1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Elists
; use Elists
;
32 with Errout
; use Errout
;
33 with Expander
; use Expander
;
34 with Exp_Disp
; use Exp_Disp
;
35 with Exp_Tss
; use Exp_Tss
;
36 with Exp_Util
; use Exp_Util
;
37 with Freeze
; use Freeze
;
38 with Ghost
; use Ghost
;
40 with Lib
.Xref
; use Lib
.Xref
;
41 with Namet
; use Namet
;
42 with Nlists
; use Nlists
;
43 with Nmake
; use Nmake
;
45 with Restrict
; use Restrict
;
46 with Rident
; use Rident
;
47 with Rtsfind
; use Rtsfind
;
49 with Sem_Aux
; use Sem_Aux
;
50 with Sem_Case
; use Sem_Case
;
51 with Sem_Ch3
; use Sem_Ch3
;
52 with Sem_Ch6
; use Sem_Ch6
;
53 with Sem_Ch8
; use Sem_Ch8
;
54 with Sem_Dim
; use Sem_Dim
;
55 with Sem_Disp
; use Sem_Disp
;
56 with Sem_Eval
; use Sem_Eval
;
57 with Sem_Prag
; use Sem_Prag
;
58 with Sem_Res
; use Sem_Res
;
59 with Sem_Type
; use Sem_Type
;
60 with Sem_Util
; use Sem_Util
;
61 with Sem_Warn
; use Sem_Warn
;
62 with Sinfo
; use Sinfo
;
63 with Sinput
; use Sinput
;
64 with Snames
; use Snames
;
65 with Stand
; use Stand
;
66 with Targparm
; use Targparm
;
67 with Ttypes
; use Ttypes
;
68 with Tbuild
; use Tbuild
;
69 with Urealp
; use Urealp
;
70 with Warnsw
; use Warnsw
;
72 with GNAT
.Heap_Sort_G
;
74 package body Sem_Ch13
is
76 SSU
: constant Pos
:= System_Storage_Unit
;
77 -- Convenient short hand for commonly used constant
79 -----------------------
80 -- Local Subprograms --
81 -----------------------
83 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95
(R
: Entity_Id
);
84 -- Helper routine providing the original (pre-AI95-0133) behavior for
85 -- Adjust_Record_For_Reverse_Bit_Order.
87 procedure Alignment_Check_For_Size_Change
(Typ
: Entity_Id
; Size
: Uint
);
88 -- This routine is called after setting one of the sizes of type entity
89 -- Typ to Size. The purpose is to deal with the situation of a derived
90 -- type whose inherited alignment is no longer appropriate for the new
91 -- size value. In this case, we reset the Alignment to unknown.
93 procedure Build_Discrete_Static_Predicate
97 -- Given a predicated type Typ, where Typ is a discrete static subtype,
98 -- whose predicate expression is Expr, tests if Expr is a static predicate,
99 -- and if so, builds the predicate range list. Nam is the name of the one
100 -- argument to the predicate function. Occurrences of the type name in the
101 -- predicate expression have been replaced by identifier references to this
102 -- name, which is unique, so any identifier with Chars matching Nam must be
103 -- a reference to the type. If the predicate is non-static, this procedure
104 -- returns doing nothing. If the predicate is static, then the predicate
105 -- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
106 -- rewritten as a canonicalized membership operation.
108 function Build_Export_Import_Pragma
110 Id
: Entity_Id
) return Node_Id
;
111 -- Create the corresponding pragma for aspect Export or Import denoted by
112 -- Asp. Id is the related entity subject to the aspect. Return Empty when
113 -- the expression of aspect Asp evaluates to False or is erroneous.
115 function Build_Predicate_Function_Declaration
116 (Typ
: Entity_Id
) return Node_Id
;
117 -- Build the declaration for a predicate function. The declaration is built
118 -- at the end of the declarative part containing the type definition, which
119 -- may be before the freeze point of the type. The predicate expression is
120 -- pre-analyzed at this point, to catch visibility errors.
122 procedure Build_Predicate_Functions
(Typ
: Entity_Id
; N
: Node_Id
);
123 -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
124 -- then either there are pragma Predicate entries on the rep chain for the
125 -- type (note that Predicate aspects are converted to pragma Predicate), or
126 -- there are inherited aspects from a parent type, or ancestor subtypes.
127 -- This procedure builds body for the Predicate function that tests these
128 -- predicates. N is the freeze node for the type. The spec of the function
129 -- is inserted before the freeze node, and the body of the function is
130 -- inserted after the freeze node. If the predicate expression has a least
131 -- one Raise_Expression, then this procedure also builds the M version of
132 -- the predicate function for use in membership tests.
134 procedure Check_Pool_Size_Clash
(Ent
: Entity_Id
; SP
, SS
: Node_Id
);
135 -- Called if both Storage_Pool and Storage_Size attribute definition
136 -- clauses (SP and SS) are present for entity Ent. Issue error message.
138 procedure Freeze_Entity_Checks
(N
: Node_Id
);
139 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
140 -- to generate appropriate semantic checks that are delayed until this
141 -- point (they had to be delayed this long for cases of delayed aspects,
142 -- e.g. analysis of statically predicated subtypes in choices, for which
143 -- we have to be sure the subtypes in question are frozen before checking).
145 function Get_Alignment_Value
(Expr
: Node_Id
) return Uint
;
146 -- Given the expression for an alignment value, returns the corresponding
147 -- Uint value. If the value is inappropriate, then error messages are
148 -- posted as required, and a value of No_Uint is returned.
150 procedure Get_Interfacing_Aspects
151 (Iface_Asp
: Node_Id
;
152 Conv_Asp
: out Node_Id
;
153 EN_Asp
: out Node_Id
;
154 Expo_Asp
: out Node_Id
;
155 Imp_Asp
: out Node_Id
;
156 LN_Asp
: out Node_Id
;
157 Do_Checks
: Boolean := False);
158 -- Given a single interfacing aspect Iface_Asp, retrieve other interfacing
159 -- aspects that apply to the same related entity. The aspects considered by
160 -- this routine are as follows:
162 -- Conv_Asp - aspect Convention
163 -- EN_Asp - aspect External_Name
164 -- Expo_Asp - aspect Export
165 -- Imp_Asp - aspect Import
166 -- LN_Asp - aspect Link_Name
168 -- When flag Do_Checks is set, this routine will flag duplicate uses of
171 function Is_Operational_Item
(N
: Node_Id
) return Boolean;
172 -- A specification for a stream attribute is allowed before the full type
173 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
174 -- that do not specify a representation characteristic are operational
177 function Is_Predicate_Static
179 Nam
: Name_Id
) return Boolean;
180 -- Given predicate expression Expr, tests if Expr is predicate-static in
181 -- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
182 -- name in the predicate expression have been replaced by references to
183 -- an identifier whose Chars field is Nam. This name is unique, so any
184 -- identifier with Chars matching Nam must be a reference to the type.
185 -- Returns True if the expression is predicate-static and False otherwise,
186 -- but is not in the business of setting flags or issuing error messages.
188 -- Only scalar types can have static predicates, so False is always
189 -- returned for non-scalar types.
191 -- Note: the RM seems to suggest that string types can also have static
192 -- predicates. But that really makes lttle sense as very few useful
193 -- predicates can be constructed for strings. Remember that:
197 -- is not a static expression. So even though the clearly faulty RM wording
198 -- allows the following:
200 -- subtype S is String with Static_Predicate => S < "DEF"
202 -- We can't allow this, otherwise we have predicate-static applying to a
203 -- larger class than static expressions, which was never intended.
205 procedure New_Stream_Subprogram
209 Nam
: TSS_Name_Type
);
210 -- Create a subprogram renaming of a given stream attribute to the
211 -- designated subprogram and then in the tagged case, provide this as a
212 -- primitive operation, or in the untagged case make an appropriate TSS
213 -- entry. This is more properly an expansion activity than just semantics,
214 -- but the presence of user-defined stream functions for limited types
215 -- is a legality check, which is why this takes place here rather than in
216 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
217 -- function to be generated.
219 -- To avoid elaboration anomalies with freeze nodes, for untagged types
220 -- we generate both a subprogram declaration and a subprogram renaming
221 -- declaration, so that the attribute specification is handled as a
222 -- renaming_as_body. For tagged types, the specification is one of the
225 procedure Resolve_Iterable_Operation
230 -- If the name of a primitive operation for an Iterable aspect is
231 -- overloaded, resolve according to required signature.
237 Biased
: Boolean := True);
238 -- If Biased is True, sets Has_Biased_Representation flag for E, and
239 -- outputs a warning message at node N if Warn_On_Biased_Representation is
240 -- is True. This warning inserts the string Msg to describe the construct
243 ---------------------------------------------------
244 -- Table for Validate_Compile_Time_Warning_Error --
245 ---------------------------------------------------
247 -- The following table collects pragmas Compile_Time_Error and Compile_
248 -- Time_Warning for validation. Entries are made by calls to subprogram
249 -- Validate_Compile_Time_Warning_Error, and the call to the procedure
250 -- Validate_Compile_Time_Warning_Errors does the actual error checking
251 -- and posting of warning and error messages. The reason for this delayed
252 -- processing is to take advantage of back-annotations of attributes size
253 -- and alignment values performed by the back end.
255 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
256 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
257 -- already have modified all Sloc values if the -gnatD option is set.
259 type CTWE_Entry
is record
261 -- Source location used in warnings and error messages
264 -- Pragma Compile_Time_Error or Compile_Time_Warning
267 -- The scope which encloses the pragma
270 package Compile_Time_Warnings_Errors
is new Table
.Table
(
271 Table_Component_Type
=> CTWE_Entry
,
272 Table_Index_Type
=> Int
,
273 Table_Low_Bound
=> 1,
275 Table_Increment
=> 200,
276 Table_Name
=> "Compile_Time_Warnings_Errors");
278 ----------------------------------------------
279 -- Table for Validate_Unchecked_Conversions --
280 ----------------------------------------------
282 -- The following table collects unchecked conversions for validation.
283 -- Entries are made by Validate_Unchecked_Conversion and then the call
284 -- to Validate_Unchecked_Conversions does the actual error checking and
285 -- posting of warnings. The reason for this delayed processing is to take
286 -- advantage of back-annotations of size and alignment values performed by
289 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
290 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
291 -- already have modified all Sloc values if the -gnatD option is set.
293 type UC_Entry
is record
294 Eloc
: Source_Ptr
; -- node used for posting warnings
295 Source
: Entity_Id
; -- source type for unchecked conversion
296 Target
: Entity_Id
; -- target type for unchecked conversion
297 Act_Unit
: Entity_Id
; -- actual function instantiated
300 package Unchecked_Conversions
is new Table
.Table
(
301 Table_Component_Type
=> UC_Entry
,
302 Table_Index_Type
=> Int
,
303 Table_Low_Bound
=> 1,
305 Table_Increment
=> 200,
306 Table_Name
=> "Unchecked_Conversions");
308 ----------------------------------------
309 -- Table for Validate_Address_Clauses --
310 ----------------------------------------
312 -- If an address clause has the form
314 -- for X'Address use Expr
316 -- where Expr has a value known at compile time or is of the form Y'Address
317 -- or recursively is a reference to a constant initialized with either of
318 -- these forms, and the value of Expr is not a multiple of X's alignment,
319 -- or if Y has a smaller alignment than X, then that merits a warning about
320 -- possible bad alignment. The following table collects address clauses of
321 -- this kind. We put these in a table so that they can be checked after the
322 -- back end has completed annotation of the alignments of objects, since we
323 -- can catch more cases that way.
325 type Address_Clause_Check_Record
is record
327 -- The address clause
330 -- The entity of the object subject to the address clause
333 -- The value of the address in the first case
336 -- The entity of the object being overlaid in the second case
339 -- Whether the address is offset within Y in the second case
342 package Address_Clause_Checks
is new Table
.Table
(
343 Table_Component_Type
=> Address_Clause_Check_Record
,
344 Table_Index_Type
=> Int
,
345 Table_Low_Bound
=> 1,
347 Table_Increment
=> 200,
348 Table_Name
=> "Address_Clause_Checks");
350 -----------------------------------------
351 -- Adjust_Record_For_Reverse_Bit_Order --
352 -----------------------------------------
354 procedure Adjust_Record_For_Reverse_Bit_Order
(R
: Entity_Id
) is
355 Max_Machine_Scalar_Size
: constant Uint
:=
357 (Standard_Long_Long_Integer_Size
);
358 -- We use this as the maximum machine scalar size
360 SSU
: constant Uint
:= UI_From_Int
(System_Storage_Unit
);
367 -- Processing here used to depend on Ada version: the behavior was
368 -- changed by AI95-0133. However this AI is a Binding interpretation,
369 -- so we now implement it even in Ada 95 mode. The original behavior
370 -- from unamended Ada 95 is still available for compatibility under
371 -- debugging switch -gnatd.
373 if Ada_Version
< Ada_2005
and then Debug_Flag_Dot_P
then
374 Adjust_Record_For_Reverse_Bit_Order_Ada_95
(R
);
378 -- For Ada 2005, we do machine scalar processing, as fully described In
379 -- AI-133. This involves gathering all components which start at the
380 -- same byte offset and processing them together. Same approach is still
381 -- valid in later versions including Ada 2012.
383 -- This first loop through components does two things. First it deals
384 -- with the case of components with component clauses whose length is
385 -- greater than the maximum machine scalar size (either accepting them
386 -- or rejecting as needed). Second, it counts the number of components
387 -- with component clauses whose length does not exceed this maximum for
391 Comp
:= First_Component_Or_Discriminant
(R
);
392 while Present
(Comp
) loop
393 CC
:= Component_Clause
(Comp
);
397 Fbit
: constant Uint
:= Static_Integer
(First_Bit
(CC
));
398 Lbit
: constant Uint
:= Static_Integer
(Last_Bit
(CC
));
401 -- Case of component with last bit >= max machine scalar
403 if Lbit
>= Max_Machine_Scalar_Size
then
405 -- This is allowed only if first bit is zero, and last bit
406 -- + 1 is a multiple of storage unit size.
408 if Fbit
= 0 and then (Lbit
+ 1) mod SSU
= 0 then
410 -- This is the case to give a warning if enabled
412 if Warn_On_Reverse_Bit_Order
then
414 ("info: multi-byte field specified with "
415 & "non-standard Bit_Order?V?", CC
);
417 if Bytes_Big_Endian
then
419 ("\bytes are not reversed "
420 & "(component is big-endian)?V?", CC
);
423 ("\bytes are not reversed "
424 & "(component is little-endian)?V?", CC
);
428 -- Give error message for RM 13.5.1(10) violation
432 ("machine scalar rules not followed for&",
433 First_Bit
(CC
), Comp
);
435 Error_Msg_Uint_1
:= Lbit
+ 1;
436 Error_Msg_Uint_2
:= Max_Machine_Scalar_Size
;
438 ("\last bit + 1 (^) exceeds maximum machine scalar "
439 & "size (^)", First_Bit
(CC
));
441 if (Lbit
+ 1) mod SSU
/= 0 then
442 Error_Msg_Uint_1
:= SSU
;
444 ("\and is not a multiple of Storage_Unit (^) "
445 & "(RM 13.5.1(10))", First_Bit
(CC
));
448 Error_Msg_Uint_1
:= Fbit
;
450 ("\and first bit (^) is non-zero "
451 & "(RM 13.4.1(10))", First_Bit
(CC
));
455 -- OK case of machine scalar related component clause. For now,
459 Num_CC
:= Num_CC
+ 1;
464 Next_Component_Or_Discriminant
(Comp
);
467 -- We need to sort the component clauses on the basis of the Position
468 -- values in the clause, so we can group clauses with the same Position
469 -- together to determine the relevant machine scalar size.
472 Comps
: array (0 .. Num_CC
) of Entity_Id
;
473 -- Array to collect component and discriminant entities. The data
474 -- starts at index 1, the 0'th entry is for the sort routine.
476 function CP_Lt
(Op1
, Op2
: Natural) return Boolean;
477 -- Compare routine for Sort
479 procedure CP_Move
(From
: Natural; To
: Natural);
480 -- Move routine for Sort
482 package Sorting
is new GNAT
.Heap_Sort_G
(CP_Move
, CP_Lt
);
485 -- Maximum last bit value of any component in this set
488 -- Corresponding machine scalar size
492 -- Start and stop positions in the component list of the set of
493 -- components with the same starting position (that constitute
494 -- components in a single machine scalar).
500 function CP_Lt
(Op1
, Op2
: Natural) return Boolean is
503 Position
(Component_Clause
(Comps
(Op1
))) <
504 Position
(Component_Clause
(Comps
(Op2
)));
511 procedure CP_Move
(From
: Natural; To
: Natural) is
513 Comps
(To
) := Comps
(From
);
516 -- Start of processing for Sort_CC
519 -- Collect the machine scalar relevant component clauses
522 Comp
:= First_Component_Or_Discriminant
(R
);
523 while Present
(Comp
) loop
525 CC
: constant Node_Id
:= Component_Clause
(Comp
);
528 -- Collect only component clauses whose last bit is less than
529 -- machine scalar size. Any component clause whose last bit
530 -- exceeds this value does not take part in machine scalar
531 -- layout considerations. The test for Error_Posted makes sure
532 -- we exclude component clauses for which we already posted an
536 and then not Error_Posted
(Last_Bit
(CC
))
537 and then Static_Integer
(Last_Bit
(CC
)) <
538 Max_Machine_Scalar_Size
540 Num_CC
:= Num_CC
+ 1;
541 Comps
(Num_CC
) := Comp
;
545 Next_Component_Or_Discriminant
(Comp
);
548 -- Sort by ascending position number
550 Sorting
.Sort
(Num_CC
);
552 -- We now have all the components whose size does not exceed the max
553 -- machine scalar value, sorted by starting position. In this loop we
554 -- gather groups of clauses starting at the same position, to process
555 -- them in accordance with AI-133.
558 while Stop
< Num_CC
loop
563 (Last_Bit
(Component_Clause
(Comps
(Start
))));
564 while Stop
< Num_CC
loop
566 (Position
(Component_Clause
(Comps
(Stop
+ 1)))) =
568 (Position
(Component_Clause
(Comps
(Stop
))))
576 (Component_Clause
(Comps
(Stop
)))));
582 -- Now we have a group of component clauses from Start to Stop
583 -- whose positions are identical, and MaxL is the maximum last
584 -- bit value of any of these components.
586 -- We need to determine the corresponding machine scalar size.
587 -- This loop assumes that machine scalar sizes are even, and that
588 -- each possible machine scalar has twice as many bits as the next
591 MSS
:= Max_Machine_Scalar_Size
;
593 and then (MSS
/ 2) >= SSU
594 and then (MSS
/ 2) > MaxL
599 -- Here is where we fix up the Component_Bit_Offset value to
600 -- account for the reverse bit order. Some examples of what needs
601 -- to be done for the case of a machine scalar size of 8 are:
603 -- First_Bit .. Last_Bit Component_Bit_Offset
615 -- The rule is that the first bit is obtained by subtracting the
616 -- old ending bit from machine scalar size - 1.
618 for C
in Start
.. Stop
loop
620 Comp
: constant Entity_Id
:= Comps
(C
);
621 CC
: constant Node_Id
:= Component_Clause
(Comp
);
623 LB
: constant Uint
:= Static_Integer
(Last_Bit
(CC
));
624 NFB
: constant Uint
:= MSS
- Uint_1
- LB
;
625 NLB
: constant Uint
:= NFB
+ Esize
(Comp
) - 1;
626 Pos
: constant Uint
:= Static_Integer
(Position
(CC
));
629 if Warn_On_Reverse_Bit_Order
then
630 Error_Msg_Uint_1
:= MSS
;
632 ("info: reverse bit order in machine scalar of "
633 & "length^?V?", First_Bit
(CC
));
634 Error_Msg_Uint_1
:= NFB
;
635 Error_Msg_Uint_2
:= NLB
;
637 if Bytes_Big_Endian
then
639 ("\big-endian range for component & is ^ .. ^?V?",
640 First_Bit
(CC
), Comp
);
643 ("\little-endian range for component & is ^ .. ^?V?",
644 First_Bit
(CC
), Comp
);
648 Set_Component_Bit_Offset
(Comp
, Pos
* SSU
+ NFB
);
649 Set_Normalized_First_Bit
(Comp
, NFB
mod SSU
);
654 end Adjust_Record_For_Reverse_Bit_Order
;
656 ------------------------------------------------
657 -- Adjust_Record_For_Reverse_Bit_Order_Ada_95 --
658 ------------------------------------------------
660 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95
(R
: Entity_Id
) is
665 -- For Ada 95, we just renumber bits within a storage unit. We do the
666 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
667 -- Ada 83, and are free to add this extension.
669 Comp
:= First_Component_Or_Discriminant
(R
);
670 while Present
(Comp
) loop
671 CC
:= Component_Clause
(Comp
);
673 -- If component clause is present, then deal with the non-default
674 -- bit order case for Ada 95 mode.
676 -- We only do this processing for the base type, and in fact that
677 -- is important, since otherwise if there are record subtypes, we
678 -- could reverse the bits once for each subtype, which is wrong.
680 if Present
(CC
) and then Ekind
(R
) = E_Record_Type
then
682 CFB
: constant Uint
:= Component_Bit_Offset
(Comp
);
683 CSZ
: constant Uint
:= Esize
(Comp
);
684 CLC
: constant Node_Id
:= Component_Clause
(Comp
);
685 Pos
: constant Node_Id
:= Position
(CLC
);
686 FB
: constant Node_Id
:= First_Bit
(CLC
);
688 Storage_Unit_Offset
: constant Uint
:=
689 CFB
/ System_Storage_Unit
;
691 Start_Bit
: constant Uint
:=
692 CFB
mod System_Storage_Unit
;
695 -- Cases where field goes over storage unit boundary
697 if Start_Bit
+ CSZ
> System_Storage_Unit
then
699 -- Allow multi-byte field but generate warning
701 if Start_Bit
mod System_Storage_Unit
= 0
702 and then CSZ
mod System_Storage_Unit
= 0
705 ("info: multi-byte field specified with non-standard "
706 & "Bit_Order?V?", CLC
);
708 if Bytes_Big_Endian
then
710 ("\bytes are not reversed "
711 & "(component is big-endian)?V?", CLC
);
714 ("\bytes are not reversed "
715 & "(component is little-endian)?V?", CLC
);
718 -- Do not allow non-contiguous field
722 ("attempt to specify non-contiguous field not "
725 ("\caused by non-standard Bit_Order specified in "
726 & "legacy Ada 95 mode", CLC
);
729 -- Case where field fits in one storage unit
732 -- Give warning if suspicious component clause
734 if Intval
(FB
) >= System_Storage_Unit
735 and then Warn_On_Reverse_Bit_Order
738 ("info: Bit_Order clause does not affect byte "
739 & "ordering?V?", Pos
);
741 Intval
(Pos
) + Intval
(FB
) /
744 ("info: position normalized to ^ before bit order "
745 & "interpreted?V?", Pos
);
748 -- Here is where we fix up the Component_Bit_Offset value
749 -- to account for the reverse bit order. Some examples of
750 -- what needs to be done are:
752 -- First_Bit .. Last_Bit Component_Bit_Offset
764 -- The rule is that the first bit is is obtained by
765 -- subtracting the old ending bit from storage_unit - 1.
767 Set_Component_Bit_Offset
(Comp
,
768 (Storage_Unit_Offset
* System_Storage_Unit
) +
769 (System_Storage_Unit
- 1) -
770 (Start_Bit
+ CSZ
- 1));
772 Set_Normalized_First_Bit
(Comp
,
773 Component_Bit_Offset
(Comp
) mod System_Storage_Unit
);
778 Next_Component_Or_Discriminant
(Comp
);
780 end Adjust_Record_For_Reverse_Bit_Order_Ada_95
;
782 -------------------------------------
783 -- Alignment_Check_For_Size_Change --
784 -------------------------------------
786 procedure Alignment_Check_For_Size_Change
(Typ
: Entity_Id
; Size
: Uint
) is
788 -- If the alignment is known, and not set by a rep clause, and is
789 -- inconsistent with the size being set, then reset it to unknown,
790 -- we assume in this case that the size overrides the inherited
791 -- alignment, and that the alignment must be recomputed.
793 if Known_Alignment
(Typ
)
794 and then not Has_Alignment_Clause
(Typ
)
795 and then Size
mod (Alignment
(Typ
) * SSU
) /= 0
797 Init_Alignment
(Typ
);
799 end Alignment_Check_For_Size_Change
;
801 -------------------------------------
802 -- Analyze_Aspects_At_Freeze_Point --
803 -------------------------------------
805 procedure Analyze_Aspects_At_Freeze_Point
(E
: Entity_Id
) is
806 procedure Analyze_Aspect_Default_Value
(ASN
: Node_Id
);
807 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
808 -- the aspect specification node ASN.
810 procedure Inherit_Delayed_Rep_Aspects
(ASN
: Node_Id
);
811 -- As discussed in the spec of Aspects (see Aspect_Delay declaration),
812 -- a derived type can inherit aspects from its parent which have been
813 -- specified at the time of the derivation using an aspect, as in:
815 -- type A is range 1 .. 10
816 -- with Size => Not_Defined_Yet;
820 -- Not_Defined_Yet : constant := 64;
822 -- In this example, the Size of A is considered to be specified prior
823 -- to the derivation, and thus inherited, even though the value is not
824 -- known at the time of derivation. To deal with this, we use two entity
825 -- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
826 -- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
827 -- the derived type (B here). If this flag is set when the derived type
828 -- is frozen, then this procedure is called to ensure proper inheritance
829 -- of all delayed aspects from the parent type. The derived type is E,
830 -- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
831 -- aspect specification node in the Rep_Item chain for the parent type.
833 procedure Make_Pragma_From_Boolean_Aspect
(ASN
: Node_Id
);
834 -- Given an aspect specification node ASN whose expression is an
835 -- optional Boolean, this routines creates the corresponding pragma
836 -- at the freezing point.
838 ----------------------------------
839 -- Analyze_Aspect_Default_Value --
840 ----------------------------------
842 procedure Analyze_Aspect_Default_Value
(ASN
: Node_Id
) is
843 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(ASN
);
844 Ent
: constant Entity_Id
:= Entity
(ASN
);
845 Expr
: constant Node_Id
:= Expression
(ASN
);
846 Id
: constant Node_Id
:= Identifier
(ASN
);
849 Error_Msg_Name_1
:= Chars
(Id
);
851 if not Is_Type
(Ent
) then
852 Error_Msg_N
("aspect% can only apply to a type", Id
);
855 elsif not Is_First_Subtype
(Ent
) then
856 Error_Msg_N
("aspect% cannot apply to subtype", Id
);
859 elsif A_Id
= Aspect_Default_Value
860 and then not Is_Scalar_Type
(Ent
)
862 Error_Msg_N
("aspect% can only be applied to scalar type", Id
);
865 elsif A_Id
= Aspect_Default_Component_Value
then
866 if not Is_Array_Type
(Ent
) then
867 Error_Msg_N
("aspect% can only be applied to array type", Id
);
870 elsif not Is_Scalar_Type
(Component_Type
(Ent
)) then
871 Error_Msg_N
("aspect% requires scalar components", Id
);
876 Set_Has_Default_Aspect
(Base_Type
(Ent
));
878 if Is_Scalar_Type
(Ent
) then
879 Set_Default_Aspect_Value
(Base_Type
(Ent
), Expr
);
881 Set_Default_Aspect_Component_Value
(Base_Type
(Ent
), Expr
);
883 end Analyze_Aspect_Default_Value
;
885 ---------------------------------
886 -- Inherit_Delayed_Rep_Aspects --
887 ---------------------------------
889 procedure Inherit_Delayed_Rep_Aspects
(ASN
: Node_Id
) is
890 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(ASN
);
891 P
: constant Entity_Id
:= Entity
(ASN
);
892 -- Entithy for parent type
895 -- Item from Rep_Item chain
900 -- Loop through delayed aspects for the parent type
903 while Present
(N
) loop
904 if Nkind
(N
) = N_Aspect_Specification
then
905 exit when Entity
(N
) /= P
;
907 if Is_Delayed_Aspect
(N
) then
908 A
:= Get_Aspect_Id
(Chars
(Identifier
(N
)));
910 -- Process delayed rep aspect. For Boolean attributes it is
911 -- not possible to cancel an attribute once set (the attempt
912 -- to use an aspect with xxx => False is an error) for a
913 -- derived type. So for those cases, we do not have to check
914 -- if a clause has been given for the derived type, since it
915 -- is harmless to set it again if it is already set.
921 when Aspect_Alignment
=>
922 if not Has_Alignment_Clause
(E
) then
923 Set_Alignment
(E
, Alignment
(P
));
928 when Aspect_Atomic
=>
929 if Is_Atomic
(P
) then
935 when Aspect_Atomic_Components
=>
936 if Has_Atomic_Components
(P
) then
937 Set_Has_Atomic_Components
(Base_Type
(E
));
942 when Aspect_Bit_Order
=>
943 if Is_Record_Type
(E
)
944 and then No
(Get_Attribute_Definition_Clause
945 (E
, Attribute_Bit_Order
))
946 and then Reverse_Bit_Order
(P
)
948 Set_Reverse_Bit_Order
(Base_Type
(E
));
953 when Aspect_Component_Size
=>
955 and then not Has_Component_Size_Clause
(E
)
958 (Base_Type
(E
), Component_Size
(P
));
963 when Aspect_Machine_Radix
=>
964 if Is_Decimal_Fixed_Point_Type
(E
)
965 and then not Has_Machine_Radix_Clause
(E
)
967 Set_Machine_Radix_10
(E
, Machine_Radix_10
(P
));
970 -- Object_Size (also Size which also sets Object_Size)
972 when Aspect_Object_Size
975 if not Has_Size_Clause
(E
)
977 No
(Get_Attribute_Definition_Clause
978 (E
, Attribute_Object_Size
))
980 Set_Esize
(E
, Esize
(P
));
986 if not Is_Packed
(E
) then
987 Set_Is_Packed
(Base_Type
(E
));
989 if Is_Bit_Packed_Array
(P
) then
990 Set_Is_Bit_Packed_Array
(Base_Type
(E
));
991 Set_Packed_Array_Impl_Type
992 (E
, Packed_Array_Impl_Type
(P
));
996 -- Scalar_Storage_Order
998 when Aspect_Scalar_Storage_Order
=>
999 if (Is_Record_Type
(E
) or else Is_Array_Type
(E
))
1000 and then No
(Get_Attribute_Definition_Clause
1001 (E
, Attribute_Scalar_Storage_Order
))
1002 and then Reverse_Storage_Order
(P
)
1004 Set_Reverse_Storage_Order
(Base_Type
(E
));
1006 -- Clear default SSO indications, since the aspect
1007 -- overrides the default.
1009 Set_SSO_Set_Low_By_Default
(Base_Type
(E
), False);
1010 Set_SSO_Set_High_By_Default
(Base_Type
(E
), False);
1015 when Aspect_Small
=>
1016 if Is_Fixed_Point_Type
(E
)
1017 and then not Has_Small_Clause
(E
)
1019 Set_Small_Value
(E
, Small_Value
(P
));
1024 when Aspect_Storage_Size
=>
1025 if (Is_Access_Type
(E
) or else Is_Task_Type
(E
))
1026 and then not Has_Storage_Size_Clause
(E
)
1028 Set_Storage_Size_Variable
1029 (Base_Type
(E
), Storage_Size_Variable
(P
));
1034 when Aspect_Value_Size
=>
1036 -- Value_Size is never inherited, it is either set by
1037 -- default, or it is explicitly set for the derived
1038 -- type. So nothing to do here.
1044 when Aspect_Volatile
=>
1045 if Is_Volatile
(P
) then
1046 Set_Is_Volatile
(E
);
1049 -- Volatile_Full_Access
1051 when Aspect_Volatile_Full_Access
=>
1052 if Is_Volatile_Full_Access
(P
) then
1053 Set_Is_Volatile_Full_Access
(E
);
1056 -- Volatile_Components
1058 when Aspect_Volatile_Components
=>
1059 if Has_Volatile_Components
(P
) then
1060 Set_Has_Volatile_Components
(Base_Type
(E
));
1063 -- That should be all the Rep Aspects
1066 pragma Assert
(Aspect_Delay
(A_Id
) /= Rep_Aspect
);
1072 N
:= Next_Rep_Item
(N
);
1074 end Inherit_Delayed_Rep_Aspects
;
1076 -------------------------------------
1077 -- Make_Pragma_From_Boolean_Aspect --
1078 -------------------------------------
1080 procedure Make_Pragma_From_Boolean_Aspect
(ASN
: Node_Id
) is
1081 Ident
: constant Node_Id
:= Identifier
(ASN
);
1082 A_Name
: constant Name_Id
:= Chars
(Ident
);
1083 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(A_Name
);
1084 Ent
: constant Entity_Id
:= Entity
(ASN
);
1085 Expr
: constant Node_Id
:= Expression
(ASN
);
1086 Loc
: constant Source_Ptr
:= Sloc
(ASN
);
1088 procedure Check_False_Aspect_For_Derived_Type
;
1089 -- This procedure checks for the case of a false aspect for a derived
1090 -- type, which improperly tries to cancel an aspect inherited from
1093 -----------------------------------------
1094 -- Check_False_Aspect_For_Derived_Type --
1095 -----------------------------------------
1097 procedure Check_False_Aspect_For_Derived_Type
is
1101 -- We are only checking derived types
1103 if not Is_Derived_Type
(E
) then
1107 Par
:= Nearest_Ancestor
(E
);
1113 if not Is_Atomic
(Par
) then
1117 when Aspect_Atomic_Components
=>
1118 if not Has_Atomic_Components
(Par
) then
1122 when Aspect_Discard_Names
=>
1123 if not Discard_Names
(Par
) then
1128 if not Is_Packed
(Par
) then
1132 when Aspect_Unchecked_Union
=>
1133 if not Is_Unchecked_Union
(Par
) then
1137 when Aspect_Volatile
=>
1138 if not Is_Volatile
(Par
) then
1142 when Aspect_Volatile_Components
=>
1143 if not Has_Volatile_Components
(Par
) then
1147 when Aspect_Volatile_Full_Access
=>
1148 if not Is_Volatile_Full_Access
(Par
) then
1156 -- Fall through means we are canceling an inherited aspect
1158 Error_Msg_Name_1
:= A_Name
;
1160 ("derived type& inherits aspect%, cannot cancel", Expr
, E
);
1161 end Check_False_Aspect_For_Derived_Type
;
1167 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1170 -- Note that we know Expr is present, because for a missing Expr
1171 -- argument, we knew it was True and did not need to delay the
1172 -- evaluation to the freeze point.
1174 if Is_False
(Static_Boolean
(Expr
)) then
1175 Check_False_Aspect_For_Derived_Type
;
1180 Pragma_Identifier
=>
1181 Make_Identifier
(Sloc
(Ident
), Chars
(Ident
)),
1182 Pragma_Argument_Associations
=> New_List
(
1183 Make_Pragma_Argument_Association
(Sloc
(Ident
),
1184 Expression
=> New_Occurrence_Of
(Ent
, Sloc
(Ident
)))));
1186 Set_From_Aspect_Specification
(Prag
, True);
1187 Set_Corresponding_Aspect
(Prag
, ASN
);
1188 Set_Aspect_Rep_Item
(ASN
, Prag
);
1189 Set_Is_Delayed_Aspect
(Prag
);
1190 Set_Parent
(Prag
, ASN
);
1192 end Make_Pragma_From_Boolean_Aspect
;
1200 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1203 -- Must be visible in current scope
1205 if not Scope_Within_Or_Same
(Current_Scope
, Scope
(E
)) then
1209 -- Look for aspect specification entries for this entity
1211 ASN
:= First_Rep_Item
(E
);
1212 while Present
(ASN
) loop
1213 if Nkind
(ASN
) = N_Aspect_Specification
then
1214 exit when Entity
(ASN
) /= E
;
1216 if Is_Delayed_Aspect
(ASN
) then
1217 A_Id
:= Get_Aspect_Id
(ASN
);
1221 -- For aspects whose expression is an optional Boolean, make
1222 -- the corresponding pragma at the freeze point.
1224 when Boolean_Aspects
1225 | Library_Unit_Aspects
1227 -- Aspects Export and Import require special handling.
1228 -- Both are by definition Boolean and may benefit from
1229 -- forward references, however their expressions are
1230 -- treated as static. In addition, the syntax of their
1231 -- corresponding pragmas requires extra "pieces" which
1232 -- may also contain forward references. To account for
1233 -- all of this, the corresponding pragma is created by
1234 -- Analyze_Aspect_Export_Import, but is not analyzed as
1235 -- the complete analysis must happen now.
1237 if A_Id
= Aspect_Export
or else A_Id
= Aspect_Import
then
1240 -- Otherwise create a corresponding pragma
1243 Make_Pragma_From_Boolean_Aspect
(ASN
);
1246 -- Special handling for aspects that don't correspond to
1247 -- pragmas/attributes.
1249 when Aspect_Default_Value
1250 | Aspect_Default_Component_Value
1252 -- Do not inherit aspect for anonymous base type of a
1253 -- scalar or array type, because they apply to the first
1254 -- subtype of the type, and will be processed when that
1255 -- first subtype is frozen.
1257 if Is_Derived_Type
(E
)
1258 and then not Comes_From_Source
(E
)
1259 and then E
/= First_Subtype
(E
)
1263 Analyze_Aspect_Default_Value
(ASN
);
1266 -- Ditto for iterator aspects, because the corresponding
1267 -- attributes may not have been analyzed yet.
1269 when Aspect_Constant_Indexing
1270 | Aspect_Default_Iterator
1271 | Aspect_Iterator_Element
1272 | Aspect_Variable_Indexing
1274 Analyze
(Expression
(ASN
));
1276 if Etype
(Expression
(ASN
)) = Any_Type
then
1278 ("\aspect must be fully defined before & is frozen",
1282 when Aspect_Iterable
=>
1283 Validate_Iterable_Aspect
(E
, ASN
);
1289 Ritem
:= Aspect_Rep_Item
(ASN
);
1291 if Present
(Ritem
) then
1297 Next_Rep_Item
(ASN
);
1300 -- This is where we inherit delayed rep aspects from our parent. Note
1301 -- that if we fell out of the above loop with ASN non-empty, it means
1302 -- we hit an aspect for an entity other than E, and it must be the
1303 -- type from which we were derived.
1305 if May_Inherit_Delayed_Rep_Aspects
(E
) then
1306 Inherit_Delayed_Rep_Aspects
(ASN
);
1308 end Analyze_Aspects_At_Freeze_Point
;
1310 -----------------------------------
1311 -- Analyze_Aspect_Specifications --
1312 -----------------------------------
1314 procedure Analyze_Aspect_Specifications
(N
: Node_Id
; E
: Entity_Id
) is
1315 procedure Decorate
(Asp
: Node_Id
; Prag
: Node_Id
);
1316 -- Establish linkages between an aspect and its corresponding pragma
1318 procedure Insert_Pragma
1320 Is_Instance
: Boolean := False);
1321 -- Subsidiary to the analysis of aspects
1328 -- Initial_Condition
1337 -- Insert pragma Prag such that it mimics the placement of a source
1338 -- pragma of the same kind. Flag Is_Generic should be set when the
1339 -- context denotes a generic instance.
1345 procedure Decorate
(Asp
: Node_Id
; Prag
: Node_Id
) is
1347 Set_Aspect_Rep_Item
(Asp
, Prag
);
1348 Set_Corresponding_Aspect
(Prag
, Asp
);
1349 Set_From_Aspect_Specification
(Prag
);
1350 Set_Parent
(Prag
, Asp
);
1357 procedure Insert_Pragma
1359 Is_Instance
: Boolean := False)
1365 Inserted
: Boolean := False;
1368 -- When the aspect appears on an entry, package, protected unit,
1369 -- subprogram, or task unit body, insert the generated pragma at the
1370 -- top of the body declarations to emulate the behavior of a source
1373 -- package body Pack with Aspect is
1375 -- package body Pack is
1378 if Nkind_In
(N
, N_Entry_Body
,
1384 Decls
:= Declarations
(N
);
1388 Set_Declarations
(N
, Decls
);
1391 Prepend_To
(Decls
, Prag
);
1393 -- When the aspect is associated with a [generic] package declaration
1394 -- insert the generated pragma at the top of the visible declarations
1395 -- to emulate the behavior of a source pragma.
1397 -- package Pack with Aspect is
1402 elsif Nkind_In
(N
, N_Generic_Package_Declaration
,
1403 N_Package_Declaration
)
1405 Decls
:= Visible_Declarations
(Specification
(N
));
1409 Set_Visible_Declarations
(Specification
(N
), Decls
);
1412 -- The visible declarations of a generic instance have the
1413 -- following structure:
1415 -- <renamings of generic formals>
1416 -- <renamings of internally-generated spec and body>
1417 -- <first source declaration>
1419 -- Insert the pragma before the first source declaration by
1420 -- skipping the instance "header" to ensure proper visibility of
1424 Decl
:= First
(Decls
);
1425 while Present
(Decl
) loop
1426 if Comes_From_Source
(Decl
) then
1427 Insert_Before
(Decl
, Prag
);
1435 -- The pragma is placed after the instance "header"
1437 if not Inserted
then
1438 Append_To
(Decls
, Prag
);
1441 -- Otherwise this is not a generic instance
1444 Prepend_To
(Decls
, Prag
);
1447 -- When the aspect is associated with a protected unit declaration,
1448 -- insert the generated pragma at the top of the visible declarations
1449 -- the emulate the behavior of a source pragma.
1451 -- protected [type] Prot with Aspect is
1453 -- protected [type] Prot is
1456 elsif Nkind
(N
) = N_Protected_Type_Declaration
then
1457 Def
:= Protected_Definition
(N
);
1461 Make_Protected_Definition
(Sloc
(N
),
1462 Visible_Declarations
=> New_List
,
1463 End_Label
=> Empty
);
1465 Set_Protected_Definition
(N
, Def
);
1468 Decls
:= Visible_Declarations
(Def
);
1472 Set_Visible_Declarations
(Def
, Decls
);
1475 Prepend_To
(Decls
, Prag
);
1477 -- When the aspect is associated with a task unit declaration, insert
1478 -- insert the generated pragma at the top of the visible declarations
1479 -- the emulate the behavior of a source pragma.
1481 -- task [type] Prot with Aspect is
1483 -- task [type] Prot is
1486 elsif Nkind
(N
) = N_Task_Type_Declaration
then
1487 Def
:= Task_Definition
(N
);
1491 Make_Task_Definition
(Sloc
(N
),
1492 Visible_Declarations
=> New_List
,
1493 End_Label
=> Empty
);
1495 Set_Task_Definition
(N
, Def
);
1498 Decls
:= Visible_Declarations
(Def
);
1502 Set_Visible_Declarations
(Def
, Decls
);
1505 Prepend_To
(Decls
, Prag
);
1507 -- When the context is a library unit, the pragma is added to the
1508 -- Pragmas_After list.
1510 elsif Nkind
(Parent
(N
)) = N_Compilation_Unit
then
1511 Aux
:= Aux_Decls_Node
(Parent
(N
));
1513 if No
(Pragmas_After
(Aux
)) then
1514 Set_Pragmas_After
(Aux
, New_List
);
1517 Prepend
(Prag
, Pragmas_After
(Aux
));
1519 -- Default, the pragma is inserted after the context
1522 Insert_After
(N
, Prag
);
1532 L
: constant List_Id
:= Aspect_Specifications
(N
);
1534 Ins_Node
: Node_Id
:= N
;
1535 -- Insert pragmas/attribute definition clause after this node when no
1536 -- delayed analysis is required.
1538 -- Start of processing for Analyze_Aspect_Specifications
1541 -- The general processing involves building an attribute definition
1542 -- clause or a pragma node that corresponds to the aspect. Then in order
1543 -- to delay the evaluation of this aspect to the freeze point, we attach
1544 -- the corresponding pragma/attribute definition clause to the aspect
1545 -- specification node, which is then placed in the Rep Item chain. In
1546 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1547 -- and we evaluate the rep item at the freeze point. When the aspect
1548 -- doesn't have a corresponding pragma/attribute definition clause, then
1549 -- its analysis is simply delayed at the freeze point.
1551 -- Some special cases don't require delay analysis, thus the aspect is
1552 -- analyzed right now.
1554 -- Note that there is a special handling for Pre, Post, Test_Case,
1555 -- Contract_Cases aspects. In these cases, we do not have to worry
1556 -- about delay issues, since the pragmas themselves deal with delay
1557 -- of visibility for the expression analysis. Thus, we just insert
1558 -- the pragma after the node N.
1560 pragma Assert
(Present
(L
));
1562 -- Loop through aspects
1564 Aspect
:= First
(L
);
1565 Aspect_Loop
: while Present
(Aspect
) loop
1566 Analyze_One_Aspect
: declare
1567 Expr
: constant Node_Id
:= Expression
(Aspect
);
1568 Id
: constant Node_Id
:= Identifier
(Aspect
);
1569 Loc
: constant Source_Ptr
:= Sloc
(Aspect
);
1570 Nam
: constant Name_Id
:= Chars
(Id
);
1571 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Nam
);
1574 Delay_Required
: Boolean;
1575 -- Set False if delay is not required
1577 Eloc
: Source_Ptr
:= No_Location
;
1578 -- Source location of expression, modified when we split PPC's. It
1579 -- is set below when Expr is present.
1581 procedure Analyze_Aspect_Convention
;
1582 -- Perform analysis of aspect Convention
1584 procedure Analyze_Aspect_Export_Import
;
1585 -- Perform analysis of aspects Export or Import
1587 procedure Analyze_Aspect_External_Link_Name
;
1588 -- Perform analysis of aspects External_Name or Link_Name
1590 procedure Analyze_Aspect_Implicit_Dereference
;
1591 -- Perform analysis of the Implicit_Dereference aspects
1593 procedure Make_Aitem_Pragma
1594 (Pragma_Argument_Associations
: List_Id
;
1595 Pragma_Name
: Name_Id
);
1596 -- This is a wrapper for Make_Pragma used for converting aspects
1597 -- to pragmas. It takes care of Sloc (set from Loc) and building
1598 -- the pragma identifier from the given name. In addition the
1599 -- flags Class_Present and Split_PPC are set from the aspect
1600 -- node, as well as Is_Ignored. This routine also sets the
1601 -- From_Aspect_Specification in the resulting pragma node to
1602 -- True, and sets Corresponding_Aspect to point to the aspect.
1603 -- The resulting pragma is assigned to Aitem.
1605 -------------------------------
1606 -- Analyze_Aspect_Convention --
1607 -------------------------------
1609 procedure Analyze_Aspect_Convention
is
1618 -- Obtain all interfacing aspects that apply to the related
1621 Get_Interfacing_Aspects
1622 (Iface_Asp
=> Aspect
,
1623 Conv_Asp
=> Dummy_1
,
1630 -- The related entity is subject to aspect Export or Import.
1631 -- Do not process Convention now because it must be analysed
1632 -- as part of Export or Import.
1634 if Present
(Expo
) or else Present
(Imp
) then
1637 -- Otherwise Convention appears by itself
1640 -- The aspect specifies a particular convention
1642 if Present
(Expr
) then
1643 Conv
:= New_Copy_Tree
(Expr
);
1645 -- Otherwise assume convention Ada
1648 Conv
:= Make_Identifier
(Loc
, Name_Ada
);
1652 -- pragma Convention (<Conv>, <E>);
1655 (Pragma_Name
=> Name_Convention
,
1656 Pragma_Argument_Associations
=> New_List
(
1657 Make_Pragma_Argument_Association
(Loc
,
1658 Expression
=> Conv
),
1659 Make_Pragma_Argument_Association
(Loc
,
1660 Expression
=> New_Occurrence_Of
(E
, Loc
))));
1662 Decorate
(Aspect
, Aitem
);
1663 Insert_Pragma
(Aitem
);
1665 end Analyze_Aspect_Convention
;
1667 ----------------------------------
1668 -- Analyze_Aspect_Export_Import --
1669 ----------------------------------
1671 procedure Analyze_Aspect_Export_Import
is
1679 -- Obtain all interfacing aspects that apply to the related
1682 Get_Interfacing_Aspects
1683 (Iface_Asp
=> Aspect
,
1684 Conv_Asp
=> Dummy_1
,
1691 -- The related entity cannot be subject to both aspects Export
1694 if Present
(Expo
) and then Present
(Imp
) then
1696 ("incompatible interfacing aspects given for &", E
);
1697 Error_Msg_Sloc
:= Sloc
(Expo
);
1698 Error_Msg_N
("\aspect `Export` #", E
);
1699 Error_Msg_Sloc
:= Sloc
(Imp
);
1700 Error_Msg_N
("\aspect `Import` #", E
);
1703 -- A variable is most likely modified from the outside. Take
1704 -- Take the optimistic approach to avoid spurious errors.
1706 if Ekind
(E
) = E_Variable
then
1707 Set_Never_Set_In_Source
(E
, False);
1710 -- Resolve the expression of an Import or Export here, and
1711 -- require it to be of type Boolean and static. This is not
1712 -- quite right, because in general this should be delayed,
1713 -- but that seems tricky for these, because normally Boolean
1714 -- aspects are replaced with pragmas at the freeze point in
1715 -- Make_Pragma_From_Boolean_Aspect.
1717 if not Present
(Expr
)
1718 or else Is_True
(Static_Boolean
(Expr
))
1720 if A_Id
= Aspect_Import
then
1721 Set_Has_Completion
(E
);
1722 Set_Is_Imported
(E
);
1724 -- An imported object cannot be explicitly initialized
1726 if Nkind
(N
) = N_Object_Declaration
1727 and then Present
(Expression
(N
))
1730 ("imported entities cannot be initialized "
1731 & "(RM B.1(24))", Expression
(N
));
1735 pragma Assert
(A_Id
= Aspect_Export
);
1736 Set_Is_Exported
(E
);
1739 -- Create the proper form of pragma Export or Import taking
1740 -- into account Conversion, External_Name, and Link_Name.
1742 Aitem
:= Build_Export_Import_Pragma
(Aspect
, E
);
1744 -- Otherwise the expression is either False or erroneous. There
1745 -- is no corresponding pragma.
1750 end Analyze_Aspect_Export_Import
;
1752 ---------------------------------------
1753 -- Analyze_Aspect_External_Link_Name --
1754 ---------------------------------------
1756 procedure Analyze_Aspect_External_Link_Name
is
1764 -- Obtain all interfacing aspects that apply to the related
1767 Get_Interfacing_Aspects
1768 (Iface_Asp
=> Aspect
,
1769 Conv_Asp
=> Dummy_1
,
1776 -- Ensure that aspect External_Name applies to aspect Export or
1779 if A_Id
= Aspect_External_Name
then
1780 if No
(Expo
) and then No
(Imp
) then
1782 ("aspect `External_Name` requires aspect `Import` or "
1783 & "`Export`", Aspect
);
1786 -- Otherwise ensure that aspect Link_Name applies to aspect
1787 -- Export or Import.
