PR bootstrap/63496
[official-gcc.git] / gcc / recog.c
blob5ee3816c7cfdb3e63ebe3f95c9820b07ceebc4a8
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl-error.h"
27 #include "tm_p.h"
28 #include "insn-config.h"
29 #include "insn-attr.h"
30 #include "hard-reg-set.h"
31 #include "recog.h"
32 #include "regs.h"
33 #include "addresses.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "flags.h"
37 #include "basic-block.h"
38 #include "reload.h"
39 #include "target.h"
40 #include "tree-pass.h"
41 #include "df.h"
42 #include "insn-codes.h"
44 #ifndef STACK_PUSH_CODE
45 #ifdef STACK_GROWS_DOWNWARD
46 #define STACK_PUSH_CODE PRE_DEC
47 #else
48 #define STACK_PUSH_CODE PRE_INC
49 #endif
50 #endif
52 #ifndef STACK_POP_CODE
53 #ifdef STACK_GROWS_DOWNWARD
54 #define STACK_POP_CODE POST_INC
55 #else
56 #define STACK_POP_CODE POST_DEC
57 #endif
58 #endif
60 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
61 static void validate_replace_src_1 (rtx *, void *);
62 static rtx split_insn (rtx_insn *);
64 struct target_recog default_target_recog;
65 #if SWITCHABLE_TARGET
66 struct target_recog *this_target_recog = &default_target_recog;
67 #endif
69 /* Nonzero means allow operands to be volatile.
70 This should be 0 if you are generating rtl, such as if you are calling
71 the functions in optabs.c and expmed.c (most of the time).
72 This should be 1 if all valid insns need to be recognized,
73 such as in reginfo.c and final.c and reload.c.
75 init_recog and init_recog_no_volatile are responsible for setting this. */
77 int volatile_ok;
79 struct recog_data_d recog_data;
81 /* Contains a vector of operand_alternative structures, such that
82 operand OP of alternative A is at index A * n_operands + OP.
83 Set up by preprocess_constraints. */
84 const operand_alternative *recog_op_alt;
86 /* Used to provide recog_op_alt for asms. */
87 static operand_alternative asm_op_alt[MAX_RECOG_OPERANDS
88 * MAX_RECOG_ALTERNATIVES];
90 /* On return from `constrain_operands', indicate which alternative
91 was satisfied. */
93 int which_alternative;
95 /* Nonzero after end of reload pass.
96 Set to 1 or 0 by toplev.c.
97 Controls the significance of (SUBREG (MEM)). */
99 int reload_completed;
101 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
102 int epilogue_completed;
104 /* Initialize data used by the function `recog'.
105 This must be called once in the compilation of a function
106 before any insn recognition may be done in the function. */
108 void
109 init_recog_no_volatile (void)
111 volatile_ok = 0;
114 void
115 init_recog (void)
117 volatile_ok = 1;
121 /* Return true if labels in asm operands BODY are LABEL_REFs. */
123 static bool
124 asm_labels_ok (rtx body)
126 rtx asmop;
127 int i;
129 asmop = extract_asm_operands (body);
130 if (asmop == NULL_RTX)
131 return true;
133 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
134 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
135 return false;
137 return true;
140 /* Check that X is an insn-body for an `asm' with operands
141 and that the operands mentioned in it are legitimate. */
144 check_asm_operands (rtx x)
146 int noperands;
147 rtx *operands;
148 const char **constraints;
149 int i;
151 if (!asm_labels_ok (x))
152 return 0;
154 /* Post-reload, be more strict with things. */
155 if (reload_completed)
157 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
158 extract_insn (make_insn_raw (x));
159 constrain_operands (1);
160 return which_alternative >= 0;
163 noperands = asm_noperands (x);
164 if (noperands < 0)
165 return 0;
166 if (noperands == 0)
167 return 1;
169 operands = XALLOCAVEC (rtx, noperands);
170 constraints = XALLOCAVEC (const char *, noperands);
172 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
174 for (i = 0; i < noperands; i++)
176 const char *c = constraints[i];
177 if (c[0] == '%')
178 c++;
179 if (! asm_operand_ok (operands[i], c, constraints))
180 return 0;
183 return 1;
186 /* Static data for the next two routines. */
188 typedef struct change_t
190 rtx object;
191 int old_code;
192 rtx *loc;
193 rtx old;
194 bool unshare;
195 } change_t;
197 static change_t *changes;
198 static int changes_allocated;
200 static int num_changes = 0;
202 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
203 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
204 the change is simply made.
206 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
207 will be called with the address and mode as parameters. If OBJECT is
208 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
209 the change in place.
211 IN_GROUP is nonzero if this is part of a group of changes that must be
212 performed as a group. In that case, the changes will be stored. The
213 function `apply_change_group' will validate and apply the changes.
215 If IN_GROUP is zero, this is a single change. Try to recognize the insn
216 or validate the memory reference with the change applied. If the result
217 is not valid for the machine, suppress the change and return zero.
218 Otherwise, perform the change and return 1. */
220 static bool
221 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
223 rtx old = *loc;
225 if (old == new_rtx || rtx_equal_p (old, new_rtx))
226 return 1;
228 gcc_assert (in_group != 0 || num_changes == 0);
230 *loc = new_rtx;
232 /* Save the information describing this change. */
233 if (num_changes >= changes_allocated)
235 if (changes_allocated == 0)
236 /* This value allows for repeated substitutions inside complex
237 indexed addresses, or changes in up to 5 insns. */
238 changes_allocated = MAX_RECOG_OPERANDS * 5;
239 else
240 changes_allocated *= 2;
242 changes = XRESIZEVEC (change_t, changes, changes_allocated);
245 changes[num_changes].object = object;
246 changes[num_changes].loc = loc;
247 changes[num_changes].old = old;
248 changes[num_changes].unshare = unshare;
250 if (object && !MEM_P (object))
252 /* Set INSN_CODE to force rerecognition of insn. Save old code in
253 case invalid. */
254 changes[num_changes].old_code = INSN_CODE (object);
255 INSN_CODE (object) = -1;
258 num_changes++;
260 /* If we are making a group of changes, return 1. Otherwise, validate the
261 change group we made. */
263 if (in_group)
264 return 1;
265 else
266 return apply_change_group ();
269 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
270 UNSHARE to false. */
272 bool
273 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
275 return validate_change_1 (object, loc, new_rtx, in_group, false);
278 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
279 UNSHARE to true. */
281 bool
282 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
284 return validate_change_1 (object, loc, new_rtx, in_group, true);
288 /* Keep X canonicalized if some changes have made it non-canonical; only
289 modifies the operands of X, not (for example) its code. Simplifications
290 are not the job of this routine.
292 Return true if anything was changed. */
293 bool
294 canonicalize_change_group (rtx insn, rtx x)
296 if (COMMUTATIVE_P (x)
297 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
299 /* Oops, the caller has made X no longer canonical.
300 Let's redo the changes in the correct order. */
301 rtx tem = XEXP (x, 0);
302 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
303 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
304 return true;
306 else
307 return false;
311 /* This subroutine of apply_change_group verifies whether the changes to INSN
312 were valid; i.e. whether INSN can still be recognized.
314 If IN_GROUP is true clobbers which have to be added in order to
315 match the instructions will be added to the current change group.
316 Otherwise the changes will take effect immediately. */
319 insn_invalid_p (rtx_insn *insn, bool in_group)
321 rtx pat = PATTERN (insn);
322 int num_clobbers = 0;
323 /* If we are before reload and the pattern is a SET, see if we can add
324 clobbers. */
325 int icode = recog (pat, insn,
326 (GET_CODE (pat) == SET
327 && ! reload_completed
328 && ! reload_in_progress)
329 ? &num_clobbers : 0);
330 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
333 /* If this is an asm and the operand aren't legal, then fail. Likewise if
334 this is not an asm and the insn wasn't recognized. */
335 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
336 || (!is_asm && icode < 0))
337 return 1;
339 /* If we have to add CLOBBERs, fail if we have to add ones that reference
340 hard registers since our callers can't know if they are live or not.
341 Otherwise, add them. */
342 if (num_clobbers > 0)
344 rtx newpat;
346 if (added_clobbers_hard_reg_p (icode))
347 return 1;
349 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
350 XVECEXP (newpat, 0, 0) = pat;
351 add_clobbers (newpat, icode);
352 if (in_group)
353 validate_change (insn, &PATTERN (insn), newpat, 1);
354 else
355 PATTERN (insn) = pat = newpat;
358 /* After reload, verify that all constraints are satisfied. */
359 if (reload_completed)
361 extract_insn (insn);
363 if (! constrain_operands (1))
364 return 1;
367 INSN_CODE (insn) = icode;
368 return 0;
371 /* Return number of changes made and not validated yet. */
373 num_changes_pending (void)
375 return num_changes;
378 /* Tentatively apply the changes numbered NUM and up.
379 Return 1 if all changes are valid, zero otherwise. */
382 verify_changes (int num)
384 int i;
385 rtx last_validated = NULL_RTX;
387 /* The changes have been applied and all INSN_CODEs have been reset to force
388 rerecognition.
390 The changes are valid if we aren't given an object, or if we are
391 given a MEM and it still is a valid address, or if this is in insn
392 and it is recognized. In the latter case, if reload has completed,
393 we also require that the operands meet the constraints for
394 the insn. */
396 for (i = num; i < num_changes; i++)
398 rtx object = changes[i].object;
400 /* If there is no object to test or if it is the same as the one we
401 already tested, ignore it. */
402 if (object == 0 || object == last_validated)
403 continue;
405 if (MEM_P (object))
407 if (! memory_address_addr_space_p (GET_MODE (object),
408 XEXP (object, 0),
409 MEM_ADDR_SPACE (object)))
410 break;
412 else if (/* changes[i].old might be zero, e.g. when putting a
413 REG_FRAME_RELATED_EXPR into a previously empty list. */
414 changes[i].old
415 && REG_P (changes[i].old)
416 && asm_noperands (PATTERN (object)) > 0
417 && REG_EXPR (changes[i].old) != NULL_TREE
418 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
419 && DECL_REGISTER (REG_EXPR (changes[i].old)))
421 /* Don't allow changes of hard register operands to inline
422 assemblies if they have been defined as register asm ("x"). */
423 break;
425 else if (DEBUG_INSN_P (object))
426 continue;
427 else if (insn_invalid_p (as_a <rtx_insn *> (object), true))
429 rtx pat = PATTERN (object);
431 /* Perhaps we couldn't recognize the insn because there were
432 extra CLOBBERs at the end. If so, try to re-recognize
433 without the last CLOBBER (later iterations will cause each of
434 them to be eliminated, in turn). But don't do this if we
435 have an ASM_OPERAND. */
436 if (GET_CODE (pat) == PARALLEL
437 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
438 && asm_noperands (PATTERN (object)) < 0)
440 rtx newpat;
442 if (XVECLEN (pat, 0) == 2)
443 newpat = XVECEXP (pat, 0, 0);
444 else
446 int j;
448 newpat
449 = gen_rtx_PARALLEL (VOIDmode,
450 rtvec_alloc (XVECLEN (pat, 0) - 1));
451 for (j = 0; j < XVECLEN (newpat, 0); j++)
452 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
455 /* Add a new change to this group to replace the pattern
456 with this new pattern. Then consider this change
457 as having succeeded. The change we added will
458 cause the entire call to fail if things remain invalid.
460 Note that this can lose if a later change than the one
461 we are processing specified &XVECEXP (PATTERN (object), 0, X)
462 but this shouldn't occur. */
464 validate_change (object, &PATTERN (object), newpat, 1);
465 continue;
467 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
468 || GET_CODE (pat) == VAR_LOCATION)
469 /* If this insn is a CLOBBER or USE, it is always valid, but is
470 never recognized. */
471 continue;
472 else
473 break;
475 last_validated = object;
478 return (i == num_changes);
481 /* A group of changes has previously been issued with validate_change
482 and verified with verify_changes. Call df_insn_rescan for each of
483 the insn changed and clear num_changes. */
485 void
486 confirm_change_group (void)
488 int i;
489 rtx last_object = NULL;
491 for (i = 0; i < num_changes; i++)
493 rtx object = changes[i].object;
495 if (changes[i].unshare)
496 *changes[i].loc = copy_rtx (*changes[i].loc);
498 /* Avoid unnecessary rescanning when multiple changes to same instruction
499 are made. */
500 if (object)
502 if (object != last_object && last_object && INSN_P (last_object))
503 df_insn_rescan (as_a <rtx_insn *> (last_object));
504 last_object = object;
508 if (last_object && INSN_P (last_object))
509 df_insn_rescan (as_a <rtx_insn *> (last_object));
510 num_changes = 0;
513 /* Apply a group of changes previously issued with `validate_change'.
