigned int gen
= canon_candidate (next_candidate
);
2027 /* Other candidates with the same regno are not available
2029 bitmap kill
= m_regno_to_candidates
[next_def
->regno
];
2030 bitmap_and_compl_into (m_available
, kill
);
2031 bitmap_and_compl_into (&reaching
, kill
);
2033 /* Record that this candidate is available without
2034 rematerialization. */
2035 bitmap_set_bit (m_available
, gen
);
2036 bitmap_set_bit (&reaching
, gen
);
2038 /* Find the next candidate in the block. */
2039 num_candidates
-= 1;
2040 next_candidate
-= 1;
2041 if (num_candidates
> 0)
2047 if (insn
== last_call
)
2048 bitmap_copy (get_bitmap (&info
->rd_after_call
), &reaching
);
2050 bitmap_clear (&reaching
);
2051 gcc_checking_assert (num_candidates
== 0);
2053 /* Remove values from the available set if they aren't live (and so
2054 aren't interesting to successor blocks). */
2056 bitmap_and_into (m_available
, info
->rd_out
);
2058 /* Record the accumulated information. */
2059 info
->last_call
= last_call
;
2060 info
->abnormal_call_p
= (last_call
2061 && last_call
== BB_END (bb
)
2062 && has_abnormal_or_eh_outgoing_edge_p (bb
));
2063 copy_temp_bitmap (&info
->available_locally
, &m_available
);
2065 copy_temp_bitmap (&info
->required_after_call
, &m_required
);
2067 copy_temp_bitmap (&info
->required_in
, &m_required
);
2069 /* Assume at first that all live-in values are available without
2070 rematerialization (i.e. start with the most optimistic assumption). */
2071 if (info
->available_in
)
2074 bitmap_copy (info
->available_in
, info
->rd_in
);
2076 BITMAP_FREE (info
->available_in
);
2079 if (last_call
|| empty_p (info
->available_in
))
2080 /* The values available on exit from the block are exactly those that
2081 are available locally. This set doesn't change. */
2082 info
->available_out
= info
->available_locally
;
2083 else if (empty_p (info
->available_locally
) && empty_p (info
->rd_kill
))
2084 /* The values available on exit are the same as those available on entry.
2085 Updating one updates the other. */
2086 info
->available_out
= info
->available_in
;
2088 set_available_out (info
);
2091 /* Process each block as for process_block, visiting dominators before
2092 the blocks they dominate. */
2095 early_remat::local_phase (void)
2098 fprintf (dump_file
, "\n;; Local phase:\n");
2100 int *rpo
= df_get_postorder (DF_FORWARD
);
2101 unsigned int rpo_len
= df_get_n_blocks (DF_FORWARD
);
2102 for (unsigned int i
= 0; i
< rpo_len
; ++i
)
2103 if (rpo
[i
] >= NUM_FIXED_BLOCKS
)
2104 process_block (BASIC_BLOCK_FOR_FN (m_fn
, rpo
[i
]));
2107 /* Return true if available values survive across edge E. */
2110 available_across_edge_p (edge e
)
2112 return (e
->flags
& EDGE_EH
) == 0;
2115 /* Propagate information from the available_out set of E->src to the
2116 available_in set of E->dest, when computing global availability.
