fix entries ordering
[official-gcc.git] / gcc / reload.c
blob92ad0855812093c14092516a9c834da2bafaf992
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
30 init_reload actually has to be called earlier anyway.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
58 NOTE SIDE EFFECTS:
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 #include "config.h"
91 #include "system.h"
92 #include "coretypes.h"
93 #include "tm.h"
94 #include "rtl.h"
95 #include "tm_p.h"
96 #include "insn-config.h"
97 #include "expr.h"
98 #include "optabs.h"
99 #include "recog.h"
100 #include "reload.h"
101 #include "regs.h"
102 #include "hard-reg-set.h"
103 #include "flags.h"
104 #include "real.h"
105 #include "output.h"
106 #include "function.h"
107 #include "toplev.h"
108 #include "params.h"
109 #include "target.h"
111 /* True if X is a constant that can be forced into the constant pool. */
112 #define CONST_POOL_OK_P(X) \
113 (CONSTANT_P (X) \
114 && GET_CODE (X) != HIGH \
115 && !targetm.cannot_force_const_mem (X))
117 /* True if C is a non-empty register class that has too few registers
118 to be safely used as a reload target class. */
119 #define SMALL_REGISTER_CLASS_P(C) \
120 (reg_class_size [(C)] == 1 \
121 || (reg_class_size [(C)] >= 1 && CLASS_LIKELY_SPILLED_P (C)))
124 /* All reloads of the current insn are recorded here. See reload.h for
125 comments. */
126 int n_reloads;
127 struct reload rld[MAX_RELOADS];
129 /* All the "earlyclobber" operands of the current insn
130 are recorded here. */
131 int n_earlyclobbers;
132 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
134 int reload_n_operands;
136 /* Replacing reloads.
138 If `replace_reloads' is nonzero, then as each reload is recorded
139 an entry is made for it in the table `replacements'.
140 Then later `subst_reloads' can look through that table and
141 perform all the replacements needed. */
143 /* Nonzero means record the places to replace. */
144 static int replace_reloads;
146 /* Each replacement is recorded with a structure like this. */
147 struct replacement
149 rtx *where; /* Location to store in */
150 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
151 a SUBREG; 0 otherwise. */
152 int what; /* which reload this is for */
153 enum machine_mode mode; /* mode it must have */
156 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
158 /* Number of replacements currently recorded. */
159 static int n_replacements;
161 /* Used to track what is modified by an operand. */
162 struct decomposition
164 int reg_flag; /* Nonzero if referencing a register. */
165 int safe; /* Nonzero if this can't conflict with anything. */
166 rtx base; /* Base address for MEM. */
167 HOST_WIDE_INT start; /* Starting offset or register number. */
168 HOST_WIDE_INT end; /* Ending offset or register number. */
171 #ifdef SECONDARY_MEMORY_NEEDED
173 /* Save MEMs needed to copy from one class of registers to another. One MEM
174 is used per mode, but normally only one or two modes are ever used.
176 We keep two versions, before and after register elimination. The one
177 after register elimination is record separately for each operand. This
178 is done in case the address is not valid to be sure that we separately
179 reload each. */
181 static rtx secondary_memlocs[NUM_MACHINE_MODES];
182 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
183 static int secondary_memlocs_elim_used = 0;
184 #endif
186 /* The instruction we are doing reloads for;
187 so we can test whether a register dies in it. */
188 static rtx this_insn;
190 /* Nonzero if this instruction is a user-specified asm with operands. */
191 static int this_insn_is_asm;
193 /* If hard_regs_live_known is nonzero,
194 we can tell which hard regs are currently live,
195 at least enough to succeed in choosing dummy reloads. */
196 static int hard_regs_live_known;
198 /* Indexed by hard reg number,
199 element is nonnegative if hard reg has been spilled.
