PR bootstrap/63496
[official-gcc.git] / gcc / ira.c
blobd057ea6ddfef0ab1a10165df87c1ec4ebf9fe0e5
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
31 Major IRA notions are:
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
144 IRA major passes are:
146 o Building IRA internal representation which consists of the
147 following subpasses:
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
156 * IRA creates live ranges of each allocno, calulates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
168 * IRA creates all caps (file ira-build.c).
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloringh we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is impelemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
330 IRA uses a lot of data representing the target processors. These
331 data are initilized in file ira.c.
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
340 Literature is worth to read for better understanding the code:
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "tm.h"
370 #include "regs.h"
371 #include "tree.h"
372 #include "rtl.h"
373 #include "tm_p.h"
374 #include "target.h"
375 #include "flags.h"
376 #include "obstack.h"
377 #include "bitmap.h"
378 #include "hard-reg-set.h"
379 #include "basic-block.h"
380 #include "df.h"
381 #include "expr.h"
382 #include "recog.h"
383 #include "params.h"
384 #include "tree-pass.h"
385 #include "output.h"
386 #include "except.h"
387 #include "reload.h"
388 #include "diagnostic-core.h"
389 #include "function.h"
390 #include "ggc.h"
391 #include "ira-int.h"
392 #include "lra.h"
393 #include "dce.h"
394 #include "dbgcnt.h"
395 #include "rtl-iter.h"
396 #include "shrink-wrap.h"
398 struct target_ira default_target_ira;
399 struct target_ira_int default_target_ira_int;
400 #if SWITCHABLE_TARGET
401 struct target_ira *this_target_ira = &default_target_ira;
402 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
403 #endif
405 /* A modified value of flag `-fira-verbose' used internally. */
406 int internal_flag_ira_verbose;
408 /* Dump file of the allocator if it is not NULL. */
409 FILE *ira_dump_file;
411 /* The number of elements in the following array. */
412 int ira_spilled_reg_stack_slots_num;
414 /* The following array contains info about spilled pseudo-registers
415 stack slots used in current function so far. */
416 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
418 /* Correspondingly overall cost of the allocation, overall cost before
419 reload, cost of the allocnos assigned to hard-registers, cost of
420 the allocnos assigned to memory, cost of loads, stores and register
421 move insns generated for pseudo-register live range splitting (see
422 ira-emit.c). */
423 int ira_overall_cost, overall_cost_before;
424 int ira_reg_cost, ira_mem_cost;
425 int ira_load_cost, ira_store_cost, ira_shuffle_cost;
426 int ira_move_loops_num, ira_additional_jumps_num;
428 /* All registers that can be eliminated. */
430 HARD_REG_SET eliminable_regset;
432 /* Value of max_reg_num () before IRA work start. This value helps
433 us to recognize a situation when new pseudos were created during
434 IRA work. */
435 static int max_regno_before_ira;
437 /* Temporary hard reg set used for a different calculation. */
438 static HARD_REG_SET temp_hard_regset;
440 #define last_mode_for_init_move_cost \
441 (this_target_ira_int->x_last_mode_for_init_move_cost)
444 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
445 static void
446 setup_reg_mode_hard_regset (void)
448 int i, m, hard_regno;
450 for (m = 0; m < NUM_MACHINE_MODES; m++)
451 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
453 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
454 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
455 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
456 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
457 hard_regno + i);
462 #define no_unit_alloc_regs \
463 (this_target_ira_int->x_no_unit_alloc_regs)
465 /* The function sets up the three arrays declared above. */
466 static void
467 setup_class_hard_regs (void)
469 int cl, i, hard_regno, n;
470 HARD_REG_SET processed_hard_reg_set;
472 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
473 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
475 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
476 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
477 CLEAR_HARD_REG_SET (processed_hard_reg_set);
478 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
480 ira_non_ordered_class_hard_regs[cl][i] = -1;
481 ira_class_hard_reg_index[cl][i] = -1;
483 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
485 #ifdef REG_ALLOC_ORDER
486 hard_regno = reg_alloc_order[i];
487 #else
488 hard_regno = i;
489 #endif
490 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
491 continue;
492 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
493 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
494 ira_class_hard_reg_index[cl][hard_regno] = -1;
495 else
497 ira_class_hard_reg_index[cl][hard_regno] = n;
498 ira_class_hard_regs[cl][n++] = hard_regno;
501 ira_class_hard_regs_num[cl] = n;
502 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
503 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
504 ira_non_ordered_class_hard_regs[cl][n++] = i;
505 ira_assert (ira_class_hard_regs_num[cl] == n);
509 /* Set up global variables defining info about hard registers for the
510 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
511 that we can use the hard frame pointer for the allocation. */
512 static void
513 setup_alloc_regs (bool use_hard_frame_p)
515 #ifdef ADJUST_REG_ALLOC_ORDER
516 ADJUST_REG_ALLOC_ORDER;
517 #endif
518 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
519 if (! use_hard_frame_p)
520 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
521 setup_class_hard_regs ();
526 #define alloc_reg_class_subclasses \
527 (this_target_ira_int->x_alloc_reg_class_subclasses)
529 /* Initialize the table of subclasses of each reg class. */
530 static void
531 setup_reg_subclasses (void)
533 int i, j;
534 HARD_REG_SET temp_hard_regset2;
536 for (i = 0; i < N_REG_CLASSES; i++)
537 for (j = 0; j < N_REG_CLASSES; j++)
538 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
540 for (i = 0; i < N_REG_CLASSES; i++)
542 if (i == (int) NO_REGS)
543 continue;
545 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
546 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
547 if (hard_reg_set_empty_p (temp_hard_regset))
548 continue;
549 for (j = 0; j < N_REG_CLASSES; j++)
550 if (i != j)
552 enum reg_class *p;
554 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
555 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
556 if (! hard_reg_set_subset_p (temp_hard_regset,
557 temp_hard_regset2))
558 continue;
559 p = &alloc_reg_class_subclasses[j][0];
560 while (*p != LIM_REG_CLASSES) p++;
561 *p = (enum reg_class) i;
568 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
569 static void
570 setup_class_subset_and_memory_move_costs (void)
572 int cl, cl2, mode, cost;
573 HARD_REG_SET temp_hard_regset2;
575 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
576 ira_memory_move_cost[mode][NO_REGS][0]
577 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
578 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
580 if (cl != (int) NO_REGS)
581 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
583 ira_max_memory_move_cost[mode][cl][0]
584 = ira_memory_move_cost[mode][cl][0]
585 = memory_move_cost ((enum machine_mode) mode,
586 (reg_class_t) cl, false);
587 ira_max_memory_move_cost[mode][cl][1]
588 = ira_memory_move_cost[mode][cl][1]
589 = memory_move_cost ((enum machine_mode) mode,
590 (reg_class_t) cl, true);
591 /* Costs for NO_REGS are used in cost calculation on the
592 1st pass when the preferred register classes are not
593 known yet. In this case we take the best scenario. */
594 if (ira_memory_move_cost[mode][NO_REGS][0]
595 > ira_memory_move_cost[mode][cl][0])
596 ira_max_memory_move_cost[mode][NO_REGS][0]
597 = ira_memory_move_cost[mode][NO_REGS][0]
598 = ira_memory_move_cost[mode][cl][0];
599 if (ira_memory_move_cost[mode][NO_REGS][1]
600 > ira_memory_move_cost[mode][cl][1])
601 ira_max_memory_move_cost[mode][NO_REGS][1]
602 = ira_memory_move_cost[mode][NO_REGS][1]
603 = ira_memory_move_cost[mode][cl][1];
606 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
607 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
609 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
610 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
611 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
612 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
613 ira_class_subset_p[cl][cl2]
614 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
615 if (! hard_reg_set_empty_p (temp_hard_regset2)
616 && hard_reg_set_subset_p (reg_class_contents[cl2],
617 reg_class_contents[cl]))
618 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
620 cost = ira_memory_move_cost[mode][cl2][0];
621 if (cost > ira_max_memory_move_cost[mode][cl][0])
622 ira_max_memory_move_cost[mode][cl][0] = cost;
623 cost = ira_memory_move_cost[mode][cl2][1];
624 if (cost > ira_max_memory_move_cost[mode][cl][1])
625 ira_max_memory_move_cost[mode][cl][1] = cost;
628 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
629 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
631 ira_memory_move_cost[mode][cl][0]
632 = ira_max_memory_move_cost[mode][cl][0];
633 ira_memory_move_cost[mode][cl][1]
634 = ira_max_memory_move_cost[mode][cl][1];
636 setup_reg_subclasses ();
641 /* Define the following macro if allocation through malloc if
642 preferable. */
643 #define IRA_NO_OBSTACK
645 #ifndef IRA_NO_OBSTACK
646 /* Obstack used for storing all dynamic data (except bitmaps) of the
647 IRA. */
648 static struct obstack ira_obstack;
649 #endif
651 /* Obstack used for storing all bitmaps of the IRA. */
652 static struct bitmap_obstack ira_bitmap_obstack;
654 /* Allocate memory of size LEN for IRA data. */
655 void *
656 ira_allocate (size_t len)
658 void *res;
660 #ifndef IRA_NO_OBSTACK
661 res = obstack_alloc (&ira_obstack, len);
662 #else
663 res = xmalloc (len);
664 #endif
665 return res;
668 /* Free memory ADDR allocated for IRA data. */
669 void
670 ira_free (void *addr ATTRIBUTE_UNUSED)
672 #ifndef IRA_NO_OBSTACK
673 /* do nothing */
674 #else
675 free (addr);
676 #endif
680 /* Allocate and returns bitmap for IRA. */
681 bitmap
682 ira_allocate_bitmap (void)
684 return BITMAP_ALLOC (&ira_bitmap_obstack);
687 /* Free bitmap B allocated for IRA. */
688 void
689 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
691 /* do nothing */
696 /* Output information about allocation of all allocnos (except for
697 caps) into file F. */
698 void
699 ira_print_disposition (FILE *f)
701 int i, n, max_regno;
702 ira_allocno_t a;
703 basic_block bb;
705 fprintf (f, "Disposition:");
706 max_regno = max_reg_num ();
707 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
708 for (a = ira_regno_allocno_map[i];
709 a != NULL;
710 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
712 if (n % 4 == 0)
713 fprintf (f, "\n");
714 n++;
715 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
716 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
717 fprintf (f, "b%-3d", bb->index);
718 else
719 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
720 if (ALLOCNO_HARD_REGNO (a) >= 0)
721 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
722 else
723 fprintf (f, " mem");
725 fprintf (f, "\n");
728 /* Outputs information about allocation of all allocnos into
729 stderr. */
730 void
731 ira_debug_disposition (void)
733 ira_print_disposition (stderr);
738 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
739 register class containing stack registers or NO_REGS if there are
740 no stack registers. To find this class, we iterate through all
741 register pressure classes and choose the first register pressure
742 class containing all the stack registers and having the biggest
743 size. */
744 static void
745 setup_stack_reg_pressure_class (void)
747 ira_stack_reg_pressure_class = NO_REGS;
748 #ifdef STACK_REGS
750 int i, best, size;
751 enum reg_class cl;
752 HARD_REG_SET temp_hard_regset2;
754 CLEAR_HARD_REG_SET (temp_hard_regset);
755 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
756 SET_HARD_REG_BIT (temp_hard_regset, i);
757 best = 0;
758 for (i = 0; i < ira_pressure_classes_num; i++)
760 cl = ira_pressure_classes[i];
761 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
762 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
763 size = hard_reg_set_size (temp_hard_regset2);
764 if (best < size)
766 best = size;
767 ira_stack_reg_pressure_class = cl;
771 #endif
774 /* Find pressure classes which are register classes for which we
775 calculate register pressure in IRA, register pressure sensitive
776 insn scheduling, and register pressure sensitive loop invariant
777 motion.
779 To make register pressure calculation easy, we always use
780 non-intersected register pressure classes. A move of hard
781 registers from one register pressure class is not more expensive
782 than load and store of the hard registers. Most likely an allocno
783 class will be a subset of a register pressure class and in many
784 cases a register pressure class. That makes usage of register
785 pressure classes a good approximation to find a high register
786 pressure. */
787 static void
788 setup_pressure_classes (void)
790 int cost, i, n, curr;
791 int cl, cl2;
792 enum reg_class pressure_classes[N_REG_CLASSES];
793 int m;
794 HARD_REG_SET temp_hard_regset2;
795 bool insert_p;
797 n = 0;
798 for (cl = 0; cl < N_REG_CLASSES; cl++)
800 if (ira_class_hard_regs_num[cl] == 0)
801 continue;
802 if (ira_class_hard_regs_num[cl] != 1
803 /* A register class without subclasses may contain a few
804 hard registers and movement between them is costly
805 (e.g. SPARC FPCC registers). We still should consider it
806 as a candidate for a pressure class. */
807 && alloc_reg_class_subclasses[cl][0] < cl)
809 /* Check that the moves between any hard registers of the
810 current class are not more expensive for a legal mode
811 than load/store of the hard registers of the current
812 class. Such class is a potential candidate to be a
813 register pressure class. */
814 for (m = 0; m < NUM_MACHINE_MODES; m++)
816 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
817 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
818 AND_COMPL_HARD_REG_SET (temp_hard_regset,
819 ira_prohibited_class_mode_regs[cl][m]);
820 if (hard_reg_set_empty_p (temp_hard_regset))
821 continue;
822 ira_init_register_move_cost_if_necessary ((enum machine_mode) m);
823 cost = ira_register_move_cost[m][cl][cl];
824 if (cost <= ira_max_memory_move_cost[m][cl][1]
825 || cost <= ira_max_memory_move_cost[m][cl][0])
826 break;
828 if (m >= NUM_MACHINE_MODES)
829 continue;
831 curr = 0;
832 insert_p = true;
833 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
834 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
835 /* Remove so far added pressure classes which are subset of the
836 current candidate class. Prefer GENERAL_REGS as a pressure
837 register class to another class containing the same
838 allocatable hard registers. We do this because machine
839 dependent cost hooks might give wrong costs for the latter
840 class but always give the right cost for the former class
841 (GENERAL_REGS). */
842 for (i = 0; i < n; i++)
844 cl2 = pressure_classes[i];
845 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
846 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
847 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
848 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
849 || cl2 == (int) GENERAL_REGS))
851 pressure_classes[curr++] = (enum reg_class) cl2;
852 insert_p = false;
853 continue;
855 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
856 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
857 || cl == (int) GENERAL_REGS))
858 continue;
859 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
860 insert_p = false;
861 pressure_classes[curr++] = (enum reg_class) cl2;
863 /* If the current candidate is a subset of a so far added
864 pressure class, don't add it to the list of the pressure
865 classes. */
866 if (insert_p)
867 pressure_classes[curr++] = (enum reg_class) cl;
868 n = curr;
870 #ifdef ENABLE_IRA_CHECKING
872 HARD_REG_SET ignore_hard_regs;
874 /* Check pressure classes correctness: here we check that hard
875 registers from all register pressure classes contains all hard
876 registers available for the allocation. */
877 CLEAR_HARD_REG_SET (temp_hard_regset);
878 CLEAR_HARD_REG_SET (temp_hard_regset2);
879 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
880 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
882 /* For some targets (like MIPS with MD_REGS), there are some
883 classes with hard registers available for allocation but
884 not able to hold value of any mode. */
885 for (m = 0; m < NUM_MACHINE_MODES; m++)
886 if (contains_reg_of_mode[cl][m])
887 break;
888 if (m >= NUM_MACHINE_MODES)
890 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
891 continue;
893 for (i = 0; i < n; i++)
894 if ((int) pressure_classes[i] == cl)
895 break;
896 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
897 if (i < n)
898 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
900 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
901 /* Some targets (like SPARC with ICC reg) have alocatable regs
902 for which no reg class is defined. */
903 if (REGNO_REG_CLASS (i) == NO_REGS)
904 SET_HARD_REG_BIT (ignore_hard_regs, i);
905 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
906 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
907 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
909 #endif
910 ira_pressure_classes_num = 0;
911 for (i = 0; i < n; i++)
913 cl = (int) pressure_classes[i];
914 ira_reg_pressure_class_p[cl] = true;
915 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
917 setup_stack_reg_pressure_class ();
920 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
921 whose register move cost between any registers of the class is the
922 same as for all its subclasses. We use the data to speed up the
923 2nd pass of calculations of allocno costs. */
924 static void
925 setup_uniform_class_p (void)
927 int i, cl, cl2, m;
929 for (cl = 0; cl < N_REG_CLASSES; cl++)
931 ira_uniform_class_p[cl] = false;
932 if (ira_class_hard_regs_num[cl] == 0)
933 continue;
934 /* We can not use alloc_reg_class_subclasses here because move
935 cost hooks does not take into account that some registers are
936 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
937 is element of alloc_reg_class_subclasses for GENERAL_REGS
938 because SSE regs are unavailable. */
939 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
941 if (ira_class_hard_regs_num[cl2] == 0)
942 continue;
943 for (m = 0; m < NUM_MACHINE_MODES; m++)
944 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
946 ira_init_register_move_cost_if_necessary ((enum machine_mode) m);
947 if (ira_register_move_cost[m][cl][cl]
948 != ira_register_move_cost[m][cl2][cl2])
949 break;
951 if (m < NUM_MACHINE_MODES)
952 break;
954 if (cl2 == LIM_REG_CLASSES)
955 ira_uniform_class_p[cl] = true;
959 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
960 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
962 Target may have many subtargets and not all target hard regiters can
963 be used for allocation, e.g. x86 port in 32-bit mode can not use
964 hard registers introduced in x86-64 like r8-r15). Some classes
965 might have the same allocatable hard registers, e.g. INDEX_REGS
966 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
967 calculations efforts we introduce allocno classes which contain
968 unique non-empty sets of allocatable hard-registers.