514 If all changes are valid, call confirm_change_group and return 1,
515 otherwise, call cancel_changes and return 0. */
518 apply_change_group (void)
520 if (verify_changes (0))
522 confirm_change_group ();
523 return 1;
525 else
527 cancel_changes (0);
528 return 0;
533 /* Return the number of changes so far in the current group. */
536 num_validated_changes (void)
538 return num_changes;
541 /* Retract the changes numbered NUM and up. */
543 void
544 cancel_changes (int num)
546 int i;
548 /* Back out all the changes. Do this in the opposite order in which
549 they were made. */
550 for (i = num_changes - 1; i >= num; i--)
552 *changes[i].loc = changes[i].old;
553 if (changes[i].object && !MEM_P (changes[i].object))
554 INSN_CODE (changes[i].object) = changes[i].old_code;
556 num_changes = num;
559 /* Reduce conditional compilation elsewhere. */
560 #ifndef HAVE_extv
561 #define HAVE_extv 0
562 #define CODE_FOR_extv CODE_FOR_nothing
563 #endif
564 #ifndef HAVE_extzv
565 #define HAVE_extzv 0
566 #define CODE_FOR_extzv CODE_FOR_nothing
567 #endif
569 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
570 rtx. */
572 static void
573 simplify_while_replacing (rtx *loc, rtx to, rtx object,
574 enum machine_mode op0_mode)
576 rtx x = *loc;
577 enum rtx_code code = GET_CODE (x);
578 rtx new_rtx = NULL_RTX;
580 if (SWAPPABLE_OPERANDS_P (x)
581 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
583 validate_unshare_change (object, loc,
584 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
585 : swap_condition (code),
586 GET_MODE (x), XEXP (x, 1),
587 XEXP (x, 0)), 1);
588 x = *loc;
589 code = GET_CODE (x);
592 /* Canonicalize arithmetics with all constant operands. */
593 switch (GET_RTX_CLASS (code))
595 case RTX_UNARY:
596 if (CONSTANT_P (XEXP (x, 0)))
597 new_rtx = simplify_unary_operation (code, GET_MODE (x), XEXP (x, 0),
598 op0_mode);
599 break;
600 case RTX_COMM_ARITH:
601 case RTX_BIN_ARITH:
602 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
603 new_rtx = simplify_binary_operation (code, GET_MODE (x), XEXP (x, 0),
604 XEXP (x, 1));
605 break;
606 case RTX_COMPARE:
607 case RTX_COMM_COMPARE:
608 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
609 new_rtx = simplify_relational_operation (code, GET_MODE (x), op0_mode,
610 XEXP (x, 0), XEXP (x, 1));
611 break;
612 default:
613 break;
615 if (new_rtx)
617 validate_change (object, loc, new_rtx, 1);
618 return;
621 switch (code)
623 case PLUS:
624 /* If we have a PLUS whose second operand is now a CONST_INT, use
625 simplify_gen_binary to try to simplify it.
626 ??? We may want later to remove this, once simplification is
627 separated from this function. */
628 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
629 validate_change (object, loc,
630 simplify_gen_binary
631 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
632 break;
633 case MINUS:
634 if (CONST_SCALAR_INT_P (XEXP (x, 1)))
635 validate_change (object, loc,
636 simplify_gen_binary
637 (PLUS, GET_MODE (x), XEXP (x, 0),
638 simplify_gen_unary (NEG,
639 GET_MODE (x), XEXP (x, 1),
640 GET_MODE (x))), 1);
641 break;
642 case ZERO_EXTEND:
643 case SIGN_EXTEND:
644 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
646 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
647 op0_mode);
648 /* If any of the above failed, substitute in something that
649 we know won't be recognized. */
650 if (!new_rtx)
651 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
652 validate_change (object, loc, new_rtx, 1);
654 break;
655 case SUBREG:
656 /* All subregs possible to simplify should be simplified. */
657 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
658 SUBREG_BYTE (x));
660 /* Subregs of VOIDmode operands are incorrect. */
661 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
662 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
663 if (new_rtx)
664 validate_change (object, loc, new_rtx, 1);
665 break;
666 case ZERO_EXTRACT:
667 case SIGN_EXTRACT:
668 /* If we are replacing a register with memory, try to change the memory
669 to be the mode required for memory in extract operations (this isn't
670 likely to be an insertion operation; if it was, nothing bad will
671 happen, we might just fail in some cases). */
673 if (MEM_P (XEXP (x, 0))
674 && CONST_INT_P (XEXP (x, 1))
675 && CONST_INT_P (XEXP (x, 2))
676 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
677 MEM_ADDR_SPACE (XEXP (x, 0)))
678 && !MEM_VOLATILE_P (XEXP (x, 0)))
680 enum machine_mode wanted_mode = VOIDmode;
681 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
682 int pos = INTVAL (XEXP (x, 2));
684 if (GET_CODE (x) == ZERO_EXTRACT && HAVE_extzv)
686 wanted_mode = insn_data[CODE_FOR_extzv].operand[1].mode;
687 if (wanted_mode == VOIDmode)
688 wanted_mode = word_mode;
690 else if (GET_CODE (x) == SIGN_EXTRACT && HAVE_extv)
692 wanted_mode = insn_data[CODE_FOR_extv].operand[1].mode;
693 if (wanted_mode == VOIDmode)
694 wanted_mode = word_mode;
697 /* If we have a narrower mode, we can do something. */
698 if (wanted_mode != VOIDmode
699 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
701 int offset = pos / BITS_PER_UNIT;
702 rtx newmem;
704 /* If the bytes and bits are counted differently, we
705 must adjust the offset. */
706 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
707 offset =
708 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
709 offset);
711 gcc_assert (GET_MODE_PRECISION (wanted_mode)
712 == GET_MODE_BITSIZE (wanted_mode));
713 pos %= GET_MODE_BITSIZE (wanted_mode);
715 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
717 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
718 validate_change (object, &XEXP (x, 0), newmem, 1);
722 break;
724 default:
725 break;
729 /* Replace every occurrence of FROM in X with TO. Mark each change with
730 validate_change passing OBJECT. */
732 static void
733 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
734 bool simplify)
736 int i, j;
737 const char *fmt;
738 rtx x = *loc;
739 enum rtx_code code;
740 enum machine_mode op0_mode = VOIDmode;
741 int prev_changes = num_changes;
743 if (!x)
744 return;
746 code = GET_CODE (x);
747 fmt = GET_RTX_FORMAT (code);
748 if (fmt[0] == 'e')
749 op0_mode = GET_MODE (XEXP (x, 0));
751 /* X matches FROM if it is the same rtx or they are both referring to the
752 same register in the same mode. Avoid calling rtx_equal_p unless the
753 operands look similar. */
755 if (x == from
756 || (REG_P (x) && REG_P (from)
757 && GET_MODE (x) == GET_MODE (from)
758 && REGNO (x) == REGNO (from))
759 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
760 && rtx_equal_p (x, from)))
762 validate_unshare_change (object, loc, to, 1);
763 return;
766 /* Call ourself recursively to perform the replacements.
767 We must not replace inside already replaced expression, otherwise we
768 get infinite recursion for replacements like (reg X)->(subreg (reg X))
769 so we must special case shared ASM_OPERANDS. */
771 if (GET_CODE (x) == PARALLEL)
773 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
775 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
776 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
778 /* Verify that operands are really shared. */
779 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
780 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
781 (x, 0, j))));
782 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
783 from, to, object, simplify);
785 else
786 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
787 simplify);
790 else
791 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
793 if (fmt[i] == 'e')
794 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
795 else if (fmt[i] == 'E')
796 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
797 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
798 simplify);
801 /* If we didn't substitute, there is nothing more to do. */
802 if (num_changes == prev_changes)
803 return;
805 /* ??? The regmove is no more, so is this aberration still necessary? */
806 /* Allow substituted expression to have different mode. This is used by
807 regmove to change mode of pseudo register. */
808 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
809 op0_mode = GET_MODE (XEXP (x, 0));
811 /* Do changes needed to keep rtx consistent. Don't do any other
812 simplifications, as it is not our job. */
813 if (simplify)
814 simplify_while_replacing (loc, to, object, op0_mode);
817 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
818 with TO. After all changes have been made, validate by seeing
819 if INSN is still valid. */
822 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
824 validate_replace_rtx_1 (loc, from, to, insn, true);
825 return apply_change_group ();
828 /* Try replacing every occurrence of FROM in INSN with TO. After all
829 changes have been made, validate by seeing if INSN is still valid. */
832 validate_replace_rtx (rtx from, rtx to, rtx insn)
834 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
835 return apply_change_group ();
838 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
839 is a part of INSN. After all changes have been made, validate by seeing if
840 INSN is still valid.
841 validate_replace_rtx (from, to, insn) is equivalent to
842 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
845 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
847 validate_replace_rtx_1 (where, from, to, insn, true);
848 return apply_change_group ();
851 /* Same as above, but do not simplify rtx afterwards. */
853 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
854 rtx insn)
856 validate_replace_rtx_1 (where, from, to, insn, false);
857 return apply_change_group ();
861 /* Try replacing every occurrence of FROM in INSN with TO. This also
862 will replace in REG_EQUAL and REG_EQUIV notes. */
864 void
865 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
867 rtx note;
868 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
869 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
870 if (REG_NOTE_KIND (note) == REG_EQUAL
871 || REG_NOTE_KIND (note) == REG_EQUIV)
872 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
875 /* Function called by note_uses to replace used subexpressions. */
876 struct validate_replace_src_data
878 rtx from; /* Old RTX */
879 rtx to; /* New RTX */
880 rtx insn; /* Insn in which substitution is occurring. */
883 static void
884 validate_replace_src_1 (rtx *x, void *data)
886 struct validate_replace_src_data *d
887 = (struct validate_replace_src_data *) data;
889 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
892 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
893 SET_DESTs. */
895 void
896 validate_replace_src_group (rtx from, rtx to, rtx insn)
898 struct validate_replace_src_data d;
900 d.from = from;
901 d.to = to;
902 d.insn = insn;
903 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
906 /* Try simplify INSN.
907 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
908 pattern and return true if something was simplified. */
910 bool
911 validate_simplify_insn (rtx insn)
913 int i;
914 rtx pat = NULL;
915 rtx newpat = NULL;
917 pat = PATTERN (insn);
919 if (GET_CODE (pat) == SET)
921 newpat = simplify_rtx (SET_SRC (pat));
922 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
923 validate_change (insn, &SET_SRC (pat), newpat, 1);
924 newpat = simplify_rtx (SET_DEST (pat));
925 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
926 validate_change (insn, &SET_DEST (pat), newpat, 1);
928 else if (GET_CODE (pat) == PARALLEL)
929 for (i = 0; i < XVECLEN (pat, 0); i++)
931 rtx s = XVECEXP (pat, 0, i);
933 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
935 newpat = simplify_rtx (SET_SRC (s));
936 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
937 validate_change (insn, &SET_SRC (s), newpat, 1);
938 newpat = simplify_rtx (SET_DEST (s));
939 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
940 validate_change (insn, &SET_DEST (s), newpat, 1);
943 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
946 #ifdef HAVE_cc0
947 /* Return 1 if the insn using CC0 set by INSN does not contain
948 any ordered tests applied to the condition codes.
949 EQ and NE tests do not count. */
952 next_insn_tests_no_inequality (rtx insn)
954 rtx next = next_cc0_user (insn);
956 /* If there is no next insn, we have to take the conservative choice. */
957 if (next == 0)
958 return 0;
960 return (INSN_P (next)
961 && ! inequality_comparisons_p (PATTERN (next)));
963 #endif
965 /* Return 1 if OP is a valid general operand for machine mode MODE.
966 This is either a register reference, a memory reference,
967 or a constant. In the case of a memory reference, the address
968 is checked for general validity for the target machine.
970 Register and memory references must have mode MODE in order to be valid,
971 but some constants have no machine mode and are valid for any mode.
973 If MODE is VOIDmode, OP is checked for validity for whatever mode
974 it has.
976 The main use of this function is as a predicate in match_operand
977 expressions in the machine description. */
980 general_operand (rtx op, enum machine_mode mode)
982 enum rtx_code code = GET_CODE (op);
984 if (mode == VOIDmode)
985 mode = GET_MODE (op);
987 /* Don't accept CONST_INT or anything similar
988 if the caller wants something floating. */
989 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
990 && GET_MODE_CLASS (mode) != MODE_INT
991 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
992 return 0;
994 if (CONST_INT_P (op)
995 && mode != VOIDmode
996 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
997 return 0;
999 if (CONSTANT_P (op))
1000 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
1001 || mode == VOIDmode)
1002 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1003 && targetm.legitimate_constant_p (mode == VOIDmode
1004 ? GET_MODE (op)
1005 : mode, op));
1007 /* Except for certain constants with VOIDmode, already checked for,
1008 OP's mode must match MODE if MODE specifies a mode. */
1010 if (GET_MODE (op) != mode)
1011 return 0;
1013 if (code == SUBREG)
1015 rtx sub = SUBREG_REG (op);
1017 #ifdef INSN_SCHEDULING
1018 /* On machines that have insn scheduling, we want all memory
1019 reference to be explicit, so outlaw paradoxical SUBREGs.
1020 However, we must allow them after reload so that they can
1021 get cleaned up by cleanup_subreg_operands. */
1022 if (!reload_completed && MEM_P (sub)
1023 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
1024 return 0;
1025 #endif
1026 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
1027 may result in incorrect reference. We should simplify all valid
1028 subregs of MEM anyway. But allow this after reload because we
1029 might be called from cleanup_subreg_operands.