2117 Return true if something changed. */
2120 early_remat::avail_confluence_n (edge e
)
2122 remat_block_info
*src
= &er
->m_block_info
[e
->src
->index
];
2123 remat_block_info
*dest
= &er
->m_block_info
[e
->dest
->index
];
2125 if (!available_across_edge_p (e
))
2128 if (empty_p (dest
->available_in
))
2131 if (!src
->available_out
)
2133 bitmap_clear (dest
->available_in
);
2137 return bitmap_and_into (dest
->available_in
, src
->available_out
);
2140 /* Propagate information from the available_in set of block BB_INDEX
2141 to available_out. Return true if something changed. */
2144 early_remat::avail_transfer (int bb_index
)
2146 remat_block_info
*info
= &er
->m_block_info
[bb_index
];
2148 if (info
->available_out
== info
->available_locally
)
2151 if (info
->available_out
== info
->available_in
)
2152 /* Assume that we are only called if the input changed. */
2155 return er
->set_available_out (info
);
2158 /* Compute global availability for the function, starting with the local
2159 information computed by local_phase. */
2162 early_remat::compute_availability (void)
2164 /* We use df_simple_dataflow instead of the lcm routines for three reasons:
2166 (1) it avoids recomputing the traversal order;
2167 (2) many of the sets are likely to be sparse, so we don't necessarily
2168 want to use sbitmaps; and
2169 (3) it means we can avoid creating an explicit kill set for the call. */
2171 bitmap_clear (&m_tmp_bitmap
);
2172 bitmap_set_range (&m_tmp_bitmap
, 0, last_basic_block_for_fn (m_fn
));
2173 df_simple_dataflow (DF_FORWARD
, NULL
, NULL
,
2174 avail_confluence_n
, avail_transfer
,
2175 &m_tmp_bitmap
, df_get_postorder (DF_FORWARD
),
2176 df_get_n_blocks (DF_FORWARD
));
2179 /* Restrict the required_in sets to values that aren't available. */
2181 FOR_EACH_BB_FN (bb
, m_fn
)
2183 remat_block_info
*info
= &m_block_info
[bb
->index
];
2184 if (info
->required_in
&& info
->available_in
)
2185 bitmap_and_compl_into (info
->required_in
, info
->available_in
);
2189 /* Make sure that INFO's available_out and available_in sets are unique. */
2192 early_remat::unshare_available_sets (remat_block_info
*info
)
2194 if (info
->available_in
&& info
->available_in
== info
->available_out
)
2196 info
->available_in
= alloc_bitmap ();
2197 bitmap_copy (info
->available_in
, info
->available_out
);
2201 /* Return true if it is possible to move rematerializations from the
2202 destination of E to the source of E. */
2205 early_remat::can_move_across_edge_p (edge e
)
2207 return (available_across_edge_p (e
)
2208 && !m_block_info
[e
->src
->index
].abnormal_call_p
);
2211 /* Return true if it is cheaper to rematerialize values at the head of
2212 block QUERY_BB_INDEX instead of rematerializing in its predecessors. */
2215 early_remat::local_remat_cheaper_p (unsigned int query_bb_index
)
2217 if (m_block_info
[query_bb_index
].remat_frequency_valid_p
)
2218 return m_block_info
[query_bb_index
].local_remat_cheaper_p
;
2220 /* Iteratively compute the cost of rematerializing values in the
2221 predecessor blocks, then compare that with the cost of
2222 rematerializing at the head of the block.
2224 A cycle indicates that there is no call on that execution path,
2225 so it isn't necessary to rematerialize on that path. */
2226 auto_vec
<basic_block
, 16> stack
;
2227 stack
.quick_push (BASIC_BLOCK_FOR_FN (m_fn
, query_bb_index
));
2228 while (!stack
.is_empty ())
2230 basic_block bb
= stack
.last ();
2231 remat_block_info
*info
= &m_block_info
[bb
->index
];
2232 if (info
->remat_frequency_valid_p
)
2238 info
->visited_p
= true;
2240 bool can_move_p
= true;
2243 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2244 if (!can_move_across_edge_p (e
))
2249 else if (m_block_info
[e
->src
->index
].last_call
)