970 Pseudo class cost calculation in ira-costs.c is very expensive.
971 Therefore we are trying to decrease number of classes involved in
972 such calculation. Register classes used in the cost calculation
973 are called important classes. They are allocno classes and other
974 non-empty classes whose allocatable hard register sets are inside
975 of an allocno class hard register set. From the first sight, it
976 looks like that they are just allocno classes. It is not true. In
977 example of x86-port in 32-bit mode, allocno classes will contain
978 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
979 registers are the same for the both classes). The important
980 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
981 because a machine description insn constraint may refers for
982 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
983 of the insn constraints. */
984 static void
985 setup_allocno_and_important_classes (void)
987 int i, j, n, cl;
988 bool set_p;
989 HARD_REG_SET temp_hard_regset2;
990 static enum reg_class classes[LIM_REG_CLASSES + 1];
992 n = 0;
993 /* Collect classes which contain unique sets of allocatable hard
994 registers. Prefer GENERAL_REGS to other classes containing the
995 same set of hard registers. */
996 for (i = 0; i < LIM_REG_CLASSES; i++)
998 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
999 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1000 for (j = 0; j < n; j++)
1002 cl = classes[j];
1003 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1004 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1005 no_unit_alloc_regs);
1006 if (hard_reg_set_equal_p (temp_hard_regset,
1007 temp_hard_regset2))
1008 break;
1010 if (j >= n)
1011 classes[n++] = (enum reg_class) i;
1012 else if (i == GENERAL_REGS)
1013 /* Prefer general regs. For i386 example, it means that
1014 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1015 (all of them consists of the same available hard
1016 registers). */
1017 classes[j] = (enum reg_class) i;
1019 classes[n] = LIM_REG_CLASSES;
1021 /* Set up classes which can be used for allocnos as classes
1022 conatining non-empty unique sets of allocatable hard
1023 registers. */
1024 ira_allocno_classes_num = 0;
1025 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1026 if (ira_class_hard_regs_num[cl] > 0)
1027 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1028 ira_important_classes_num = 0;
1029 /* Add non-allocno classes containing to non-empty set of
1030 allocatable hard regs. */
1031 for (cl = 0; cl < N_REG_CLASSES; cl++)
1032 if (ira_class_hard_regs_num[cl] > 0)
1034 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1035 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1036 set_p = false;
1037 for (j = 0; j < ira_allocno_classes_num; j++)
1039 COPY_HARD_REG_SET (temp_hard_regset2,
1040 reg_class_contents[ira_allocno_classes[j]]);
1041 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1042 if ((enum reg_class) cl == ira_allocno_classes[j])
1043 break;
1044 else if (hard_reg_set_subset_p (temp_hard_regset,
1045 temp_hard_regset2))
1046 set_p = true;
1048 if (set_p && j >= ira_allocno_classes_num)
1049 ira_important_classes[ira_important_classes_num++]
1050 = (enum reg_class) cl;
1052 /* Now add allocno classes to the important classes. */
1053 for (j = 0; j < ira_allocno_classes_num; j++)
1054 ira_important_classes[ira_important_classes_num++]
1055 = ira_allocno_classes[j];
1056 for (cl = 0; cl < N_REG_CLASSES; cl++)
1058 ira_reg_allocno_class_p[cl] = false;
1059 ira_reg_pressure_class_p[cl] = false;
1061 for (j = 0; j < ira_allocno_classes_num; j++)
1062 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1063 setup_pressure_classes ();
1064 setup_uniform_class_p ();
1067 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1068 given by array CLASSES of length CLASSES_NUM. The function is used
1069 make translation any reg class to an allocno class or to an
1070 pressure class. This translation is necessary for some
1071 calculations when we can use only allocno or pressure classes and
1072 such translation represents an approximate representation of all
1073 classes.
1075 The translation in case when allocatable hard register set of a
1076 given class is subset of allocatable hard register set of a class
1077 in CLASSES is pretty simple. We use smallest classes from CLASSES
1078 containing a given class. If allocatable hard register set of a
1079 given class is not a subset of any corresponding set of a class
1080 from CLASSES, we use the cheapest (with load/store point of view)
1081 class from CLASSES whose set intersects with given class set. */
1082 static void
1083 setup_class_translate_array (enum reg_class *class_translate,
1084 int classes_num, enum reg_class *classes)
1086 int cl, mode;
1087 enum reg_class aclass, best_class, *cl_ptr;
1088 int i, cost, min_cost, best_cost;
1090 for (cl = 0; cl < N_REG_CLASSES; cl++)
1091 class_translate[cl] = NO_REGS;
1093 for (i = 0; i < classes_num; i++)
1095 aclass = classes[i];
1096 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1097 (cl = *cl_ptr) != LIM_REG_CLASSES;
1098 cl_ptr++)
1099 if (class_translate[cl] == NO_REGS)
1100 class_translate[cl] = aclass;
1101 class_translate[aclass] = aclass;
1103 /* For classes which are not fully covered by one of given classes
1104 (in other words covered by more one given class), use the
1105 cheapest class. */
1106 for (cl = 0; cl < N_REG_CLASSES; cl++)
1108 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1109 continue;
1110 best_class = NO_REGS;
1111 best_cost = INT_MAX;
1112 for (i = 0; i < classes_num; i++)
1114 aclass = classes[i];
1115 COPY_HARD_REG_SET (temp_hard_regset,
1116 reg_class_contents[aclass]);
1117 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1118 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1119 if (! hard_reg_set_empty_p (temp_hard_regset))
1121 min_cost = INT_MAX;
1122 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1124 cost = (ira_memory_move_cost[mode][aclass][0]
1125 + ira_memory_move_cost[mode][aclass][1]);
1126 if (min_cost > cost)
1127 min_cost = cost;
1129 if (best_class == NO_REGS || best_cost > min_cost)
1131 best_class = aclass;
1132 best_cost = min_cost;
1136 class_translate[cl] = best_class;
1140 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1141 IRA_PRESSURE_CLASS_TRANSLATE. */
1142 static void
1143 setup_class_translate (void)
1145 setup_class_translate_array (ira_allocno_class_translate,
1146 ira_allocno_classes_num, ira_allocno_classes);
1147 setup_class_translate_array (ira_pressure_class_translate,
1148 ira_pressure_classes_num, ira_pressure_classes);
1151 /* Order numbers of allocno classes in original target allocno class
1152 array, -1 for non-allocno classes. */
1153 static int allocno_class_order[N_REG_CLASSES];
1155 /* The function used to sort the important classes. */
1156 static int
1157 comp_reg_classes_func (const void *v1p, const void *v2p)
1159 enum reg_class cl1 = *(const enum reg_class *) v1p;
1160 enum reg_class cl2 = *(const enum reg_class *) v2p;
1161 enum reg_class tcl1, tcl2;
1162 int diff;
1164 tcl1 = ira_allocno_class_translate[cl1];
1165 tcl2 = ira_allocno_class_translate[cl2];
1166 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1167 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1168 return diff;
1169 return (int) cl1 - (int) cl2;
1172 /* For correct work of function setup_reg_class_relation we need to
1173 reorder important classes according to the order of their allocno
1174 classes. It places important classes containing the same
1175 allocatable hard register set adjacent to each other and allocno
1176 class with the allocatable hard register set right after the other
1177 important classes with the same set.
1179 In example from comments of function
1180 setup_allocno_and_important_classes, it places LEGACY_REGS and
1181 GENERAL_REGS close to each other and GENERAL_REGS is after
1182 LEGACY_REGS. */
1183 static void
1184 reorder_important_classes (void)
1186 int i;
1188 for (i = 0; i < N_REG_CLASSES; i++)
1189 allocno_class_order[i] = -1;
1190 for (i = 0; i < ira_allocno_classes_num; i++)
1191 allocno_class_order[ira_allocno_classes[i]] = i;
1192 qsort (ira_important_classes, ira_important_classes_num,
1193 sizeof (enum reg_class), comp_reg_classes_func);
1194 for (i = 0; i < ira_important_classes_num; i++)
1195 ira_important_class_nums[ira_important_classes[i]] = i;
1198 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1199 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1200 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1201 please see corresponding comments in ira-int.h. */
1202 static void
1203 setup_reg_class_relations (void)
1205 int i, cl1, cl2, cl3;
1206 HARD_REG_SET intersection_set, union_set, temp_set2;
1207 bool important_class_p[N_REG_CLASSES];
1209 memset (important_class_p, 0, sizeof (important_class_p));
1210 for (i = 0; i < ira_important_classes_num; i++)
1211 important_class_p[ira_important_classes[i]] = true;
1212 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1214 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1215 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1217 ira_reg_classes_intersect_p[cl1][cl2] = false;
1218 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1219 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1220 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1221 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1222 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1223 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1224 if (hard_reg_set_empty_p (temp_hard_regset)
1225 && hard_reg_set_empty_p (temp_set2))
1227 /* The both classes have no allocatable hard registers
1228 -- take all class hard registers into account and use
1229 reg_class_subunion and reg_class_superunion. */
1230 for (i = 0;; i++)
1232 cl3 = reg_class_subclasses[cl1][i];
1233 if (cl3 == LIM_REG_CLASSES)
1234 break;
1235 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1236 (enum reg_class) cl3))
1237 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1239 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1240 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1241 continue;
1243 ira_reg_classes_intersect_p[cl1][cl2]
1244 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1245 if (important_class_p[cl1] && important_class_p[cl2]
1246 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1248 /* CL1 and CL2 are important classes and CL1 allocatable
1249 hard register set is inside of CL2 allocatable hard
1250 registers -- make CL1 a superset of CL2. */
1251 enum reg_class *p;
1253 p = &ira_reg_class_super_classes[cl1][0];
1254 while (*p != LIM_REG_CLASSES)
1255 p++;
1256 *p++ = (enum reg_class) cl2;
1257 *p = LIM_REG_CLASSES;
1259 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1260 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1261 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1262 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1263 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1264 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1265 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1266 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1267 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1269 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1270 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1271 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1273 /* CL3 allocatable hard register set is inside of
1274 intersection of allocatable hard register sets
1275 of CL1 and CL2. */
1276 if (important_class_p[cl3])
1278 COPY_HARD_REG_SET
1279 (temp_set2,
1280 reg_class_contents
1281 [(int) ira_reg_class_intersect[cl1][cl2]]);
1282 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1283 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1284 /* If the allocatable hard register sets are
1285 the same, prefer GENERAL_REGS or the
1286 smallest class for debugging
1287 purposes. */
1288 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1289 && (cl3 == GENERAL_REGS
1290 || ((ira_reg_class_intersect[cl1][cl2]
1291 != GENERAL_REGS)
1292 && hard_reg_set_subset_p
1293 (reg_class_contents[cl3],
1294 reg_class_contents
1295 [(int)
1296 ira_reg_class_intersect[cl1][cl2]])))))
1297 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1299 COPY_HARD_REG_SET
1300 (temp_set2,
1301 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1302 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1303 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1304 /* Ignore unavailable hard registers and prefer
1305 smallest class for debugging purposes. */
1306 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1307 && hard_reg_set_subset_p
1308 (reg_class_contents[cl3],
1309 reg_class_contents
1310 [(int) ira_reg_class_subset[cl1][cl2]])))
1311 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1313 if (important_class_p[cl3]
1314 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1316 /* CL3 allocatbale hard register set is inside of
1317 union of allocatable hard register sets of CL1
1318 and CL2. */
1319 COPY_HARD_REG_SET
1320 (temp_set2,
1321 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1322 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1323 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1324 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1326 && (! hard_reg_set_equal_p (temp_set2,
1327 temp_hard_regset)
1328 || cl3 == GENERAL_REGS
1329 /* If the allocatable hard register sets are the
1330 same, prefer GENERAL_REGS or the smallest
1331 class for debugging purposes. */
1332 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1333 && hard_reg_set_subset_p
1334 (reg_class_contents[cl3],
1335 reg_class_contents
1336 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1337 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1339 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1341 /* CL3 allocatable hard register set contains union
1342 of allocatable hard register sets of CL1 and
1343 CL2. */
1344 COPY_HARD_REG_SET
1345 (temp_set2,
1346 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1347 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1348 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1349 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1351 && (! hard_reg_set_equal_p (temp_set2,
1352 temp_hard_regset)
1353 || cl3 == GENERAL_REGS
1354 /* If the allocatable hard register sets are the
1355 same, prefer GENERAL_REGS or the smallest
1356 class for debugging purposes. */
1357 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1358 && hard_reg_set_subset_p
1359 (reg_class_contents[cl3],
1360 reg_class_contents
1361 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1362 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1369 /* Output all unifrom and important classes into file F. */
1370 static void
1371 print_unform_and_important_classes (FILE *f)
1373 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1374 int i, cl;
1376 fprintf (f, "Uniform classes:\n");
1377 for (cl = 0; cl < N_REG_CLASSES; cl++)
1378 if (ira_uniform_class_p[cl])
1379 fprintf (f, " %s", reg_class_names[cl]);
1380 fprintf (f, "\nImportant classes:\n");
1381 for (i = 0; i < ira_important_classes_num; i++)
1382 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1383 fprintf (f, "\n");
1386 /* Output all possible allocno or pressure classes and their
1387 translation map into file F. */
1388 static void
1389 print_translated_classes (FILE *f, bool pressure_p)
1391 int classes_num = (pressure_p
1392 ? ira_pressure_classes_num : ira_allocno_classes_num);
1393 enum reg_class *classes = (pressure_p
1394 ? ira_pressure_classes : ira_allocno_classes);
1395 enum reg_class *class_translate = (pressure_p
1396 ? ira_pressure_class_translate
1397 : ira_allocno_class_translate);
1398 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1399 int i;
1401 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1402 for (i = 0; i < classes_num; i++)
1403 fprintf (f, " %s", reg_class_names[classes[i]]);
1404 fprintf (f, "\nClass translation:\n");
1405 for (i = 0; i < N_REG_CLASSES; i++)
1406 fprintf (f, " %s -> %s\n", reg_class_names[i],
1407 reg_class_names[class_translate[i]]);
1410 /* Output all possible allocno and translation classes and the
1411 translation maps into stderr. */
1412 void
1413 ira_debug_allocno_classes (void)
1415 print_unform_and_important_classes (stderr);
1416 print_translated_classes (stderr, false);
1417 print_translated_classes (stderr, true);
1420 /* Set up different arrays concerning class subsets, allocno and
1421 important classes. */
1422 static void
1423 find_reg_classes (void)
1425 setup_allocno_and_important_classes ();
1426 setup_class_translate ();
1427 reorder_important_classes ();
1428 setup_reg_class_relations ();
1433 /* Set up the array above. */
1434 static void
1435 setup_hard_regno_aclass (void)
1437 int i;
1439 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1441 #if 1
1442 ira_hard_regno_allocno_class[i]
1443 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1444 ? NO_REGS
1445 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1446 #else
1447 int j;
1448 enum reg_class cl;
1449 ira_hard_regno_allocno_class[i] = NO_REGS;
1450 for (j = 0; j < ira_allocno_classes_num; j++)
1452 cl = ira_allocno_classes[j];
1453 if (ira_class_hard_reg_index[cl][i] >= 0)
1455 ira_hard_regno_allocno_class[i] = cl;
1456 break;
1459 #endif
1465 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1466 static void
1467 setup_reg_class_nregs (void)
1469 int i, cl, cl2, m;
1471 for (m = 0; m < MAX_MACHINE_MODE; m++)
1473 for (cl = 0; cl < N_REG_CLASSES; cl++)
1474 ira_reg_class_max_nregs[cl][m]
1475 = ira_reg_class_min_nregs[cl][m]
1476 = targetm.class_max_nregs ((reg_class_t) cl, (enum machine_mode) m);
1477 for (cl = 0; cl < N_REG_CLASSES; cl++)
1478 for (i = 0;
1479 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1480 i++)
1481 if (ira_reg_class_min_nregs[cl2][m]
1482 < ira_reg_class_min_nregs[cl][m])
1483 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1489 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1490 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1491 static void
1492 setup_prohibited_class_mode_regs (void)
1494 int j, k, hard_regno, cl, last_hard_regno, count;
1496 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1498 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1499 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1500 for (j = 0; j < NUM_MACHINE_MODES; j++)
1502 count = 0;
1503 last_hard_regno = -1;
1504 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1505 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1507 hard_regno = ira_class_hard_regs[cl][k];
1508 if (! HARD_REGNO_MODE_OK (hard_regno, (enum machine_mode) j))
1509 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1510 hard_regno);
1511 else if (in_hard_reg_set_p (temp_hard_regset,
1512 (enum machine_mode) j, hard_regno))
1514 last_hard_regno = hard_regno;
1515 count++;
1518 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1523 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1524 spanning from one register pressure class to another one. It is
1525 called after defining the pressure classes. */
1526 static void
1527 clarify_prohibited_class_mode_regs (void)
1529 int j, k, hard_regno, cl, pclass, nregs;
1531 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1532 for (j = 0; j < NUM_MACHINE_MODES; j++)
1534 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1535 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1537 hard_regno = ira_class_hard_regs[cl][k];
1538 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1539 continue;
1540 nregs = hard_regno_nregs[hard_regno][j];
1541 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1543 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1544 hard_regno);
1545 continue;
1547 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1548 for (nregs-- ;nregs >= 0; nregs--)
1549 if (((enum reg_class) pclass
1550 != ira_pressure_class_translate[REGNO_REG_CLASS
1551 (hard_regno + nregs)]))
1553 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1554 hard_regno);
1555 break;
1557 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1558 hard_regno))
1559 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1560 (enum machine_mode) j, hard_regno);
1565 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1566 and IRA_MAY_MOVE_OUT_COST for MODE. */
1567 void
1568 ira_init_register_move_cost (enum machine_mode mode)
1570 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1571 bool all_match = true;
1572 unsigned int cl1, cl2;
1574 ira_assert (ira_register_move_cost[mode] == NULL
1575 && ira_may_move_in_cost[mode] == NULL
1576 && ira_may_move_out_cost[mode] == NULL);
1577 ira_assert (have_regs_of_mode[mode]);
1578 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1579 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1581 int cost;
1582 if (!contains_reg_of_mode[cl1][mode]
1583 || !contains_reg_of_mode[cl2][mode])