1031 ??? This is a kludge. */
1032 if (!reload_completed && SUBREG_BYTE (op) != 0
1033 && MEM_P (sub))
1034 return 0;
1036 #ifdef CANNOT_CHANGE_MODE_CLASS
1037 if (REG_P (sub)
1038 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1039 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1040 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1041 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT
1042 /* LRA can generate some invalid SUBREGS just for matched
1043 operand reload presentation. LRA needs to treat them as
1044 valid. */
1045 && ! LRA_SUBREG_P (op))
1046 return 0;
1047 #endif
1049 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1050 create such rtl, and we must reject it. */
1051 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1052 /* LRA can use subreg to store a floating point value in an
1053 integer mode. Although the floating point and the
1054 integer modes need the same number of hard registers, the
1055 size of floating point mode can be less than the integer
1056 mode. */
1057 && ! lra_in_progress
1058 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1059 return 0;
1061 op = sub;
1062 code = GET_CODE (op);
1065 if (code == REG)
1066 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1067 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1069 if (code == MEM)
1071 rtx y = XEXP (op, 0);
1073 if (! volatile_ok && MEM_VOLATILE_P (op))
1074 return 0;
1076 /* Use the mem's mode, since it will be reloaded thus. LRA can
1077 generate move insn with invalid addresses which is made valid
1078 and efficiently calculated by LRA through further numerous
1079 transformations. */
1080 if (lra_in_progress
1081 || memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1082 return 1;
1085 return 0;
1088 /* Return 1 if OP is a valid memory address for a memory reference
1089 of mode MODE.
1091 The main use of this function is as a predicate in match_operand
1092 expressions in the machine description. */
1095 address_operand (rtx op, enum machine_mode mode)
1097 return memory_address_p (mode, op);
1100 /* Return 1 if OP is a register reference of mode MODE.
1101 If MODE is VOIDmode, accept a register in any mode.
1103 The main use of this function is as a predicate in match_operand
1104 expressions in the machine description. */
1107 register_operand (rtx op, enum machine_mode mode)
1109 if (GET_CODE (op) == SUBREG)
1111 rtx sub = SUBREG_REG (op);
1113 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1114 because it is guaranteed to be reloaded into one.
1115 Just make sure the MEM is valid in itself.
1116 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1117 but currently it does result from (SUBREG (REG)...) where the
1118 reg went on the stack.) */
1119 if (!REG_P (sub) && (reload_completed || !MEM_P (sub)))
1120 return 0;
1122 else if (!REG_P (op))
1123 return 0;
1124 return general_operand (op, mode);
1127 /* Return 1 for a register in Pmode; ignore the tested mode. */
1130 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1132 return register_operand (op, Pmode);
1135 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1136 or a hard register. */
1139 scratch_operand (rtx op, enum machine_mode mode)
1141 if (GET_MODE (op) != mode && mode != VOIDmode)
1142 return 0;
1144 return (GET_CODE (op) == SCRATCH
1145 || (REG_P (op)
1146 && (lra_in_progress
1147 || (REGNO (op) < FIRST_PSEUDO_REGISTER
1148 && REGNO_REG_CLASS (REGNO (op)) != NO_REGS))));
1151 /* Return 1 if OP is a valid immediate operand for mode MODE.
1153 The main use of this function is as a predicate in match_operand
1154 expressions in the machine description. */
1157 immediate_operand (rtx op, enum machine_mode mode)
1159 /* Don't accept CONST_INT or anything similar
1160 if the caller wants something floating. */
1161 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1162 && GET_MODE_CLASS (mode) != MODE_INT
1163 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1164 return 0;
1166 if (CONST_INT_P (op)
1167 && mode != VOIDmode
1168 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1169 return 0;
1171 return (CONSTANT_P (op)
1172 && (GET_MODE (op) == mode || mode == VOIDmode
1173 || GET_MODE (op) == VOIDmode)
1174 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1175 && targetm.legitimate_constant_p (mode == VOIDmode
1176 ? GET_MODE (op)
1177 : mode, op));
1180 /* Returns 1 if OP is an operand that is a CONST_INT of mode MODE. */
1183 const_int_operand (rtx op, enum machine_mode mode)
1185 if (!CONST_INT_P (op))
1186 return 0;
1188 if (mode != VOIDmode
1189 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1190 return 0;
1192 return 1;
1195 #if TARGET_SUPPORTS_WIDE_INT
1196 /* Returns 1 if OP is an operand that is a CONST_INT or CONST_WIDE_INT
1197 of mode MODE. */
1199 const_scalar_int_operand (rtx op, enum machine_mode mode)
1201 if (!CONST_SCALAR_INT_P (op))
1202 return 0;
1204 if (CONST_INT_P (op))
1205 return const_int_operand (op, mode);
1207 if (mode != VOIDmode)
1209 int prec = GET_MODE_PRECISION (mode);
1210 int bitsize = GET_MODE_BITSIZE (mode);
1212 if (CONST_WIDE_INT_NUNITS (op) * HOST_BITS_PER_WIDE_INT > bitsize)
1213 return 0;
1215 if (prec == bitsize)
1216 return 1;
1217 else
1219 /* Multiword partial int. */
1220 HOST_WIDE_INT x
1221 = CONST_WIDE_INT_ELT (op, CONST_WIDE_INT_NUNITS (op) - 1);
1222 return (sext_hwi (x, prec & (HOST_BITS_PER_WIDE_INT - 1)) == x);
1225 return 1;
1228 /* Returns 1 if OP is an operand that is a constant integer or constant
1229 floating-point number of MODE. */
1232 const_double_operand (rtx op, enum machine_mode mode)
1234 return (GET_CODE (op) == CONST_DOUBLE)
1235 && (GET_MODE (op) == mode || mode == VOIDmode);
1237 #else
1238 /* Returns 1 if OP is an operand that is a constant integer or constant
1239 floating-point number of MODE. */
1242 const_double_operand (rtx op, enum machine_mode mode)
1244 /* Don't accept CONST_INT or anything similar
1245 if the caller wants something floating. */
1246 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1247 && GET_MODE_CLASS (mode) != MODE_INT
1248 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1249 return 0;
1251 return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1252 && (mode == VOIDmode || GET_MODE (op) == mode
1253 || GET_MODE (op) == VOIDmode));
1255 #endif
1256 /* Return 1 if OP is a general operand that is not an immediate
1257 operand of mode MODE. */
1260 nonimmediate_operand (rtx op, enum machine_mode mode)
1262 return (general_operand (op, mode) && ! CONSTANT_P (op));
1265 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1268 nonmemory_operand (rtx op, enum machine_mode mode)
1270 if (CONSTANT_P (op))
1271 return immediate_operand (op, mode);
1272 return register_operand (op, mode);
1275 /* Return 1 if OP is a valid operand that stands for pushing a
1276 value of mode MODE onto the stack.
1278 The main use of this function is as a predicate in match_operand
1279 expressions in the machine description. */
1282 push_operand (rtx op, enum machine_mode mode)
1284 unsigned int rounded_size = GET_MODE_SIZE (mode);
1286 #ifdef PUSH_ROUNDING
1287 rounded_size = PUSH_ROUNDING (rounded_size);
1288 #endif
1290 if (!MEM_P (op))
1291 return 0;
1293 if (mode != VOIDmode && GET_MODE (op) != mode)
1294 return 0;
1296 op = XEXP (op, 0);
1298 if (rounded_size == GET_MODE_SIZE (mode))
1300 if (GET_CODE (op) != STACK_PUSH_CODE)
1301 return 0;
1303 else
1305 if (GET_CODE (op) != PRE_MODIFY
1306 || GET_CODE (XEXP (op, 1)) != PLUS
1307 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1308 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1309 #ifdef STACK_GROWS_DOWNWARD
1310 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1311 #else
1312 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1313 #endif
1315 return 0;
1318 return XEXP (op, 0) == stack_pointer_rtx;
1321 /* Return 1 if OP is a valid operand that stands for popping a
1322 value of mode MODE off the stack.
1324 The main use of this function is as a predicate in match_operand
1325 expressions in the machine description. */
1328 pop_operand (rtx op, enum machine_mode mode)
1330 if (!MEM_P (op))
1331 return 0;
1333 if (mode != VOIDmode && GET_MODE (op) != mode)
1334 return 0;
1336 op = XEXP (op, 0);
1338 if (GET_CODE (op) != STACK_POP_CODE)
1339 return 0;
1341 return XEXP (op, 0) == stack_pointer_rtx;
1344 /* Return 1 if ADDR is a valid memory address
1345 for mode MODE in address space AS. */
1348 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1349 rtx addr, addr_space_t as)
1351 #ifdef GO_IF_LEGITIMATE_ADDRESS
1352 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1353 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1354 return 0;
1356 win:
1357 return 1;
1358 #else
1359 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1360 #endif
1363 /* Return 1 if OP is a valid memory reference with mode MODE,
1364 including a valid address.
1366 The main use of this function is as a predicate in match_operand
1367 expressions in the machine description. */
1370 memory_operand (rtx op, enum machine_mode mode)
1372 rtx inner;
1374 if (! reload_completed)
1375 /* Note that no SUBREG is a memory operand before end of reload pass,
1376 because (SUBREG (MEM...)) forces reloading into a register. */
1377 return MEM_P (op) && general_operand (op, mode);
1379 if (mode != VOIDmode && GET_MODE (op) != mode)
1380 return 0;
1382 inner = op;
1383 if (GET_CODE (inner) == SUBREG)
1384 inner = SUBREG_REG (inner);
1386 return (MEM_P (inner) && general_operand (op, mode));
1389 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1390 that is, a memory reference whose address is a general_operand. */
1393 indirect_operand (rtx op, enum machine_mode mode)
1395 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1396 if (! reload_completed
1397 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1399 int offset = SUBREG_BYTE (op);
1400 rtx inner = SUBREG_REG (op);
1402 if (mode != VOIDmode && GET_MODE (op) != mode)
1403 return 0;
1405 /* The only way that we can have a general_operand as the resulting
1406 address is if OFFSET is zero and the address already is an operand
1407 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1408 operand. */
1410 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1411 || (GET_CODE (XEXP (inner, 0)) == PLUS
1412 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1413 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1414 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1417 return (MEM_P (op)
1418 && memory_operand (op, mode)
1419 && general_operand (XEXP (op, 0), Pmode));
1422 /* Return 1 if this is an ordered comparison operator (not including
1423 ORDERED and UNORDERED). */
1426 ordered_comparison_operator (rtx op, enum machine_mode mode)
1428 if (mode != VOIDmode && GET_MODE (op) != mode)
1429 return false;
1430 switch (GET_CODE (op))
1432 case EQ:
1433 case NE:
1434 case LT:
1435 case LTU:
1436 case LE:
1437 case LEU:
1438 case GT:
1439 case GTU:
1440 case GE:
1441 case GEU:
1442 return true;
1443 default:
1444 return false;
1448 /* Return 1 if this is a comparison operator. This allows the use of
1449 MATCH_OPERATOR to recognize all the branch insns. */
1452 comparison_operator (rtx op, enum machine_mode mode)
1454 return ((mode == VOIDmode || GET_MODE (op) == mode)
1455 && COMPARISON_P (op));
1458 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1461 extract_asm_operands (rtx body)
1463 rtx tmp;
1464 switch (GET_CODE (body))
1466 case ASM_OPERANDS:
1467 return body;
1469 case SET:
1470 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1471 tmp = SET_SRC (body);
1472 if (GET_CODE (tmp) == ASM_OPERANDS)
1473 return tmp;
1474 break;
1476 case PARALLEL:
1477 tmp = XVECEXP (body, 0, 0);
1478 if (GET_CODE (tmp) == ASM_OPERANDS)
1479 return tmp;
1480 if (GET_CODE (tmp) == SET)
1482 tmp = SET_SRC (tmp);
1483 if (GET_CODE (tmp) == ASM_OPERANDS)
1484 return tmp;
1486 break;
1488 default:
1489 break;
1491 return NULL;
1494 /* If BODY is an insn body that uses ASM_OPERANDS,
1495 return the number of operands (both input and output) in the insn.
1496 Otherwise return -1. */
1499 asm_noperands (const_rtx body)
1501 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1502 int n_sets = 0;
1504 if (asm_op == NULL)
1505 return -1;
1507 if (GET_CODE (body) == SET)
1508 n_sets = 1;
1509 else if (GET_CODE (body) == PARALLEL)
1511 int i;
1512 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1514 /* Multiple output operands, or 1 output plus some clobbers:
1515 body is
1516 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1517 /* Count backwards through CLOBBERs to determine number of SETs. */
1518 for (i = XVECLEN (body, 0); i > 0; i--)
1520 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1521 break;
1522 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1523 return -1;
1526 /* N_SETS is now number of output operands. */
1527 n_sets = i;
1529 /* Verify that all the SETs we have
1530 came from a single original asm_operands insn
1531 (so that invalid combinations are blocked). */
1532 for (i = 0; i < n_sets; i++)
1534 rtx elt = XVECEXP (body, 0, i);
1535 if (GET_CODE (elt) != SET)
1536 return -1;
1537 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1538 return -1;
1539 /* If these ASM_OPERANDS rtx's came from different original insns
1540 then they aren't allowed together. */
1541 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1542 != ASM_OPERANDS_INPUT_VEC (asm_op))
1543 return -1;
1546 else
1548 /* 0 outputs, but some clobbers:
1549 body is [(asm_operands ...) (clobber (reg ...))...]. */
1550 /* Make sure all the other parallel things really are clobbers. */
1551 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1552 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1553 return -1;
1557 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1558 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1561 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1562 copy its operands (both input and output) into the vector OPERANDS,
1563 the locations of the operands within the insn into the vector OPERAND_LOCS,
1564 and the constraints for the operands into CONSTRAINTS.
1565 Write the modes of the operands into MODES.
1566 Return the assembler-template.
1568 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1569 we don't store that info. */
1571 const char *
1572 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1573 const char **constraints, enum machine_mode *modes,
1574 location_t *loc)
1576 int nbase = 0, n, i;
1577 rtx asmop;
1579 switch (GET_CODE (body))
1581 case ASM_OPERANDS:
1582 /* Zero output asm: BODY is (asm_operands ...). */
1583 asmop = body;
1584 break;
1586 case SET:
1587 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1588 asmop = SET_SRC (body);
1590 /* The output is in the SET.