200 This vector is passed to `find_reloads' as an argument
201 and is not changed here. */
202 static short *static_reload_reg_p;
204 /* Set to 1 in subst_reg_equivs if it changes anything. */
205 static int subst_reg_equivs_changed;
207 /* On return from push_reload, holds the reload-number for the OUT
208 operand, which can be different for that from the input operand. */
209 static int output_reloadnum;
211 /* Compare two RTX's. */
212 #define MATCHES(x, y) \
213 (x == y || (x != 0 && (REG_P (x) \
214 ? REG_P (y) && REGNO (x) == REGNO (y) \
215 : rtx_equal_p (x, y) && ! side_effects_p (x))))
217 /* Indicates if two reloads purposes are for similar enough things that we
218 can merge their reloads. */
219 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
220 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
221 || ((when1) == (when2) && (op1) == (op2)) \
222 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
223 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
224 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
225 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
226 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
228 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
229 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
230 ((when1) != (when2) \
231 || ! ((op1) == (op2) \
232 || (when1) == RELOAD_FOR_INPUT \
233 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
234 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
236 /* If we are going to reload an address, compute the reload type to
237 use. */
238 #define ADDR_TYPE(type) \
239 ((type) == RELOAD_FOR_INPUT_ADDRESS \
240 ? RELOAD_FOR_INPADDR_ADDRESS \
241 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
242 ? RELOAD_FOR_OUTADDR_ADDRESS \
243 : (type)))
245 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
246 enum machine_mode, enum reload_type,
247 enum insn_code *, secondary_reload_info *);
248 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
249 int, unsigned int);
250 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
251 static void push_replacement (rtx *, int, enum machine_mode);
252 static void dup_replacements (rtx *, rtx *);
253 static void combine_reloads (void);
254 static int find_reusable_reload (rtx *, rtx, enum reg_class,
255 enum reload_type, int, int);
256 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
257 enum machine_mode, enum reg_class, int, int);
258 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
259 static struct decomposition decompose (rtx);
260 static int immune_p (rtx, rtx, struct decomposition);
261 static int alternative_allows_memconst (const char *, int);
262 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
263 int *);
264 static rtx make_memloc (rtx, int);
265 static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
266 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
267 int, enum reload_type, int, rtx);
268 static rtx subst_reg_equivs (rtx, rtx);
269 static rtx subst_indexed_address (rtx);
270 static void update_auto_inc_notes (rtx, int, int);
271 static int find_reloads_address_1 (enum machine_mode, rtx, int, rtx *,
272 int, enum reload_type,int, rtx);
273 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
274 enum machine_mode, int,
275 enum reload_type, int);
276 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
277 int, rtx);
278 static void copy_replacements_1 (rtx *, rtx *, int);
279 static int find_inc_amount (rtx, rtx);
280 static int refers_to_mem_for_reload_p (rtx);
281 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
282 rtx, rtx *);
284 /* Determine if any secondary reloads are needed for loading (if IN_P is
285 nonzero) or storing (if IN_P is zero) X to or from a reload register of
286 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
287 are needed, push them.
289 Return the reload number of the secondary reload we made, or -1 if
290 we didn't need one. *PICODE is set to the insn_code to use if we do
291 need a secondary reload. */
293 static int
294 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
295 enum reg_class reload_class,
296 enum machine_mode reload_mode, enum reload_type type,
297 enum insn_code *picode, secondary_reload_info *prev_sri)
299 enum reg_class class = NO_REGS;
300 enum reg_class scratch_class;
301 enum machine_mode mode = reload_mode;
302 enum insn_code icode = CODE_FOR_nothing;
303 enum insn_code t_icode;
304 enum reload_type secondary_type;
305 int s_reload, t_reload = -1;
306 const char *scratch_constraint;
307 char letter;
308 secondary_reload_info sri;
310 if (type == RELOAD_FOR_INPUT_ADDRESS
311 || type == RELOAD_FOR_OUTPUT_ADDRESS
312 || type == RELOAD_FOR_INPADDR_ADDRESS
313 || type == RELOAD_FOR_OUTADDR_ADDRESS)
314 secondary_type = type;
315 else
316 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
318 *picode = CODE_FOR_nothing;
320 /* If X is a paradoxical SUBREG, use the inner value to determine both the
321 mode and object being reloaded. */
322 if (GET_CODE (x) == SUBREG
323 && (GET_MODE_SIZE (GET_MODE (x))
324 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
326 x = SUBREG_REG (x);
327 reload_mode = GET_MODE (x);
330 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
331 is still a pseudo-register by now, it *must* have an equivalent MEM
332 but we don't want to assume that), use that equivalent when seeing if
333 a secondary reload is needed since whether or not a reload is needed
334 might be sensitive to the form of the MEM. */
336 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
337 && reg_equiv_mem[REGNO (x)] != 0)
338 x = reg_equiv_mem[REGNO (x)];
340 sri.icode = CODE_FOR_nothing;
341 sri.prev_sri = prev_sri;
342 class = targetm.secondary_reload (in_p, x, reload_class, reload_mode, &sri);
343 icode = sri.icode;
345 /* If we don't need any secondary registers, done. */
346 if (class == NO_REGS && icode == CODE_FOR_nothing)
347 return -1;
349 if (class != NO_REGS)
350 t_reload = push_secondary_reload (in_p, x, opnum, optional, class,
351 reload_mode, type, &t_icode, &sri);
353 /* If we will be using an insn, the secondary reload is for a
354 scratch register. */
356 if (icode != CODE_FOR_nothing)
358 /* If IN_P is nonzero, the reload register will be the output in
359 operand 0. If IN_P is zero, the reload register will be the input
360 in operand 1. Outputs should have an initial "=", which we must
361 skip. */
363 /* ??? It would be useful to be able to handle only two, or more than
364 three, operands, but for now we can only handle the case of having
365 exactly three: output, input and one temp/scratch. */
366 gcc_assert (insn_data[(int) icode].n_operands == 3);
368 /* ??? We currently have no way to represent a reload that needs
369 an icode to reload from an intermediate tertiary reload register.