1585 if ((ira_reg_class_max_nregs[cl1][mode]
1586 > ira_class_hard_regs_num[cl1])
1587 || (ira_reg_class_max_nregs[cl2][mode]
1588 > ira_class_hard_regs_num[cl2]))
1589 cost = 65535;
1590 else
1591 cost = (ira_memory_move_cost[mode][cl1][0]
1592 + ira_memory_move_cost[mode][cl2][1]) * 2;
1594 else
1596 cost = register_move_cost (mode, (enum reg_class) cl1,
1597 (enum reg_class) cl2);
1598 ira_assert (cost < 65535);
1600 all_match &= (last_move_cost[cl1][cl2] == cost);
1601 last_move_cost[cl1][cl2] = cost;
1603 if (all_match && last_mode_for_init_move_cost != -1)
1605 ira_register_move_cost[mode]
1606 = ira_register_move_cost[last_mode_for_init_move_cost];
1607 ira_may_move_in_cost[mode]
1608 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1609 ira_may_move_out_cost[mode]
1610 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1611 return;
1613 last_mode_for_init_move_cost = mode;
1614 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1615 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1616 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1617 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1618 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1620 int cost;
1621 enum reg_class *p1, *p2;
1623 if (last_move_cost[cl1][cl2] == 65535)
1625 ira_register_move_cost[mode][cl1][cl2] = 65535;
1626 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1627 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1629 else
1631 cost = last_move_cost[cl1][cl2];
1633 for (p2 = &reg_class_subclasses[cl2][0];
1634 *p2 != LIM_REG_CLASSES; p2++)
1635 if (ira_class_hard_regs_num[*p2] > 0
1636 && (ira_reg_class_max_nregs[*p2][mode]
1637 <= ira_class_hard_regs_num[*p2]))
1638 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1640 for (p1 = &reg_class_subclasses[cl1][0];
1641 *p1 != LIM_REG_CLASSES; p1++)
1642 if (ira_class_hard_regs_num[*p1] > 0
1643 && (ira_reg_class_max_nregs[*p1][mode]
1644 <= ira_class_hard_regs_num[*p1]))
1645 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1647 ira_assert (cost <= 65535);
1648 ira_register_move_cost[mode][cl1][cl2] = cost;
1650 if (ira_class_subset_p[cl1][cl2])
1651 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1652 else
1653 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1655 if (ira_class_subset_p[cl2][cl1])
1656 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1657 else
1658 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1665 /* This is called once during compiler work. It sets up
1666 different arrays whose values don't depend on the compiled
1667 function. */
1668 void
1669 ira_init_once (void)
1671 ira_init_costs_once ();
1672 lra_init_once ();
1675 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1676 ira_may_move_out_cost for each mode. */
1677 void
1678 target_ira_int::free_register_move_costs (void)
1680 int mode, i;
1682 /* Reset move_cost and friends, making sure we only free shared
1683 table entries once. */
1684 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1685 if (x_ira_register_move_cost[mode])
1687 for (i = 0;
1688 i < mode && (x_ira_register_move_cost[i]
1689 != x_ira_register_move_cost[mode]);
1690 i++)
1692 if (i == mode)
1694 free (x_ira_register_move_cost[mode]);
1695 free (x_ira_may_move_in_cost[mode]);
1696 free (x_ira_may_move_out_cost[mode]);
1699 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1700 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1701 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1702 last_mode_for_init_move_cost = -1;
1705 target_ira_int::~target_ira_int ()
1707 free_ira_costs ();
1708 free_register_move_costs ();
1711 /* This is called every time when register related information is
1712 changed. */
1713 void
1714 ira_init (void)
1716 this_target_ira_int->free_register_move_costs ();
1717 setup_reg_mode_hard_regset ();
1718 setup_alloc_regs (flag_omit_frame_pointer != 0);
1719 setup_class_subset_and_memory_move_costs ();
1720 setup_reg_class_nregs ();
1721 setup_prohibited_class_mode_regs ();
1722 find_reg_classes ();
1723 clarify_prohibited_class_mode_regs ();
1724 setup_hard_regno_aclass ();
1725 ira_init_costs ();
1729 #define ira_prohibited_mode_move_regs_initialized_p \
1730 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1732 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1733 static void
1734 setup_prohibited_mode_move_regs (void)
1736 int i, j;
1737 rtx test_reg1, test_reg2, move_pat;
1738 rtx_insn *move_insn;
1740 if (ira_prohibited_mode_move_regs_initialized_p)
1741 return;
1742 ira_prohibited_mode_move_regs_initialized_p = true;
1743 test_reg1 = gen_rtx_REG (VOIDmode, 0);
1744 test_reg2 = gen_rtx_REG (VOIDmode, 0);
1745 move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
1746 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1747 for (i = 0; i < NUM_MACHINE_MODES; i++)
1749 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1750 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1752 if (! HARD_REGNO_MODE_OK (j, (enum machine_mode) i))
1753 continue;
1754 SET_REGNO_RAW (test_reg1, j);
1755 PUT_MODE (test_reg1, (enum machine_mode) i);
1756 SET_REGNO_RAW (test_reg2, j);
1757 PUT_MODE (test_reg2, (enum machine_mode) i);
1758 INSN_CODE (move_insn) = -1;
1759 recog_memoized (move_insn);
1760 if (INSN_CODE (move_insn) < 0)
1761 continue;
1762 extract_insn (move_insn);
1763 if (! constrain_operands (1))
1764 continue;
1765 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1772 /* Setup possible alternatives in ALTS for INSN. */
1773 void
1774 ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
1776 /* MAP nalt * nop -> start of constraints for given operand and
1777 alternative. */
1778 static vec<const char *> insn_constraints;
1779 int nop, nalt;
1780 bool curr_swapped;
1781 const char *p;
1782 rtx op;
1783 int commutative = -1;
1785 extract_insn (insn);
1786 CLEAR_HARD_REG_SET (alts);
1787 insn_constraints.release ();
1788 insn_constraints.safe_grow_cleared (recog_data.n_operands
1789 * recog_data.n_alternatives + 1);
1790 /* Check that the hard reg set is enough for holding all
1791 alternatives. It is hard to imagine the situation when the
1792 assertion is wrong. */
1793 ira_assert (recog_data.n_alternatives
1794 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1795 FIRST_PSEUDO_REGISTER));
1796 for (curr_swapped = false;; curr_swapped = true)
1798 /* Calculate some data common for all alternatives to speed up the
1799 function. */
1800 for (nop = 0; nop < recog_data.n_operands; nop++)
1802 for (nalt = 0, p = recog_data.constraints[nop];
1803 nalt < recog_data.n_alternatives;
1804 nalt++)
1806 insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1807 while (*p && *p != ',')
1808 p++;
1809 if (*p)
1810 p++;
1813 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1815 if (!TEST_BIT (recog_data.enabled_alternatives, nalt)
1816 || TEST_HARD_REG_BIT (alts, nalt))
1817 continue;
1819 for (nop = 0; nop < recog_data.n_operands; nop++)
1821 int c, len;
1823 op = recog_data.operand[nop];
1824 p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1825 if (*p == 0 || *p == ',')
1826 continue;
1829 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1831 case '#':
1832 case ',':
1833 c = '\0';
1834 case '\0':
1835 len = 0;
1836 break;
1838 case '%':
1839 /* We only support one commutative marker, the
1840 first one. We already set commutative
1841 above. */
1842 if (commutative < 0)
1843 commutative = nop;
1844 break;
1846 case '0': case '1': case '2': case '3': case '4':
1847 case '5': case '6': case '7': case '8': case '9':
1848 goto op_success;
1849 break;
1851 case 'g':
1852 goto op_success;
1853 break;
1855 default:
1857 enum constraint_num cn = lookup_constraint (p);
1858 switch (get_constraint_type (cn))
1860 case CT_REGISTER:
1861 if (reg_class_for_constraint (cn) != NO_REGS)
1862 goto op_success;
1863 break;
1865 case CT_CONST_INT:
1866 if (CONST_INT_P (op)
1867 && (insn_const_int_ok_for_constraint
1868 (INTVAL (op), cn)))
1869 goto op_success;
1870 break;
1872 case CT_ADDRESS:
1873 case CT_MEMORY:
1874 goto op_success;
1876 case CT_FIXED_FORM:
1877 if (constraint_satisfied_p (op, cn))
1878 goto op_success;
1879 break;
1881 break;
1884 while (p += len, c);
1885 break;
1886 op_success:
1889 if (nop >= recog_data.n_operands)
1890 SET_HARD_REG_BIT (alts, nalt);
1892 if (commutative < 0)
1893 break;
1894 if (curr_swapped)
1895 break;
1896 op = recog_data.operand[commutative];
1897 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
1898 recog_data.operand[commutative + 1] = op;
1903 /* Return the number of the output non-early clobber operand which
1904 should be the same in any case as operand with number OP_NUM (or
1905 negative value if there is no such operand). The function takes
1906 only really possible alternatives into consideration. */
1908 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1910 int curr_alt, c, original, dup;
1911 bool ignore_p, use_commut_op_p;
1912 const char *str;
1914 if (op_num < 0 || recog_data.n_alternatives == 0)
1915 return -1;
1916 /* We should find duplications only for input operands. */
1917 if (recog_data.operand_type[op_num] != OP_IN)
1918 return -1;
1919 str = recog_data.constraints[op_num];
1920 use_commut_op_p = false;
1921 for (;;)
1923 rtx op = recog_data.operand[op_num];
1925 for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1926 original = -1;;)
1928 c = *str;
1929 if (c == '\0')
1930 break;
1931 if (c == '#')
1932 ignore_p = true;
1933 else if (c == ',')
1935 curr_alt++;
1936 ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
1938 else if (! ignore_p)
1939 switch (c)
1941 case 'g':
1942 goto fail;
1943 default:
1945 enum constraint_num cn = lookup_constraint (str);
1946 enum reg_class cl = reg_class_for_constraint (cn);
1947 if (cl != NO_REGS
1948 && !targetm.class_likely_spilled_p (cl))
1949 goto fail;
1950 if (constraint_satisfied_p (op, cn))
1951 goto fail;
1952 break;
1955 case '0': case '1': case '2': case '3': case '4':
1956 case '5': case '6': case '7': case '8': case '9':
1957 if (original != -1 && original != c)
1958 goto fail;
1959 original = c;
1960 break;
1962 str += CONSTRAINT_LEN (c, str);
1964 if (original == -1)
1965 goto fail;
1966 dup = -1;
1967 for (ignore_p = false, str = recog_data.constraints[original - '0'];
1968 *str != 0;
1969 str++)
1970 if (ignore_p)
1972 if (*str == ',')
1973 ignore_p = false;
1975 else if (*str == '#')
1976 ignore_p = true;
1977 else if (! ignore_p)
1979 if (*str == '=')
1980 dup = original - '0';
1981 /* It is better ignore an alternative with early clobber. */
1982 else if (*str == '&')
1983 goto fail;
1985 if (dup >= 0)
1986 return dup;
1987 fail:
1988 if (use_commut_op_p)
1989 break;
1990 use_commut_op_p = true;
1991 if (recog_data.constraints[op_num][0] == '%')
1992 str = recog_data.constraints[op_num + 1];
1993 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
1994 str = recog_data.constraints[op_num - 1];
1995 else
1996 break;
1998 return -1;
2003 /* Search forward to see if the source register of a copy insn dies
2004 before either it or the destination register is modified, but don't
2005 scan past the end of the basic block. If so, we can replace the
2006 source with the destination and let the source die in the copy
2007 insn.
2009 This will reduce the number of registers live in that range and may
2010 enable the destination and the source coalescing, thus often saving
2011 one register in addition to a register-register copy. */
2013 static void
2014 decrease_live_ranges_number (void)
2016 basic_block bb;
2017 rtx_insn *insn;
2018 rtx set, src, dest, dest_death, q, note;
2019 rtx_insn *p;
2020 int sregno, dregno;
2022 if (! flag_expensive_optimizations)
2023 return;
2025 if (ira_dump_file)
2026 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2028 FOR_EACH_BB_FN (bb, cfun)
2029 FOR_BB_INSNS (bb, insn)
2031 set = single_set (insn);
2032 if (! set)
2033 continue;
2034 src = SET_SRC (set);
2035 dest = SET_DEST (set);
2036 if (! REG_P (src) || ! REG_P (dest)
2037 || find_reg_note (insn, REG_DEAD, src))
2038 continue;
2039 sregno = REGNO (src);
2040 dregno = REGNO (dest);
2042 /* We don't want to mess with hard regs if register classes
2043 are small. */
2044 if (sregno == dregno
2045 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2046 && (sregno < FIRST_PSEUDO_REGISTER
2047 || dregno < FIRST_PSEUDO_REGISTER))
2048 /* We don't see all updates to SP if they are in an
2049 auto-inc memory reference, so we must disallow this
2050 optimization on them. */
2051 || sregno == STACK_POINTER_REGNUM
2052 || dregno == STACK_POINTER_REGNUM)
2053 continue;
2055 dest_death = NULL_RTX;
2057 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2059 if (! INSN_P (p))
2060 continue;
2061 if (BLOCK_FOR_INSN (p) != bb)
2062 break;
2064 if (reg_set_p (src, p) || reg_set_p (dest, p)
2065 /* If SRC is an asm-declared register, it must not be
2066 replaced in any asm. Unfortunately, the REG_EXPR
2067 tree for the asm variable may be absent in the SRC
2068 rtx, so we can't check the actual register
2069 declaration easily (the asm operand will have it,
2070 though). To avoid complicating the test for a rare
2071 case, we just don't perform register replacement
2072 for a hard reg mentioned in an asm. */
2073 || (sregno < FIRST_PSEUDO_REGISTER
2074 && asm_noperands (PATTERN (p)) >= 0
2075 && reg_overlap_mentioned_p (src, PATTERN (p)))
2076 /* Don't change hard registers used by a call. */
2077 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2078 && find_reg_fusage (p, USE, src))
2079 /* Don't change a USE of a register. */
2080 || (GET_CODE (PATTERN (p)) == USE
2081 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2082 break;
2084 /* See if all of SRC dies in P. This test is slightly
2085 more conservative than it needs to be. */
2086 if ((note = find_regno_note (p, REG_DEAD, sregno))
2087 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2089 int failed = 0;
2091 /* We can do the optimization. Scan forward from INSN
2092 again, replacing regs as we go. Set FAILED if a
2093 replacement can't be done. In that case, we can't
2094 move the death note for SRC. This should be
2095 rare. */
2097 /* Set to stop at next insn. */
2098 for (q = next_real_insn (insn);
2099 q != next_real_insn (p);
2100 q = next_real_insn (q))
2102 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2104 /* If SRC is a hard register, we might miss
2105 some overlapping registers with
2106 validate_replace_rtx, so we would have to
2107 undo it. We can't if DEST is present in
2108 the insn, so fail in that combination of
2109 cases. */
2110 if (sregno < FIRST_PSEUDO_REGISTER
2111 && reg_mentioned_p (dest, PATTERN (q)))
2112 failed = 1;
2114 /* Attempt to replace all uses. */
2115 else if (!validate_replace_rtx (src, dest, q))
2116 failed = 1;
2118 /* If this succeeded, but some part of the
2119 register is still present, undo the
2120 replacement. */
2121 else if (sregno < FIRST_PSEUDO_REGISTER
2122 && reg_overlap_mentioned_p (src, PATTERN (q)))
2124 validate_replace_rtx (dest, src, q);
2125 failed = 1;
2129 /* If DEST dies here, remove the death note and
2130 save it for later. Make sure ALL of DEST dies
2131 here; again, this is overly conservative. */
2132 if (! dest_death
2133 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2135 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2136 remove_note (q, dest_death);
2137 else
2139 failed = 1;
2140 dest_death = 0;
2145 if (! failed)
2147 /* Move death note of SRC from P to INSN. */
2148 remove_note (p, note);
2149 XEXP (note, 1) = REG_NOTES (insn);
2150 REG_NOTES (insn) = note;
2153 /* DEST is also dead if INSN has a REG_UNUSED note for
2154 DEST. */
2155 if (! dest_death
2156 && (dest_death
2157 = find_regno_note (insn, REG_UNUSED, dregno)))
2159 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2160 remove_note (insn, dest_death);
2163 /* Put death note of DEST on P if we saw it die. */
2164 if (dest_death)
2166 XEXP (dest_death, 1) = REG_NOTES (p);
2167 REG_NOTES (p) = dest_death;
2169 break;
2172 /* If SRC is a hard register which is set or killed in
2173 some other way, we can't do this optimization. */
2174 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2175 break;
2182 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2183 static bool
2184 ira_bad_reload_regno_1 (int regno, rtx x)
2186 int x_regno, n, i;
2187 ira_allocno_t a;
2188 enum reg_class pref;
2190 /* We only deal with pseudo regs. */
2191 if (! x || GET_CODE (x) != REG)
2192 return false;
2194 x_regno = REGNO (x);
2195 if (x_regno < FIRST_PSEUDO_REGISTER)
2196 return false;
2198 /* If the pseudo prefers REGNO explicitly, then do not consider
2199 REGNO a bad spill choice. */
2200 pref = reg_preferred_class (x_regno);
2201 if (reg_class_size[pref] == 1)
2202 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2204 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2205 poor choice for a reload regno. */
2206 a = ira_regno_allocno_map[x_regno];
2207 n = ALLOCNO_NUM_OBJECTS (a);
2208 for (i = 0; i < n; i++)
2210 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2211 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2212 return true;
2214 return false;
2217 /* Return nonzero if REGNO is a particularly bad choice for reloading
2218 IN or OUT. */
2219 bool
2220 ira_bad_reload_regno (int regno, rtx in, rtx out)
2222 return (ira_bad_reload_regno_1 (regno, in)
2223 || ira_bad_reload_regno_1 (regno, out));
2226 /* Add register clobbers from asm statements. */
2227 static void
2228 compute_regs_asm_clobbered (void)
2230 basic_block bb;
2232 FOR_EACH_BB_FN (bb, cfun)
2234 rtx_insn *insn;
2235 FOR_BB_INSNS_REVERSE (bb, insn)
2237 df_ref def;
2239 if (NONDEBUG_INSN_P (insn) && extract_asm_operands (PATTERN (insn)))
2240 FOR_EACH_INSN_DEF (def, insn)
2242 unsigned int dregno = DF_REF_REGNO (def);
2243 if (HARD_REGISTER_NUM_P (dregno))
2244 add_to_hard_reg_set (&crtl->asm_clobbers,
2245 GET_MODE (DF_REF_REAL_REG (def)),
2246 dregno);
2253 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2254 REGS_EVER_LIVE. */
2255 void
2256 ira_setup_eliminable_regset (void)
2258 #ifdef ELIMINABLE_REGS
2259 int i;
2260 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2261 #endif
2262 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2263 sp for alloca. So we can't eliminate the frame pointer in that
2264 case. At some point, we should improve this by emitting the
2265 sp-adjusting insns for this case. */
2266 frame_pointer_needed
2267 = (! flag_omit_frame_pointer
2268 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2269 /* We need the frame pointer to catch stack overflow exceptions
2270 if the stack pointer is moving. */
2271 || (flag_stack_check && STACK_CHECK_MOVING_SP)
2272 || crtl->accesses_prior_frames
2273 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2274 /* We need a frame pointer for all Cilk Plus functions that use
2275 Cilk keywords. */
2276 || (flag_cilkplus && cfun->is_cilk_function)
2277 || targetm.frame_pointer_required ());
2279 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2280 RTL is very small. So if we use frame pointer for RA and RTL
2281 actually prevents this, we will spill pseudos assigned to the
2282 frame pointer in LRA. */
2284 if (frame_pointer_needed)
2285 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2287 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2288 CLEAR_HARD_REG_SET (eliminable_regset);
2290 compute_regs_asm_clobbered ();
2292 /* Build the regset of all eliminable registers and show we can't
2293 use those that we already know won't be eliminated. */
2294 #ifdef ELIMINABLE_REGS
2295 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2297 bool cannot_elim
2298 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2299 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2301 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2303 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2305 if (cannot_elim)
2306 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2308 else if (cannot_elim)
2309 error ("%s cannot be used in asm here",
2310 reg_names[eliminables[i].from]);
2311 else
2312 df_set_regs_ever_live (eliminables[i].from, true);
2314 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2315 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2317 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2318 if (frame_pointer_needed)
2319 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2321 else if (frame_pointer_needed)
2322 error ("%s cannot be used in asm here",
2323 reg_names[HARD_FRAME_POINTER_REGNUM]);
2324 else
2325 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2326 #endif
2328 #else
2329 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2331 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
2332 if (frame_pointer_needed)
2333 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
2335 else if (frame_pointer_needed)
2336 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
2337 else
2338 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
2339 #endif
2344 /* Vector of substitutions of register numbers,
2345 used to map pseudo regs into hardware regs.