1790 pragma Assert
(A_Id
= Aspect_Link_Name
);
1791 if No
(Expo
) and then No
(Imp
) then
1793 ("aspect `Link_Name` requires aspect `Import` or "
1794 & "`Export`", Aspect
);
1797 end Analyze_Aspect_External_Link_Name
;
1799 -----------------------------------------
1800 -- Analyze_Aspect_Implicit_Dereference --
1801 -----------------------------------------
1803 procedure Analyze_Aspect_Implicit_Dereference
is
1805 Parent_Disc
: Entity_Id
;
1808 if not Is_Type
(E
) or else not Has_Discriminants
(E
) then
1810 ("aspect must apply to a type with discriminants", Expr
);
1812 elsif not Is_Entity_Name
(Expr
) then
1814 ("aspect must name a discriminant of current type", Expr
);
1817 -- Discriminant type be an anonymous access type or an
1818 -- anonymous access to subprogram.
1820 -- Missing synchronized types???
1822 Disc
:= First_Discriminant
(E
);
1823 while Present
(Disc
) loop
1824 if Chars
(Expr
) = Chars
(Disc
)
1825 and then Ekind_In
(Etype
(Disc
),
1826 E_Anonymous_Access_Subprogram_Type
,
1827 E_Anonymous_Access_Type
)
1829 Set_Has_Implicit_Dereference
(E
);
1830 Set_Has_Implicit_Dereference
(Disc
);
1834 Next_Discriminant
(Disc
);
1837 -- Error if no proper access discriminant
1840 Error_Msg_NE
("not an access discriminant of&", Expr
, E
);
1845 -- For a type extension, check whether parent has a
1846 -- reference discriminant, to verify that use is proper.
1848 if Is_Derived_Type
(E
)
1849 and then Has_Discriminants
(Etype
(E
))
1851 Parent_Disc
:= Get_Reference_Discriminant
(Etype
(E
));
1853 if Present
(Parent_Disc
)
1854 and then Corresponding_Discriminant
(Disc
) /= Parent_Disc
1857 ("reference discriminant does not match discriminant "
1858 & "of parent type", Expr
);
1861 end Analyze_Aspect_Implicit_Dereference
;
1863 -----------------------
1864 -- Make_Aitem_Pragma --
1865 -----------------------
1867 procedure Make_Aitem_Pragma
1868 (Pragma_Argument_Associations
: List_Id
;
1869 Pragma_Name
: Name_Id
)
1871 Args
: List_Id
:= Pragma_Argument_Associations
;
1874 -- We should never get here if aspect was disabled
1876 pragma Assert
(not Is_Disabled
(Aspect
));
1878 -- Certain aspects allow for an optional name or expression. Do
1879 -- not generate a pragma with empty argument association list.
1881 if No
(Args
) or else No
(Expression
(First
(Args
))) then
1889 Pragma_Argument_Associations
=> Args
,
1890 Pragma_Identifier
=>
1891 Make_Identifier
(Sloc
(Id
), Pragma_Name
),
1892 Class_Present
=> Class_Present
(Aspect
),
1893 Split_PPC
=> Split_PPC
(Aspect
));
1895 -- Set additional semantic fields
1897 if Is_Ignored
(Aspect
) then
1898 Set_Is_Ignored
(Aitem
);
1899 elsif Is_Checked
(Aspect
) then
1900 Set_Is_Checked
(Aitem
);
1903 Set_Corresponding_Aspect
(Aitem
, Aspect
);
1904 Set_From_Aspect_Specification
(Aitem
);
1905 end Make_Aitem_Pragma
;
1907 -- Start of processing for Analyze_One_Aspect
1910 -- Skip aspect if already analyzed, to avoid looping in some cases
1912 if Analyzed
(Aspect
) then
1916 -- Skip looking at aspect if it is totally disabled. Just mark it
1917 -- as such for later reference in the tree. This also sets the
1918 -- Is_Ignored and Is_Checked flags appropriately.
1920 Check_Applicable_Policy
(Aspect
);
1922 if Is_Disabled
(Aspect
) then
1926 -- Set the source location of expression, used in the case of
1927 -- a failed precondition/postcondition or invariant. Note that
1928 -- the source location of the expression is not usually the best
1929 -- choice here. For example, it gets located on the last AND
1930 -- keyword in a chain of boolean expressiond AND'ed together.
1931 -- It is best to put the message on the first character of the
1932 -- assertion, which is the effect of the First_Node call here.
1934 if Present
(Expr
) then
1935 Eloc
:= Sloc
(First_Node
(Expr
));
1938 -- Check restriction No_Implementation_Aspect_Specifications
1940 if Implementation_Defined_Aspect
(A_Id
) then
1942 (No_Implementation_Aspect_Specifications
, Aspect
);
1945 -- Check restriction No_Specification_Of_Aspect
1947 Check_Restriction_No_Specification_Of_Aspect
(Aspect
);
1949 -- Mark aspect analyzed (actual analysis is delayed till later)
1951 Set_Analyzed
(Aspect
);
1952 Set_Entity
(Aspect
, E
);
1954 -- Build the reference to E that will be used in the built pragmas
1956 Ent
:= New_Occurrence_Of
(E
, Sloc
(Id
));
1958 if A_Id
= Aspect_Attach_Handler
1959 or else A_Id
= Aspect_Interrupt_Handler
1961 -- Decorate the reference as comming from the sources and force
1962 -- its reanalysis to generate the reference to E; required to
1963 -- avoid reporting spurious warning on E as unreferenced entity
1964 -- (because aspects are not fully analyzed).
1966 Set_Comes_From_Source
(Ent
, Comes_From_Source
(Id
));
1967 Set_Entity
(Ent
, Empty
);
1972 -- Check for duplicate aspect. Note that the Comes_From_Source
1973 -- test allows duplicate Pre/Post's that we generate internally
1974 -- to escape being flagged here.
1976 if No_Duplicates_Allowed
(A_Id
) then
1978 while Anod
/= Aspect
loop
1979 if Comes_From_Source
(Aspect
)
1980 and then Same_Aspect
(A_Id
, Get_Aspect_Id
(Anod
))
1982 Error_Msg_Name_1
:= Nam
;
1983 Error_Msg_Sloc
:= Sloc
(Anod
);
1985 -- Case of same aspect specified twice
1987 if Class_Present
(Anod
) = Class_Present
(Aspect
) then
1988 if not Class_Present
(Anod
) then
1990 ("aspect% for & previously given#",
1994 ("aspect `%''Class` for & previously given#",
2004 -- Check some general restrictions on language defined aspects
2006 if not Implementation_Defined_Aspect
(A_Id
) then
2007 Error_Msg_Name_1
:= Nam
;
2009 -- Not allowed for renaming declarations. Examine the original
2010 -- node because a subprogram renaming may have been rewritten
2013 if Nkind
(Original_Node
(N
)) in N_Renaming_Declaration
then
2015 ("aspect % not allowed for renaming declaration",
2019 -- Not allowed for formal type declarations
2021 if Nkind
(N
) = N_Formal_Type_Declaration
then
2023 ("aspect % not allowed for formal type declaration",
2028 -- Copy expression for later processing by the procedures
2029 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
2031 Set_Entity
(Id
, New_Copy_Tree
(Expr
));
2033 -- Set Delay_Required as appropriate to aspect
2035 case Aspect_Delay
(A_Id
) is
2036 when Always_Delay
=>
2037 Delay_Required
:= True;
2040 Delay_Required
:= False;
2044 -- If expression has the form of an integer literal, then
2045 -- do not delay, since we know the value cannot change.
2046 -- This optimization catches most rep clause cases.
2048 -- For Boolean aspects, don't delay if no expression
2050 if A_Id
in Boolean_Aspects
and then No
(Expr
) then
2051 Delay_Required
:= False;
2053 -- For non-Boolean aspects, don't delay if integer literal,
2054 -- unless the aspect is Alignment, which affects the
2055 -- freezing of an initialized object.
2057 elsif A_Id
not in Boolean_Aspects
2058 and then A_Id
/= Aspect_Alignment
2059 and then Present
(Expr
)
2060 and then Nkind
(Expr
) = N_Integer_Literal
2062 Delay_Required
:= False;
2064 -- All other cases are delayed
2067 Delay_Required
:= True;
2068 Set_Has_Delayed_Rep_Aspects
(E
);
2072 -- Processing based on specific aspect
2075 when Aspect_Unimplemented
=>
2076 null; -- ??? temp for now
2078 -- No_Aspect should be impossible
2081 raise Program_Error
;
2083 -- Case 1: Aspects corresponding to attribute definition
2089 | Aspect_Component_Size
2090 | Aspect_Constant_Indexing
2091 | Aspect_Default_Iterator
2092 | Aspect_Dispatching_Domain
2093 | Aspect_External_Tag
2096 | Aspect_Iterator_Element
2097 | Aspect_Machine_Radix
2098 | Aspect_Object_Size
2101 | Aspect_Scalar_Storage_Order
2102 | Aspect_Secondary_Stack_Size
2103 | Aspect_Simple_Storage_Pool
2106 | Aspect_Storage_Pool
2107 | Aspect_Stream_Size
2109 | Aspect_Variable_Indexing
2112 -- Indexing aspects apply only to tagged type
2114 if (A_Id
= Aspect_Constant_Indexing
2116 A_Id
= Aspect_Variable_Indexing
)
2117 and then not (Is_Type
(E
)
2118 and then Is_Tagged_Type
(E
))
2121 ("indexing aspect can only apply to a tagged type",
2126 -- For the case of aspect Address, we don't consider that we
2127 -- know the entity is never set in the source, since it is
2128 -- is likely aliasing is occurring.
2130 -- Note: one might think that the analysis of the resulting
2131 -- attribute definition clause would take care of that, but
2132 -- that's not the case since it won't be from source.
2134 if A_Id
= Aspect_Address
then
2135 Set_Never_Set_In_Source
(E
, False);
2138 -- Correctness of the profile of a stream operation is
2139 -- verified at the freeze point, but we must detect the
2140 -- illegal specification of this aspect for a subtype now,
2141 -- to prevent malformed rep_item chains.
2143 if A_Id
= Aspect_Input
or else
2144 A_Id
= Aspect_Output
or else
2145 A_Id
= Aspect_Read
or else
2148 if not Is_First_Subtype
(E
) then
2150 ("local name must be a first subtype", Aspect
);
2153 -- If stream aspect applies to the class-wide type,
2154 -- the generated attribute definition applies to the
2155 -- class-wide type as well.
2157 elsif Class_Present
(Aspect
) then
2159 Make_Attribute_Reference
(Loc
,
2161 Attribute_Name
=> Name_Class
);
2165 -- Construct the attribute definition clause
2168 Make_Attribute_Definition_Clause
(Loc
,
2170 Chars
=> Chars
(Id
),
2171 Expression
=> Relocate_Node
(Expr
));
2173 -- If the address is specified, then we treat the entity as
2174 -- referenced, to avoid spurious warnings. This is analogous
2175 -- to what is done with an attribute definition clause, but
2176 -- here we don't want to generate a reference because this
2177 -- is the point of definition of the entity.
2179 if A_Id
= Aspect_Address
then
2183 -- Case 2: Aspects corresponding to pragmas
2185 -- Case 2a: Aspects corresponding to pragmas with two
2186 -- arguments, where the first argument is a local name
2187 -- referring to the entity, and the second argument is the
2188 -- aspect definition expression.
2190 -- Linker_Section/Suppress/Unsuppress
2192 when Aspect_Linker_Section
2197 (Pragma_Argument_Associations
=> New_List
(
2198 Make_Pragma_Argument_Association
(Loc
,
2199 Expression
=> New_Occurrence_Of
(E
, Loc
)),
2200 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2201 Expression
=> Relocate_Node
(Expr
))),
2202 Pragma_Name
=> Chars
(Id
));
2206 -- Corresponds to pragma Implemented, construct the pragma
2208 when Aspect_Synchronization
=>
2210 (Pragma_Argument_Associations
=> New_List
(
2211 Make_Pragma_Argument_Association
(Loc
,
2212 Expression
=> New_Occurrence_Of
(E
, Loc
)),
2213 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2214 Expression
=> Relocate_Node
(Expr
))),
2215 Pragma_Name
=> Name_Implemented
);
2219 when Aspect_Attach_Handler
=>
2221 (Pragma_Argument_Associations
=> New_List
(
2222 Make_Pragma_Argument_Association
(Sloc
(Ent
),
2224 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2225 Expression
=> Relocate_Node
(Expr
))),
2226 Pragma_Name
=> Name_Attach_Handler
);
2228 -- We need to insert this pragma into the tree to get proper
2229 -- processing and to look valid from a placement viewpoint.
2231 Insert_Pragma
(Aitem
);
2234 -- Dynamic_Predicate, Predicate, Static_Predicate
2236 when Aspect_Dynamic_Predicate
2238 | Aspect_Static_Predicate
2240 -- These aspects apply only to subtypes
2242 if not Is_Type
(E
) then
2244 ("predicate can only be specified for a subtype",
2248 elsif Is_Incomplete_Type
(E
) then
2250 ("predicate cannot apply to incomplete view", Aspect
);
2254 -- Construct the pragma (always a pragma Predicate, with
2255 -- flags recording whether it is static/dynamic). We also
2256 -- set flags recording this in the type itself.
2259 (Pragma_Argument_Associations
=> New_List
(
2260 Make_Pragma_Argument_Association
(Sloc
(Ent
),
2262 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2263 Expression
=> Relocate_Node
(Expr
))),
2264 Pragma_Name
=> Name_Predicate
);
2266 -- Mark type has predicates, and remember what kind of
2267 -- aspect lead to this predicate (we need this to access
2268 -- the right set of check policies later on).
2270 Set_Has_Predicates
(E
);
2272 if A_Id
= Aspect_Dynamic_Predicate
then
2273 Set_Has_Dynamic_Predicate_Aspect
(E
);
2275 -- If the entity has a dynamic predicate, any inherited
2276 -- static predicate becomes dynamic as well, and the
2277 -- predicate function includes the conjunction of both.
2279 Set_Has_Static_Predicate_Aspect
(E
, False);
2281 elsif A_Id
= Aspect_Static_Predicate
then
2282 Set_Has_Static_Predicate_Aspect
(E
);
2285 -- If the type is private, indicate that its completion
2286 -- has a freeze node, because that is the one that will
2287 -- be visible at freeze time.
2289 if Is_Private_Type
(E
) and then Present
(Full_View
(E
)) then
2290 Set_Has_Predicates
(Full_View
(E
));
2292 if A_Id
= Aspect_Dynamic_Predicate
then
2293 Set_Has_Dynamic_Predicate_Aspect
(Full_View
(E
));
2294 elsif A_Id
= Aspect_Static_Predicate
then
2295 Set_Has_Static_Predicate_Aspect
(Full_View
(E
));
2298 Set_Has_Delayed_Aspects
(Full_View
(E
));
2299 Ensure_Freeze_Node
(Full_View
(E
));
2302 -- Predicate_Failure
2304 when Aspect_Predicate_Failure
=>
2306 -- This aspect applies only to subtypes
2308 if not Is_Type
(E
) then
2310 ("predicate can only be specified for a subtype",
2314 elsif Is_Incomplete_Type
(E
) then
2316 ("predicate cannot apply to incomplete view", Aspect
);
2320 -- Construct the pragma
2323 (Pragma_Argument_Associations
=> New_List
(
2324 Make_Pragma_Argument_Association
(Sloc
(Ent
),
2326 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2327 Expression
=> Relocate_Node
(Expr
))),
2328 Pragma_Name
=> Name_Predicate_Failure
);
2330 Set_Has_Predicates
(E
);
2332 -- If the type is private, indicate that its completion
2333 -- has a freeze node, because that is the one that will
2334 -- be visible at freeze time.
2336 if Is_Private_Type
(E
) and then Present
(Full_View
(E
)) then
2337 Set_Has_Predicates
(Full_View
(E
));
2338 Set_Has_Delayed_Aspects
(Full_View
(E
));
2339 Ensure_Freeze_Node
(Full_View
(E
));
2342 -- Case 2b: Aspects corresponding to pragmas with two
2343 -- arguments, where the second argument is a local name
2344 -- referring to the entity, and the first argument is the
2345 -- aspect definition expression.
2349 when Aspect_Convention
=>
2350 Analyze_Aspect_Convention
;
2353 -- External_Name, Link_Name
2355 when Aspect_External_Name
2358 Analyze_Aspect_External_Link_Name
;
2361 -- CPU, Interrupt_Priority, Priority
2363 -- These three aspects can be specified for a subprogram spec
2364 -- or body, in which case we analyze the expression and export
2365 -- the value of the aspect.
2367 -- Previously, we generated an equivalent pragma for bodies
2368 -- (note that the specs cannot contain these pragmas). The
2369 -- pragma was inserted ahead of local declarations, rather than
2370 -- after the body. This leads to a certain duplication between
2371 -- the processing performed for the aspect and the pragma, but
2372 -- given the straightforward handling required it is simpler
2373 -- to duplicate than to translate the aspect in the spec into
2374 -- a pragma in the declarative part of the body.
2377 | Aspect_Interrupt_Priority
2380 if Nkind_In
(N
, N_Subprogram_Body
,
2381 N_Subprogram_Declaration
)
2383 -- Analyze the aspect expression
2385 Analyze_And_Resolve
(Expr
, Standard_Integer
);
2387 -- Interrupt_Priority aspect not allowed for main
2388 -- subprograms. RM D.1 does not forbid this explicitly,
2389 -- but RM J.15.11(6/3) does not permit pragma
2390 -- Interrupt_Priority for subprograms.
2392 if A_Id
= Aspect_Interrupt_Priority
then
2394 ("Interrupt_Priority aspect cannot apply to "
2395 & "subprogram", Expr
);
2397 -- The expression must be static
2399 elsif not Is_OK_Static_Expression
(Expr
) then
2400 Flag_Non_Static_Expr
2401 ("aspect requires static expression!", Expr
);
2403 -- Check whether this is the main subprogram. Issue a
2404 -- warning only if it is obviously not a main program
2405 -- (when it has parameters or when the subprogram is
2406 -- within a package).
2408 elsif Present
(Parameter_Specifications
2409 (Specification
(N
)))
2410 or else not Is_Compilation_Unit
(Defining_Entity
(N
))
2412 -- See RM D.1(14/3) and D.16(12/3)
2415 ("aspect applied to subprogram other than the "
2416 & "main subprogram has no effect??", Expr
);
2418 -- Otherwise check in range and export the value
2420 -- For the CPU aspect
2422 elsif A_Id
= Aspect_CPU
then
2423 if Is_In_Range
(Expr
, RTE
(RE_CPU_Range
)) then
2425 -- Value is correct so we export the value to make
2426 -- it available at execution time.
2429 (Main_Unit
, UI_To_Int
(Expr_Value
(Expr
)));
2433 ("main subprogram CPU is out of range", Expr
);
2436 -- For the Priority aspect
2438 elsif A_Id
= Aspect_Priority
then
2439 if Is_In_Range
(Expr
, RTE
(RE_Priority
)) then
2441 -- Value is correct so we export the value to make
2442 -- it available at execution time.
2445 (Main_Unit
, UI_To_Int
(Expr_Value
(Expr
)));
2447 -- Ignore pragma if Relaxed_RM_Semantics to support
2448 -- other targets/non GNAT compilers.
2450 elsif not Relaxed_RM_Semantics
then
2452 ("main subprogram priority is out of range",
2457 -- Load an arbitrary entity from System.Tasking.Stages
2458 -- or System.Tasking.Restricted.Stages (depending on
2459 -- the supported profile) to make sure that one of these
2460 -- packages is implicitly with'ed, since we need to have
2461 -- the tasking run time active for the pragma Priority to
2462 -- have any effect. Previously we with'ed the package
2463 -- System.Tasking, but this package does not trigger the
2464 -- required initialization of the run-time library.
2467 Discard
: Entity_Id
;
2469 if Restricted_Profile
then
2470 Discard
:= RTE
(RE_Activate_Restricted_Tasks
);
2472 Discard
:= RTE
(RE_Activate_Tasks
);
2476 -- Handling for these aspects in subprograms is complete
2480 -- For tasks pass the aspect as an attribute
2484 Make_Attribute_Definition_Clause
(Loc
,
2486 Chars
=> Chars
(Id
),
2487 Expression
=> Relocate_Node
(Expr
));
2492 when Aspect_Warnings
=>
2494 (Pragma_Argument_Associations
=> New_List
(
2495 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2496 Expression
=> Relocate_Node
(Expr
)),
2497 Make_Pragma_Argument_Association
(Loc
,
2498 Expression
=> New_Occurrence_Of
(E
, Loc
))),
2499 Pragma_Name
=> Chars
(Id
));
2501 Decorate
(Aspect
, Aitem
);
2502 Insert_Pragma
(Aitem
);
2505 -- Case 2c: Aspects corresponding to pragmas with three
2508 -- Invariant aspects have a first argument that references the
2509 -- entity, a second argument that is the expression and a third
2510 -- argument that is an appropriate message.
2512 -- Invariant, Type_Invariant
2514 when Aspect_Invariant
2515 | Aspect_Type_Invariant
2517 -- Analysis of the pragma will verify placement legality:
2518 -- an invariant must apply to a private type, or appear in
2519 -- the private part of a spec and apply to a completion.
2522 (Pragma_Argument_Associations
=> New_List
(
2523 Make_Pragma_Argument_Association
(Sloc
(Ent
),
2525 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2526 Expression
=> Relocate_Node
(Expr
))),
2527 Pragma_Name
=> Name_Invariant
);
2529 -- Add message unless exception messages are suppressed
2531 if not Opt
.Exception_Locations_Suppressed
then
2532 Append_To
(Pragma_Argument_Associations
(Aitem
),
2533 Make_Pragma_Argument_Association
(Eloc
,
2534 Chars
=> Name_Message
,
2536 Make_String_Literal
(Eloc
,
2537 Strval
=> "failed invariant from "
2538 & Build_Location_String
(Eloc
))));
2541 -- For Invariant case, insert immediately after the entity
2542 -- declaration. We do not have to worry about delay issues
2543 -- since the pragma processing takes care of this.
2545 Delay_Required
:= False;
2547 -- Case 2d : Aspects that correspond to a pragma with one
2552 -- Aspect Abstract_State introduces implicit declarations for
2553 -- all state abstraction entities it defines. To emulate this
2554 -- behavior, insert the pragma at the beginning of the visible
2555 -- declarations of the related package so that it is analyzed
2558 when Aspect_Abstract_State
=> Abstract_State
: declare
2559 Context
: Node_Id
:= N
;
2562 -- When aspect Abstract_State appears on a generic package,
2563 -- it is propageted to the package instance. The context in
2564 -- this case is the instance spec.
2566 if Nkind
(Context
) = N_Package_Instantiation
then
2567 Context
:= Instance_Spec
(Context
);
2570 if Nkind_In
(Context
, N_Generic_Package_Declaration
,
2571 N_Package_Declaration
)
2574 (Pragma_Argument_Associations
=> New_List
(
2575 Make_Pragma_Argument_Association
(Loc
,
2576 Expression
=> Relocate_Node
(Expr
))),
2577 Pragma_Name
=> Name_Abstract_State
);
2579 Decorate
(Aspect
, Aitem
);
2583 Is_Generic_Instance
(Defining_Entity
(Context
)));
2587 ("aspect & must apply to a package declaration",
2594 -- Aspect Async_Readers is never delayed because it is
2595 -- equivalent to a source pragma which appears after the
2596 -- related object declaration.
2598 when Aspect_Async_Readers
=>
2600 (Pragma_Argument_Associations
=> New_List
(
2601 Make_Pragma_Argument_Association
(Loc
,
2602 Expression
=> Relocate_Node
(Expr
))),
2603 Pragma_Name
=> Name_Async_Readers
);
2605 Decorate
(Aspect
, Aitem
);
2606 Insert_Pragma
(Aitem
);
2609 -- Aspect Async_Writers is never delayed because it is
2610 -- equivalent to a source pragma which appears after the
2611 -- related object declaration.
2613 when Aspect_Async_Writers
=>
2615 (Pragma_Argument_Associations
=> New_List
(
2616 Make_Pragma_Argument_Association
(Loc
,
2617 Expression
=> Relocate_Node
(Expr
))),
2618 Pragma_Name
=> Name_Async_Writers
);
2620 Decorate
(Aspect
, Aitem
);
2621 Insert_Pragma
(Aitem
);
2624 -- Aspect Constant_After_Elaboration is never delayed because
2625 -- it is equivalent to a source pragma which appears after the
2626 -- related object declaration.
2628 when Aspect_Constant_After_Elaboration
=>
2630 (Pragma_Argument_Associations
=> New_List
(
2631 Make_Pragma_Argument_Association
(Loc
,
2632 Expression
=> Relocate_Node
(Expr
))),
2634 Name_Constant_After_Elaboration
);
2636 Decorate
(Aspect
, Aitem
);
2637 Insert_Pragma
(Aitem
);
2640 -- Aspect Default_Internal_Condition is never delayed because
2641 -- it is equivalent to a source pragma which appears after the
2642 -- related private type. To deal with forward references, the
2643 -- generated pragma is stored in the rep chain of the related
2644 -- private type as types do not carry contracts. The pragma is
2645 -- wrapped inside of a procedure at the freeze point of the
2646 -- private type's full view.
2648 when Aspect_Default_Initial_Condition
=>
2650 (Pragma_Argument_Associations
=> New_List
(
2651 Make_Pragma_Argument_Association
(Loc
,
2652 Expression
=> Relocate_Node
(Expr
))),
2654 Name_Default_Initial_Condition
);
2656 Decorate
(Aspect
, Aitem
);
2657 Insert_Pragma
(Aitem
);
2660 -- Default_Storage_Pool
2662 when Aspect_Default_Storage_Pool
=>
2664 (Pragma_Argument_Associations
=> New_List
(
2665 Make_Pragma_Argument_Association
(Loc
,
2666 Expression
=> Relocate_Node
(Expr
))),
2668 Name_Default_Storage_Pool
);
2670 Decorate
(Aspect
, Aitem
);
2671 Insert_Pragma
(Aitem
);
2676 -- Aspect Depends is never delayed because it is equivalent to
2677 -- a source pragma which appears after the related subprogram.
2678 -- To deal with forward references, the generated pragma is
2679 -- stored in the contract of the related subprogram and later
2680 -- analyzed at the end of the declarative region. See routine
2681 -- Analyze_Depends_In_Decl_Part for details.
2683 when Aspect_Depends
=>
2685 (Pragma_Argument_Associations
=> New_List
(
2686 Make_Pragma_Argument_Association
(Loc
,
2687 Expression
=> Relocate_Node
(Expr
))),
2688 Pragma_Name
=> Name_Depends
);
2690 Decorate
(Aspect
, Aitem
);
2691 Insert_Pragma
(Aitem
);
2694 -- Aspect Effecitve_Reads is never delayed because it is
2695 -- equivalent to a source pragma which appears after the
2696 -- related object declaration.
2698 when Aspect_Effective_Reads
=>
2700 (Pragma_Argument_Associations
=> New_List
(
2701 Make_Pragma_Argument_Association
(Loc
,
2702 Expression
=> Relocate_Node
(Expr
))),
2703 Pragma_Name
=> Name_Effective_Reads
);
2705 Decorate
(Aspect
, Aitem
);
2706 Insert_Pragma
(Aitem
);
2709 -- Aspect Effective_Writes is never delayed because it is
2710 -- equivalent to a source pragma which appears after the
2711 -- related object declaration.
2713 when Aspect_Effective_Writes
=>
2715 (Pragma_Argument_Associations
=> New_List
(
2716 Make_Pragma_Argument_Association
(Loc
,
2717 Expression
=> Relocate_Node
(Expr
))),
2718 Pragma_Name
=> Name_Effective_Writes
);
2720 Decorate
(Aspect
, Aitem
);
2721 Insert_Pragma
(Aitem
);
2724 -- Aspect Extensions_Visible is never delayed because it is
2725 -- equivalent to a source pragma which appears after the
2726 -- related subprogram.
2728 when Aspect_Extensions_Visible
=>
2730 (Pragma_Argument_Associations
=> New_List
(
2731 Make_Pragma_Argument_Association
(Loc
,
2732 Expression
=> Relocate_Node
(Expr
))),
2733 Pragma_Name
=> Name_Extensions_Visible
);
2735 Decorate
(Aspect
, Aitem
);
2736 Insert_Pragma
(Aitem
);
2739 -- Aspect Ghost is never delayed because it is equivalent to a
2740 -- source pragma which appears at the top of [generic] package
2741 -- declarations or after an object, a [generic] subprogram, or
2742 -- a type declaration.
2744 when Aspect_Ghost
=>
2746 (Pragma_Argument_Associations
=> New_List
(
2747 Make_Pragma_Argument_Association
(Loc
,
2748 Expression
=> Relocate_Node
(Expr
))),
2749 Pragma_Name
=> Name_Ghost
);
2751 Decorate
(Aspect
, Aitem
);
2752 Insert_Pragma
(Aitem
);
2757 -- Aspect Global is never delayed because it is equivalent to
2758 -- a source pragma which appears after the related subprogram.
2759 -- To deal with forward references, the generated pragma is
2760 -- stored in the contract of the related subprogram and later
2761 -- analyzed at the end of the declarative region. See routine
2762 -- Analyze_Global_In_Decl_Part for details.
2764 when Aspect_Global
=>
2766 (Pragma_Argument_Associations
=> New_List
(
2767 Make_Pragma_Argument_Association
(Loc
,
2768 Expression
=> Relocate_Node
(Expr
))),
2769 Pragma_Name
=> Name_Global
);
2771 Decorate
(Aspect
, Aitem
);
2772 Insert_Pragma
(Aitem
);
2775 -- Initial_Condition
2777 -- Aspect Initial_Condition is never delayed because it is
2778 -- equivalent to a source pragma which appears after the
2779 -- related package. To deal with forward references, the
2780 -- generated pragma is stored in the contract of the related
2781 -- package and later analyzed at the end of the declarative
2782 -- region. See routine Analyze_Initial_Condition_In_Decl_Part
2785 when Aspect_Initial_Condition
=> Initial_Condition
: declare
2786 Context
: Node_Id
:= N
;
2789 -- When aspect Initial_Condition appears on a generic
2790 -- package, it is propageted to the package instance. The
2791 -- context in this case is the instance spec.
2793 if Nkind
(Context
) = N_Package_Instantiation
then
2794 Context
:= Instance_Spec
(Context
);
2797 if Nkind_In
(Context
, N_Generic_Package_Declaration
,
2798 N_Package_Declaration
)
2801 (Pragma_Argument_Associations
=> New_List
(
2802 Make_Pragma_Argument_Association
(Loc
,
2803 Expression
=> Relocate_Node
(Expr
))),
2805 Name_Initial_Condition
);
2807 Decorate
(Aspect
, Aitem
);
2811 Is_Generic_Instance
(Defining_Entity
(Context
)));
2813 -- Otherwise the context is illegal
2817 ("aspect & must apply to a package declaration",
2822 end Initial_Condition
;
2826 -- Aspect Initializes is never delayed because it is equivalent
2827 -- to a source pragma appearing after the related package. To
2828 -- deal with forward references, the generated pragma is stored
2829 -- in the contract of the related package and later analyzed at
2830 -- the end of the declarative region. For details, see routine
2831 -- Analyze_Initializes_In_Decl_Part.
2833 when Aspect_Initializes
=> Initializes
: declare
2834 Context
: Node_Id
:= N
;
2837 -- When aspect Initializes appears on a generic package,
2838 -- it is propageted to the package instance. The context
2839 -- in this case is the instance spec.
2841 if Nkind
(Context
) = N_Package_Instantiation
then
2842 Context
:= Instance_Spec
(Context
);
2845 if Nkind_In
(Context
, N_Generic_Package_Declaration
,
2846 N_Package_Declaration
)
2849 (Pragma_Argument_Associations
=> New_List
(
2850 Make_Pragma_Argument_Association
(Loc
,
2851 Expression
=> Relocate_Node
(Expr
))),
2852 Pragma_Name
=> Name_Initializes
);
2854 Decorate
(Aspect
, Aitem
);
2858 Is_Generic_Instance
(Defining_Entity
(Context
)));
2860 -- Otherwise the context is illegal
2864 ("aspect & must apply to a package declaration",
2873 when Aspect_Max_Queue_Length
=>
2875 (Pragma_Argument_Associations
=> New_List
(
2876 Make_Pragma_Argument_Association
(Loc
,
2877 Expression
=> Relocate_Node
(Expr
))),
2878 Pragma_Name
=> Name_Max_Queue_Length
);
2880 Decorate
(Aspect
, Aitem
);
2881 Insert_Pragma
(Aitem
);
2886 when Aspect_Obsolescent
=> declare
2894 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2895 Expression
=> Relocate_Node
(Expr
)));
2899 (Pragma_Argument_Associations
=> Args
,
2900 Pragma_Name
=> Chars
(Id
));
2905 when Aspect_Part_Of
=>
2906 if Nkind_In
(N
, N_Object_Declaration
,
2907 N_Package_Instantiation
)
2908 or else Is_Single_Concurrent_Type_Declaration
(N
)
2911 (Pragma_Argument_Associations
=> New_List
(
2912 Make_Pragma_Argument_Association
(Loc
,
2913 Expression
=> Relocate_Node
(Expr
))),
2914 Pragma_Name
=> Name_Part_Of
);
2916 Decorate
(Aspect
, Aitem
);
2917 Insert_Pragma
(Aitem
);
2921 ("aspect & must apply to package instantiation, "
2922 & "object, single protected type or single task type",
2930 when Aspect_SPARK_Mode
=>
2932 (Pragma_Argument_Associations
=> New_List
(
2933 Make_Pragma_Argument_Association
(Loc
,
2934 Expression
=> Relocate_Node
(Expr
))),
2935 Pragma_Name
=> Name_SPARK_Mode
);
2937 Decorate
(Aspect
, Aitem
);
2938 Insert_Pragma
(Aitem
);
2943 -- Aspect Refined_Depends is never delayed because it is
2944 -- equivalent to a source pragma which appears in the
2945 -- declarations of the related subprogram body. To deal with
2946 -- forward references, the generated pragma is stored in the
2947 -- contract of the related subprogram body and later analyzed
2948 -- at the end of the declarative region. For details, see
2949 -- routine Analyze_Refined_Depends_In_Decl_Part.
2951 when Aspect_Refined_Depends
=>
2953 (Pragma_Argument_Associations
=> New_List
(
2954 Make_Pragma_Argument_Association
(Loc
,
2955 Expression
=> Relocate_Node
(Expr
))),
2956 Pragma_Name
=> Name_Refined_Depends
);
2958 Decorate
(Aspect
, Aitem
);
2959 Insert_Pragma
(Aitem
);
2964 -- Aspect Refined_Global is never delayed because it is
2965 -- equivalent to a source pragma which appears in the
2966 -- declarations of the related subprogram body. To deal with
2967 -- forward references, the generated pragma is stored in the
2968 -- contract of the related subprogram body and later analyzed
2969 -- at the end of the declarative region. For details, see
2970 -- routine Analyze_Refined_Global_In_Decl_Part.
2972 when Aspect_Refined_Global
=>
2974 (Pragma_Argument_Associations
=> New_List
(
2975 Make_Pragma_Argument_Association
(Loc
,
2976 Expression
=> Relocate_Node
(Expr
))),
2977 Pragma_Name
=> Name_Refined_Global
);
2979 Decorate
(Aspect
, Aitem
);
2980 Insert_Pragma
(Aitem
);
2985 when Aspect_Refined_Post
=>
2987 (Pragma_Argument_Associations
=> New_List
(
2988 Make_Pragma_Argument_Association
(Loc
,
2989 Expression
=> Relocate_Node
(Expr
))),
2990 Pragma_Name
=> Name_Refined_Post
);
2992 Decorate
(Aspect
, Aitem
);
2993 Insert_Pragma
(Aitem
);
2998 when Aspect_Refined_State
=>
3000 -- The corresponding pragma for Refined_State is inserted in
3001 -- the declarations of the related package body. This action
3002 -- synchronizes both the source and from-aspect versions of
3005 if Nkind
(N
) = N_Package_Body
then
3007 (Pragma_Argument_Associations
=> New_List
(
3008 Make_Pragma_Argument_Association
(Loc
,
3009 Expression
=> Relocate_Node
(Expr
))),
3010 Pragma_Name
=> Name_Refined_State
);
3012 Decorate
(Aspect
, Aitem
);
3013 Insert_Pragma
(Aitem
);
3015 -- Otherwise the context is illegal
3019 ("aspect & must apply to a package body", Aspect
, Id
);
3024 -- Relative_Deadline
3026 when Aspect_Relative_Deadline
=>
3028 (Pragma_Argument_Associations
=> New_List
(
3029 Make_Pragma_Argument_Association
(Loc
,
3030 Expression
=> Relocate_Node
(Expr
))),
3031 Pragma_Name
=> Name_Relative_Deadline
);
3033 -- If the aspect applies to a task, the corresponding pragma
3034 -- must appear within its declarations, not after.
3036 if Nkind
(N
) = N_Task_Type_Declaration
then
3042 if No
(Task_Definition
(N
)) then
3043 Set_Task_Definition
(N
,
3044 Make_Task_Definition
(Loc
,
3045 Visible_Declarations
=> New_List
,
3046 End_Label
=> Empty
));
3049 Def
:= Task_Definition
(N
);
3050 V
:= Visible_Declarations
(Def
);
3051 if not Is_Empty_List
(V
) then
3052 Insert_Before
(First
(V
), Aitem
);
3055 Set_Visible_Declarations
(Def
, New_List
(Aitem
));
3062 -- Aspect Volatile_Function is never delayed because it is
3063 -- equivalent to a source pragma which appears after the
3064 -- related subprogram.
3066 when Aspect_Volatile_Function
=>
3068 (Pragma_Argument_Associations
=> New_List
(
3069 Make_Pragma_Argument_Association
(Loc
,
3070 Expression
=> Relocate_Node
(Expr
))),
3071 Pragma_Name
=> Name_Volatile_Function
);
3073 Decorate
(Aspect
, Aitem
);
3074 Insert_Pragma
(Aitem
);
3077 -- Case 2e: Annotate aspect
3079 when Aspect_Annotate
=>
3086 -- The argument can be a single identifier
3088 if Nkind
(Expr
) = N_Identifier
then
3090 -- One level of parens is allowed
3092 if Paren_Count
(Expr
) > 1 then
3093 Error_Msg_F
("extra parentheses ignored", Expr
);
3096 Set_Paren_Count
(Expr
, 0);
3098 -- Add the single item to the list
3100 Args
:= New_List
(Expr
);
3102 -- Otherwise we must have an aggregate
3104 elsif Nkind
(Expr
) = N_Aggregate
then
3106 -- Must be positional
3108 if Present
(Component_Associations
(Expr
)) then
3110 ("purely positional aggregate required", Expr
);
3114 -- Must not be parenthesized
3116 if Paren_Count
(Expr
) /= 0 then
3117 Error_Msg_F
("extra parentheses ignored", Expr
);
3120 -- List of arguments is list of aggregate expressions
3122 Args
:= Expressions
(Expr
);
3124 -- Anything else is illegal
3127 Error_Msg_F
("wrong form for Annotate aspect", Expr
);
3131 -- Prepare pragma arguments
3134 Arg
:= First
(Args
);
3135 while Present
(Arg
) loop
3137 Make_Pragma_Argument_Association
(Sloc
(Arg
),
3138 Expression
=> Relocate_Node
(Arg
)));
3143 Make_Pragma_Argument_Association
(Sloc
(Ent
),
3144 Chars
=> Name_Entity
,
3145 Expression
=> Ent
));
3148 (Pragma_Argument_Associations
=> Pargs
,
3149 Pragma_Name
=> Name_Annotate
);
3152 -- Case 3 : Aspects that don't correspond to pragma/attribute
3153 -- definition clause.
3155 -- Case 3a: The aspects listed below don't correspond to
3156 -- pragmas/attributes but do require delayed analysis.
3158 -- Default_Value can only apply to a scalar type
3160 when Aspect_Default_Value
=>
3161 if not Is_Scalar_Type
(E
) then
3163 ("aspect Default_Value must apply to a scalar type", N
);
3168 -- Default_Component_Value can only apply to an array type
3169 -- with scalar components.
3171 when Aspect_Default_Component_Value
=>
3172 if not (Is_Array_Type
(E
)
3173 and then Is_Scalar_Type
(Component_Type
(E
)))
3176 ("aspect Default_Component_Value can only apply to an "
3177 & "array of scalar components", N
);
3182 -- Case 3b: The aspects listed below don't correspond to
3183 -- pragmas/attributes and don't need delayed analysis.
3185 -- Implicit_Dereference
3187 -- For Implicit_Dereference, External_Name and Link_Name, only
3188 -- the legality checks are done during the analysis, thus no
3189 -- delay is required.
3191 when Aspect_Implicit_Dereference
=>
3192 Analyze_Aspect_Implicit_Dereference
;
3197 when Aspect_Dimension
=>
3198 Analyze_Aspect_Dimension
(N
, Id
, Expr
);
3203 when Aspect_Dimension_System
=>
3204 Analyze_Aspect_Dimension_System
(N
, Id
, Expr
);
3207 -- Case 4: Aspects requiring special handling
3209 -- Pre/Post/Test_Case/Contract_Cases whose corresponding
3210 -- pragmas take care of the delay.
3214 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
3215 -- with a first argument that is the expression, and a second
3216 -- argument that is an informative message if the test fails.
3217 -- This is inserted right after the declaration, to get the
3218 -- required pragma placement. The processing for the pragmas
3219 -- takes care of the required delay.
3221 when Pre_Post_Aspects
=> Pre_Post
: declare
3225 if A_Id
= Aspect_Pre
or else A_Id
= Aspect_Precondition
then
3226 Pname
:= Name_Precondition
;
3228 Pname
:= Name_Postcondition
;
3231 -- Check that the class-wide predicate cannot be applied to
3232 -- an operation of a synchronized type that is not a tagged
3233 -- type. Other legality checks are performed when analyzing
3234 -- the contract of the operation.
3236 if Class_Present
(Aspect
)
3237 and then Is_Concurrent_Type
(Current_Scope
)
3238 and then not Is_Tagged_Type
(Current_Scope
)
3239 and then Ekind_In
(E
, E_Entry
, E_Function
, E_Procedure
)
3241 Error_Msg_Name_1
:= Original_Aspect_Pragma_Name
(Aspect
);
3243 ("aspect % can only be specified for a primitive "
3244 & "operation of a tagged type", Aspect
);
3249 -- If the expressions is of the form A and then B, then
3250 -- we generate separate Pre/Post aspects for the separate
3251 -- clauses. Since we allow multiple pragmas, there is no
3252 -- problem in allowing multiple Pre/Post aspects internally.
3253 -- These should be treated in reverse order (B first and
3254 -- A second) since they are later inserted just after N in
3255 -- the order they are treated. This way, the pragma for A
3256 -- ends up preceding the pragma for B, which may have an
3257 -- importance for the error raised (either constraint error
3258 -- or precondition error).
3260 -- We do not do this for Pre'Class, since we have to put
3261 -- these conditions together in a complex OR expression.
3263 -- We do not do this in ASIS mode, as ASIS relies on the
3264 -- original node representing the complete expression, when
3265 -- retrieving it through the source aspect table.
3268 and then (Pname
= Name_Postcondition
3269 or else not Class_Present
(Aspect
))
3271 while Nkind
(Expr
) = N_And_Then
loop
3272 Insert_After
(Aspect
,
3273 Make_Aspect_Specification
(Sloc
(Left_Opnd
(Expr
)),
3274 Identifier
=> Identifier
(Aspect
),
3275 Expression
=> Relocate_Node
(Left_Opnd
(Expr
)),
3276 Class_Present
=> Class_Present
(Aspect
),
3277 Split_PPC
=> True));
3278 Rewrite
(Expr
, Relocate_Node
(Right_Opnd
(Expr
)));
3279 Eloc
:= Sloc
(Expr
);
3283 -- Build the precondition/postcondition pragma
3285 -- Add note about why we do NOT need Copy_Tree here???
3288 (Pragma_Argument_Associations
=> New_List
(
3289 Make_Pragma_Argument_Association
(Eloc
,
3290 Chars
=> Name_Check
,
3291 Expression
=> Relocate_Node
(Expr
))),
3292 Pragma_Name
=> Pname
);
3294 -- Add message unless exception messages are suppressed
3296 if not Opt
.Exception_Locations_Suppressed
then
3297 Append_To
(Pragma_Argument_Associations
(Aitem
),
3298 Make_Pragma_Argument_Association
(Eloc
,
3299 Chars
=> Name_Message
,
3301 Make_String_Literal
(Eloc
,
3303 & Get_Name_String
(Pname
)
3305 & Build_Location_String
(Eloc
))));
3308 Set_Is_Delayed_Aspect
(Aspect
);
3310 -- For Pre/Post cases, insert immediately after the entity
3311 -- declaration, since that is the required pragma placement.
3312 -- Note that for these aspects, we do not have to worry
3313 -- about delay issues, since the pragmas themselves deal
3314 -- with delay of visibility for the expression analysis.
3316 Insert_Pragma
(Aitem
);
3323 when Aspect_Test_Case
=> Test_Case
: declare
3325 Comp_Expr
: Node_Id
;
3326 Comp_Assn
: Node_Id
;
3332 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
3333 Error_Msg_Name_1
:= Nam
;
3334 Error_Msg_N
("incorrect placement of aspect `%`", E
);
3338 if Nkind
(Expr
) /= N_Aggregate
then
3339 Error_Msg_Name_1
:= Nam
;
3341 ("wrong syntax for aspect `%` for &", Id
, E
);
3345 -- Make pragma expressions refer to the original aspect
3346 -- expressions through the Original_Node link. This is used
3347 -- in semantic analysis for ASIS mode, so that the original
3348 -- expression also gets analyzed.
3350 Comp_Expr
:= First
(Expressions
(Expr
));
3351 while Present
(Comp_Expr
) loop
3352 New_Expr
:= Relocate_Node
(Comp_Expr
);
3354 Make_Pragma_Argument_Association
(Sloc
(Comp_Expr
),
3355 Expression
=> New_Expr
));
3359 Comp_Assn
:= First
(Component_Associations
(Expr
));
3360 while Present
(Comp_Assn
) loop
3361 if List_Length
(Choices
(Comp_Assn
)) /= 1
3363 Nkind
(First
(Choices
(Comp_Assn
))) /= N_Identifier
3365 Error_Msg_Name_1
:= Nam
;
3367 ("wrong syntax for aspect `%` for &", Id
, E
);
3372 Make_Pragma_Argument_Association
(Sloc
(Comp_Assn
),
3373 Chars
=> Chars
(First
(Choices
(Comp_Assn
))),
3375 Relocate_Node
(Expression
(Comp_Assn
))));
3379 -- Build the test-case pragma
3382 (Pragma_Argument_Associations
=> Args
,
3383 Pragma_Name
=> Nam
);
3388 when Aspect_Contract_Cases
=>
3390 (Pragma_Argument_Associations
=> New_List
(
3391 Make_Pragma_Argument_Association
(Loc
,
3392 Expression
=> Relocate_Node
(Expr
))),
3393 Pragma_Name
=> Nam
);
3395 Decorate
(Aspect
, Aitem
);
3396 Insert_Pragma
(Aitem
);
3399 -- Case 5: Special handling for aspects with an optional
3400 -- boolean argument.
3402 -- In the delayed case, the corresponding pragma cannot be
3403 -- generated yet because the evaluation of the boolean needs
3404 -- to be delayed till the freeze point.
3406 when Boolean_Aspects
3407 | Library_Unit_Aspects
3409 Set_Is_Boolean_Aspect
(Aspect
);
3411 -- Lock_Free aspect only apply to protected objects
3413 if A_Id
= Aspect_Lock_Free
then
3414 if Ekind
(E
) /= E_Protected_Type
then
3415 Error_Msg_Name_1
:= Nam
;
3417 ("aspect % only applies to a protected object",
3421 -- Set the Uses_Lock_Free flag to True if there is no
3422 -- expression or if the expression is True. The
3423 -- evaluation of this aspect should be delayed to the
3424 -- freeze point (why???)
3427 or else Is_True
(Static_Boolean
(Expr
))
3429 Set_Uses_Lock_Free
(E
);
3432 Record_Rep_Item
(E
, Aspect
);
3437 elsif A_Id
= Aspect_Export
or else A_Id
= Aspect_Import
then
3438 Analyze_Aspect_Export_Import
;
3440 -- Disable_Controlled
3442 elsif A_Id
= Aspect_Disable_Controlled
then
3443 if Ekind
(E
) /= E_Record_Type
3444 or else not Is_Controlled
(E
)
3447 ("aspect % requires controlled record type", Aspect
);
3451 -- If we're in a generic template, we don't want to try
3452 -- to disable controlled types, because typical usage is
3453 -- "Disable_Controlled => not <some_check>'Enabled", and
3454 -- the value of Enabled is not known until we see a
3455 -- particular instance. In such a context, we just need
3456 -- to preanalyze the expression for legality.
3458 if Expander_Active
then
3459 Analyze_And_Resolve
(Expr
, Standard_Boolean
);
3461 if not Present
(Expr
)
3462 or else Is_True
(Static_Boolean
(Expr
))
3464 Set_Disable_Controlled
(E
);
3467 elsif Serious_Errors_Detected
= 0 then
3468 Preanalyze_And_Resolve
(Expr
, Standard_Boolean
);
3474 -- Library unit aspects require special handling in the case
3475 -- of a package declaration, the pragma needs to be inserted
3476 -- in the list of declarations for the associated package.
3477 -- There is no issue of visibility delay for these aspects.
3479 if A_Id
in Library_Unit_Aspects
3481 Nkind_In
(N
, N_Package_Declaration
,
3482 N_Generic_Package_Declaration
)
3483 and then Nkind
(Parent
(N
)) /= N_Compilation_Unit
3485 -- Aspect is legal on a local instantiation of a library-
3486 -- level generic unit.
3488 and then not Is_Generic_Instance
(Defining_Entity
(N
))
3491 ("incorrect context for library unit aspect&", Id
);
3495 -- Cases where we do not delay, includes all cases where the
3496 -- expression is missing other than the above cases.
3498 if not Delay_Required
or else No
(Expr
) then
3500 -- Exclude aspects Export and Import because their pragma
3501 -- syntax does not map directly to a Boolean aspect.