370 We should probably have a new field in struct reload to tag a
371 chain of scratch operand reloads onto. */
372 gcc_assert (class == NO_REGS);
374 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
375 gcc_assert (*scratch_constraint == '=');
376 scratch_constraint++;
377 if (*scratch_constraint == '&')
378 scratch_constraint++;
379 letter = *scratch_constraint;
380 scratch_class = (letter == 'r' ? GENERAL_REGS
381 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
382 scratch_constraint));
384 class = scratch_class;
385 mode = insn_data[(int) icode].operand[2].mode;
388 /* This case isn't valid, so fail. Reload is allowed to use the same
389 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
390 in the case of a secondary register, we actually need two different
391 registers for correct code. We fail here to prevent the possibility of
392 silently generating incorrect code later.
394 The convention is that secondary input reloads are valid only if the
395 secondary_class is different from class. If you have such a case, you
396 can not use secondary reloads, you must work around the problem some
397 other way.
399 Allow this when a reload_in/out pattern is being used. I.e. assume
400 that the generated code handles this case. */
402 gcc_assert (!in_p || class != reload_class || icode != CODE_FOR_nothing
403 || t_icode != CODE_FOR_nothing);
405 /* See if we can reuse an existing secondary reload. */
406 for (s_reload = 0; s_reload < n_reloads; s_reload++)
407 if (rld[s_reload].secondary_p
408 && (reg_class_subset_p (class, rld[s_reload].class)
409 || reg_class_subset_p (rld[s_reload].class, class))
410 && ((in_p && rld[s_reload].inmode == mode)
411 || (! in_p && rld[s_reload].outmode == mode))
412 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
413 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
414 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
415 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
416 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
417 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
418 opnum, rld[s_reload].opnum))
420 if (in_p)
421 rld[s_reload].inmode = mode;
422 if (! in_p)
423 rld[s_reload].outmode = mode;
425 if (reg_class_subset_p (class, rld[s_reload].class))
426 rld[s_reload].class = class;
428 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
429 rld[s_reload].optional &= optional;
430 rld[s_reload].secondary_p = 1;
431 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
432 opnum, rld[s_reload].opnum))
433 rld[s_reload].when_needed = RELOAD_OTHER;
436 if (s_reload == n_reloads)
438 #ifdef SECONDARY_MEMORY_NEEDED
439 /* If we need a memory location to copy between the two reload regs,
440 set it up now. Note that we do the input case before making
441 the reload and the output case after. This is due to the
442 way reloads are output. */
444 if (in_p && icode == CODE_FOR_nothing
445 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
447 get_secondary_mem (x, reload_mode, opnum, type);
449 /* We may have just added new reloads. Make sure we add
450 the new reload at the end. */
451 s_reload = n_reloads;
453 #endif
455 /* We need to make a new secondary reload for this register class. */
456 rld[s_reload].in = rld[s_reload].out = 0;
457 rld[s_reload].class = class;
459 rld[s_reload].inmode = in_p ? mode : VOIDmode;
460 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
461 rld[s_reload].reg_rtx = 0;
462 rld[s_reload].optional = optional;
463 rld[s_reload].inc = 0;
464 /* Maybe we could combine these, but it seems too tricky. */
465 rld[s_reload].nocombine = 1;
466 rld[s_reload].in_reg = 0;
467 rld[s_reload].out_reg = 0;
468 rld[s_reload].opnum = opnum;
469 rld[s_reload].when_needed = secondary_type;
470 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
471 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
472 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
473 rld[s_reload].secondary_out_icode
474 = ! in_p ? t_icode : CODE_FOR_nothing;
475 rld[s_reload].secondary_p = 1;
477 n_reloads++;
479 #ifdef SECONDARY_MEMORY_NEEDED
480 if (! in_p && icode == CODE_FOR_nothing
481 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
482 get_secondary_mem (x, mode, opnum, type);
483 #endif
486 *picode = icode;
487 return s_reload;
490 /* If a secondary reload is needed, return its class. If both an intermediate
491 register and a scratch register is needed, we return the class of the
492 intermediate register. */
493 enum reg_class
494 secondary_reload_class (bool in_p, enum reg_class class,
495 enum machine_mode mode, rtx x)
497 enum insn_code icode;
498 secondary_reload_info sri;
500 sri.icode = CODE_FOR_nothing;
501 sri.prev_sri = NULL;
502 class = targetm.secondary_reload (in_p, x, class, mode, &sri);
503 icode = sri.icode;
505 /* If there are no secondary reloads at all, we return NO_REGS.
506 If an intermediate register is needed, we return its class. */
507 if (icode == CODE_FOR_nothing || class != NO_REGS)
508 return class;
510 /* No intermediate register is needed, but we have a special reload
511 pattern, which we assume for now needs a scratch register. */
512 return scratch_reload_class (icode);
515 /* ICODE is the insn_code of a reload pattern. Check that it has exactly
516 three operands, verify that operand 2 is an output operand, and return
517 its register class.