2346 This is set up as a result of register allocation.
2347 Element N is the hard reg assigned to pseudo reg N,
2348 or is -1 if no hard reg was assigned.
2349 If N is a hard reg number, element N is N. */
2350 short *reg_renumber;
2352 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2353 the allocation found by IRA. */
2354 static void
2355 setup_reg_renumber (void)
2357 int regno, hard_regno;
2358 ira_allocno_t a;
2359 ira_allocno_iterator ai;
2361 caller_save_needed = 0;
2362 FOR_EACH_ALLOCNO (a, ai)
2364 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2365 continue;
2366 /* There are no caps at this point. */
2367 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2368 if (! ALLOCNO_ASSIGNED_P (a))
2369 /* It can happen if A is not referenced but partially anticipated
2370 somewhere in a region. */
2371 ALLOCNO_ASSIGNED_P (a) = true;
2372 ira_free_allocno_updated_costs (a);
2373 hard_regno = ALLOCNO_HARD_REGNO (a);
2374 regno = ALLOCNO_REGNO (a);
2375 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2376 if (hard_regno >= 0)
2378 int i, nwords;
2379 enum reg_class pclass;
2380 ira_object_t obj;
2382 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2383 nwords = ALLOCNO_NUM_OBJECTS (a);
2384 for (i = 0; i < nwords; i++)
2386 obj = ALLOCNO_OBJECT (a, i);
2387 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2388 reg_class_contents[pclass]);
2390 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2391 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2392 call_used_reg_set))
2394 ira_assert (!optimize || flag_caller_saves
2395 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2396 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2397 || regno >= ira_reg_equiv_len
2398 || ira_equiv_no_lvalue_p (regno));
2399 caller_save_needed = 1;
2405 /* Set up allocno assignment flags for further allocation
2406 improvements. */
2407 static void
2408 setup_allocno_assignment_flags (void)
2410 int hard_regno;
2411 ira_allocno_t a;
2412 ira_allocno_iterator ai;
2414 FOR_EACH_ALLOCNO (a, ai)
2416 if (! ALLOCNO_ASSIGNED_P (a))
2417 /* It can happen if A is not referenced but partially anticipated
2418 somewhere in a region. */
2419 ira_free_allocno_updated_costs (a);
2420 hard_regno = ALLOCNO_HARD_REGNO (a);
2421 /* Don't assign hard registers to allocnos which are destination
2422 of removed store at the end of loop. It has no sense to keep
2423 the same value in different hard registers. It is also
2424 impossible to assign hard registers correctly to such
2425 allocnos because the cost info and info about intersected
2426 calls are incorrect for them. */
2427 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2428 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2429 || (ALLOCNO_MEMORY_COST (a)
2430 - ALLOCNO_CLASS_COST (a)) < 0);
2431 ira_assert
2432 (hard_regno < 0
2433 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2434 reg_class_contents[ALLOCNO_CLASS (a)]));
2438 /* Evaluate overall allocation cost and the costs for using hard
2439 registers and memory for allocnos. */
2440 static void
2441 calculate_allocation_cost (void)
2443 int hard_regno, cost;
2444 ira_allocno_t a;
2445 ira_allocno_iterator ai;
2447 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2448 FOR_EACH_ALLOCNO (a, ai)
2450 hard_regno = ALLOCNO_HARD_REGNO (a);
2451 ira_assert (hard_regno < 0
2452 || (ira_hard_reg_in_set_p
2453 (hard_regno, ALLOCNO_MODE (a),
2454 reg_class_contents[ALLOCNO_CLASS (a)])));
2455 if (hard_regno < 0)
2457 cost = ALLOCNO_MEMORY_COST (a);
2458 ira_mem_cost += cost;
2460 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2462 cost = (ALLOCNO_HARD_REG_COSTS (a)
2463 [ira_class_hard_reg_index
2464 [ALLOCNO_CLASS (a)][hard_regno]]);
2465 ira_reg_cost += cost;
2467 else
2469 cost = ALLOCNO_CLASS_COST (a);
2470 ira_reg_cost += cost;
2472 ira_overall_cost += cost;
2475 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2477 fprintf (ira_dump_file,
2478 "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
2479 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2480 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2481 fprintf (ira_dump_file, "+++ move loops %d, new jumps %d\n",
2482 ira_move_loops_num, ira_additional_jumps_num);
2487 #ifdef ENABLE_IRA_CHECKING
2488 /* Check the correctness of the allocation. We do need this because
2489 of complicated code to transform more one region internal
2490 representation into one region representation. */
2491 static void
2492 check_allocation (void)
2494 ira_allocno_t a;
2495 int hard_regno, nregs, conflict_nregs;
2496 ira_allocno_iterator ai;
2498 FOR_EACH_ALLOCNO (a, ai)
2500 int n = ALLOCNO_NUM_OBJECTS (a);
2501 int i;
2503 if (ALLOCNO_CAP_MEMBER (a) != NULL
2504 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2505 continue;
2506 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2507 if (nregs == 1)
2508 /* We allocated a single hard register. */
2509 n = 1;
2510 else if (n > 1)
2511 /* We allocated multiple hard registers, and we will test
2512 conflicts in a granularity of single hard regs. */
2513 nregs = 1;
2515 for (i = 0; i < n; i++)
2517 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2518 ira_object_t conflict_obj;
2519 ira_object_conflict_iterator oci;
2520 int this_regno = hard_regno;
2521 if (n > 1)
2523 if (REG_WORDS_BIG_ENDIAN)
2524 this_regno += n - i - 1;
2525 else
2526 this_regno += i;
2528 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2530 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2531 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2532 if (conflict_hard_regno < 0)
2533 continue;
2535 conflict_nregs
2536 = (hard_regno_nregs
2537 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2539 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2540 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2542 if (REG_WORDS_BIG_ENDIAN)
2543 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2544 - OBJECT_SUBWORD (conflict_obj) - 1);
2545 else
2546 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2547 conflict_nregs = 1;
2550 if ((conflict_hard_regno <= this_regno
2551 && this_regno < conflict_hard_regno + conflict_nregs)
2552 || (this_regno <= conflict_hard_regno
2553 && conflict_hard_regno < this_regno + nregs))
2555 fprintf (stderr, "bad allocation for %d and %d\n",
2556 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2557 gcc_unreachable ();
2563 #endif
2565 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2566 be already calculated. */
2567 static void
2568 setup_reg_equiv_init (void)
2570 int i;
2571 int max_regno = max_reg_num ();
2573 for (i = 0; i < max_regno; i++)
2574 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2577 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2578 are insns which were generated for such movement. It is assumed
2579 that FROM_REGNO and TO_REGNO always have the same value at the
2580 point of any move containing such registers. This function is used
2581 to update equiv info for register shuffles on the region borders
2582 and for caller save/restore insns. */
2583 void
2584 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2586 rtx_insn *insn;
2587 rtx x, note;
2589 if (! ira_reg_equiv[from_regno].defined_p
2590 && (! ira_reg_equiv[to_regno].defined_p
2591 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2592 && ! MEM_READONLY_P (x))))
2593 return;
2594 insn = insns;
2595 if (NEXT_INSN (insn) != NULL_RTX)
2597 if (! ira_reg_equiv[to_regno].defined_p)
2599 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2600 return;
2602 ira_reg_equiv[to_regno].defined_p = false;
2603 ira_reg_equiv[to_regno].memory
2604 = ira_reg_equiv[to_regno].constant
2605 = ira_reg_equiv[to_regno].invariant
2606 = ira_reg_equiv[to_regno].init_insns = NULL;
2607 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2608 fprintf (ira_dump_file,
2609 " Invalidating equiv info for reg %d\n", to_regno);
2610 return;
2612 /* It is possible that FROM_REGNO still has no equivalence because
2613 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2614 insn was not processed yet. */
2615 if (ira_reg_equiv[from_regno].defined_p)
2617 ira_reg_equiv[to_regno].defined_p = true;
2618 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2620 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2621 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2622 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2623 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2624 ira_reg_equiv[to_regno].memory = x;
2625 if (! MEM_READONLY_P (x))
2626 /* We don't add the insn to insn init list because memory
2627 equivalence is just to say what memory is better to use
2628 when the pseudo is spilled. */
2629 return;
2631 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2633 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2634 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2635 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2636 ira_reg_equiv[to_regno].constant = x;
2638 else
2640 x = ira_reg_equiv[from_regno].invariant;
2641 ira_assert (x != NULL_RTX);
2642 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2643 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2644 ira_reg_equiv[to_regno].invariant = x;
2646 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2648 note = set_unique_reg_note (insn, REG_EQUIV, x);
2649 gcc_assert (note != NULL_RTX);
2650 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2652 fprintf (ira_dump_file,
2653 " Adding equiv note to insn %u for reg %d ",
2654 INSN_UID (insn), to_regno);
2655 dump_value_slim (ira_dump_file, x, 1);
2656 fprintf (ira_dump_file, "\n");
2660 ira_reg_equiv[to_regno].init_insns
2661 = gen_rtx_INSN_LIST (VOIDmode, insn,
2662 ira_reg_equiv[to_regno].init_insns);
2663 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2664 fprintf (ira_dump_file,
2665 " Adding equiv init move insn %u to reg %d\n",
2666 INSN_UID (insn), to_regno);
2669 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2670 by IRA. */
2671 static void
2672 fix_reg_equiv_init (void)
2674 int max_regno = max_reg_num ();
2675 int i, new_regno, max;
2676 rtx x, prev, next, insn, set;
2678 if (max_regno_before_ira < max_regno)
2680 max = vec_safe_length (reg_equivs);
2681 grow_reg_equivs ();
2682 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2683 for (prev = NULL_RTX, x = reg_equiv_init (i);
2684 x != NULL_RTX;
2685 x = next)
2687 next = XEXP (x, 1);
2688 insn = XEXP (x, 0);
2689 set = single_set (as_a <rtx_insn *> (insn));
2690 ira_assert (set != NULL_RTX
2691 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2692 if (REG_P (SET_DEST (set))
2693 && ((int) REGNO (SET_DEST (set)) == i
2694 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2695 new_regno = REGNO (SET_DEST (set));
2696 else if (REG_P (SET_SRC (set))
2697 && ((int) REGNO (SET_SRC (set)) == i
2698 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2699 new_regno = REGNO (SET_SRC (set));
2700 else
2701 gcc_unreachable ();
2702 if (new_regno == i)
2703 prev = x;
2704 else
2706 /* Remove the wrong list element. */
2707 if (prev == NULL_RTX)
2708 reg_equiv_init (i) = next;
2709 else
2710 XEXP (prev, 1) = next;
2711 XEXP (x, 1) = reg_equiv_init (new_regno);
2712 reg_equiv_init (new_regno) = x;
2718 #ifdef ENABLE_IRA_CHECKING
2719 /* Print redundant memory-memory copies. */
2720 static void
2721 print_redundant_copies (void)
2723 int hard_regno;
2724 ira_allocno_t a;
2725 ira_copy_t cp, next_cp;
2726 ira_allocno_iterator ai;
2728 FOR_EACH_ALLOCNO (a, ai)
2730 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2731 /* It is a cap. */
2732 continue;
2733 hard_regno = ALLOCNO_HARD_REGNO (a);
2734 if (hard_regno >= 0)
2735 continue;
2736 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2737 if (cp->first == a)
2738 next_cp = cp->next_first_allocno_copy;
2739 else
2741 next_cp = cp->next_second_allocno_copy;
2742 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2743 && cp->insn != NULL_RTX
2744 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2745 fprintf (ira_dump_file,
2746 " Redundant move from %d(freq %d):%d\n",
2747 INSN_UID (cp->insn), cp->freq, hard_regno);
2751 #endif
2753 /* Setup preferred and alternative classes for new pseudo-registers
2754 created by IRA starting with START. */
2755 static void
2756 setup_preferred_alternate_classes_for_new_pseudos (int start)
2758 int i, old_regno;
2759 int max_regno = max_reg_num ();
2761 for (i = start; i < max_regno; i++)
2763 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2764 ira_assert (i != old_regno);
2765 setup_reg_classes (i, reg_preferred_class (old_regno),
2766 reg_alternate_class (old_regno),
2767 reg_allocno_class (old_regno));
2768 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2769 fprintf (ira_dump_file,
2770 " New r%d: setting preferred %s, alternative %s\n",
2771 i, reg_class_names[reg_preferred_class (old_regno)],
2772 reg_class_names[reg_alternate_class (old_regno)]);
2777 /* The number of entries allocated in teg_info. */
2778 static int allocated_reg_info_size;
2780 /* Regional allocation can create new pseudo-registers. This function
2781 expands some arrays for pseudo-registers. */
2782 static void
2783 expand_reg_info (void)
2785 int i;
2786 int size = max_reg_num ();
2788 resize_reg_info ();
2789 for (i = allocated_reg_info_size; i < size; i++)
2790 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2791 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2792 allocated_reg_info_size = size;
2795 /* Return TRUE if there is too high register pressure in the function.
2796 It is used to decide when stack slot sharing is worth to do. */
2797 static bool
2798 too_high_register_pressure_p (void)
2800 int i;
2801 enum reg_class pclass;
2803 for (i = 0; i < ira_pressure_classes_num; i++)
2805 pclass = ira_pressure_classes[i];
2806 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2807 return true;
2809 return false;
2814 /* Indicate that hard register number FROM was eliminated and replaced with
2815 an offset from hard register number TO. The status of hard registers live
2816 at the start of a basic block is updated by replacing a use of FROM with
2817 a use of TO. */
2819 void
2820 mark_elimination (int from, int to)
2822 basic_block bb;
2823 bitmap r;
2825 FOR_EACH_BB_FN (bb, cfun)
2827 r = DF_LR_IN (bb);
2828 if (bitmap_bit_p (r, from))
2830 bitmap_clear_bit (r, from);
2831 bitmap_set_bit (r, to);
2833 if (! df_live)
2834 continue;
2835 r = DF_LIVE_IN (bb);
2836 if (bitmap_bit_p (r, from))
2838 bitmap_clear_bit (r, from);
2839 bitmap_set_bit (r, to);
2846 /* The length of the following array. */
2847 int ira_reg_equiv_len;
2849 /* Info about equiv. info for each register. */
2850 struct ira_reg_equiv_s *ira_reg_equiv;
2852 /* Expand ira_reg_equiv if necessary. */
2853 void
2854 ira_expand_reg_equiv (void)
2856 int old = ira_reg_equiv_len;
2858 if (ira_reg_equiv_len > max_reg_num ())
2859 return;
2860 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2861 ira_reg_equiv
2862 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2863 ira_reg_equiv_len
2864 * sizeof (struct ira_reg_equiv_s));
2865 gcc_assert (old < ira_reg_equiv_len);
2866 memset (ira_reg_equiv + old, 0,
2867 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2870 static void
2871 init_reg_equiv (void)
2873 ira_reg_equiv_len = 0;
2874 ira_reg_equiv = NULL;
2875 ira_expand_reg_equiv ();
2878 static void
2879 finish_reg_equiv (void)
2881 free (ira_reg_equiv);
2886 struct equivalence
2888 /* Set when a REG_EQUIV note is found or created. Use to
2889 keep track of what memory accesses might be created later,
2890 e.g. by reload. */
2891 rtx replacement;
2892 rtx *src_p;
2894 /* The list of each instruction which initializes this register.
2896 NULL indicates we know nothing about this register's equivalence
2897 properties.