3503 if A_Id
/= Aspect_Export
3504 and then A_Id
/= Aspect_Import
3507 (Pragma_Argument_Associations
=> New_List
(
3508 Make_Pragma_Argument_Association
(Sloc
(Ent
),
3509 Expression
=> Ent
)),
3510 Pragma_Name
=> Chars
(Id
));
3513 Delay_Required
:= False;
3515 -- In general cases, the corresponding pragma/attribute
3516 -- definition clause will be inserted later at the freezing
3517 -- point, and we do not need to build it now.
3525 -- This is special because for access types we need to generate
3526 -- an attribute definition clause. This also works for single
3527 -- task declarations, but it does not work for task type
3528 -- declarations, because we have the case where the expression
3529 -- references a discriminant of the task type. That can't use
3530 -- an attribute definition clause because we would not have
3531 -- visibility on the discriminant. For that case we must
3532 -- generate a pragma in the task definition.
3534 when Aspect_Storage_Size
=>
3538 if Ekind
(E
) = E_Task_Type
then
3540 Decl
: constant Node_Id
:= Declaration_Node
(E
);
3543 pragma Assert
(Nkind
(Decl
) = N_Task_Type_Declaration
);
3545 -- If no task definition, create one
3547 if No
(Task_Definition
(Decl
)) then
3548 Set_Task_Definition
(Decl
,
3549 Make_Task_Definition
(Loc
,
3550 Visible_Declarations
=> Empty_List
,
3551 End_Label
=> Empty
));
3554 -- Create a pragma and put it at the start of the task
3555 -- definition for the task type declaration.
3558 (Pragma_Argument_Associations
=> New_List
(
3559 Make_Pragma_Argument_Association
(Loc
,
3560 Expression
=> Relocate_Node
(Expr
))),
3561 Pragma_Name
=> Name_Storage_Size
);
3565 Visible_Declarations
(Task_Definition
(Decl
)));
3569 -- All other cases, generate attribute definition
3573 Make_Attribute_Definition_Clause
(Loc
,
3575 Chars
=> Chars
(Id
),
3576 Expression
=> Relocate_Node
(Expr
));
3580 -- Attach the corresponding pragma/attribute definition clause to
3581 -- the aspect specification node.
3583 if Present
(Aitem
) then
3584 Set_From_Aspect_Specification
(Aitem
);
3587 -- In the context of a compilation unit, we directly put the
3588 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
3589 -- node (no delay is required here) except for aspects on a
3590 -- subprogram body (see below) and a generic package, for which we
3591 -- need to introduce the pragma before building the generic copy
3592 -- (see sem_ch12), and for package instantiations, where the
3593 -- library unit pragmas are better handled early.
3595 if Nkind
(Parent
(N
)) = N_Compilation_Unit
3596 and then (Present
(Aitem
) or else Is_Boolean_Aspect
(Aspect
))
3599 Aux
: constant Node_Id
:= Aux_Decls_Node
(Parent
(N
));
3602 pragma Assert
(Nkind
(Aux
) = N_Compilation_Unit_Aux
);
3604 -- For a Boolean aspect, create the corresponding pragma if
3605 -- no expression or if the value is True.
3607 if Is_Boolean_Aspect
(Aspect
) and then No
(Aitem
) then
3608 if Is_True
(Static_Boolean
(Expr
)) then
3610 (Pragma_Argument_Associations
=> New_List
(
3611 Make_Pragma_Argument_Association
(Sloc
(Ent
),
3612 Expression
=> Ent
)),
3613 Pragma_Name
=> Chars
(Id
));
3615 Set_From_Aspect_Specification
(Aitem
, True);
3616 Set_Corresponding_Aspect
(Aitem
, Aspect
);
3623 -- If the aspect is on a subprogram body (relevant aspect
3624 -- is Inline), add the pragma in front of the declarations.
3626 if Nkind
(N
) = N_Subprogram_Body
then
3627 if No
(Declarations
(N
)) then
3628 Set_Declarations
(N
, New_List
);
3631 Prepend
(Aitem
, Declarations
(N
));
3633 elsif Nkind
(N
) = N_Generic_Package_Declaration
then
3634 if No
(Visible_Declarations
(Specification
(N
))) then
3635 Set_Visible_Declarations
(Specification
(N
), New_List
);
3639 Visible_Declarations
(Specification
(N
)));
3641 elsif Nkind
(N
) = N_Package_Instantiation
then
3643 Spec
: constant Node_Id
:=
3644 Specification
(Instance_Spec
(N
));
3646 if No
(Visible_Declarations
(Spec
)) then
3647 Set_Visible_Declarations
(Spec
, New_List
);
3650 Prepend
(Aitem
, Visible_Declarations
(Spec
));
3654 if No
(Pragmas_After
(Aux
)) then
3655 Set_Pragmas_After
(Aux
, New_List
);
3658 Append
(Aitem
, Pragmas_After
(Aux
));
3665 -- The evaluation of the aspect is delayed to the freezing point.
3666 -- The pragma or attribute clause if there is one is then attached
3667 -- to the aspect specification which is put in the rep item list.
3669 if Delay_Required
then
3670 if Present
(Aitem
) then
3671 Set_Is_Delayed_Aspect
(Aitem
);
3672 Set_Aspect_Rep_Item
(Aspect
, Aitem
);
3673 Set_Parent
(Aitem
, Aspect
);
3676 Set_Is_Delayed_Aspect
(Aspect
);
3678 -- In the case of Default_Value, link the aspect to base type
3679 -- as well, even though it appears on a first subtype. This is
3680 -- mandated by the semantics of the aspect. Do not establish
3681 -- the link when processing the base type itself as this leads
3682 -- to a rep item circularity. Verify that we are dealing with
3683 -- a scalar type to prevent cascaded errors.
3685 if A_Id
= Aspect_Default_Value
3686 and then Is_Scalar_Type
(E
)
3687 and then Base_Type
(E
) /= E
3689 Set_Has_Delayed_Aspects
(Base_Type
(E
));
3690 Record_Rep_Item
(Base_Type
(E
), Aspect
);
3693 Set_Has_Delayed_Aspects
(E
);
3694 Record_Rep_Item
(E
, Aspect
);
3696 -- When delay is not required and the context is a package or a
3697 -- subprogram body, insert the pragma in the body declarations.
3699 elsif Nkind_In
(N
, N_Package_Body
, N_Subprogram_Body
) then
3700 if No
(Declarations
(N
)) then
3701 Set_Declarations
(N
, New_List
);
3704 -- The pragma is added before source declarations
3706 Prepend_To
(Declarations
(N
), Aitem
);
3708 -- When delay is not required and the context is not a compilation
3709 -- unit, we simply insert the pragma/attribute definition clause
3712 elsif Present
(Aitem
) then
3713 Insert_After
(Ins_Node
, Aitem
);
3716 end Analyze_One_Aspect
;
3720 end loop Aspect_Loop
;
3722 if Has_Delayed_Aspects
(E
) then
3723 Ensure_Freeze_Node
(E
);
3725 end Analyze_Aspect_Specifications
;
3727 ---------------------------------------------------
3728 -- Analyze_Aspect_Specifications_On_Body_Or_Stub --
3729 ---------------------------------------------------
3731 procedure Analyze_Aspect_Specifications_On_Body_Or_Stub
(N
: Node_Id
) is
3732 Body_Id
: constant Entity_Id
:= Defining_Entity
(N
);
3734 procedure Diagnose_Misplaced_Aspects
(Spec_Id
: Entity_Id
);
3735 -- Body [stub] N has aspects, but they are not properly placed. Emit an
3736 -- error message depending on the aspects involved. Spec_Id denotes the
3737 -- entity of the corresponding spec.
3739 --------------------------------
3740 -- Diagnose_Misplaced_Aspects --
3741 --------------------------------
3743 procedure Diagnose_Misplaced_Aspects
(Spec_Id
: Entity_Id
) is
3744 procedure Misplaced_Aspect_Error
3747 -- Emit an error message concerning misplaced aspect Asp. Ref_Nam is
3748 -- the name of the refined version of the aspect.
3750 ----------------------------
3751 -- Misplaced_Aspect_Error --
3752 ----------------------------
3754 procedure Misplaced_Aspect_Error
3758 Asp_Nam
: constant Name_Id
:= Chars
(Identifier
(Asp
));
3759 Asp_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Asp_Nam
);
3762 -- The corresponding spec already contains the aspect in question
3763 -- and the one appearing on the body must be the refined form:
3765 -- procedure P with Global ...;
3766 -- procedure P with Global ... is ... end P;
3770 if Has_Aspect
(Spec_Id
, Asp_Id
) then
3771 Error_Msg_Name_1
:= Asp_Nam
;
3773 -- Subunits cannot carry aspects that apply to a subprogram
3776 if Nkind
(Parent
(N
)) = N_Subunit
then
3777 Error_Msg_N
("aspect % cannot apply to a subunit", Asp
);
3779 -- Otherwise suggest the refined form
3782 Error_Msg_Name_2
:= Ref_Nam
;
3783 Error_Msg_N
("aspect % should be %", Asp
);
3786 -- Otherwise the aspect must appear on the spec, not on the body
3789 -- procedure P with Global ... is ... end P;
3793 ("aspect specification must appear on initial declaration",
3796 end Misplaced_Aspect_Error
;
3803 -- Start of processing for Diagnose_Misplaced_Aspects
3806 -- Iterate over the aspect specifications and emit specific errors
3807 -- where applicable.
3809 Asp
:= First
(Aspect_Specifications
(N
));
3810 while Present
(Asp
) loop
3811 Asp_Nam
:= Chars
(Identifier
(Asp
));
3813 -- Do not emit errors on aspects that can appear on a subprogram
3814 -- body. This scenario occurs when the aspect specification list
3815 -- contains both misplaced and properly placed aspects.
3817 if Aspect_On_Body_Or_Stub_OK
(Get_Aspect_Id
(Asp_Nam
)) then
3820 -- Special diagnostics for SPARK aspects
3822 elsif Asp_Nam
= Name_Depends
then
3823 Misplaced_Aspect_Error
(Asp
, Name_Refined_Depends
);
3825 elsif Asp_Nam
= Name_Global
then
3826 Misplaced_Aspect_Error
(Asp
, Name_Refined_Global
);
3828 elsif Asp_Nam
= Name_Post
then
3829 Misplaced_Aspect_Error
(Asp
, Name_Refined_Post
);
3831 -- Otherwise a language-defined aspect is misplaced
3835 ("aspect specification must appear on initial declaration",
3841 end Diagnose_Misplaced_Aspects
;
3845 Spec_Id
: constant Entity_Id
:= Unique_Defining_Entity
(N
);
3847 -- Start of processing for Analyze_Aspects_On_Body_Or_Stub
3850 -- Language-defined aspects cannot be associated with a subprogram body
3851 -- [stub] if the subprogram has a spec. Certain implementation defined
3852 -- aspects are allowed to break this rule (for all applicable cases, see
3853 -- table Aspects.Aspect_On_Body_Or_Stub_OK).
3855 if Spec_Id
/= Body_Id
and then not Aspects_On_Body_Or_Stub_OK
(N
) then
3856 Diagnose_Misplaced_Aspects
(Spec_Id
);
3858 Analyze_Aspect_Specifications
(N
, Body_Id
);
3860 end Analyze_Aspect_Specifications_On_Body_Or_Stub
;
3862 -----------------------
3863 -- Analyze_At_Clause --
3864 -----------------------
3866 -- An at clause is replaced by the corresponding Address attribute
3867 -- definition clause that is the preferred approach in Ada 95.
3869 procedure Analyze_At_Clause
(N
: Node_Id
) is
3870 CS
: constant Boolean := Comes_From_Source
(N
);
3873 -- This is an obsolescent feature
3875 Check_Restriction
(No_Obsolescent_Features
, N
);
3877 if Warn_On_Obsolescent_Feature
then
3879 ("?j?at clause is an obsolescent feature (RM J.7(2))", N
);
3881 ("\?j?use address attribute definition clause instead", N
);
3884 -- Rewrite as address clause
3887 Make_Attribute_Definition_Clause
(Sloc
(N
),
3888 Name
=> Identifier
(N
),
3889 Chars
=> Name_Address
,
3890 Expression
=> Expression
(N
)));
3892 -- We preserve Comes_From_Source, since logically the clause still comes
3893 -- from the source program even though it is changed in form.
3895 Set_Comes_From_Source
(N
, CS
);
3897 -- Analyze rewritten clause
3899 Analyze_Attribute_Definition_Clause
(N
);
3900 end Analyze_At_Clause
;
3902 -----------------------------------------
3903 -- Analyze_Attribute_Definition_Clause --
3904 -----------------------------------------
3906 procedure Analyze_Attribute_Definition_Clause
(N
: Node_Id
) is
3907 Loc
: constant Source_Ptr
:= Sloc
(N
);
3908 Nam
: constant Node_Id
:= Name
(N
);
3909 Attr
: constant Name_Id
:= Chars
(N
);
3910 Expr
: constant Node_Id
:= Expression
(N
);
3911 Id
: constant Attribute_Id
:= Get_Attribute_Id
(Attr
);
3914 -- The entity of Nam after it is analyzed. In the case of an incomplete
3915 -- type, this is the underlying type.
3918 -- The underlying entity to which the attribute applies. Generally this
3919 -- is the Underlying_Type of Ent, except in the case where the clause
3920 -- applies to the full view of an incomplete or private type, in which
3921 -- case U_Ent is just a copy of Ent.
3923 FOnly
: Boolean := False;
3924 -- Reset to True for subtype specific attribute (Alignment, Size)
3925 -- and for stream attributes, i.e. those cases where in the call to
3926 -- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
3927 -- are checked. Note that the case of stream attributes is not clear
3928 -- from the RM, but see AI95-00137. Also, the RM seems to disallow
3929 -- Storage_Size for derived task types, but that is also clearly
3932 procedure Analyze_Stream_TSS_Definition
(TSS_Nam
: TSS_Name_Type
);
3933 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
3934 -- definition clauses.
3936 function Duplicate_Clause
return Boolean;
3937 -- This routine checks if the aspect for U_Ent being given by attribute
3938 -- definition clause N is for an aspect that has already been specified,
3939 -- and if so gives an error message. If there is a duplicate, True is
3940 -- returned, otherwise if there is no error, False is returned.
3942 procedure Check_Indexing_Functions
;
3943 -- Check that the function in Constant_Indexing or Variable_Indexing
3944 -- attribute has the proper type structure. If the name is overloaded,
3945 -- check that some interpretation is legal.
3947 procedure Check_Iterator_Functions
;
3948 -- Check that there is a single function in Default_Iterator attribute
3949 -- has the proper type structure.
3951 function Check_Primitive_Function
(Subp
: Entity_Id
) return Boolean;
3952 -- Common legality check for the previous two
3954 -----------------------------------
3955 -- Analyze_Stream_TSS_Definition --
3956 -----------------------------------
3958 procedure Analyze_Stream_TSS_Definition
(TSS_Nam
: TSS_Name_Type
) is
3959 Subp
: Entity_Id
:= Empty
;
3964 Is_Read
: constant Boolean := (TSS_Nam
= TSS_Stream_Read
);
3965 -- True for Read attribute, False for other attributes
3967 function Has_Good_Profile
3969 Report
: Boolean := False) return Boolean;
3970 -- Return true if the entity is a subprogram with an appropriate
3971 -- profile for the attribute being defined. If result is False and
3972 -- Report is True, function emits appropriate error.
3974 ----------------------
3975 -- Has_Good_Profile --
3976 ----------------------
3978 function Has_Good_Profile
3980 Report
: Boolean := False) return Boolean
3982 Expected_Ekind
: constant array (Boolean) of Entity_Kind
:=
3983 (False => E_Procedure
, True => E_Function
);
3984 Is_Function
: constant Boolean := (TSS_Nam
= TSS_Stream_Input
);
3989 if Ekind
(Subp
) /= Expected_Ekind
(Is_Function
) then
3993 F
:= First_Formal
(Subp
);
3996 or else Ekind
(Etype
(F
)) /= E_Anonymous_Access_Type
3997 or else Designated_Type
(Etype
(F
)) /=
3998 Class_Wide_Type
(RTE
(RE_Root_Stream_Type
))
4003 if not Is_Function
then
4007 Expected_Mode
: constant array (Boolean) of Entity_Kind
:=
4008 (False => E_In_Parameter
,
4009 True => E_Out_Parameter
);
4011 if Parameter_Mode
(F
) /= Expected_Mode
(Is_Read
) then
4018 -- If the attribute specification comes from an aspect
4019 -- specification for a class-wide stream, the parameter must be
4020 -- a class-wide type of the entity to which the aspect applies.
4022 if From_Aspect_Specification
(N
)
4023 and then Class_Present
(Parent
(N
))
4024 and then Is_Class_Wide_Type
(Typ
)
4030 Typ
:= Etype
(Subp
);
4033 -- Verify that the prefix of the attribute and the local name for
4034 -- the type of the formal match, or one is the class-wide of the
4035 -- other, in the case of a class-wide stream operation.
4037 if Base_Type
(Typ
) = Base_Type
(Ent
)
4038 or else (Is_Class_Wide_Type
(Typ
)
4039 and then Typ
= Class_Wide_Type
(Base_Type
(Ent
)))
4040 or else (Is_Class_Wide_Type
(Ent
)
4041 and then Ent
= Class_Wide_Type
(Base_Type
(Typ
)))
4048 if Present
(Next_Formal
(F
)) then
4051 elsif not Is_Scalar_Type
(Typ
)
4052 and then not Is_First_Subtype
(Typ
)
4053 and then not Is_Class_Wide_Type
(Typ
)
4055 if Report
and not Is_First_Subtype
(Typ
) then
4057 ("subtype of formal in stream operation must be a first "
4058 & "subtype", Parameter_Type
(Parent
(F
)));
4066 end Has_Good_Profile
;
4068 -- Start of processing for Analyze_Stream_TSS_Definition
4073 if not Is_Type
(U_Ent
) then
4074 Error_Msg_N
("local name must be a subtype", Nam
);
4077 elsif not Is_First_Subtype
(U_Ent
) then
4078 Error_Msg_N
("local name must be a first subtype", Nam
);
4082 Pnam
:= TSS
(Base_Type
(U_Ent
), TSS_Nam
);
4084 -- If Pnam is present, it can be either inherited from an ancestor
4085 -- type (in which case it is legal to redefine it for this type), or
4086 -- be a previous definition of the attribute for the same type (in
4087 -- which case it is illegal).
4089 -- In the first case, it will have been analyzed already, and we
4090 -- can check that its profile does not match the expected profile
4091 -- for a stream attribute of U_Ent. In the second case, either Pnam
4092 -- has been analyzed (and has the expected profile), or it has not
4093 -- been analyzed yet (case of a type that has not been frozen yet
4094 -- and for which the stream attribute has been set using Set_TSS).
4097 and then (No
(First_Entity
(Pnam
)) or else Has_Good_Profile
(Pnam
))
4099 Error_Msg_Sloc
:= Sloc
(Pnam
);
4100 Error_Msg_Name_1
:= Attr
;
4101 Error_Msg_N
("% attribute already defined #", Nam
);
4107 if Is_Entity_Name
(Expr
) then
4108 if not Is_Overloaded
(Expr
) then
4109 if Has_Good_Profile
(Entity
(Expr
), Report
=> True) then
4110 Subp
:= Entity
(Expr
);
4114 Get_First_Interp
(Expr
, I
, It
);
4115 while Present
(It
.Nam
) loop
4116 if Has_Good_Profile
(It
.Nam
) then
4121 Get_Next_Interp
(I
, It
);
4126 if Present
(Subp
) then
4127 if Is_Abstract_Subprogram
(Subp
) then
4128 Error_Msg_N
("stream subprogram must not be abstract", Expr
);
4131 -- A stream subprogram for an interface type must be a null
4132 -- procedure (RM 13.13.2 (38/3)). Note that the class-wide type
4133 -- of an interface is not an interface type (3.9.4 (6.b/2)).
4135 elsif Is_Interface
(U_Ent
)
4136 and then not Is_Class_Wide_Type
(U_Ent
)
4137 and then not Inside_A_Generic
4139 (Ekind
(Subp
) = E_Function
4143 (Unit_Declaration_Node
(Ultimate_Alias
(Subp
)))))
4146 ("stream subprogram for interface type must be null "
4147 & "procedure", Expr
);
4150 Set_Entity
(Expr
, Subp
);
4151 Set_Etype
(Expr
, Etype
(Subp
));
4153 New_Stream_Subprogram
(N
, U_Ent
, Subp
, TSS_Nam
);
4156 Error_Msg_Name_1
:= Attr
;
4157 Error_Msg_N
("incorrect expression for% attribute", Expr
);
4159 end Analyze_Stream_TSS_Definition
;
4161 ------------------------------
4162 -- Check_Indexing_Functions --
4163 ------------------------------
4165 procedure Check_Indexing_Functions
is
4166 Indexing_Found
: Boolean := False;
4168 procedure Check_Inherited_Indexing
;
4169 -- For a derived type, check that no indexing aspect is specified
4170 -- for the type if it is also inherited
4172 procedure Check_One_Function
(Subp
: Entity_Id
);
4173 -- Check one possible interpretation. Sets Indexing_Found True if a
4174 -- legal indexing function is found.
4176 procedure Illegal_Indexing
(Msg
: String);
4177 -- Diagnose illegal indexing function if not overloaded. In the
4178 -- overloaded case indicate that no legal interpretation exists.
4180 ------------------------------
4181 -- Check_Inherited_Indexing --
4182 ------------------------------
4184 procedure Check_Inherited_Indexing
is
4185 Inherited
: Node_Id
;
4188 if Attr
= Name_Constant_Indexing
then
4190 Find_Aspect
(Etype
(Ent
), Aspect_Constant_Indexing
);
4191 else pragma Assert
(Attr
= Name_Variable_Indexing
);
4193 Find_Aspect
(Etype
(Ent
), Aspect_Variable_Indexing
);
4196 if Present
(Inherited
) then
4197 if Debug_Flag_Dot_XX
then
4200 -- OK if current attribute_definition_clause is expansion of
4201 -- inherited aspect.
4203 elsif Aspect_Rep_Item
(Inherited
) = N
then
4206 -- Indicate the operation that must be overridden, rather than
4207 -- redefining the indexing aspect.
4211 ("indexing function already inherited from parent type");
4213 ("!override & instead",
4214 N
, Entity
(Expression
(Inherited
)));
4217 end Check_Inherited_Indexing
;
4219 ------------------------
4220 -- Check_One_Function --
4221 ------------------------
4223 procedure Check_One_Function
(Subp
: Entity_Id
) is
4224 Default_Element
: Node_Id
;
4225 Ret_Type
: constant Entity_Id
:= Etype
(Subp
);
4228 if not Is_Overloadable
(Subp
) then
4229 Illegal_Indexing
("illegal indexing function for type&");
4232 elsif Scope
(Subp
) /= Scope
(Ent
) then
4233 if Nkind
(Expr
) = N_Expanded_Name
then
4235 -- Indexing function can't be declared elsewhere
4238 ("indexing function must be declared in scope of type&");
4243 elsif No
(First_Formal
(Subp
)) then
4245 ("Indexing requires a function that applies to type&");
4248 elsif No
(Next_Formal
(First_Formal
(Subp
))) then
4250 ("indexing function must have at least two parameters");
4253 elsif Is_Derived_Type
(Ent
) then
4254 Check_Inherited_Indexing
;
4257 if not Check_Primitive_Function
(Subp
) then
4259 ("Indexing aspect requires a function that applies to type&");
4263 -- If partial declaration exists, verify that it is not tagged.
4265 if Ekind
(Current_Scope
) = E_Package
4266 and then Has_Private_Declaration
(Ent
)
4267 and then From_Aspect_Specification
(N
)
4269 List_Containing
(Parent
(Ent
)) =
4270 Private_Declarations
4271 (Specification
(Unit_Declaration_Node
(Current_Scope
)))
4272 and then Nkind
(N
) = N_Attribute_Definition_Clause
4279 First
(Visible_Declarations
4281 (Unit_Declaration_Node
(Current_Scope
))));
4283 while Present
(Decl
) loop
4284 if Nkind
(Decl
) = N_Private_Type_Declaration
4285 and then Ent
= Full_View
(Defining_Identifier
(Decl
))
4286 and then Tagged_Present
(Decl
)
4287 and then No
(Aspect_Specifications
(Decl
))
4290 ("Indexing aspect cannot be specified on full view "
4291 & "if partial view is tagged");
4300 -- An indexing function must return either the default element of
4301 -- the container, or a reference type. For variable indexing it
4302 -- must be the latter.
4305 Find_Value_Of_Aspect
4306 (Etype
(First_Formal
(Subp
)), Aspect_Iterator_Element
);
4308 if Present
(Default_Element
) then
4309 Analyze
(Default_Element
);
4311 if Is_Entity_Name
(Default_Element
)
4312 and then not Covers
(Entity
(Default_Element
), Ret_Type
)
4316 ("wrong return type for indexing function");
4321 -- For variable_indexing the return type must be a reference type
4323 if Attr
= Name_Variable_Indexing
then
4324 if not Has_Implicit_Dereference
(Ret_Type
) then
4326 ("variable indexing must return a reference type");
4329 elsif Is_Access_Constant
4330 (Etype
(First_Discriminant
(Ret_Type
)))
4333 ("variable indexing must return an access to variable");
4338 if Has_Implicit_Dereference
(Ret_Type
)
4340 Is_Access_Constant
(Etype
(First_Discriminant
(Ret_Type
)))
4343 ("constant indexing must return an access to constant");
4346 elsif Is_Access_Type
(Etype
(First_Formal
(Subp
)))
4347 and then not Is_Access_Constant
(Etype
(First_Formal
(Subp
)))
4350 ("constant indexing must apply to an access to constant");
4355 -- All checks succeeded.
4357 Indexing_Found
:= True;
4358 end Check_One_Function
;
4360 -----------------------
4361 -- Illegal_Indexing --
4362 -----------------------
4364 procedure Illegal_Indexing
(Msg
: String) is
4366 Error_Msg_NE
(Msg
, N
, Ent
);
4367 end Illegal_Indexing
;
4369 -- Start of processing for Check_Indexing_Functions
4373 Check_Inherited_Indexing
;
4378 if not Is_Overloaded
(Expr
) then
4379 Check_One_Function
(Entity
(Expr
));
4387 Indexing_Found
:= False;
4388 Get_First_Interp
(Expr
, I
, It
);
4389 while Present
(It
.Nam
) loop
4391 -- Note that analysis will have added the interpretation
4392 -- that corresponds to the dereference. We only check the
4393 -- subprogram itself.
4395 if Is_Overloadable
(It
.Nam
) then
4396 Check_One_Function
(It
.Nam
);
4399 Get_Next_Interp
(I
, It
);
4404 if not Indexing_Found
and then not Error_Posted
(N
) then
4406 ("aspect Indexing requires a local function that "
4407 & "applies to type&", Expr
, Ent
);
4409 end Check_Indexing_Functions
;
4411 ------------------------------
4412 -- Check_Iterator_Functions --
4413 ------------------------------
4415 procedure Check_Iterator_Functions
is
4416 function Valid_Default_Iterator
(Subp
: Entity_Id
) return Boolean;
4417 -- Check one possible interpretation for validity
4419 ----------------------------
4420 -- Valid_Default_Iterator --
4421 ----------------------------
4423 function Valid_Default_Iterator
(Subp
: Entity_Id
) return Boolean is
4424 Root_T
: constant Entity_Id
:= Root_Type
(Etype
(Etype
(Subp
)));
4428 if not Check_Primitive_Function
(Subp
) then
4431 -- The return type must be derived from a type in an instance
4432 -- of Iterator.Interfaces, and thus its root type must have a
4435 elsif Chars
(Root_T
) /= Name_Forward_Iterator
4436 and then Chars
(Root_T
) /= Name_Reversible_Iterator
4441 Formal
:= First_Formal
(Subp
);
4444 -- False if any subsequent formal has no default expression
4446 Formal
:= Next_Formal
(Formal
);
4447 while Present
(Formal
) loop
4448 if No
(Expression
(Parent
(Formal
))) then
4452 Next_Formal
(Formal
);
4455 -- True if all subsequent formals have default expressions
4458 end Valid_Default_Iterator
;
4460 -- Start of processing for Check_Iterator_Functions
4465 if not Is_Entity_Name
(Expr
) then
4466 Error_Msg_N
("aspect Iterator must be a function name", Expr
);
4469 if not Is_Overloaded
(Expr
) then
4470 if not Check_Primitive_Function
(Entity
(Expr
)) then
4472 ("aspect Indexing requires a function that applies to type&",
4473 Entity
(Expr
), Ent
);
4476 -- Flag the default_iterator as well as the denoted function.
4478 if not Valid_Default_Iterator
(Entity
(Expr
)) then
4479 Error_Msg_N
("improper function for default iterator!", Expr
);
4484 Default
: Entity_Id
:= Empty
;
4489 Get_First_Interp
(Expr
, I
, It
);
4490 while Present
(It
.Nam
) loop
4491 if not Check_Primitive_Function
(It
.Nam
)
4492 or else not Valid_Default_Iterator
(It
.Nam
)
4496 elsif Present
(Default
) then
4498 -- An explicit one should override an implicit one
4500 if Comes_From_Source
(Default
) =
4501 Comes_From_Source
(It
.Nam
)
4503 Error_Msg_N
("default iterator must be unique", Expr
);
4504 Error_Msg_Sloc
:= Sloc
(Default
);
4505 Error_Msg_N
("\\possible interpretation#", Expr
);
4506 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
4507 Error_Msg_N
("\\possible interpretation#", Expr
);
4509 elsif Comes_From_Source
(It
.Nam
) then
4516 Get_Next_Interp
(I
, It
);
4519 if Present
(Default
) then
4520 Set_Entity
(Expr
, Default
);
4521 Set_Is_Overloaded
(Expr
, False);
4524 ("no interpretation is a valid default iterator!", Expr
);
4528 end Check_Iterator_Functions
;
4530 -------------------------------
4531 -- Check_Primitive_Function --
4532 -------------------------------
4534 function Check_Primitive_Function
(Subp
: Entity_Id
) return Boolean is
4538 if Ekind
(Subp
) /= E_Function
then
4542 if No
(First_Formal
(Subp
)) then
4545 Ctrl
:= Etype
(First_Formal
(Subp
));
4548 -- To be a primitive operation subprogram has to be in same scope.
4550 if Scope
(Ctrl
) /= Scope
(Subp
) then
4554 -- Type of formal may be the class-wide type, an access to such,
4555 -- or an incomplete view.
4558 or else Ctrl
= Class_Wide_Type
(Ent
)
4560 (Ekind
(Ctrl
) = E_Anonymous_Access_Type
4561 and then (Designated_Type
(Ctrl
) = Ent
4563 Designated_Type
(Ctrl
) = Class_Wide_Type
(Ent
)))
4565 (Ekind
(Ctrl
) = E_Incomplete_Type
4566 and then Full_View
(Ctrl
) = Ent
)
4574 end Check_Primitive_Function
;
4576 ----------------------
4577 -- Duplicate_Clause --
4578 ----------------------
4580 function Duplicate_Clause
return Boolean is
4584 -- Nothing to do if this attribute definition clause comes from
4585 -- an aspect specification, since we could not be duplicating an
4586 -- explicit clause, and we dealt with the case of duplicated aspects
4587 -- in Analyze_Aspect_Specifications.
4589 if From_Aspect_Specification
(N
) then
4593 -- Otherwise current clause may duplicate previous clause, or a
4594 -- previously given pragma or aspect specification for the same
4597 A
:= Get_Rep_Item
(U_Ent
, Chars
(N
), Check_Parents
=> False);
4600 Error_Msg_Name_1
:= Chars
(N
);
4601 Error_Msg_Sloc
:= Sloc
(A
);
4603 Error_Msg_NE
("aspect% for & previously given#", N
, U_Ent
);
4608 end Duplicate_Clause
;
4610 -- Start of processing for Analyze_Attribute_Definition_Clause
4613 -- The following code is a defense against recursion. Not clear that
4614 -- this can happen legitimately, but perhaps some error situations can
4615 -- cause it, and we did see this recursion during testing.
4617 if Analyzed
(N
) then
4620 Set_Analyzed
(N
, True);
4623 Check_Restriction_No_Use_Of_Attribute
(N
);
4625 -- Ignore some selected attributes in CodePeer mode since they are not
4626 -- relevant in this context.
4628 if CodePeer_Mode
then
4631 -- Ignore Component_Size in CodePeer mode, to avoid changing the
4632 -- internal representation of types by implicitly packing them.
4634 when Attribute_Component_Size
=>
4635 Rewrite
(N
, Make_Null_Statement
(Sloc
(N
)));
4643 -- Process Ignore_Rep_Clauses option
4645 if Ignore_Rep_Clauses
then
4648 -- The following should be ignored. They do not affect legality
4649 -- and may be target dependent. The basic idea of -gnatI is to
4650 -- ignore any rep clauses that may be target dependent but do not
4651 -- affect legality (except possibly to be rejected because they
4652 -- are incompatible with the compilation target).
4654 when Attribute_Alignment
4655 | Attribute_Bit_Order
4656 | Attribute_Component_Size
4657 | Attribute_Machine_Radix
4658 | Attribute_Object_Size
4661 | Attribute_Stream_Size
4662 | Attribute_Value_Size
4664 Kill_Rep_Clause
(N
);
4667 -- The following should not be ignored, because in the first place
4668 -- they are reasonably portable, and should not cause problems
4669 -- in compiling code from another target, and also they do affect
4670 -- legality, e.g. failing to provide a stream attribute for a type
4671 -- may make a program illegal.
4673 when Attribute_External_Tag
4677 | Attribute_Simple_Storage_Pool
4678 | Attribute_Storage_Pool
4679 | Attribute_Storage_Size
4684 -- We do not do anything here with address clauses, they will be
4685 -- removed by Freeze later on, but for now, it works better to
4686 -- keep then in the tree.
4688 when Attribute_Address
=>
4691 -- Other cases are errors ("attribute& cannot be set with
4692 -- definition clause"), which will be caught below.
4700 Ent
:= Entity
(Nam
);
4702 if Rep_Item_Too_Early
(Ent
, N
) then
4706 -- Rep clause applies to full view of incomplete type or private type if
4707 -- we have one (if not, this is a premature use of the type). However,
4708 -- certain semantic checks need to be done on the specified entity (i.e.
4709 -- the private view), so we save it in Ent.
4711 if Is_Private_Type
(Ent
)
4712 and then Is_Derived_Type
(Ent
)
4713 and then not Is_Tagged_Type
(Ent
)
4714 and then No
(Full_View
(Ent
))
4716 -- If this is a private type whose completion is a derivation from
4717 -- another private type, there is no full view, and the attribute
4718 -- belongs to the type itself, not its underlying parent.
4722 elsif Ekind
(Ent
) = E_Incomplete_Type
then
4724 -- The attribute applies to the full view, set the entity of the
4725 -- attribute definition accordingly.
4727 Ent
:= Underlying_Type
(Ent
);
4729 Set_Entity
(Nam
, Ent
);
4732 U_Ent
:= Underlying_Type
(Ent
);
4735 -- Avoid cascaded error
4737 if Etype
(Nam
) = Any_Type
then
4740 -- Must be declared in current scope or in case of an aspect
4741 -- specification, must be visible in current scope.
4743 elsif Scope
(Ent
) /= Current_Scope
4745 not (From_Aspect_Specification
(N
)
4746 and then Scope_Within_Or_Same
(Current_Scope
, Scope
(Ent
)))
4748 Error_Msg_N
("entity must be declared in this scope", Nam
);
4751 -- Must not be a source renaming (we do have some cases where the
4752 -- expander generates a renaming, and those cases are OK, in such
4753 -- cases any attribute applies to the renamed object as well).
4755 elsif Is_Object
(Ent
)
4756 and then Present
(Renamed_Object
(Ent
))
4758 -- Case of renamed object from source, this is an error
4760 if Comes_From_Source
(Renamed_Object
(Ent
)) then
4761 Get_Name_String
(Chars
(N
));
4762 Error_Msg_Strlen
:= Name_Len
;
4763 Error_Msg_String
(1 .. Name_Len
) := Name_Buffer
(1 .. Name_Len
);
4765 ("~ clause not allowed for a renaming declaration "
4766 & "(RM 13.1(6))", Nam
);
4769 -- For the case of a compiler generated renaming, the attribute
4770 -- definition clause applies to the renamed object created by the
4771 -- expander. The easiest general way to handle this is to create a
4772 -- copy of the attribute definition clause for this object.
4774 elsif Is_Entity_Name
(Renamed_Object
(Ent
)) then
4776 Make_Attribute_Definition_Clause
(Loc
,
4778 New_Occurrence_Of
(Entity
(Renamed_Object
(Ent
)), Loc
),
4780 Expression
=> Duplicate_Subexpr
(Expression
(N
))));
4782 -- If the renamed object is not an entity, it must be a dereference
4783 -- of an unconstrained function call, and we must introduce a new
4784 -- declaration to capture the expression. This is needed in the case
4785 -- of 'Alignment, where the original declaration must be rewritten.
4789 (Nkind
(Renamed_Object
(Ent
)) = N_Explicit_Dereference
);
4793 -- If no underlying entity, use entity itself, applies to some
4794 -- previously detected error cases ???
4796 elsif No
(U_Ent
) then
4799 -- Cannot specify for a subtype (exception Object/Value_Size)
4801 elsif Is_Type
(U_Ent
)
4802 and then not Is_First_Subtype
(U_Ent
)
4803 and then Id
/= Attribute_Object_Size
4804 and then Id
/= Attribute_Value_Size
4805 and then not From_At_Mod
(N
)
4807 Error_Msg_N
("cannot specify attribute for subtype", Nam
);
4811 Set_Entity
(N
, U_Ent
);
4813 -- Switch on particular attribute
4821 -- Address attribute definition clause
4823 when Attribute_Address
=> Address
: begin
4825 -- A little error check, catch for X'Address use X'Address;
4827 if Nkind
(Nam
) = N_Identifier
4828 and then Nkind
(Expr
) = N_Attribute_Reference
4829 and then Attribute_Name
(Expr
) = Name_Address
4830 and then Nkind
(Prefix
(Expr
)) = N_Identifier
4831 and then Chars
(Nam
) = Chars
(Prefix
(Expr
))
4834 ("address for & is self-referencing", Prefix
(Expr
), Ent
);
4838 -- Not that special case, carry on with analysis of expression
4840 Analyze_And_Resolve
(Expr
, RTE
(RE_Address
));
4842 -- Even when ignoring rep clauses we need to indicate that the
4843 -- entity has an address clause and thus it is legal to declare
4844 -- it imported. Freeze will get rid of the address clause later.
4846 if Ignore_Rep_Clauses
then
4847 if Ekind_In
(U_Ent
, E_Variable
, E_Constant
) then
4848 Record_Rep_Item
(U_Ent
, N
);
4854 if Duplicate_Clause
then
4857 -- Case of address clause for subprogram
4859 elsif Is_Subprogram
(U_Ent
) then
4860 if Has_Homonym
(U_Ent
) then
4862 ("address clause cannot be given for overloaded "
4863 & "subprogram", Nam
);
4867 -- For subprograms, all address clauses are permitted, and we
4868 -- mark the subprogram as having a deferred freeze so that Gigi
4869 -- will not elaborate it too soon.
4871 -- Above needs more comments, what is too soon about???
4873 Set_Has_Delayed_Freeze
(U_Ent
);
4875 -- Case of address clause for entry
4877 elsif Ekind
(U_Ent
) = E_Entry
then
4878 if Nkind
(Parent
(N
)) = N_Task_Body
then
4880 ("entry address must be specified in task spec", Nam
);
4884 -- For entries, we require a constant address
4886 Check_Constant_Address_Clause
(Expr
, U_Ent
);
4888 -- Special checks for task types
4890 if Is_Task_Type
(Scope
(U_Ent
))
4891 and then Comes_From_Source
(Scope
(U_Ent
))
4894 ("??entry address declared for entry in task type", N
);
4896 ("\??only one task can be declared of this type", N
);
4899 -- Entry address clauses are obsolescent
4901 Check_Restriction
(No_Obsolescent_Features
, N
);
4903 if Warn_On_Obsolescent_Feature
then
4905 ("?j?attaching interrupt to task entry is an obsolescent "
4906 & "feature (RM J.7.1)", N
);
4908 ("\?j?use interrupt procedure instead", N
);
4911 -- Case of an address clause for a controlled object, which we
4912 -- consider to be erroneous.
4914 elsif Is_Controlled
(Etype
(U_Ent
))
4915 or else Has_Controlled_Component
(Etype
(U_Ent
))
4918 ("??controlled object & must not be overlaid", Nam
, U_Ent
);
4920 ("\??Program_Error will be raised at run time", Nam
);
4921 Insert_Action
(Declaration_Node
(U_Ent
),
4922 Make_Raise_Program_Error
(Loc
,
4923 Reason
=> PE_Overlaid_Controlled_Object
));
4926 -- Case of an address clause for a class-wide object, which is
4927 -- considered erroneous.
4929 elsif Is_Class_Wide_Type
(Etype
(U_Ent
)) then
4931 ("??class-wide object & must not be overlaid", Nam
, U_Ent
);
4933 ("\??Program_Error will be raised at run time", Nam
);
4934 Insert_Action
(Declaration_Node
(U_Ent
),
4935 Make_Raise_Program_Error
(Loc
,
4936 Reason
=> PE_Overlaid_Controlled_Object
));
4939 -- Case of address clause for a (non-controlled) object
4941 elsif Ekind_In
(U_Ent
, E_Variable
, E_Constant
) then
4943 Expr
: constant Node_Id
:= Expression
(N
);
4948 -- Exported variables cannot have an address clause, because
4949 -- this cancels the effect of the pragma Export.
4951 if Is_Exported
(U_Ent
) then
4953 ("cannot export object with address clause", Nam
);
4957 Find_Overlaid_Entity
(N
, O_Ent
, Off
);
4959 if Present
(O_Ent
) then
4961 -- If the object overlays a constant object, mark it so
4963 if Is_Constant_Object
(O_Ent
) then
4964 Set_Overlays_Constant
(U_Ent
);
4967 -- If the address clause is of the form:
4969 -- for X'Address use Y'Address;
4973 -- C : constant Address := Y'Address;
4975 -- for X'Address use C;
4977 -- then we make an entry in the table to check the size
4978 -- and alignment of the overlaying variable. But we defer
4979 -- this check till after code generation to take full
4980 -- advantage of the annotation done by the back end.
4982 -- If the entity has a generic type, the check will be
4983 -- performed in the instance if the actual type justifies
4984 -- it, and we do not insert the clause in the table to
4985 -- prevent spurious warnings.
4987 -- Note: we used to test Comes_From_Source and only give
4988 -- this warning for source entities, but we have removed
4989 -- this test. It really seems bogus to generate overlays
4990 -- that would trigger this warning in generated code.
4991 -- Furthermore, by removing the test, we handle the
4992 -- aspect case properly.
4994 if Is_Object
(O_Ent
)
4995 and then not Is_Generic_Type
(Etype
(U_Ent
))
4996 and then Address_Clause_Overlay_Warnings
4998 Address_Clause_Checks
.Append
4999 ((N
, U_Ent
, No_Uint
, O_Ent
, Off
));
5002 -- If this is not an overlay, mark a variable as being
5003 -- volatile to prevent unwanted optimizations. It's a
5004 -- conservative interpretation of RM 13.3(19) for the
5005 -- cases where the compiler cannot detect potential
5006 -- aliasing issues easily and it also covers the case
5007 -- of an absolute address where the volatile aspect is
5008 -- kind of implicit.
5010 if Ekind
(U_Ent
) = E_Variable
then
5011 Set_Treat_As_Volatile
(U_Ent
);
5014 -- Make an entry in the table for an absolute address as
5015 -- above to check that the value is compatible with the
5016 -- alignment of the object.
5019 Addr
: constant Node_Id
:= Address_Value
(Expr
);
5021 if Compile_Time_Known_Value
(Addr
)
5022 and then Address_Clause_Overlay_Warnings
5024 Address_Clause_Checks
.Append
5025 ((N
, U_Ent
, Expr_Value
(Addr
), Empty
, False));
5030 -- Overlaying controlled objects is erroneous. Emit warning
5031 -- but continue analysis because program is itself legal,
5032 -- and back end must see address clause.
5035 and then (Has_Controlled_Component
(Etype
(O_Ent
))
5036 or else Is_Controlled
(Etype
(O_Ent
)))
5037 and then not Inside_A_Generic
5040 ("??cannot use overlays with controlled objects", Expr
);
5042 ("\??Program_Error will be raised at run time", Expr
);
5043 Insert_Action
(Declaration_Node
(U_Ent
),
5044 Make_Raise_Program_Error
(Loc
,
5045 Reason
=> PE_Overlaid_Controlled_Object
));
5047 -- Issue an unconditional warning for a constant overlaying
5048 -- a variable. For the reverse case, we will issue it only
5049 -- if the variable is modified.
5051 elsif Ekind
(U_Ent
) = E_Constant
5052 and then Present
(O_Ent
)
5053 and then not Overlays_Constant
(U_Ent
)
5054 and then Address_Clause_Overlay_Warnings
5056 Error_Msg_N
("??constant overlays a variable", Expr
);
5058 -- Imported variables can have an address clause, but then
5059 -- the import is pretty meaningless except to suppress
5060 -- initializations, so we do not need such variables to
5061 -- be statically allocated (and in fact it causes trouble
5062 -- if the address clause is a local value).
5064 elsif Is_Imported
(U_Ent
) then
5065 Set_Is_Statically_Allocated
(U_Ent
, False);
5068 -- We mark a possible modification of a variable with an
5069 -- address clause, since it is likely aliasing is occurring.
5071 Note_Possible_Modification
(Nam
, Sure
=> False);
5073 -- Legality checks on the address clause for initialized
5074 -- objects is deferred until the freeze point, because
5075 -- a subsequent pragma might indicate that the object
5076 -- is imported and thus not initialized. Also, the address
5077 -- clause might involve entities that have yet to be
5080 Set_Has_Delayed_Freeze
(U_Ent
);
5082 -- If an initialization call has been generated for this
5083 -- object, it needs to be deferred to after the freeze node
5084 -- we have just now added, otherwise GIGI will see a
5085 -- reference to the variable (as actual to the IP call)
5086 -- before its definition.
5089 Init_Call
: constant Node_Id
:=
5090 Remove_Init_Call
(U_Ent
, N
);
5093 if Present
(Init_Call
) then
5094 Append_Freeze_Action
(U_Ent
, Init_Call
);
5096 -- Reset Initialization_Statements pointer so that
5097 -- if there is a pragma Import further down, it can
5098 -- clear any default initialization.
5100 Set_Initialization_Statements
(U_Ent
, Init_Call
);
5104 -- Entity has delayed freeze, so we will generate an
5105 -- alignment check at the freeze point unless suppressed.
5107 if not Range_Checks_Suppressed
(U_Ent
)
5108 and then not Alignment_Checks_Suppressed
(U_Ent
)
5110 Set_Check_Address_Alignment
(N
);
5113 -- Kill the size check code, since we are not allocating
5114 -- the variable, it is somewhere else.
5116 Kill_Size_Check_Code
(U_Ent
);
5119 -- Not a valid entity for an address clause
5122 Error_Msg_N
("address cannot be given for &", Nam
);
5130 -- Alignment attribute definition clause
5132 when Attribute_Alignment
=> Alignment
: declare
5133 Align
: constant Uint
:= Get_Alignment_Value
(Expr
);
5134 Max_Align
: constant Uint
:= UI_From_Int
(Maximum_Alignment
);
5139 if not Is_Type
(U_Ent
)
5140 and then Ekind
(U_Ent
) /= E_Variable
5141 and then Ekind
(U_Ent
) /= E_Constant
5143 Error_Msg_N
("alignment cannot be given for &", Nam
);
5145 elsif Duplicate_Clause
then
5148 elsif Align
/= No_Uint
then
5149 Set_Has_Alignment_Clause
(U_Ent
);
5151 -- Tagged type case, check for attempt to set alignment to a
5152 -- value greater than Max_Align, and reset if so. This error
5153 -- is suppressed in ASIS mode to allow for different ASIS
5154 -- back ends or ASIS-based tools to query the illegal clause.
5156 if Is_Tagged_Type
(U_Ent
)
5157 and then Align
> Max_Align
5158 and then not ASIS_Mode
5161 ("alignment for & set to Maximum_Aligment??", Nam
);
5162 Set_Alignment
(U_Ent
, Max_Align
);
5167 Set_Alignment
(U_Ent
, Align
);
5170 -- For an array type, U_Ent is the first subtype. In that case,
5171 -- also set the alignment of the anonymous base type so that
5172 -- other subtypes (such as the itypes for aggregates of the
5173 -- type) also receive the expected alignment.
5175 if Is_Array_Type
(U_Ent
) then
5176 Set_Alignment
(Base_Type
(U_Ent
), Align
);
5185 -- Bit_Order attribute definition clause
5187 when Attribute_Bit_Order
=>
5188 if not Is_Record_Type
(U_Ent
) then
5190 ("Bit_Order can only be defined for record type", Nam
);
5192 elsif Duplicate_Clause
then
5196 Analyze_And_Resolve
(Expr
, RTE
(RE_Bit_Order
));
5198 if Etype
(Expr
) = Any_Type
then
5201 elsif not Is_OK_Static_Expression
(Expr
) then
5202 Flag_Non_Static_Expr
5203 ("Bit_Order requires static expression!", Expr
);
5206 if (Expr_Value
(Expr
) = 0) /= Bytes_Big_Endian
then
5207 Set_Reverse_Bit_Order
(Base_Type
(U_Ent
), True);
5212 --------------------
5213 -- Component_Size --
5214 --------------------
5216 -- Component_Size attribute definition clause
5218 when Attribute_Component_Size
=> Component_Size_Case
: declare
5219 Csize
: constant Uint
:= Static_Integer
(Expr
);
5223 New_Ctyp
: Entity_Id
;
5227 if not Is_Array_Type
(U_Ent
) then
5228 Error_Msg_N
("component size requires array type", Nam
);
5232 Btype
:= Base_Type
(U_Ent
);
5233 Ctyp
:= Component_Type
(Btype
);
5235 if Duplicate_Clause
then
5238 elsif Rep_Item_Too_Early
(Btype
, N
) then
5241 elsif Csize
/= No_Uint
then
5242 Check_Size
(Expr
, Ctyp
, Csize
, Biased
);
5244 -- For the biased case, build a declaration for a subtype that
5245 -- will be used to represent the biased subtype that reflects
5246 -- the biased representation of components. We need the subtype
5247 -- to get proper conversions on referencing elements of the
5252 Make_Defining_Identifier
(Loc
,
5254 New_External_Name
(Chars
(U_Ent
), 'C', 0, 'T'));
5257 Make_Subtype_Declaration
(Loc
,
5258 Defining_Identifier
=> New_Ctyp
,
5259 Subtype_Indication
=>
5260 New_Occurrence_Of
(Component_Type
(Btype
), Loc
));
5262 Set_Parent
(Decl
, N
);
5263 Analyze
(Decl
, Suppress
=> All_Checks
);
5265 Set_Has_Delayed_Freeze
(New_Ctyp
, False);
5266 Set_Esize
(New_Ctyp
, Csize
);
5267 Set_RM_Size
(New_Ctyp
, Csize
);
5268 Init_Alignment
(New_Ctyp
);
5269 Set_Is_Itype
(New_Ctyp
, True);
5270 Set_Associated_Node_For_Itype
(New_Ctyp
, U_Ent
);
5272 Set_Component_Type
(Btype
, New_Ctyp
);
5273 Set_Biased
(New_Ctyp
, N
, "component size clause");
5276 Set_Component_Size
(Btype
, Csize
);
5278 -- Deal with warning on overridden size
5280 if Warn_On_Overridden_Size
5281 and then Has_Size_Clause
(Ctyp
)
5282 and then RM_Size
(Ctyp
) /= Csize
5285 ("component size overrides size clause for&?S?", N
, Ctyp
);
5288 Set_Has_Component_Size_Clause
(Btype
, True);
5289 Set_Has_Non_Standard_Rep
(Btype
, True);
5291 end Component_Size_Case
;
5293 -----------------------
5294 -- Constant_Indexing --
5295 -----------------------
5297 when Attribute_Constant_Indexing
=>
5298 Check_Indexing_Functions
;
5304 when Attribute_CPU
=>
5306 -- CPU attribute definition clause not allowed except from aspect
5309 if From_Aspect_Specification
(N
) then
5310 if not Is_Task_Type
(U_Ent
) then
5311 Error_Msg_N
("CPU can only be defined for task", Nam
);
5313 elsif Duplicate_Clause
then
5317 -- The expression must be analyzed in the special manner
5318 -- described in "Handling of Default and Per-Object
5319 -- Expressions" in sem.ads.