518 ??? We'd like to be able to handle any pattern with at least 2 operands,
519 for zero or more scratch registers, but that needs more infrastructure. */
520 enum reg_class
521 scratch_reload_class (enum insn_code icode)
523 const char *scratch_constraint;
524 char scratch_letter;
525 enum reg_class class;
527 gcc_assert (insn_data[(int) icode].n_operands == 3);
528 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
529 gcc_assert (*scratch_constraint == '=');
530 scratch_constraint++;
531 if (*scratch_constraint == '&')
532 scratch_constraint++;
533 scratch_letter = *scratch_constraint;
534 if (scratch_letter == 'r')
535 return GENERAL_REGS;
536 class = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
537 scratch_constraint);
538 gcc_assert (class != NO_REGS);
539 return class;
542 #ifdef SECONDARY_MEMORY_NEEDED
544 /* Return a memory location that will be used to copy X in mode MODE.
545 If we haven't already made a location for this mode in this insn,
546 call find_reloads_address on the location being returned. */
549 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
550 int opnum, enum reload_type type)
552 rtx loc;
553 int mem_valid;
555 /* By default, if MODE is narrower than a word, widen it to a word.
556 This is required because most machines that require these memory
557 locations do not support short load and stores from all registers
558 (e.g., FP registers). */
560 #ifdef SECONDARY_MEMORY_NEEDED_MODE
561 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
562 #else
563 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
564 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
565 #endif
567 /* If we already have made a MEM for this operand in MODE, return it. */
568 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
569 return secondary_memlocs_elim[(int) mode][opnum];
571 /* If this is the first time we've tried to get a MEM for this mode,
572 allocate a new one. `something_changed' in reload will get set
573 by noticing that the frame size has changed. */
575 if (secondary_memlocs[(int) mode] == 0)
577 #ifdef SECONDARY_MEMORY_NEEDED_RTX
578 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
579 #else
580 secondary_memlocs[(int) mode]
581 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
582 #endif
585 /* Get a version of the address doing any eliminations needed. If that
586 didn't give us a new MEM, make a new one if it isn't valid. */
588 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
589 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
591 if (! mem_valid && loc == secondary_memlocs[(int) mode])
592 loc = copy_rtx (loc);
594 /* The only time the call below will do anything is if the stack
595 offset is too large. In that case IND_LEVELS doesn't matter, so we
596 can just pass a zero. Adjust the type to be the address of the
597 corresponding object. If the address was valid, save the eliminated
598 address. If it wasn't valid, we need to make a reload each time, so
599 don't save it. */
601 if (! mem_valid)
603 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
604 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
605 : RELOAD_OTHER);
607 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
608 opnum, type, 0, 0);
611 secondary_memlocs_elim[(int) mode][opnum] = loc;
612 if (secondary_memlocs_elim_used <= (int)mode)
613 secondary_memlocs_elim_used = (int)mode + 1;
614 return loc;
617 /* Clear any secondary memory locations we've made. */
619 void
620 clear_secondary_mem (void)
622 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
624 #endif /* SECONDARY_MEMORY_NEEDED */
627 /* Find the largest class which has at least one register valid in
628 mode INNER, and which for every such register, that register number
629 plus N is also valid in OUTER (if in range) and is cheap to move
630 into REGNO. Such a class must exist. */
632 static enum reg_class
633 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
634 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
635 unsigned int dest_regno ATTRIBUTE_UNUSED)
637 int best_cost = -1;
638 int class;
639 int regno;
640 enum reg_class best_class = NO_REGS;
641 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
642 unsigned int best_size = 0;
643 int cost;
645 for (class = 1; class < N_REG_CLASSES; class++)
647 int bad = 0;
648 int good = 0;
649 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
650 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno))
652 if (HARD_REGNO_MODE_OK (regno, inner))
654 good = 1;
655 if (! TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
656 || ! HARD_REGNO_MODE_OK (regno + n, outer))
657 bad = 1;
661 if (bad || !good)
662 continue;
663 cost = REGISTER_MOVE_COST (outer, class, dest_class);
665 if ((reg_class_size[class] > best_size
666 && (best_cost < 0 || best_cost >= cost))
667 || best_cost > cost)
669 best_class = class;
670 best_size = reg_class_size[class];
671 best_cost = REGISTER_MOVE_COST (outer, class, dest_class);
675 gcc_assert (best_size != 0);
677 return best_class;
680 /* Return the number of a previously made reload that can be combined with
681 a new one, or n_reloads if none of the existing reloads can be used.
682 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
683 push_reload, they determine the kind of the new reload that we try to
684 combine. P_IN points to the corresponding value of IN, which can be
685 modified by this function.