2899 An INSN_LIST with a NULL insn indicates this pseudo is already
2900 known to not have a valid equivalence. */
2901 rtx_insn_list *init_insns;
2903 /* Loop depth is used to recognize equivalences which appear
2904 to be present within the same loop (or in an inner loop). */
2905 int loop_depth;
2906 /* Nonzero if this had a preexisting REG_EQUIV note. */
2907 int is_arg_equivalence;
2908 /* Set when an attempt should be made to replace a register
2909 with the associated src_p entry. */
2910 char replace;
2913 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2914 structure for that register. */
2915 static struct equivalence *reg_equiv;
2917 /* Used for communication between the following two functions: contains
2918 a MEM that we wish to ensure remains unchanged. */
2919 static rtx equiv_mem;
2921 /* Set nonzero if EQUIV_MEM is modified. */
2922 static int equiv_mem_modified;
2924 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2925 Called via note_stores. */
2926 static void
2927 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2928 void *data ATTRIBUTE_UNUSED)
2930 if ((REG_P (dest)
2931 && reg_overlap_mentioned_p (dest, equiv_mem))
2932 || (MEM_P (dest)
2933 && anti_dependence (equiv_mem, dest)))
2934 equiv_mem_modified = 1;
2937 /* Verify that no store between START and the death of REG invalidates
2938 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2939 by storing into an overlapping memory location, or with a non-const
2940 CALL_INSN.
2942 Return 1 if MEMREF remains valid. */
2943 static int
2944 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2946 rtx_insn *insn;
2947 rtx note;
2949 equiv_mem = memref;
2950 equiv_mem_modified = 0;
2952 /* If the memory reference has side effects or is volatile, it isn't a
2953 valid equivalence. */
2954 if (side_effects_p (memref))
2955 return 0;
2957 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
2959 if (! INSN_P (insn))
2960 continue;
2962 if (find_reg_note (insn, REG_DEAD, reg))
2963 return 1;
2965 /* This used to ignore readonly memory and const/pure calls. The problem
2966 is the equivalent form may reference a pseudo which gets assigned a
2967 call clobbered hard reg. When we later replace REG with its
2968 equivalent form, the value in the call-clobbered reg has been
2969 changed and all hell breaks loose. */
2970 if (CALL_P (insn))
2971 return 0;
2973 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
2975 /* If a register mentioned in MEMREF is modified via an
2976 auto-increment, we lose the equivalence. Do the same if one
2977 dies; although we could extend the life, it doesn't seem worth
2978 the trouble. */
2980 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2981 if ((REG_NOTE_KIND (note) == REG_INC
2982 || REG_NOTE_KIND (note) == REG_DEAD)
2983 && REG_P (XEXP (note, 0))
2984 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
2985 return 0;
2988 return 0;
2991 /* Returns zero if X is known to be invariant. */
2992 static int
2993 equiv_init_varies_p (rtx x)
2995 RTX_CODE code = GET_CODE (x);
2996 int i;
2997 const char *fmt;
2999 switch (code)
3001 case MEM:
3002 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3004 case CONST:
3005 CASE_CONST_ANY:
3006 case SYMBOL_REF:
3007 case LABEL_REF:
3008 return 0;
3010 case REG:
3011 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3013 case ASM_OPERANDS:
3014 if (MEM_VOLATILE_P (x))
3015 return 1;
3017 /* Fall through. */
3019 default:
3020 break;
3023 fmt = GET_RTX_FORMAT (code);
3024 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3025 if (fmt[i] == 'e')
3027 if (equiv_init_varies_p (XEXP (x, i)))
3028 return 1;
3030 else if (fmt[i] == 'E')
3032 int j;
3033 for (j = 0; j < XVECLEN (x, i); j++)
3034 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3035 return 1;
3038 return 0;
3041 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3042 X is only movable if the registers it uses have equivalent initializations
3043 which appear to be within the same loop (or in an inner loop) and movable
3044 or if they are not candidates for local_alloc and don't vary. */
3045 static int
3046 equiv_init_movable_p (rtx x, int regno)
3048 int i, j;
3049 const char *fmt;
3050 enum rtx_code code = GET_CODE (x);
3052 switch (code)
3054 case SET:
3055 return equiv_init_movable_p (SET_SRC (x), regno);
3057 case CC0:
3058 case CLOBBER:
3059 return 0;
3061 case PRE_INC:
3062 case PRE_DEC:
3063 case POST_INC:
3064 case POST_DEC:
3065 case PRE_MODIFY:
3066 case POST_MODIFY:
3067 return 0;
3069 case REG:
3070 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3071 && reg_equiv[REGNO (x)].replace)
3072 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3073 && ! rtx_varies_p (x, 0)));
3075 case UNSPEC_VOLATILE:
3076 return 0;
3078 case ASM_OPERANDS:
3079 if (MEM_VOLATILE_P (x))
3080 return 0;
3082 /* Fall through. */
3084 default:
3085 break;
3088 fmt = GET_RTX_FORMAT (code);
3089 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3090 switch (fmt[i])
3092 case 'e':
3093 if (! equiv_init_movable_p (XEXP (x, i), regno))
3094 return 0;
3095 break;
3096 case 'E':
3097 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3098 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3099 return 0;
3100 break;
3103 return 1;
3106 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
3107 true. */
3108 static int
3109 contains_replace_regs (rtx x)
3111 int i, j;
3112 const char *fmt;
3113 enum rtx_code code = GET_CODE (x);
3115 switch (code)
3117 case CONST:
3118 case LABEL_REF:
3119 case SYMBOL_REF:
3120 CASE_CONST_ANY:
3121 case PC:
3122 case CC0:
3123 case HIGH:
3124 return 0;
3126 case REG:
3127 return reg_equiv[REGNO (x)].replace;
3129 default:
3130 break;
3133 fmt = GET_RTX_FORMAT (code);
3134 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3135 switch (fmt[i])
3137 case 'e':
3138 if (contains_replace_regs (XEXP (x, i)))
3139 return 1;
3140 break;
3141 case 'E':
3142 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3143 if (contains_replace_regs (XVECEXP (x, i, j)))
3144 return 1;
3145 break;
3148 return 0;
3151 /* TRUE if X references a memory location that would be affected by a store
3152 to MEMREF. */
3153 static int
3154 memref_referenced_p (rtx memref, rtx x)
3156 int i, j;
3157 const char *fmt;
3158 enum rtx_code code = GET_CODE (x);
3160 switch (code)
3162 case CONST:
3163 case LABEL_REF:
3164 case SYMBOL_REF:
3165 CASE_CONST_ANY:
3166 case PC:
3167 case CC0:
3168 case HIGH:
3169 case LO_SUM:
3170 return 0;
3172 case REG:
3173 return (reg_equiv[REGNO (x)].replacement
3174 && memref_referenced_p (memref,
3175 reg_equiv[REGNO (x)].replacement));
3177 case MEM:
3178 if (true_dependence (memref, VOIDmode, x))
3179 return 1;
3180 break;
3182 case SET:
3183 /* If we are setting a MEM, it doesn't count (its address does), but any
3184 other SET_DEST that has a MEM in it is referencing the MEM. */
3185 if (MEM_P (SET_DEST (x)))
3187 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3188 return 1;
3190 else if (memref_referenced_p (memref, SET_DEST (x)))
3191 return 1;
3193 return memref_referenced_p (memref, SET_SRC (x));
3195 default:
3196 break;
3199 fmt = GET_RTX_FORMAT (code);
3200 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3201 switch (fmt[i])
3203 case 'e':
3204 if (memref_referenced_p (memref, XEXP (x, i)))
3205 return 1;
3206 break;
3207 case 'E':
3208 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3209 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3210 return 1;
3211 break;
3214 return 0;
3217 /* TRUE if some insn in the range (START, END] references a memory location
3218 that would be affected by a store to MEMREF. */
3219 static int
3220 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3222 rtx_insn *insn;
3224 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
3225 insn = NEXT_INSN (insn))
3227 if (!NONDEBUG_INSN_P (insn))
3228 continue;
3230 if (memref_referenced_p (memref, PATTERN (insn)))
3231 return 1;
3233 /* Nonconst functions may access memory. */
3234 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3235 return 1;
3238 return 0;
3241 /* Mark REG as having no known equivalence.
3242 Some instructions might have been processed before and furnished
3243 with REG_EQUIV notes for this register; these notes will have to be
3244 removed.
3245 STORE is the piece of RTL that does the non-constant / conflicting
3246 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3247 but needs to be there because this function is called from note_stores. */
3248 static void
3249 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3250 void *data ATTRIBUTE_UNUSED)
3252 int regno;
3253 rtx_insn_list *list;
3255 if (!REG_P (reg))
3256 return;
3257 regno = REGNO (reg);
3258 list = reg_equiv[regno].init_insns;
3259 if (list && list->insn () == NULL)
3260 return;
3261 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3262 reg_equiv[regno].replacement = NULL_RTX;
3263 /* This doesn't matter for equivalences made for argument registers, we
3264 should keep their initialization insns. */
3265 if (reg_equiv[regno].is_arg_equivalence)
3266 return;
3267 ira_reg_equiv[regno].defined_p = false;
3268 ira_reg_equiv[regno].init_insns = NULL;
3269 for (; list; list = list->next ())
3271 rtx_insn *insn = list->insn ();
3272 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3276 /* Check whether the SUBREG is a paradoxical subreg and set the result
3277 in PDX_SUBREGS. */
3279 static void
3280 set_paradoxical_subreg (rtx_insn *insn, bool *pdx_subregs)
3282 subrtx_iterator::array_type array;
3283 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3285 const_rtx subreg = *iter;
3286 if (GET_CODE (subreg) == SUBREG)
3288 const_rtx reg = SUBREG_REG (subreg);
3289 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3290 pdx_subregs[REGNO (reg)] = true;
3295 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3296 equivalent replacement. */
3298 static rtx
3299 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3301 if (REG_P (loc))
3303 bitmap cleared_regs = (bitmap) data;
3304 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3305 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3306 NULL_RTX, adjust_cleared_regs, data);
3308 return NULL_RTX;
3311 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
3312 static int recorded_label_ref;
3314 /* Find registers that are equivalent to a single value throughout the
3315 compilation (either because they can be referenced in memory or are
3316 set once from a single constant). Lower their priority for a
3317 register.
3319 If such a register is only referenced once, try substituting its
3320 value into the using insn. If it succeeds, we can eliminate the
3321 register completely.
3323 Initialize init_insns in ira_reg_equiv array.
3325 Return non-zero if jump label rebuilding should be done. */
3326 static int
3327 update_equiv_regs (void)
3329 rtx_insn *insn;
3330 basic_block bb;
3331 int loop_depth;
3332 bitmap cleared_regs;
3333 bool *pdx_subregs;
3335 /* We need to keep track of whether or not we recorded a LABEL_REF so
3336 that we know if the jump optimizer needs to be rerun. */
3337 recorded_label_ref = 0;
3339 /* Use pdx_subregs to show whether a reg is used in a paradoxical
3340 subreg. */
3341 pdx_subregs = XCNEWVEC (bool, max_regno);
3343 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
3344 grow_reg_equivs ();
3346 init_alias_analysis ();
3348 /* Scan insns and set pdx_subregs[regno] if the reg is used in a
3349 paradoxical subreg. Don't set such reg sequivalent to a mem,
3350 because lra will not substitute such equiv memory in order to
3351 prevent access beyond allocated memory for paradoxical memory subreg. */
3352 FOR_EACH_BB_FN (bb, cfun)
3353 FOR_BB_INSNS (bb, insn)
3354 if (NONDEBUG_INSN_P (insn))
3355 set_paradoxical_subreg (insn, pdx_subregs);
3357 /* Scan the insns and find which registers have equivalences. Do this
3358 in a separate scan of the insns because (due to -fcse-follow-jumps)
3359 a register can be set below its use. */
3360 FOR_EACH_BB_FN (bb, cfun)
3362 loop_depth = bb_loop_depth (bb);
3364 for (insn = BB_HEAD (bb);
3365 insn != NEXT_INSN (BB_END (bb));
3366 insn = NEXT_INSN (insn))
3368 rtx note;
3369 rtx set;
3370 rtx dest, src;
3371 int regno;
3373 if (! INSN_P (insn))
3374 continue;
3376 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3377 if (REG_NOTE_KIND (note) == REG_INC)
3378 no_equiv (XEXP (note, 0), note, NULL);
3380 set = single_set (insn);
3382 /* If this insn contains more (or less) than a single SET,
3383 only mark all destinations as having no known equivalence. */
3384 if (set == 0)
3386 note_stores (PATTERN (insn), no_equiv, NULL);
3387 continue;
3389 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3391 int i;
3393 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3395 rtx part = XVECEXP (PATTERN (insn), 0, i);
3396 if (part != set)
3397 note_stores (part, no_equiv, NULL);
3401 dest = SET_DEST (set);
3402 src = SET_SRC (set);
3404 /* See if this is setting up the equivalence between an argument
3405 register and its stack slot. */
3406 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3407 if (note)
3409 gcc_assert (REG_P (dest));
3410 regno = REGNO (dest);
3412 /* Note that we don't want to clear init_insns in
3413 ira_reg_equiv even if there are multiple sets of this
3414 register. */
3415 reg_equiv[regno].is_arg_equivalence = 1;
3417 /* The insn result can have equivalence memory although
3418 the equivalence is not set up by the insn. We add
3419 this insn to init insns as it is a flag for now that
3420 regno has an equivalence. We will remove the insn
3421 from init insn list later. */
3422 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3423 ira_reg_equiv[regno].init_insns
3424 = gen_rtx_INSN_LIST (VOIDmode, insn,
3425 ira_reg_equiv[regno].init_insns);
3427 /* Continue normally in case this is a candidate for
3428 replacements. */
3431 if (!optimize)
3432 continue;
3434 /* We only handle the case of a pseudo register being set
3435 once, or always to the same value. */
3436 /* ??? The mn10200 port breaks if we add equivalences for
3437 values that need an ADDRESS_REGS register and set them equivalent
3438 to a MEM of a pseudo. The actual problem is in the over-conservative
3439 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3440 calculate_needs, but we traditionally work around this problem
3441 here by rejecting equivalences when the destination is in a register
3442 that's likely spilled. This is fragile, of course, since the
3443 preferred class of a pseudo depends on all instructions that set
3444 or use it. */
3446 if (!REG_P (dest)
3447 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3448 || (reg_equiv[regno].init_insns
3449 && reg_equiv[regno].init_insns->insn () == NULL)
3450 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3451 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3453 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3454 also set somewhere else to a constant. */
3455 note_stores (set, no_equiv, NULL);
3456 continue;
3459 /* Don't set reg (if pdx_subregs[regno] == true) equivalent to a mem. */
3460 if (MEM_P (src) && pdx_subregs[regno])
3462 note_stores (set, no_equiv, NULL);
3463 continue;
3466 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3468 /* cse sometimes generates function invariants, but doesn't put a
3469 REG_EQUAL note on the insn. Since this note would be redundant,
3470 there's no point creating it earlier than here. */
3471 if (! note && ! rtx_varies_p (src, 0))
3472 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3474 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3475 since it represents a function call. */
3476 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3477 note = NULL_RTX;
3479 if (DF_REG_DEF_COUNT (regno) != 1
3480 && (! note
3481 || rtx_varies_p (XEXP (note, 0), 0)
3482 || (reg_equiv[regno].replacement
3483 && ! rtx_equal_p (XEXP (note, 0),
3484 reg_equiv[regno].replacement))))
3486 no_equiv (dest, set, NULL);
3487 continue;
3489 /* Record this insn as initializing this register. */
3490 reg_equiv[regno].init_insns
3491 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3493 /* If this register is known to be equal to a constant, record that
3494 it is always equivalent to the constant. */
3495 if (DF_REG_DEF_COUNT (regno) == 1
3496 && note && ! rtx_varies_p (XEXP (note, 0), 0))
3498 rtx note_value = XEXP (note, 0);
3499 remove_note (insn, note);
3500 set_unique_reg_note (insn, REG_EQUIV, note_value);
3503 /* If this insn introduces a "constant" register, decrease the priority
3504 of that register. Record this insn if the register is only used once
3505 more and the equivalence value is the same as our source.
3507 The latter condition is checked for two reasons: First, it is an
3508 indication that it may be more efficient to actually emit the insn
3509 as written (if no registers are available, reload will substitute
3510 the equivalence). Secondly, it avoids problems with any registers
3511 dying in this insn whose death notes would be missed.
3513 If we don't have a REG_EQUIV note, see if this insn is loading
3514 a register used only in one basic block from a MEM. If so, and the
3515 MEM remains unchanged for the life of the register, add a REG_EQUIV
3516 note. */
3518 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3520 if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3521 && MEM_P (SET_SRC (set))
3522 && validate_equiv_mem (insn, dest, SET_SRC (set)))
3523 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
3525 if (note)
3527 int regno = REGNO (dest);
3528 rtx x = XEXP (note, 0);
3530 /* If we haven't done so, record for reload that this is an
3531 equivalencing insn. */
3532 if (!reg_equiv[regno].is_arg_equivalence)
3533 ira_reg_equiv[regno].init_insns
3534 = gen_rtx_INSN_LIST (VOIDmode, insn,
3535 ira_reg_equiv[regno].init_insns);
3537 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
3538 We might end up substituting the LABEL_REF for uses of the
3539 pseudo here or later. That kind of transformation may turn an
3540 indirect jump into a direct jump, in which case we must rerun the
3541 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
3542 if (GET_CODE (x) == LABEL_REF
3543 || (GET_CODE (x) == CONST
3544 && GET_CODE (XEXP (x, 0)) == PLUS
3545 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
3546 recorded_label_ref = 1;
3548 reg_equiv[regno].replacement = x;
3549 reg_equiv[regno].src_p = &SET_SRC (set);
3550 reg_equiv[regno].loop_depth = loop_depth;
3552 /* Don't mess with things live during setjmp. */
3553 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
3555 /* Note that the statement below does not affect the priority
3556 in local-alloc! */
3557 REG_LIVE_LENGTH (regno) *= 2;
3559 /* If the register is referenced exactly twice, meaning it is
3560 set once and used once, indicate that the reference may be
3561 replaced by the equivalence we computed above. Do this
3562 even if the register is only used in one block so that
3563 dependencies can be handled where the last register is
3564 used in a different block (i.e. HIGH / LO_SUM sequences)
3565 and to reduce the number of registers alive across
3566 calls. */
3568 if (REG_N_REFS (regno) == 2
3569 && (rtx_equal_p (x, src)
3570 || ! equiv_init_varies_p (src))
3571 && NONJUMP_INSN_P (insn)
3572 && equiv_init_movable_p (PATTERN (insn), regno))
3573 reg_equiv[regno].replace = 1;
3579 if (!optimize)
3580 goto out;
3582 /* A second pass, to gather additional equivalences with memory. This needs
3583 to be done after we know which registers we are going to replace. */
3585 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3587 rtx set, src, dest;
3588 unsigned regno;
3590 if (! INSN_P (insn))
3591 continue;
3593 set = single_set (insn);
3594 if (! set)
3595 continue;
3597 dest = SET_DEST (set);
3598 src = SET_SRC (set);
3600 /* If this sets a MEM to the contents of a REG that is only used
3601 in a single basic block, see if the register is always equivalent
3602 to that memory location and if moving the store from INSN to the
3603 insn that set REG is safe. If so, put a REG_EQUIV note on the
3604 initializing insn.