1591 Its constraint is in the ASM_OPERANDS itself. */
1592 if (operands)
1593 operands[0] = SET_DEST (body);
1594 if (operand_locs)
1595 operand_locs[0] = &SET_DEST (body);
1596 if (constraints)
1597 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1598 if (modes)
1599 modes[0] = GET_MODE (SET_DEST (body));
1600 nbase = 1;
1601 break;
1603 case PARALLEL:
1605 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1607 asmop = XVECEXP (body, 0, 0);
1608 if (GET_CODE (asmop) == SET)
1610 asmop = SET_SRC (asmop);
1612 /* At least one output, plus some CLOBBERs. The outputs are in
1613 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1614 for (i = 0; i < nparallel; i++)
1616 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1617 break; /* Past last SET */
1618 if (operands)
1619 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1620 if (operand_locs)
1621 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1622 if (constraints)
1623 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1624 if (modes)
1625 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1627 nbase = i;
1629 break;
1632 default:
1633 gcc_unreachable ();
1636 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1637 for (i = 0; i < n; i++)
1639 if (operand_locs)
1640 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1641 if (operands)
1642 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1643 if (constraints)
1644 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1645 if (modes)
1646 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1648 nbase += n;
1650 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1651 for (i = 0; i < n; i++)
1653 if (operand_locs)
1654 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1655 if (operands)
1656 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1657 if (constraints)
1658 constraints[nbase + i] = "";
1659 if (modes)
1660 modes[nbase + i] = Pmode;
1663 if (loc)
1664 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1666 return ASM_OPERANDS_TEMPLATE (asmop);
1669 /* Parse inline assembly string STRING and determine which operands are
1670 referenced by % markers. For the first NOPERANDS operands, set USED[I]
1671 to true if operand I is referenced.
1673 This is intended to distinguish barrier-like asms such as:
1675 asm ("" : "=m" (...));
1677 from real references such as:
1679 asm ("sw\t$0, %0" : "=m" (...)); */
1681 void
1682 get_referenced_operands (const char *string, bool *used,
1683 unsigned int noperands)
1685 memset (used, 0, sizeof (bool) * noperands);
1686 const char *p = string;
1687 while (*p)
1688 switch (*p)
1690 case '%':
1691 p += 1;
1692 /* A letter followed by a digit indicates an operand number. */
1693 if (ISALPHA (p[0]) && ISDIGIT (p[1]))
1694 p += 1;
1695 if (ISDIGIT (*p))
1697 char *endptr;
1698 unsigned long opnum = strtoul (p, &endptr, 10);
1699 if (endptr != p && opnum < noperands)
1700 used[opnum] = true;
1701 p = endptr;
1703 else
1704 p += 1;
1705 break;
1707 default:
1708 p++;
1709 break;
1713 /* Check if an asm_operand matches its constraints.
1714 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1717 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1719 int result = 0;
1720 #ifdef AUTO_INC_DEC
1721 bool incdec_ok = false;
1722 #endif
1724 /* Use constrain_operands after reload. */
1725 gcc_assert (!reload_completed);
1727 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1728 many alternatives as required to match the other operands. */
1729 if (*constraint == '\0')
1730 result = 1;
1732 while (*constraint)
1734 enum constraint_num cn;
1735 char c = *constraint;
1736 int len;
1737 switch (c)
1739 case ',':
1740 constraint++;
1741 continue;
1743 case '0': case '1': case '2': case '3': case '4':
1744 case '5': case '6': case '7': case '8': case '9':
1745 /* If caller provided constraints pointer, look up
1746 the matching constraint. Otherwise, our caller should have
1747 given us the proper matching constraint, but we can't
1748 actually fail the check if they didn't. Indicate that
1749 results are inconclusive. */
1750 if (constraints)
1752 char *end;
1753 unsigned long match;
1755 match = strtoul (constraint, &end, 10);
1756 if (!result)
1757 result = asm_operand_ok (op, constraints[match], NULL);
1758 constraint = (const char *) end;
1760 else
1763 constraint++;
1764 while (ISDIGIT (*constraint));
1765 if (! result)
1766 result = -1;
1768 continue;
1770 /* The rest of the compiler assumes that reloading the address
1771 of a MEM into a register will make it fit an 'o' constraint.
1772 That is, if it sees a MEM operand for an 'o' constraint,
1773 it assumes that (mem (base-reg)) will fit.
1775 That assumption fails on targets that don't have offsettable
1776 addresses at all. We therefore need to treat 'o' asm
1777 constraints as a special case and only accept operands that
1778 are already offsettable, thus proving that at least one
1779 offsettable address exists. */
1780 case 'o': /* offsettable */
1781 if (offsettable_nonstrict_memref_p (op))
1782 result = 1;
1783 break;
1785 case 'g':
1786 if (general_operand (op, VOIDmode))
1787 result = 1;
1788 break;
1790 #ifdef AUTO_INC_DEC
1791 case '<':
1792 case '>':
1793 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed
1794 to exist, excepting those that expand_call created. Further,
1795 on some machines which do not have generalized auto inc/dec,
1796 an inc/dec is not a memory_operand.
1798 Match any memory and hope things are resolved after reload. */
1799 incdec_ok = true;
1800 #endif
1801 default:
1802 cn = lookup_constraint (constraint);
1803 switch (get_constraint_type (cn))
1805 case CT_REGISTER:
1806 if (!result
1807 && reg_class_for_constraint (cn) != NO_REGS
1808 && GET_MODE (op) != BLKmode
1809 && register_operand (op, VOIDmode))
1810 result = 1;
1811 break;
1813 case CT_CONST_INT:
1814 if (!result
1815 && CONST_INT_P (op)
1816 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
1817 result = 1;
1818 break;
1820 case CT_MEMORY:
1821 /* Every memory operand can be reloaded to fit. */
1822 result = result || memory_operand (op, VOIDmode);
1823 break;
1825 case CT_ADDRESS:
1826 /* Every address operand can be reloaded to fit. */
1827 result = result || address_operand (op, VOIDmode);
1828 break;
1830 case CT_FIXED_FORM:
1831 result = result || constraint_satisfied_p (op, cn);
1832 break;
1834 break;
1836 len = CONSTRAINT_LEN (c, constraint);
1838 constraint++;
1839 while (--len && *constraint);
1840 if (len)
1841 return 0;
1844 #ifdef AUTO_INC_DEC
1845 /* For operands without < or > constraints reject side-effects. */
1846 if (!incdec_ok && result && MEM_P (op))
1847 switch (GET_CODE (XEXP (op, 0)))
1849 case PRE_INC:
1850 case POST_INC:
1851 case PRE_DEC:
1852 case POST_DEC:
1853 case PRE_MODIFY:
1854 case POST_MODIFY:
1855 return 0;
1856 default:
1857 break;
1859 #endif
1861 return result;
1864 /* Given an rtx *P, if it is a sum containing an integer constant term,
1865 return the location (type rtx *) of the pointer to that constant term.
1866 Otherwise, return a null pointer. */
1868 rtx *
1869 find_constant_term_loc (rtx *p)
1871 rtx *tem;
1872 enum rtx_code code = GET_CODE (*p);
1874 /* If *P IS such a constant term, P is its location. */
1876 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1877 || code == CONST)
1878 return p;
1880 /* Otherwise, if not a sum, it has no constant term. */
1882 if (GET_CODE (*p) != PLUS)
1883 return 0;
1885 /* If one of the summands is constant, return its location. */
1887 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1888 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1889 return p;
1891 /* Otherwise, check each summand for containing a constant term. */
1893 if (XEXP (*p, 0) != 0)
1895 tem = find_constant_term_loc (&XEXP (*p, 0));
1896 if (tem != 0)
1897 return tem;
1900 if (XEXP (*p, 1) != 0)
1902 tem = find_constant_term_loc (&XEXP (*p, 1));
1903 if (tem != 0)
1904 return tem;
1907 return 0;
1910 /* Return 1 if OP is a memory reference
1911 whose address contains no side effects
1912 and remains valid after the addition
1913 of a positive integer less than the
1914 size of the object being referenced.
1916 We assume that the original address is valid and do not check it.
1918 This uses strict_memory_address_p as a subroutine, so
1919 don't use it before reload. */
1922 offsettable_memref_p (rtx op)
1924 return ((MEM_P (op))
1925 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1926 MEM_ADDR_SPACE (op)));
1929 /* Similar, but don't require a strictly valid mem ref:
1930 consider pseudo-regs valid as index or base regs. */
1933 offsettable_nonstrict_memref_p (rtx op)
1935 return ((MEM_P (op))
1936 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1937 MEM_ADDR_SPACE (op)));
1940 /* Return 1 if Y is a memory address which contains no side effects
1941 and would remain valid for address space AS after the addition of
1942 a positive integer less than the size of that mode.
1944 We assume that the original address is valid and do not check it.
1945 We do check that it is valid for narrower modes.
1947 If STRICTP is nonzero, we require a strictly valid address,
1948 for the sake of use in reload.c. */
1951 offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
1952 addr_space_t as)
1954 enum rtx_code ycode = GET_CODE (y);
1955 rtx z;
1956 rtx y1 = y;
1957 rtx *y2;
1958 int (*addressp) (enum machine_mode, rtx, addr_space_t) =
1959 (strictp ? strict_memory_address_addr_space_p
1960 : memory_address_addr_space_p);
1961 unsigned int mode_sz = GET_MODE_SIZE (mode);
1963 if (CONSTANT_ADDRESS_P (y))
1964 return 1;
1966 /* Adjusting an offsettable address involves changing to a narrower mode.
1967 Make sure that's OK. */
1969 if (mode_dependent_address_p (y, as))
1970 return 0;
1972 enum machine_mode address_mode = GET_MODE (y);
1973 if (address_mode == VOIDmode)
1974 address_mode = targetm.addr_space.address_mode (as);
1975 #ifdef POINTERS_EXTEND_UNSIGNED
1976 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
1977 #endif
1979 /* ??? How much offset does an offsettable BLKmode reference need?
1980 Clearly that depends on the situation in which it's being used.
1981 However, the current situation in which we test 0xffffffff is
1982 less than ideal. Caveat user. */
1983 if (mode_sz == 0)
1984 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1986 /* If the expression contains a constant term,
1987 see if it remains valid when max possible offset is added. */
1989 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1991 int good;
1993 y1 = *y2;
1994 *y2 = plus_constant (address_mode, *y2, mode_sz - 1);
1995 /* Use QImode because an odd displacement may be automatically invalid
1996 for any wider mode. But it should be valid for a single byte. */
1997 good = (*addressp) (QImode, y, as);
1999 /* In any case, restore old contents of memory. */
2000 *y2 = y1;
2001 return good;
2004 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
2005 return 0;
2007 /* The offset added here is chosen as the maximum offset that
2008 any instruction could need to add when operating on something
2009 of the specified mode. We assume that if Y and Y+c are
2010 valid addresses then so is Y+d for all 0<d<c. adjust_address will
2011 go inside a LO_SUM here, so we do so as well. */
2012 if (GET_CODE (y) == LO_SUM
2013 && mode != BLKmode
2014 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
2015 z = gen_rtx_LO_SUM (address_mode, XEXP (y, 0),
2016 plus_constant (address_mode, XEXP (y, 1),
2017 mode_sz - 1));
2018 #ifdef POINTERS_EXTEND_UNSIGNED
2019 /* Likewise for a ZERO_EXTEND from pointer_mode. */
2020 else if (POINTERS_EXTEND_UNSIGNED > 0
2021 && GET_CODE (y) == ZERO_EXTEND
2022 && GET_MODE (XEXP (y, 0)) == pointer_mode)
2023 z = gen_rtx_ZERO_EXTEND (address_mode,
2024 plus_constant (pointer_mode, XEXP (y, 0),
2025 mode_sz - 1));
2026 #endif
2027 else
2028 z = plus_constant (address_mode, y, mode_sz - 1);
2030 /* Use QImode because an odd displacement may be automatically invalid
2031 for any wider mode. But it should be valid for a single byte. */
2032 return (*addressp) (QImode, z, as);
2035 /* Return 1 if ADDR is an address-expression whose effect depends
2036 on the mode of the memory reference it is used in.
2038 ADDRSPACE is the address space associated with the address.
2040 Autoincrement addressing is a typical example of mode-dependence
2041 because the amount of the increment depends on the mode. */
2043 bool
2044 mode_dependent_address_p (rtx addr, addr_space_t addrspace)
2046 /* Auto-increment addressing with anything other than post_modify
2047 or pre_modify always introduces a mode dependency. Catch such
2048 cases now instead of deferring to the target. */
2049 if (GET_CODE (addr) == PRE_INC
2050 || GET_CODE (addr) == POST_INC
2051 || GET_CODE (addr) == PRE_DEC
2052 || GET_CODE (addr) == POST_DEC)
2053 return true;
2055 return targetm.mode_dependent_address_p (addr, addrspace);
2058 /* Return the mask of operand alternatives that are allowed for INSN.