2250 /* We'll rematerialize after the call. */
2251 frequency
+= e
->src
->count
.to_frequency (m_fn
);
2252 else if (m_block_info
[e
->src
->index
].remat_frequency_valid_p
)
2253 /* Add the cost of rematerializing at the head of E->src
2254 or in its predecessors (whichever is cheaper). */
2255 frequency
+= m_block_info
[e
->src
->index
].remat_frequency
;
2256 else if (!m_block_info
[e
->src
->index
].visited_p
)
2257 /* Queue E->src and then revisit this block again. */
2258 stack
.safe_push (e
->src
);
2260 /* Come back to this block later if we need to process some of
2261 its predecessors. */
2262 if (stack
.last () != bb
)
2265 /* If rematerializing in and before the block have equal cost, prefer
2266 rematerializing in the block. This should shorten the live range. */
2267 int bb_frequency
= bb
->count
.to_frequency (m_fn
);
2268 if (!can_move_p
|| frequency
>= bb_frequency
)
2270 info
->local_remat_cheaper_p
= true;
2271 info
->remat_frequency
= bb_frequency
;
2274 info
->remat_frequency
= frequency
;
2275 info
->remat_frequency_valid_p
= true;
2276 info
->visited_p
= false;
2280 fprintf (dump_file
, ";; Need to rematerialize at the head of"
2281 " block %d; cannot move to predecessors.\n", bb
->index
);
2284 fprintf (dump_file
, ";; Block %d has frequency %d,"
2285 " rematerializing in predecessors has frequency %d",
2286 bb
->index
, bb_frequency
, frequency
);
2287 if (info
->local_remat_cheaper_p
)
2288 fprintf (dump_file
, "; prefer to rematerialize"
2291 fprintf (dump_file
, "; prefer to rematerialize"
2292 " in predecessors\n");
2297 return m_block_info
[query_bb_index
].local_remat_cheaper_p
;
2300 /* Return true if we cannot rematerialize candidate CAND_INDEX at the head of
2304 early_remat::need_to_move_candidate_p (unsigned int bb_index
,
2305 unsigned int cand_index
)
2307 remat_block_info
*info
= &m_block_info
[bb_index
];
2308 remat_candidate
*cand
= &m_candidates
[cand_index
];
2309 basic_block bb
= BASIC_BLOCK_FOR_FN (m_fn
, bb_index
);
2311 /* If there is more than one reaching definition of REGNO,
2312 we'll need to rematerialize in predecessors instead. */
2313 bitmap_and (&m_tmp_bitmap
, info
->rd_in
, m_regno_to_candidates
[cand
->regno
]);
2314 if (!bitmap_single_bit_set_p (&m_tmp_bitmap
))
2317 fprintf (dump_file
, ";; Cannot rematerialize %d at the"
2318 " head of block %d because there is more than one"
2319 " reaching definition of reg %d\n", cand_index
,
2320 bb_index
, cand
->regno
);
2324 /* Likewise if rematerializing CAND here would clobber a live register. */
2326 && bitmap_intersect_p (cand
->clobbers
, DF_LR_IN (bb
)))
2329 fprintf (dump_file
, ";; Cannot rematerialize %d at the"
2330 " head of block %d because it would clobber live"
2331 " registers\n", cand_index
, bb_index
);
2338 /* Set REQUIRED to the minimum set of candidates that must be rematerialized
2339 in predecessors of block BB_INDEX instead of at the start of the block. */
2342 early_remat::compute_minimum_move_set (unsigned int bb_index
,
2345 remat_block_info
*info
= &m_block_info
[bb_index
];
2346 bitmap_head remaining
;
2348 bitmap_clear (required
);
2349 bitmap_initialize (&remaining
, &m_obstack
);
2350 bitmap_copy (&remaining
, info
->required_in
);
2351 while (!bitmap_empty_p (&remaining
))
2353 unsigned int cand_index
= bitmap_first_set_bit (&remaining
);
2354 remat_candidate
*cand
= &m_candidates
[cand_index
];
2355 bitmap_clear_bit (&remaining
, cand_index
);
2357 /* Leave invalid candidates where they are. */
2358 if (!cand
->can_copy_p
)
2361 /* Decide whether to move this candidate. */
2362 if (!bitmap_bit_p (required
, cand_index
))
2364 if (!need_to_move_candidate_p (bb_index
, cand_index
))
2366 bitmap_set_bit (required
, cand_index
);
2369 /* Also move values used by the candidate, so that we don't