3606 Don't add a REG_EQUIV note if the insn already has one. The existing
3607 REG_EQUIV is likely more useful than the one we are adding.
3609 If one of the regs in the address has reg_equiv[REGNO].replace set,
3610 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
3611 optimization may move the set of this register immediately before
3612 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3613 the mention in the REG_EQUIV note would be to an uninitialized
3614 pseudo. */
3616 if (MEM_P (dest) && REG_P (src)
3617 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3618 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3619 && DF_REG_DEF_COUNT (regno) == 1
3620 && reg_equiv[regno].init_insns != NULL
3621 && reg_equiv[regno].init_insns->insn () != NULL
3622 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
3623 REG_EQUIV, NULL_RTX)
3624 && ! contains_replace_regs (XEXP (dest, 0))
3625 && ! pdx_subregs[regno])
3627 rtx_insn *init_insn =
3628 as_a <rtx_insn *> (XEXP (reg_equiv[regno].init_insns, 0));
3629 if (validate_equiv_mem (init_insn, src, dest)
3630 && ! memref_used_between_p (dest, init_insn, insn)
3631 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3632 multiple sets. */
3633 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3635 /* This insn makes the equivalence, not the one initializing
3636 the register. */
3637 ira_reg_equiv[regno].init_insns
3638 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3639 df_notes_rescan (init_insn);
3644 cleared_regs = BITMAP_ALLOC (NULL);
3645 /* Now scan all regs killed in an insn to see if any of them are
3646 registers only used that once. If so, see if we can replace the
3647 reference with the equivalent form. If we can, delete the
3648 initializing reference and this register will go away. If we
3649 can't replace the reference, and the initializing reference is
3650 within the same loop (or in an inner loop), then move the register
3651 initialization just before the use, so that they are in the same
3652 basic block. */
3653 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3655 loop_depth = bb_loop_depth (bb);
3656 for (insn = BB_END (bb);
3657 insn != PREV_INSN (BB_HEAD (bb));
3658 insn = PREV_INSN (insn))
3660 rtx link;
3662 if (! INSN_P (insn))
3663 continue;
3665 /* Don't substitute into a non-local goto, this confuses CFG. */
3666 if (JUMP_P (insn)
3667 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3668 continue;
3670 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3672 if (REG_NOTE_KIND (link) == REG_DEAD
3673 /* Make sure this insn still refers to the register. */
3674 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
3676 int regno = REGNO (XEXP (link, 0));
3677 rtx equiv_insn;
3679 if (! reg_equiv[regno].replace
3680 || reg_equiv[regno].loop_depth < loop_depth
3681 /* There is no sense to move insns if live range
3682 shrinkage or register pressure-sensitive
3683 scheduling were done because it will not
3684 improve allocation but worsen insn schedule
3685 with a big probability. */
3686 || flag_live_range_shrinkage
3687 || (flag_sched_pressure && flag_schedule_insns))
3688 continue;
3690 /* reg_equiv[REGNO].replace gets set only when
3691 REG_N_REFS[REGNO] is 2, i.e. the register is set
3692 once and used once. (If it were only set, but
3693 not used, flow would have deleted the setting
3694 insns.) Hence there can only be one insn in
3695 reg_equiv[REGNO].init_insns. */
3696 gcc_assert (reg_equiv[regno].init_insns
3697 && !XEXP (reg_equiv[regno].init_insns, 1));
3698 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3700 /* We may not move instructions that can throw, since
3701 that changes basic block boundaries and we are not
3702 prepared to adjust the CFG to match. */
3703 if (can_throw_internal (equiv_insn))
3704 continue;
3706 if (asm_noperands (PATTERN (equiv_insn)) < 0
3707 && validate_replace_rtx (regno_reg_rtx[regno],
3708 *(reg_equiv[regno].src_p), insn))
3710 rtx equiv_link;
3711 rtx last_link;
3712 rtx note;
3714 /* Find the last note. */
3715 for (last_link = link; XEXP (last_link, 1);
3716 last_link = XEXP (last_link, 1))
3719 /* Append the REG_DEAD notes from equiv_insn. */
3720 equiv_link = REG_NOTES (equiv_insn);
3721 while (equiv_link)
3723 note = equiv_link;
3724 equiv_link = XEXP (equiv_link, 1);
3725 if (REG_NOTE_KIND (note) == REG_DEAD)
3727 remove_note (equiv_insn, note);
3728 XEXP (last_link, 1) = note;
3729 XEXP (note, 1) = NULL_RTX;
3730 last_link = note;
3734 remove_death (regno, insn);
3735 SET_REG_N_REFS (regno, 0);
3736 REG_FREQ (regno) = 0;
3737 delete_insn (equiv_insn);
3739 reg_equiv[regno].init_insns
3740 = reg_equiv[regno].init_insns->next ();
3742 ira_reg_equiv[regno].init_insns = NULL;
3743 bitmap_set_bit (cleared_regs, regno);
3745 /* Move the initialization of the register to just before
3746 INSN. Update the flow information. */
3747 else if (prev_nondebug_insn (insn) != equiv_insn)
3749 rtx_insn *new_insn;
3751 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3752 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3753 REG_NOTES (equiv_insn) = 0;
3754 /* Rescan it to process the notes. */
3755 df_insn_rescan (new_insn);
3757 /* Make sure this insn is recognized before
3758 reload begins, otherwise
3759 eliminate_regs_in_insn will die. */
3760 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3762 delete_insn (equiv_insn);
3764 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3766 REG_BASIC_BLOCK (regno) = bb->index;
3767 REG_N_CALLS_CROSSED (regno) = 0;
3768 REG_FREQ_CALLS_CROSSED (regno) = 0;
3769 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3770 REG_LIVE_LENGTH (regno) = 2;
3772 if (insn == BB_HEAD (bb))
3773 BB_HEAD (bb) = PREV_INSN (insn);
3775 ira_reg_equiv[regno].init_insns
3776 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3777 bitmap_set_bit (cleared_regs, regno);
3784 if (!bitmap_empty_p (cleared_regs))
3786 FOR_EACH_BB_FN (bb, cfun)
3788 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3789 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3790 if (! df_live)
3791 continue;
3792 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3793 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3796 /* Last pass - adjust debug insns referencing cleared regs. */
3797 if (MAY_HAVE_DEBUG_INSNS)
3798 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3799 if (DEBUG_INSN_P (insn))
3801 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3802 INSN_VAR_LOCATION_LOC (insn)
3803 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3804 adjust_cleared_regs,
3805 (void *) cleared_regs);
3806 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3807 df_insn_rescan (insn);
3811 BITMAP_FREE (cleared_regs);
3813 out:
3814 /* Clean up. */
3816 end_alias_analysis ();
3817 free (reg_equiv);
3818 free (pdx_subregs);
3819 return recorded_label_ref;
3824 /* Set up fields memory, constant, and invariant from init_insns in
3825 the structures of array ira_reg_equiv. */
3826 static void
3827 setup_reg_equiv (void)
3829 int i;
3830 rtx_insn_list *elem, *prev_elem, *next_elem;
3831 rtx_insn *insn;
3832 rtx set, x;
3834 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3835 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3836 elem;
3837 prev_elem = elem, elem = next_elem)
3839 next_elem = elem->next ();
3840 insn = elem->insn ();
3841 set = single_set (insn);
3843 /* Init insns can set up equivalence when the reg is a destination or
3844 a source (in this case the destination is memory). */
3845 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3847 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3849 x = XEXP (x, 0);
3850 if (REG_P (SET_DEST (set))
3851 && REGNO (SET_DEST (set)) == (unsigned int) i
3852 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3854 /* This insn reporting the equivalence but
3855 actually not setting it. Remove it from the
3856 list. */
3857 if (prev_elem == NULL)
3858 ira_reg_equiv[i].init_insns = next_elem;
3859 else
3860 XEXP (prev_elem, 1) = next_elem;
3861 elem = prev_elem;
3864 else if (REG_P (SET_DEST (set))
3865 && REGNO (SET_DEST (set)) == (unsigned int) i)
3866 x = SET_SRC (set);
3867 else
3869 gcc_assert (REG_P (SET_SRC (set))
3870 && REGNO (SET_SRC (set)) == (unsigned int) i);
3871 x = SET_DEST (set);
3873 if (! function_invariant_p (x)
3874 || ! flag_pic
3875 /* A function invariant is often CONSTANT_P but may
3876 include a register. We promise to only pass
3877 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3878 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3880 /* It can happen that a REG_EQUIV note contains a MEM
3881 that is not a legitimate memory operand. As later
3882 stages of reload assume that all addresses found in
3883 the lra_regno_equiv_* arrays were originally
3884 legitimate, we ignore such REG_EQUIV notes. */
3885 if (memory_operand (x, VOIDmode))
3887 ira_reg_equiv[i].defined_p = true;
3888 ira_reg_equiv[i].memory = x;
3889 continue;
3891 else if (function_invariant_p (x))
3893 enum machine_mode mode;
3895 mode = GET_MODE (SET_DEST (set));
3896 if (GET_CODE (x) == PLUS
3897 || x == frame_pointer_rtx || x == arg_pointer_rtx)
3898 /* This is PLUS of frame pointer and a constant,
3899 or fp, or argp. */
3900 ira_reg_equiv[i].invariant = x;
3901 else if (targetm.legitimate_constant_p (mode, x))
3902 ira_reg_equiv[i].constant = x;
3903 else
3905 ira_reg_equiv[i].memory = force_const_mem (mode, x);
3906 if (ira_reg_equiv[i].memory == NULL_RTX)
3908 ira_reg_equiv[i].defined_p = false;
3909 ira_reg_equiv[i].init_insns = NULL;
3910 break;
3913 ira_reg_equiv[i].defined_p = true;
3914 continue;
3918 ira_reg_equiv[i].defined_p = false;
3919 ira_reg_equiv[i].init_insns = NULL;
3920 break;
3926 /* Print chain C to FILE. */
3927 static void
3928 print_insn_chain (FILE *file, struct insn_chain *c)
3930 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
3931 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
3932 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
3936 /* Print all reload_insn_chains to FILE. */
3937 static void
3938 print_insn_chains (FILE *file)
3940 struct insn_chain *c;
3941 for (c = reload_insn_chain; c ; c = c->next)
3942 print_insn_chain (file, c);
3945 /* Return true if pseudo REGNO should be added to set live_throughout
3946 or dead_or_set of the insn chains for reload consideration. */
3947 static bool
3948 pseudo_for_reload_consideration_p (int regno)
3950 /* Consider spilled pseudos too for IRA because they still have a
3951 chance to get hard-registers in the reload when IRA is used. */
3952 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
3955 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
3956 REG to the number of nregs, and INIT_VALUE to get the
3957 initialization. ALLOCNUM need not be the regno of REG. */
3958 static void
3959 init_live_subregs (bool init_value, sbitmap *live_subregs,
3960 bitmap live_subregs_used, int allocnum, rtx reg)
3962 unsigned int regno = REGNO (SUBREG_REG (reg));
3963 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
3965 gcc_assert (size > 0);
3967 /* Been there, done that. */
3968 if (bitmap_bit_p (live_subregs_used, allocnum))
3969 return;
3971 /* Create a new one. */
3972 if (live_subregs[allocnum] == NULL)
3973 live_subregs[allocnum] = sbitmap_alloc (size);
3975 /* If the entire reg was live before blasting into subregs, we need
3976 to init all of the subregs to ones else init to 0. */
3977 if (init_value)
3978 bitmap_ones (live_subregs[allocnum]);
3979 else
3980 bitmap_clear (live_subregs[allocnum]);
3982 bitmap_set_bit (live_subregs_used, allocnum);
3985 /* Walk the insns of the current function and build reload_insn_chain,
3986 and record register life information. */
3987 static void
3988 build_insn_chain (void)
3990 unsigned int i;
3991 struct insn_chain **p = &reload_insn_chain;
3992 basic_block bb;
3993 struct insn_chain *c = NULL;
3994 struct insn_chain *next = NULL;
3995 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
3996 bitmap elim_regset = BITMAP_ALLOC (NULL);
3997 /* live_subregs is a vector used to keep accurate information about
3998 which hardregs are live in multiword pseudos. live_subregs and
3999 live_subregs_used are indexed by pseudo number. The live_subreg
4000 entry for a particular pseudo is only used if the corresponding
4001 element is non zero in live_subregs_used. The sbitmap size of
4002 live_subreg[allocno] is number of bytes that the pseudo can
4003 occupy. */
4004 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4005 bitmap live_subregs_used = BITMAP_ALLOC (NULL);
4007 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4008 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4009 bitmap_set_bit (elim_regset, i);
4010 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4012 bitmap_iterator bi;
4013 rtx_insn *insn;
4015 CLEAR_REG_SET (live_relevant_regs);
4016 bitmap_clear (live_subregs_used);
4018 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4020 if (i >= FIRST_PSEUDO_REGISTER)
4021 break;
4022 bitmap_set_bit (live_relevant_regs, i);
4025 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4026 FIRST_PSEUDO_REGISTER, i, bi)
4028 if (pseudo_for_reload_consideration_p (i))
4029 bitmap_set_bit (live_relevant_regs, i);
4032 FOR_BB_INSNS_REVERSE (bb, insn)
4034 if (!NOTE_P (insn) && !BARRIER_P (insn))
4036 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4037 df_ref def, use;
4039 c = new_insn_chain ();
4040 c->next = next;
4041 next = c;
4042 *p = c;
4043 p = &c->prev;
4045 c->insn = insn;
4046 c->block = bb->index;
4048 if (NONDEBUG_INSN_P (insn))
4049 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4051 unsigned int regno = DF_REF_REGNO (def);
4053 /* Ignore may clobbers because these are generated
4054 from calls. However, every other kind of def is
4055 added to dead_or_set. */
4056 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4058 if (regno < FIRST_PSEUDO_REGISTER)
4060 if (!fixed_regs[regno])
4061 bitmap_set_bit (&c->dead_or_set, regno);
4063 else if (pseudo_for_reload_consideration_p (regno))
4064 bitmap_set_bit (&c->dead_or_set, regno);
4067 if ((regno < FIRST_PSEUDO_REGISTER
4068 || reg_renumber[regno] >= 0
4069 || ira_conflicts_p)
4070 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4072 rtx reg = DF_REF_REG (def);
4074 /* We can model subregs, but not if they are
4075 wrapped in ZERO_EXTRACTS. */
4076 if (GET_CODE (reg) == SUBREG
4077 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
4079 unsigned int start = SUBREG_BYTE (reg);
4080 unsigned int last = start
4081 + GET_MODE_SIZE (GET_MODE (reg));
4083 init_live_subregs
4084 (bitmap_bit_p (live_relevant_regs, regno),
4085 live_subregs, live_subregs_used, regno, reg);
4087 if (!DF_REF_FLAGS_IS_SET
4088 (def, DF_REF_STRICT_LOW_PART))
4090 /* Expand the range to cover entire words.