686 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
688 static int
689 find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
690 enum reload_type type, int opnum, int dont_share)
692 rtx in = *p_in;
693 int i;
694 /* We can't merge two reloads if the output of either one is
695 earlyclobbered. */
697 if (earlyclobber_operand_p (out))
698 return n_reloads;
700 /* We can use an existing reload if the class is right
701 and at least one of IN and OUT is a match
702 and the other is at worst neutral.
703 (A zero compared against anything is neutral.)
705 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
706 for the same thing since that can cause us to need more reload registers
707 than we otherwise would. */
709 for (i = 0; i < n_reloads; i++)
710 if ((reg_class_subset_p (class, rld[i].class)
711 || reg_class_subset_p (rld[i].class, class))
712 /* If the existing reload has a register, it must fit our class. */
713 && (rld[i].reg_rtx == 0
714 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
715 true_regnum (rld[i].reg_rtx)))
716 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
717 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
718 || (out != 0 && MATCHES (rld[i].out, out)
719 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
720 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
721 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
722 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
723 return i;
725 /* Reloading a plain reg for input can match a reload to postincrement
726 that reg, since the postincrement's value is the right value.
727 Likewise, it can match a preincrement reload, since we regard
728 the preincrementation as happening before any ref in this insn
729 to that register. */
730 for (i = 0; i < n_reloads; i++)
731 if ((reg_class_subset_p (class, rld[i].class)
732 || reg_class_subset_p (rld[i].class, class))
733 /* If the existing reload has a register, it must fit our
734 class. */
735 && (rld[i].reg_rtx == 0
736 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
737 true_regnum (rld[i].reg_rtx)))
738 && out == 0 && rld[i].out == 0 && rld[i].in != 0
739 && ((REG_P (in)
740 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
741 && MATCHES (XEXP (rld[i].in, 0), in))
742 || (REG_P (rld[i].in)
743 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
744 && MATCHES (XEXP (in, 0), rld[i].in)))
745 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
746 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
747 && MERGABLE_RELOADS (type, rld[i].when_needed,
748 opnum, rld[i].opnum))
750 /* Make sure reload_in ultimately has the increment,
751 not the plain register. */
752 if (REG_P (in))
753 *p_in = rld[i].in;
754 return i;
756 return n_reloads;
759 /* Return nonzero if X is a SUBREG which will require reloading of its
760 SUBREG_REG expression. */
762 static int
763 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
765 rtx inner;
767 /* Only SUBREGs are problematical. */
768 if (GET_CODE (x) != SUBREG)
769 return 0;
771 inner = SUBREG_REG (x);
773 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
774 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
775 return 1;
777 /* If INNER is not a hard register, then INNER will not need to
778 be reloaded. */
779 if (!REG_P (inner)
780 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
781 return 0;
783 /* If INNER is not ok for MODE, then INNER will need reloading. */
784 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
785 return 1;
787 /* If the outer part is a word or smaller, INNER larger than a
788 word and the number of regs for INNER is not the same as the
789 number of words in INNER, then INNER will need reloading. */
790 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
791 && output
792 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
793 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
794 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
797 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
798 requiring an extra reload register. The caller has already found that
799 IN contains some reference to REGNO, so check that we can produce the
800 new value in a single step. E.g. if we have
801 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
802 instruction that adds one to a register, this should succeed.
803 However, if we have something like
804 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
805 needs to be loaded into a register first, we need a separate reload
806 register.
807 Such PLUS reloads are generated by find_reload_address_part.
808 The out-of-range PLUS expressions are usually introduced in the instruction
809 patterns by register elimination and substituting pseudos without a home
810 by their function-invariant equivalences. */
811 static int
812 can_reload_into (rtx in, int regno, enum machine_mode mode)
814 rtx dst, test_insn;
815 int r = 0;
816 struct recog_data save_recog_data;
818 /* For matching constraints, we often get notional input reloads where
819 we want to use the original register as the reload register. I.e.
820 technically this is a non-optional input-output reload, but IN is
821 already a valid register, and has been chosen as the reload register.
822 Speed this up, since it trivially works. */
823 if (REG_P (in))
824 return 1;
826 /* To test MEMs properly, we'd have to take into account all the reloads
827 that are already scheduled, which can become quite complicated.
828 And since we've already handled address reloads for this MEM, it
829 should always succeed anyway. */
830 if (MEM_P (in))
831 return 1;
833 /* If we can make a simple SET insn that does the job, everything should
834 be fine. */
835 dst = gen_rtx_REG (mode, regno);
836 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
837 save_recog_data = recog_data;
838 if (recog_memoized (test_insn) >= 0)
840 extract_insn (test_insn);
841 r = constrain_operands (1);
843 recog_data = save_recog_data;
844 return r;
847 /* Record one reload that needs to be performed.
848 IN is an rtx saying where the data are to be found before this instruction.
849 OUT says where they must be stored after the instruction.
850 (IN is zero for data not read, and OUT is zero for data not written.)
851 INLOC and OUTLOC point to the places in the instructions where
852 IN and OUT were found.
853 If IN and OUT are both nonzero, it means the same register must be used
854 to reload both IN and OUT.