2370 rematerialize them twice. */
2373 bitmap_ior_and_into (required
, cand
->uses
, info
->required_in
);
2374 bitmap_ior_and_into (&remaining
, cand
->uses
, info
->required_in
);
2379 /* Make the predecessors of BB_INDEX rematerialize the candidates in
2380 REQUIRED. Add any blocks whose required_in set changes to
2384 early_remat::move_to_predecessors (unsigned int bb_index
, bitmap required
,
2385 bitmap pending_blocks
)
2387 if (empty_p (required
))
2389 remat_block_info
*dest_info
= &m_block_info
[bb_index
];
2390 basic_block bb
= BASIC_BLOCK_FOR_FN (m_fn
, bb_index
);
2393 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2395 remat_block_info
*src_info
= &m_block_info
[e
->src
->index
];
2397 /* Restrict the set we add to the reaching definitions. */
2398 bitmap_and (&m_tmp_bitmap
, required
, src_info
->rd_out
);
2399 if (bitmap_empty_p (&m_tmp_bitmap
))
2402 if (!can_move_across_edge_p (e
))
2404 /* We can't move the rematerialization and we can't do it at
2405 the start of the block either. In this case we just give up
2406 and rely on spilling to make the values available across E. */
2409 fprintf (dump_file
, ";; Cannot rematerialize the following"
2410 " candidates in block %d:", e
->src
->index
);
2411 dump_candidate_bitmap (required
);
2412 fprintf (dump_file
, "\n");
2417 /* Remove candidates that are already available. */
2418 if (src_info
->available_out
)
2420 bitmap_and_compl_into (&m_tmp_bitmap
, src_info
->available_out
);
2421 if (bitmap_empty_p (&m_tmp_bitmap
))
2425 /* Add the remaining candidates to the appropriate required set. */
2428 fprintf (dump_file
, ";; Moving this set from block %d"
2429 " to block %d:", bb_index
, e
->src
->index
);
2430 dump_candidate_bitmap (&m_tmp_bitmap
);
2431 fprintf (dump_file
, "\n");
2433 /* If the source block contains a call, we want to rematerialize
2434 after the call, otherwise we want to rematerialize at the start
2436 bitmap src_required
= get_bitmap (src_info
->last_call
2437 ? &src_info
->required_after_call
2438 : &src_info
->required_in
);
2439 if (bitmap_ior_into (src_required
, &m_tmp_bitmap
))
2441 if (!src_info
->last_call
)
2442 bitmap_set_bit (pending_blocks
, e
->src
->index
);
2443 unshare_available_sets (src_info
);
2444 bitmap_ior_into (get_bitmap (&src_info
->available_out
),
2449 /* The candidates are now available on entry to the block. */
2450 bitmap_and_compl_into (dest_info
->required_in
, required
);
2451 unshare_available_sets (dest_info
);
2452 bitmap_ior_into (get_bitmap (&dest_info
->available_in
), required
);
2455 /* Go through the candidates that are currently marked as being
2456 rematerialized at the beginning of a block. Decide in each case
2457 whether that's valid and profitable; if it isn't, move the
2458 rematerialization to predecessor blocks instead. */
2461 early_remat::choose_rematerialization_points (void)
2463 bitmap_head required
;
2464 bitmap_head pending_blocks
;
2466 int *postorder
= df_get_postorder (DF_BACKWARD
);
2467 unsigned int postorder_len
= df_get_n_blocks (DF_BACKWARD
);
2468 bitmap_initialize (&required
, &m_obstack
);
2469 bitmap_initialize (&pending_blocks
, &m_obstack
);
2471 /* Process the blocks in postorder, to reduce the number of iterations
2472 of the outer loop. */
2473 for (unsigned int i
= 0; i
< postorder_len
; ++i
)
2475 unsigned int bb_index
= postorder
[i
];
2476 remat_block_info
*info
= &m_block_info
[bb_index
];
2477 bitmap_clear_bit (&pending_blocks
, bb_index
);
2479 if (empty_p (info
->required_in
))
2482 if (info
->available_in
)
2483 gcc_checking_assert (!bitmap_intersect_p (info
->required_in
,
2484 info
->available_in
));
2486 if (local_remat_cheaper_p (bb_index
))
2488 /* We'd prefer to rematerialize at the head of the block.