4091 Bytes added here are "don't care". */
4092 start
4093 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4094 last = ((last + UNITS_PER_WORD - 1)
4095 / UNITS_PER_WORD * UNITS_PER_WORD);
4098 /* Ignore the paradoxical bits. */
4099 if (last > SBITMAP_SIZE (live_subregs[regno]))
4100 last = SBITMAP_SIZE (live_subregs[regno]);
4102 while (start < last)
4104 bitmap_clear_bit (live_subregs[regno], start);
4105 start++;
4108 if (bitmap_empty_p (live_subregs[regno]))
4110 bitmap_clear_bit (live_subregs_used, regno);
4111 bitmap_clear_bit (live_relevant_regs, regno);
4113 else
4114 /* Set live_relevant_regs here because
4115 that bit has to be true to get us to
4116 look at the live_subregs fields. */
4117 bitmap_set_bit (live_relevant_regs, regno);
4119 else
4121 /* DF_REF_PARTIAL is generated for
4122 subregs, STRICT_LOW_PART, and
4123 ZERO_EXTRACT. We handle the subreg
4124 case above so here we have to keep from
4125 modeling the def as a killing def. */
4126 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4128 bitmap_clear_bit (live_subregs_used, regno);
4129 bitmap_clear_bit (live_relevant_regs, regno);
4135 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4136 bitmap_copy (&c->live_throughout, live_relevant_regs);
4138 if (NONDEBUG_INSN_P (insn))
4139 FOR_EACH_INSN_INFO_USE (use, insn_info)
4141 unsigned int regno = DF_REF_REGNO (use);
4142 rtx reg = DF_REF_REG (use);
4144 /* DF_REF_READ_WRITE on a use means that this use
4145 is fabricated from a def that is a partial set
4146 to a multiword reg. Here, we only model the
4147 subreg case that is not wrapped in ZERO_EXTRACT
4148 precisely so we do not need to look at the
4149 fabricated use. */
4150 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4151 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4152 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4153 continue;
4155 /* Add the last use of each var to dead_or_set. */
4156 if (!bitmap_bit_p (live_relevant_regs, regno))
4158 if (regno < FIRST_PSEUDO_REGISTER)
4160 if (!fixed_regs[regno])
4161 bitmap_set_bit (&c->dead_or_set, regno);
4163 else if (pseudo_for_reload_consideration_p (regno))
4164 bitmap_set_bit (&c->dead_or_set, regno);
4167 if (regno < FIRST_PSEUDO_REGISTER
4168 || pseudo_for_reload_consideration_p (regno))
4170 if (GET_CODE (reg) == SUBREG
4171 && !DF_REF_FLAGS_IS_SET (use,
4172 DF_REF_SIGN_EXTRACT
4173 | DF_REF_ZERO_EXTRACT))
4175 unsigned int start = SUBREG_BYTE (reg);
4176 unsigned int last = start
4177 + GET_MODE_SIZE (GET_MODE (reg));
4179 init_live_subregs
4180 (bitmap_bit_p (live_relevant_regs, regno),
4181 live_subregs, live_subregs_used, regno, reg);
4183 /* Ignore the paradoxical bits. */
4184 if (last > SBITMAP_SIZE (live_subregs[regno]))
4185 last = SBITMAP_SIZE (live_subregs[regno]);
4187 while (start < last)
4189 bitmap_set_bit (live_subregs[regno], start);
4190 start++;
4193 else
4194 /* Resetting the live_subregs_used is
4195 effectively saying do not use the subregs
4196 because we are reading the whole
4197 pseudo. */
4198 bitmap_clear_bit (live_subregs_used, regno);
4199 bitmap_set_bit (live_relevant_regs, regno);
4205 /* FIXME!! The following code is a disaster. Reload needs to see the
4206 labels and jump tables that are just hanging out in between
4207 the basic blocks. See pr33676. */
4208 insn = BB_HEAD (bb);
4210 /* Skip over the barriers and cruft. */
4211 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4212 || BLOCK_FOR_INSN (insn) == bb))
4213 insn = PREV_INSN (insn);
4215 /* While we add anything except barriers and notes, the focus is
4216 to get the labels and jump tables into the
4217 reload_insn_chain. */
4218 while (insn)
4220 if (!NOTE_P (insn) && !BARRIER_P (insn))
4222 if (BLOCK_FOR_INSN (insn))
4223 break;
4225 c = new_insn_chain ();
4226 c->next = next;
4227 next = c;
4228 *p = c;
4229 p = &c->prev;
4231 /* The block makes no sense here, but it is what the old
4232 code did. */
4233 c->block = bb->index;
4234 c->insn = insn;
4235 bitmap_copy (&c->live_throughout, live_relevant_regs);
4237 insn = PREV_INSN (insn);
4241 reload_insn_chain = c;
4242 *p = NULL;
4244 for (i = 0; i < (unsigned int) max_regno; i++)
4245 if (live_subregs[i] != NULL)
4246 sbitmap_free (live_subregs[i]);
4247 free (live_subregs);
4248 BITMAP_FREE (live_subregs_used);
4249 BITMAP_FREE (live_relevant_regs);
4250 BITMAP_FREE (elim_regset);
4252 if (dump_file)
4253 print_insn_chains (dump_file);
4256 /* Examine the rtx found in *LOC, which is read or written to as determined
4257 by TYPE. Return false if we find a reason why an insn containing this
4258 rtx should not be moved (such as accesses to non-constant memory), true
4259 otherwise. */
4260 static bool
4261 rtx_moveable_p (rtx *loc, enum op_type type)
4263 const char *fmt;
4264 rtx x = *loc;
4265 enum rtx_code code = GET_CODE (x);
4266 int i, j;
4268 code = GET_CODE (x);
4269 switch (code)
4271 case CONST:
4272 CASE_CONST_ANY:
4273 case SYMBOL_REF:
4274 case LABEL_REF:
4275 return true;
4277 case PC:
4278 return type == OP_IN;
4280 case CC0:
4281 return false;
4283 case REG:
4284 if (x == frame_pointer_rtx)
4285 return true;
4286 if (HARD_REGISTER_P (x))
4287 return false;
4289 return true;
4291 case MEM:
4292 if (type == OP_IN && MEM_READONLY_P (x))
4293 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4294 return false;
4296 case SET:
4297 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4298 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4300 case STRICT_LOW_PART:
4301 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4303 case ZERO_EXTRACT:
4304 case SIGN_EXTRACT:
4305 return (rtx_moveable_p (&XEXP (x, 0), type)
4306 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4307 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4309 case CLOBBER:
4310 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4312 default:
4313 break;
4316 fmt = GET_RTX_FORMAT (code);
4317 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4319 if (fmt[i] == 'e')
4321 if (!rtx_moveable_p (&XEXP (x, i), type))
4322 return false;
4324 else if (fmt[i] == 'E')
4325 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4327 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4328 return false;
4331 return true;
4334 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4335 to give dominance relationships between two insns I1 and I2. */
4336 static bool
4337 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4339 basic_block bb1 = BLOCK_FOR_INSN (i1);
4340 basic_block bb2 = BLOCK_FOR_INSN (i2);
4342 if (bb1 == bb2)
4343 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4344 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4347 /* Record the range of register numbers added by find_moveable_pseudos. */
4348 int first_moveable_pseudo, last_moveable_pseudo;
4350 /* These two vectors hold data for every register added by
4351 find_movable_pseudos, with index 0 holding data for the
4352 first_moveable_pseudo. */
4353 /* The original home register. */
4354 static vec<rtx> pseudo_replaced_reg;
4356 /* Look for instances where we have an instruction that is known to increase
4357 register pressure, and whose result is not used immediately. If it is
4358 possible to move the instruction downwards to just before its first use,
4359 split its lifetime into two ranges. We create a new pseudo to compute the
4360 value, and emit a move instruction just before the first use. If, after
4361 register allocation, the new pseudo remains unallocated, the function
4362 move_unallocated_pseudos then deletes the move instruction and places
4363 the computation just before the first use.
4365 Such a move is safe and profitable if all the input registers remain live
4366 and unchanged between the original computation and its first use. In such
4367 a situation, the computation is known to increase register pressure, and
4368 moving it is known to at least not worsen it.
4370 We restrict moves to only those cases where a register remains unallocated,
4371 in order to avoid interfering too much with the instruction schedule. As
4372 an exception, we may move insns which only modify their input register
4373 (typically induction variables), as this increases the freedom for our
4374 intended transformation, and does not limit the second instruction
4375 scheduler pass. */
4377 static void
4378 find_moveable_pseudos (void)
4380 unsigned i;
4381 int max_regs = max_reg_num ();
4382 int max_uid = get_max_uid ();
4383 basic_block bb;
4384 int *uid_luid = XNEWVEC (int, max_uid);
4385 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4386 /* A set of registers which are live but not modified throughout a block. */
4387 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4388 last_basic_block_for_fn (cfun));
4389 /* A set of registers which only exist in a given basic block. */
4390 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4391 last_basic_block_for_fn (cfun));
4392 /* A set of registers which are set once, in an instruction that can be
4393 moved freely downwards, but are otherwise transparent to a block. */
4394 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4395 last_basic_block_for_fn (cfun));
4396 bitmap_head live, used, set, interesting, unusable_as_input;
4397 bitmap_iterator bi;
4398 bitmap_initialize (&interesting, 0);
4400 first_moveable_pseudo = max_regs;
4401 pseudo_replaced_reg.release ();
4402 pseudo_replaced_reg.safe_grow_cleared (max_regs);
4404 df_analyze ();
4405 calculate_dominance_info (CDI_DOMINATORS);
4407 i = 0;
4408 bitmap_initialize (&live, 0);
4409 bitmap_initialize (&used, 0);
4410 bitmap_initialize (&set, 0);
4411 bitmap_initialize (&unusable_as_input, 0);
4412 FOR_EACH_BB_FN (bb, cfun)
4414 rtx_insn *insn;
4415 bitmap transp = bb_transp_live + bb->index;
4416 bitmap moveable = bb_moveable_reg_sets + bb->index;
4417 bitmap local = bb_local + bb->index;
4419 bitmap_initialize (local, 0);
4420 bitmap_initialize (transp, 0);
4421 bitmap_initialize (moveable, 0);
4422 bitmap_copy (&live, df_get_live_out (bb));
4423 bitmap_and_into (&live, df_get_live_in (bb));
4424 bitmap_copy (transp, &live);
4425 bitmap_clear (moveable);
4426 bitmap_clear (&live);
4427 bitmap_clear (&used);
4428 bitmap_clear (&set);
4429 FOR_BB_INSNS (bb, insn)
4430 if (NONDEBUG_INSN_P (insn))
4432 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4433 df_ref def, use;
4435 uid_luid[INSN_UID (insn)] = i++;
4437 def = df_single_def (insn_info);
4438 use = df_single_use (insn_info);
4439 if (use
4440 && def
4441 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4442 && !bitmap_bit_p (&set, DF_REF_REGNO (use))
4443 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4445 unsigned regno = DF_REF_REGNO (use);
4446 bitmap_set_bit (moveable, regno);
4447 bitmap_set_bit (&set, regno);
4448 bitmap_set_bit (&used, regno);
4449 bitmap_clear_bit (transp, regno);
4450 continue;
4452 FOR_EACH_INSN_INFO_USE (use, insn_info)
4454 unsigned regno = DF_REF_REGNO (use);
4455 bitmap_set_bit (&used, regno);
4456 if (bitmap_clear_bit (moveable, regno))
4457 bitmap_clear_bit (transp, regno);
4460 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4462 unsigned regno = DF_REF_REGNO (def);
4463 bitmap_set_bit (&set, regno);
4464 bitmap_clear_bit (transp, regno);
4465 bitmap_clear_bit (moveable, regno);
4470 bitmap_clear (&live);
4471 bitmap_clear (&used);
4472 bitmap_clear (&set);
4474 FOR_EACH_BB_FN (bb, cfun)
4476 bitmap local = bb_local + bb->index;
4477 rtx_insn *insn;
4479 FOR_BB_INSNS (bb, insn)
4480 if (NONDEBUG_INSN_P (insn))
4482 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4483 rtx_insn *def_insn;
4484 rtx closest_use, note;
4485 df_ref def, use;
4486 unsigned regno;
4487 bool all_dominated, all_local;
4488 enum machine_mode mode;
4490 def = df_single_def (insn_info);
4491 /* There must be exactly one def in this insn. */
4492 if (!def || !single_set (insn))
4493 continue;
4494 /* This must be the only definition of the reg. We also limit
4495 which modes we deal with so that we can assume we can generate
4496 move instructions. */
4497 regno = DF_REF_REGNO (def);
4498 mode = GET_MODE (DF_REF_REG (def));
4499 if (DF_REG_DEF_COUNT (regno) != 1
4500 || !DF_REF_INSN_INFO (def)
4501 || HARD_REGISTER_NUM_P (regno)
4502 || DF_REG_EQ_USE_COUNT (regno) > 0
4503 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4504 continue;
4505 def_insn = DF_REF_INSN (def);
4507 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4508 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4509 break;
4511 if (note)
4513 if (dump_file)
4514 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4515 regno);
4516 bitmap_set_bit (&unusable_as_input, regno);
4517 continue;
4520 use = DF_REG_USE_CHAIN (regno);
4521 all_dominated = true;
4522 all_local = true;
4523 closest_use = NULL_RTX;
4524 for (; use; use = DF_REF_NEXT_REG (use))
4526 rtx_insn *insn;
4527 if (!DF_REF_INSN_INFO (use))
4529 all_dominated = false;
4530 all_local = false;
4531 break;
4533 insn = DF_REF_INSN (use);
4534 if (DEBUG_INSN_P (insn))
4535 continue;
4536 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4537 all_local = false;
4538 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4539 all_dominated = false;
4540 if (closest_use != insn && closest_use != const0_rtx)
4542 if (closest_use == NULL_RTX)
4543 closest_use = insn;
4544 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4545 closest_use = insn;
4546 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4547 closest_use = const0_rtx;
4550 if (!all_dominated)
4552 if (dump_file)
4553 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4554 regno);
4555 continue;
4557 if (all_local)
4558 bitmap_set_bit (local, regno);
4559 if (closest_use == const0_rtx || closest_use == NULL
4560 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4562 if (dump_file)
4563 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4564 closest_use == const0_rtx || closest_use == NULL
4565 ? " (no unique first use)" : "");
4566 continue;
4568 #ifdef HAVE_cc0
4569 if (reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4571 if (dump_file)
4572 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4573 regno);
4574 continue;
4576 #endif
4577 bitmap_set_bit (&interesting, regno);
4578 /* If we get here, we know closest_use is a non-NULL insn
4579 (as opposed to const_0_rtx). */
4580 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4582 if (dump_file && (all_local || all_dominated))
4584 fprintf (dump_file, "Reg %u:", regno);
4585 if (all_local)
4586 fprintf (dump_file, " local to bb %d", bb->index);
4587 if (all_dominated)
4588 fprintf (dump_file, " def dominates all uses");
4589 if (closest_use != const0_rtx)
4590 fprintf (dump_file, " has unique first use");
4591 fputs ("\n", dump_file);
4596 EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
4598 df_ref def = DF_REG_DEF_CHAIN (i);
4599 rtx_insn *def_insn = DF_REF_INSN (def);
4600 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4601 bitmap def_bb_local = bb_local + def_block->index;
4602 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4603 bitmap def_bb_transp = bb_transp_live + def_block->index;
4604 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4605 rtx_insn *use_insn = closest_uses[i];
4606 df_ref use;
4607 bool all_ok = true;
4608 bool all_transp = true;
4610 if (!REG_P (DF_REF_REG (def)))
4611 continue;
4613 if (!local_to_bb_p)
4615 if (dump_file)
4616 fprintf (dump_file, "Reg %u not local to one basic block\n",
4618 continue;
4620 if (reg_equiv_init (i) != NULL_RTX)
4622 if (dump_file)
4623 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4625 continue;
4627 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4629 if (dump_file)
4630 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4631 INSN_UID (def_insn), i);
4632 continue;
4634 if (dump_file)
4635 fprintf (dump_file, "Examining insn %d, def for %d\n",
4636 INSN_UID (def_insn), i);
4637 FOR_EACH_INSN_USE (use, def_insn)
4639 unsigned regno = DF_REF_REGNO (use);
4640 if (bitmap_bit_p (&unusable_as_input, regno))
4642 all_ok = false;
4643 if (dump_file)
4644 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4645 break;
4647 if (!bitmap_bit_p (def_bb_transp, regno))
4649 if (bitmap_bit_p (def_bb_moveable, regno)
4650 && !control_flow_insn_p (use_insn)
4651 #ifdef HAVE_cc0
4652 && !sets_cc0_p (use_insn)
4653 #endif
4656 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4658 rtx_insn *x = NEXT_INSN (def_insn);
4659 while (!modified_in_p (DF_REF_REG (use), x))
4661 gcc_assert (x != use_insn);
4662 x = NEXT_INSN (x);
4664 if (dump_file)
4665 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4666 regno, INSN_UID (x));
4667 emit_insn_after (PATTERN (x), use_insn);
4668 set_insn_deleted (x);
4670 else
4672 if (dump_file)
4673 fprintf (dump_file, " input reg %u modified between def and use\n",
4674 regno);
4675 all_transp = false;
4678 else
4679 all_transp = false;
4682 if (!all_ok)
4683 continue;
4684 if (!dbg_cnt (ira_move))
4685 break;
4686 if (dump_file)
4687 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4689 if (all_transp)
4691 rtx def_reg = DF_REF_REG (def);
4692 rtx newreg = ira_create_new_reg (def_reg);
4693 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4695 unsigned nregno = REGNO (newreg);
4696 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4697 nregno -= max_regs;
4698 pseudo_replaced_reg[nregno] = def_reg;
4703 FOR_EACH_BB_FN (bb, cfun)
4705 bitmap_clear (bb_local + bb->index);
4706 bitmap_clear (bb_transp_live + bb->index);
4707 bitmap_clear (bb_moveable_reg_sets + bb->index);
4709 bitmap_clear (&interesting);
4710 bitmap_clear (&unusable_as_input);
4711 free (uid_luid);
4712 free (closest_uses);
4713 free (bb_local);
4714 free (bb_transp_live);
4715 free (bb_moveable_reg_sets);
4717 last_moveable_pseudo = max_reg_num ();
4719 fix_reg_equiv_init ();
4720 expand_reg_info ();
4721 regstat_free_n_sets_and_refs ();
4722 regstat_free_ri ();
4723 regstat_init_n_sets_and_refs ();
4724 regstat_compute_ri ();
4725 free_dominance_info (CDI_DOMINATORS);
4728 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4729 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4730 the destination. Otherwise return NULL. */
4732 static rtx
4733 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4735 rtx src = SET_SRC (set);
4736 rtx dest = SET_DEST (set);
4737 if (!REG_P (src) || !HARD_REGISTER_P (src)
4738 || !REG_P (dest) || HARD_REGISTER_P (dest)
4739 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4740 return NULL;
4741 return dest;
4744 /* If insn is interesting for parameter range-splitting shring-wrapping
4745 preparation, i.e. it is a single set from a hard register to a pseudo, which
4746 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4747 parallel statement with only one such statement, return the destination.