2059 This mask depends only on INSN and on the current target; it does not
2060 depend on things like the values of operands. */
2062 alternative_mask
2063 get_enabled_alternatives (rtx_insn *insn)
2065 /* Quick exit for asms and for targets that don't use the "enabled"
2066 attribute. */
2067 int code = INSN_CODE (insn);
2068 if (code < 0 || !HAVE_ATTR_enabled)
2069 return ALL_ALTERNATIVES;
2071 /* Calling get_attr_enabled can be expensive, so cache the mask
2072 for speed. */
2073 if (this_target_recog->x_enabled_alternatives[code])
2074 return this_target_recog->x_enabled_alternatives[code];
2076 /* Temporarily install enough information for get_attr_enabled to assume
2077 that the insn operands are already cached. As above, the attribute
2078 mustn't depend on the values of operands, so we don't provide their
2079 real values here. */
2080 rtx old_insn = recog_data.insn;
2081 int old_alternative = which_alternative;
2083 recog_data.insn = insn;
2084 alternative_mask enabled = ALL_ALTERNATIVES;
2085 int n_alternatives = insn_data[code].n_alternatives;
2086 for (int i = 0; i < n_alternatives; i++)
2088 which_alternative = i;
2089 if (!get_attr_enabled (insn))
2090 enabled &= ~ALTERNATIVE_BIT (i);
2093 recog_data.insn = old_insn;
2094 which_alternative = old_alternative;
2096 this_target_recog->x_enabled_alternatives[code] = enabled;
2097 return enabled;
2100 /* Like extract_insn, but save insn extracted and don't extract again, when
2101 called again for the same insn expecting that recog_data still contain the
2102 valid information. This is used primary by gen_attr infrastructure that
2103 often does extract insn again and again. */
2104 void
2105 extract_insn_cached (rtx_insn *insn)
2107 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2108 return;
2109 extract_insn (insn);
2110 recog_data.insn = insn;
2113 /* Do cached extract_insn, constrain_operands and complain about failures.
2114 Used by insn_attrtab. */
2115 void
2116 extract_constrain_insn_cached (rtx_insn *insn)
2118 extract_insn_cached (insn);
2119 if (which_alternative == -1
2120 && !constrain_operands (reload_completed))
2121 fatal_insn_not_found (insn);
2124 /* Do cached constrain_operands and complain about failures. */
2126 constrain_operands_cached (int strict)
2128 if (which_alternative == -1)
2129 return constrain_operands (strict);
2130 else
2131 return 1;
2134 /* Analyze INSN and fill in recog_data. */
2136 void
2137 extract_insn (rtx_insn *insn)
2139 int i;
2140 int icode;
2141 int noperands;
2142 rtx body = PATTERN (insn);
2144 recog_data.n_operands = 0;
2145 recog_data.n_alternatives = 0;
2146 recog_data.n_dups = 0;
2147 recog_data.is_asm = false;
2149 switch (GET_CODE (body))
2151 case USE:
2152 case CLOBBER:
2153 case ASM_INPUT:
2154 case ADDR_VEC:
2155 case ADDR_DIFF_VEC:
2156 case VAR_LOCATION:
2157 return;
2159 case SET:
2160 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2161 goto asm_insn;
2162 else
2163 goto normal_insn;
2164 case PARALLEL:
2165 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2166 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2167 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2168 goto asm_insn;
2169 else
2170 goto normal_insn;
2171 case ASM_OPERANDS:
2172 asm_insn:
2173 recog_data.n_operands = noperands = asm_noperands (body);
2174 if (noperands >= 0)
2176 /* This insn is an `asm' with operands. */
2178 /* expand_asm_operands makes sure there aren't too many operands. */
2179 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2181 /* Now get the operand values and constraints out of the insn. */
2182 decode_asm_operands (body, recog_data.operand,
2183 recog_data.operand_loc,
2184 recog_data.constraints,
2185 recog_data.operand_mode, NULL);
2186 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2187 if (noperands > 0)
2189 const char *p = recog_data.constraints[0];
2190 recog_data.n_alternatives = 1;
2191 while (*p)
2192 recog_data.n_alternatives += (*p++ == ',');
2194 recog_data.is_asm = true;
2195 break;
2197 fatal_insn_not_found (insn);
2199 default:
2200 normal_insn:
2201 /* Ordinary insn: recognize it, get the operands via insn_extract
2202 and get the constraints. */
2204 icode = recog_memoized (insn);
2205 if (icode < 0)
2206 fatal_insn_not_found (insn);
2208 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2209 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2210 recog_data.n_dups = insn_data[icode].n_dups;
2212 insn_extract (insn);
2214 for (i = 0; i < noperands; i++)
2216 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2217 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2218 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2219 /* VOIDmode match_operands gets mode from their real operand. */
2220 if (recog_data.operand_mode[i] == VOIDmode)
2221 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2224 for (i = 0; i < noperands; i++)
2225 recog_data.operand_type[i]
2226 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2227 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2228 : OP_IN);
2230 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2232 recog_data.enabled_alternatives = get_enabled_alternatives (insn);
2234 recog_data.insn = NULL;
2235 which_alternative = -1;
2238 /* Fill in OP_ALT_BASE for an instruction that has N_OPERANDS operands,
2239 N_ALTERNATIVES alternatives and constraint strings CONSTRAINTS.
2240 OP_ALT_BASE has N_ALTERNATIVES * N_OPERANDS entries and CONSTRAINTS
2241 has N_OPERANDS entries. */
2243 void
2244 preprocess_constraints (int n_operands, int n_alternatives,
2245 const char **constraints,
2246 operand_alternative *op_alt_base)
2248 for (int i = 0; i < n_operands; i++)
2250 int j;
2251 struct operand_alternative *op_alt;
2252 const char *p = constraints[i];
2254 op_alt = op_alt_base;
2256 for (j = 0; j < n_alternatives; j++, op_alt += n_operands)
2258 op_alt[i].cl = NO_REGS;
2259 op_alt[i].constraint = p;
2260 op_alt[i].matches = -1;
2261 op_alt[i].matched = -1;
2263 if (*p == '\0' || *p == ',')
2265 op_alt[i].anything_ok = 1;
2266 continue;
2269 for (;;)
2271 char c = *p;
2272 if (c == '#')
2274 c = *++p;
2275 while (c != ',' && c != '\0');
2276 if (c == ',' || c == '\0')
2278 p++;
2279 break;
2282 switch (c)
2284 case '?':
2285 op_alt[i].reject += 6;
2286 break;
2287 case '!':
2288 op_alt[i].reject += 600;
2289 break;
2290 case '&':
2291 op_alt[i].earlyclobber = 1;
2292 break;
2294 case '0': case '1': case '2': case '3': case '4':
2295 case '5': case '6': case '7': case '8': case '9':
2297 char *end;
2298 op_alt[i].matches = strtoul (p, &end, 10);
2299 op_alt[op_alt[i].matches].matched = i;
2300 p = end;
2302 continue;
2304 case 'X':
2305 op_alt[i].anything_ok = 1;
2306 break;
2308 case 'g':
2309 op_alt[i].cl =
2310 reg_class_subunion[(int) op_alt[i].cl][(int) GENERAL_REGS];
2311 break;
2313 default:
2314 enum constraint_num cn = lookup_constraint (p);
2315 enum reg_class cl;
2316 switch (get_constraint_type (cn))
2318 case CT_REGISTER:
2319 cl = reg_class_for_constraint (cn);
2320 if (cl != NO_REGS)
2321 op_alt[i].cl = reg_class_subunion[op_alt[i].cl][cl];
2322 break;
2324 case CT_CONST_INT:
2325 break;
2327 case CT_MEMORY:
2328 op_alt[i].memory_ok = 1;
2329 break;
2331 case CT_ADDRESS:
2332 op_alt[i].is_address = 1;
2333 op_alt[i].cl
2334 = (reg_class_subunion
2335 [(int) op_alt[i].cl]
2336 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2337 ADDRESS, SCRATCH)]);
2338 break;
2340 case CT_FIXED_FORM:
2341 break;
2343 break;
2345 p += CONSTRAINT_LEN (c, p);
2351 /* Return an array of operand_alternative instructions for
2352 instruction ICODE. */
2354 const operand_alternative *
2355 preprocess_insn_constraints (int icode)
2357 gcc_checking_assert (IN_RANGE (icode, 0, LAST_INSN_CODE));
2358 if (this_target_recog->x_op_alt[icode])
2359 return this_target_recog->x_op_alt[icode];
2361 int n_operands = insn_data[icode].n_operands;
2362 if (n_operands == 0)
2363 return 0;
2364 /* Always provide at least one alternative so that which_op_alt ()
2365 works correctly. If the instruction has 0 alternatives (i.e. all
2366 constraint strings are empty) then each operand in this alternative
2367 will have anything_ok set. */
2368 int n_alternatives = MAX (insn_data[icode].n_alternatives, 1);
2369 int n_entries = n_operands * n_alternatives;
2371 operand_alternative *op_alt = XCNEWVEC (operand_alternative, n_entries);
2372 const char **constraints = XALLOCAVEC (const char *, n_operands);
2374 for (int i = 0; i < n_operands; ++i)
2375 constraints[i] = insn_data[icode].operand[i].constraint;
2376 preprocess_constraints (n_operands, n_alternatives, constraints, op_alt);
2378 this_target_recog->x_op_alt[icode] = op_alt;
2379 return op_alt;
2382 /* After calling extract_insn, you can use this function to extract some
2383 information from the constraint strings into a more usable form.
2384 The collected data is stored in recog_op_alt. */
2386 void
2387 preprocess_constraints (rtx insn)
2389 int icode = INSN_CODE (insn);
2390 if (icode >= 0)
2391 recog_op_alt = preprocess_insn_constraints (icode);
2392 else
2394 int n_operands = recog_data.n_operands;
2395 int n_alternatives = recog_data.n_alternatives;
2396 int n_entries = n_operands * n_alternatives;
2397 memset (asm_op_alt, 0, n_entries * sizeof (operand_alternative));
2398 preprocess_constraints (n_operands, n_alternatives,
2399 recog_data.constraints, asm_op_alt);
2400 recog_op_alt = asm_op_alt;
2404 /* Check the operands of an insn against the insn's operand constraints
2405 and return 1 if they are valid.
2406 The information about the insn's operands, constraints, operand modes
2407 etc. is obtained from the global variables set up by extract_insn.
2409 WHICH_ALTERNATIVE is set to a number which indicates which
2410 alternative of constraints was matched: 0 for the first alternative,
2411 1 for the next, etc.
2413 In addition, when two operands are required to match
2414 and it happens that the output operand is (reg) while the
2415 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2416 make the output operand look like the input.
2417 This is because the output operand is the one the template will print.
2419 This is used in final, just before printing the assembler code and by
2420 the routines that determine an insn's attribute.
2422 If STRICT is a positive nonzero value, it means that we have been
2423 called after reload has been completed. In that case, we must
2424 do all checks strictly. If it is zero, it means that we have been called
2425 before reload has completed. In that case, we first try to see if we can
2426 find an alternative that matches strictly. If not, we try again, this
2427 time assuming that reload will fix up the insn. This provides a "best
2428 guess" for the alternative and is used to compute attributes of insns prior
2429 to reload. A negative value of STRICT is used for this internal call. */
2431 struct funny_match
2433 int this_op, other;
2437 constrain_operands (int strict)
2439 const char *constraints[MAX_RECOG_OPERANDS];
2440 int matching_operands[MAX_RECOG_OPERANDS];
2441 int earlyclobber[MAX_RECOG_OPERANDS];
2442 int c;
2444 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2445 int funny_match_index;
2447 which_alternative = 0;
2448 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2449 return 1;
2451 for (c = 0; c < recog_data.n_operands; c++)
2453 constraints[c] = recog_data.constraints[c];
2454 matching_operands[c] = -1;
2459 int seen_earlyclobber_at = -1;
2460 int opno;
2461 int lose = 0;
2462 funny_match_index = 0;
2464 if (!TEST_BIT (recog_data.enabled_alternatives, which_alternative))
2466 int i;
2468 for (i = 0; i < recog_data.n_operands; i++)
2469 constraints[i] = skip_alternative (constraints[i]);
2471 which_alternative++;
2472 continue;
2475 for (opno = 0; opno < recog_data.n_operands; opno++)
2477 rtx op = recog_data.operand[opno];
2478 enum machine_mode mode = GET_MODE (op);
2479 const char *p = constraints[opno];
2480 int offset = 0;
2481 int win = 0;
2482 int val;
2483 int len;
2485 earlyclobber[opno] = 0;
2487 /* A unary operator may be accepted by the predicate, but it
2488 is irrelevant for matching constraints. */
2489 if (UNARY_P (op))
2490 op = XEXP (op, 0);
2492 if (GET_CODE (op) == SUBREG)
2494 if (REG_P (SUBREG_REG (op))
2495 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2496 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2497 GET_MODE (SUBREG_REG (op)),
2498 SUBREG_BYTE (op),
2499 GET_MODE (op));
2500 op = SUBREG_REG (op);
2503 /* An empty constraint or empty alternative
2504 allows anything which matched the pattern. */
2505 if (*p == 0 || *p == ',')
2506 win = 1;
2509 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2511 case '\0':
2512 len = 0;
2513 break;
2514 case ',':
2515 c = '\0';
2516 break;
2518 case '#':
2519 /* Ignore rest of this alternative as far as
2520 constraint checking is concerned. */
2522 p++;
2523 while (*p && *p != ',');
2524 len = 0;
2525 break;
2527 case '&':
2528 earlyclobber[opno] = 1;
2529 if (seen_earlyclobber_at < 0)
2530 seen_earlyclobber_at = opno;
2531 break;
2533 case '0': case '1': case '2': case '3': case '4':
2534 case '5': case '6': case '7': case '8': case '9':
2536 /* This operand must be the same as a previous one.