5321 -- The visibility to the discriminants must be restored
5323 Push_Scope_And_Install_Discriminants
(U_Ent
);
5324 Preanalyze_Spec_Expression
(Expr
, RTE
(RE_CPU_Range
));
5325 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
5327 if not Is_OK_Static_Expression
(Expr
) then
5328 Check_Restriction
(Static_Priorities
, Expr
);
5334 ("attribute& cannot be set with definition clause", N
);
5337 ----------------------
5338 -- Default_Iterator --
5339 ----------------------
5341 when Attribute_Default_Iterator
=> Default_Iterator
: declare
5346 -- If target type is untagged, further checks are irrelevant
5348 if not Is_Tagged_Type
(U_Ent
) then
5350 ("aspect Default_Iterator applies to tagged type", Nam
);
5354 Check_Iterator_Functions
;
5358 if not Is_Entity_Name
(Expr
)
5359 or else Ekind
(Entity
(Expr
)) /= E_Function
5361 Error_Msg_N
("aspect Iterator must be a function", Expr
);
5364 Func
:= Entity
(Expr
);
5367 -- The type of the first parameter must be T, T'class, or a
5368 -- corresponding access type (5.5.1 (8/3). If function is
5369 -- parameterless label type accordingly.
5371 if No
(First_Formal
(Func
)) then
5374 Typ
:= Etype
(First_Formal
(Func
));
5378 or else Typ
= Class_Wide_Type
(U_Ent
)
5379 or else (Is_Access_Type
(Typ
)
5380 and then Designated_Type
(Typ
) = U_Ent
)
5381 or else (Is_Access_Type
(Typ
)
5382 and then Designated_Type
(Typ
) =
5383 Class_Wide_Type
(U_Ent
))
5389 ("Default Iterator must be a primitive of&", Func
, U_Ent
);
5391 end Default_Iterator
;
5393 ------------------------
5394 -- Dispatching_Domain --
5395 ------------------------
5397 when Attribute_Dispatching_Domain
=>
5399 -- Dispatching_Domain attribute definition clause not allowed
5400 -- except from aspect specification.
5402 if From_Aspect_Specification
(N
) then
5403 if not Is_Task_Type
(U_Ent
) then
5405 ("Dispatching_Domain can only be defined for task", Nam
);
5407 elsif Duplicate_Clause
then
5411 -- The expression must be analyzed in the special manner
5412 -- described in "Handling of Default and Per-Object
5413 -- Expressions" in sem.ads.
5415 -- The visibility to the discriminants must be restored
5417 Push_Scope_And_Install_Discriminants
(U_Ent
);
5419 Preanalyze_Spec_Expression
5420 (Expr
, RTE
(RE_Dispatching_Domain
));
5422 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
5427 ("attribute& cannot be set with definition clause", N
);
5434 when Attribute_External_Tag
=>
5435 if not Is_Tagged_Type
(U_Ent
) then
5436 Error_Msg_N
("should be a tagged type", Nam
);
5439 if Duplicate_Clause
then
5443 Analyze_And_Resolve
(Expr
, Standard_String
);
5445 if not Is_OK_Static_Expression
(Expr
) then
5446 Flag_Non_Static_Expr
5447 ("static string required for tag name!", Nam
);
5450 if not Is_Library_Level_Entity
(U_Ent
) then
5452 ("??non-unique external tag supplied for &", N
, U_Ent
);
5454 ("\??same external tag applies to all subprogram calls",
5457 ("\??corresponding internal tag cannot be obtained", N
);
5461 --------------------------
5462 -- Implicit_Dereference --
5463 --------------------------
5465 when Attribute_Implicit_Dereference
=>
5467 -- Legality checks already performed at the point of the type
5468 -- declaration, aspect is not delayed.
5476 when Attribute_Input
=>
5477 Analyze_Stream_TSS_Definition
(TSS_Stream_Input
);
5478 Set_Has_Specified_Stream_Input
(Ent
);
5480 ------------------------
5481 -- Interrupt_Priority --
5482 ------------------------
5484 when Attribute_Interrupt_Priority
=>
5486 -- Interrupt_Priority attribute definition clause not allowed
5487 -- except from aspect specification.
5489 if From_Aspect_Specification
(N
) then
5490 if not Is_Concurrent_Type
(U_Ent
) then
5492 ("Interrupt_Priority can only be defined for task and "
5493 & "protected object", Nam
);
5495 elsif Duplicate_Clause
then
5499 -- The expression must be analyzed in the special manner
5500 -- described in "Handling of Default and Per-Object
5501 -- Expressions" in sem.ads.
5503 -- The visibility to the discriminants must be restored
5505 Push_Scope_And_Install_Discriminants
(U_Ent
);
5507 Preanalyze_Spec_Expression
5508 (Expr
, RTE
(RE_Interrupt_Priority
));
5510 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
5512 -- Check the No_Task_At_Interrupt_Priority restriction
5514 if Is_Task_Type
(U_Ent
) then
5515 Check_Restriction
(No_Task_At_Interrupt_Priority
, N
);
5521 ("attribute& cannot be set with definition clause", N
);
5528 when Attribute_Iterable
=>
5531 if Nkind
(Expr
) /= N_Aggregate
then
5532 Error_Msg_N
("aspect Iterable must be an aggregate", Expr
);
5539 Assoc
:= First
(Component_Associations
(Expr
));
5540 while Present
(Assoc
) loop
5541 if not Is_Entity_Name
(Expression
(Assoc
)) then
5542 Error_Msg_N
("value must be a function", Assoc
);
5549 ----------------------
5550 -- Iterator_Element --
5551 ----------------------
5553 when Attribute_Iterator_Element
=>
5556 if not Is_Entity_Name
(Expr
)
5557 or else not Is_Type
(Entity
(Expr
))
5559 Error_Msg_N
("aspect Iterator_Element must be a type", Expr
);
5566 -- Machine radix attribute definition clause
5568 when Attribute_Machine_Radix
=> Machine_Radix
: declare
5569 Radix
: constant Uint
:= Static_Integer
(Expr
);
5572 if not Is_Decimal_Fixed_Point_Type
(U_Ent
) then
5573 Error_Msg_N
("decimal fixed-point type expected for &", Nam
);
5575 elsif Duplicate_Clause
then
5578 elsif Radix
/= No_Uint
then
5579 Set_Has_Machine_Radix_Clause
(U_Ent
);
5580 Set_Has_Non_Standard_Rep
(Base_Type
(U_Ent
));
5585 elsif Radix
= 10 then
5586 Set_Machine_Radix_10
(U_Ent
);
5588 -- The following error is suppressed in ASIS mode to allow for
5589 -- different ASIS back ends or ASIS-based tools to query the
5592 elsif not ASIS_Mode
then
5593 Error_Msg_N
("machine radix value must be 2 or 10", Expr
);
5602 -- Object_Size attribute definition clause
5604 when Attribute_Object_Size
=> Object_Size
: declare
5605 Size
: constant Uint
:= Static_Integer
(Expr
);
5608 pragma Warnings
(Off
, Biased
);
5611 if not Is_Type
(U_Ent
) then
5612 Error_Msg_N
("Object_Size cannot be given for &", Nam
);
5614 elsif Duplicate_Clause
then
5618 Check_Size
(Expr
, U_Ent
, Size
, Biased
);
5620 -- The following errors are suppressed in ASIS mode to allow
5621 -- for different ASIS back ends or ASIS-based tools to query
5622 -- the illegal clause.
5627 elsif Is_Scalar_Type
(U_Ent
) then
5628 if Size
/= 8 and then Size
/= 16 and then Size
/= 32
5629 and then UI_Mod
(Size
, 64) /= 0
5632 ("Object_Size must be 8, 16, 32, or multiple of 64",
5636 elsif Size
mod 8 /= 0 then
5637 Error_Msg_N
("Object_Size must be a multiple of 8", Expr
);
5640 Set_Esize
(U_Ent
, Size
);
5641 Set_Has_Object_Size_Clause
(U_Ent
);
5642 Alignment_Check_For_Size_Change
(U_Ent
, Size
);
5650 when Attribute_Output
=>
5651 Analyze_Stream_TSS_Definition
(TSS_Stream_Output
);
5652 Set_Has_Specified_Stream_Output
(Ent
);
5658 when Attribute_Priority
=>
5660 -- Priority attribute definition clause not allowed except from
5661 -- aspect specification.
5663 if From_Aspect_Specification
(N
) then
5664 if not (Is_Concurrent_Type
(U_Ent
)
5665 or else Ekind
(U_Ent
) = E_Procedure
)
5668 ("Priority can only be defined for task and protected "
5671 elsif Duplicate_Clause
then
5675 -- The expression must be analyzed in the special manner
5676 -- described in "Handling of Default and Per-Object
5677 -- Expressions" in sem.ads.
5679 -- The visibility to the discriminants must be restored
5681 Push_Scope_And_Install_Discriminants
(U_Ent
);
5682 Preanalyze_Spec_Expression
(Expr
, Standard_Integer
);
5683 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
5685 if not Is_OK_Static_Expression
(Expr
) then
5686 Check_Restriction
(Static_Priorities
, Expr
);
5692 ("attribute& cannot be set with definition clause", N
);
5699 when Attribute_Read
=>
5700 Analyze_Stream_TSS_Definition
(TSS_Stream_Read
);
5701 Set_Has_Specified_Stream_Read
(Ent
);
5703 --------------------------
5704 -- Scalar_Storage_Order --
5705 --------------------------
5707 -- Scalar_Storage_Order attribute definition clause
5709 when Attribute_Scalar_Storage_Order
=>
5710 if not (Is_Record_Type
(U_Ent
) or else Is_Array_Type
(U_Ent
)) then
5712 ("Scalar_Storage_Order can only be defined for record or "
5713 & "array type", Nam
);
5715 elsif Duplicate_Clause
then
5719 Analyze_And_Resolve
(Expr
, RTE
(RE_Bit_Order
));
5721 if Etype
(Expr
) = Any_Type
then
5724 elsif not Is_OK_Static_Expression
(Expr
) then
5725 Flag_Non_Static_Expr
5726 ("Scalar_Storage_Order requires static expression!", Expr
);
5728 elsif (Expr_Value
(Expr
) = 0) /= Bytes_Big_Endian
then
5730 -- Here for the case of a non-default (i.e. non-confirming)
5731 -- Scalar_Storage_Order attribute definition.
5733 if Support_Nondefault_SSO_On_Target
then
5734 Set_Reverse_Storage_Order
(Base_Type
(U_Ent
), True);
5737 ("non-default Scalar_Storage_Order not supported on "
5742 -- Clear SSO default indications since explicit setting of the
5743 -- order overrides the defaults.
5745 Set_SSO_Set_Low_By_Default
(Base_Type
(U_Ent
), False);
5746 Set_SSO_Set_High_By_Default
(Base_Type
(U_Ent
), False);
5749 --------------------------
5750 -- Secondary_Stack_Size --
5751 --------------------------
5753 when Attribute_Secondary_Stack_Size
=>
5755 -- Secondary_Stack_Size attribute definition clause not allowed
5756 -- except from aspect specification.
5758 if From_Aspect_Specification
(N
) then
5759 if not Is_Task_Type
(U_Ent
) then
5761 ("Secondary Stack Size can only be defined for task", Nam
);
5763 elsif Duplicate_Clause
then
5767 Check_Restriction
(No_Secondary_Stack
, Expr
);
5769 -- The expression must be analyzed in the special manner
5770 -- described in "Handling of Default and Per-Object
5771 -- Expressions" in sem.ads.
5773 -- The visibility to the discriminants must be restored
5775 Push_Scope_And_Install_Discriminants
(U_Ent
);
5776 Preanalyze_Spec_Expression
(Expr
, Any_Integer
);
5777 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
5779 if not Is_OK_Static_Expression
(Expr
) then
5780 Check_Restriction
(Static_Storage_Size
, Expr
);
5786 ("attribute& cannot be set with definition clause", N
);
5793 -- Size attribute definition clause
5795 when Attribute_Size
=> Size
: declare
5796 Size
: constant Uint
:= Static_Integer
(Expr
);
5803 if Duplicate_Clause
then
5806 elsif not Is_Type
(U_Ent
)
5807 and then Ekind
(U_Ent
) /= E_Variable
5808 and then Ekind
(U_Ent
) /= E_Constant
5810 Error_Msg_N
("size cannot be given for &", Nam
);
5812 elsif Is_Array_Type
(U_Ent
)
5813 and then not Is_Constrained
(U_Ent
)
5816 ("size cannot be given for unconstrained array", Nam
);
5818 elsif Size
/= No_Uint
then
5819 if Is_Type
(U_Ent
) then
5822 Etyp
:= Etype
(U_Ent
);
5825 -- Check size, note that Gigi is in charge of checking that the
5826 -- size of an array or record type is OK. Also we do not check
5827 -- the size in the ordinary fixed-point case, since it is too
5828 -- early to do so (there may be subsequent small clause that
5829 -- affects the size). We can check the size if a small clause
5830 -- has already been given.
5832 if not Is_Ordinary_Fixed_Point_Type
(U_Ent
)
5833 or else Has_Small_Clause
(U_Ent
)
5835 Check_Size
(Expr
, Etyp
, Size
, Biased
);
5836 Set_Biased
(U_Ent
, N
, "size clause", Biased
);
5839 -- For types set RM_Size and Esize if possible
5841 if Is_Type
(U_Ent
) then
5842 Set_RM_Size
(U_Ent
, Size
);
5844 -- For elementary types, increase Object_Size to power of 2,
5845 -- but not less than a storage unit in any case (normally
5846 -- this means it will be byte addressable).
5848 -- For all other types, nothing else to do, we leave Esize
5849 -- (object size) unset, the back end will set it from the
5850 -- size and alignment in an appropriate manner.
5852 -- In both cases, we check whether the alignment must be
5853 -- reset in the wake of the size change.
5855 if Is_Elementary_Type
(U_Ent
) then
5856 if Size
<= System_Storage_Unit
then
5857 Init_Esize
(U_Ent
, System_Storage_Unit
);
5858 elsif Size
<= 16 then
5859 Init_Esize
(U_Ent
, 16);
5860 elsif Size
<= 32 then
5861 Init_Esize
(U_Ent
, 32);
5863 Set_Esize
(U_Ent
, (Size
+ 63) / 64 * 64);
5866 Alignment_Check_For_Size_Change
(U_Ent
, Esize
(U_Ent
));
5868 Alignment_Check_For_Size_Change
(U_Ent
, Size
);
5871 -- For objects, set Esize only
5874 -- The following error is suppressed in ASIS mode to allow
5875 -- for different ASIS back ends or ASIS-based tools to query
5876 -- the illegal clause.
5878 if Is_Elementary_Type
(Etyp
)
5879 and then Size
/= System_Storage_Unit
5880 and then Size
/= System_Storage_Unit
* 2
5881 and then Size
/= System_Storage_Unit
* 4
5882 and then Size
/= System_Storage_Unit
* 8
5883 and then not ASIS_Mode
5885 Error_Msg_Uint_1
:= UI_From_Int
(System_Storage_Unit
);
5886 Error_Msg_Uint_2
:= Error_Msg_Uint_1
* 8;
5888 ("size for primitive object must be a power of 2 in "
5889 & "the range ^-^", N
);
5892 Set_Esize
(U_Ent
, Size
);
5895 Set_Has_Size_Clause
(U_Ent
);
5903 -- Small attribute definition clause
5905 when Attribute_Small
=> Small
: declare
5906 Implicit_Base
: constant Entity_Id
:= Base_Type
(U_Ent
);
5910 Analyze_And_Resolve
(Expr
, Any_Real
);
5912 if Etype
(Expr
) = Any_Type
then
5915 elsif not Is_OK_Static_Expression
(Expr
) then
5916 Flag_Non_Static_Expr
5917 ("small requires static expression!", Expr
);
5921 Small
:= Expr_Value_R
(Expr
);
5923 if Small
<= Ureal_0
then
5924 Error_Msg_N
("small value must be greater than zero", Expr
);
5930 if not Is_Ordinary_Fixed_Point_Type
(U_Ent
) then
5932 ("small requires an ordinary fixed point type", Nam
);
5934 elsif Has_Small_Clause
(U_Ent
) then
5935 Error_Msg_N
("small already given for &", Nam
);
5937 elsif Small
> Delta_Value
(U_Ent
) then
5939 ("small value must not be greater than delta value", Nam
);
5942 Set_Small_Value
(U_Ent
, Small
);
5943 Set_Small_Value
(Implicit_Base
, Small
);
5944 Set_Has_Small_Clause
(U_Ent
);
5945 Set_Has_Small_Clause
(Implicit_Base
);
5946 Set_Has_Non_Standard_Rep
(Implicit_Base
);
5954 -- Storage_Pool attribute definition clause
5956 when Attribute_Simple_Storage_Pool
5957 | Attribute_Storage_Pool
5959 Storage_Pool
: declare
5964 if Ekind
(U_Ent
) = E_Access_Subprogram_Type
then
5966 ("storage pool cannot be given for access-to-subprogram type",
5970 elsif not Ekind_In
(U_Ent
, E_Access_Type
, E_General_Access_Type
)
5973 ("storage pool can only be given for access types", Nam
);
5976 elsif Is_Derived_Type
(U_Ent
) then
5978 ("storage pool cannot be given for a derived access type",
5981 elsif Duplicate_Clause
then
5984 elsif Present
(Associated_Storage_Pool
(U_Ent
)) then
5985 Error_Msg_N
("storage pool already given for &", Nam
);
5989 -- Check for Storage_Size previously given
5992 SS
: constant Node_Id
:=
5993 Get_Attribute_Definition_Clause
5994 (U_Ent
, Attribute_Storage_Size
);
5996 if Present
(SS
) then
5997 Check_Pool_Size_Clash
(U_Ent
, N
, SS
);
6001 -- Storage_Pool case
6003 if Id
= Attribute_Storage_Pool
then
6005 (Expr
, Class_Wide_Type
(RTE
(RE_Root_Storage_Pool
)));
6007 -- In the Simple_Storage_Pool case, we allow a variable of any
6008 -- simple storage pool type, so we Resolve without imposing an
6012 Analyze_And_Resolve
(Expr
);
6014 if not Present
(Get_Rep_Pragma
6015 (Etype
(Expr
), Name_Simple_Storage_Pool_Type
))
6018 ("expression must be of a simple storage pool type", Expr
);
6022 if not Denotes_Variable
(Expr
) then
6023 Error_Msg_N
("storage pool must be a variable", Expr
);
6027 if Nkind
(Expr
) = N_Type_Conversion
then
6028 T
:= Etype
(Expression
(Expr
));
6033 -- The Stack_Bounded_Pool is used internally for implementing
6034 -- access types with a Storage_Size. Since it only work properly
6035 -- when used on one specific type, we need to check that it is not
6036 -- hijacked improperly:
6038 -- type T is access Integer;
6039 -- for T'Storage_Size use n;
6040 -- type Q is access Float;
6041 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
6043 if RTE_Available
(RE_Stack_Bounded_Pool
)
6044 and then Base_Type
(T
) = RTE
(RE_Stack_Bounded_Pool
)
6046 Error_Msg_N
("non-shareable internal Pool", Expr
);
6050 -- If the argument is a name that is not an entity name, then
6051 -- we construct a renaming operation to define an entity of
6052 -- type storage pool.
6054 if not Is_Entity_Name
(Expr
)
6055 and then Is_Object_Reference
(Expr
)
6057 Pool
:= Make_Temporary
(Loc
, 'P', Expr
);
6060 Rnode
: constant Node_Id
:=
6061 Make_Object_Renaming_Declaration
(Loc
,
6062 Defining_Identifier
=> Pool
,
6064 New_Occurrence_Of
(Etype
(Expr
), Loc
),
6068 -- If the attribute definition clause comes from an aspect
6069 -- clause, then insert the renaming before the associated
6070 -- entity's declaration, since the attribute clause has
6071 -- not yet been appended to the declaration list.
6073 if From_Aspect_Specification
(N
) then
6074 Insert_Before
(Parent
(Entity
(N
)), Rnode
);
6076 Insert_Before
(N
, Rnode
);
6080 Set_Associated_Storage_Pool
(U_Ent
, Pool
);
6083 elsif Is_Entity_Name
(Expr
) then
6084 Pool
:= Entity
(Expr
);
6086 -- If pool is a renamed object, get original one. This can
6087 -- happen with an explicit renaming, and within instances.
6089 while Present
(Renamed_Object
(Pool
))
6090 and then Is_Entity_Name
(Renamed_Object
(Pool
))
6092 Pool
:= Entity
(Renamed_Object
(Pool
));
6095 if Present
(Renamed_Object
(Pool
))
6096 and then Nkind
(Renamed_Object
(Pool
)) = N_Type_Conversion
6097 and then Is_Entity_Name
(Expression
(Renamed_Object
(Pool
)))
6099 Pool
:= Entity
(Expression
(Renamed_Object
(Pool
)));
6102 Set_Associated_Storage_Pool
(U_Ent
, Pool
);
6104 elsif Nkind
(Expr
) = N_Type_Conversion
6105 and then Is_Entity_Name
(Expression
(Expr
))
6106 and then Nkind
(Original_Node
(Expr
)) = N_Attribute_Reference
6108 Pool
:= Entity
(Expression
(Expr
));
6109 Set_Associated_Storage_Pool
(U_Ent
, Pool
);
6112 Error_Msg_N
("incorrect reference to a Storage Pool", Expr
);
6121 -- Storage_Size attribute definition clause
6123 when Attribute_Storage_Size
=> Storage_Size
: declare
6124 Btype
: constant Entity_Id
:= Base_Type
(U_Ent
);
6127 if Is_Task_Type
(U_Ent
) then
6129 -- Check obsolescent (but never obsolescent if from aspect)
6131 if not From_Aspect_Specification
(N
) then
6132 Check_Restriction
(No_Obsolescent_Features
, N
);
6134 if Warn_On_Obsolescent_Feature
then
6136 ("?j?storage size clause for task is an obsolescent "
6137 & "feature (RM J.9)", N
);
6138 Error_Msg_N
("\?j?use Storage_Size pragma instead", N
);
6145 if not Is_Access_Type
(U_Ent
)
6146 and then Ekind
(U_Ent
) /= E_Task_Type
6148 Error_Msg_N
("storage size cannot be given for &", Nam
);
6150 elsif Is_Access_Type
(U_Ent
) and Is_Derived_Type
(U_Ent
) then
6152 ("storage size cannot be given for a derived access type",
6155 elsif Duplicate_Clause
then
6159 Analyze_And_Resolve
(Expr
, Any_Integer
);
6161 if Is_Access_Type
(U_Ent
) then
6163 -- Check for Storage_Pool previously given
6166 SP
: constant Node_Id
:=
6167 Get_Attribute_Definition_Clause
6168 (U_Ent
, Attribute_Storage_Pool
);
6171 if Present
(SP
) then
6172 Check_Pool_Size_Clash
(U_Ent
, SP
, N
);
6176 -- Special case of for x'Storage_Size use 0
6178 if Is_OK_Static_Expression
(Expr
)
6179 and then Expr_Value
(Expr
) = 0
6181 Set_No_Pool_Assigned
(Btype
);
6185 Set_Has_Storage_Size_Clause
(Btype
);
6193 when Attribute_Stream_Size
=> Stream_Size
: declare
6194 Size
: constant Uint
:= Static_Integer
(Expr
);
6197 if Ada_Version
<= Ada_95
then
6198 Check_Restriction
(No_Implementation_Attributes
, N
);
6201 if Duplicate_Clause
then
6204 elsif Is_Elementary_Type
(U_Ent
) then
6206 -- The following errors are suppressed in ASIS mode to allow
6207 -- for different ASIS back ends or ASIS-based tools to query
6208 -- the illegal clause.
6213 elsif Size
/= System_Storage_Unit
6214 and then Size
/= System_Storage_Unit
* 2
6215 and then Size
/= System_Storage_Unit
* 4
6216 and then Size
/= System_Storage_Unit
* 8
6218 Error_Msg_Uint_1
:= UI_From_Int
(System_Storage_Unit
);
6220 ("stream size for elementary type must be a power of 2 "
6221 & "and at least ^", N
);
6223 elsif RM_Size
(U_Ent
) > Size
then
6224 Error_Msg_Uint_1
:= RM_Size
(U_Ent
);
6226 ("stream size for elementary type must be a power of 2 "
6227 & "and at least ^", N
);
6230 Set_Has_Stream_Size_Clause
(U_Ent
);
6233 Error_Msg_N
("Stream_Size cannot be given for &", Nam
);
6241 -- Value_Size attribute definition clause
6243 when Attribute_Value_Size
=> Value_Size
: declare
6244 Size
: constant Uint
:= Static_Integer
(Expr
);
6248 if not Is_Type
(U_Ent
) then
6249 Error_Msg_N
("Value_Size cannot be given for &", Nam
);
6251 elsif Duplicate_Clause
then
6254 elsif Is_Array_Type
(U_Ent
)
6255 and then not Is_Constrained
(U_Ent
)
6258 ("Value_Size cannot be given for unconstrained array", Nam
);
6261 if Is_Elementary_Type
(U_Ent
) then
6262 Check_Size
(Expr
, U_Ent
, Size
, Biased
);
6263 Set_Biased
(U_Ent
, N
, "value size clause", Biased
);
6266 Set_RM_Size
(U_Ent
, Size
);
6270 -----------------------
6271 -- Variable_Indexing --
6272 -----------------------
6274 when Attribute_Variable_Indexing
=>
6275 Check_Indexing_Functions
;
6281 when Attribute_Write
=>
6282 Analyze_Stream_TSS_Definition
(TSS_Stream_Write
);
6283 Set_Has_Specified_Stream_Write
(Ent
);
6285 -- All other attributes cannot be set
6289 ("attribute& cannot be set with definition clause", N
);
6292 -- The test for the type being frozen must be performed after any
6293 -- expression the clause has been analyzed since the expression itself
6294 -- might cause freezing that makes the clause illegal.
6296 if Rep_Item_Too_Late
(U_Ent
, N
, FOnly
) then
6299 end Analyze_Attribute_Definition_Clause
;
6301 ----------------------------
6302 -- Analyze_Code_Statement --
6303 ----------------------------
6305 procedure Analyze_Code_Statement
(N
: Node_Id
) is
6306 HSS
: constant Node_Id
:= Parent
(N
);
6307 SBody
: constant Node_Id
:= Parent
(HSS
);
6308 Subp
: constant Entity_Id
:= Current_Scope
;
6315 -- Accept foreign code statements for CodePeer. The analysis is skipped
6316 -- to avoid rejecting unrecognized constructs.
6318 if CodePeer_Mode
then
6323 -- Analyze and check we get right type, note that this implements the
6324 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that is
6325 -- the only way that Asm_Insn could possibly be visible.
6327 Analyze_And_Resolve
(Expression
(N
));
6329 if Etype
(Expression
(N
)) = Any_Type
then
6331 elsif Etype
(Expression
(N
)) /= RTE
(RE_Asm_Insn
) then
6332 Error_Msg_N
("incorrect type for code statement", N
);
6336 Check_Code_Statement
(N
);
6338 -- Make sure we appear in the handled statement sequence of a subprogram
6341 if Nkind
(HSS
) /= N_Handled_Sequence_Of_Statements
6342 or else Nkind
(SBody
) /= N_Subprogram_Body
6345 ("code statement can only appear in body of subprogram", N
);
6349 -- Do remaining checks (RM 13.8(3)) if not already done
6351 if not Is_Machine_Code_Subprogram
(Subp
) then
6352 Set_Is_Machine_Code_Subprogram
(Subp
);
6354 -- No exception handlers allowed
6356 if Present
(Exception_Handlers
(HSS
)) then
6358 ("exception handlers not permitted in machine code subprogram",
6359 First
(Exception_Handlers
(HSS
)));
6362 -- No declarations other than use clauses and pragmas (we allow
6363 -- certain internally generated declarations as well).
6365 Decl
:= First
(Declarations
(SBody
));
6366 while Present
(Decl
) loop
6367 DeclO
:= Original_Node
(Decl
);
6368 if Comes_From_Source
(DeclO
)
6369 and not Nkind_In
(DeclO
, N_Pragma
,
6370 N_Use_Package_Clause
,
6372 N_Implicit_Label_Declaration
)
6375 ("this declaration not allowed in machine code subprogram",
6382 -- No statements other than code statements, pragmas, and labels.
6383 -- Again we allow certain internally generated statements.
6385 -- In Ada 2012, qualified expressions are names, and the code
6386 -- statement is initially parsed as a procedure call.
6388 Stmt
:= First
(Statements
(HSS
));
6389 while Present
(Stmt
) loop
6390 StmtO
:= Original_Node
(Stmt
);
6392 -- A procedure call transformed into a code statement is OK
6394 if Ada_Version
>= Ada_2012
6395 and then Nkind
(StmtO
) = N_Procedure_Call_Statement
6396 and then Nkind
(Name
(StmtO
)) = N_Qualified_Expression
6400 elsif Comes_From_Source
(StmtO
)
6401 and then not Nkind_In
(StmtO
, N_Pragma
,
6406 ("this statement is not allowed in machine code subprogram",
6413 end Analyze_Code_Statement
;
6415 -----------------------------------------------
6416 -- Analyze_Enumeration_Representation_Clause --
6417 -----------------------------------------------
6419 procedure Analyze_Enumeration_Representation_Clause
(N
: Node_Id
) is
6420 Ident
: constant Node_Id
:= Identifier
(N
);
6421 Aggr
: constant Node_Id
:= Array_Aggregate
(N
);
6422 Enumtype
: Entity_Id
;
6429 Err
: Boolean := False;
6430 -- Set True to avoid cascade errors and crashes on incorrect source code
6432 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(Universal_Integer
));
6433 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(Universal_Integer
));
6434 -- Allowed range of universal integer (= allowed range of enum lit vals)
6438 -- Minimum and maximum values of entries
6441 -- Pointer to node for literal providing max value
6444 if Ignore_Rep_Clauses
then
6445 Kill_Rep_Clause
(N
);
6449 -- Ignore enumeration rep clauses by default in CodePeer mode,
6450 -- unless -gnatd.I is specified, as a work around for potential false
6451 -- positive messages.
6453 if CodePeer_Mode
and not Debug_Flag_Dot_II
then
6457 -- First some basic error checks
6460 Enumtype
:= Entity
(Ident
);
6462 if Enumtype
= Any_Type
6463 or else Rep_Item_Too_Early
(Enumtype
, N
)
6467 Enumtype
:= Underlying_Type
(Enumtype
);
6470 if not Is_Enumeration_Type
(Enumtype
) then
6472 ("enumeration type required, found}",
6473 Ident
, First_Subtype
(Enumtype
));
6477 -- Ignore rep clause on generic actual type. This will already have
6478 -- been flagged on the template as an error, and this is the safest
6479 -- way to ensure we don't get a junk cascaded message in the instance.
6481 if Is_Generic_Actual_Type
(Enumtype
) then
6484 -- Type must be in current scope
6486 elsif Scope
(Enumtype
) /= Current_Scope
then
6487 Error_Msg_N
("type must be declared in this scope", Ident
);
6490 -- Type must be a first subtype
6492 elsif not Is_First_Subtype
(Enumtype
) then
6493 Error_Msg_N
("cannot give enumeration rep clause for subtype", N
);
6496 -- Ignore duplicate rep clause
6498 elsif Has_Enumeration_Rep_Clause
(Enumtype
) then
6499 Error_Msg_N
("duplicate enumeration rep clause ignored", N
);
6502 -- Don't allow rep clause for standard [wide_[wide_]]character
6504 elsif Is_Standard_Character_Type
(Enumtype
) then
6505 Error_Msg_N
("enumeration rep clause not allowed for this type", N
);
6508 -- Check that the expression is a proper aggregate (no parentheses)
6510 elsif Paren_Count
(Aggr
) /= 0 then
6512 ("extra parentheses surrounding aggregate not allowed",
6516 -- All tests passed, so set rep clause in place
6519 Set_Has_Enumeration_Rep_Clause
(Enumtype
);
6520 Set_Has_Enumeration_Rep_Clause
(Base_Type
(Enumtype
));
6523 -- Now we process the aggregate. Note that we don't use the normal
6524 -- aggregate code for this purpose, because we don't want any of the
6525 -- normal expansion activities, and a number of special semantic
6526 -- rules apply (including the component type being any integer type)
6528 Elit
:= First_Literal
(Enumtype
);
6530 -- First the positional entries if any
6532 if Present
(Expressions
(Aggr
)) then
6533 Expr
:= First
(Expressions
(Aggr
));
6534 while Present
(Expr
) loop
6536 Error_Msg_N
("too many entries in aggregate", Expr
);
6540 Val
:= Static_Integer
(Expr
);
6542 -- Err signals that we found some incorrect entries processing
6543 -- the list. The final checks for completeness and ordering are
6544 -- skipped in this case.
6546 if Val
= No_Uint
then
6549 elsif Val
< Lo
or else Hi
< Val
then
6550 Error_Msg_N
("value outside permitted range", Expr
);
6554 Set_Enumeration_Rep
(Elit
, Val
);
6555 Set_Enumeration_Rep_Expr
(Elit
, Expr
);
6561 -- Now process the named entries if present
6563 if Present
(Component_Associations
(Aggr
)) then
6564 Assoc
:= First
(Component_Associations
(Aggr
));
6565 while Present
(Assoc
) loop
6566 Choice
:= First
(Choices
(Assoc
));
6568 if Present
(Next
(Choice
)) then
6570 ("multiple choice not allowed here", Next
(Choice
));
6574 if Nkind
(Choice
) = N_Others_Choice
then
6575 Error_Msg_N
("others choice not allowed here", Choice
);
6578 elsif Nkind
(Choice
) = N_Range
then
6580 -- ??? should allow zero/one element range here
6582 Error_Msg_N
("range not allowed here", Choice
);
6586 Analyze_And_Resolve
(Choice
, Enumtype
);
6588 if Error_Posted
(Choice
) then
6593 if Is_Entity_Name
(Choice
)
6594 and then Is_Type
(Entity
(Choice
))
6596 Error_Msg_N
("subtype name not allowed here", Choice
);
6599 -- ??? should allow static subtype with zero/one entry
6601 elsif Etype
(Choice
) = Base_Type
(Enumtype
) then
6602 if not Is_OK_Static_Expression
(Choice
) then
6603 Flag_Non_Static_Expr
6604 ("non-static expression used for choice!", Choice
);
6608 Elit
:= Expr_Value_E
(Choice
);
6610 if Present
(Enumeration_Rep_Expr
(Elit
)) then
6612 Sloc
(Enumeration_Rep_Expr
(Elit
));
6614 ("representation for& previously given#",
6619 Set_Enumeration_Rep_Expr
(Elit
, Expression
(Assoc
));
6621 Expr
:= Expression
(Assoc
);
6622 Val
:= Static_Integer
(Expr
);
6624 if Val
= No_Uint
then
6627 elsif Val
< Lo
or else Hi
< Val
then
6628 Error_Msg_N
("value outside permitted range", Expr
);
6632 Set_Enumeration_Rep
(Elit
, Val
);
6642 -- Aggregate is fully processed. Now we check that a full set of
6643 -- representations was given, and that they are in range and in order.
6644 -- These checks are only done if no other errors occurred.
6650 Elit
:= First_Literal
(Enumtype
);
6651 while Present
(Elit
) loop
6652 if No
(Enumeration_Rep_Expr
(Elit
)) then
6653 Error_Msg_NE
("missing representation for&!", N
, Elit
);
6656 Val
:= Enumeration_Rep
(Elit
);
6658 if Min
= No_Uint
then
6662 if Val
/= No_Uint
then
6663 if Max
/= No_Uint
and then Val
<= Max
then
6665 ("enumeration value for& not ordered!",
6666 Enumeration_Rep_Expr
(Elit
), Elit
);
6669 Max_Node
:= Enumeration_Rep_Expr
(Elit
);
6673 -- If there is at least one literal whose representation is not
6674 -- equal to the Pos value, then note that this enumeration type
6675 -- has a non-standard representation.
6677 if Val
/= Enumeration_Pos
(Elit
) then
6678 Set_Has_Non_Standard_Rep
(Base_Type
(Enumtype
));
6685 -- Now set proper size information
6688 Minsize
: Uint
:= UI_From_Int
(Minimum_Size
(Enumtype
));
6691 if Has_Size_Clause
(Enumtype
) then
6693 -- All OK, if size is OK now
6695 if RM_Size
(Enumtype
) >= Minsize
then
6699 -- Try if we can get by with biasing
6702 UI_From_Int
(Minimum_Size
(Enumtype
, Biased
=> True));
6704 -- Error message if even biasing does not work
6706 if RM_Size
(Enumtype
) < Minsize
then
6707 Error_Msg_Uint_1
:= RM_Size
(Enumtype
);
6708 Error_Msg_Uint_2
:= Max
;
6710 ("previously given size (^) is too small "
6711 & "for this value (^)", Max_Node
);
6713 -- If biasing worked, indicate that we now have biased rep
6717 (Enumtype
, Size_Clause
(Enumtype
), "size clause");
6722 Set_RM_Size
(Enumtype
, Minsize
);
6723 Set_Enum_Esize
(Enumtype
);
6726 Set_RM_Size
(Base_Type
(Enumtype
), RM_Size
(Enumtype
));
6727 Set_Esize
(Base_Type
(Enumtype
), Esize
(Enumtype
));
6728 Set_Alignment
(Base_Type
(Enumtype
), Alignment
(Enumtype
));
6732 -- We repeat the too late test in case it froze itself
6734 if Rep_Item_Too_Late
(Enumtype
, N
) then
6737 end Analyze_Enumeration_Representation_Clause
;
6739 ----------------------------
6740 -- Analyze_Free_Statement --
6741 ----------------------------
6743 procedure Analyze_Free_Statement
(N
: Node_Id
) is
6745 Analyze
(Expression
(N
));
6746 end Analyze_Free_Statement
;
6748 ---------------------------
6749 -- Analyze_Freeze_Entity --
6750 ---------------------------
6752 procedure Analyze_Freeze_Entity
(N
: Node_Id
) is
6754 Freeze_Entity_Checks
(N
);
6755 end Analyze_Freeze_Entity
;
6757 -----------------------------------
6758 -- Analyze_Freeze_Generic_Entity --
6759 -----------------------------------
6761 procedure Analyze_Freeze_Generic_Entity
(N
: Node_Id
) is
6762 E
: constant Entity_Id
:= Entity
(N
);
6765 if not Is_Frozen
(E
) and then Has_Delayed_Aspects
(E
) then
6766 Analyze_Aspects_At_Freeze_Point
(E
);
6769 Freeze_Entity_Checks
(N
);
6770 end Analyze_Freeze_Generic_Entity
;
6772 ------------------------------------------
6773 -- Analyze_Record_Representation_Clause --
6774 ------------------------------------------
6776 -- Note: we check as much as we can here, but we can't do any checks
6777 -- based on the position values (e.g. overlap checks) until freeze time
6778 -- because especially in Ada 2005 (machine scalar mode), the processing
6779 -- for non-standard bit order can substantially change the positions.
6780 -- See procedure Check_Record_Representation_Clause (called from Freeze)
6781 -- for the remainder of this processing.
6783 procedure Analyze_Record_Representation_Clause
(N
: Node_Id
) is
6784 Ident
: constant Node_Id
:= Identifier
(N
);
6789 Hbit
: Uint
:= Uint_0
;
6793 Rectype
: Entity_Id
;
6796 function Is_Inherited
(Comp
: Entity_Id
) return Boolean;
6797 -- True if Comp is an inherited component in a record extension
6803 function Is_Inherited
(Comp
: Entity_Id
) return Boolean is
6804 Comp_Base
: Entity_Id
;
6807 if Ekind
(Rectype
) = E_Record_Subtype
then
6808 Comp_Base
:= Original_Record_Component
(Comp
);
6813 return Comp_Base
/= Original_Record_Component
(Comp_Base
);
6818 Is_Record_Extension
: Boolean;
6819 -- True if Rectype is a record extension
6821 CR_Pragma
: Node_Id
:= Empty
;
6822 -- Points to N_Pragma node if Complete_Representation pragma present
6824 -- Start of processing for Analyze_Record_Representation_Clause
6827 if Ignore_Rep_Clauses
then
6828 Kill_Rep_Clause
(N
);
6833 Rectype
:= Entity
(Ident
);
6835 if Rectype
= Any_Type
or else Rep_Item_Too_Early
(Rectype
, N
) then
6838 Rectype
:= Underlying_Type
(Rectype
);
6841 -- First some basic error checks
6843 if not Is_Record_Type
(Rectype
) then
6845 ("record type required, found}", Ident
, First_Subtype
(Rectype
));
6848 elsif Scope
(Rectype
) /= Current_Scope
then
6849 Error_Msg_N
("type must be declared in this scope", N
);
6852 elsif not Is_First_Subtype
(Rectype
) then
6853 Error_Msg_N
("cannot give record rep clause for subtype", N
);
6856 elsif Has_Record_Rep_Clause
(Rectype
) then
6857 Error_Msg_N
("duplicate record rep clause ignored", N
);
6860 elsif Rep_Item_Too_Late
(Rectype
, N
) then
6864 -- We know we have a first subtype, now possibly go to the anonymous
6865 -- base type to determine whether Rectype is a record extension.
6867 Recdef
:= Type_Definition
(Declaration_Node
(Base_Type
(Rectype
)));
6868 Is_Record_Extension
:=
6869 Nkind
(Recdef
) = N_Derived_Type_Definition
6870 and then Present
(Record_Extension_Part
(Recdef
));
6872 if Present
(Mod_Clause
(N
)) then
6874 Loc
: constant Source_Ptr
:= Sloc
(N
);
6875 M
: constant Node_Id
:= Mod_Clause
(N
);
6876 P
: constant List_Id
:= Pragmas_Before
(M
);
6880 pragma Warnings
(Off
, Mod_Val
);
6883 Check_Restriction
(No_Obsolescent_Features
, Mod_Clause
(N
));
6885 if Warn_On_Obsolescent_Feature
then
6887 ("?j?mod clause is an obsolescent feature (RM J.8)", N
);
6889 ("\?j?use alignment attribute definition clause instead", N
);
6896 -- In ASIS_Mode mode, expansion is disabled, but we must convert
6897 -- the Mod clause into an alignment clause anyway, so that the
6898 -- back end can compute and back-annotate properly the size and
6899 -- alignment of types that may include this record.
6901 -- This seems dubious, this destroys the source tree in a manner
6902 -- not detectable by ASIS ???
6904 if Operating_Mode
= Check_Semantics
and then ASIS_Mode
then
6906 Make_Attribute_Definition_Clause
(Loc
,
6907 Name
=> New_Occurrence_Of
(Base_Type
(Rectype
), Loc
),
6908 Chars
=> Name_Alignment
,
6909 Expression
=> Relocate_Node
(Expression
(M
)));
6911 Set_From_At_Mod
(AtM_Nod
);
6912 Insert_After
(N
, AtM_Nod
);
6913 Mod_Val
:= Get_Alignment_Value
(Expression
(AtM_Nod
));
6914 Set_Mod_Clause
(N
, Empty
);
6917 -- Get the alignment value to perform error checking
6919 Mod_Val
:= Get_Alignment_Value
(Expression
(M
));
6924 -- For untagged types, clear any existing component clauses for the
6925 -- type. If the type is derived, this is what allows us to override
6926 -- a rep clause for the parent. For type extensions, the representation
6927 -- of the inherited components is inherited, so we want to keep previous
6928 -- component clauses for completeness.
6930 if not Is_Tagged_Type
(Rectype
) then
6931 Comp
:= First_Component_Or_Discriminant
(Rectype
);
6932 while Present
(Comp
) loop
6933 Set_Component_Clause
(Comp
, Empty
);
6934 Next_Component_Or_Discriminant
(Comp
);
6938 -- All done if no component clauses
6940 CC
:= First
(Component_Clauses
(N
));
6946 -- A representation like this applies to the base type
6948 Set_Has_Record_Rep_Clause
(Base_Type
(Rectype
));
6949 Set_Has_Non_Standard_Rep
(Base_Type
(Rectype
));
6950 Set_Has_Specified_Layout
(Base_Type
(Rectype
));
6952 -- Process the component clauses
6954 while Present
(CC
) loop
6958 if Nkind
(CC
) = N_Pragma
then
6961 -- The only pragma of interest is Complete_Representation
6963 if Pragma_Name
(CC
) = Name_Complete_Representation
then
6967 -- Processing for real component clause
6970 Posit
:= Static_Integer
(Position
(CC
));
6971 Fbit
:= Static_Integer
(First_Bit
(CC
));
6972 Lbit
:= Static_Integer
(Last_Bit
(CC
));
6975 and then Fbit
/= No_Uint
6976 and then Lbit
/= No_Uint
6979 Error_Msg_N
("position cannot be negative", Position
(CC
));
6982 Error_Msg_N
("first bit cannot be negative", First_Bit
(CC
));
6984 -- The Last_Bit specified in a component clause must not be
6985 -- less than the First_Bit minus one (RM-13.5.1(10)).
6987 elsif Lbit
< Fbit
- 1 then
6989 ("last bit cannot be less than first bit minus one",
6992 -- Values look OK, so find the corresponding record component
6993 -- Even though the syntax allows an attribute reference for
6994 -- implementation-defined components, GNAT does not allow the
6995 -- tag to get an explicit position.
6997 elsif Nkind
(Component_Name
(CC
)) = N_Attribute_Reference
then
6998 if Attribute_Name
(Component_Name
(CC
)) = Name_Tag
then
6999 Error_Msg_N
("position of tag cannot be specified", CC
);
7001 Error_Msg_N
("illegal component name", CC
);
7005 Comp
:= First_Entity
(Rectype
);
7006 while Present
(Comp
) loop
7007 exit when Chars
(Comp
) = Chars
(Component_Name
(CC
));
7013 -- Maybe component of base type that is absent from
7014 -- statically constrained first subtype.
7016 Comp
:= First_Entity
(Base_Type
(Rectype
));
7017 while Present
(Comp
) loop
7018 exit when Chars
(Comp
) = Chars
(Component_Name
(CC
));
7025 ("component clause is for non-existent field", CC
);
7027 -- Ada 2012 (AI05-0026): Any name that denotes a
7028 -- discriminant of an object of an unchecked union type
7029 -- shall not occur within a record_representation_clause.
7031 -- The general restriction of using record rep clauses on
7032 -- Unchecked_Union types has now been lifted. Since it is
7033 -- possible to introduce a record rep clause which mentions
7034 -- the discriminant of an Unchecked_Union in non-Ada 2012
7035 -- code, this check is applied to all versions of the
7038 elsif Ekind
(Comp
) = E_Discriminant
7039 and then Is_Unchecked_Union
(Rectype
)
7042 ("cannot reference discriminant of unchecked union",
7043 Component_Name
(CC
));
7045 elsif Is_Record_Extension
and then Is_Inherited
(Comp
) then
7047 ("component clause not allowed for inherited "
7048 & "component&", CC
, Comp
);
7050 elsif Present
(Component_Clause
(Comp
)) then
7052 -- Diagnose duplicate rep clause, or check consistency
7053 -- if this is an inherited component. In a double fault,
7054 -- there may be a duplicate inconsistent clause for an
7055 -- inherited component.
7057 if Scope
(Original_Record_Component
(Comp
)) = Rectype
7058 or else Parent
(Component_Clause
(Comp
)) = N
7060 Error_Msg_Sloc
:= Sloc
(Component_Clause
(Comp
));
7061 Error_Msg_N
("component clause previously given#", CC
);
7065 Rep1
: constant Node_Id
:= Component_Clause
(Comp
);
7067 if Intval
(Position
(Rep1
)) /=
7068 Intval
(Position
(CC
))
7069 or else Intval
(First_Bit
(Rep1
)) /=
7070 Intval
(First_Bit
(CC
))
7071 or else Intval
(Last_Bit
(Rep1
)) /=
7072 Intval
(Last_Bit
(CC
))
7075 ("component clause inconsistent with "
7076 & "representation of ancestor", CC
);
7078 elsif Warn_On_Redundant_Constructs
then
7080 ("?r?redundant confirming component clause "
7081 & "for component!", CC
);
7086 -- Normal case where this is the first component clause we
7087 -- have seen for this entity, so set it up properly.
7090 -- Make reference for field in record rep clause and set
7091 -- appropriate entity field in the field identifier.