856 CLASS is a register class required for the reloaded data.
857 INMODE is the machine mode that the instruction requires
858 for the reg that replaces IN and OUTMODE is likewise for OUT.
860 If IN is zero, then OUT's location and mode should be passed as
861 INLOC and INMODE.
863 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
865 OPTIONAL nonzero means this reload does not need to be performed:
866 it can be discarded if that is more convenient.
868 OPNUM and TYPE say what the purpose of this reload is.
870 The return value is the reload-number for this reload.
872 If both IN and OUT are nonzero, in some rare cases we might
873 want to make two separate reloads. (Actually we never do this now.)
874 Therefore, the reload-number for OUT is stored in
875 output_reloadnum when we return; the return value applies to IN.
876 Usually (presently always), when IN and OUT are nonzero,
877 the two reload-numbers are equal, but the caller should be careful to
878 distinguish them. */
881 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
882 enum reg_class class, enum machine_mode inmode,
883 enum machine_mode outmode, int strict_low, int optional,
884 int opnum, enum reload_type type)
886 int i;
887 int dont_share = 0;
888 int dont_remove_subreg = 0;
889 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
890 int secondary_in_reload = -1, secondary_out_reload = -1;
891 enum insn_code secondary_in_icode = CODE_FOR_nothing;
892 enum insn_code secondary_out_icode = CODE_FOR_nothing;
894 /* INMODE and/or OUTMODE could be VOIDmode if no mode
895 has been specified for the operand. In that case,
896 use the operand's mode as the mode to reload. */
897 if (inmode == VOIDmode && in != 0)
898 inmode = GET_MODE (in);
899 if (outmode == VOIDmode && out != 0)
900 outmode = GET_MODE (out);
902 /* If IN is a pseudo register everywhere-equivalent to a constant, and
903 it is not in a hard register, reload straight from the constant,
904 since we want to get rid of such pseudo registers.
905 Often this is done earlier, but not always in find_reloads_address. */
906 if (in != 0 && REG_P (in))
908 int regno = REGNO (in);
910 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
911 && reg_equiv_constant[regno] != 0)
912 in = reg_equiv_constant[regno];
915 /* Likewise for OUT. Of course, OUT will never be equivalent to
916 an actual constant, but it might be equivalent to a memory location
917 (in the case of a parameter). */
918 if (out != 0 && REG_P (out))
920 int regno = REGNO (out);
922 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
923 && reg_equiv_constant[regno] != 0)
924 out = reg_equiv_constant[regno];
927 /* If we have a read-write operand with an address side-effect,
928 change either IN or OUT so the side-effect happens only once. */
929 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
930 switch (GET_CODE (XEXP (in, 0)))
932 case POST_INC: case POST_DEC: case POST_MODIFY:
933 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
934 break;
936 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
937 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
938 break;
940 default:
941 break;
944 /* If we are reloading a (SUBREG constant ...), really reload just the
945 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
946 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
947 a pseudo and hence will become a MEM) with M1 wider than M2 and the
948 register is a pseudo, also reload the inside expression.
949 For machines that extend byte loads, do this for any SUBREG of a pseudo
950 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
951 M2 is an integral mode that gets extended when loaded.
952 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
953 either M1 is not valid for R or M2 is wider than a word but we only
954 need one word to store an M2-sized quantity in R.
955 (However, if OUT is nonzero, we need to reload the reg *and*
956 the subreg, so do nothing here, and let following statement handle it.)
958 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
959 we can't handle it here because CONST_INT does not indicate a mode.
961 Similarly, we must reload the inside expression if we have a
962 STRICT_LOW_PART (presumably, in == out in the cas).
964 Also reload the inner expression if it does not require a secondary
965 reload but the SUBREG does.