2537 This kind of constraint is used for instructions such
2538 as add when they take only two operands.
2540 Note that the lower-numbered operand is passed first.
2542 If we are not testing strictly, assume that this
2543 constraint will be satisfied. */
2545 char *end;
2546 int match;
2548 match = strtoul (p, &end, 10);
2549 p = end;
2551 if (strict < 0)
2552 val = 1;
2553 else
2555 rtx op1 = recog_data.operand[match];
2556 rtx op2 = recog_data.operand[opno];
2558 /* A unary operator may be accepted by the predicate,
2559 but it is irrelevant for matching constraints. */
2560 if (UNARY_P (op1))
2561 op1 = XEXP (op1, 0);
2562 if (UNARY_P (op2))
2563 op2 = XEXP (op2, 0);
2565 val = operands_match_p (op1, op2);
2568 matching_operands[opno] = match;
2569 matching_operands[match] = opno;
2571 if (val != 0)
2572 win = 1;
2574 /* If output is *x and input is *--x, arrange later
2575 to change the output to *--x as well, since the
2576 output op is the one that will be printed. */
2577 if (val == 2 && strict > 0)
2579 funny_match[funny_match_index].this_op = opno;
2580 funny_match[funny_match_index++].other = match;
2583 len = 0;
2584 break;
2586 case 'p':
2587 /* p is used for address_operands. When we are called by
2588 gen_reload, no one will have checked that the address is
2589 strictly valid, i.e., that all pseudos requiring hard regs
2590 have gotten them. */
2591 if (strict <= 0
2592 || (strict_memory_address_p (recog_data.operand_mode[opno],
2593 op)))
2594 win = 1;
2595 break;
2597 /* No need to check general_operand again;
2598 it was done in insn-recog.c. Well, except that reload
2599 doesn't check the validity of its replacements, but
2600 that should only matter when there's a bug. */
2601 case 'g':
2602 /* Anything goes unless it is a REG and really has a hard reg
2603 but the hard reg is not in the class GENERAL_REGS. */
2604 if (REG_P (op))
2606 if (strict < 0
2607 || GENERAL_REGS == ALL_REGS
2608 || (reload_in_progress
2609 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2610 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2611 win = 1;
2613 else if (strict < 0 || general_operand (op, mode))
2614 win = 1;
2615 break;
2617 default:
2619 enum constraint_num cn = lookup_constraint (p);
2620 enum reg_class cl = reg_class_for_constraint (cn);
2621 if (cl != NO_REGS)
2623 if (strict < 0
2624 || (strict == 0
2625 && REG_P (op)
2626 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2627 || (strict == 0 && GET_CODE (op) == SCRATCH)
2628 || (REG_P (op)
2629 && reg_fits_class_p (op, cl, offset, mode)))
2630 win = 1;
2633 else if (constraint_satisfied_p (op, cn))
2634 win = 1;
2636 else if (insn_extra_memory_constraint (cn)
2637 /* Every memory operand can be reloaded to fit. */
2638 && ((strict < 0 && MEM_P (op))
2639 /* Before reload, accept what reload can turn
2640 into mem. */
2641 || (strict < 0 && CONSTANT_P (op))
2642 /* During reload, accept a pseudo */
2643 || (reload_in_progress && REG_P (op)
2644 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2645 win = 1;
2646 else if (insn_extra_address_constraint (cn)
2647 /* Every address operand can be reloaded to fit. */
2648 && strict < 0)
2649 win = 1;
2650 /* Cater to architectures like IA-64 that define extra memory
2651 constraints without using define_memory_constraint. */
2652 else if (reload_in_progress
2653 && REG_P (op)
2654 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2655 && reg_renumber[REGNO (op)] < 0
2656 && reg_equiv_mem (REGNO (op)) != 0
2657 && constraint_satisfied_p
2658 (reg_equiv_mem (REGNO (op)), cn))
2659 win = 1;
2660 break;
2663 while (p += len, c);
2665 constraints[opno] = p;
2666 /* If this operand did not win somehow,
2667 this alternative loses. */
2668 if (! win)
2669 lose = 1;
2671 /* This alternative won; the operands are ok.
2672 Change whichever operands this alternative says to change. */
2673 if (! lose)
2675 int opno, eopno;
2677 /* See if any earlyclobber operand conflicts with some other
2678 operand. */
2680 if (strict > 0 && seen_earlyclobber_at >= 0)
2681 for (eopno = seen_earlyclobber_at;
2682 eopno < recog_data.n_operands;
2683 eopno++)
2684 /* Ignore earlyclobber operands now in memory,
2685 because we would often report failure when we have
2686 two memory operands, one of which was formerly a REG. */
2687 if (earlyclobber[eopno]
2688 && REG_P (recog_data.operand[eopno]))
2689 for (opno = 0; opno < recog_data.n_operands; opno++)
2690 if ((MEM_P (recog_data.operand[opno])
2691 || recog_data.operand_type[opno] != OP_OUT)
2692 && opno != eopno
2693 /* Ignore things like match_operator operands. */
2694 && *recog_data.constraints[opno] != 0
2695 && ! (matching_operands[opno] == eopno
2696 && operands_match_p (recog_data.operand[opno],
2697 recog_data.operand[eopno]))
2698 && ! safe_from_earlyclobber (recog_data.operand[opno],
2699 recog_data.operand[eopno]))
2700 lose = 1;
2702 if (! lose)
2704 while (--funny_match_index >= 0)
2706 recog_data.operand[funny_match[funny_match_index].other]
2707 = recog_data.operand[funny_match[funny_match_index].this_op];
2710 #ifdef AUTO_INC_DEC
2711 /* For operands without < or > constraints reject side-effects. */
2712 if (recog_data.is_asm)
2714 for (opno = 0; opno < recog_data.n_operands; opno++)
2715 if (MEM_P (recog_data.operand[opno]))
2716 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2718 case PRE_INC:
2719 case POST_INC:
2720 case PRE_DEC:
2721 case POST_DEC:
2722 case PRE_MODIFY:
2723 case POST_MODIFY:
2724 if (strchr (recog_data.constraints[opno], '<') == NULL
2725 && strchr (recog_data.constraints[opno], '>')
2726 == NULL)
2727 return 0;
2728 break;
2729 default:
2730 break;
2733 #endif
2734 return 1;
2738 which_alternative++;
2740 while (which_alternative < recog_data.n_alternatives);
2742 which_alternative = -1;
2743 /* If we are about to reject this, but we are not to test strictly,
2744 try a very loose test. Only return failure if it fails also. */
2745 if (strict == 0)
2746 return constrain_operands (-1);
2747 else
2748 return 0;
2751 /* Return true iff OPERAND (assumed to be a REG rtx)
2752 is a hard reg in class CLASS when its regno is offset by OFFSET
2753 and changed to mode MODE.
2754 If REG occupies multiple hard regs, all of them must be in CLASS. */
2756 bool
2757 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2758 enum machine_mode mode)
2760 unsigned int regno = REGNO (operand);
2762 if (cl == NO_REGS)
2763 return false;
2765 /* Regno must not be a pseudo register. Offset may be negative. */
2766 return (HARD_REGISTER_NUM_P (regno)
2767 && HARD_REGISTER_NUM_P (regno + offset)
2768 && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2769 regno + offset));
2772 /* Split single instruction. Helper function for split_all_insns and
2773 split_all_insns_noflow. Return last insn in the sequence if successful,
2774 or NULL if unsuccessful. */
2776 static rtx
2777 split_insn (rtx_insn *insn)
2779 /* Split insns here to get max fine-grain parallelism. */
2780 rtx_insn *first = PREV_INSN (insn);
2781 rtx_insn *last = try_split (PATTERN (insn), insn, 1);
2782 rtx insn_set, last_set, note;
2784 if (last == insn)
2785 return NULL_RTX;
2787 /* If the original instruction was a single set that was known to be
2788 equivalent to a constant, see if we can say the same about the last
2789 instruction in the split sequence. The two instructions must set
2790 the same destination. */
2791 insn_set = single_set (insn);
2792 if (insn_set)
2794 last_set = single_set (last);
2795 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2797 note = find_reg_equal_equiv_note (insn);
2798 if (note && CONSTANT_P (XEXP (note, 0)))
2799 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2800 else if (CONSTANT_P (SET_SRC (insn_set)))
2801 set_unique_reg_note (last, REG_EQUAL,
2802 copy_rtx (SET_SRC (insn_set)));
2806 /* try_split returns the NOTE that INSN became. */
2807 SET_INSN_DELETED (insn);
2809 /* ??? Coddle to md files that generate subregs in post-reload
2810 splitters instead of computing the proper hard register. */
2811 if (reload_completed && first != last)
2813 first = NEXT_INSN (first);
2814 for (;;)
2816 if (INSN_P (first))
2817 cleanup_subreg_operands (first);
2818 if (first == last)
2819 break;
2820 first = NEXT_INSN (first);
2824 return last;
2827 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2829 void
2830 split_all_insns (void)
2832 sbitmap blocks;
2833 bool changed;
2834 basic_block bb;
2836 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
2837 bitmap_clear (blocks);
2838 changed = false;
2840 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2842 rtx_insn *insn, *next;
2843 bool finish = false;
2845 rtl_profile_for_bb (bb);
2846 for (insn = BB_HEAD (bb); !finish ; insn = next)
2848 /* Can't use `next_real_insn' because that might go across
2849 CODE_LABELS and short-out basic blocks. */
2850 next = NEXT_INSN (insn);
2851 finish = (insn == BB_END (bb));
2852 if (INSN_P (insn))
2854 rtx set = single_set (insn);
2856 /* Don't split no-op move insns. These should silently
2857 disappear later in final. Splitting such insns would
2858 break the code that handles LIBCALL blocks. */
2859 if (set && set_noop_p (set))
2861 /* Nops get in the way while scheduling, so delete them
2862 now if register allocation has already been done. It
2863 is too risky to try to do this before register
2864 allocation, and there are unlikely to be very many
2865 nops then anyways. */
2866 if (reload_completed)
2867 delete_insn_and_edges (insn);
2869 else
2871 if (split_insn (insn))
2873 bitmap_set_bit (blocks, bb->index);
2874 changed = true;
2881 default_rtl_profile ();
2882 if (changed)
2883 find_many_sub_basic_blocks (blocks);
2885 #ifdef ENABLE_CHECKING
2886 verify_flow_info ();
2887 #endif
2889 sbitmap_free (blocks);
2892 /* Same as split_all_insns, but do not expect CFG to be available.
2893 Used by machine dependent reorg passes. */
2895 unsigned int
2896 split_all_insns_noflow (void)
2898 rtx_insn *next, *insn;
2900 for (insn = get_insns (); insn; insn = next)
2902 next = NEXT_INSN (insn);
2903 if (INSN_P (insn))
2905 /* Don't split no-op move insns. These should silently
2906 disappear later in final. Splitting such insns would
2907 break the code that handles LIBCALL blocks. */
2908 rtx set = single_set (insn);
2909 if (set && set_noop_p (set))
2911 /* Nops get in the way while scheduling, so delete them
2912 now if register allocation has already been done. It
2913 is too risky to try to do this before register
2914 allocation, and there are unlikely to be very many
2915 nops then anyways.
2917 ??? Should we use delete_insn when the CFG isn't valid? */
2918 if (reload_completed)
2919 delete_insn_and_edges (insn);
2921 else
2922 split_insn (insn);
2925 return 0;
2928 #ifdef HAVE_peephole2
2929 struct peep2_insn_data
2931 rtx insn;
2932 regset live_before;
2935 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2936 static int peep2_current;
2938 static bool peep2_do_rebuild_jump_labels;
2939 static bool peep2_do_cleanup_cfg;
2941 /* The number of instructions available to match a peep2. */
2942 int peep2_current_count;
2944 /* A non-insn marker indicating the last insn of the block.
2945 The live_before regset for this element is correct, indicating
2946 DF_LIVE_OUT for the block. */
2947 #define PEEP2_EOB pc_rtx
2949 /* Wrap N to fit into the peep2_insn_data buffer. */
2951 static int
2952 peep2_buf_position (int n)
2954 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2955 n -= MAX_INSNS_PER_PEEP2 + 1;
2956 return n;
2959 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2960 does not exist. Used by the recognizer to find the next insn to match
2961 in a multi-insn pattern. */
2964 peep2_next_insn (int n)
2966 gcc_assert (n <= peep2_current_count);
2968 n = peep2_buf_position (peep2_current + n);
2970 return peep2_insn_data[n].insn;
2973 /* Return true if REGNO is dead before the Nth non-note insn
2974 after `current'. */
2977 peep2_regno_dead_p (int ofs, int regno)
2979 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
2981 ofs = peep2_buf_position (peep2_current + ofs);
2983 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
2985 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
2988 /* Similarly for a REG. */
2991 peep2_reg_dead_p (int ofs, rtx reg)
2993 int regno, n;
2995 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
2997 ofs = peep2_buf_position (peep2_current + ofs);
2999 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3001 regno = REGNO (reg);
3002 n = hard_regno_nregs[regno][GET_MODE (reg)];
3003 while (--n >= 0)
3004 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
3005 return 0;
3006 return 1;
3009 /* Regno offset to be used in the register search. */
3010 static int search_ofs;
3012 /* Try to find a hard register of mode MODE, matching the register class in
3013 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3014 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3015 in which case the only condition is that the register must be available
3016 before CURRENT_INSN.