7094 (Comp
, Component_Name
(CC
), Set_Ref
=> False);
7095 Set_Entity
(Component_Name
(CC
), Comp
);
7097 -- Update Fbit and Lbit to the actual bit number
7099 Fbit
:= Fbit
+ UI_From_Int
(SSU
) * Posit
;
7100 Lbit
:= Lbit
+ UI_From_Int
(SSU
) * Posit
;
7102 if Has_Size_Clause
(Rectype
)
7103 and then RM_Size
(Rectype
) <= Lbit
7106 ("bit number out of range of specified size",
7109 Set_Component_Clause
(Comp
, CC
);
7110 Set_Component_Bit_Offset
(Comp
, Fbit
);
7111 Set_Esize
(Comp
, 1 + (Lbit
- Fbit
));
7112 Set_Normalized_First_Bit
(Comp
, Fbit
mod SSU
);
7113 Set_Normalized_Position
(Comp
, Fbit
/ SSU
);
7115 if Warn_On_Overridden_Size
7116 and then Has_Size_Clause
(Etype
(Comp
))
7117 and then RM_Size
(Etype
(Comp
)) /= Esize
(Comp
)
7120 ("?S?component size overrides size clause for&",
7121 Component_Name
(CC
), Etype
(Comp
));
7124 -- This information is also set in the corresponding
7125 -- component of the base type, found by accessing the
7126 -- Original_Record_Component link if it is present.
7128 Ocomp
:= Original_Record_Component
(Comp
);
7135 (Component_Name
(CC
),
7141 (Comp
, First_Node
(CC
), "component clause", Biased
);
7143 if Present
(Ocomp
) then
7144 Set_Component_Clause
(Ocomp
, CC
);
7145 Set_Component_Bit_Offset
(Ocomp
, Fbit
);
7146 Set_Normalized_First_Bit
(Ocomp
, Fbit
mod SSU
);
7147 Set_Normalized_Position
(Ocomp
, Fbit
/ SSU
);
7148 Set_Esize
(Ocomp
, 1 + (Lbit
- Fbit
));
7150 Set_Normalized_Position_Max
7151 (Ocomp
, Normalized_Position
(Ocomp
));
7153 -- Note: we don't use Set_Biased here, because we
7154 -- already gave a warning above if needed, and we
7155 -- would get a duplicate for the same name here.
7157 Set_Has_Biased_Representation
7158 (Ocomp
, Has_Biased_Representation
(Comp
));
7161 if Esize
(Comp
) < 0 then
7162 Error_Msg_N
("component size is negative", CC
);
7173 -- Check missing components if Complete_Representation pragma appeared
7175 if Present
(CR_Pragma
) then
7176 Comp
:= First_Component_Or_Discriminant
(Rectype
);
7177 while Present
(Comp
) loop
7178 if No
(Component_Clause
(Comp
)) then
7180 ("missing component clause for &", CR_Pragma
, Comp
);
7183 Next_Component_Or_Discriminant
(Comp
);
7186 -- Give missing components warning if required
7188 elsif Warn_On_Unrepped_Components
then
7190 Num_Repped_Components
: Nat
:= 0;
7191 Num_Unrepped_Components
: Nat
:= 0;
7194 -- First count number of repped and unrepped components
7196 Comp
:= First_Component_Or_Discriminant
(Rectype
);
7197 while Present
(Comp
) loop
7198 if Present
(Component_Clause
(Comp
)) then
7199 Num_Repped_Components
:= Num_Repped_Components
+ 1;
7201 Num_Unrepped_Components
:= Num_Unrepped_Components
+ 1;
7204 Next_Component_Or_Discriminant
(Comp
);
7207 -- We are only interested in the case where there is at least one
7208 -- unrepped component, and at least half the components have rep
7209 -- clauses. We figure that if less than half have them, then the
7210 -- partial rep clause is really intentional. If the component
7211 -- type has no underlying type set at this point (as for a generic
7212 -- formal type), we don't know enough to give a warning on the
7215 if Num_Unrepped_Components
> 0
7216 and then Num_Unrepped_Components
< Num_Repped_Components
7218 Comp
:= First_Component_Or_Discriminant
(Rectype
);
7219 while Present
(Comp
) loop
7220 if No
(Component_Clause
(Comp
))
7221 and then Comes_From_Source
(Comp
)
7222 and then Present
(Underlying_Type
(Etype
(Comp
)))
7223 and then (Is_Scalar_Type
(Underlying_Type
(Etype
(Comp
)))
7224 or else Size_Known_At_Compile_Time
7225 (Underlying_Type
(Etype
(Comp
))))
7226 and then not Has_Warnings_Off
(Rectype
)
7228 -- Ignore discriminant in unchecked union, since it is
7229 -- not there, and cannot have a component clause.
7231 and then (not Is_Unchecked_Union
(Rectype
)
7232 or else Ekind
(Comp
) /= E_Discriminant
)
7234 Error_Msg_Sloc
:= Sloc
(Comp
);
7236 ("?C?no component clause given for & declared #",
7240 Next_Component_Or_Discriminant
(Comp
);
7245 end Analyze_Record_Representation_Clause
;
7247 -------------------------------------
7248 -- Build_Discrete_Static_Predicate --
7249 -------------------------------------
7251 procedure Build_Discrete_Static_Predicate
7256 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
7258 Non_Static
: exception;
7259 -- Raised if something non-static is found
7261 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
7263 BLo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(Btyp
));
7264 BHi
: constant Uint
:= Expr_Value
(Type_High_Bound
(Btyp
));
7265 -- Low bound and high bound value of base type of Typ
7269 -- Bounds for constructing the static predicate. We use the bound of the
7270 -- subtype if it is static, otherwise the corresponding base type bound.
7271 -- Note: a non-static subtype can have a static predicate.
7276 -- One entry in a Rlist value, a single REnt (range entry) value denotes
7277 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
7280 type RList
is array (Nat
range <>) of REnt
;
7281 -- A list of ranges. The ranges are sorted in increasing order, and are
7282 -- disjoint (there is a gap of at least one value between each range in
7283 -- the table). A value is in the set of ranges in Rlist if it lies
7284 -- within one of these ranges.
7286 False_Range
: constant RList
:=
7287 RList
'(1 .. 0 => REnt'(No_Uint
, No_Uint
));
7288 -- An empty set of ranges represents a range list that can never be
7289 -- satisfied, since there are no ranges in which the value could lie,
7290 -- so it does not lie in any of them. False_Range is a canonical value
7291 -- for this empty set, but general processing should test for an Rlist
7292 -- with length zero (see Is_False predicate), since other null ranges
7293 -- may appear which must be treated as False.
7295 True_Range
: constant RList
:= RList
'(1 => REnt'(BLo
, BHi
));
7296 -- Range representing True, value must be in the base range
7298 function "and" (Left
: RList
; Right
: RList
) return RList
;
7299 -- And's together two range lists, returning a range list. This is a set
7300 -- intersection operation.
7302 function "or" (Left
: RList
; Right
: RList
) return RList
;
7303 -- Or's together two range lists, returning a range list. This is a set
7306 function "not" (Right
: RList
) return RList
;
7307 -- Returns complement of a given range list, i.e. a range list
7308 -- representing all the values in TLo .. THi that are not in the input
7311 function Build_Val
(V
: Uint
) return Node_Id
;
7312 -- Return an analyzed N_Identifier node referencing this value, suitable
7313 -- for use as an entry in the Static_Discrte_Predicate list. This node
7314 -- is typed with the base type.
7316 function Build_Range
(Lo
: Uint
; Hi
: Uint
) return Node_Id
;
7317 -- Return an analyzed N_Range node referencing this range, suitable for
7318 -- use as an entry in the Static_Discrete_Predicate list. This node is
7319 -- typed with the base type.
7321 function Get_RList
(Exp
: Node_Id
) return RList
;
7322 -- This is a recursive routine that converts the given expression into a
7323 -- list of ranges, suitable for use in building the static predicate.
7325 function Is_False
(R
: RList
) return Boolean;
7326 pragma Inline
(Is_False
);
7327 -- Returns True if the given range list is empty, and thus represents a
7328 -- False list of ranges that can never be satisfied.
7330 function Is_True
(R
: RList
) return Boolean;
7331 -- Returns True if R trivially represents the True predicate by having a
7332 -- single range from BLo to BHi.
7334 function Is_Type_Ref
(N
: Node_Id
) return Boolean;
7335 pragma Inline
(Is_Type_Ref
);
7336 -- Returns if True if N is a reference to the type for the predicate in
7337 -- the expression (i.e. if it is an identifier whose Chars field matches
7338 -- the Nam given in the call). N must not be parenthesized, if the type
7339 -- name appears in parens, this routine will return False.
7341 function Lo_Val
(N
: Node_Id
) return Uint
;
7342 -- Given an entry from a Static_Discrete_Predicate list that is either
7343 -- a static expression or static range, gets either the expression value
7344 -- or the low bound of the range.
7346 function Hi_Val
(N
: Node_Id
) return Uint
;
7347 -- Given an entry from a Static_Discrete_Predicate list that is either
7348 -- a static expression or static range, gets either the expression value
7349 -- or the high bound of the range.
7351 function Membership_Entry
(N
: Node_Id
) return RList
;
7352 -- Given a single membership entry (range, value, or subtype), returns
7353 -- the corresponding range list. Raises Static_Error if not static.
7355 function Membership_Entries
(N
: Node_Id
) return RList
;
7356 -- Given an element on an alternatives list of a membership operation,
7357 -- returns the range list corresponding to this entry and all following
7358 -- entries (i.e. returns the "or" of this list of values).
7360 function Stat_Pred
(Typ
: Entity_Id
) return RList
;
7361 -- Given a type, if it has a static predicate, then return the predicate
7362 -- as a range list, otherwise raise Non_Static.
7368 function "and" (Left
: RList
; Right
: RList
) return RList
is
7370 -- First range of result
7372 SLeft
: Nat
:= Left
'First;
7373 -- Start of rest of left entries
7375 SRight
: Nat
:= Right
'First;
7376 -- Start of rest of right entries
7379 -- If either range is True, return the other
7381 if Is_True
(Left
) then
7383 elsif Is_True
(Right
) then
7387 -- If either range is False, return False
7389 if Is_False
(Left
) or else Is_False
(Right
) then
7393 -- Loop to remove entries at start that are disjoint, and thus just
7394 -- get discarded from the result entirely.
7397 -- If no operands left in either operand, result is false
7399 if SLeft
> Left
'Last or else SRight
> Right
'Last then
7402 -- Discard first left operand entry if disjoint with right
7404 elsif Left
(SLeft
).Hi
< Right
(SRight
).Lo
then
7407 -- Discard first right operand entry if disjoint with left
7409 elsif Right
(SRight
).Hi
< Left
(SLeft
).Lo
then
7410 SRight
:= SRight
+ 1;
7412 -- Otherwise we have an overlapping entry
7419 -- Now we have two non-null operands, and first entries overlap. The
7420 -- first entry in the result will be the overlapping part of these
7423 FEnt
:= REnt
'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
7424 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
7426 -- Now we can remove the entry that ended at a lower value, since its
7427 -- contribution is entirely contained in Fent.
7429 if Left (SLeft).Hi <= Right (SRight).Hi then
7432 SRight := SRight + 1;
7435 -- Compute result by concatenating this first entry with the "and" of
7436 -- the remaining parts of the left and right operands. Note that if
7437 -- either of these is empty, "and" will yield empty, so that we will
7438 -- end up with just Fent, which is what we want in that case.
7441 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
7448 function "not" (Right : RList) return RList is
7450 -- Return True if False range
7452 if Is_False (Right) then
7456 -- Return False if True range
7458 if Is_True (Right) then
7462 -- Here if not trivial case
7465 Result : RList (1 .. Right'Length + 1);
7466 -- May need one more entry for gap at beginning and end
7469 -- Number of entries stored in Result
7474 if Right (Right'First).Lo > TLo then
7476 Result (Count) := REnt'(TLo
, Right
(Right
'First).Lo
- 1);
7479 -- Gaps between ranges
7481 for J
in Right
'First .. Right
'Last - 1 loop
7483 Result
(Count
) := REnt
'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
7488 if Right (Right'Last).Hi < THi then
7490 Result (Count) := REnt'(Right
(Right
'Last).Hi
+ 1, THi
);
7493 return Result
(1 .. Count
);
7501 function "or" (Left
: RList
; Right
: RList
) return RList
is
7503 -- First range of result
7505 SLeft
: Nat
:= Left
'First;
7506 -- Start of rest of left entries
7508 SRight
: Nat
:= Right
'First;
7509 -- Start of rest of right entries
7512 -- If either range is True, return True
7514 if Is_True
(Left
) or else Is_True
(Right
) then
7518 -- If either range is False (empty), return the other
7520 if Is_False
(Left
) then
7522 elsif Is_False
(Right
) then
7526 -- Initialize result first entry from left or right operand depending
7527 -- on which starts with the lower range.
7529 if Left
(SLeft
).Lo
< Right
(SRight
).Lo
then
7530 FEnt
:= Left
(SLeft
);
7533 FEnt
:= Right
(SRight
);
7534 SRight
:= SRight
+ 1;
7537 -- This loop eats ranges from left and right operands that are
7538 -- contiguous with the first range we are gathering.
7541 -- Eat first entry in left operand if contiguous or overlapped by
7542 -- gathered first operand of result.
7544 if SLeft
<= Left
'Last
7545 and then Left
(SLeft
).Lo
<= FEnt
.Hi
+ 1
7547 FEnt
.Hi
:= UI_Max
(FEnt
.Hi
, Left
(SLeft
).Hi
);
7550 -- Eat first entry in right operand if contiguous or overlapped by
7551 -- gathered right operand of result.
7553 elsif SRight
<= Right
'Last
7554 and then Right
(SRight
).Lo
<= FEnt
.Hi
+ 1
7556 FEnt
.Hi
:= UI_Max
(FEnt
.Hi
, Right
(SRight
).Hi
);
7557 SRight
:= SRight
+ 1;
7559 -- All done if no more entries to eat
7566 -- Obtain result as the first entry we just computed, concatenated
7567 -- to the "or" of the remaining results (if one operand is empty,
7568 -- this will just concatenate with the other
7571 FEnt
& (Left
(SLeft
.. Left
'Last) or Right
(SRight
.. Right
'Last));
7578 function Build_Range
(Lo
: Uint
; Hi
: Uint
) return Node_Id
is
7583 Low_Bound
=> Build_Val
(Lo
),
7584 High_Bound
=> Build_Val
(Hi
));
7585 Set_Etype
(Result
, Btyp
);
7586 Set_Analyzed
(Result
);
7594 function Build_Val
(V
: Uint
) return Node_Id
is
7598 if Is_Enumeration_Type
(Typ
) then
7599 Result
:= Get_Enum_Lit_From_Pos
(Typ
, V
, Loc
);
7601 Result
:= Make_Integer_Literal
(Loc
, V
);
7604 Set_Etype
(Result
, Btyp
);
7605 Set_Is_Static_Expression
(Result
);
7606 Set_Analyzed
(Result
);
7614 function Get_RList
(Exp
: Node_Id
) return RList
is
7619 -- Static expression can only be true or false
7621 if Is_OK_Static_Expression
(Exp
) then
7622 if Expr_Value
(Exp
) = 0 then
7629 -- Otherwise test node type
7640 return Get_RList
(Left_Opnd
(Exp
))
7642 Get_RList
(Right_Opnd
(Exp
));
7649 return Get_RList
(Left_Opnd
(Exp
))
7651 Get_RList
(Right_Opnd
(Exp
));
7656 return not Get_RList
(Right_Opnd
(Exp
));
7658 -- Comparisons of type with static value
7660 when N_Op_Compare
=>
7662 -- Type is left operand
7664 if Is_Type_Ref
(Left_Opnd
(Exp
))
7665 and then Is_OK_Static_Expression
(Right_Opnd
(Exp
))
7667 Val
:= Expr_Value
(Right_Opnd
(Exp
));
7669 -- Typ is right operand
7671 elsif Is_Type_Ref
(Right_Opnd
(Exp
))
7672 and then Is_OK_Static_Expression
(Left_Opnd
(Exp
))
7674 Val
:= Expr_Value
(Left_Opnd
(Exp
));
7676 -- Invert sense of comparison
7679 when N_Op_Gt
=> Op
:= N_Op_Lt
;
7680 when N_Op_Lt
=> Op
:= N_Op_Gt
;
7681 when N_Op_Ge
=> Op
:= N_Op_Le
;
7682 when N_Op_Le
=> Op
:= N_Op_Ge
;
7683 when others => null;
7686 -- Other cases are non-static
7692 -- Construct range according to comparison operation
7696 return RList
'(1 => REnt'(Val
, Val
));
7699 return RList
'(1 => REnt'(Val
, BHi
));
7702 return RList
'(1 => REnt'(Val
+ 1, BHi
));
7705 return RList
'(1 => REnt'(BLo
, Val
));
7708 return RList
'(1 => REnt'(BLo
, Val
- 1));
7711 return RList
'(REnt'(BLo
, Val
- 1), REnt
'(Val + 1, BHi));
7714 raise Program_Error;
7720 if not Is_Type_Ref (Left_Opnd (Exp)) then
7724 if Present (Right_Opnd (Exp)) then
7725 return Membership_Entry (Right_Opnd (Exp));
7727 return Membership_Entries (First (Alternatives (Exp)));
7730 -- Negative membership (NOT IN)
7733 if not Is_Type_Ref (Left_Opnd (Exp)) then
7737 if Present (Right_Opnd (Exp)) then
7738 return not Membership_Entry (Right_Opnd (Exp));
7740 return not Membership_Entries (First (Alternatives (Exp)));
7743 -- Function call, may be call to static predicate
7745 when N_Function_Call =>
7746 if Is_Entity_Name (Name (Exp)) then
7748 Ent : constant Entity_Id := Entity (Name (Exp));
7750 if Is_Predicate_Function (Ent)
7752 Is_Predicate_Function_M (Ent)
7754 return Stat_Pred (Etype (First_Formal (Ent)));
7759 -- Other function call cases are non-static
7763 -- Qualified expression, dig out the expression
7765 when N_Qualified_Expression =>
7766 return Get_RList (Expression (Exp));
7768 when N_Case_Expression =>
7775 if not Is_Entity_Name (Expression (Expr))
7776 or else Etype (Expression (Expr)) /= Typ
7779 ("expression must denaote subtype", Expression (Expr));
7783 -- Collect discrete choices in all True alternatives
7785 Choices := New_List;
7786 Alt := First (Alternatives (Exp));
7787 while Present (Alt) loop
7788 Dep := Expression (Alt);
7790 if not Is_OK_Static_Expression (Dep) then
7793 elsif Is_True (Expr_Value (Dep)) then
7794 Append_List_To (Choices,
7795 New_Copy_List (Discrete_Choices (Alt)));
7801 return Membership_Entries (First (Choices));
7804 -- Expression with actions: if no actions, dig out expression
7806 when N_Expression_With_Actions =>
7807 if Is_Empty_List (Actions (Exp)) then
7808 return Get_RList (Expression (Exp));
7816 return (Get_RList (Left_Opnd (Exp))
7817 and not Get_RList (Right_Opnd (Exp)))
7818 or (Get_RList (Right_Opnd (Exp))
7819 and not Get_RList (Left_Opnd (Exp)));
7821 -- Any other node type is non-static
7832 function Hi_Val (N : Node_Id) return Uint is
7834 if Is_OK_Static_Expression (N) then
7835 return Expr_Value (N);
7837 pragma Assert (Nkind (N) = N_Range);
7838 return Expr_Value (High_Bound (N));
7846 function Is_False (R : RList) return Boolean is
7848 return R'Length = 0;
7855 function Is_True (R : RList) return Boolean is
7858 and then R (R'First).Lo = BLo
7859 and then R (R'First).Hi = BHi;
7866 function Is_Type_Ref (N : Node_Id) return Boolean is
7868 return Nkind (N) = N_Identifier
7869 and then Chars (N) = Nam
7870 and then Paren_Count (N) = 0;
7877 function Lo_Val (N : Node_Id) return Uint is
7879 if Is_OK_Static_Expression (N) then
7880 return Expr_Value (N);
7882 pragma Assert (Nkind (N) = N_Range);
7883 return Expr_Value (Low_Bound (N));
7887 ------------------------
7888 -- Membership_Entries --
7889 ------------------------
7891 function Membership_Entries (N : Node_Id) return RList is
7893 if No (Next (N)) then
7894 return Membership_Entry (N);
7896 return Membership_Entry (N) or Membership_Entries (Next (N));
7898 end Membership_Entries;
7900 ----------------------
7901 -- Membership_Entry --
7902 ----------------------
7904 function Membership_Entry (N : Node_Id) return RList is
7912 if Nkind (N) = N_Range then
7913 if not Is_OK_Static_Expression (Low_Bound (N))
7915 not Is_OK_Static_Expression (High_Bound (N))
7919 SLo := Expr_Value (Low_Bound (N));
7920 SHi := Expr_Value (High_Bound (N));
7921 return RList'(1 => REnt
'(SLo, SHi));
7924 -- Static expression case
7926 elsif Is_OK_Static_Expression (N) then
7927 Val := Expr_Value (N);
7928 return RList'(1 => REnt
'(Val, Val));
7930 -- Identifier (other than static expression) case
7932 else pragma Assert (Nkind (N) = N_Identifier);
7936 if Is_Type (Entity (N)) then
7938 -- If type has predicates, process them
7940 if Has_Predicates (Entity (N)) then
7941 return Stat_Pred (Entity (N));
7943 -- For static subtype without predicates, get range
7945 elsif Is_OK_Static_Subtype (Entity (N)) then
7946 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
7947 SHi := Expr_Value (Type_High_Bound (Entity (N)));
7948 return RList'(1 => REnt
'(SLo, SHi));
7950 -- Any other type makes us non-static
7956 -- Any other kind of identifier in predicate (e.g. a non-static
7957 -- expression value) means this is not a static predicate.
7963 end Membership_Entry;
7969 function Stat_Pred (Typ : Entity_Id) return RList is
7971 -- Not static if type does not have static predicates
7973 if not Has_Static_Predicate (Typ) then
7977 -- Otherwise we convert the predicate list to a range list
7980 Spred : constant List_Id := Static_Discrete_Predicate (Typ);
7981 Result : RList (1 .. List_Length (Spred));
7985 P := First (Static_Discrete_Predicate (Typ));
7986 for J in Result'Range loop
7987 Result (J) := REnt'(Lo_Val
(P
), Hi_Val
(P
));
7995 -- Start of processing for Build_Discrete_Static_Predicate
7998 -- Establish bounds for the predicate
8000 if Compile_Time_Known_Value
(Type_Low_Bound
(Typ
)) then
8001 TLo
:= Expr_Value
(Type_Low_Bound
(Typ
));
8006 if Compile_Time_Known_Value
(Type_High_Bound
(Typ
)) then
8007 THi
:= Expr_Value
(Type_High_Bound
(Typ
));
8012 -- Analyze the expression to see if it is a static predicate
8015 Ranges
: constant RList
:= Get_RList
(Expr
);
8016 -- Range list from expression if it is static
8021 -- Convert range list into a form for the static predicate. In the
8022 -- Ranges array, we just have raw ranges, these must be converted
8023 -- to properly typed and analyzed static expressions or range nodes.
8025 -- Note: here we limit ranges to the ranges of the subtype, so that
8026 -- a predicate is always false for values outside the subtype. That
8027 -- seems fine, such values are invalid anyway, and considering them
8028 -- to fail the predicate seems allowed and friendly, and furthermore
8029 -- simplifies processing for case statements and loops.
8033 for J
in Ranges
'Range loop
8035 Lo
: Uint
:= Ranges
(J
).Lo
;
8036 Hi
: Uint
:= Ranges
(J
).Hi
;
8039 -- Ignore completely out of range entry
8041 if Hi
< TLo
or else Lo
> THi
then
8044 -- Otherwise process entry
8047 -- Adjust out of range value to subtype range
8057 -- Convert range into required form
8059 Append_To
(Plist
, Build_Range
(Lo
, Hi
));
8064 -- Processing was successful and all entries were static, so now we
8065 -- can store the result as the predicate list.
8067 Set_Static_Discrete_Predicate
(Typ
, Plist
);
8069 -- The processing for static predicates put the expression into
8070 -- canonical form as a series of ranges. It also eliminated
8071 -- duplicates and collapsed and combined ranges. We might as well
8072 -- replace the alternatives list of the right operand of the
8073 -- membership test with the static predicate list, which will
8074 -- usually be more efficient.
8077 New_Alts
: constant List_Id
:= New_List
;
8082 Old_Node
:= First
(Plist
);
8083 while Present
(Old_Node
) loop
8084 New_Node
:= New_Copy
(Old_Node
);
8086 if Nkind
(New_Node
) = N_Range
then
8087 Set_Low_Bound
(New_Node
, New_Copy
(Low_Bound
(Old_Node
)));
8088 Set_High_Bound
(New_Node
, New_Copy
(High_Bound
(Old_Node
)));
8091 Append_To
(New_Alts
, New_Node
);
8095 -- If empty list, replace by False
8097 if Is_Empty_List
(New_Alts
) then
8098 Rewrite
(Expr
, New_Occurrence_Of
(Standard_False
, Loc
));
8100 -- Else replace by set membership test
8105 Left_Opnd
=> Make_Identifier
(Loc
, Nam
),
8106 Right_Opnd
=> Empty
,
8107 Alternatives
=> New_Alts
));
8109 -- Resolve new expression in function context
8111 Install_Formals
(Predicate_Function
(Typ
));
8112 Push_Scope
(Predicate_Function
(Typ
));
8113 Analyze_And_Resolve
(Expr
, Standard_Boolean
);
8119 -- If non-static, return doing nothing
8124 end Build_Discrete_Static_Predicate
;
8126 --------------------------------
8127 -- Build_Export_Import_Pragma --
8128 --------------------------------
8130 function Build_Export_Import_Pragma
8132 Id
: Entity_Id
) return Node_Id
8134 Asp_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Asp
);
8135 Expr
: constant Node_Id
:= Expression
(Asp
);
8136 Loc
: constant Source_Ptr
:= Sloc
(Asp
);
8147 Create_Pragma
: Boolean := False;
8148 -- This flag is set when the aspect form is such that it warrants the
8149 -- creation of a corresponding pragma.
8152 if Present
(Expr
) then
8153 if Error_Posted
(Expr
) then
8156 elsif Is_True
(Expr_Value
(Expr
)) then
8157 Create_Pragma
:= True;
8160 -- Otherwise the aspect defaults to True
8163 Create_Pragma
:= True;
8166 -- Nothing to do when the expression is False or is erroneous
8168 if not Create_Pragma
then
8172 -- Obtain all interfacing aspects that apply to the related entity
8174 Get_Interfacing_Aspects
8178 Expo_Asp
=> Dummy_1
,
8184 -- Handle the convention argument
8186 if Present
(Conv
) then
8187 Conv_Arg
:= New_Copy_Tree
(Expression
(Conv
));
8189 -- Assume convention "Ada' when aspect Convention is missing
8192 Conv_Arg
:= Make_Identifier
(Loc
, Name_Ada
);
8196 Make_Pragma_Argument_Association
(Loc
,
8197 Chars
=> Name_Convention
,
8198 Expression
=> Conv_Arg
));
8200 -- Handle the entity argument
8203 Make_Pragma_Argument_Association
(Loc
,
8204 Chars
=> Name_Entity
,
8205 Expression
=> New_Occurrence_Of
(Id
, Loc
)));
8207 -- Handle the External_Name argument
8209 if Present
(EN
) then
8211 Make_Pragma_Argument_Association
(Loc
,
8212 Chars
=> Name_External_Name
,
8213 Expression
=> New_Copy_Tree
(Expression
(EN
))));
8216 -- Handle the Link_Name argument
8218 if Present
(LN
) then
8220 Make_Pragma_Argument_Association
(Loc
,
8221 Chars
=> Name_Link_Name
,
8222 Expression
=> New_Copy_Tree
(Expression
(LN
))));
8226 -- pragma Export/Import
8227 -- (Convention => <Conv>/Ada,
8229 -- [External_Name => <EN>,]
8230 -- [Link_Name => <LN>]);
8234 Pragma_Identifier
=>
8235 Make_Identifier
(Loc
, Chars
(Identifier
(Asp
))),
8236 Pragma_Argument_Associations
=> Args
);
8238 -- Decorate the relevant aspect and the pragma
8240 Set_Aspect_Rep_Item
(Asp
, Prag
);
8242 Set_Corresponding_Aspect
(Prag
, Asp
);
8243 Set_From_Aspect_Specification
(Prag
);
8244 Set_Parent
(Prag
, Asp
);
8246 if Asp_Id
= Aspect_Import
and then Is_Subprogram
(Id
) then
8247 Set_Import_Pragma
(Id
, Prag
);
8251 end Build_Export_Import_Pragma
;
8253 -------------------------------
8254 -- Build_Predicate_Functions --
8255 -------------------------------
8257 -- The procedures that are constructed here have the form:
8259 -- function typPredicate (Ixxx : typ) return Boolean is
8262 -- typ1Predicate (typ1 (Ixxx))
8263 -- and then typ2Predicate (typ2 (Ixxx))
8265 -- exp1 and then exp2 and then ...
8266 -- end typPredicate;
8268 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
8269 -- this is the point at which these expressions get analyzed, providing the
8270 -- required delay, and typ1, typ2, are entities from which predicates are
8271 -- inherited. Note that we do NOT generate Check pragmas, that's because we
8272 -- use this function even if checks are off, e.g. for membership tests.
8274 -- Note that the inherited predicates are evaluated first, as required by
8277 -- Note that Sem_Eval.Real_Or_String_Static_Predicate_Matches depends on
8278 -- the form of this return expression.
8280 -- If the expression has at least one Raise_Expression, then we also build
8281 -- the typPredicateM version of the function, in which any occurrence of a
8282 -- Raise_Expression is converted to "return False".
8284 -- WARNING: This routine manages Ghost regions. Return statements must be
8285 -- replaced by gotos which jump to the end of the routine and restore the
8288 procedure Build_Predicate_Functions
(Typ
: Entity_Id
; N
: Node_Id
) is
8289 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
8292 -- This is the expression for the result of the function. It is
8293 -- is build by connecting the component predicates with AND THEN.
8296 -- This is the corresponding return expression for the Predicate_M
8297 -- function. It differs in that raise expressions are marked for
8298 -- special expansion (see Process_REs).
8300 Object_Name
: Name_Id
;
8301 -- Name for argument of Predicate procedure. Note that we use the same
8302 -- name for both predicate functions. That way the reference within the
8303 -- predicate expression is the same in both functions.
8305 Object_Entity
: Entity_Id
;
8306 -- Entity for argument of Predicate procedure
8308 Object_Entity_M
: Entity_Id
;
8309 -- Entity for argument of separate Predicate procedure when exceptions
8310 -- are present in expression.
8313 -- The function declaration
8318 Raise_Expression_Present
: Boolean := False;
8319 -- Set True if Expr has at least one Raise_Expression
8321 procedure Add_Condition
(Cond
: Node_Id
);
8322 -- Append Cond to Expr using "and then" (or just copy Cond to Expr if
8325 procedure Add_Predicates
;
8326 -- Appends expressions for any Predicate pragmas in the rep item chain
8327 -- Typ to Expr. Note that we look only at items for this exact entity.
8328 -- Inheritance of predicates for the parent type is done by calling the
8329 -- Predicate_Function of the parent type, using Add_Call above.
8331 procedure Add_Call
(T
: Entity_Id
);
8332 -- Includes a call to the predicate function for type T in Expr if T
8333 -- has predicates and Predicate_Function (T) is non-empty.
8335 function Process_RE
(N
: Node_Id
) return Traverse_Result
;
8336 -- Used in Process REs, tests if node N is a raise expression, and if
8337 -- so, marks it to be converted to return False.
8339 procedure Process_REs
is new Traverse_Proc
(Process_RE
);
8340 -- Marks any raise expressions in Expr_M to return False
8342 function Test_RE
(N
: Node_Id
) return Traverse_Result
;
8343 -- Used in Test_REs, tests one node for being a raise expression, and if
8344 -- so sets Raise_Expression_Present True.
8346 procedure Test_REs
is new Traverse_Proc
(Test_RE
);
8347 -- Tests to see if Expr contains any raise expressions
8353 procedure Add_Call
(T
: Entity_Id
) is
8357 if Present
(T
) and then Present
(Predicate_Function
(T
)) then
8358 Set_Has_Predicates
(Typ
);
8360 -- Build the call to the predicate function of T
8364 (T
, Convert_To
(T
, Make_Identifier
(Loc
, Object_Name
)));
8366 -- "and"-in the call to evolving expression
8368 Add_Condition
(Exp
);
8370 -- Output info message on inheritance if required. Note we do not
8371 -- give this information for generic actual types, since it is
8372 -- unwelcome noise in that case in instantiations. We also
8373 -- generally suppress the message in instantiations, and also
8374 -- if it involves internal names.
8376 if Opt
.List_Inherited_Aspects
8377 and then not Is_Generic_Actual_Type
(Typ
)
8378 and then Instantiation_Depth
(Sloc
(Typ
)) = 0
8379 and then not Is_Internal_Name
(Chars
(T
))
8380 and then not Is_Internal_Name
(Chars
(Typ
))
8382 Error_Msg_Sloc
:= Sloc
(Predicate_Function
(T
));
8383 Error_Msg_Node_2
:= T
;
8384 Error_Msg_N
("info: & inherits predicate from & #?L?", Typ
);
8393 procedure Add_Condition
(Cond
: Node_Id
) is
8395 -- This is the first predicate expression
8400 -- Otherwise concatenate to the existing predicate expressions by
8401 -- using "and then".
8406 Left_Opnd
=> Relocate_Node
(Expr
),
8407 Right_Opnd
=> Cond
);
8411 --------------------
8412 -- Add_Predicates --
8413 --------------------
8415 procedure Add_Predicates
is
8416 procedure Add_Predicate
(Prag
: Node_Id
);
8417 -- Concatenate the expression of predicate pragma Prag to Expr by
8418 -- using a short circuit "and then" operator.
8424 procedure Add_Predicate
(Prag
: Node_Id
) is
8425 procedure Replace_Type_Reference
(N
: Node_Id
);
8426 -- Replace a single occurrence N of the subtype name with a
8427 -- reference to the formal of the predicate function. N can be an
8428 -- identifier referencing the subtype, or a selected component,
8429 -- representing an appropriately qualified occurrence of the
8432 procedure Replace_Type_References
is
8433 new Replace_Type_References_Generic
(Replace_Type_Reference
);
8434 -- Traverse an expression changing every occurrence of an
8435 -- identifier whose name matches the name of the subtype with a
8436 -- reference to the formal parameter of the predicate function.
8438 ----------------------------
8439 -- Replace_Type_Reference --
8440 ----------------------------
8442 procedure Replace_Type_Reference
(N
: Node_Id
) is
8444 Rewrite
(N
, Make_Identifier
(Sloc
(N
), Object_Name
));
8445 -- Use the Sloc of the usage name, not the defining name
8448 Set_Entity
(N
, Object_Entity
);
8450 -- We want to treat the node as if it comes from source, so
8451 -- that ASIS will not ignore it.
8453 Set_Comes_From_Source
(N
, True);
8454 end Replace_Type_Reference
;
8458 Asp
: constant Node_Id
:= Corresponding_Aspect
(Prag
);
8462 -- Start of processing for Add_Predicate
8465 -- Extract the arguments of the pragma. The expression itself
8466 -- is copied for use in the predicate function, to preserve the
8467 -- original version for ASIS use.
8469 Arg1
:= First
(Pragma_Argument_Associations
(Prag
));
8470 Arg2
:= Next
(Arg1
);
8472 Arg1
:= Get_Pragma_Arg
(Arg1
);
8473 Arg2
:= New_Copy_Tree
(Get_Pragma_Arg
(Arg2
));
8475 -- When the predicate pragma applies to the current type or its
8476 -- full view, replace all occurrences of the subtype name with
8477 -- references to the formal parameter of the predicate function.
8479 if Entity
(Arg1
) = Typ
8480 or else Full_View
(Entity
(Arg1
)) = Typ
8482 Replace_Type_References
(Arg2
, Typ
);
8484 -- If the predicate pragma comes from an aspect, replace the
8485 -- saved expression because we need the subtype references
8486 -- replaced for the calls to Preanalyze_Spec_Expression in
8487 -- Check_Aspect_At_xxx routines.
8489 if Present
(Asp
) then
8490 Set_Entity
(Identifier
(Asp
), New_Copy_Tree
(Arg2
));
8493 -- "and"-in the Arg2 condition to evolving expression
8495 Add_Condition
(Relocate_Node
(Arg2
));
8503 -- Start of processing for Add_Predicates
8506 Ritem
:= First_Rep_Item
(Typ
);
8507 while Present
(Ritem
) loop
8508 if Nkind
(Ritem
) = N_Pragma
8509 and then Pragma_Name
(Ritem
) = Name_Predicate
8511 Add_Predicate
(Ritem
);
8513 -- If the type is declared in an inner package it may be frozen
8514 -- outside of the package, and the generated pragma has not been
8515 -- analyzed yet, so capture the expression for the predicate
8516 -- function at this point.
8518 elsif Nkind
(Ritem
) = N_Aspect_Specification
8519 and then Present
(Aspect_Rep_Item
(Ritem
))
8520 and then Scope
(Typ
) /= Current_Scope
8523 Prag
: constant Node_Id
:= Aspect_Rep_Item
(Ritem
);
8526 if Nkind
(Prag
) = N_Pragma
8527 and then Pragma_Name
(Prag
) = Name_Predicate
8529 Add_Predicate
(Prag
);
8534 Next_Rep_Item
(Ritem
);
8542 function Process_RE
(N
: Node_Id
) return Traverse_Result
is
8544 if Nkind
(N
) = N_Raise_Expression
then
8545 Set_Convert_To_Return_False
(N
);
8556 function Test_RE
(N
: Node_Id
) return Traverse_Result
is
8558 if Nkind
(N
) = N_Raise_Expression
then
8559 Raise_Expression_Present
:= True;
8568 Mode
: Ghost_Mode_Type
;
8570 -- Start of processing for Build_Predicate_Functions
8573 -- Return if already built or if type does not have predicates
8575 SId
:= Predicate_Function
(Typ
);
8576 if not Has_Predicates
(Typ
)
8577 or else (Present
(SId
) and then Has_Completion
(SId
))
8582 -- The related type may be subject to pragma Ghost. Set the mode now to
8583 -- ensure that the predicate functions are properly marked as Ghost.
8585 Set_Ghost_Mode
(Typ
, Mode
);
8587 -- Prepare to construct predicate expression
8591 if Present
(SId
) then
8592 FDecl
:= Unit_Declaration_Node
(SId
);
8595 FDecl
:= Build_Predicate_Function_Declaration
(Typ
);
8596 SId
:= Defining_Entity
(FDecl
);
8599 -- Recover name of formal parameter of function that replaces references
8600 -- to the type in predicate expressions.
8604 (First
(Parameter_Specifications
(Specification
(FDecl
))));
8606 Object_Name
:= Chars
(Object_Entity
);
8607 Object_Entity_M
:= Make_Defining_Identifier
(Loc
, Chars
=> Object_Name
);
8609 -- Add predicates for ancestor if present. These must come before the
8610 -- ones for the current type, as required by AI12-0071-1.
8613 Atyp
: constant Entity_Id
:= Nearest_Ancestor
(Typ
);
8615 if Present
(Atyp
) then
8620 -- Add Predicates for the current type
8624 -- Case where predicates are present
8626 if Present
(Expr
) then
8628 -- Test for raise expression present
8632 -- If raise expression is present, capture a copy of Expr for use
8633 -- in building the predicateM function version later on. For this
8634 -- copy we replace references to Object_Entity by Object_Entity_M.
8636 if Raise_Expression_Present
then
8638 Map
: constant Elist_Id
:= New_Elmt_List
;
8639 New_V
: Entity_Id
:= Empty
;
8641 -- The unanalyzed expression will be copied and appear in
8642 -- both functions. Normally expressions do not declare new
8643 -- entities, but quantified expressions do, so we need to
8644 -- create new entities for their bound variables, to prevent
8645 -- multiple definitions in gigi.
8647 function Reset_Loop_Variable
(N
: Node_Id
)
8648 return Traverse_Result
;
8650 procedure Collect_Loop_Variables
is
8651 new Traverse_Proc
(Reset_Loop_Variable
);
8653 ------------------------
8654 -- Reset_Loop_Variable --
8655 ------------------------
8657 function Reset_Loop_Variable
(N
: Node_Id
)
8658 return Traverse_Result
8661 if Nkind
(N
) = N_Iterator_Specification
then
8662 New_V
:= Make_Defining_Identifier
8663 (Sloc
(N
), Chars
(Defining_Identifier
(N
)));
8665 Set_Defining_Identifier
(N
, New_V
);
8669 end Reset_Loop_Variable
;
8672 Append_Elmt
(Object_Entity
, Map
);
8673 Append_Elmt
(Object_Entity_M
, Map
);
8674 Expr_M
:= New_Copy_Tree
(Expr
, Map
=> Map
);
8675 Collect_Loop_Variables
(Expr_M
);
8679 -- Build the main predicate function
8682 SIdB
: constant Entity_Id
:=
8683 Make_Defining_Identifier
(Loc
,
8684 Chars
=> New_External_Name
(Chars
(Typ
), "Predicate"));
8685 -- The entity for the function body
8691 -- The predicate function is shared between views of a type
8693 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
8694 Set_Predicate_Function
(Full_View
(Typ
), SId
);
8697 -- Build function body
8700 Make_Function_Specification
(Loc
,
8701 Defining_Unit_Name
=> SIdB
,
8702 Parameter_Specifications
=> New_List
(
8703 Make_Parameter_Specification
(Loc
,
8704 Defining_Identifier
=>
8705 Make_Defining_Identifier
(Loc
, Object_Name
),
8707 New_Occurrence_Of
(Typ
, Loc
))),
8708 Result_Definition
=>
8709 New_Occurrence_Of
(Standard_Boolean
, Loc
));
8712 Make_Subprogram_Body
(Loc
,
8713 Specification
=> Spec
,
8714 Declarations
=> Empty_List
,
8715 Handled_Statement_Sequence
=>
8716 Make_Handled_Sequence_Of_Statements
(Loc
,
8717 Statements
=> New_List
(
8718 Make_Simple_Return_Statement
(Loc
,
8719 Expression
=> Expr
))));
8721 -- If declaration has not been analyzed yet, Insert declaration
8722 -- before freeze node. Insert body itself after freeze node.
8724 if not Analyzed
(FDecl
) then
8725 Insert_Before_And_Analyze
(N
, FDecl
);
8728 Insert_After_And_Analyze
(N
, FBody
);
8730 -- Static predicate functions are always side-effect free, and
8731 -- in most cases dynamic predicate functions are as well. Mark
8732 -- them as such whenever possible, so redundant predicate checks
8733 -- can be optimized. If there is a variable reference within the
8734 -- expression, the function is not pure.
8736 if Expander_Active
then
8738 Side_Effect_Free
(Expr
, Variable_Ref
=> True));
8739 Set_Is_Inlined
(SId
);
8743 -- Test for raise expressions present and if so build M version
8745 if Raise_Expression_Present
then
8747 SId
: constant Entity_Id
:=
8748 Make_Defining_Identifier
(Loc
,
8749 Chars
=> New_External_Name
(Chars
(Typ
), "PredicateM"));
8750 -- The entity for the function spec
8752 SIdB
: constant Entity_Id
:=
8753 Make_Defining_Identifier
(Loc
,
8754 Chars
=> New_External_Name
(Chars
(Typ
), "PredicateM"));
8755 -- The entity for the function body
8763 -- Mark any raise expressions for special expansion
8765 Process_REs
(Expr_M
);
8767 -- Build function declaration
8769 Set_Ekind
(SId
, E_Function
);
8770 Set_Is_Predicate_Function_M
(SId
);
8771 Set_Predicate_Function_M
(Typ
, SId
);
8773 -- The predicate function is shared between views of a type
8775 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
8776 Set_Predicate_Function_M
(Full_View
(Typ
), SId
);
8780 Make_Function_Specification
(Loc
,
8781 Defining_Unit_Name
=> SId
,
8782 Parameter_Specifications
=> New_List
(
8783 Make_Parameter_Specification
(Loc
,
8784 Defining_Identifier
=> Object_Entity_M
,
8785 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
))),
8786 Result_Definition
=>
8787 New_Occurrence_Of
(Standard_Boolean
, Loc
));
8790 Make_Subprogram_Declaration
(Loc
,
8791 Specification
=> Spec
);
8793 -- Build function body
8796 Make_Function_Specification
(Loc
,
8797 Defining_Unit_Name
=> SIdB
,
8798 Parameter_Specifications
=> New_List
(
8799 Make_Parameter_Specification
(Loc
,
8800 Defining_Identifier
=>
8801 Make_Defining_Identifier
(Loc
, Object_Name
),
8803 New_Occurrence_Of
(Typ
, Loc
))),
8804 Result_Definition
=>
8805 New_Occurrence_Of
(Standard_Boolean
, Loc
));
8807 -- Build the body, we declare the boolean expression before
8808 -- doing the return, because we are not really confident of
8809 -- what happens if a return appears within a return.
8812 Make_Defining_Identifier
(Loc
,
8813 Chars
=> New_Internal_Name
('B'));
8816 Make_Subprogram_Body
(Loc
,
8817 Specification
=> Spec
,
8819 Declarations
=> New_List
(
8820 Make_Object_Declaration
(Loc
,
8821 Defining_Identifier
=> BTemp
,
8822 Constant_Present
=> True,
8823 Object_Definition
=>
8824 New_Occurrence_Of
(Standard_Boolean
, Loc
),
8825 Expression
=> Expr_M
)),
8827 Handled_Statement_Sequence
=>
8828 Make_Handled_Sequence_Of_Statements
(Loc
,
8829 Statements
=> New_List
(
8830 Make_Simple_Return_Statement
(Loc
,
8831 Expression
=> New_Occurrence_Of
(BTemp
, Loc
)))));
8833 -- Insert declaration before freeze node and body after
8835 Insert_Before_And_Analyze
(N
, FDecl
);
8836 Insert_After_And_Analyze
(N
, FBody
);
8840 -- See if we have a static predicate. Note that the answer may be
8841 -- yes even if we have an explicit Dynamic_Predicate present.
8848 if not Is_Scalar_Type
(Typ
) and then not Is_String_Type
(Typ
) then
8851 PS
:= Is_Predicate_Static
(Expr
, Object_Name
);
8854 -- Case where we have a predicate-static aspect
8858 -- We don't set Has_Static_Predicate_Aspect, since we can have
8859 -- any of the three cases (Predicate, Dynamic_Predicate, or
8860 -- Static_Predicate) generating a predicate with an expression
8861 -- that is predicate-static. We just indicate that we have a
8862 -- predicate that can be treated as static.
8864 Set_Has_Static_Predicate
(Typ
);
8866 -- For discrete subtype, build the static predicate list
8868 if Is_Discrete_Type
(Typ
) then
8869 Build_Discrete_Static_Predicate
(Typ
, Expr
, Object_Name
);
8871 -- If we don't get a static predicate list, it means that we
8872 -- have a case where this is not possible, most typically in
8873 -- the case where we inherit a dynamic predicate. We do not
8874 -- consider this an error, we just leave the predicate as
8875 -- dynamic. But if we do succeed in building the list, then
8876 -- we mark the predicate as static.
8878 if No
(Static_Discrete_Predicate
(Typ
)) then
8879 Set_Has_Static_Predicate
(Typ
, False);
8882 -- For real or string subtype, save predicate expression
8884 elsif Is_Real_Type
(Typ
) or else Is_String_Type
(Typ
) then
8885 Set_Static_Real_Or_String_Predicate
(Typ
, Expr
);
8888 -- Case of dynamic predicate (expression is not predicate-static)
8891 -- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
8892 -- is only set if we have an explicit Dynamic_Predicate aspect
8893 -- given. Here we may simply have a Predicate aspect where the
8894 -- expression happens not to be predicate-static.
8896 -- Emit an error when the predicate is categorized as static
8897 -- but its expression is not predicate-static.
8899 -- First a little fiddling to get a nice location for the
8900 -- message. If the expression is of the form (A and then B),
8901 -- where A is an inherited predicate, then use the right
8902 -- operand for the Sloc. This avoids getting confused by a call
8903 -- to an inherited predicate with a less convenient source
8907 while Nkind
(EN
) = N_And_Then
8908 and then Nkind
(Left_Opnd
(EN
)) = N_Function_Call
8909 and then Is_Predicate_Function
8910 (Entity
(Name
(Left_Opnd
(EN
))))
8912 EN
:= Right_Opnd
(EN
);
8915 -- Now post appropriate message
8917 if Has_Static_Predicate_Aspect
(Typ
) then
8918 if Is_Scalar_Type
(Typ
) or else Is_String_Type
(Typ
) then
8920 ("expression is not predicate-static (RM 3.2.4(16-22))",
8924 ("static predicate requires scalar or string type", EN
);
8931 Restore_Ghost_Mode
(Mode
);
8932 end Build_Predicate_Functions
;
8934 ------------------------------------------
8935 -- Build_Predicate_Function_Declaration --
8936 ------------------------------------------
8938 -- WARNING: This routine manages Ghost regions. Return statements must be
8939 -- replaced by gotos which jump to the end of the routine and restore the
8942 function Build_Predicate_Function_Declaration
8943 (Typ
: Entity_Id
) return Node_Id
8945 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
8947 Func_Decl
: Node_Id
;
8948 Func_Id
: Entity_Id
;
8949 Mode
: Ghost_Mode_Type
;
8953 -- The related type may be subject to pragma Ghost. Set the mode now to
8954 -- ensure that the predicate functions are properly marked as Ghost.
8956 Set_Ghost_Mode
(Typ
, Mode
);
8959 Make_Defining_Identifier
(Loc
,
8960 Chars
=> New_External_Name
(Chars
(Typ
), "Predicate"));
8963 Make_Function_Specification
(Loc
,
8964 Defining_Unit_Name
=> Func_Id
,
8965 Parameter_Specifications
=> New_List
(
8966 Make_Parameter_Specification
(Loc
,
8967 Defining_Identifier
=> Make_Temporary
(Loc
, 'I'),
8968 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
))),
8969 Result_Definition
=>
8970 New_Occurrence_Of
(Standard_Boolean
, Loc
));
8972 Func_Decl
:= Make_Subprogram_Declaration
(Loc
, Specification
=> Spec
);
8974 Set_Ekind
(Func_Id
, E_Function
);
8975 Set_Etype
(Func_Id
, Standard_Boolean
);
8976 Set_Is_Internal
(Func_Id
);
8977 Set_Is_Predicate_Function
(Func_Id
);
8978 Set_Predicate_Function
(Typ
, Func_Id
);
8980 Insert_After
(Parent
(Typ
), Func_Decl
);
8981 Analyze
(Func_Decl
);
8983 Restore_Ghost_Mode
(Mode
);
8986 end Build_Predicate_Function_Declaration
;
8988 -----------------------------------------
8989 -- Check_Aspect_At_End_Of_Declarations --
8990 -----------------------------------------
8992 procedure Check_Aspect_At_End_Of_Declarations
(ASN
: Node_Id
) is
8993 Ent
: constant Entity_Id
:= Entity
(ASN
);
8994 Ident
: constant Node_Id
:= Identifier
(ASN
);
8995 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Chars
(Ident
));
8997 End_Decl_Expr
: constant Node_Id
:= Entity
(Ident
);
8998 -- Expression to be analyzed at end of declarations
9000 Freeze_Expr
: constant Node_Id
:= Expression
(ASN
);
9001 -- Expression from call to Check_Aspect_At_Freeze_Point.