967 Finally, reload the inner expression if it is a register that is in
968 the class whose registers cannot be referenced in a different size
969 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
970 cannot reload just the inside since we might end up with the wrong
971 register class. But if it is inside a STRICT_LOW_PART, we have
972 no choice, so we hope we do get the right register class there. */
974 if (in != 0 && GET_CODE (in) == SUBREG
975 && (subreg_lowpart_p (in) || strict_low)
976 #ifdef CANNOT_CHANGE_MODE_CLASS
977 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
978 #endif
979 && (CONSTANT_P (SUBREG_REG (in))
980 || GET_CODE (SUBREG_REG (in)) == PLUS
981 || strict_low
982 || (((REG_P (SUBREG_REG (in))
983 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
984 || MEM_P (SUBREG_REG (in)))
985 && ((GET_MODE_SIZE (inmode)
986 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
987 #ifdef LOAD_EXTEND_OP
988 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
989 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
990 <= UNITS_PER_WORD)
991 && (GET_MODE_SIZE (inmode)
992 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
993 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
994 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
995 #endif
996 #ifdef WORD_REGISTER_OPERATIONS
997 || ((GET_MODE_SIZE (inmode)
998 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
999 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1000 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1001 / UNITS_PER_WORD)))
1002 #endif
1004 || (REG_P (SUBREG_REG (in))
1005 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1006 /* The case where out is nonzero
1007 is handled differently in the following statement. */
1008 && (out == 0 || subreg_lowpart_p (in))
1009 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1010 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1011 > UNITS_PER_WORD)
1012 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1013 / UNITS_PER_WORD)
1014 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1015 [GET_MODE (SUBREG_REG (in))]))
1016 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1017 || (secondary_reload_class (1, class, inmode, in) != NO_REGS
1018 && (secondary_reload_class (1, class, GET_MODE (SUBREG_REG (in)),
1019 SUBREG_REG (in))
1020 == NO_REGS))
1021 #ifdef CANNOT_CHANGE_MODE_CLASS
1022 || (REG_P (SUBREG_REG (in))
1023 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1024 && REG_CANNOT_CHANGE_MODE_P
1025 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1026 #endif
1029 in_subreg_loc = inloc;
1030 inloc = &SUBREG_REG (in);
1031 in = *inloc;
1032 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1033 if (MEM_P (in))
1034 /* This is supposed to happen only for paradoxical subregs made by
1035 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1036 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1037 #endif
1038 inmode = GET_MODE (in);
1041 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1042 either M1 is not valid for R or M2 is wider than a word but we only
1043 need one word to store an M2-sized quantity in R.
1045 However, we must reload the inner reg *as well as* the subreg in
1046 that case. */
1048 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1049 code above. This can happen if SUBREG_BYTE != 0. */
1051 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1053 enum reg_class in_class = class;
1055 if (REG_P (SUBREG_REG (in)))
1056 in_class
1057 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1058 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1059 GET_MODE (SUBREG_REG (in)),
1060 SUBREG_BYTE (in),
1061 GET_MODE (in)),
1062 REGNO (SUBREG_REG (in)));
1064 /* This relies on the fact that emit_reload_insns outputs the
1065 instructions for input reloads of type RELOAD_OTHER in the same
1066 order as the reloads. Thus if the outer reload is also of type
1067 RELOAD_OTHER, we are guaranteed that this inner reload will be
1068 output before the outer reload. */
1069 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1070 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1071 dont_remove_subreg = 1;
1074 /* Similarly for paradoxical and problematical SUBREGs on the output.
1075 Note that there is no reason we need worry about the previous value
1076 of SUBREG_REG (out); even if wider than out,
1077 storing in a subreg is entitled to clobber it all
1078 (except in the case of STRICT_LOW_PART,
1079 and in that case the constraint should label it input-output.) */
1080 if (out != 0 && GET_CODE (out) == SUBREG
1081 && (subreg_lowpart_p (out) || strict_low)
1082 #ifdef CANNOT_CHANGE_MODE_CLASS
1083 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1084 #endif
1085 && (CONSTANT_P (SUBREG_REG (out))
1086 || strict_low
1087 || (((REG_P (SUBREG_REG (out))
1088 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1089 || MEM_P (SUBREG_REG (out)))
1090 && ((GET_MODE_SIZE (outmode)
1091 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1092 #ifdef WORD_REGISTER_OPERATIONS
1093 || ((GET_MODE_SIZE (outmode)
1094 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1095 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1096 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1097 / UNITS_PER_WORD)))
1098 #endif
1100 || (REG_P (SUBREG_REG (out))
1101 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1102 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1103 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1104 > UNITS_PER_WORD)
1105 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1106 / UNITS_PER_WORD)
1107 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1108 [GET_MODE (SUBREG_REG (out))]))
1109 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1110 || (secondary_reload_class (0, class, outmode, out) != NO_REGS
1111 && (secondary_reload_class (0, class, GET_MODE (SUBREG_REG (out)),
1112 SUBREG_REG (out))
1113 == NO_REGS))
1114 #ifdef CANNOT_CHANGE_MODE_CLASS
1115 || (REG_P (SUBREG_REG (out))
1116 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1117 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1118 GET_MODE (SUBREG_REG (out)),
1119 outmode))
1120 #endif
1123 out_subreg_loc = outloc;
1124 outloc = &SUBREG_REG (out);
1125 out = *outloc;
1126 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1127 gcc_assert (!MEM_P (out)
1128 || GET_MODE_SIZE (GET_MODE (out))
1129 <= GET_MODE_SIZE (outmode));
1130 #endif
1131 outmode = GET_MODE (out);
1134 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1135 either M1 is not valid for R or M2 is wider than a word but we only
1136 need one word to store an M2-sized quantity in R.