4748 Otherwise return NULL. */
4750 static rtx
4751 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4753 if (!INSN_P (insn))
4754 return NULL;
4755 rtx pat = PATTERN (insn);
4756 if (GET_CODE (pat) == SET)
4757 return interesting_dest_for_shprep_1 (pat, call_dom);
4759 if (GET_CODE (pat) != PARALLEL)
4760 return NULL;
4761 rtx ret = NULL;
4762 for (int i = 0; i < XVECLEN (pat, 0); i++)
4764 rtx sub = XVECEXP (pat, 0, i);
4765 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4766 continue;
4767 if (GET_CODE (sub) != SET
4768 || side_effects_p (sub))
4769 return NULL;
4770 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4771 if (dest && ret)
4772 return NULL;
4773 if (dest)
4774 ret = dest;
4776 return ret;
4779 /* Split live ranges of pseudos that are loaded from hard registers in the
4780 first BB in a BB that dominates all non-sibling call if such a BB can be
4781 found and is not in a loop. Return true if the function has made any
4782 changes. */
4784 static bool
4785 split_live_ranges_for_shrink_wrap (void)
4787 basic_block bb, call_dom = NULL;
4788 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4789 rtx_insn *insn, *last_interesting_insn = NULL;
4790 bitmap_head need_new, reachable;
4791 vec<basic_block> queue;
4793 if (!SHRINK_WRAPPING_ENABLED)
4794 return false;
4796 bitmap_initialize (&need_new, 0);
4797 bitmap_initialize (&reachable, 0);
4798 queue.create (n_basic_blocks_for_fn (cfun));
4800 FOR_EACH_BB_FN (bb, cfun)
4801 FOR_BB_INSNS (bb, insn)
4802 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4804 if (bb == first)
4806 bitmap_clear (&need_new);
4807 bitmap_clear (&reachable);
4808 queue.release ();
4809 return false;
4812 bitmap_set_bit (&need_new, bb->index);
4813 bitmap_set_bit (&reachable, bb->index);
4814 queue.quick_push (bb);
4815 break;
4818 if (queue.is_empty ())
4820 bitmap_clear (&need_new);
4821 bitmap_clear (&reachable);
4822 queue.release ();
4823 return false;
4826 while (!queue.is_empty ())
4828 edge e;
4829 edge_iterator ei;
4831 bb = queue.pop ();
4832 FOR_EACH_EDGE (e, ei, bb->succs)
4833 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4834 && bitmap_set_bit (&reachable, e->dest->index))
4835 queue.quick_push (e->dest);
4837 queue.release ();
4839 FOR_BB_INSNS (first, insn)
4841 rtx dest = interesting_dest_for_shprep (insn, NULL);
4842 if (!dest)
4843 continue;
4845 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4847 bitmap_clear (&need_new);
4848 bitmap_clear (&reachable);
4849 return false;
4852 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4853 use;
4854 use = DF_REF_NEXT_REG (use))
4856 int ubbi = DF_REF_BB (use)->index;
4857 if (bitmap_bit_p (&reachable, ubbi))
4858 bitmap_set_bit (&need_new, ubbi);
4860 last_interesting_insn = insn;
4863 bitmap_clear (&reachable);
4864 if (!last_interesting_insn)
4866 bitmap_clear (&need_new);
4867 return false;
4870 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, &need_new);
4871 bitmap_clear (&need_new);
4872 if (call_dom == first)
4873 return false;
4875 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4876 while (bb_loop_depth (call_dom) > 0)
4877 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4878 loop_optimizer_finalize ();
4880 if (call_dom == first)
4881 return false;
4883 calculate_dominance_info (CDI_POST_DOMINATORS);
4884 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4886 free_dominance_info (CDI_POST_DOMINATORS);
4887 return false;
4889 free_dominance_info (CDI_POST_DOMINATORS);
4891 if (dump_file)
4892 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
4893 call_dom->index);
4895 bool ret = false;
4896 FOR_BB_INSNS (first, insn)
4898 rtx dest = interesting_dest_for_shprep (insn, call_dom);
4899 if (!dest)
4900 continue;
4902 rtx newreg = NULL_RTX;
4903 df_ref use, next;
4904 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
4906 rtx_insn *uin = DF_REF_INSN (use);
4907 next = DF_REF_NEXT_REG (use);
4909 basic_block ubb = BLOCK_FOR_INSN (uin);
4910 if (ubb == call_dom
4911 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
4913 if (!newreg)
4914 newreg = ira_create_new_reg (dest);
4915 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
4919 if (newreg)
4921 rtx new_move = gen_move_insn (newreg, dest);
4922 emit_insn_after (new_move, bb_note (call_dom));
4923 if (dump_file)
4925 fprintf (dump_file, "Split live-range of register ");
4926 print_rtl_single (dump_file, dest);
4928 ret = true;
4931 if (insn == last_interesting_insn)
4932 break;
4934 apply_change_group ();
4935 return ret;
4938 /* Perform the second half of the transformation started in
4939 find_moveable_pseudos. We look for instances where the newly introduced
4940 pseudo remains unallocated, and remove it by moving the definition to
4941 just before its use, replacing the move instruction generated by
4942 find_moveable_pseudos. */
4943 static void
4944 move_unallocated_pseudos (void)
4946 int i;
4947 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
4948 if (reg_renumber[i] < 0)
4950 int idx = i - first_moveable_pseudo;
4951 rtx other_reg = pseudo_replaced_reg[idx];
4952 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
4953 /* The use must follow all definitions of OTHER_REG, so we can
4954 insert the new definition immediately after any of them. */
4955 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
4956 rtx_insn *move_insn = DF_REF_INSN (other_def);
4957 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
4958 rtx set;
4959 int success;
4961 if (dump_file)
4962 fprintf (dump_file, "moving def of %d (insn %d now) ",
4963 REGNO (other_reg), INSN_UID (def_insn));
4965 delete_insn (move_insn);
4966 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
4967 delete_insn (DF_REF_INSN (other_def));
4968 delete_insn (def_insn);
4970 set = single_set (newinsn);
4971 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
4972 gcc_assert (success);
4973 if (dump_file)
4974 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
4975 INSN_UID (newinsn), i);
4976 SET_REG_N_REFS (i, 0);
4980 /* If the backend knows where to allocate pseudos for hard
4981 register initial values, register these allocations now. */
4982 static void
4983 allocate_initial_values (void)
4985 if (targetm.allocate_initial_value)
4987 rtx hreg, preg, x;
4988 int i, regno;
4990 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
4992 if (! initial_value_entry (i, &hreg, &preg))
4993 break;
4995 x = targetm.allocate_initial_value (hreg);
4996 regno = REGNO (preg);
4997 if (x && REG_N_SETS (regno) <= 1)
4999 if (MEM_P (x))
5000 reg_equiv_memory_loc (regno) = x;
5001 else
5003 basic_block bb;
5004 int new_regno;
5006 gcc_assert (REG_P (x));
5007 new_regno = REGNO (x);
5008 reg_renumber[regno] = new_regno;
5009 /* Poke the regno right into regno_reg_rtx so that even
5010 fixed regs are accepted. */
5011 SET_REGNO (preg, new_regno);
5012 /* Update global register liveness information. */
5013 FOR_EACH_BB_FN (bb, cfun)
5015 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5016 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5017 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5018 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5024 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5025 &hreg, &preg));
5030 /* True when we use LRA instead of reload pass for the current
5031 function. */
5032 bool ira_use_lra_p;
5034 /* True if we have allocno conflicts. It is false for non-optimized
5035 mode or when the conflict table is too big. */
5036 bool ira_conflicts_p;
5038 /* Saved between IRA and reload. */
5039 static int saved_flag_ira_share_spill_slots;
5041 /* This is the main entry of IRA. */
5042 static void
5043 ira (FILE *f)
5045 bool loops_p;
5046 int ira_max_point_before_emit;
5047 int rebuild_p;
5048 bool saved_flag_caller_saves = flag_caller_saves;
5049 enum ira_region saved_flag_ira_region = flag_ira_region;
5051 ira_conflicts_p = optimize > 0;
5053 ira_use_lra_p = targetm.lra_p ();
5054 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5055 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5056 use simplified and faster algorithms in LRA. */
5057 lra_simple_p
5058 = (ira_use_lra_p
5059 && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
5060 if (lra_simple_p)
5062 /* It permits to skip live range splitting in LRA. */
5063 flag_caller_saves = false;
5064 /* There is no sense to do regional allocation when we use
5065 simplified LRA. */
5066 flag_ira_region = IRA_REGION_ONE;
5067 ira_conflicts_p = false;
5070 #ifndef IRA_NO_OBSTACK
5071 gcc_obstack_init (&ira_obstack);
5072 #endif
5073 bitmap_obstack_initialize (&ira_bitmap_obstack);
5075 /* LRA uses its own infrastructure to handle caller save registers. */
5076 if (flag_caller_saves && !ira_use_lra_p)
5077 init_caller_save ();
5079 if (flag_ira_verbose < 10)
5081 internal_flag_ira_verbose = flag_ira_verbose;
5082 ira_dump_file = f;
5084 else
5086 internal_flag_ira_verbose = flag_ira_verbose - 10;
5087 ira_dump_file = stderr;
5090 setup_prohibited_mode_move_regs ();
5091 decrease_live_ranges_number ();
5092 df_note_add_problem ();
5094 /* DF_LIVE can't be used in the register allocator, too many other
5095 parts of the compiler depend on using the "classic" liveness
5096 interpretation of the DF_LR problem. See PR38711.
5097 Remove the problem, so that we don't spend time updating it in
5098 any of the df_analyze() calls during IRA/LRA. */
5099 if (optimize > 1)
5100 df_remove_problem (df_live);
5101 gcc_checking_assert (df_live == NULL);
5103 #ifdef ENABLE_CHECKING
5104 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5105 #endif
5106 df_analyze ();
5108 init_reg_equiv ();
5109 if (ira_conflicts_p)
5111 calculate_dominance_info (CDI_DOMINATORS);
5113 if (split_live_ranges_for_shrink_wrap ())
5114 df_analyze ();
5116 free_dominance_info (CDI_DOMINATORS);
5119 df_clear_flags (DF_NO_INSN_RESCAN);
5121 regstat_init_n_sets_and_refs ();
5122 regstat_compute_ri ();
5124 /* If we are not optimizing, then this is the only place before
5125 register allocation where dataflow is done. And that is needed
5126 to generate these warnings. */
5127 if (warn_clobbered)
5128 generate_setjmp_warnings ();
5130 /* Determine if the current function is a leaf before running IRA
5131 since this can impact optimizations done by the prologue and
5132 epilogue thus changing register elimination offsets. */
5133 crtl->is_leaf = leaf_function_p ();
5135 if (resize_reg_info () && flag_ira_loop_pressure)
5136 ira_set_pseudo_classes (true, ira_dump_file);
5138 rebuild_p = update_equiv_regs ();
5139 setup_reg_equiv ();
5140 setup_reg_equiv_init ();
5142 if (optimize && rebuild_p)
5144 timevar_push (TV_JUMP);
5145 rebuild_jump_labels (get_insns ());
5146 if (purge_all_dead_edges ())
5147 delete_unreachable_blocks ();
5148 timevar_pop (TV_JUMP);
5151 allocated_reg_info_size = max_reg_num ();
5153 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5154 df_analyze ();
5156 /* It is not worth to do such improvement when we use a simple
5157 allocation because of -O0 usage or because the function is too
5158 big. */
5159 if (ira_conflicts_p)
5160 find_moveable_pseudos ();
5162 max_regno_before_ira = max_reg_num ();
5163 ira_setup_eliminable_regset ();
5165 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5166 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5167 ira_move_loops_num = ira_additional_jumps_num = 0;
5169 ira_assert (current_loops == NULL);
5170 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5171 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5173 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5174 fprintf (ira_dump_file, "Building IRA IR\n");
5175 loops_p = ira_build ();
5177 ira_assert (ira_conflicts_p || !loops_p);
5179 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5180 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5181 /* It is just wasting compiler's time to pack spilled pseudos into
5182 stack slots in this case -- prohibit it. We also do this if
5183 there is setjmp call because a variable not modified between
5184 setjmp and longjmp the compiler is required to preserve its
5185 value and sharing slots does not guarantee it. */
5186 flag_ira_share_spill_slots = FALSE;
5188 ira_color ();
5190 ira_max_point_before_emit = ira_max_point;
5192 ira_initiate_emit_data ();
5194 ira_emit (loops_p);
5196 max_regno = max_reg_num ();
5197 if (ira_conflicts_p)
5199 if (! loops_p)
5201 if (! ira_use_lra_p)
5202 ira_initiate_assign ();
5204 else
5206 expand_reg_info ();
5208 if (ira_use_lra_p)
5210 ira_allocno_t a;
5211 ira_allocno_iterator ai;
5213 FOR_EACH_ALLOCNO (a, ai)
5214 ALLOCNO_REGNO (a) = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5216 else
5218 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5219 fprintf (ira_dump_file, "Flattening IR\n");
5220 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5222 /* New insns were generated: add notes and recalculate live
5223 info. */
5224 df_analyze ();
5226 /* ??? Rebuild the loop tree, but why? Does the loop tree
5227 change if new insns were generated? Can that be handled
5228 by updating the loop tree incrementally? */
5229 loop_optimizer_finalize ();
5230 free_dominance_info (CDI_DOMINATORS);
5231 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5232 | LOOPS_HAVE_RECORDED_EXITS);
5234 if (! ira_use_lra_p)
5236 setup_allocno_assignment_flags ();
5237 ira_initiate_assign ();
5238 ira_reassign_conflict_allocnos (max_regno);
5243 ira_finish_emit_data ();
5245 setup_reg_renumber ();
5247 calculate_allocation_cost ();
5249 #ifdef ENABLE_IRA_CHECKING
5250 if (ira_conflicts_p)
5251 check_allocation ();
5252 #endif
5254 if (max_regno != max_regno_before_ira)
5256 regstat_free_n_sets_and_refs ();
5257 regstat_free_ri ();
5258 regstat_init_n_sets_and_refs ();
5259 regstat_compute_ri ();
5262 overall_cost_before = ira_overall_cost;
5263 if (! ira_conflicts_p)
5264 grow_reg_equivs ();
5265 else
5267 fix_reg_equiv_init ();
5269 #ifdef ENABLE_IRA_CHECKING
5270 print_redundant_copies ();
5271 #endif
5272 if (! ira_use_lra_p)
5274 ira_spilled_reg_stack_slots_num = 0;
5275 ira_spilled_reg_stack_slots
5276 = ((struct ira_spilled_reg_stack_slot *)
5277 ira_allocate (max_regno
5278 * sizeof (struct ira_spilled_reg_stack_slot)));
5279 memset (ira_spilled_reg_stack_slots, 0,
5280 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5283 allocate_initial_values ();
5285 /* See comment for find_moveable_pseudos call. */
5286 if (ira_conflicts_p)
5287 move_unallocated_pseudos ();
5289 /* Restore original values. */
5290 if (lra_simple_p)
5292 flag_caller_saves = saved_flag_caller_saves;
5293 flag_ira_region = saved_flag_ira_region;
5297 static void
5298 do_reload (void)
5300 basic_block bb;
5301 bool need_dce;
5303 if (flag_ira_verbose < 10)
5304 ira_dump_file = dump_file;
5306 timevar_push (TV_RELOAD);
5307 if (ira_use_lra_p)
5309 if (current_loops != NULL)
5311 loop_optimizer_finalize ();
5312 free_dominance_info (CDI_DOMINATORS);
5314 FOR_ALL_BB_FN (bb, cfun)
5315 bb->loop_father = NULL;
5316 current_loops = NULL;
5318 ira_destroy ();
5320 lra (ira_dump_file);
5321 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5322 LRA. */
5323 vec_free (reg_equivs);
5324 reg_equivs = NULL;
5325 need_dce = false;
5327 else
5329 df_set_flags (DF_NO_INSN_RESCAN);
5330 build_insn_chain ();
5332 need_dce = reload (get_insns (), ira_conflicts_p);
5336 timevar_pop (TV_RELOAD);
5338 timevar_push (TV_IRA);
5340 if (ira_conflicts_p && ! ira_use_lra_p)
5342 ira_free (ira_spilled_reg_stack_slots);
5343 ira_finish_assign ();
5346 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5347 && overall_cost_before != ira_overall_cost)
5348 fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
5350 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5352 if (! ira_use_lra_p)
5354 ira_destroy ();
5355 if (current_loops != NULL)
5357 loop_optimizer_finalize ();
5358 free_dominance_info (CDI_DOMINATORS);
5360 FOR_ALL_BB_FN (bb, cfun)
5361 bb->loop_father = NULL;
5362 current_loops = NULL;
5364 regstat_free_ri ();
5365 regstat_free_n_sets_and_refs ();
5368 if (optimize)
5369 cleanup_cfg (CLEANUP_EXPENSIVE);
5371 finish_reg_equiv ();
5373 bitmap_obstack_release (&ira_bitmap_obstack);
5374 #ifndef IRA_NO_OBSTACK
5375 obstack_free (&ira_obstack, NULL);
5376 #endif
5378 /* The code after the reload has changed so much that at this point
5379 we might as well just rescan everything. Note that
5380 df_rescan_all_insns is not going to help here because it does not
5381 touch the artificial uses and defs. */
5382 df_finish_pass (true);
5383 df_scan_alloc (NULL);
5384 df_scan_blocks ();
5386 if (optimize > 1)
5388 df_live_add_problem ();
5389 df_live_set_all_dirty ();
5392 if (optimize)
5393 df_analyze ();
5395 if (need_dce && optimize)
5396 run_fast_dce ();
5398 /* Diagnose uses of the hard frame pointer when it is used as a global
5399 register. Often we can get away with letting the user appropriate
5400 the frame pointer, but we should let them know when code generation
5401 makes that impossible. */
5402 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5404 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5405 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5406 "frame pointer required, but reserved");
5407 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5410 timevar_pop (TV_IRA);
5413 /* Run the integrated register allocator. */
5415 namespace {
5417 const pass_data pass_data_ira =
5419 RTL_PASS, /* type */
5420 "ira", /* name */
5421 OPTGROUP_NONE, /* optinfo_flags */
5422 TV_IRA, /* tv_id */
5423 0, /* properties_required */
5424 0, /* properties_provided */
5425 0, /* properties_destroyed */
5426 0, /* todo_flags_start */
5427 TODO_do_not_ggc_collect, /* todo_flags_finish */
5430 class pass_ira : public rtl_opt_pass
5432 public:
5433 pass_ira (gcc::context *ctxt)
5434 : rtl_opt_pass (pass_data_ira, ctxt)
5437 /* opt_pass methods: */
5438 virtual unsigned int execute (function *)
5440 ira (dump_file);
5441 return 0;
5444 }; // class pass_ira
5446 } // anon namespace
5448 rtl_opt_pass *
5449 make_pass_ira (gcc::context *ctxt)
5451 return new pass_ira (ctxt);
5454 namespace {
5456 const pass_data pass_data_reload =
5458 RTL_PASS, /* type */
5459 "reload", /* name */
5460 OPTGROUP_NONE, /* optinfo_flags */
5461 TV_RELOAD, /* tv_id */
5462 0, /* properties_required */
5463 0, /* properties_provided */
5464 0, /* properties_destroyed */
5465 0, /* todo_flags_start */
5466 0, /* todo_flags_finish */
5469 class pass_reload : public rtl_opt_pass
5471 public:
5472 pass_reload (gcc::context *ctxt)
5473 : rtl_opt_pass (pass_data_reload, ctxt)
5476 /* opt_pass methods: */
5477 virtual unsigned int execute (function *)
5479 do_reload ();
5480 return 0;
5483 }; // class pass_reload
5485 } // anon namespace
5487 rtl_opt_pass *
5488 make_pass_reload (gcc::context *ctxt)
5490 return new pass_reload (ctxt);