9003 T
: constant Entity_Id
:= Etype
(Original_Node
(Freeze_Expr
));
9004 -- Type required for preanalyze call. We use the original expression to
9005 -- get the proper type, to prevent cascaded errors when the expression
9006 -- is constant-folded.
9009 -- Set False if error
9011 -- On entry to this procedure, Entity (Ident) contains a copy of the
9012 -- original expression from the aspect, saved for this purpose, and
9013 -- but Expression (Ident) is a preanalyzed copy of the expression,
9014 -- preanalyzed just after the freeze point.
9016 procedure Check_Overloaded_Name
;
9017 -- For aspects whose expression is simply a name, this routine checks if
9018 -- the name is overloaded or not. If so, it verifies there is an
9019 -- interpretation that matches the entity obtained at the freeze point,
9020 -- otherwise the compiler complains.
9022 ---------------------------
9023 -- Check_Overloaded_Name --
9024 ---------------------------
9026 procedure Check_Overloaded_Name
is
9028 if not Is_Overloaded
(End_Decl_Expr
) then
9029 Err
:= not Is_Entity_Name
(End_Decl_Expr
)
9030 or else Entity
(End_Decl_Expr
) /= Entity
(Freeze_Expr
);
9036 Index
: Interp_Index
;
9040 Get_First_Interp
(End_Decl_Expr
, Index
, It
);
9041 while Present
(It
.Typ
) loop
9042 if It
.Nam
= Entity
(Freeze_Expr
) then
9047 Get_Next_Interp
(Index
, It
);
9051 end Check_Overloaded_Name
;
9053 -- Start of processing for Check_Aspect_At_End_Of_Declarations
9056 -- In an instance we do not perform the consistency check between freeze
9057 -- point and end of declarations, because it was done already in the
9058 -- analysis of the generic. Furthermore, the delayed analysis of an
9059 -- aspect of the instance may produce spurious errors when the generic
9060 -- is a child unit that references entities in the parent (which might
9061 -- not be in scope at the freeze point of the instance).
9066 -- Case of aspects Dimension, Dimension_System and Synchronization
9068 elsif A_Id
= Aspect_Synchronization
then
9071 -- Case of stream attributes, just have to compare entities. However,
9072 -- the expression is just a name (possibly overloaded), and there may
9073 -- be stream operations declared for unrelated types, so we just need
9074 -- to verify that one of these interpretations is the one available at
9075 -- at the freeze point.
9077 elsif A_Id
= Aspect_Input
or else
9078 A_Id
= Aspect_Output
or else
9079 A_Id
= Aspect_Read
or else
9082 Analyze
(End_Decl_Expr
);
9083 Check_Overloaded_Name
;
9085 elsif A_Id
= Aspect_Variable_Indexing
or else
9086 A_Id
= Aspect_Constant_Indexing
or else
9087 A_Id
= Aspect_Default_Iterator
or else
9088 A_Id
= Aspect_Iterator_Element
9090 -- Make type unfrozen before analysis, to prevent spurious errors
9091 -- about late attributes.
9093 Set_Is_Frozen
(Ent
, False);
9094 Analyze
(End_Decl_Expr
);
9095 Set_Is_Frozen
(Ent
, True);
9097 -- If the end of declarations comes before any other freeze
9098 -- point, the Freeze_Expr is not analyzed: no check needed.
9100 if Analyzed
(Freeze_Expr
) and then not In_Instance
then
9101 Check_Overloaded_Name
;
9109 -- Indicate that the expression comes from an aspect specification,
9110 -- which is used in subsequent analysis even if expansion is off.
9112 Set_Parent
(End_Decl_Expr
, ASN
);
9114 -- In a generic context the aspect expressions have not been
9115 -- preanalyzed, so do it now. There are no conformance checks
9116 -- to perform in this case.
9119 Check_Aspect_At_Freeze_Point
(ASN
);
9122 -- The default values attributes may be defined in the private part,
9123 -- and the analysis of the expression may take place when only the
9124 -- partial view is visible. The expression must be scalar, so use
9125 -- the full view to resolve.
9127 elsif (A_Id
= Aspect_Default_Value
9129 A_Id
= Aspect_Default_Component_Value
)
9130 and then Is_Private_Type
(T
)
9132 Preanalyze_Spec_Expression
(End_Decl_Expr
, Full_View
(T
));
9135 Preanalyze_Spec_Expression
(End_Decl_Expr
, T
);
9138 Err
:= not Fully_Conformant_Expressions
(End_Decl_Expr
, Freeze_Expr
);
9141 -- Output error message if error. Force error on aspect specification
9142 -- even if there is an error on the expression itself.
9146 ("!visibility of aspect for& changes after freeze point",
9149 ("info: & is frozen here, aspects evaluated at this point??",
9150 Freeze_Node
(Ent
), Ent
);
9152 end Check_Aspect_At_End_Of_Declarations
;
9154 ----------------------------------
9155 -- Check_Aspect_At_Freeze_Point --
9156 ----------------------------------
9158 procedure Check_Aspect_At_Freeze_Point
(ASN
: Node_Id
) is
9159 Ident
: constant Node_Id
:= Identifier
(ASN
);
9160 -- Identifier (use Entity field to save expression)
9162 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Chars
(Ident
));
9164 T
: Entity_Id
:= Empty
;
9165 -- Type required for preanalyze call
9168 -- On entry to this procedure, Entity (Ident) contains a copy of the
9169 -- original expression from the aspect, saved for this purpose.
9171 -- On exit from this procedure Entity (Ident) is unchanged, still
9172 -- containing that copy, but Expression (Ident) is a preanalyzed copy
9173 -- of the expression, preanalyzed just after the freeze point.
9175 -- Make a copy of the expression to be preanalyzed
9177 Set_Expression
(ASN
, New_Copy_Tree
(Entity
(Ident
)));
9179 -- Find type for preanalyze call
9183 -- No_Aspect should be impossible
9186 raise Program_Error
;
9188 -- Aspects taking an optional boolean argument
9190 when Boolean_Aspects
9191 | Library_Unit_Aspects
9193 T
:= Standard_Boolean
;
9195 -- Aspects corresponding to attribute definition clauses
9197 when Aspect_Address
=>
9198 T
:= RTE
(RE_Address
);
9200 when Aspect_Attach_Handler
=>
9201 T
:= RTE
(RE_Interrupt_ID
);
9203 when Aspect_Bit_Order
9204 | Aspect_Scalar_Storage_Order
9206 T
:= RTE
(RE_Bit_Order
);
9208 when Aspect_Convention
=>
9212 T
:= RTE
(RE_CPU_Range
);
9214 -- Default_Component_Value is resolved with the component type
9216 when Aspect_Default_Component_Value
=>
9217 T
:= Component_Type
(Entity
(ASN
));
9219 when Aspect_Default_Storage_Pool
=>
9220 T
:= Class_Wide_Type
(RTE
(RE_Root_Storage_Pool
));
9222 -- Default_Value is resolved with the type entity in question
9224 when Aspect_Default_Value
=>
9227 when Aspect_Dispatching_Domain
=>
9228 T
:= RTE
(RE_Dispatching_Domain
);
9230 when Aspect_External_Tag
=>
9231 T
:= Standard_String
;
9233 when Aspect_External_Name
=>
9234 T
:= Standard_String
;
9236 when Aspect_Link_Name
=>
9237 T
:= Standard_String
;
9239 when Aspect_Interrupt_Priority
9242 T
:= Standard_Integer
;
9244 when Aspect_Relative_Deadline
=>
9245 T
:= RTE
(RE_Time_Span
);
9247 when Aspect_Secondary_Stack_Size
=>
9248 T
:= Standard_Integer
;
9250 when Aspect_Small
=>
9251 T
:= Universal_Real
;
9253 -- For a simple storage pool, we have to retrieve the type of the
9254 -- pool object associated with the aspect's corresponding attribute
9255 -- definition clause.
9257 when Aspect_Simple_Storage_Pool
=>
9258 T
:= Etype
(Expression
(Aspect_Rep_Item
(ASN
)));
9260 when Aspect_Storage_Pool
=>
9261 T
:= Class_Wide_Type
(RTE
(RE_Root_Storage_Pool
));
9263 when Aspect_Alignment
9264 | Aspect_Component_Size
9265 | Aspect_Machine_Radix
9266 | Aspect_Object_Size
9268 | Aspect_Storage_Size
9269 | Aspect_Stream_Size
9274 when Aspect_Linker_Section
=>
9275 T
:= Standard_String
;
9277 when Aspect_Synchronization
=>
9280 -- Special case, the expression of these aspects is just an entity
9281 -- that does not need any resolution, so just analyze.
9291 Analyze
(Expression
(ASN
));
9294 -- Same for Iterator aspects, where the expression is a function
9295 -- name. Legality rules are checked separately.
9297 when Aspect_Constant_Indexing
9298 | Aspect_Default_Iterator
9299 | Aspect_Iterator_Element
9300 | Aspect_Variable_Indexing
9302 Analyze
(Expression
(ASN
));
9305 -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
9307 when Aspect_Iterable
=>
9311 Cursor
: constant Entity_Id
:= Get_Cursor_Type
(ASN
, T
);
9316 if Cursor
= Any_Type
then
9320 Assoc
:= First
(Component_Associations
(Expression
(ASN
)));
9321 while Present
(Assoc
) loop
9322 Expr
:= Expression
(Assoc
);
9325 if not Error_Posted
(Expr
) then
9326 Resolve_Iterable_Operation
9327 (Expr
, Cursor
, T
, Chars
(First
(Choices
(Assoc
))));
9336 -- Invariant/Predicate take boolean expressions
9338 when Aspect_Dynamic_Predicate
9341 | Aspect_Static_Predicate
9342 | Aspect_Type_Invariant
9344 T
:= Standard_Boolean
;
9346 when Aspect_Predicate_Failure
=>
9347 T
:= Standard_String
;
9349 -- Here is the list of aspects that don't require delay analysis
9351 when Aspect_Abstract_State
9353 | Aspect_Async_Readers
9354 | Aspect_Async_Writers
9355 | Aspect_Constant_After_Elaboration
9356 | Aspect_Contract_Cases
9357 | Aspect_Default_Initial_Condition
9360 | Aspect_Dimension_System
9361 | Aspect_Effective_Reads
9362 | Aspect_Effective_Writes
9363 | Aspect_Extensions_Visible
9366 | Aspect_Implicit_Dereference
9367 | Aspect_Initial_Condition
9368 | Aspect_Initializes
9369 | Aspect_Max_Queue_Length
9370 | Aspect_Obsolescent
9373 | Aspect_Postcondition
9375 | Aspect_Precondition
9376 | Aspect_Refined_Depends
9377 | Aspect_Refined_Global
9378 | Aspect_Refined_Post
9379 | Aspect_Refined_State
9382 | Aspect_Unimplemented
9383 | Aspect_Volatile_Function
9385 raise Program_Error
;
9389 -- Do the preanalyze call
9391 Preanalyze_Spec_Expression
(Expression
(ASN
), T
);
9392 end Check_Aspect_At_Freeze_Point
;
9394 -----------------------------------
9395 -- Check_Constant_Address_Clause --
9396 -----------------------------------
9398 procedure Check_Constant_Address_Clause
9402 procedure Check_At_Constant_Address
(Nod
: Node_Id
);
9403 -- Checks that the given node N represents a name whose 'Address is
9404 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
9405 -- address value is the same at the point of declaration of U_Ent and at
9406 -- the time of elaboration of the address clause.
9408 procedure Check_Expr_Constants
(Nod
: Node_Id
);
9409 -- Checks that Nod meets the requirements for a constant address clause
9410 -- in the sense of the enclosing procedure.
9412 procedure Check_List_Constants
(Lst
: List_Id
);
9413 -- Check that all elements of list Lst meet the requirements for a
9414 -- constant address clause in the sense of the enclosing procedure.
9416 -------------------------------
9417 -- Check_At_Constant_Address --
9418 -------------------------------
9420 procedure Check_At_Constant_Address
(Nod
: Node_Id
) is
9422 if Is_Entity_Name
(Nod
) then
9423 if Present
(Address_Clause
(Entity
((Nod
)))) then
9425 ("invalid address clause for initialized object &!",
9428 ("address for& cannot depend on another address clause! "
9429 & "(RM 13.1(22))!", Nod
, U_Ent
);
9431 elsif In_Same_Source_Unit
(Entity
(Nod
), U_Ent
)
9432 and then Sloc
(U_Ent
) < Sloc
(Entity
(Nod
))
9435 ("invalid address clause for initialized object &!",
9437 Error_Msg_Node_2
:= U_Ent
;
9439 ("\& must be defined before & (RM 13.1(22))!",
9443 elsif Nkind
(Nod
) = N_Selected_Component
then
9445 T
: constant Entity_Id
:= Etype
(Prefix
(Nod
));
9448 if (Is_Record_Type
(T
)
9449 and then Has_Discriminants
(T
))
9452 and then Is_Record_Type
(Designated_Type
(T
))
9453 and then Has_Discriminants
(Designated_Type
(T
)))
9456 ("invalid address clause for initialized object &!",
9459 ("\address cannot depend on component of discriminated "
9460 & "record (RM 13.1(22))!", Nod
);
9462 Check_At_Constant_Address
(Prefix
(Nod
));
9466 elsif Nkind
(Nod
) = N_Indexed_Component
then
9467 Check_At_Constant_Address
(Prefix
(Nod
));
9468 Check_List_Constants
(Expressions
(Nod
));
9471 Check_Expr_Constants
(Nod
);
9473 end Check_At_Constant_Address
;
9475 --------------------------
9476 -- Check_Expr_Constants --
9477 --------------------------
9479 procedure Check_Expr_Constants
(Nod
: Node_Id
) is
9480 Loc_U_Ent
: constant Source_Ptr
:= Sloc
(U_Ent
);
9481 Ent
: Entity_Id
:= Empty
;
9484 if Nkind
(Nod
) in N_Has_Etype
9485 and then Etype
(Nod
) = Any_Type
9496 when N_Expanded_Name
9499 Ent
:= Entity
(Nod
);
9501 -- We need to look at the original node if it is different
9502 -- from the node, since we may have rewritten things and
9503 -- substituted an identifier representing the rewrite.
9505 if Original_Node
(Nod
) /= Nod
then
9506 Check_Expr_Constants
(Original_Node
(Nod
));
9508 -- If the node is an object declaration without initial
9509 -- value, some code has been expanded, and the expression
9510 -- is not constant, even if the constituents might be
9511 -- acceptable, as in A'Address + offset.
9513 if Ekind
(Ent
) = E_Variable
9515 Nkind
(Declaration_Node
(Ent
)) = N_Object_Declaration
9517 No
(Expression
(Declaration_Node
(Ent
)))
9520 ("invalid address clause for initialized object &!",
9523 -- If entity is constant, it may be the result of expanding
9524 -- a check. We must verify that its declaration appears
9525 -- before the object in question, else we also reject the
9528 elsif Ekind
(Ent
) = E_Constant
9529 and then In_Same_Source_Unit
(Ent
, U_Ent
)
9530 and then Sloc
(Ent
) > Loc_U_Ent
9533 ("invalid address clause for initialized object &!",
9540 -- Otherwise look at the identifier and see if it is OK
9542 if Ekind_In
(Ent
, E_Named_Integer
, E_Named_Real
)
9543 or else Is_Type
(Ent
)
9547 elsif Ekind_In
(Ent
, E_Constant
, E_In_Parameter
) then
9549 -- This is the case where we must have Ent defined before
9550 -- U_Ent. Clearly if they are in different units this
9551 -- requirement is met since the unit containing Ent is
9552 -- already processed.
9554 if not In_Same_Source_Unit
(Ent
, U_Ent
) then
9557 -- Otherwise location of Ent must be before the location
9558 -- of U_Ent, that's what prior defined means.
9560 elsif Sloc
(Ent
) < Loc_U_Ent
then
9565 ("invalid address clause for initialized object &!",
9567 Error_Msg_Node_2
:= U_Ent
;
9569 ("\& must be defined before & (RM 13.1(22))!",
9573 elsif Nkind
(Original_Node
(Nod
)) = N_Function_Call
then
9574 Check_Expr_Constants
(Original_Node
(Nod
));
9578 ("invalid address clause for initialized object &!",
9581 if Comes_From_Source
(Ent
) then
9583 ("\reference to variable& not allowed"
9584 & " (RM 13.1(22))!", Nod
, Ent
);
9587 ("non-static expression not allowed"
9588 & " (RM 13.1(22))!", Nod
);
9592 when N_Integer_Literal
=>
9594 -- If this is a rewritten unchecked conversion, in a system
9595 -- where Address is an integer type, always use the base type
9596 -- for a literal value. This is user-friendly and prevents
9597 -- order-of-elaboration issues with instances of unchecked
9600 if Nkind
(Original_Node
(Nod
)) = N_Function_Call
then
9601 Set_Etype
(Nod
, Base_Type
(Etype
(Nod
)));
9604 when N_Character_Literal
9611 Check_Expr_Constants
(Low_Bound
(Nod
));
9612 Check_Expr_Constants
(High_Bound
(Nod
));
9614 when N_Explicit_Dereference
=>
9615 Check_Expr_Constants
(Prefix
(Nod
));
9617 when N_Indexed_Component
=>
9618 Check_Expr_Constants
(Prefix
(Nod
));
9619 Check_List_Constants
(Expressions
(Nod
));
9622 Check_Expr_Constants
(Prefix
(Nod
));
9623 Check_Expr_Constants
(Discrete_Range
(Nod
));
9625 when N_Selected_Component
=>
9626 Check_Expr_Constants
(Prefix
(Nod
));
9628 when N_Attribute_Reference
=>
9629 if Nam_In
(Attribute_Name
(Nod
), Name_Address
,
9631 Name_Unchecked_Access
,
9632 Name_Unrestricted_Access
)
9634 Check_At_Constant_Address
(Prefix
(Nod
));
9637 Check_Expr_Constants
(Prefix
(Nod
));
9638 Check_List_Constants
(Expressions
(Nod
));
9642 Check_List_Constants
(Component_Associations
(Nod
));
9643 Check_List_Constants
(Expressions
(Nod
));
9645 when N_Component_Association
=>
9646 Check_Expr_Constants
(Expression
(Nod
));
9648 when N_Extension_Aggregate
=>
9649 Check_Expr_Constants
(Ancestor_Part
(Nod
));
9650 Check_List_Constants
(Component_Associations
(Nod
));
9651 Check_List_Constants
(Expressions
(Nod
));
9660 Check_Expr_Constants
(Left_Opnd
(Nod
));
9661 Check_Expr_Constants
(Right_Opnd
(Nod
));
9664 Check_Expr_Constants
(Right_Opnd
(Nod
));
9667 | N_Qualified_Expression
9669 | N_Unchecked_Type_Conversion
9671 Check_Expr_Constants
(Expression
(Nod
));
9673 when N_Function_Call
=>
9674 if not Is_Pure
(Entity
(Name
(Nod
))) then
9676 ("invalid address clause for initialized object &!",
9680 ("\function & is not pure (RM 13.1(22))!",
9681 Nod
, Entity
(Name
(Nod
)));
9684 Check_List_Constants
(Parameter_Associations
(Nod
));
9687 when N_Parameter_Association
=>
9688 Check_Expr_Constants
(Explicit_Actual_Parameter
(Nod
));
9692 ("invalid address clause for initialized object &!",
9695 ("\must be constant defined before& (RM 13.1(22))!",
9698 end Check_Expr_Constants
;
9700 --------------------------
9701 -- Check_List_Constants --
9702 --------------------------
9704 procedure Check_List_Constants
(Lst
: List_Id
) is
9708 if Present
(Lst
) then
9709 Nod1
:= First
(Lst
);
9710 while Present
(Nod1
) loop
9711 Check_Expr_Constants
(Nod1
);
9715 end Check_List_Constants
;
9717 -- Start of processing for Check_Constant_Address_Clause
9720 -- If rep_clauses are to be ignored, no need for legality checks. In
9721 -- particular, no need to pester user about rep clauses that violate the
9722 -- rule on constant addresses, given that these clauses will be removed
9723 -- by Freeze before they reach the back end. Similarly in CodePeer mode,
9724 -- we want to relax these checks.
9726 if not Ignore_Rep_Clauses
and not CodePeer_Mode
then
9727 Check_Expr_Constants
(Expr
);
9729 end Check_Constant_Address_Clause
;
9731 ---------------------------
9732 -- Check_Pool_Size_Clash --
9733 ---------------------------
9735 procedure Check_Pool_Size_Clash
(Ent
: Entity_Id
; SP
, SS
: Node_Id
) is
9739 -- We need to find out which one came first. Note that in the case of
9740 -- aspects mixed with pragmas there are cases where the processing order
9741 -- is reversed, which is why we do the check here.
9743 if Sloc
(SP
) < Sloc
(SS
) then
9744 Error_Msg_Sloc
:= Sloc
(SP
);
9746 Error_Msg_NE
("Storage_Pool previously given for&#", Post
, Ent
);
9749 Error_Msg_Sloc
:= Sloc
(SS
);
9751 Error_Msg_NE
("Storage_Size previously given for&#", Post
, Ent
);
9755 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post
);
9756 end Check_Pool_Size_Clash
;
9758 ----------------------------------------
9759 -- Check_Record_Representation_Clause --
9760 ----------------------------------------
9762 procedure Check_Record_Representation_Clause
(N
: Node_Id
) is
9763 Loc
: constant Source_Ptr
:= Sloc
(N
);
9764 Ident
: constant Node_Id
:= Identifier
(N
);
9765 Rectype
: Entity_Id
;
9770 Hbit
: Uint
:= Uint_0
;
9774 Max_Bit_So_Far
: Uint
;
9775 -- Records the maximum bit position so far. If all field positions
9776 -- are monotonically increasing, then we can skip the circuit for
9777 -- checking for overlap, since no overlap is possible.
9779 Tagged_Parent
: Entity_Id
:= Empty
;
9780 -- This is set in the case of a derived tagged type for which we have
9781 -- Is_Fully_Repped_Tagged_Type True (indicating that all components are
9782 -- positioned by record representation clauses). In this case we must
9783 -- check for overlap between components of this tagged type, and the
9784 -- components of its parent. Tagged_Parent will point to this parent
9785 -- type. For all other cases Tagged_Parent is left set to Empty.
9787 Parent_Last_Bit
: Uint
;
9788 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
9789 -- last bit position for any field in the parent type. We only need to
9790 -- check overlap for fields starting below this point.
9792 Overlap_Check_Required
: Boolean;
9793 -- Used to keep track of whether or not an overlap check is required
9795 Overlap_Detected
: Boolean := False;
9796 -- Set True if an overlap is detected
9798 Ccount
: Natural := 0;
9799 -- Number of component clauses in record rep clause
9801 procedure Check_Component_Overlap
(C1_Ent
, C2_Ent
: Entity_Id
);
9802 -- Given two entities for record components or discriminants, checks
9803 -- if they have overlapping component clauses and issues errors if so.
9805 procedure Find_Component
;
9806 -- Finds component entity corresponding to current component clause (in
9807 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
9808 -- start/stop bits for the field. If there is no matching component or
9809 -- if the matching component does not have a component clause, then
9810 -- that's an error and Comp is set to Empty, but no error message is
9811 -- issued, since the message was already given. Comp is also set to
9812 -- Empty if the current "component clause" is in fact a pragma.
9814 -----------------------------
9815 -- Check_Component_Overlap --
9816 -----------------------------
9818 procedure Check_Component_Overlap
(C1_Ent
, C2_Ent
: Entity_Id
) is
9819 CC1
: constant Node_Id
:= Component_Clause
(C1_Ent
);
9820 CC2
: constant Node_Id
:= Component_Clause
(C2_Ent
);
9823 if Present
(CC1
) and then Present
(CC2
) then
9825 -- Exclude odd case where we have two tag components in the same
9826 -- record, both at location zero. This seems a bit strange, but
9827 -- it seems to happen in some circumstances, perhaps on an error.
9829 if Nam_In
(Chars
(C1_Ent
), Name_uTag
, Name_uTag
) then
9833 -- Here we check if the two fields overlap
9836 S1
: constant Uint
:= Component_Bit_Offset
(C1_Ent
);
9837 S2
: constant Uint
:= Component_Bit_Offset
(C2_Ent
);
9838 E1
: constant Uint
:= S1
+ Esize
(C1_Ent
);
9839 E2
: constant Uint
:= S2
+ Esize
(C2_Ent
);
9842 if E2
<= S1
or else E1
<= S2
then
9845 Error_Msg_Node_2
:= Component_Name
(CC2
);
9846 Error_Msg_Sloc
:= Sloc
(Error_Msg_Node_2
);
9847 Error_Msg_Node_1
:= Component_Name
(CC1
);
9849 ("component& overlaps & #", Component_Name
(CC1
));
9850 Overlap_Detected
:= True;
9854 end Check_Component_Overlap
;
9856 --------------------
9857 -- Find_Component --
9858 --------------------
9860 procedure Find_Component
is
9862 procedure Search_Component
(R
: Entity_Id
);
9863 -- Search components of R for a match. If found, Comp is set
9865 ----------------------
9866 -- Search_Component --
9867 ----------------------
9869 procedure Search_Component
(R
: Entity_Id
) is
9871 Comp
:= First_Component_Or_Discriminant
(R
);
9872 while Present
(Comp
) loop
9874 -- Ignore error of attribute name for component name (we
9875 -- already gave an error message for this, so no need to
9878 if Nkind
(Component_Name
(CC
)) = N_Attribute_Reference
then
9881 exit when Chars
(Comp
) = Chars
(Component_Name
(CC
));
9884 Next_Component_Or_Discriminant
(Comp
);
9886 end Search_Component
;
9888 -- Start of processing for Find_Component
9891 -- Return with Comp set to Empty if we have a pragma
9893 if Nkind
(CC
) = N_Pragma
then
9898 -- Search current record for matching component
9900 Search_Component
(Rectype
);
9902 -- If not found, maybe component of base type discriminant that is
9903 -- absent from statically constrained first subtype.
9906 Search_Component
(Base_Type
(Rectype
));
9909 -- If no component, or the component does not reference the component
9910 -- clause in question, then there was some previous error for which
9911 -- we already gave a message, so just return with Comp Empty.
9913 if No
(Comp
) or else Component_Clause
(Comp
) /= CC
then
9914 Check_Error_Detected
;
9917 -- Normal case where we have a component clause
9920 Fbit
:= Component_Bit_Offset
(Comp
);
9921 Lbit
:= Fbit
+ Esize
(Comp
) - 1;
9925 -- Start of processing for Check_Record_Representation_Clause
9929 Rectype
:= Entity
(Ident
);
9931 if Rectype
= Any_Type
then
9934 Rectype
:= Underlying_Type
(Rectype
);
9937 -- See if we have a fully repped derived tagged type
9940 PS
: constant Entity_Id
:= Parent_Subtype
(Rectype
);
9943 if Present
(PS
) and then Is_Fully_Repped_Tagged_Type
(PS
) then
9944 Tagged_Parent
:= PS
;
9946 -- Find maximum bit of any component of the parent type
9948 Parent_Last_Bit
:= UI_From_Int
(System_Address_Size
- 1);
9949 Pcomp
:= First_Entity
(Tagged_Parent
);
9950 while Present
(Pcomp
) loop
9951 if Ekind_In
(Pcomp
, E_Discriminant
, E_Component
) then
9952 if Component_Bit_Offset
(Pcomp
) /= No_Uint
9953 and then Known_Static_Esize
(Pcomp
)
9958 Component_Bit_Offset
(Pcomp
) + Esize
(Pcomp
) - 1);
9962 -- Skip anonymous types generated for constrained array
9963 -- or record components.
9968 Next_Entity
(Pcomp
);
9973 -- All done if no component clauses
9975 CC
:= First
(Component_Clauses
(N
));
9981 -- If a tag is present, then create a component clause that places it
9982 -- at the start of the record (otherwise gigi may place it after other
9983 -- fields that have rep clauses).
9985 Fent
:= First_Entity
(Rectype
);
9987 if Nkind
(Fent
) = N_Defining_Identifier
9988 and then Chars
(Fent
) = Name_uTag
9990 Set_Component_Bit_Offset
(Fent
, Uint_0
);
9991 Set_Normalized_Position
(Fent
, Uint_0
);
9992 Set_Normalized_First_Bit
(Fent
, Uint_0
);
9993 Set_Normalized_Position_Max
(Fent
, Uint_0
);
9994 Init_Esize
(Fent
, System_Address_Size
);
9996 Set_Component_Clause
(Fent
,
9997 Make_Component_Clause
(Loc
,
9998 Component_Name
=> Make_Identifier
(Loc
, Name_uTag
),
10000 Position
=> Make_Integer_Literal
(Loc
, Uint_0
),
10001 First_Bit
=> Make_Integer_Literal
(Loc
, Uint_0
),
10003 Make_Integer_Literal
(Loc
,
10004 UI_From_Int
(System_Address_Size
))));
10006 Ccount
:= Ccount
+ 1;
10009 Max_Bit_So_Far
:= Uint_Minus_1
;
10010 Overlap_Check_Required
:= False;
10012 -- Process the component clauses
10014 while Present
(CC
) loop
10017 if Present
(Comp
) then
10018 Ccount
:= Ccount
+ 1;
10020 -- We need a full overlap check if record positions non-monotonic
10022 if Fbit
<= Max_Bit_So_Far
then
10023 Overlap_Check_Required
:= True;
10026 Max_Bit_So_Far
:= Lbit
;
10028 -- Check bit position out of range of specified size
10030 if Has_Size_Clause
(Rectype
)
10031 and then RM_Size
(Rectype
) <= Lbit
10034 ("bit number out of range of specified size",
10037 -- Check for overlap with tag component
10040 if Is_Tagged_Type
(Rectype
)
10041 and then Fbit
< System_Address_Size
10044 ("component overlaps tag field of&",
10045 Component_Name
(CC
), Rectype
);
10046 Overlap_Detected
:= True;
10049 if Hbit
< Lbit
then
10054 -- Check parent overlap if component might overlap parent field
10056 if Present
(Tagged_Parent
) and then Fbit
<= Parent_Last_Bit
then
10057 Pcomp
:= First_Component_Or_Discriminant
(Tagged_Parent
);
10058 while Present
(Pcomp
) loop
10059 if not Is_Tag
(Pcomp
)
10060 and then Chars
(Pcomp
) /= Name_uParent
10062 Check_Component_Overlap
(Comp
, Pcomp
);
10065 Next_Component_Or_Discriminant
(Pcomp
);
10073 -- Now that we have processed all the component clauses, check for
10074 -- overlap. We have to leave this till last, since the components can
10075 -- appear in any arbitrary order in the representation clause.
10077 -- We do not need this check if all specified ranges were monotonic,
10078 -- as recorded by Overlap_Check_Required being False at this stage.
10080 -- This first section checks if there are any overlapping entries at
10081 -- all. It does this by sorting all entries and then seeing if there are
10082 -- any overlaps. If there are none, then that is decisive, but if there
10083 -- are overlaps, they may still be OK (they may result from fields in
10084 -- different variants).
10086 if Overlap_Check_Required
then
10087 Overlap_Check1
: declare
10089 OC_Fbit
: array (0 .. Ccount
) of Uint
;
10090 -- First-bit values for component clauses, the value is the offset
10091 -- of the first bit of the field from start of record. The zero
10092 -- entry is for use in sorting.
10094 OC_Lbit
: array (0 .. Ccount
) of Uint
;
10095 -- Last-bit values for component clauses, the value is the offset
10096 -- of the last bit of the field from start of record. The zero
10097 -- entry is for use in sorting.
10099 OC_Count
: Natural := 0;
10100 -- Count of entries in OC_Fbit and OC_Lbit
10102 function OC_Lt
(Op1
, Op2
: Natural) return Boolean;
10103 -- Compare routine for Sort
10105 procedure OC_Move
(From
: Natural; To
: Natural);
10106 -- Move routine for Sort
10108 package Sorting
is new GNAT
.Heap_Sort_G
(OC_Move
, OC_Lt
);
10114 function OC_Lt
(Op1
, Op2
: Natural) return Boolean is
10116 return OC_Fbit
(Op1
) < OC_Fbit
(Op2
);
10123 procedure OC_Move
(From
: Natural; To
: Natural) is
10125 OC_Fbit
(To
) := OC_Fbit
(From
);
10126 OC_Lbit
(To
) := OC_Lbit
(From
);
10129 -- Start of processing for Overlap_Check
10132 CC
:= First
(Component_Clauses
(N
));
10133 while Present
(CC
) loop
10135 -- Exclude component clause already marked in error
10137 if not Error_Posted
(CC
) then
10140 if Present
(Comp
) then
10141 OC_Count
:= OC_Count
+ 1;
10142 OC_Fbit
(OC_Count
) := Fbit
;
10143 OC_Lbit
(OC_Count
) := Lbit
;
10150 Sorting
.Sort
(OC_Count
);
10152 Overlap_Check_Required
:= False;
10153 for J
in 1 .. OC_Count
- 1 loop
10154 if OC_Lbit
(J
) >= OC_Fbit
(J
+ 1) then
10155 Overlap_Check_Required
:= True;
10159 end Overlap_Check1
;
10162 -- If Overlap_Check_Required is still True, then we have to do the full
10163 -- scale overlap check, since we have at least two fields that do
10164 -- overlap, and we need to know if that is OK since they are in
10165 -- different variant, or whether we have a definite problem.
10167 if Overlap_Check_Required
then
10168 Overlap_Check2
: declare
10169 C1_Ent
, C2_Ent
: Entity_Id
;
10170 -- Entities of components being checked for overlap
10173 -- Component_List node whose Component_Items are being checked
10176 -- Component declaration for component being checked
10179 C1_Ent
:= First_Entity
(Base_Type
(Rectype
));
10181 -- Loop through all components in record. For each component check
10182 -- for overlap with any of the preceding elements on the component
10183 -- list containing the component and also, if the component is in
10184 -- a variant, check against components outside the case structure.
10185 -- This latter test is repeated recursively up the variant tree.
10187 Main_Component_Loop
: while Present
(C1_Ent
) loop
10188 if not Ekind_In
(C1_Ent
, E_Component
, E_Discriminant
) then
10189 goto Continue_Main_Component_Loop
;
10192 -- Skip overlap check if entity has no declaration node. This
10193 -- happens with discriminants in constrained derived types.
10194 -- Possibly we are missing some checks as a result, but that
10195 -- does not seem terribly serious.
10197 if No
(Declaration_Node
(C1_Ent
)) then
10198 goto Continue_Main_Component_Loop
;
10201 Clist
:= Parent
(List_Containing
(Declaration_Node
(C1_Ent
)));
10203 -- Loop through component lists that need checking. Check the
10204 -- current component list and all lists in variants above us.
10206 Component_List_Loop
: loop
10208 -- If derived type definition, go to full declaration
10209 -- If at outer level, check discriminants if there are any.
10211 if Nkind
(Clist
) = N_Derived_Type_Definition
then
10212 Clist
:= Parent
(Clist
);
10215 -- Outer level of record definition, check discriminants
10217 if Nkind_In
(Clist
, N_Full_Type_Declaration
,
10218 N_Private_Type_Declaration
)
10220 if Has_Discriminants
(Defining_Identifier
(Clist
)) then
10222 First_Discriminant
(Defining_Identifier
(Clist
));
10223 while Present
(C2_Ent
) loop
10224 exit when C1_Ent
= C2_Ent
;
10225 Check_Component_Overlap
(C1_Ent
, C2_Ent
);
10226 Next_Discriminant
(C2_Ent
);
10230 -- Record extension case
10232 elsif Nkind
(Clist
) = N_Derived_Type_Definition
then
10235 -- Otherwise check one component list
10238 Citem
:= First
(Component_Items
(Clist
));
10239 while Present
(Citem
) loop
10240 if Nkind
(Citem
) = N_Component_Declaration
then
10241 C2_Ent
:= Defining_Identifier
(Citem
);
10242 exit when C1_Ent
= C2_Ent
;
10243 Check_Component_Overlap
(C1_Ent
, C2_Ent
);
10250 -- Check for variants above us (the parent of the Clist can
10251 -- be a variant, in which case its parent is a variant part,
10252 -- and the parent of the variant part is a component list
10253 -- whose components must all be checked against the current
10254 -- component for overlap).
10256 if Nkind
(Parent
(Clist
)) = N_Variant
then
10257 Clist
:= Parent
(Parent
(Parent
(Clist
)));
10259 -- Check for possible discriminant part in record, this
10260 -- is treated essentially as another level in the
10261 -- recursion. For this case the parent of the component
10262 -- list is the record definition, and its parent is the
10263 -- full type declaration containing the discriminant
10266 elsif Nkind
(Parent
(Clist
)) = N_Record_Definition
then
10267 Clist
:= Parent
(Parent
((Clist
)));
10269 -- If neither of these two cases, we are at the top of
10273 exit Component_List_Loop
;
10275 end loop Component_List_Loop
;
10277 <<Continue_Main_Component_Loop
>>
10278 Next_Entity
(C1_Ent
);
10280 end loop Main_Component_Loop
;
10281 end Overlap_Check2
;
10284 -- The following circuit deals with warning on record holes (gaps). We
10285 -- skip this check if overlap was detected, since it makes sense for the
10286 -- programmer to fix this illegality before worrying about warnings.
10288 if not Overlap_Detected
and Warn_On_Record_Holes
then
10289 Record_Hole_Check
: declare
10290 Decl
: constant Node_Id
:= Declaration_Node
(Base_Type
(Rectype
));
10291 -- Full declaration of record type
10293 procedure Check_Component_List
10297 -- Check component list CL for holes. The starting bit should be
10298 -- Sbit. which is zero for the main record component list and set
10299 -- appropriately for recursive calls for variants. DS is set to
10300 -- a list of discriminant specifications to be included in the
10301 -- consideration of components. It is No_List if none to consider.
10303 --------------------------
10304 -- Check_Component_List --
10305 --------------------------
10307 procedure Check_Component_List
10315 Compl
:= Integer (List_Length
(Component_Items
(CL
)));
10317 if DS
/= No_List
then
10318 Compl
:= Compl
+ Integer (List_Length
(DS
));
10322 Comps
: array (Natural range 0 .. Compl
) of Entity_Id
;
10323 -- Gather components (zero entry is for sort routine)
10325 Ncomps
: Natural := 0;
10326 -- Number of entries stored in Comps (starting at Comps (1))
10329 -- One component item or discriminant specification
10332 -- Starting bit for next component
10335 -- Component entity
10340 function Lt
(Op1
, Op2
: Natural) return Boolean;
10341 -- Compare routine for Sort
10343 procedure Move
(From
: Natural; To
: Natural);
10344 -- Move routine for Sort
10346 package Sorting
is new GNAT
.Heap_Sort_G
(Move
, Lt
);
10352 function Lt
(Op1
, Op2
: Natural) return Boolean is
10354 return Component_Bit_Offset
(Comps
(Op1
))
10356 Component_Bit_Offset
(Comps
(Op2
));
10363 procedure Move
(From
: Natural; To
: Natural) is
10365 Comps
(To
) := Comps
(From
);
10369 -- Gather discriminants into Comp
10371 if DS
/= No_List
then
10372 Citem
:= First
(DS
);
10373 while Present
(Citem
) loop
10374 if Nkind
(Citem
) = N_Discriminant_Specification
then
10376 Ent
: constant Entity_Id
:=
10377 Defining_Identifier
(Citem
);
10379 if Ekind
(Ent
) = E_Discriminant
then
10380 Ncomps
:= Ncomps
+ 1;
10381 Comps
(Ncomps
) := Ent
;
10390 -- Gather component entities into Comp
10392 Citem
:= First
(Component_Items
(CL
));
10393 while Present
(Citem
) loop
10394 if Nkind
(Citem
) = N_Component_Declaration
then
10395 Ncomps
:= Ncomps
+ 1;
10396 Comps
(Ncomps
) := Defining_Identifier
(Citem
);
10402 -- Now sort the component entities based on the first bit.
10403 -- Note we already know there are no overlapping components.
10405 Sorting
.Sort
(Ncomps
);
10407 -- Loop through entries checking for holes
10410 for J
in 1 .. Ncomps
loop
10414 CBO
: constant Uint
:= Component_Bit_Offset
(CEnt
);
10417 -- Skip components with unknown offsets
10419 if CBO
/= No_Uint
and then CBO
>= 0 then
10420 Error_Msg_Uint_1
:= CBO
- Nbit
;
10422 if Error_Msg_Uint_1
> 0 then
10424 ("?H?^-bit gap before component&",
10425 Component_Name
(Component_Clause
(CEnt
)),
10429 Nbit
:= CBO
+ Esize
(CEnt
);
10434 -- Process variant parts recursively if present
10436 if Present
(Variant_Part
(CL
)) then
10437 Variant
:= First
(Variants
(Variant_Part
(CL
)));
10438 while Present
(Variant
) loop
10439 Check_Component_List
10440 (Component_List
(Variant
), Nbit
, No_List
);
10445 end Check_Component_List
;
10447 -- Start of processing for Record_Hole_Check
10454 if Is_Tagged_Type
(Rectype
) then
10455 Sbit
:= UI_From_Int
(System_Address_Size
);
10460 if Nkind
(Decl
) = N_Full_Type_Declaration
10461 and then Nkind
(Type_Definition
(Decl
)) = N_Record_Definition
10463 Check_Component_List
10464 (Component_List
(Type_Definition
(Decl
)),
10466 Discriminant_Specifications
(Decl
));
10469 end Record_Hole_Check
;
10472 -- For records that have component clauses for all components, and whose
10473 -- size is less than or equal to 32, we need to know the size in the
10474 -- front end to activate possible packed array processing where the
10475 -- component type is a record.
10477 -- At this stage Hbit + 1 represents the first unused bit from all the
10478 -- component clauses processed, so if the component clauses are
10479 -- complete, then this is the length of the record.
10481 -- For records longer than System.Storage_Unit, and for those where not
10482 -- all components have component clauses, the back end determines the
10483 -- length (it may for example be appropriate to round up the size
10484 -- to some convenient boundary, based on alignment considerations, etc).
10486 if Unknown_RM_Size
(Rectype
) and then Hbit
+ 1 <= 32 then
10488 -- Nothing to do if at least one component has no component clause
10490 Comp
:= First_Component_Or_Discriminant
(Rectype
);
10491 while Present
(Comp
) loop
10492 exit when No
(Component_Clause
(Comp
));
10493 Next_Component_Or_Discriminant
(Comp
);
10496 -- If we fall out of loop, all components have component clauses
10497 -- and so we can set the size to the maximum value.
10500 Set_RM_Size
(Rectype
, Hbit
+ 1);
10503 end Check_Record_Representation_Clause
;
10509 procedure Check_Size
10513 Biased
: out Boolean)
10515 procedure Size_Too_Small_Error
(Min_Siz
: Uint
);
10516 -- Emit an error concerning illegal size Siz. Min_Siz denotes the
10519 --------------------------
10520 -- Size_Too_Small_Error --
10521 --------------------------
10523 procedure Size_Too_Small_Error
(Min_Siz
: Uint
) is
10525 -- This error is suppressed in ASIS mode to allow for different ASIS
10526 -- back ends or ASIS-based tools to query the illegal clause.
10528 if not ASIS_Mode
then
10529 Error_Msg_Uint_1
:= Min_Siz
;
10530 Error_Msg_NE
("size for& too small, minimum allowed is ^", N
, T
);
10532 end Size_Too_Small_Error
;
10536 UT
: constant Entity_Id
:= Underlying_Type
(T
);
10539 -- Start of processing for Check_Size
10544 -- Reject patently improper size values
10546 if Is_Elementary_Type
(T
)
10547 and then Siz
> UI_From_Int
(Int
'Last)
10549 Error_Msg_N
("Size value too large for elementary type", N
);
10551 if Nkind
(Original_Node
(N
)) = N_Op_Expon
then
10553 ("\maybe '* was meant, rather than '*'*", Original_Node
(N
));
10557 -- Dismiss generic types
10559 if Is_Generic_Type
(T
)
10561 Is_Generic_Type
(UT
)
10563 Is_Generic_Type
(Root_Type
(UT
))
10567 -- Guard against previous errors
10569 elsif No
(UT
) or else UT
= Any_Type
then
10570 Check_Error_Detected
;
10573 -- Check case of bit packed array
10575 elsif Is_Array_Type
(UT
)
10576 and then Known_Static_Component_Size
(UT
)
10577 and then Is_Bit_Packed_Array
(UT
)
10585 Asiz
:= Component_Size
(UT
);
10586 Indx
:= First_Index
(UT
);
10588 Ityp
:= Etype
(Indx
);
10590 -- If non-static bound, then we are not in the business of
10591 -- trying to check the length, and indeed an error will be
10592 -- issued elsewhere, since sizes of non-static array types
10593 -- cannot be set implicitly or explicitly.
10595 if not Is_OK_Static_Subtype
(Ityp
) then
10599 -- Otherwise accumulate next dimension
10601 Asiz
:= Asiz
* (Expr_Value
(Type_High_Bound
(Ityp
)) -
10602 Expr_Value
(Type_Low_Bound
(Ityp
)) +
10606 exit when No
(Indx
);
10609 if Asiz
<= Siz
then
10613 Size_Too_Small_Error
(Asiz
);
10614 Set_Esize
(T
, Asiz
);
10615 Set_RM_Size
(T
, Asiz
);
10619 -- All other composite types are ignored
10621 elsif Is_Composite_Type
(UT
) then
10624 -- For fixed-point types, don't check minimum if type is not frozen,
10625 -- since we don't know all the characteristics of the type that can
10626 -- affect the size (e.g. a specified small) till freeze time.
10628 elsif Is_Fixed_Point_Type
(UT
) and then not Is_Frozen
(UT
) then
10631 -- Cases for which a minimum check is required
10634 -- Ignore if specified size is correct for the type
10636 if Known_Esize
(UT
) and then Siz
= Esize
(UT
) then
10640 -- Otherwise get minimum size
10642 M
:= UI_From_Int
(Minimum_Size
(UT
));
10646 -- Size is less than minimum size, but one possibility remains
10647 -- that we can manage with the new size if we bias the type.
10649 M
:= UI_From_Int
(Minimum_Size
(UT
, Biased
=> True));
10652 Size_Too_Small_Error
(M
);
10654 Set_RM_Size
(T
, M
);
10662 --------------------------
10663 -- Freeze_Entity_Checks --
10664 --------------------------
10666 procedure Freeze_Entity_Checks
(N
: Node_Id
) is
10667 procedure Hide_Non_Overridden_Subprograms
(Typ
: Entity_Id
);
10668 -- Inspect the primitive operations of type Typ and hide all pairs of
10669 -- implicitly declared non-overridden non-fully conformant homographs
10670 -- (Ada RM 8.3 12.3/2).
10672 -------------------------------------
10673 -- Hide_Non_Overridden_Subprograms --
10674 -------------------------------------
10676 procedure Hide_Non_Overridden_Subprograms
(Typ
: Entity_Id
) is
10677 procedure Hide_Matching_Homographs
10678 (Subp_Id
: Entity_Id
;
10679 Start_Elmt
: Elmt_Id
);
10680 -- Inspect a list of primitive operations starting with Start_Elmt
10681 -- and find matching implicitly declared non-overridden non-fully
10682 -- conformant homographs of Subp_Id. If found, all matches along
10683 -- with Subp_Id are hidden from all visibility.
10685 function Is_Non_Overridden_Or_Null_Procedure
10686 (Subp_Id
: Entity_Id
) return Boolean;
10687 -- Determine whether subprogram Subp_Id is implicitly declared non-
10688 -- overridden subprogram or an implicitly declared null procedure.
10690 ------------------------------
10691 -- Hide_Matching_Homographs --
10692 ------------------------------
10694 procedure Hide_Matching_Homographs
10695 (Subp_Id
: Entity_Id
;
10696 Start_Elmt
: Elmt_Id
)
10699 Prim_Elmt
: Elmt_Id
;
10702 Prim_Elmt
:= Start_Elmt
;
10703 while Present
(Prim_Elmt
) loop
10704 Prim
:= Node
(Prim_Elmt
);
10706 -- The current primitive is implicitly declared non-overridden
10707 -- non-fully conformant homograph of Subp_Id. Both subprograms
10708 -- must be hidden from visibility.
10710 if Chars
(Prim
) = Chars
(Subp_Id
)
10711 and then Is_Non_Overridden_Or_Null_Procedure
(Prim
)
10712 and then not Fully_Conformant
(Prim
, Subp_Id
)
10714 Set_Is_Hidden_Non_Overridden_Subpgm
(Prim
);
10715 Set_Is_Immediately_Visible
(Prim
, False);
10716 Set_Is_Potentially_Use_Visible
(Prim
, False);
10718 Set_Is_Hidden_Non_Overridden_Subpgm
(Subp_Id
);
10719 Set_Is_Immediately_Visible
(Subp_Id
, False);
10720 Set_Is_Potentially_Use_Visible
(Subp_Id
, False);
10723 Next_Elmt
(Prim_Elmt
);
10725 end Hide_Matching_Homographs
;
10727 -----------------------------------------
10728 -- Is_Non_Overridden_Or_Null_Procedure --
10729 -----------------------------------------
10731 function Is_Non_Overridden_Or_Null_Procedure
10732 (Subp_Id
: Entity_Id
) return Boolean
10734 Alias_Id
: Entity_Id
;
10737 -- The subprogram is inherited (implicitly declared), it does not
10738 -- override and does not cover a primitive of an interface.