3017 Registers that already have bits set in REG_SET will not be considered.
3019 If an appropriate register is available, it will be returned and the
3020 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3021 returned. */
3024 peep2_find_free_register (int from, int to, const char *class_str,
3025 enum machine_mode mode, HARD_REG_SET *reg_set)
3027 enum reg_class cl;
3028 HARD_REG_SET live;
3029 df_ref def;
3030 int i;
3032 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3033 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3035 from = peep2_buf_position (peep2_current + from);
3036 to = peep2_buf_position (peep2_current + to);
3038 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3039 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3041 while (from != to)
3043 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3045 /* Don't use registers set or clobbered by the insn. */
3046 FOR_EACH_INSN_DEF (def, peep2_insn_data[from].insn)
3047 SET_HARD_REG_BIT (live, DF_REF_REGNO (def));
3049 from = peep2_buf_position (from + 1);
3052 cl = reg_class_for_constraint (lookup_constraint (class_str));
3054 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3056 int raw_regno, regno, success, j;
3058 /* Distribute the free registers as much as possible. */
3059 raw_regno = search_ofs + i;
3060 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3061 raw_regno -= FIRST_PSEUDO_REGISTER;
3062 #ifdef REG_ALLOC_ORDER
3063 regno = reg_alloc_order[raw_regno];
3064 #else
3065 regno = raw_regno;
3066 #endif
3068 /* Can it support the mode we need? */
3069 if (! HARD_REGNO_MODE_OK (regno, mode))
3070 continue;
3072 success = 1;
3073 for (j = 0; success && j < hard_regno_nregs[regno][mode]; j++)
3075 /* Don't allocate fixed registers. */
3076 if (fixed_regs[regno + j])
3078 success = 0;
3079 break;
3081 /* Don't allocate global registers. */
3082 if (global_regs[regno + j])
3084 success = 0;
3085 break;
3087 /* Make sure the register is of the right class. */
3088 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno + j))
3090 success = 0;
3091 break;
3093 /* And that we don't create an extra save/restore. */
3094 if (! call_used_regs[regno + j] && ! df_regs_ever_live_p (regno + j))
3096 success = 0;
3097 break;
3100 if (! targetm.hard_regno_scratch_ok (regno + j))
3102 success = 0;
3103 break;
3106 /* And we don't clobber traceback for noreturn functions. */
3107 if ((regno + j == FRAME_POINTER_REGNUM
3108 || regno + j == HARD_FRAME_POINTER_REGNUM)
3109 && (! reload_completed || frame_pointer_needed))
3111 success = 0;
3112 break;
3115 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3116 || TEST_HARD_REG_BIT (live, regno + j))
3118 success = 0;
3119 break;
3123 if (success)
3125 add_to_hard_reg_set (reg_set, mode, regno);
3127 /* Start the next search with the next register. */
3128 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3129 raw_regno = 0;
3130 search_ofs = raw_regno;
3132 return gen_rtx_REG (mode, regno);
3136 search_ofs = 0;
3137 return NULL_RTX;
3140 /* Forget all currently tracked instructions, only remember current
3141 LIVE regset. */
3143 static void
3144 peep2_reinit_state (regset live)
3146 int i;
3148 /* Indicate that all slots except the last holds invalid data. */
3149 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3150 peep2_insn_data[i].insn = NULL_RTX;
3151 peep2_current_count = 0;
3153 /* Indicate that the last slot contains live_after data. */
3154 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3155 peep2_current = MAX_INSNS_PER_PEEP2;
3157 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3160 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3161 starting at INSN. Perform the replacement, removing the old insns and
3162 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3163 if the replacement is rejected. */
3165 static rtx_insn *
3166 peep2_attempt (basic_block bb, rtx uncast_insn, int match_len, rtx_insn *attempt)
3168 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3169 int i;
3170 rtx_insn *last, *before_try, *x;
3171 rtx eh_note, as_note;
3172 rtx_insn *old_insn;
3173 rtx_insn *new_insn;
3174 bool was_call = false;
3176 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3177 match more than one insn, or to be split into more than one insn. */
3178 old_insn = as_a <rtx_insn *> (peep2_insn_data[peep2_current].insn);
3179 if (RTX_FRAME_RELATED_P (old_insn))
3181 bool any_note = false;
3182 rtx note;
3184 if (match_len != 0)
3185 return NULL;
3187 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3188 may be in the stream for the purpose of register allocation. */
3189 if (active_insn_p (attempt))
3190 new_insn = attempt;
3191 else
3192 new_insn = next_active_insn (attempt);
3193 if (next_active_insn (new_insn))
3194 return NULL;
3196 /* We have a 1-1 replacement. Copy over any frame-related info. */
3197 RTX_FRAME_RELATED_P (new_insn) = 1;
3199 /* Allow the backend to fill in a note during the split. */
3200 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3201 switch (REG_NOTE_KIND (note))
3203 case REG_FRAME_RELATED_EXPR:
3204 case REG_CFA_DEF_CFA:
3205 case REG_CFA_ADJUST_CFA:
3206 case REG_CFA_OFFSET:
3207 case REG_CFA_REGISTER:
3208 case REG_CFA_EXPRESSION:
3209 case REG_CFA_RESTORE:
3210 case REG_CFA_SET_VDRAP:
3211 any_note = true;
3212 break;
3213 default:
3214 break;
3217 /* If the backend didn't supply a note, copy one over. */
3218 if (!any_note)
3219 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3220 switch (REG_NOTE_KIND (note))
3222 case REG_FRAME_RELATED_EXPR:
3223 case REG_CFA_DEF_CFA:
3224 case REG_CFA_ADJUST_CFA:
3225 case REG_CFA_OFFSET:
3226 case REG_CFA_REGISTER:
3227 case REG_CFA_EXPRESSION:
3228 case REG_CFA_RESTORE:
3229 case REG_CFA_SET_VDRAP:
3230 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3231 any_note = true;
3232 break;
3233 default:
3234 break;
3237 /* If there still isn't a note, make sure the unwind info sees the
3238 same expression as before the split. */
3239 if (!any_note)
3241 rtx old_set, new_set;
3243 /* The old insn had better have been simple, or annotated. */
3244 old_set = single_set (old_insn);
3245 gcc_assert (old_set != NULL);
3247 new_set = single_set (new_insn);
3248 if (!new_set || !rtx_equal_p (new_set, old_set))
3249 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3252 /* Copy prologue/epilogue status. This is required in order to keep
3253 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3254 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3257 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3258 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3259 cfg-related call notes. */
3260 for (i = 0; i <= match_len; ++i)
3262 int j;
3263 rtx note;
3265 j = peep2_buf_position (peep2_current + i);
3266 old_insn = as_a <rtx_insn *> (peep2_insn_data[j].insn);
3267 if (!CALL_P (old_insn))
3268 continue;
3269 was_call = true;
3271 new_insn = attempt;
3272 while (new_insn != NULL_RTX)
3274 if (CALL_P (new_insn))
3275 break;
3276 new_insn = NEXT_INSN (new_insn);
3279 gcc_assert (new_insn != NULL_RTX);
3281 CALL_INSN_FUNCTION_USAGE (new_insn)
3282 = CALL_INSN_FUNCTION_USAGE (old_insn);
3283 SIBLING_CALL_P (new_insn) = SIBLING_CALL_P (old_insn);
3285 for (note = REG_NOTES (old_insn);
3286 note;
3287 note = XEXP (note, 1))
3288 switch (REG_NOTE_KIND (note))
3290 case REG_NORETURN:
3291 case REG_SETJMP:
3292 case REG_TM:
3293 add_reg_note (new_insn, REG_NOTE_KIND (note),
3294 XEXP (note, 0));
3295 break;
3296 default:
3297 /* Discard all other reg notes. */
3298 break;
3301 /* Croak if there is another call in the sequence. */
3302 while (++i <= match_len)
3304 j = peep2_buf_position (peep2_current + i);
3305 old_insn = as_a <rtx_insn *> (peep2_insn_data[j].insn);
3306 gcc_assert (!CALL_P (old_insn));
3308 break;
3311 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3312 move those notes over to the new sequence. */
3313 as_note = NULL;
3314 for (i = match_len; i >= 0; --i)
3316 int j = peep2_buf_position (peep2_current + i);
3317 old_insn = as_a <rtx_insn *> (peep2_insn_data[j].insn);
3319 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3320 if (as_note)
3321 break;
3324 i = peep2_buf_position (peep2_current + match_len);
3325 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3327 /* Replace the old sequence with the new. */
3328 rtx_insn *peepinsn = as_a <rtx_insn *> (peep2_insn_data[i].insn);
3329 last = emit_insn_after_setloc (attempt,
3330 peep2_insn_data[i].insn,
3331 INSN_LOCATION (peepinsn));
3332 before_try = PREV_INSN (insn);
3333 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3335 /* Re-insert the EH_REGION notes. */
3336 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3338 edge eh_edge;
3339 edge_iterator ei;
3341 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3342 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3343 break;
3345 if (eh_note)
3346 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3348 if (eh_edge)
3349 for (x = last; x != before_try; x = PREV_INSN (x))
3350 if (x != BB_END (bb)
3351 && (can_throw_internal (x)
3352 || can_nonlocal_goto (x)))
3354 edge nfte, nehe;
3355 int flags;
3357 nfte = split_block (bb, x);
3358 flags = (eh_edge->flags
3359 & (EDGE_EH | EDGE_ABNORMAL));
3360 if (CALL_P (x))
3361 flags |= EDGE_ABNORMAL_CALL;
3362 nehe = make_edge (nfte->src, eh_edge->dest,
3363 flags);
3365 nehe->probability = eh_edge->probability;
3366 nfte->probability
3367 = REG_BR_PROB_BASE - nehe->probability;
3369 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3370 bb = nfte->src;
3371 eh_edge = nehe;
3374 /* Converting possibly trapping insn to non-trapping is
3375 possible. Zap dummy outgoing edges. */
3376 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3379 /* Re-insert the ARGS_SIZE notes. */
3380 if (as_note)
3381 fixup_args_size_notes (before_try, last, INTVAL (XEXP (as_note, 0)));
3383 /* If we generated a jump instruction, it won't have
3384 JUMP_LABEL set. Recompute after we're done. */
3385 for (x = last; x != before_try; x = PREV_INSN (x))
3386 if (JUMP_P (x))
3388 peep2_do_rebuild_jump_labels = true;
3389 break;
3392 return last;
3395 /* After performing a replacement in basic block BB, fix up the life
3396 information in our buffer. LAST is the last of the insns that we
3397 emitted as a replacement. PREV is the insn before the start of
3398 the replacement. MATCH_LEN is the number of instructions that were
3399 matched, and which now need to be replaced in the buffer. */
3401 static void
3402 peep2_update_life (basic_block bb, int match_len, rtx_insn *last,
3403 rtx_insn *prev)
3405 int i = peep2_buf_position (peep2_current + match_len + 1);
3406 rtx_insn *x;
3407 regset_head live;
3409 INIT_REG_SET (&live);
3410 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3412 gcc_assert (peep2_current_count >= match_len + 1);
3413 peep2_current_count -= match_len + 1;
3415 x = last;
3418 if (INSN_P (x))
3420 df_insn_rescan (x);
3421 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3423 peep2_current_count++;
3424 if (--i < 0)
3425 i = MAX_INSNS_PER_PEEP2;
3426 peep2_insn_data[i].insn = x;
3427 df_simulate_one_insn_backwards (bb, x, &live);
3428 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3431 x = PREV_INSN (x);
3433 while (x != prev);
3434 CLEAR_REG_SET (&live);
3436 peep2_current = i;
3439 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3440 Return true if we added it, false otherwise. The caller will try to match
3441 peepholes against the buffer if we return false; otherwise it will try to
3442 add more instructions to the buffer. */
3444 static bool
3445 peep2_fill_buffer (basic_block bb, rtx insn, regset live)
3447 int pos;
3449 /* Once we have filled the maximum number of insns the buffer can hold,
3450 allow the caller to match the insns against peepholes. We wait until
3451 the buffer is full in case the target has similar peepholes of different
3452 length; we always want to match the longest if possible. */
3453 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3454 return false;
3456 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3457 any other pattern, lest it change the semantics of the frame info. */
3458 if (RTX_FRAME_RELATED_P (insn))
3460 /* Let the buffer drain first. */
3461 if (peep2_current_count > 0)
3462 return false;
3463 /* Now the insn will be the only thing in the buffer. */
3466 pos = peep2_buf_position (peep2_current + peep2_current_count);
3467 peep2_insn_data[pos].insn = insn;
3468 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3469 peep2_current_count++;
3471 df_simulate_one_insn_forwards (bb, as_a <rtx_insn *> (insn), live);
3472 return true;
3475 /* Perform the peephole2 optimization pass. */
3477 static void
3478 peephole2_optimize (void)
3480 rtx_insn *insn;
3481 bitmap live;
3482 int i;
3483 basic_block bb;
3485 peep2_do_cleanup_cfg = false;
3486 peep2_do_rebuild_jump_labels = false;