2489 Only move candidates if we need to. */
2490 compute_minimum_move_set (bb_index
, &required
);
2491 move_to_predecessors (bb_index
, &required
, &pending_blocks
);
2494 move_to_predecessors (bb_index
, info
->required_in
,
2497 while (!bitmap_empty_p (&pending_blocks
));
2498 bitmap_clear (&required
);
2501 /* Emit all rematerialization instructions queued for BB. */
2504 early_remat::emit_remat_insns_for_block (basic_block bb
)
2506 remat_block_info
*info
= &m_block_info
[bb
->index
];
2508 if (info
->last_call
&& !empty_p (info
->required_after_call
))
2510 restrict_remat_for_call (info
->required_after_call
, info
->last_call
);
2511 emit_remat_insns (info
->required_after_call
, NULL
,
2512 info
->rd_after_call
, info
->last_call
);
2515 if (!empty_p (info
->required_in
))
2517 rtx_insn
*insn
= BB_HEAD (bb
);
2518 while (insn
!= BB_END (bb
)
2519 && !INSN_P (NEXT_INSN (insn
)))
2520 insn
= NEXT_INSN (insn
);
2521 restrict_remat_for_unavail_regs (info
->required_in
, DF_LR_IN (bb
));
2522 emit_remat_insns (info
->required_in
, info
->available_in
,
2527 /* Decide which candidates in each block's REQUIRED_IN set need to be
2528 rematerialized and decide where the rematerialization instructions
2529 should go. Emit queued rematerialization instructions at the start
2530 of blocks and after the last calls in blocks. */
2533 early_remat::global_phase (void)
2535 compute_availability ();
2538 fprintf (dump_file
, "\n;; Blocks after computing global"
2539 " availability:\n");
2543 choose_rematerialization_points ();
2546 fprintf (dump_file
, "\n;; Blocks after choosing rematerialization"
2552 FOR_EACH_BB_FN (bb
, m_fn
)
2553 emit_remat_insns_for_block (bb
);
2556 /* Main function for the pass. */
2559 early_remat::run (void)
2563 if (!collect_candidates ())
2568 finalize_candidate_indices ();
2570 dump_all_candidates ();
2573 decide_candidate_validity ();
2578 early_remat::early_remat (function
*fn
, sbitmap selected_modes
)
2580 m_selected_modes (selected_modes
),
2585 bitmap_obstack_initialize (&m_obstack
);
2586 bitmap_initialize (&m_candidate_regnos
, &m_obstack
);
2587 bitmap_initialize (&m_tmp_bitmap
, &m_obstack
);
2590 early_remat::~early_remat ()
2592 bitmap_obstack_release (&m_obstack
);
2597 const pass_data pass_data_early_remat
=
2599 RTL_PASS
, /* type */
2600 "early_remat", /* name */
2601 OPTGROUP_NONE
, /* optinfo_flags */
2602 TV_EARLY_REMAT
, /* tv_id */
2603 0, /* properties_required */
2604 0, /* properties_provided */
2605 0, /* properties_destroyed */
2606 0, /* todo_flags_start */
2607 TODO_df_finish
, /* todo_flags_finish */
2610 class pass_early_remat
: public rtl_opt_pass
2613 pass_early_remat (gcc::context
*ctxt
)
2614 : rtl_opt_pass (pass_data_early_remat
, ctxt
)
2617 /* opt_pass methods: */
2618 bool gate (function
*) final override
2620 return optimize
> 1 && NUM_POLY_INT_COEFFS
> 1;
2623 unsigned int execute (function
*f
) final override
2625 auto_sbitmap
selected_modes (NUM_MACHINE_MODES
);
2626 bitmap_clear (selected_modes
);
2627 targetm
.select_early_remat_modes (selected_modes
);
2628 if (!bitmap_empty_p (selected_modes
))
2629 early_remat (f
, selected_modes
).run ();
2632 }; // class pass_early_remat
2637 make_pass_early_remat (gcc::context
*ctxt
)
2639 return new pass_early_remat (ctxt
);