10740 if Ekind_In
(Subp_Id
, E_Function
, E_Procedure
)
10741 and then Present
(Alias
(Subp_Id
))
10742 and then No
(Interface_Alias
(Subp_Id
))
10743 and then No
(Overridden_Operation
(Subp_Id
))
10745 Alias_Id
:= Alias
(Subp_Id
);
10747 if Requires_Overriding
(Alias_Id
) then
10750 elsif Nkind
(Parent
(Alias_Id
)) = N_Procedure_Specification
10751 and then Null_Present
(Parent
(Alias_Id
))
10758 end Is_Non_Overridden_Or_Null_Procedure
;
10762 Prim_Ops
: constant Elist_Id
:= Direct_Primitive_Operations
(Typ
);
10764 Prim_Elmt
: Elmt_Id
;
10766 -- Start of processing for Hide_Non_Overridden_Subprograms
10769 -- Inspect the list of primitives looking for non-overridden
10772 if Present
(Prim_Ops
) then
10773 Prim_Elmt
:= First_Elmt
(Prim_Ops
);
10774 while Present
(Prim_Elmt
) loop
10775 Prim
:= Node
(Prim_Elmt
);
10776 Next_Elmt
(Prim_Elmt
);
10778 if Is_Non_Overridden_Or_Null_Procedure
(Prim
) then
10779 Hide_Matching_Homographs
10781 Start_Elmt
=> Prim_Elmt
);
10785 end Hide_Non_Overridden_Subprograms
;
10789 E
: constant Entity_Id
:= Entity
(N
);
10791 Non_Generic_Case
: constant Boolean := Nkind
(N
) = N_Freeze_Entity
;
10792 -- True in non-generic case. Some of the processing here is skipped
10793 -- for the generic case since it is not needed. Basically in the
10794 -- generic case, we only need to do stuff that might generate error
10795 -- messages or warnings.
10797 -- Start of processing for Freeze_Entity_Checks
10800 -- Remember that we are processing a freezing entity. Required to
10801 -- ensure correct decoration of internal entities associated with
10802 -- interfaces (see New_Overloaded_Entity).
10804 Inside_Freezing_Actions
:= Inside_Freezing_Actions
+ 1;
10806 -- For tagged types covering interfaces add internal entities that link
10807 -- the primitives of the interfaces with the primitives that cover them.
10808 -- Note: These entities were originally generated only when generating
10809 -- code because their main purpose was to provide support to initialize
10810 -- the secondary dispatch tables. They are now generated also when
10811 -- compiling with no code generation to provide ASIS the relationship
10812 -- between interface primitives and tagged type primitives. They are
10813 -- also used to locate primitives covering interfaces when processing
10814 -- generics (see Derive_Subprograms).
10816 -- This is not needed in the generic case
10818 if Ada_Version
>= Ada_2005
10819 and then Non_Generic_Case
10820 and then Ekind
(E
) = E_Record_Type
10821 and then Is_Tagged_Type
(E
)
10822 and then not Is_Interface
(E
)
10823 and then Has_Interfaces
(E
)
10825 -- This would be a good common place to call the routine that checks
10826 -- overriding of interface primitives (and thus factorize calls to
10827 -- Check_Abstract_Overriding located at different contexts in the
10828 -- compiler). However, this is not possible because it causes
10829 -- spurious errors in case of late overriding.
10831 Add_Internal_Interface_Entities
(E
);
10834 -- After all forms of overriding have been resolved, a tagged type may
10835 -- be left with a set of implicitly declared and possibly erroneous
10836 -- abstract subprograms, null procedures and subprograms that require
10837 -- overriding. If this set contains fully conformant homographs, then
10838 -- one is chosen arbitrarily (already done during resolution), otherwise
10839 -- all remaining non-fully conformant homographs are hidden from
10840 -- visibility (Ada RM 8.3 12.3/2).
10842 if Is_Tagged_Type
(E
) then
10843 Hide_Non_Overridden_Subprograms
(E
);
10848 if Ekind
(E
) = E_Record_Type
10849 and then Is_CPP_Class
(E
)
10850 and then Is_Tagged_Type
(E
)
10851 and then Tagged_Type_Expansion
10853 if CPP_Num_Prims
(E
) = 0 then
10855 -- If the CPP type has user defined components then it must import
10856 -- primitives from C++. This is required because if the C++ class
10857 -- has no primitives then the C++ compiler does not added the _tag
10858 -- component to the type.
10860 if First_Entity
(E
) /= Last_Entity
(E
) then
10862 ("'C'P'P type must import at least one primitive from C++??",
10867 -- Check that all its primitives are abstract or imported from C++.
10868 -- Check also availability of the C++ constructor.
10871 Has_Constructors
: constant Boolean := Has_CPP_Constructors
(E
);
10873 Error_Reported
: Boolean := False;
10877 Elmt
:= First_Elmt
(Primitive_Operations
(E
));
10878 while Present
(Elmt
) loop
10879 Prim
:= Node
(Elmt
);
10881 if Comes_From_Source
(Prim
) then
10882 if Is_Abstract_Subprogram
(Prim
) then
10885 elsif not Is_Imported
(Prim
)
10886 or else Convention
(Prim
) /= Convention_CPP
10889 ("primitives of 'C'P'P types must be imported from C++ "
10890 & "or abstract??", Prim
);
10892 elsif not Has_Constructors
10893 and then not Error_Reported
10895 Error_Msg_Name_1
:= Chars
(E
);
10897 ("??'C'P'P constructor required for type %", Prim
);
10898 Error_Reported
:= True;
10907 -- Check Ada derivation of CPP type
10909 if Expander_Active
-- why? losing errors in -gnatc mode???
10910 and then Present
(Etype
(E
)) -- defend against errors
10911 and then Tagged_Type_Expansion
10912 and then Ekind
(E
) = E_Record_Type
10913 and then Etype
(E
) /= E
10914 and then Is_CPP_Class
(Etype
(E
))
10915 and then CPP_Num_Prims
(Etype
(E
)) > 0
10916 and then not Is_CPP_Class
(E
)
10917 and then not Has_CPP_Constructors
(Etype
(E
))
10919 -- If the parent has C++ primitives but it has no constructor then
10920 -- check that all the primitives are overridden in this derivation;
10921 -- otherwise the constructor of the parent is needed to build the
10929 Elmt
:= First_Elmt
(Primitive_Operations
(E
));
10930 while Present
(Elmt
) loop
10931 Prim
:= Node
(Elmt
);
10933 if not Is_Abstract_Subprogram
(Prim
)
10934 and then No
(Interface_Alias
(Prim
))
10935 and then Find_Dispatching_Type
(Ultimate_Alias
(Prim
)) /= E
10937 Error_Msg_Name_1
:= Chars
(Etype
(E
));
10939 ("'C'P'P constructor required for parent type %", E
);
10948 Inside_Freezing_Actions
:= Inside_Freezing_Actions
- 1;
10950 -- If we have a type with predicates, build predicate function. This is
10951 -- not needed in the generic case, nor within TSS subprograms and other
10952 -- predefined primitives.
10955 and then Non_Generic_Case
10956 and then not Within_Internal_Subprogram
10957 and then Has_Predicates
(E
)
10959 Build_Predicate_Functions
(E
, N
);
10962 -- If type has delayed aspects, this is where we do the preanalysis at
10963 -- the freeze point, as part of the consistent visibility check. Note
10964 -- that this must be done after calling Build_Predicate_Functions or
10965 -- Build_Invariant_Procedure since these subprograms fix occurrences of
10966 -- the subtype name in the saved expression so that they will not cause
10967 -- trouble in the preanalysis.
10969 -- This is also not needed in the generic case
10971 if Non_Generic_Case
10972 and then Has_Delayed_Aspects
(E
)
10973 and then Scope
(E
) = Current_Scope
10975 -- Retrieve the visibility to the discriminants in order to properly
10976 -- analyze the aspects.
10978 Push_Scope_And_Install_Discriminants
(E
);
10984 -- Look for aspect specification entries for this entity
10986 Ritem
:= First_Rep_Item
(E
);
10987 while Present
(Ritem
) loop
10988 if Nkind
(Ritem
) = N_Aspect_Specification
10989 and then Entity
(Ritem
) = E
10990 and then Is_Delayed_Aspect
(Ritem
)
10992 Check_Aspect_At_Freeze_Point
(Ritem
);
10995 Next_Rep_Item
(Ritem
);
10999 Uninstall_Discriminants_And_Pop_Scope
(E
);
11002 -- For a record type, deal with variant parts. This has to be delayed
11003 -- to this point, because of the issue of statically predicated
11004 -- subtypes, which we have to ensure are frozen before checking
11005 -- choices, since we need to have the static choice list set.
11007 if Is_Record_Type
(E
) then
11008 Check_Variant_Part
: declare
11009 D
: constant Node_Id
:= Declaration_Node
(E
);
11014 Others_Present
: Boolean;
11015 pragma Warnings
(Off
, Others_Present
);
11016 -- Indicates others present, not used in this case
11018 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
11019 -- Error routine invoked by the generic instantiation below when
11020 -- the variant part has a non static choice.
11022 procedure Process_Declarations
(Variant
: Node_Id
);
11023 -- Processes declarations associated with a variant. We analyzed
11024 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
11025 -- but we still need the recursive call to Check_Choices for any
11026 -- nested variant to get its choices properly processed. This is
11027 -- also where we expand out the choices if expansion is active.
11029 package Variant_Choices_Processing
is new
11030 Generic_Check_Choices
11031 (Process_Empty_Choice
=> No_OP
,
11032 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
11033 Process_Associated_Node
=> Process_Declarations
);
11034 use Variant_Choices_Processing
;
11036 -----------------------------
11037 -- Non_Static_Choice_Error --
11038 -----------------------------
11040 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
11042 Flag_Non_Static_Expr
11043 ("choice given in variant part is not static!", Choice
);
11044 end Non_Static_Choice_Error
;
11046 --------------------------
11047 -- Process_Declarations --
11048 --------------------------
11050 procedure Process_Declarations
(Variant
: Node_Id
) is
11051 CL
: constant Node_Id
:= Component_List
(Variant
);
11055 -- Check for static predicate present in this variant
11057 if Has_SP_Choice
(Variant
) then
11059 -- Here we expand. You might expect to find this call in
11060 -- Expand_N_Variant_Part, but that is called when we first
11061 -- see the variant part, and we cannot do this expansion
11062 -- earlier than the freeze point, since for statically
11063 -- predicated subtypes, the predicate is not known till
11064 -- the freeze point.
11066 -- Furthermore, we do this expansion even if the expander
11067 -- is not active, because other semantic processing, e.g.
11068 -- for aggregates, requires the expanded list of choices.
11070 -- If the expander is not active, then we can't just clobber
11071 -- the list since it would invalidate the ASIS -gnatct tree.
11072 -- So we have to rewrite the variant part with a Rewrite
11073 -- call that replaces it with a copy and clobber the copy.
11075 if not Expander_Active
then
11077 NewV
: constant Node_Id
:= New_Copy
(Variant
);
11079 Set_Discrete_Choices
11080 (NewV
, New_Copy_List
(Discrete_Choices
(Variant
)));
11081 Rewrite
(Variant
, NewV
);
11085 Expand_Static_Predicates_In_Choices
(Variant
);
11088 -- We don't need to worry about the declarations in the variant
11089 -- (since they were analyzed by Analyze_Choices when we first
11090 -- encountered the variant), but we do need to take care of
11091 -- expansion of any nested variants.
11093 if not Null_Present
(CL
) then
11094 VP
:= Variant_Part
(CL
);
11096 if Present
(VP
) then
11098 (VP
, Variants
(VP
), Etype
(Name
(VP
)), Others_Present
);
11101 end Process_Declarations
;
11103 -- Start of processing for Check_Variant_Part
11106 -- Find component list
11110 if Nkind
(D
) = N_Full_Type_Declaration
then
11111 T
:= Type_Definition
(D
);
11113 if Nkind
(T
) = N_Record_Definition
then
11114 C
:= Component_List
(T
);
11116 elsif Nkind
(T
) = N_Derived_Type_Definition
11117 and then Present
(Record_Extension_Part
(T
))
11119 C
:= Component_List
(Record_Extension_Part
(T
));
11123 -- Case of variant part present
11125 if Present
(C
) and then Present
(Variant_Part
(C
)) then
11126 VP
:= Variant_Part
(C
);
11131 (VP
, Variants
(VP
), Etype
(Name
(VP
)), Others_Present
);
11133 -- If the last variant does not contain the Others choice,
11134 -- replace it with an N_Others_Choice node since Gigi always
11135 -- wants an Others. Note that we do not bother to call Analyze
11136 -- on the modified variant part, since its only effect would be
11137 -- to compute the Others_Discrete_Choices node laboriously, and
11138 -- of course we already know the list of choices corresponding
11139 -- to the others choice (it's the list we're replacing).
11141 -- We only want to do this if the expander is active, since
11142 -- we do not want to clobber the ASIS tree.
11144 if Expander_Active
then
11146 Last_Var
: constant Node_Id
:=
11147 Last_Non_Pragma
(Variants
(VP
));
11149 Others_Node
: Node_Id
;
11152 if Nkind
(First
(Discrete_Choices
(Last_Var
))) /=
11155 Others_Node
:= Make_Others_Choice
(Sloc
(Last_Var
));
11156 Set_Others_Discrete_Choices
11157 (Others_Node
, Discrete_Choices
(Last_Var
));
11158 Set_Discrete_Choices
11159 (Last_Var
, New_List
(Others_Node
));
11164 end Check_Variant_Part
;
11166 end Freeze_Entity_Checks
;
11168 -------------------------
11169 -- Get_Alignment_Value --
11170 -------------------------
11172 function Get_Alignment_Value
(Expr
: Node_Id
) return Uint
is
11173 Align
: constant Uint
:= Static_Integer
(Expr
);
11176 if Align
= No_Uint
then
11179 elsif Align
<= 0 then
11181 -- This error is suppressed in ASIS mode to allow for different ASIS
11182 -- back ends or ASIS-based tools to query the illegal clause.
11184 if not ASIS_Mode
then
11185 Error_Msg_N
("alignment value must be positive", Expr
);
11191 for J
in Int
range 0 .. 64 loop
11193 M
: constant Uint
:= Uint_2
** J
;
11196 exit when M
= Align
;
11200 -- This error is suppressed in ASIS mode to allow for
11201 -- different ASIS back ends or ASIS-based tools to query the
11204 if not ASIS_Mode
then
11205 Error_Msg_N
("alignment value must be power of 2", Expr
);
11215 end Get_Alignment_Value
;
11217 -----------------------------
11218 -- Get_Interfacing_Aspects --
11219 -----------------------------
11221 procedure Get_Interfacing_Aspects
11222 (Iface_Asp
: Node_Id
;
11223 Conv_Asp
: out Node_Id
;
11224 EN_Asp
: out Node_Id
;
11225 Expo_Asp
: out Node_Id
;
11226 Imp_Asp
: out Node_Id
;
11227 LN_Asp
: out Node_Id
;
11228 Do_Checks
: Boolean := False)
11230 procedure Save_Or_Duplication_Error
11232 To
: in out Node_Id
);
11233 -- Save the value of aspect Asp in node To. If To already has a value,
11234 -- then this is considered a duplicate use of aspect. Emit an error if
11235 -- flag Do_Checks is set.
11237 -------------------------------
11238 -- Save_Or_Duplication_Error --
11239 -------------------------------
11241 procedure Save_Or_Duplication_Error
11243 To
: in out Node_Id
)
11246 -- Detect an extra aspect and issue an error
11248 if Present
(To
) then
11250 Error_Msg_Name_1
:= Chars
(Identifier
(Asp
));
11251 Error_Msg_Sloc
:= Sloc
(To
);
11252 Error_Msg_N
("aspect % previously given #", Asp
);
11255 -- Otherwise capture the aspect
11260 end Save_Or_Duplication_Error
;
11265 Asp_Id
: Aspect_Id
;
11267 -- The following variables capture each individual aspect
11269 Conv
: Node_Id
:= Empty
;
11270 EN
: Node_Id
:= Empty
;
11271 Expo
: Node_Id
:= Empty
;
11272 Imp
: Node_Id
:= Empty
;
11273 LN
: Node_Id
:= Empty
;
11275 -- Start of processing for Get_Interfacing_Aspects
11278 -- The input interfacing aspect should reside in an aspect specification
11281 pragma Assert
(Is_List_Member
(Iface_Asp
));
11283 -- Examine the aspect specifications of the related entity. Find and
11284 -- capture all interfacing aspects. Detect duplicates and emit errors
11287 Asp
:= First
(List_Containing
(Iface_Asp
));
11288 while Present
(Asp
) loop
11289 Asp_Id
:= Get_Aspect_Id
(Asp
);
11291 if Asp_Id
= Aspect_Convention
then
11292 Save_Or_Duplication_Error
(Asp
, Conv
);
11294 elsif Asp_Id
= Aspect_External_Name
then
11295 Save_Or_Duplication_Error
(Asp
, EN
);
11297 elsif Asp_Id
= Aspect_Export
then
11298 Save_Or_Duplication_Error
(Asp
, Expo
);
11300 elsif Asp_Id
= Aspect_Import
then
11301 Save_Or_Duplication_Error
(Asp
, Imp
);
11303 elsif Asp_Id
= Aspect_Link_Name
then
11304 Save_Or_Duplication_Error
(Asp
, LN
);
11315 end Get_Interfacing_Aspects
;
11317 -------------------------------------
11318 -- Inherit_Aspects_At_Freeze_Point --
11319 -------------------------------------
11321 procedure Inherit_Aspects_At_Freeze_Point
(Typ
: Entity_Id
) is
11322 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11323 (Rep_Item
: Node_Id
) return Boolean;
11324 -- This routine checks if Rep_Item is either a pragma or an aspect
11325 -- specification node whose correponding pragma (if any) is present in
11326 -- the Rep Item chain of the entity it has been specified to.
11328 --------------------------------------------------
11329 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
11330 --------------------------------------------------
11332 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11333 (Rep_Item
: Node_Id
) return Boolean
11337 Nkind
(Rep_Item
) = N_Pragma
11338 or else Present_In_Rep_Item
11339 (Entity
(Rep_Item
), Aspect_Rep_Item
(Rep_Item
));
11340 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
;
11342 -- Start of processing for Inherit_Aspects_At_Freeze_Point
11345 -- A representation item is either subtype-specific (Size and Alignment
11346 -- clauses) or type-related (all others). Subtype-specific aspects may
11347 -- differ for different subtypes of the same type (RM 13.1.8).
11349 -- A derived type inherits each type-related representation aspect of
11350 -- its parent type that was directly specified before the declaration of
11351 -- the derived type (RM 13.1.15).
11353 -- A derived subtype inherits each subtype-specific representation
11354 -- aspect of its parent subtype that was directly specified before the
11355 -- declaration of the derived type (RM 13.1.15).
11357 -- The general processing involves inheriting a representation aspect
11358 -- from a parent type whenever the first rep item (aspect specification,
11359 -- attribute definition clause, pragma) corresponding to the given
11360 -- representation aspect in the rep item chain of Typ, if any, isn't
11361 -- directly specified to Typ but to one of its parents.
11363 -- ??? Note that, for now, just a limited number of representation
11364 -- aspects have been inherited here so far. Many of them are
11365 -- still inherited in Sem_Ch3. This will be fixed soon. Here is
11366 -- a non- exhaustive list of aspects that likely also need to
11367 -- be moved to this routine: Alignment, Component_Alignment,
11368 -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
11369 -- Preelaborable_Initialization, RM_Size and Small.
11371 -- In addition, Convention must be propagated from base type to subtype,
11372 -- because the subtype may have been declared on an incomplete view.
11374 if Nkind
(Parent
(Typ
)) = N_Private_Extension_Declaration
then
11380 if not Has_Rep_Item
(Typ
, Name_Ada_05
, Name_Ada_2005
, False)
11381 and then Has_Rep_Item
(Typ
, Name_Ada_05
, Name_Ada_2005
)
11382 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11383 (Get_Rep_Item
(Typ
, Name_Ada_05
, Name_Ada_2005
))
11385 Set_Is_Ada_2005_Only
(Typ
);
11390 if not Has_Rep_Item
(Typ
, Name_Ada_12
, Name_Ada_2012
, False)
11391 and then Has_Rep_Item
(Typ
, Name_Ada_12
, Name_Ada_2012
)
11392 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11393 (Get_Rep_Item
(Typ
, Name_Ada_12
, Name_Ada_2012
))
11395 Set_Is_Ada_2012_Only
(Typ
);
11400 if not Has_Rep_Item
(Typ
, Name_Atomic
, Name_Shared
, False)
11401 and then Has_Rep_Pragma
(Typ
, Name_Atomic
, Name_Shared
)
11402 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11403 (Get_Rep_Item
(Typ
, Name_Atomic
, Name_Shared
))
11405 Set_Is_Atomic
(Typ
);
11406 Set_Is_Volatile
(Typ
);
11407 Set_Treat_As_Volatile
(Typ
);
11412 if Is_Record_Type
(Typ
)
11413 and then Typ
/= Base_Type
(Typ
) and then Is_Frozen
(Base_Type
(Typ
))
11415 Set_Convention
(Typ
, Convention
(Base_Type
(Typ
)));
11418 -- Default_Component_Value
11420 -- Verify that there is no rep_item declared for the type, and there
11421 -- is one coming from an ancestor.
11423 if Is_Array_Type
(Typ
)
11424 and then Is_Base_Type
(Typ
)
11425 and then not Has_Rep_Item
(Typ
, Name_Default_Component_Value
, False)
11426 and then Has_Rep_Item
(Typ
, Name_Default_Component_Value
)
11428 Set_Default_Aspect_Component_Value
(Typ
,
11429 Default_Aspect_Component_Value
11430 (Entity
(Get_Rep_Item
(Typ
, Name_Default_Component_Value
))));
11435 if Is_Scalar_Type
(Typ
)
11436 and then Is_Base_Type
(Typ
)
11437 and then not Has_Rep_Item
(Typ
, Name_Default_Value
, False)
11438 and then Has_Rep_Item
(Typ
, Name_Default_Value
)
11440 Set_Has_Default_Aspect
(Typ
);
11441 Set_Default_Aspect_Value
(Typ
,
11442 Default_Aspect_Value
11443 (Entity
(Get_Rep_Item
(Typ
, Name_Default_Value
))));
11448 if not Has_Rep_Item
(Typ
, Name_Discard_Names
, False)
11449 and then Has_Rep_Item
(Typ
, Name_Discard_Names
)
11450 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11451 (Get_Rep_Item
(Typ
, Name_Discard_Names
))
11453 Set_Discard_Names
(Typ
);
11458 if not Has_Rep_Item
(Typ
, Name_Volatile
, False)
11459 and then Has_Rep_Item
(Typ
, Name_Volatile
)
11460 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11461 (Get_Rep_Item
(Typ
, Name_Volatile
))
11463 Set_Is_Volatile
(Typ
);
11464 Set_Treat_As_Volatile
(Typ
);
11467 -- Volatile_Full_Access
11469 if not Has_Rep_Item
(Typ
, Name_Volatile_Full_Access
, False)
11470 and then Has_Rep_Pragma
(Typ
, Name_Volatile_Full_Access
)
11471 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11472 (Get_Rep_Item
(Typ
, Name_Volatile_Full_Access
))
11474 Set_Is_Volatile_Full_Access
(Typ
);
11475 Set_Is_Volatile
(Typ
);
11476 Set_Treat_As_Volatile
(Typ
);
11479 -- Inheritance for derived types only
11481 if Is_Derived_Type
(Typ
) then
11483 Bas_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
11484 Imp_Bas_Typ
: constant Entity_Id
:= Implementation_Base_Type
(Typ
);
11487 -- Atomic_Components
11489 if not Has_Rep_Item
(Typ
, Name_Atomic_Components
, False)
11490 and then Has_Rep_Item
(Typ
, Name_Atomic_Components
)
11491 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11492 (Get_Rep_Item
(Typ
, Name_Atomic_Components
))
11494 Set_Has_Atomic_Components
(Imp_Bas_Typ
);
11497 -- Volatile_Components
11499 if not Has_Rep_Item
(Typ
, Name_Volatile_Components
, False)
11500 and then Has_Rep_Item
(Typ
, Name_Volatile_Components
)
11501 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11502 (Get_Rep_Item
(Typ
, Name_Volatile_Components
))
11504 Set_Has_Volatile_Components
(Imp_Bas_Typ
);
11507 -- Finalize_Storage_Only
11509 if not Has_Rep_Pragma
(Typ
, Name_Finalize_Storage_Only
, False)
11510 and then Has_Rep_Pragma
(Typ
, Name_Finalize_Storage_Only
)
11512 Set_Finalize_Storage_Only
(Bas_Typ
);
11515 -- Universal_Aliasing
11517 if not Has_Rep_Item
(Typ
, Name_Universal_Aliasing
, False)
11518 and then Has_Rep_Item
(Typ
, Name_Universal_Aliasing
)
11519 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11520 (Get_Rep_Item
(Typ
, Name_Universal_Aliasing
))
11522 Set_Universal_Aliasing
(Imp_Bas_Typ
);
11527 if Is_Record_Type
(Typ
) then
11528 if not Has_Rep_Item
(Typ
, Name_Bit_Order
, False)
11529 and then Has_Rep_Item
(Typ
, Name_Bit_Order
)
11531 Set_Reverse_Bit_Order
(Bas_Typ
,
11532 Reverse_Bit_Order
(Entity
(Name
11533 (Get_Rep_Item
(Typ
, Name_Bit_Order
)))));
11537 -- Scalar_Storage_Order
11539 -- Note: the aspect is specified on a first subtype, but recorded
11540 -- in a flag of the base type!
11542 if (Is_Record_Type
(Typ
) or else Is_Array_Type
(Typ
))
11543 and then Typ
= Bas_Typ
11545 -- For a type extension, always inherit from parent; otherwise
11546 -- inherit if no default applies. Note: we do not check for
11547 -- an explicit rep item on the parent type when inheriting,
11548 -- because the parent SSO may itself have been set by default.
11550 if not Has_Rep_Item
(First_Subtype
(Typ
),
11551 Name_Scalar_Storage_Order
, False)
11552 and then (Is_Tagged_Type
(Bas_Typ
)
11553 or else not (SSO_Set_Low_By_Default
(Bas_Typ
)
11555 SSO_Set_High_By_Default
(Bas_Typ
)))
11557 Set_Reverse_Storage_Order
(Bas_Typ
,
11558 Reverse_Storage_Order
11559 (Implementation_Base_Type
(Etype
(Bas_Typ
))));
11561 -- Clear default SSO indications, since the inherited aspect
11562 -- which was set explicitly overrides the default.
11564 Set_SSO_Set_Low_By_Default
(Bas_Typ
, False);
11565 Set_SSO_Set_High_By_Default
(Bas_Typ
, False);
11570 end Inherit_Aspects_At_Freeze_Point
;
11576 procedure Initialize
is
11578 Address_Clause_Checks
.Init
;
11579 Compile_Time_Warnings_Errors
.Init
;
11580 Unchecked_Conversions
.Init
;
11582 if AAMP_On_Target
then
11583 Independence_Checks
.Init
;
11587 ---------------------------
11588 -- Install_Discriminants --
11589 ---------------------------
11591 procedure Install_Discriminants
(E
: Entity_Id
) is
11595 Disc
:= First_Discriminant
(E
);
11596 while Present
(Disc
) loop
11597 Prev
:= Current_Entity
(Disc
);
11598 Set_Current_Entity
(Disc
);
11599 Set_Is_Immediately_Visible
(Disc
);
11600 Set_Homonym
(Disc
, Prev
);
11601 Next_Discriminant
(Disc
);
11603 end Install_Discriminants
;
11605 -------------------------
11606 -- Is_Operational_Item --
11607 -------------------------
11609 function Is_Operational_Item
(N
: Node_Id
) return Boolean is
11611 if Nkind
(N
) /= N_Attribute_Definition_Clause
then
11616 Id
: constant Attribute_Id
:= Get_Attribute_Id
(Chars
(N
));
11619 -- List of operational items is given in AARM 13.1(8.mm/1).
11620 -- It is clearly incomplete, as it does not include iterator
11621 -- aspects, among others.
11623 return Id
= Attribute_Constant_Indexing
11624 or else Id
= Attribute_Default_Iterator
11625 or else Id
= Attribute_Implicit_Dereference
11626 or else Id
= Attribute_Input
11627 or else Id
= Attribute_Iterator_Element
11628 or else Id
= Attribute_Iterable
11629 or else Id
= Attribute_Output
11630 or else Id
= Attribute_Read
11631 or else Id
= Attribute_Variable_Indexing
11632 or else Id
= Attribute_Write
11633 or else Id
= Attribute_External_Tag
;
11636 end Is_Operational_Item
;
11638 -------------------------
11639 -- Is_Predicate_Static --
11640 -------------------------
11642 -- Note: the basic legality of the expression has already been checked, so
11643 -- we don't need to worry about cases or ranges on strings for example.
11645 function Is_Predicate_Static
11647 Nam
: Name_Id
) return Boolean
11649 function All_Static_Case_Alternatives
(L
: List_Id
) return Boolean;
11650 -- Given a list of case expression alternatives, returns True if all
11651 -- the alternatives are static (have all static choices, and a static
11654 function All_Static_Choices
(L
: List_Id
) return Boolean;
11655 -- Returns true if all elements of the list are OK static choices
11656 -- as defined below for Is_Static_Choice. Used for case expression
11657 -- alternatives and for the right operand of a membership test. An
11658 -- others_choice is static if the corresponding expression is static.
11659 -- The staticness of the bounds is checked separately.
11661 function Is_Static_Choice
(N
: Node_Id
) return Boolean;
11662 -- Returns True if N represents a static choice (static subtype, or
11663 -- static subtype indication, or static expression, or static range).
11665 -- Note that this is a bit more inclusive than we actually need
11666 -- (in particular membership tests do not allow the use of subtype
11667 -- indications). But that doesn't matter, we have already checked
11668 -- that the construct is legal to get this far.
11670 function Is_Type_Ref
(N
: Node_Id
) return Boolean;
11671 pragma Inline
(Is_Type_Ref
);
11672 -- Returns True if N is a reference to the type for the predicate in the
11673 -- expression (i.e. if it is an identifier whose Chars field matches the
11674 -- Nam given in the call). N must not be parenthesized, if the type name
11675 -- appears in parens, this routine will return False.
11677 -- The routine also returns True for function calls generated during the
11678 -- expansion of comparison operators on strings, which are intended to
11679 -- be legal in static predicates, and are converted into calls to array
11680 -- comparison routines in the body of the corresponding predicate
11683 ----------------------------------
11684 -- All_Static_Case_Alternatives --
11685 ----------------------------------
11687 function All_Static_Case_Alternatives
(L
: List_Id
) return Boolean is
11692 while Present
(N
) loop
11693 if not (All_Static_Choices
(Discrete_Choices
(N
))
11694 and then Is_OK_Static_Expression
(Expression
(N
)))
11703 end All_Static_Case_Alternatives
;
11705 ------------------------
11706 -- All_Static_Choices --
11707 ------------------------
11709 function All_Static_Choices
(L
: List_Id
) return Boolean is
11714 while Present
(N
) loop
11715 if not Is_Static_Choice
(N
) then
11723 end All_Static_Choices
;
11725 ----------------------
11726 -- Is_Static_Choice --
11727 ----------------------
11729 function Is_Static_Choice
(N
: Node_Id
) return Boolean is
11731 return Nkind
(N
) = N_Others_Choice
11732 or else Is_OK_Static_Expression
(N
)
11733 or else (Is_Entity_Name
(N
) and then Is_Type
(Entity
(N
))
11734 and then Is_OK_Static_Subtype
(Entity
(N
)))
11735 or else (Nkind
(N
) = N_Subtype_Indication
11736 and then Is_OK_Static_Subtype
(Entity
(N
)))
11737 or else (Nkind
(N
) = N_Range
and then Is_OK_Static_Range
(N
));
11738 end Is_Static_Choice
;
11744 function Is_Type_Ref
(N
: Node_Id
) return Boolean is
11746 return (Nkind
(N
) = N_Identifier
11747 and then Chars
(N
) = Nam
11748 and then Paren_Count
(N
) = 0)
11749 or else Nkind
(N
) = N_Function_Call
;
11752 -- Start of processing for Is_Predicate_Static
11755 -- Predicate_Static means one of the following holds. Numbers are the
11756 -- corresponding paragraph numbers in (RM 3.2.4(16-22)).
11758 -- 16: A static expression
11760 if Is_OK_Static_Expression
(Expr
) then
11763 -- 17: A membership test whose simple_expression is the current
11764 -- instance, and whose membership_choice_list meets the requirements
11765 -- for a static membership test.
11767 elsif Nkind
(Expr
) in N_Membership_Test
11768 and then ((Present
(Right_Opnd
(Expr
))
11769 and then Is_Static_Choice
(Right_Opnd
(Expr
)))
11771 (Present
(Alternatives
(Expr
))
11772 and then All_Static_Choices
(Alternatives
(Expr
))))
11776 -- 18. A case_expression whose selecting_expression is the current
11777 -- instance, and whose dependent expressions are static expressions.
11779 elsif Nkind
(Expr
) = N_Case_Expression
11780 and then Is_Type_Ref
(Expression
(Expr
))
11781 and then All_Static_Case_Alternatives
(Alternatives
(Expr
))
11785 -- 19. A call to a predefined equality or ordering operator, where one
11786 -- operand is the current instance, and the other is a static
11789 -- Note: the RM is clearly wrong here in not excluding string types.
11790 -- Without this exclusion, we would allow expressions like X > "ABC"
11791 -- to be considered as predicate-static, which is clearly not intended,
11792 -- since the idea is for predicate-static to be a subset of normal
11793 -- static expressions (and "DEF" > "ABC" is not a static expression).
11795 -- However, we do allow internally generated (not from source) equality
11796 -- and inequality operations to be valid on strings (this helps deal
11797 -- with cases where we transform A in "ABC" to A = "ABC).
11799 -- In fact, it appears that the intent of the ARG is to extend static
11800 -- predicates to strings, and that the extension should probably apply
11801 -- to static expressions themselves. The code below accepts comparison
11802 -- operators that apply to static strings.
11804 elsif Nkind
(Expr
) in N_Op_Compare
11805 and then ((Is_Type_Ref
(Left_Opnd
(Expr
))
11806 and then Is_OK_Static_Expression
(Right_Opnd
(Expr
)))
11808 (Is_Type_Ref
(Right_Opnd
(Expr
))
11809 and then Is_OK_Static_Expression
(Left_Opnd
(Expr
))))
11813 -- 20. A call to a predefined boolean logical operator, where each
11814 -- operand is predicate-static.
11816 elsif (Nkind_In
(Expr
, N_Op_And
, N_Op_Or
, N_Op_Xor
)
11817 and then Is_Predicate_Static
(Left_Opnd
(Expr
), Nam
)
11818 and then Is_Predicate_Static
(Right_Opnd
(Expr
), Nam
))
11820 (Nkind
(Expr
) = N_Op_Not
11821 and then Is_Predicate_Static
(Right_Opnd
(Expr
), Nam
))
11825 -- 21. A short-circuit control form where both operands are
11826 -- predicate-static.
11828 elsif Nkind
(Expr
) in N_Short_Circuit
11829 and then Is_Predicate_Static
(Left_Opnd
(Expr
), Nam
)
11830 and then Is_Predicate_Static
(Right_Opnd
(Expr
), Nam
)
11834 -- 22. A parenthesized predicate-static expression. This does not
11835 -- require any special test, since we just ignore paren levels in
11836 -- all the cases above.
11838 -- One more test that is an implementation artifact caused by the fact
11839 -- that we are analyzing not the original expression, but the generated
11840 -- expression in the body of the predicate function. This can include
11841 -- references to inherited predicates, so that the expression we are
11842 -- processing looks like:
11844 -- xxPredicate (typ (Inns)) and then expression
11846 -- Where the call is to a Predicate function for an inherited predicate.
11847 -- We simply ignore such a call, which could be to either a dynamic or
11848 -- a static predicate. Note that if the parent predicate is dynamic then
11849 -- eventually this type will be marked as dynamic, but you are allowed
11850 -- to specify a static predicate for a subtype which is inheriting a
11851 -- dynamic predicate, so the static predicate validation here ignores
11852 -- the inherited predicate even if it is dynamic.
11853 -- In all cases, a static predicate can only apply to a scalar type.
11855 elsif Nkind
(Expr
) = N_Function_Call
11856 and then Is_Predicate_Function
(Entity
(Name
(Expr
)))
11857 and then Is_Scalar_Type
(Etype
(First_Entity
(Entity
(Name
(Expr
)))))
11861 -- That's an exhaustive list of tests, all other cases are not
11862 -- predicate-static, so we return False.
11867 end Is_Predicate_Static
;
11869 ---------------------
11870 -- Kill_Rep_Clause --
11871 ---------------------
11873 procedure Kill_Rep_Clause
(N
: Node_Id
) is
11875 pragma Assert
(Ignore_Rep_Clauses
);
11877 -- Note: we use Replace rather than Rewrite, because we don't want
11878 -- ASIS to be able to use Original_Node to dig out the (undecorated)
11879 -- rep clause that is being replaced.
11881 Replace
(N
, Make_Null_Statement
(Sloc
(N
)));
11883 -- The null statement must be marked as not coming from source. This is
11884 -- so that ASIS ignores it, and also the back end does not expect bogus
11885 -- "from source" null statements in weird places (e.g. in declarative
11886 -- regions where such null statements are not allowed).
11888 Set_Comes_From_Source
(N
, False);
11889 end Kill_Rep_Clause
;
11895 function Minimum_Size
11897 Biased
: Boolean := False) return Nat
11899 Lo
: Uint
:= No_Uint
;
11900 Hi
: Uint
:= No_Uint
;
11901 LoR
: Ureal
:= No_Ureal
;
11902 HiR
: Ureal
:= No_Ureal
;
11903 LoSet
: Boolean := False;
11904 HiSet
: Boolean := False;
11907 Ancest
: Entity_Id
;
11908 R_Typ
: constant Entity_Id
:= Root_Type
(T
);
11911 -- If bad type, return 0
11913 if T
= Any_Type
then
11916 -- For generic types, just return zero. There cannot be any legitimate
11917 -- need to know such a size, but this routine may be called with a
11918 -- generic type as part of normal processing.
11920 elsif Is_Generic_Type
(R_Typ
) or else R_Typ
= Any_Type
then
11923 -- Access types (cannot have size smaller than System.Address)
11925 elsif Is_Access_Type
(T
) then
11926 return System_Address_Size
;
11928 -- Floating-point types
11930 elsif Is_Floating_Point_Type
(T
) then
11931 return UI_To_Int
(Esize
(R_Typ
));
11935 elsif Is_Discrete_Type
(T
) then
11937 -- The following loop is looking for the nearest compile time known
11938 -- bounds following the ancestor subtype chain. The idea is to find
11939 -- the most restrictive known bounds information.
11943 if Ancest
= Any_Type
or else Etype
(Ancest
) = Any_Type
then
11948 if Compile_Time_Known_Value
(Type_Low_Bound
(Ancest
)) then
11949 Lo
:= Expr_Rep_Value
(Type_Low_Bound
(Ancest
));
11956 if Compile_Time_Known_Value
(Type_High_Bound
(Ancest
)) then
11957 Hi
:= Expr_Rep_Value
(Type_High_Bound
(Ancest
));
11963 Ancest
:= Ancestor_Subtype
(Ancest
);
11965 if No
(Ancest
) then
11966 Ancest
:= Base_Type
(T
);
11968 if Is_Generic_Type
(Ancest
) then
11974 -- Fixed-point types. We can't simply use Expr_Value to get the
11975 -- Corresponding_Integer_Value values of the bounds, since these do not
11976 -- get set till the type is frozen, and this routine can be called
11977 -- before the type is frozen. Similarly the test for bounds being static
11978 -- needs to include the case where we have unanalyzed real literals for
11979 -- the same reason.
11981 elsif Is_Fixed_Point_Type
(T
) then
11983 -- The following loop is looking for the nearest compile time known
11984 -- bounds following the ancestor subtype chain. The idea is to find
11985 -- the most restrictive known bounds information.
11989 if Ancest
= Any_Type
or else Etype
(Ancest
) = Any_Type
then
11993 -- Note: In the following two tests for LoSet and HiSet, it may
11994 -- seem redundant to test for N_Real_Literal here since normally
11995 -- one would assume that the test for the value being known at
11996 -- compile time includes this case. However, there is a glitch.
11997 -- If the real literal comes from folding a non-static expression,
11998 -- then we don't consider any non- static expression to be known
11999 -- at compile time if we are in configurable run time mode (needed
12000 -- in some cases to give a clearer definition of what is and what
12001 -- is not accepted). So the test is indeed needed. Without it, we
12002 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
12005 if Nkind
(Type_Low_Bound
(Ancest
)) = N_Real_Literal
12006 or else Compile_Time_Known_Value
(Type_Low_Bound
(Ancest
))
12008 LoR
:= Expr_Value_R
(Type_Low_Bound
(Ancest
));
12015 if Nkind
(Type_High_Bound
(Ancest
)) = N_Real_Literal
12016 or else Compile_Time_Known_Value
(Type_High_Bound
(Ancest
))
12018 HiR
:= Expr_Value_R
(Type_High_Bound
(Ancest
));
12024 Ancest
:= Ancestor_Subtype
(Ancest
);
12026 if No
(Ancest
) then
12027 Ancest
:= Base_Type
(T
);
12029 if Is_Generic_Type
(Ancest
) then
12035 Lo
:= UR_To_Uint
(LoR
/ Small_Value
(T
));
12036 Hi
:= UR_To_Uint
(HiR
/ Small_Value
(T
));
12038 -- No other types allowed
12041 raise Program_Error
;
12044 -- Fall through with Hi and Lo set. Deal with biased case
12047 and then not Is_Fixed_Point_Type
(T
)
12048 and then not (Is_Enumeration_Type
(T
)
12049 and then Has_Non_Standard_Rep
(T
)))
12050 or else Has_Biased_Representation
(T
)
12056 -- Null range case, size is always zero. We only do this in the discrete
12057 -- type case, since that's the odd case that came up. Probably we should
12058 -- also do this in the fixed-point case, but doing so causes peculiar
12059 -- gigi failures, and it is not worth worrying about this incredibly
12060 -- marginal case (explicit null-range fixed-point type declarations)???
12062 if Lo
> Hi
and then Is_Discrete_Type
(T
) then
12065 -- Signed case. Note that we consider types like range 1 .. -1 to be
12066 -- signed for the purpose of computing the size, since the bounds have
12067 -- to be accommodated in the base type.
12069 elsif Lo
< 0 or else Hi
< 0 then
12073 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
12074 -- Note that we accommodate the case where the bounds cross. This
12075 -- can happen either because of the way the bounds are declared
12076 -- or because of the algorithm in Freeze_Fixed_Point_Type.
12090 -- If both bounds are positive, make sure that both are represen-
12091 -- table in the case where the bounds are crossed. This can happen
12092 -- either because of the way the bounds are declared, or because of
12093 -- the algorithm in Freeze_Fixed_Point_Type.
12099 -- S = size, (can accommodate 0 .. (2**size - 1))
12102 while Hi
>= Uint_2
** S
loop
12110 ---------------------------
12111 -- New_Stream_Subprogram --
12112 ---------------------------
12114 procedure New_Stream_Subprogram
12118 Nam
: TSS_Name_Type
)
12120 Loc
: constant Source_Ptr
:= Sloc
(N
);
12121 Sname
: constant Name_Id
:= Make_TSS_Name
(Base_Type
(Ent
), Nam
);
12122 Subp_Id
: Entity_Id
;
12123 Subp_Decl
: Node_Id
;
12127 Defer_Declaration
: constant Boolean :=
12128 Is_Tagged_Type
(Ent
) or else Is_Private_Type
(Ent
);
12129 -- For a tagged type, there is a declaration for each stream attribute
12130 -- at the freeze point, and we must generate only a completion of this
12131 -- declaration. We do the same for private types, because the full view
12132 -- might be tagged. Otherwise we generate a declaration at the point of
12133 -- the attribute definition clause. If the attribute definition comes
12134 -- from an aspect specification the declaration is part of the freeze
12135 -- actions of the type.
12137 function Build_Spec
return Node_Id
;
12138 -- Used for declaration and renaming declaration, so that this is
12139 -- treated as a renaming_as_body.
12145 function Build_Spec
return Node_Id
is
12146 Out_P
: constant Boolean := (Nam
= TSS_Stream_Read
);
12149 T_Ref
: constant Node_Id
:= New_Occurrence_Of
(Etyp
, Loc
);
12152 Subp_Id
:= Make_Defining_Identifier
(Loc
, Sname
);
12154 -- S : access Root_Stream_Type'Class
12156 Formals
:= New_List
(
12157 Make_Parameter_Specification
(Loc
,
12158 Defining_Identifier
=>
12159 Make_Defining_Identifier
(Loc
, Name_S
),
12161 Make_Access_Definition
(Loc
,
12163 New_Occurrence_Of
(
12164 Designated_Type
(Etype
(F
)), Loc
))));
12166 if Nam
= TSS_Stream_Input
then
12168 Make_Function_Specification
(Loc
,
12169 Defining_Unit_Name
=> Subp_Id
,
12170 Parameter_Specifications
=> Formals
,
12171 Result_Definition
=> T_Ref
);
12175 Append_To
(Formals
,
12176 Make_Parameter_Specification
(Loc
,
12177 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_V
),
12178 Out_Present
=> Out_P
,
12179 Parameter_Type
=> T_Ref
));
12182 Make_Procedure_Specification
(Loc
,
12183 Defining_Unit_Name
=> Subp_Id
,
12184 Parameter_Specifications
=> Formals
);
12190 -- Start of processing for New_Stream_Subprogram
12193 F
:= First_Formal
(Subp
);
12195 if Ekind
(Subp
) = E_Procedure
then
12196 Etyp
:= Etype
(Next_Formal
(F
));
12198 Etyp
:= Etype
(Subp
);
12201 -- Prepare subprogram declaration and insert it as an action on the
12202 -- clause node. The visibility for this entity is used to test for
12203 -- visibility of the attribute definition clause (in the sense of
12204 -- 8.3(23) as amended by AI-195).
12206 if not Defer_Declaration
then
12208 Make_Subprogram_Declaration
(Loc
,
12209 Specification
=> Build_Spec
);
12211 -- For a tagged type, there is always a visible declaration for each
12212 -- stream TSS (it is a predefined primitive operation), and the
12213 -- completion of this declaration occurs at the freeze point, which is
12214 -- not always visible at places where the attribute definition clause is
12215 -- visible. So, we create a dummy entity here for the purpose of
12216 -- tracking the visibility of the attribute definition clause itself.
12220 Make_Defining_Identifier
(Loc
, New_External_Name
(Sname
, 'V'));
12222 Make_Object_Declaration
(Loc
,
12223 Defining_Identifier
=> Subp_Id
,
12224 Object_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
));
12227 if not Defer_Declaration
12228 and then From_Aspect_Specification
(N
)
12229 and then Has_Delayed_Freeze
(Ent
)
12231 Append_Freeze_Action
(Ent
, Subp_Decl
);
12234 Insert_Action
(N
, Subp_Decl
);
12235 Set_Entity
(N
, Subp_Id
);
12239 Make_Subprogram_Renaming_Declaration
(Loc
,
12240 Specification
=> Build_Spec
,
12241 Name
=> New_Occurrence_Of
(Subp
, Loc
));
12243 if Defer_Declaration
then
12244 Set_TSS
(Base_Type
(Ent
), Subp_Id
);
12247 if From_Aspect_Specification
(N
) then
12248 Append_Freeze_Action
(Ent
, Subp_Decl
);
12250 Insert_Action
(N
, Subp_Decl
);
12253 Copy_TSS
(Subp_Id
, Base_Type
(Ent
));
12255 end New_Stream_Subprogram
;
12257 ------------------------------------------
12258 -- Push_Scope_And_Install_Discriminants --
12259 ------------------------------------------
12261 procedure Push_Scope_And_Install_Discriminants
(E
: Entity_Id
) is
12263 if Has_Discriminants
(E
) then
12266 -- Make the discriminants visible for type declarations and protected
12267 -- type declarations, not for subtype declarations (RM 13.1.1 (12/3))
12269 if Nkind
(Parent
(E
)) /= N_Subtype_Declaration
then
12270 Install_Discriminants
(E
);
12273 end Push_Scope_And_Install_Discriminants
;
12275 ------------------------
12276 -- Rep_Item_Too_Early --
12277 ------------------------
12279 function Rep_Item_Too_Early
(T
: Entity_Id
; N
: Node_Id
) return Boolean is
12281 -- Cannot apply non-operational rep items to generic types
12283 if Is_Operational_Item
(N
) then
12287 and then Is_Generic_Type
(Root_Type
(T
))
12288 and then (Nkind
(N
) /= N_Pragma
12289 or else Get_Pragma_Id
(N
) /= Pragma_Convention
)
12291 Error_Msg_N
("representation item not allowed for generic type", N
);
12295 -- Otherwise check for incomplete type
12297 if Is_Incomplete_Or_Private_Type
(T
)
12298 and then No
(Underlying_Type
(T
))
12300 (Nkind
(N
) /= N_Pragma
12301 or else Get_Pragma_Id
(N
) /= Pragma_Import
)
12304 ("representation item must be after full type declaration", N
);
12307 -- If the type has incomplete components, a representation clause is
12308 -- illegal but stream attributes and Convention pragmas are correct.
12310 elsif Has_Private_Component
(T
) then
12311 if Nkind
(N
) = N_Pragma
then
12316 ("representation item must appear after type is fully defined",
12323 end Rep_Item_Too_Early
;
12325 -----------------------
12326 -- Rep_Item_Too_Late --
12327 -----------------------
12329 function Rep_Item_Too_Late
12332 FOnly
: Boolean := False) return Boolean
12335 Parent_Type
: Entity_Id
;
12337 procedure No_Type_Rep_Item
;
12338 -- Output message indicating that no type-related aspects can be
12339 -- specified due to some property of the parent type.
12341 procedure Too_Late
;
12342 -- Output message for an aspect being specified too late
12344 -- Note that neither of the above errors is considered a serious one,
12345 -- since the effect is simply that we ignore the representation clause
12347 -- Is this really true? In any case if we make this change we must
12348 -- document the requirement in the spec of Rep_Item_Too_Late that
12349 -- if True is returned, then the rep item must be completely ignored???
12351 ----------------------
12352 -- No_Type_Rep_Item --
12353 ----------------------
12355 procedure No_Type_Rep_Item
is
12357 Error_Msg_N
("|type-related representation item not permitted!", N
);
12358 end No_Type_Rep_Item
;
12364 procedure Too_Late
is
12366 -- Other compilers seem more relaxed about rep items appearing too
12367 -- late. Since analysis tools typically don't care about rep items
12368 -- anyway, no reason to be too strict about this.
12370 if not Relaxed_RM_Semantics
then
12371 Error_Msg_N
("|representation item appears too late!", N
);
12375 -- Start of processing for Rep_Item_Too_Late
12378 -- First make sure entity is not frozen (RM 13.1(9))
12382 -- Exclude imported types, which may be frozen if they appear in a
12383 -- representation clause for a local type.
12385 and then not From_Limited_With
(T
)
12387 -- Exclude generated entities (not coming from source). The common
12388 -- case is when we generate a renaming which prematurely freezes the
12389 -- renamed internal entity, but we still want to be able to set copies
12390 -- of attribute values such as Size/Alignment.