3488 df_set_flags (DF_LR_RUN_DCE);
3489 df_note_add_problem ();
3490 df_analyze ();
3492 /* Initialize the regsets we're going to use. */
3493 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3494 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3495 search_ofs = 0;
3496 live = BITMAP_ALLOC (&reg_obstack);
3498 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3500 bool past_end = false;
3501 int pos;
3503 rtl_profile_for_bb (bb);
3505 /* Start up propagation. */
3506 bitmap_copy (live, DF_LR_IN (bb));
3507 df_simulate_initialize_forwards (bb, live);
3508 peep2_reinit_state (live);
3510 insn = BB_HEAD (bb);
3511 for (;;)
3513 rtx_insn *attempt;
3514 rtx head;
3515 int match_len;
3517 if (!past_end && !NONDEBUG_INSN_P (insn))
3519 next_insn:
3520 insn = NEXT_INSN (insn);
3521 if (insn == NEXT_INSN (BB_END (bb)))
3522 past_end = true;
3523 continue;
3525 if (!past_end && peep2_fill_buffer (bb, insn, live))
3526 goto next_insn;
3528 /* If we did not fill an empty buffer, it signals the end of the
3529 block. */
3530 if (peep2_current_count == 0)
3531 break;
3533 /* The buffer filled to the current maximum, so try to match. */
3535 pos = peep2_buf_position (peep2_current + peep2_current_count);
3536 peep2_insn_data[pos].insn = PEEP2_EOB;
3537 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3539 /* Match the peephole. */
3540 head = peep2_insn_data[peep2_current].insn;
3541 attempt = safe_as_a <rtx_insn *> (
3542 peephole2_insns (PATTERN (head), head, &match_len));
3543 if (attempt != NULL)
3545 rtx_insn *last = peep2_attempt (bb, head, match_len, attempt);
3546 if (last)
3548 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3549 continue;
3553 /* No match: advance the buffer by one insn. */
3554 peep2_current = peep2_buf_position (peep2_current + 1);
3555 peep2_current_count--;
3559 default_rtl_profile ();
3560 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3561 BITMAP_FREE (peep2_insn_data[i].live_before);
3562 BITMAP_FREE (live);
3563 if (peep2_do_rebuild_jump_labels)
3564 rebuild_jump_labels (get_insns ());
3565 if (peep2_do_cleanup_cfg)
3566 cleanup_cfg (CLEANUP_CFG_CHANGED);
3568 #endif /* HAVE_peephole2 */
3570 /* Common predicates for use with define_bypass. */
3572 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3573 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3574 must be either a single_set or a PARALLEL with SETs inside. */
3577 store_data_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3579 rtx out_set, in_set;
3580 rtx out_pat, in_pat;
3581 rtx out_exp, in_exp;
3582 int i, j;
3584 in_set = single_set (in_insn);
3585 if (in_set)
3587 if (!MEM_P (SET_DEST (in_set)))
3588 return false;
3590 out_set = single_set (out_insn);
3591 if (out_set)
3593 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3594 return false;
3596 else
3598 out_pat = PATTERN (out_insn);
3600 if (GET_CODE (out_pat) != PARALLEL)
3601 return false;
3603 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3605 out_exp = XVECEXP (out_pat, 0, i);
3607 if (GET_CODE (out_exp) == CLOBBER)
3608 continue;
3610 gcc_assert (GET_CODE (out_exp) == SET);
3612 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3613 return false;
3617 else
3619 in_pat = PATTERN (in_insn);
3620 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3622 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3624 in_exp = XVECEXP (in_pat, 0, i);
3626 if (GET_CODE (in_exp) == CLOBBER)
3627 continue;
3629 gcc_assert (GET_CODE (in_exp) == SET);
3631 if (!MEM_P (SET_DEST (in_exp)))
3632 return false;
3634 out_set = single_set (out_insn);
3635 if (out_set)
3637 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3638 return false;
3640 else
3642 out_pat = PATTERN (out_insn);
3643 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3645 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3647 out_exp = XVECEXP (out_pat, 0, j);
3649 if (GET_CODE (out_exp) == CLOBBER)
3650 continue;
3652 gcc_assert (GET_CODE (out_exp) == SET);
3654 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3655 return false;
3661 return true;
3664 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3665 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3666 or multiple set; IN_INSN should be single_set for truth, but for convenience
3667 of insn categorization may be any JUMP or CALL insn. */
3670 if_test_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3672 rtx out_set, in_set;
3674 in_set = single_set (in_insn);
3675 if (! in_set)
3677 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3678 return false;
3681 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3682 return false;
3683 in_set = SET_SRC (in_set);
3685 out_set = single_set (out_insn);
3686 if (out_set)
3688 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3689 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3690 return false;
3692 else
3694 rtx out_pat;
3695 int i;
3697 out_pat = PATTERN (out_insn);
3698 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3700 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3702 rtx exp = XVECEXP (out_pat, 0, i);
3704 if (GET_CODE (exp) == CLOBBER)
3705 continue;
3707 gcc_assert (GET_CODE (exp) == SET);
3709 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3710 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3711 return false;
3715 return true;
3718 static unsigned int
3719 rest_of_handle_peephole2 (void)
3721 #ifdef HAVE_peephole2
3722 peephole2_optimize ();
3723 #endif
3724 return 0;
3727 namespace {
3729 const pass_data pass_data_peephole2 =
3731 RTL_PASS, /* type */
3732 "peephole2", /* name */
3733 OPTGROUP_NONE, /* optinfo_flags */
3734 TV_PEEPHOLE2, /* tv_id */
3735 0, /* properties_required */
3736 0, /* properties_provided */
3737 0, /* properties_destroyed */
3738 0, /* todo_flags_start */
3739 TODO_df_finish, /* todo_flags_finish */
3742 class pass_peephole2 : public rtl_opt_pass
3744 public:
3745 pass_peephole2 (gcc::context *ctxt)
3746 : rtl_opt_pass (pass_data_peephole2, ctxt)
3749 /* opt_pass methods: */
3750 /* The epiphany backend creates a second instance of this pass, so we need
3751 a clone method. */
3752 opt_pass * clone () { return new pass_peephole2 (m_ctxt); }
3753 virtual bool gate (function *) { return (optimize > 0 && flag_peephole2); }
3754 virtual unsigned int execute (function *)
3756 return rest_of_handle_peephole2 ();
3759 }; // class pass_peephole2
3761 } // anon namespace
3763 rtl_opt_pass *
3764 make_pass_peephole2 (gcc::context *ctxt)
3766 return new pass_peephole2 (ctxt);
3769 namespace {
3771 const pass_data pass_data_split_all_insns =
3773 RTL_PASS, /* type */
3774 "split1", /* name */
3775 OPTGROUP_NONE, /* optinfo_flags */
3776 TV_NONE, /* tv_id */
3777 0, /* properties_required */
3778 0, /* properties_provided */
3779 0, /* properties_destroyed */
3780 0, /* todo_flags_start */
3781 0, /* todo_flags_finish */
3784 class pass_split_all_insns : public rtl_opt_pass
3786 public:
3787 pass_split_all_insns (gcc::context *ctxt)
3788 : rtl_opt_pass (pass_data_split_all_insns, ctxt)
3791 /* opt_pass methods: */
3792 /* The epiphany backend creates a second instance of this pass, so
3793 we need a clone method. */
3794 opt_pass * clone () { return new pass_split_all_insns (m_ctxt); }
3795 virtual unsigned int execute (function *)
3797 split_all_insns ();
3798 return 0;
3801 }; // class pass_split_all_insns
3803 } // anon namespace
3805 rtl_opt_pass *
3806 make_pass_split_all_insns (gcc::context *ctxt)
3808 return new pass_split_all_insns (ctxt);
3811 static unsigned int
3812 rest_of_handle_split_after_reload (void)
3814 /* If optimizing, then go ahead and split insns now. */
3815 #ifndef STACK_REGS
3816 if (optimize > 0)
3817 #endif
3818 split_all_insns ();
3819 return 0;
3822 namespace {
3824 const pass_data pass_data_split_after_reload =
3826 RTL_PASS, /* type */
3827 "split2", /* name */
3828 OPTGROUP_NONE, /* optinfo_flags */
3829 TV_NONE, /* tv_id */
3830 0, /* properties_required */
3831 0, /* properties_provided */
3832 0, /* properties_destroyed */
3833 0, /* todo_flags_start */
3834 0, /* todo_flags_finish */
3837 class pass_split_after_reload : public rtl_opt_pass
3839 public:
3840 pass_split_after_reload (gcc::context *ctxt)
3841 : rtl_opt_pass (pass_data_split_after_reload, ctxt)
3844 /* opt_pass methods: */
3845 virtual unsigned int execute (function *)
3847 return rest_of_handle_split_after_reload ();
3850 }; // class pass_split_after_reload
3852 } // anon namespace
3854 rtl_opt_pass *
3855 make_pass_split_after_reload (gcc::context *ctxt)
3857 return new pass_split_after_reload (ctxt);
3860 namespace {
3862 const pass_data pass_data_split_before_regstack =
3864 RTL_PASS, /* type */
3865 "split3", /* name */
3866 OPTGROUP_NONE, /* optinfo_flags */
3867 TV_NONE, /* tv_id */
3868 0, /* properties_required */
3869 0, /* properties_provided */
3870 0, /* properties_destroyed */
3871 0, /* todo_flags_start */
3872 0, /* todo_flags_finish */
3875 class pass_split_before_regstack : public rtl_opt_pass
3877 public:
3878 pass_split_before_regstack (gcc::context *ctxt)
3879 : rtl_opt_pass (pass_data_split_before_regstack, ctxt)
3882 /* opt_pass methods: */
3883 virtual bool gate (function *);
3884 virtual unsigned int execute (function *)
3886 split_all_insns ();
3887 return 0;
3890 }; // class pass_split_before_regstack
3892 bool
3893 pass_split_before_regstack::gate (function *)
3895 #if HAVE_ATTR_length && defined (STACK_REGS)
3896 /* If flow2 creates new instructions which need splitting
3897 and scheduling after reload is not done, they might not be
3898 split until final which doesn't allow splitting
3899 if HAVE_ATTR_length. */
3900 # ifdef INSN_SCHEDULING
3901 return (optimize && !flag_schedule_insns_after_reload);
3902 # else
3903 return (optimize);
3904 # endif
3905 #else
3906 return 0;
3907 #endif
3910 } // anon namespace
3912 rtl_opt_pass *
3913 make_pass_split_before_regstack (gcc::context *ctxt)
3915 return new pass_split_before_regstack (ctxt);
3918 static unsigned int
3919 rest_of_handle_split_before_sched2 (void)
3921 #ifdef INSN_SCHEDULING
3922 split_all_insns ();
3923 #endif
3924 return 0;
3927 namespace {
3929 const pass_data pass_data_split_before_sched2 =
3931 RTL_PASS, /* type */
3932 "split4", /* name */
3933 OPTGROUP_NONE, /* optinfo_flags */
3934 TV_NONE, /* tv_id */
3935 0, /* properties_required */
3936 0, /* properties_provided */
3937 0, /* properties_destroyed */
3938 0, /* todo_flags_start */
3939 0, /* todo_flags_finish */
3942 class pass_split_before_sched2 : public rtl_opt_pass
3944 public:
3945 pass_split_before_sched2 (gcc::context *ctxt)
3946 : rtl_opt_pass (pass_data_split_before_sched2, ctxt)
3949 /* opt_pass methods: */
3950 virtual bool gate (function *)
3952 #ifdef INSN_SCHEDULING
3953 return optimize > 0 && flag_schedule_insns_after_reload;
3954 #else
3955 return false;
3956 #endif
3959 virtual unsigned int execute (function *)
3961 return rest_of_handle_split_before_sched2 ();
3964 }; // class pass_split_before_sched2
3966 } // anon namespace
3968 rtl_opt_pass *
3969 make_pass_split_before_sched2 (gcc::context *ctxt)
3971 return new pass_split_before_sched2 (ctxt);
3974 namespace {
3976 const pass_data pass_data_split_for_shorten_branches =
3978 RTL_PASS, /* type */
3979 "split5", /* name */
3980 OPTGROUP_NONE, /* optinfo_flags */
3981 TV_NONE, /* tv_id */
3982 0, /* properties_required */
3983 0, /* properties_provided */
3984 0, /* properties_destroyed */
3985 0, /* todo_flags_start */
3986 0, /* todo_flags_finish */
3989 class pass_split_for_shorten_branches : public rtl_opt_pass
3991 public:
3992 pass_split_for_shorten_branches (gcc::context *ctxt)
3993 : rtl_opt_pass (pass_data_split_for_shorten_branches, ctxt)
3996 /* opt_pass methods: */
3997 virtual bool gate (function *)
3999 /* The placement of the splitting that we do for shorten_branches
4000 depends on whether regstack is used by the target or not. */
4001 #if HAVE_ATTR_length && !defined (STACK_REGS)
4002 return true;
4003 #else
4004 return false;
4005 #endif
4008 virtual unsigned int execute (function *)
4010 return split_all_insns_noflow ();
4013 }; // class pass_split_for_shorten_branches
4015 } // anon namespace
4017 rtl_opt_pass *
4018 make_pass_split_for_shorten_branches (gcc::context *ctxt)
4020 return new pass_split_for_shorten_branches (ctxt);
4023 /* (Re)initialize the target information after a change in target. */
4025 void
4026 recog_init ()
4028 /* The information is zero-initialized, so we don't need to do anything
4029 first time round. */
4030 if (!this_target_recog->x_initialized)
4032 this_target_recog->x_initialized = true;
4033 return;
4035 memset (this_target_recog->x_enabled_alternatives, 0,
4036 sizeof (this_target_recog->x_enabled_alternatives));
4037 for (int i = 0; i < LAST_INSN_CODE; ++i)
4038 if (this_target_recog->x_op_alt[i])
4040 free (this_target_recog->x_op_alt[i]);
4041 this_target_recog->x_op_alt[i] = 0;