12392 and then Comes_From_Source
(T
)
12394 -- A self-referential aspect is illegal if it forces freezing the
12395 -- entity before the corresponding pragma has been analyzed.
12397 if Nkind_In
(N
, N_Attribute_Definition_Clause
, N_Pragma
)
12398 and then From_Aspect_Specification
(N
)
12401 ("aspect specification causes premature freezing of&", N
, T
);
12402 Set_Has_Delayed_Freeze
(T
, False);
12407 S
:= First_Subtype
(T
);
12409 if Present
(Freeze_Node
(S
)) then
12410 if not Relaxed_RM_Semantics
then
12412 ("??no more representation items for }", Freeze_Node
(S
), S
);
12418 -- Check for case of untagged derived type whose parent either has
12419 -- primitive operations, or is a by reference type (RM 13.1(10)). In
12420 -- this case we do not output a Too_Late message, since there is no
12421 -- earlier point where the rep item could be placed to make it legal.
12425 and then Is_Derived_Type
(T
)
12426 and then not Is_Tagged_Type
(T
)
12428 Parent_Type
:= Etype
(Base_Type
(T
));
12430 if Has_Primitive_Operations
(Parent_Type
) then
12433 if not Relaxed_RM_Semantics
then
12435 ("\parent type & has primitive operations!", N
, Parent_Type
);
12440 elsif Is_By_Reference_Type
(Parent_Type
) then
12443 if not Relaxed_RM_Semantics
then
12445 ("\parent type & is a by reference type!", N
, Parent_Type
);
12452 -- No error, but one more warning to consider. The RM (surprisingly)
12453 -- allows this pattern:
12456 -- primitive operations for S
12457 -- type R is new S;
12458 -- rep clause for S
12460 -- Meaning that calls on the primitive operations of S for values of
12461 -- type R may require possibly expensive implicit conversion operations.
12462 -- This is not an error, but is worth a warning.
12464 if not Relaxed_RM_Semantics
and then Is_Type
(T
) then
12466 DTL
: constant Entity_Id
:= Derived_Type_Link
(Base_Type
(T
));
12470 and then Has_Primitive_Operations
(Base_Type
(T
))
12472 -- For now, do not generate this warning for the case of aspect
12473 -- specification using Ada 2012 syntax, since we get wrong
12474 -- messages we do not understand. The whole business of derived
12475 -- types and rep items seems a bit confused when aspects are
12476 -- used, since the aspects are not evaluated till freeze time.
12478 and then not From_Aspect_Specification
(N
)
12480 Error_Msg_Sloc
:= Sloc
(DTL
);
12482 ("representation item for& appears after derived type "
12483 & "declaration#??", N
);
12485 ("\may result in implicit conversions for primitive "
12486 & "operations of&??", N
, T
);
12488 ("\to change representations when called with arguments "
12489 & "of type&??", N
, DTL
);
12494 -- No error, link item into head of chain of rep items for the entity,
12495 -- but avoid chaining if we have an overloadable entity, and the pragma
12496 -- is one that can apply to multiple overloaded entities.
12498 if Is_Overloadable
(T
) and then Nkind
(N
) = N_Pragma
then
12500 Pname
: constant Name_Id
:= Pragma_Name
(N
);
12502 if Nam_In
(Pname
, Name_Convention
, Name_Import
, Name_Export
,
12503 Name_External
, Name_Interface
)
12510 Record_Rep_Item
(T
, N
);
12512 end Rep_Item_Too_Late
;
12514 -------------------------------------
12515 -- Replace_Type_References_Generic --
12516 -------------------------------------
12518 procedure Replace_Type_References_Generic
(N
: Node_Id
; T
: Entity_Id
) is
12519 TName
: constant Name_Id
:= Chars
(T
);
12521 function Replace_Type_Ref
(N
: Node_Id
) return Traverse_Result
;
12522 -- Processes a single node in the traversal procedure below, checking
12523 -- if node N should be replaced, and if so, doing the replacement.
12525 function Visible_Component
(Comp
: Name_Id
) return Entity_Id
;
12526 -- Given an identifier in the expression, check whether there is a
12527 -- discriminant or component of the type that is directy visible, and
12528 -- rewrite it as the corresponding selected component of the formal of
12529 -- the subprogram. The entity is located by a sequential search, which
12530 -- seems acceptable given the typical size of component lists and check
12531 -- expressions. Possible optimization ???
12533 ----------------------
12534 -- Replace_Type_Ref --
12535 ----------------------
12537 function Replace_Type_Ref
(N
: Node_Id
) return Traverse_Result
is
12538 Loc
: constant Source_Ptr
:= Sloc
(N
);
12540 procedure Add_Prefix
(Ref
: Node_Id
; Comp
: Entity_Id
);
12541 -- Add the proper prefix to a reference to a component of the type
12542 -- when it is not already a selected component.
12548 procedure Add_Prefix
(Ref
: Node_Id
; Comp
: Entity_Id
) is
12551 Make_Selected_Component
(Loc
,
12552 Prefix
=> New_Occurrence_Of
(T
, Loc
),
12553 Selector_Name
=> New_Occurrence_Of
(Comp
, Loc
)));
12554 Replace_Type_Reference
(Prefix
(Ref
));
12563 -- Start of processing for Replace_Type_Ref
12566 if Nkind
(N
) = N_Identifier
then
12568 -- If not the type name, check whether it is a reference to some
12569 -- other type, which must be frozen before the predicate function
12570 -- is analyzed, i.e. before the freeze node of the type to which
12571 -- the predicate applies.
12573 if Chars
(N
) /= TName
then
12574 if Present
(Current_Entity
(N
))
12575 and then Is_Type
(Current_Entity
(N
))
12577 Freeze_Before
(Freeze_Node
(T
), Current_Entity
(N
));
12580 -- The components of the type are directly visible and can
12581 -- be referenced without a prefix.
12583 if Nkind
(Parent
(N
)) = N_Selected_Component
then
12586 -- In expression C (I), C may be a directly visible function
12587 -- or a visible component that has an array type. Disambiguate
12588 -- by examining the component type.
12590 elsif Nkind
(Parent
(N
)) = N_Indexed_Component
12591 and then N
= Prefix
(Parent
(N
))
12593 Comp
:= Visible_Component
(Chars
(N
));
12595 if Present
(Comp
) and then Is_Array_Type
(Etype
(Comp
)) then
12596 Add_Prefix
(N
, Comp
);
12600 Comp
:= Visible_Component
(Chars
(N
));
12602 if Present
(Comp
) then
12603 Add_Prefix
(N
, Comp
);
12609 -- Otherwise do the replacement and we are done with this node
12612 Replace_Type_Reference
(N
);
12616 -- Case of selected component (which is what a qualification looks
12617 -- like in the unanalyzed tree, which is what we have.
12619 elsif Nkind
(N
) = N_Selected_Component
then
12621 -- If selector name is not our type, keeping going (we might still
12622 -- have an occurrence of the type in the prefix).
12624 if Nkind
(Selector_Name
(N
)) /= N_Identifier
12625 or else Chars
(Selector_Name
(N
)) /= TName
12629 -- Selector name is our type, check qualification
12632 -- Loop through scopes and prefixes, doing comparison
12634 Scop
:= Current_Scope
;
12635 Pref
:= Prefix
(N
);
12637 -- Continue if no more scopes or scope with no name
12639 if No
(Scop
) or else Nkind
(Scop
) not in N_Has_Chars
then
12643 -- Do replace if prefix is an identifier matching the scope
12644 -- that we are currently looking at.
12646 if Nkind
(Pref
) = N_Identifier
12647 and then Chars
(Pref
) = Chars
(Scop
)
12649 Replace_Type_Reference
(N
);
12653 -- Go check scope above us if prefix is itself of the form
12654 -- of a selected component, whose selector matches the scope
12655 -- we are currently looking at.
12657 if Nkind
(Pref
) = N_Selected_Component
12658 and then Nkind
(Selector_Name
(Pref
)) = N_Identifier
12659 and then Chars
(Selector_Name
(Pref
)) = Chars
(Scop
)
12661 Scop
:= Scope
(Scop
);
12662 Pref
:= Prefix
(Pref
);
12664 -- For anything else, we don't have a match, so keep on
12665 -- going, there are still some weird cases where we may
12666 -- still have a replacement within the prefix.
12674 -- Continue for any other node kind
12679 end Replace_Type_Ref
;
12681 procedure Replace_Type_Refs
is new Traverse_Proc
(Replace_Type_Ref
);
12683 -----------------------
12684 -- Visible_Component --
12685 -----------------------
12687 function Visible_Component
(Comp
: Name_Id
) return Entity_Id
is
12692 -- Types with nameable components are records and discriminated
12695 if Ekind
(T
) = E_Record_Type
12696 or else (Is_Private_Type
(T
) and then Has_Discriminants
(T
))
12698 E
:= First_Entity
(T
);
12699 while Present
(E
) loop
12700 if Comes_From_Source
(E
) and then Chars
(E
) = Comp
then
12708 -- Nothing by that name, or type has no components.
12711 end Visible_Component
;
12713 -- Start of processing for Replace_Type_References_Generic
12716 Replace_Type_Refs
(N
);
12717 end Replace_Type_References_Generic
;
12719 --------------------------------
12720 -- Resolve_Aspect_Expressions --
12721 --------------------------------
12723 procedure Resolve_Aspect_Expressions
(E
: Entity_Id
) is
12728 function Resolve_Name
(N
: Node_Id
) return Traverse_Result
;
12729 -- Verify that all identifiers in the expression, with the exception
12730 -- of references to the current entity, denote visible entities. This
12731 -- is done only to detect visibility errors, as the expression will be
12732 -- properly analyzed/expanded during analysis of the predicate function
12733 -- body. We omit quantified expressions from this test, given that they
12734 -- introduce a local identifier that would require proper expansion to
12735 -- handle properly.
12737 -- In ASIS_Mode we preserve the entity in the source because there is
12738 -- no subsequent expansion to decorate the tree.
12744 function Resolve_Name
(N
: Node_Id
) return Traverse_Result
is
12746 if Nkind
(N
) = N_Selected_Component
then
12747 if Nkind
(Prefix
(N
)) = N_Identifier
12748 and then Chars
(Prefix
(N
)) /= Chars
(E
)
12750 Find_Selected_Component
(N
);
12755 elsif Nkind
(N
) = N_Identifier
and then Chars
(N
) /= Chars
(E
) then
12756 Find_Direct_Name
(N
);
12758 if True or else not ASIS_Mode
then -- ????
12759 Set_Entity
(N
, Empty
);
12762 elsif Nkind
(N
) = N_Quantified_Expression
then
12769 procedure Resolve_Aspect_Expression
is new Traverse_Proc
(Resolve_Name
);
12771 -- Start of processing for Resolve_Aspect_Expressions
12774 ASN
:= First_Rep_Item
(E
);
12775 while Present
(ASN
) loop
12776 if Nkind
(ASN
) = N_Aspect_Specification
and then Entity
(ASN
) = E
then
12777 A_Id
:= Get_Aspect_Id
(ASN
);
12778 Expr
:= Expression
(ASN
);
12782 -- For now we only deal with aspects that do not generate
12783 -- subprograms, or that may mention current instances of
12784 -- types. These will require special handling (???TBD).
12786 when Aspect_Invariant
12788 | Aspect_Predicate_Failure
12792 when Aspect_Dynamic_Predicate
12793 | Aspect_Static_Predicate
12795 -- Build predicate function specification and preanalyze
12796 -- expression after type replacement.
12798 if No
(Predicate_Function
(E
)) then
12800 FDecl
: constant Node_Id
:=
12801 Build_Predicate_Function_Declaration
(E
);
12802 pragma Unreferenced
(FDecl
);
12804 Resolve_Aspect_Expression
(Expr
);
12808 when Pre_Post_Aspects
=>
12811 when Aspect_Iterable
=>
12812 if Nkind
(Expr
) = N_Aggregate
then
12817 Assoc
:= First
(Component_Associations
(Expr
));
12818 while Present
(Assoc
) loop
12819 Find_Direct_Name
(Expression
(Assoc
));
12826 if Present
(Expr
) then
12827 case Aspect_Argument
(A_Id
) is
12829 | Optional_Expression
12831 Analyze_And_Resolve
(Expression
(ASN
));
12836 if Nkind
(Expr
) = N_Identifier
then
12837 Find_Direct_Name
(Expr
);
12839 elsif Nkind
(Expr
) = N_Selected_Component
then
12840 Find_Selected_Component
(Expr
);
12847 ASN
:= Next_Rep_Item
(ASN
);
12849 end Resolve_Aspect_Expressions
;
12851 -------------------------
12852 -- Same_Representation --
12853 -------------------------
12855 function Same_Representation
(Typ1
, Typ2
: Entity_Id
) return Boolean is
12856 T1
: constant Entity_Id
:= Underlying_Type
(Typ1
);
12857 T2
: constant Entity_Id
:= Underlying_Type
(Typ2
);
12860 -- A quick check, if base types are the same, then we definitely have
12861 -- the same representation, because the subtype specific representation
12862 -- attributes (Size and Alignment) do not affect representation from
12863 -- the point of view of this test.
12865 if Base_Type
(T1
) = Base_Type
(T2
) then
12868 elsif Is_Private_Type
(Base_Type
(T2
))
12869 and then Base_Type
(T1
) = Full_View
(Base_Type
(T2
))
12874 -- Tagged types never have differing representations
12876 if Is_Tagged_Type
(T1
) then
12880 -- Representations are definitely different if conventions differ
12882 if Convention
(T1
) /= Convention
(T2
) then
12886 -- Representations are different if component alignments or scalar
12887 -- storage orders differ.
12889 if (Is_Record_Type
(T1
) or else Is_Array_Type
(T1
))
12891 (Is_Record_Type
(T2
) or else Is_Array_Type
(T2
))
12893 (Component_Alignment
(T1
) /= Component_Alignment
(T2
)
12894 or else Reverse_Storage_Order
(T1
) /= Reverse_Storage_Order
(T2
))
12899 -- For arrays, the only real issue is component size. If we know the
12900 -- component size for both arrays, and it is the same, then that's
12901 -- good enough to know we don't have a change of representation.
12903 if Is_Array_Type
(T1
) then
12904 if Known_Component_Size
(T1
)
12905 and then Known_Component_Size
(T2
)
12906 and then Component_Size
(T1
) = Component_Size
(T2
)
12912 -- Types definitely have same representation if neither has non-standard
12913 -- representation since default representations are always consistent.
12914 -- If only one has non-standard representation, and the other does not,
12915 -- then we consider that they do not have the same representation. They
12916 -- might, but there is no way of telling early enough.
12918 if Has_Non_Standard_Rep
(T1
) then
12919 if not Has_Non_Standard_Rep
(T2
) then
12923 return not Has_Non_Standard_Rep
(T2
);
12926 -- Here the two types both have non-standard representation, and we need
12927 -- to determine if they have the same non-standard representation.
12929 -- For arrays, we simply need to test if the component sizes are the
12930 -- same. Pragma Pack is reflected in modified component sizes, so this
12931 -- check also deals with pragma Pack.
12933 if Is_Array_Type
(T1
) then
12934 return Component_Size
(T1
) = Component_Size
(T2
);
12936 -- Tagged types always have the same representation, because it is not
12937 -- possible to specify different representations for common fields.
12939 elsif Is_Tagged_Type
(T1
) then
12942 -- Case of record types
12944 elsif Is_Record_Type
(T1
) then
12946 -- Packed status must conform
12948 if Is_Packed
(T1
) /= Is_Packed
(T2
) then
12951 -- Otherwise we must check components. Typ2 maybe a constrained
12952 -- subtype with fewer components, so we compare the components
12953 -- of the base types.
12956 Record_Case
: declare
12957 CD1
, CD2
: Entity_Id
;
12959 function Same_Rep
return Boolean;
12960 -- CD1 and CD2 are either components or discriminants. This
12961 -- function tests whether they have the same representation.
12967 function Same_Rep
return Boolean is
12969 if No
(Component_Clause
(CD1
)) then
12970 return No
(Component_Clause
(CD2
));
12972 -- Note: at this point, component clauses have been
12973 -- normalized to the default bit order, so that the
12974 -- comparison of Component_Bit_Offsets is meaningful.
12977 Present
(Component_Clause
(CD2
))
12979 Component_Bit_Offset
(CD1
) = Component_Bit_Offset
(CD2
)
12981 Esize
(CD1
) = Esize
(CD2
);
12985 -- Start of processing for Record_Case
12988 if Has_Discriminants
(T1
) then
12990 -- The number of discriminants may be different if the
12991 -- derived type has fewer (constrained by values). The
12992 -- invisible discriminants retain the representation of
12993 -- the original, so the discrepancy does not per se
12994 -- indicate a different representation.
12996 CD1
:= First_Discriminant
(T1
);
12997 CD2
:= First_Discriminant
(T2
);
12998 while Present
(CD1
) and then Present
(CD2
) loop
12999 if not Same_Rep
then
13002 Next_Discriminant
(CD1
);
13003 Next_Discriminant
(CD2
);
13008 CD1
:= First_Component
(Underlying_Type
(Base_Type
(T1
)));
13009 CD2
:= First_Component
(Underlying_Type
(Base_Type
(T2
)));
13010 while Present
(CD1
) loop
13011 if not Same_Rep
then
13014 Next_Component
(CD1
);
13015 Next_Component
(CD2
);
13023 -- For enumeration types, we must check each literal to see if the
13024 -- representation is the same. Note that we do not permit enumeration
13025 -- representation clauses for Character and Wide_Character, so these
13026 -- cases were already dealt with.
13028 elsif Is_Enumeration_Type
(T1
) then
13029 Enumeration_Case
: declare
13030 L1
, L2
: Entity_Id
;
13033 L1
:= First_Literal
(T1
);
13034 L2
:= First_Literal
(T2
);
13035 while Present
(L1
) loop
13036 if Enumeration_Rep
(L1
) /= Enumeration_Rep
(L2
) then
13045 end Enumeration_Case
;
13047 -- Any other types have the same representation for these purposes
13052 end Same_Representation
;
13054 --------------------------------
13055 -- Resolve_Iterable_Operation --
13056 --------------------------------
13058 procedure Resolve_Iterable_Operation
13060 Cursor
: Entity_Id
;
13069 if not Is_Overloaded
(N
) then
13070 if not Is_Entity_Name
(N
)
13071 or else Ekind
(Entity
(N
)) /= E_Function
13072 or else Scope
(Entity
(N
)) /= Scope
(Typ
)
13073 or else No
(First_Formal
(Entity
(N
)))
13074 or else Etype
(First_Formal
(Entity
(N
))) /= Typ
13076 Error_Msg_N
("iterable primitive must be local function name "
13077 & "whose first formal is an iterable type", N
);
13082 F1
:= First_Formal
(Ent
);
13083 if Nam
= Name_First
then
13085 -- First (Container) => Cursor
13087 if Etype
(Ent
) /= Cursor
then
13088 Error_Msg_N
("primitive for First must yield a curosr", N
);
13091 elsif Nam
= Name_Next
then
13093 -- Next (Container, Cursor) => Cursor
13095 F2
:= Next_Formal
(F1
);
13097 if Etype
(F2
) /= Cursor
13098 or else Etype
(Ent
) /= Cursor
13099 or else Present
(Next_Formal
(F2
))
13101 Error_Msg_N
("no match for Next iterable primitive", N
);
13104 elsif Nam
= Name_Has_Element
then
13106 -- Has_Element (Container, Cursor) => Boolean
13108 F2
:= Next_Formal
(F1
);
13109 if Etype
(F2
) /= Cursor
13110 or else Etype
(Ent
) /= Standard_Boolean
13111 or else Present
(Next_Formal
(F2
))
13113 Error_Msg_N
("no match for Has_Element iterable primitive", N
);
13116 elsif Nam
= Name_Element
then
13117 F2
:= Next_Formal
(F1
);
13120 or else Etype
(F2
) /= Cursor
13121 or else Present
(Next_Formal
(F2
))
13123 Error_Msg_N
("no match for Element iterable primitive", N
);
13128 raise Program_Error
;
13132 -- Overloaded case: find subprogram with proper signature.
13133 -- Caller will report error if no match is found.
13140 Get_First_Interp
(N
, I
, It
);
13141 while Present
(It
.Typ
) loop
13142 if Ekind
(It
.Nam
) = E_Function
13143 and then Scope
(It
.Nam
) = Scope
(Typ
)
13144 and then Etype
(First_Formal
(It
.Nam
)) = Typ
13146 F1
:= First_Formal
(It
.Nam
);
13148 if Nam
= Name_First
then
13149 if Etype
(It
.Nam
) = Cursor
13150 and then No
(Next_Formal
(F1
))
13152 Set_Entity
(N
, It
.Nam
);
13156 elsif Nam
= Name_Next
then
13157 F2
:= Next_Formal
(F1
);
13160 and then No
(Next_Formal
(F2
))
13161 and then Etype
(F2
) = Cursor
13162 and then Etype
(It
.Nam
) = Cursor
13164 Set_Entity
(N
, It
.Nam
);
13168 elsif Nam
= Name_Has_Element
then
13169 F2
:= Next_Formal
(F1
);
13172 and then No
(Next_Formal
(F2
))
13173 and then Etype
(F2
) = Cursor
13174 and then Etype
(It
.Nam
) = Standard_Boolean
13176 Set_Entity
(N
, It
.Nam
);
13177 F2
:= Next_Formal
(F1
);
13181 elsif Nam
= Name_Element
then
13182 F2
:= Next_Formal
(F1
);
13185 and then No
(Next_Formal
(F2
))
13186 and then Etype
(F2
) = Cursor
13188 Set_Entity
(N
, It
.Nam
);
13194 Get_Next_Interp
(I
, It
);
13198 end Resolve_Iterable_Operation
;
13204 procedure Set_Biased
13208 Biased
: Boolean := True)
13212 Set_Has_Biased_Representation
(E
);
13214 if Warn_On_Biased_Representation
then
13216 ("?B?" & Msg
& " forces biased representation for&", N
, E
);
13221 --------------------
13222 -- Set_Enum_Esize --
13223 --------------------
13225 procedure Set_Enum_Esize
(T
: Entity_Id
) is
13231 Init_Alignment
(T
);
13233 -- Find the minimum standard size (8,16,32,64) that fits
13235 Lo
:= Enumeration_Rep
(Entity
(Type_Low_Bound
(T
)));
13236 Hi
:= Enumeration_Rep
(Entity
(Type_High_Bound
(T
)));
13239 if Lo
>= -Uint_2
**07 and then Hi
< Uint_2
**07 then
13240 Sz
:= Standard_Character_Size
; -- May be > 8 on some targets
13242 elsif Lo
>= -Uint_2
**15 and then Hi
< Uint_2
**15 then
13245 elsif Lo
>= -Uint_2
**31 and then Hi
< Uint_2
**31 then
13248 else pragma Assert
(Lo
>= -Uint_2
**63 and then Hi
< Uint_2
**63);
13253 if Hi
< Uint_2
**08 then
13254 Sz
:= Standard_Character_Size
; -- May be > 8 on some targets
13256 elsif Hi
< Uint_2
**16 then
13259 elsif Hi
< Uint_2
**32 then
13262 else pragma Assert
(Hi
< Uint_2
**63);
13267 -- That minimum is the proper size unless we have a foreign convention
13268 -- and the size required is 32 or less, in which case we bump the size
13269 -- up to 32. This is required for C and C++ and seems reasonable for
13270 -- all other foreign conventions.
13272 if Has_Foreign_Convention
(T
)
13273 and then Esize
(T
) < Standard_Integer_Size
13275 -- Don't do this if Short_Enums on target
13277 and then not Target_Short_Enums
13279 Init_Esize
(T
, Standard_Integer_Size
);
13281 Init_Esize
(T
, Sz
);
13283 end Set_Enum_Esize
;
13285 -----------------------------
13286 -- Uninstall_Discriminants --
13287 -----------------------------
13289 procedure Uninstall_Discriminants
(E
: Entity_Id
) is
13295 -- Discriminants have been made visible for type declarations and
13296 -- protected type declarations, not for subtype declarations.
13298 if Nkind
(Parent
(E
)) /= N_Subtype_Declaration
then
13299 Disc
:= First_Discriminant
(E
);
13300 while Present
(Disc
) loop
13301 if Disc
/= Current_Entity
(Disc
) then
13302 Prev
:= Current_Entity
(Disc
);
13303 while Present
(Prev
)
13304 and then Present
(Homonym
(Prev
))
13305 and then Homonym
(Prev
) /= Disc
13307 Prev
:= Homonym
(Prev
);
13313 Set_Is_Immediately_Visible
(Disc
, False);
13315 Outer
:= Homonym
(Disc
);
13316 while Present
(Outer
) and then Scope
(Outer
) = E
loop
13317 Outer
:= Homonym
(Outer
);
13320 -- Reset homonym link of other entities, but do not modify link
13321 -- between entities in current scope, so that the back end can
13322 -- have a proper count of local overloadings.
13325 Set_Name_Entity_Id
(Chars
(Disc
), Outer
);
13327 elsif Scope
(Prev
) /= Scope
(Disc
) then
13328 Set_Homonym
(Prev
, Outer
);
13331 Next_Discriminant
(Disc
);
13334 end Uninstall_Discriminants
;
13336 -------------------------------------------
13337 -- Uninstall_Discriminants_And_Pop_Scope --
13338 -------------------------------------------
13340 procedure Uninstall_Discriminants_And_Pop_Scope
(E
: Entity_Id
) is
13342 if Has_Discriminants
(E
) then
13343 Uninstall_Discriminants
(E
);
13346 end Uninstall_Discriminants_And_Pop_Scope
;
13348 ------------------------------
13349 -- Validate_Address_Clauses --
13350 ------------------------------
13352 procedure Validate_Address_Clauses
is
13353 function Offset_Value
(Expr
: Node_Id
) return Uint
;
13354 -- Given an Address attribute reference, return the value in bits of its
13355 -- offset from the first bit of the underlying entity, or 0 if it is not
13356 -- known at compile time.
13362 function Offset_Value
(Expr
: Node_Id
) return Uint
is
13363 N
: Node_Id
:= Prefix
(Expr
);
13365 Val
: Uint
:= Uint_0
;
13368 -- Climb the prefix chain and compute the cumulative offset
13371 if Is_Entity_Name
(N
) then
13374 elsif Nkind
(N
) = N_Selected_Component
then
13375 Off
:= Component_Bit_Offset
(Entity
(Selector_Name
(N
)));
13376 if Off
/= No_Uint
and then Off
>= Uint_0
then
13383 elsif Nkind
(N
) = N_Indexed_Component
then
13384 Off
:= Indexed_Component_Bit_Offset
(N
);
13385 if Off
/= No_Uint
then
13398 -- Start of processing for Validate_Address_Clauses
13401 for J
in Address_Clause_Checks
.First
.. Address_Clause_Checks
.Last
loop
13403 ACCR
: Address_Clause_Check_Record
13404 renames Address_Clause_Checks
.Table
(J
);
13408 X_Alignment
: Uint
;
13409 Y_Alignment
: Uint
;
13417 -- Skip processing of this entry if warning already posted
13419 if not Address_Warning_Posted
(ACCR
.N
) then
13420 Expr
:= Original_Node
(Expression
(ACCR
.N
));
13422 -- Get alignments, sizes and offset, if any
13424 X_Alignment
:= Alignment
(ACCR
.X
);
13425 X_Size
:= Esize
(ACCR
.X
);
13427 if Present
(ACCR
.Y
) then
13428 Y_Alignment
:= Alignment
(ACCR
.Y
);
13429 Y_Size
:= Esize
(ACCR
.Y
);
13433 and then Nkind
(Expr
) = N_Attribute_Reference
13434 and then Attribute_Name
(Expr
) = Name_Address
13436 X_Offs
:= Offset_Value
(Expr
);
13441 -- Check for known value not multiple of alignment
13443 if No
(ACCR
.Y
) then
13444 if not Alignment_Checks_Suppressed
(ACCR
.X
)
13445 and then X_Alignment
/= 0
13446 and then ACCR
.A
mod X_Alignment
/= 0
13449 ("??specified address for& is inconsistent with "
13450 & "alignment", ACCR
.N
, ACCR
.X
);
13452 ("\??program execution may be erroneous (RM 13.3(27))",
13455 Error_Msg_Uint_1
:= X_Alignment
;
13456 Error_Msg_NE
("\??alignment of & is ^", ACCR
.N
, ACCR
.X
);
13459 -- Check for large object overlaying smaller one
13461 elsif Y_Size
> Uint_0
13462 and then X_Size
> Uint_0
13463 and then X_Offs
+ X_Size
> Y_Size
13465 Error_Msg_NE
("??& overlays smaller object", ACCR
.N
, ACCR
.X
);
13467 ("\??program execution may be erroneous", ACCR
.N
);
13469 Error_Msg_Uint_1
:= X_Size
;
13470 Error_Msg_NE
("\??size of & is ^", ACCR
.N
, ACCR
.X
);
13472 Error_Msg_Uint_1
:= Y_Size
;
13473 Error_Msg_NE
("\??size of & is ^", ACCR
.N
, ACCR
.Y
);
13475 if Y_Size
>= X_Size
then
13476 Error_Msg_Uint_1
:= X_Offs
;
13477 Error_Msg_NE
("\??but offset of & is ^", ACCR
.N
, ACCR
.X
);
13480 -- Check for inadequate alignment, both of the base object
13481 -- and of the offset, if any. We only do this check if the
13482 -- run-time Alignment_Check is active. No point in warning
13483 -- if this check has been suppressed (or is suppressed by
13484 -- default in the non-strict alignment machine case).
13486 -- Note: we do not check the alignment if we gave a size
13487 -- warning, since it would likely be redundant.
13489 elsif not Alignment_Checks_Suppressed
(ACCR
.X
)
13490 and then Y_Alignment
/= Uint_0
13492 (Y_Alignment
< X_Alignment
13495 and then Nkind
(Expr
) = N_Attribute_Reference
13496 and then Attribute_Name
(Expr
) = Name_Address
13497 and then Has_Compatible_Alignment
13498 (ACCR
.X
, Prefix
(Expr
), True) /=
13502 ("??specified address for& may be inconsistent with "
13503 & "alignment", ACCR
.N
, ACCR
.X
);
13505 ("\??program execution may be erroneous (RM 13.3(27))",
13508 Error_Msg_Uint_1
:= X_Alignment
;
13509 Error_Msg_NE
("\??alignment of & is ^", ACCR
.N
, ACCR
.X
);
13511 Error_Msg_Uint_1
:= Y_Alignment
;
13512 Error_Msg_NE
("\??alignment of & is ^", ACCR
.N
, ACCR
.Y
);
13514 if Y_Alignment
>= X_Alignment
then
13516 ("\??but offset is not multiple of alignment", ACCR
.N
);
13522 end Validate_Address_Clauses
;
13524 -----------------------------------------
13525 -- Validate_Compile_Time_Warning_Error --
13526 -----------------------------------------
13528 procedure Validate_Compile_Time_Warning_Error
(N
: Node_Id
) is
13530 Compile_Time_Warnings_Errors
.Append
13531 (New_Val
=> CTWE_Entry
'(Eloc => Sloc (N),
13532 Scope => Current_Scope,
13534 end Validate_Compile_Time_Warning_Error;
13536 ------------------------------------------
13537 -- Validate_Compile_Time_Warning_Errors --
13538 ------------------------------------------
13540 procedure Validate_Compile_Time_Warning_Errors is
13541 procedure Set_Scope (S : Entity_Id);
13542 -- Install all enclosing scopes of S along with S itself
13544 procedure Unset_Scope (S : Entity_Id);
13545 -- Uninstall all enclosing scopes of S along with S itself
13551 procedure Set_Scope (S : Entity_Id) is
13553 if S /= Standard_Standard then
13554 Set_Scope (Scope (S));
13564 procedure Unset_Scope (S : Entity_Id) is
13566 if S /= Standard_Standard then
13567 Unset_Scope (Scope (S));
13573 -- Start of processing for Validate_Compile_Time_Warning_Errors
13576 Expander_Mode_Save_And_Set (False);
13577 In_Compile_Time_Warning_Or_Error := True;
13579 for N in Compile_Time_Warnings_Errors.First ..
13580 Compile_Time_Warnings_Errors.Last
13583 T : CTWE_Entry renames Compile_Time_Warnings_Errors.Table (N);
13586 Set_Scope (T.Scope);
13587 Reset_Analyzed_Flags (T.Prag);
13588 Process_Compile_Time_Warning_Or_Error (T.Prag, T.Eloc);
13589 Unset_Scope (T.Scope);
13593 In_Compile_Time_Warning_Or_Error := False;
13594 Expander_Mode_Restore;
13595 end Validate_Compile_Time_Warning_Errors;
13597 ---------------------------
13598 -- Validate_Independence --
13599 ---------------------------
13601 procedure Validate_Independence is
13602 SU : constant Uint := UI_From_Int (System_Storage_Unit);
13610 procedure Check_Array_Type (Atyp : Entity_Id);
13611 -- Checks if the array type Atyp has independent components, and
13612 -- if not, outputs an appropriate set of error messages.
13614 procedure No_Independence;
13615 -- Output message that independence cannot be guaranteed
13617 function OK_Component (C : Entity_Id) return Boolean;
13618 -- Checks one component to see if it is independently accessible, and
13619 -- if so yields True, otherwise yields False if independent access
13620 -- cannot be guaranteed. This is a conservative routine, it only
13621 -- returns True if it knows for sure, it returns False if it knows
13622 -- there is a problem, or it cannot be sure there is no problem.
13624 procedure Reason_Bad_Component (C : Entity_Id);
13625 -- Outputs continuation message if a reason can be determined for
13626 -- the component C being bad.
13628 ----------------------
13629 -- Check_Array_Type --
13630 ----------------------
13632 procedure Check_Array_Type (Atyp : Entity_Id) is
13633 Ctyp : constant Entity_Id := Component_Type (Atyp);
13636 -- OK if no alignment clause, no pack, and no component size
13638 if not Has_Component_Size_Clause (Atyp)
13639 and then not Has_Alignment_Clause (Atyp)
13640 and then not Is_Packed (Atyp)
13645 -- Case of component size is greater than or equal to 64 and the
13646 -- alignment of the array is at least as large as the alignment
13647 -- of the component. We are definitely OK in this situation.
13649 if Known_Component_Size (Atyp)
13650 and then Component_Size (Atyp) >= 64
13651 and then Known_Alignment (Atyp)
13652 and then Known_Alignment (Ctyp)
13653 and then Alignment (Atyp) >= Alignment (Ctyp)
13658 -- Check actual component size
13660 if not Known_Component_Size (Atyp)
13661 or else not (Addressable (Component_Size (Atyp))
13662 and then Component_Size (Atyp) < 64)
13663 or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
13667 -- Bad component size, check reason
13669 if Has_Component_Size_Clause (Atyp) then
13670 P := Get_Attribute_Definition_Clause
13671 (Atyp, Attribute_Component_Size);
13673 if Present (P) then
13674 Error_Msg_Sloc := Sloc (P);
13675 Error_Msg_N ("\because of Component_Size clause#", N);
13680 if Is_Packed (Atyp) then
13681 P := Get_Rep_Pragma (Atyp, Name_Pack);
13683 if Present (P) then
13684 Error_Msg_Sloc := Sloc (P);
13685 Error_Msg_N ("\because of pragma Pack#", N);
13690 -- No reason found, just return
13695 -- Array type is OK independence-wise
13698 end Check_Array_Type;
13700 ---------------------
13701 -- No_Independence --
13702 ---------------------
13704 procedure No_Independence is
13706 if Pragma_Name (N) = Name_Independent then
13707 Error_Msg_NE ("independence cannot be guaranteed for&", N, E);
13710 ("independent components cannot be guaranteed for&", N, E);
13712 end No_Independence;
13718 function OK_Component (C : Entity_Id) return Boolean is
13719 Rec : constant Entity_Id := Scope (C);
13720 Ctyp : constant Entity_Id := Etype (C);
13723 -- OK if no component clause, no Pack, and no alignment clause
13725 if No (Component_Clause (C))
13726 and then not Is_Packed (Rec)
13727 and then not Has_Alignment_Clause (Rec)
13732 -- Here we look at the actual component layout. A component is
13733 -- addressable if its size is a multiple of the Esize of the
13734 -- component type, and its starting position in the record has
13735 -- appropriate alignment, and the record itself has appropriate
13736 -- alignment to guarantee the component alignment.
13738 -- Make sure sizes are static, always assume the worst for any
13739 -- cases where we cannot check static values.
13741 if not (Known_Static_Esize (C)
13743 Known_Static_Esize (Ctyp))
13748 -- Size of component must be addressable or greater than 64 bits
13749 -- and a multiple of bytes.
13751 if not Addressable (Esize (C)) and then Esize (C) < Uint_64 then
13755 -- Check size is proper multiple
13757 if Esize (C) mod Esize (Ctyp) /= 0 then
13761 -- Check alignment of component is OK
13763 if not Known_Component_Bit_Offset (C)
13764 or else Component_Bit_Offset (C) < Uint_0
13765 or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
13770 -- Check alignment of record type is OK
13772 if not Known_Alignment (Rec)
13773 or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13778 -- All tests passed, component is addressable
13783 --------------------------
13784 -- Reason_Bad_Component --
13785 --------------------------
13787 procedure Reason_Bad_Component (C : Entity_Id) is
13788 Rec : constant Entity_Id := Scope (C);
13789 Ctyp : constant Entity_Id := Etype (C);
13792 -- If component clause present assume that's the problem
13794 if Present (Component_Clause (C)) then
13795 Error_Msg_Sloc := Sloc (Component_Clause (C));
13796 Error_Msg_N ("\because of Component_Clause#", N);
13800 -- If pragma Pack clause present, assume that's the problem
13802 if Is_Packed (Rec) then
13803 P := Get_Rep_Pragma (Rec, Name_Pack);
13805 if Present (P) then
13806 Error_Msg_Sloc := Sloc (P);
13807 Error_Msg_N ("\because of pragma Pack#", N);
13812 -- See if record has bad alignment clause
13814 if Has_Alignment_Clause (Rec)
13815 and then Known_Alignment (Rec)
13816 and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13818 P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
13820 if Present (P) then
13821 Error_Msg_Sloc := Sloc (P);
13822 Error_Msg_N ("\because of Alignment clause#", N);
13826 -- Couldn't find a reason, so return without a message
13829 end Reason_Bad_Component;
13831 -- Start of processing for Validate_Independence
13834 for J in Independence_Checks.First .. Independence_Checks.Last loop
13835 N := Independence_Checks.Table (J).N;
13836 E := Independence_Checks.Table (J).E;
13837 IC := Pragma_Name (N) = Name_Independent_Components;
13839 -- Deal with component case
13841 if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
13842 if not OK_Component (E) then
13844 Reason_Bad_Component (E);
13849 -- Deal with record with Independent_Components
13851 if IC and then Is_Record_Type (E) then
13852 Comp := First_Component_Or_Discriminant (E);
13853 while Present (Comp) loop
13854 if not OK_Component (Comp) then
13856 Reason_Bad_Component (Comp);
13860 Next_Component_Or_Discriminant (Comp);
13864 -- Deal with address clause case
13866 if Is_Object (E) then
13867 Addr := Address_Clause (E);
13869 if Present (Addr) then
13871 Error_Msg_Sloc := Sloc (Addr);
13872 Error_Msg_N ("\because of Address clause#", N);
13877 -- Deal with independent components for array type
13879 if IC and then Is_Array_Type (E) then
13880 Check_Array_Type (E);
13883 -- Deal with independent components for array object
13885 if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
13886 Check_Array_Type (Etype (E));
13891 end Validate_Independence;
13893 ------------------------------
13894 -- Validate_Iterable_Aspect --
13895 ------------------------------
13897 procedure Validate_Iterable_Aspect (Typ : Entity_Id; ASN : Node_Id) is
13902 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, Typ);
13904 First_Id : Entity_Id;
13905 Next_Id : Entity_Id;
13906 Has_Element_Id : Entity_Id;
13907 Element_Id : Entity_Id;
13910 -- If previous error aspect is unusable
13912 if Cursor = Any_Type then
13918 Has_Element_Id := Empty;
13919 Element_Id := Empty;
13921 -- Each expression must resolve to a function with the proper signature
13923 Assoc := First (Component_Associations (Expression (ASN)));
13924 while Present (Assoc) loop
13925 Expr := Expression (Assoc);
13928 Prim := First (Choices (Assoc));
13930 if Nkind (Prim) /= N_Identifier or else Present (Next (Prim)) then
13931 Error_Msg_N ("illegal name in association", Prim);
13933 elsif Chars (Prim) = Name_First then
13934 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_First);
13935 First_Id := Entity (Expr);
13937 elsif Chars (Prim) = Name_Next then
13938 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Next);
13939 Next_Id := Entity (Expr);
13941 elsif Chars (Prim) = Name_Has_Element then
13942 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Has_Element);
13943 Has_Element_Id := Entity (Expr);
13945 elsif Chars (Prim) = Name_Element then
13946 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Element);
13947 Element_Id := Entity (Expr);
13950 Error_Msg_N ("invalid name for iterable function", Prim);
13956 if No (First_Id) then
13957 Error_Msg_N ("match for First primitive not found", ASN);
13959 elsif No (Next_Id) then
13960 Error_Msg_N ("match for Next primitive not found", ASN);
13962 elsif No (Has_Element_Id) then
13963 Error_Msg_N ("match for Has_Element primitive not found", ASN);
13965 elsif No (Element_Id) then
13968 end Validate_Iterable_Aspect;
13970 -----------------------------------
13971 -- Validate_Unchecked_Conversion --
13972 -----------------------------------
13974 procedure Validate_Unchecked_Conversion
13976 Act_Unit : Entity_Id)
13978 Source : Entity_Id;
13979 Target : Entity_Id;
13983 -- Obtain source and target types. Note that we call Ancestor_Subtype
13984 -- here because the processing for generic instantiation always makes
13985 -- subtypes, and we want the original frozen actual types.
13987 -- If we are dealing with private types, then do the check on their
13988 -- fully declared counterparts if the full declarations have been
13989 -- encountered (they don't have to be visible, but they must exist).
13991 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
13993 if Is_Private_Type (Source)
13994 and then Present (Underlying_Type (Source))
13996 Source := Underlying_Type (Source);
13999 Target := Ancestor_Subtype (Etype (Act_Unit));
14001 -- If either type is generic, the instantiation happens within a generic
14002 -- unit, and there is nothing to check. The proper check will happen
14003 -- when the enclosing generic is instantiated.
14005 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
14009 if Is_Private_Type (Target)
14010 and then Present (Underlying_Type (Target))
14012 Target := Underlying_Type (Target);
14015 -- Source may be unconstrained array, but not target, except in relaxed
14018 if Is_Array_Type (Target)
14019 and then not Is_Constrained (Target)
14020 and then not Relaxed_RM_Semantics
14023 ("unchecked conversion to unconstrained array not allowed", N);
14027 -- Warn if conversion between two different convention pointers
14029 if Is_Access_Type (Target)
14030 and then Is_Access_Type (Source)
14031 and then Convention (Target) /= Convention (Source)
14032 and then Warn_On_Unchecked_Conversion
14034 -- Give warnings for subprogram pointers only on most targets
14036 if Is_Access_Subprogram_Type (Target)
14037 or else Is_Access_Subprogram_Type (Source)
14040 ("?z?conversion between pointers with different conventions!",
14045 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
14046 -- warning when compiling GNAT-related sources.
14048 if Warn_On_Unchecked_Conversion
14049 and then not In_Predefined_Unit (N)
14050 and then RTU_Loaded (Ada_Calendar)
14051 and then (Chars (Source) = Name_Time
14053 Chars (Target) = Name_Time)
14055 -- If Ada.Calendar is loaded and the name of one of the operands is
14056 -- Time, there is a good chance that this is Ada.Calendar.Time.
14059 Calendar_Time : constant Entity_Id := Full_View (RTE (RO_CA_Time));
14061 pragma Assert (Present (Calendar_Time));
14063 if Source = Calendar_Time or else Target = Calendar_Time then
14065 ("?z?representation of 'Time values may change between
"
14066 & "'G'N'A
'T versions
", N);
14071 -- Make entry in unchecked conversion table for later processing by
14072 -- Validate_Unchecked_Conversions, which will check sizes and alignments
14073 -- (using values set by the back end where possible). This is only done
14074 -- if the appropriate warning is active.
14076 if Warn_On_Unchecked_Conversion then
14077 Unchecked_Conversions.Append
14078 (New_Val => UC_Entry'(Eloc => Sloc (N),
14081 Act_Unit => Act_Unit));
14083 -- If both sizes are known statically now, then back-end annotation
14084 -- is not required to do a proper check but if either size is not
14085 -- known statically, then we need the annotation.
14087 if Known_Static_RM_Size (Source)
14089 Known_Static_RM_Size (Target)
14093 Back_Annotate_Rep_Info := True;
14097 -- If unchecked conversion to access type, and access type is declared
14098 -- in the same unit as the unchecked conversion, then set the flag
14099 -- No_Strict_Aliasing (no strict aliasing is implicit here)
14101 if Is_Access_Type (Target) and then
14102 In_Same_Source_Unit (Target, N)
14104 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
14107 -- Generate N_Validate_Unchecked_Conversion node for back end in case
14108 -- the back end needs to perform special validation checks.
14110 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
14111 -- have full expansion and the back end is called ???
14114 Make_Validate_Unchecked_Conversion (Sloc (N));
14115 Set_Source_Type (Vnode, Source);
14116 Set_Target_Type (Vnode, Target);
14118 -- If the unchecked conversion node is in a list, just insert before it.
14119 -- If not we have some strange case, not worth bothering about.
14121 if Is_List_Member (N) then
14122 Insert_After (N, Vnode);
14124 end Validate_Unchecked_Conversion;
14126 ------------------------------------
14127 -- Validate_Unchecked_Conversions --
14128 ------------------------------------
14130 procedure Validate_Unchecked_Conversions is
14132 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
14134 T : UC_Entry renames Unchecked_Conversions.Table (N);
14136 Act_Unit : constant Entity_Id := T.Act_Unit;
14137 Eloc : constant Source_Ptr := T.Eloc;
14138 Source : constant Entity_Id := T.Source;
14139 Target : constant Entity_Id := T.Target;
14145 -- Skip if function marked as warnings off
14147 if Warnings_Off (Act_Unit) then
14151 -- This validation check, which warns if we have unequal sizes for
14152 -- unchecked conversion, and thus potentially implementation
14153 -- dependent semantics, is one of the few occasions on which we
14154 -- use the official RM size instead of Esize. See description in
14155 -- Einfo "Handling
of Type'Size Values
" for details.
14157 if Serious_Errors_Detected = 0
14158 and then Known_Static_RM_Size (Source)
14159 and then Known_Static_RM_Size (Target)
14161 -- Don't do the check if warnings off for either type, note the
14162 -- deliberate use of OR here instead of OR ELSE to get the flag
14163 -- Warnings_Off_Used set for both types if appropriate.
14165 and then not (Has_Warnings_Off (Source)
14167 Has_Warnings_Off (Target))
14169 Source_Siz := RM_Size (Source);
14170 Target_Siz := RM_Size (Target);
14172 if Source_Siz /= Target_Siz then
14174 ("?z?types
for unchecked conversion have different sizes
!",
14177 if All_Errors_Mode then
14178 Error_Msg_Name_1 := Chars (Source);
14179 Error_Msg_Uint_1 := Source_Siz;
14180 Error_Msg_Name_2 := Chars (Target);
14181 Error_Msg_Uint_2 := Target_Siz;
14182 Error_Msg ("\size
of % is ^
, size
of % is ^?z?
", Eloc);
14184 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
14186 if Is_Discrete_Type (Source)
14188 Is_Discrete_Type (Target)
14190 if Source_Siz > Target_Siz then
14192 ("\?z?^ high order bits
of source will
"
14193 & "be ignored
!", Eloc);
14195 elsif Is_Unsigned_Type (Source) then
14197 ("\?z?source will be extended
with ^ high order
"
14198 & "zero bits
!", Eloc);
14202 ("\?z?source will be extended
with ^ high order
"
14203 & "sign bits
!", Eloc);
14206 elsif Source_Siz < Target_Siz then
14207 if Is_Discrete_Type (Target) then
14208 if Bytes_Big_Endian then
14210 ("\?z?target value will include ^ undefined
"
14211 & "low order bits
!", Eloc);
14214 ("\?z?target value will include ^ undefined
"
14215 & "high order bits
!", Eloc);
14220 ("\?z?^ trailing bits
of target value will be
"
14221 & "undefined
!", Eloc);
14224 else pragma Assert (Source_Siz > Target_Siz);
14225 if Is_Discrete_Type (Source) then
14226 if Bytes_Big_Endian then
14228 ("\?z?^ low order bits
of source will be
"
14229 & "ignored
!", Eloc);
14232 ("\?z?^ high order bits
of source will be
"
14233 & "ignored
!", Eloc);
14238 ("\?z?^ trailing bits
of source will be
"
14239 & "ignored
!", Eloc);
14246 -- If both types are access types, we need to check the alignment.
14247 -- If the alignment of both is specified, we can do it here.
14249 if Serious_Errors_Detected = 0
14250 and then Is_Access_Type (Source)
14251 and then Is_Access_Type (Target)
14252 and then Target_Strict_Alignment
14253 and then Present (Designated_Type (Source))
14254 and then Present (Designated_Type (Target))
14257 D_Source : constant Entity_Id := Designated_Type (Source);
14258 D_Target : constant Entity_Id := Designated_Type (Target);
14261 if Known_Alignment (D_Source)
14263 Known_Alignment (D_Target)
14266 Source_Align : constant Uint := Alignment (D_Source);
14267 Target_Align : constant Uint := Alignment (D_Target);
14270 if Source_Align < Target_Align
14271 and then not Is_Tagged_Type (D_Source)
14273 -- Suppress warning if warnings suppressed on either
14274 -- type or either designated type. Note the use of
14275 -- OR here instead of OR ELSE. That is intentional,
14276 -- we would like to set flag Warnings_Off_Used in
14277 -- all types for which warnings are suppressed.
14279 and then not (Has_Warnings_Off (D_Source)
14281 Has_Warnings_Off (D_Target)
14283 Has_Warnings_Off (Source)
14285 Has_Warnings_Off (Target))
14287 Error_Msg_Uint_1 := Target_Align;
14288 Error_Msg_Uint_2 := Source_Align;
14289 Error_Msg_Node_1 := D_Target;
14290 Error_Msg_Node_2 := D_Source;
14292 ("?z?alignment
of & (^
) is stricter than
"
14293 & "alignment
of & (^
)!", Eloc);
14295 ("\?z?resulting
access value may have invalid
"
14296 & "alignment
!", Eloc);
14307 end Validate_Unchecked_Conversions;