1138 However, we must reload the inner reg *as well as* the subreg in
1139 that case. In this case, the inner reg is an in-out reload. */
1141 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1143 /* This relies on the fact that emit_reload_insns outputs the
1144 instructions for output reloads of type RELOAD_OTHER in reverse
1145 order of the reloads. Thus if the outer reload is also of type
1146 RELOAD_OTHER, we are guaranteed that this inner reload will be
1147 output after the outer reload. */
1148 dont_remove_subreg = 1;
1149 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1150 &SUBREG_REG (out),
1151 find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1152 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1153 GET_MODE (SUBREG_REG (out)),
1154 SUBREG_BYTE (out),
1155 GET_MODE (out)),
1156 REGNO (SUBREG_REG (out))),
1157 VOIDmode, VOIDmode, 0, 0,
1158 opnum, RELOAD_OTHER);
1161 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1162 if (in != 0 && out != 0 && MEM_P (out)
1163 && (REG_P (in) || MEM_P (in))
1164 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1165 dont_share = 1;
1167 /* If IN is a SUBREG of a hard register, make a new REG. This
1168 simplifies some of the cases below. */
1170 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1171 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1172 && ! dont_remove_subreg)
1173 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1175 /* Similarly for OUT. */
1176 if (out != 0 && GET_CODE (out) == SUBREG
1177 && REG_P (SUBREG_REG (out))
1178 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1179 && ! dont_remove_subreg)
1180 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1182 /* Narrow down the class of register wanted if that is
1183 desirable on this machine for efficiency. */
1184 if (in != 0)
1185 class = PREFERRED_RELOAD_CLASS (in, class);
1187 /* Output reloads may need analogous treatment, different in detail. */
1188 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1189 if (out != 0)
1190 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1191 #endif
1193 /* Make sure we use a class that can handle the actual pseudo
1194 inside any subreg. For example, on the 386, QImode regs
1195 can appear within SImode subregs. Although GENERAL_REGS
1196 can handle SImode, QImode needs a smaller class. */
1197 #ifdef LIMIT_RELOAD_CLASS
1198 if (in_subreg_loc)
1199 class = LIMIT_RELOAD_CLASS (inmode, class);
1200 else if (in != 0 && GET_CODE (in) == SUBREG)
1201 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1203 if (out_subreg_loc)
1204 class = LIMIT_RELOAD_CLASS (outmode, class);
1205 if (out != 0 && GET_CODE (out) == SUBREG)
1206 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1207 #endif
1209 /* Verify that this class is at least possible for the mode that
1210 is specified. */
1211 if (this_insn_is_asm)
1213 enum machine_mode mode;
1214 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1215 mode = inmode;
1216 else
1217 mode = outmode;
1218 if (mode == VOIDmode)
1220 error_for_asm (this_insn, "cannot reload integer constant "
1221 "operand in %<asm%>");
1222 mode = word_mode;
1223 if (in != 0)
1224 inmode = word_mode;
1225 if (out != 0)
1226 outmode = word_mode;
1228 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1229 if (HARD_REGNO_MODE_OK (i, mode)
1230 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1232 int nregs = hard_regno_nregs[i][mode];
1234 int j;
1235 for (j = 1; j < nregs; j++)
1236 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1237 break;
1238 if (j == nregs)
1239 break;
1241 if (i == FIRST_PSEUDO_REGISTER)
1243 error_for_asm (this_insn, "impossible register constraint "
1244 "in %<asm%>");
1245 class = ALL_REGS;
1249 /* Optional output reloads are always OK even if we have no register class,
1250 since the function of these reloads is only to have spill_reg_store etc.
1251 set, so that the storing insn can be deleted later. */
1252 gcc_assert (class != NO_REGS
1253 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1255 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1257 if (i == n_reloads)
1259 /* See if we need a secondary reload register to move between CLASS
1260 and IN or CLASS and OUT. Get the icode and push any required reloads
1261 needed for each of them if so. */
1263 if (in != 0)
1264 secondary_in_reload
1265 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1266 &secondary_in_icode, NULL);
1267 if (out != 0 && GET_CODE (out) != SCRATCH)
1268 secondary_out_reload
1269 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1270 type, &secondary_out_icode, NULL);
1272 /* We found no existing reload suitable for re-use.
1273 So add an additional reload. */
1275 #ifdef SECONDARY_MEMORY_NEEDED
1276 /* If a memory location is needed for the copy, make one. */
1277 if (in != 0 && (REG_P (in) || GET_CODE (in) == SUBREG)
1278 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1279 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1280 class, inmode))
1281 get_secondary_mem (in, inmode, opnum, type);
1282 #endif
1284 i = n_reloads;
1285 rld[i].in = in;
1286 rld[i].out = out;
1287 rld[i].class = class;
1288 rld[i].inmode = inmode;
1289 rld[i].outmode = outmode;
1290 rld[i].reg_rtx = 0;
1291 rld[i].optional = optional;
1292 rld[i].inc = 0;
1293 rld[i].nocombine = 0;
1294 rld[i].in_reg = inloc ? *inloc : 0;
1295 rld[i].out_reg = outloc ? *outloc : 0;
1296 rld[i].opnum = opnum;
1297 rld[i].when_needed = type;
1298 rld[i].secondary_in_reload = secondary_in_reload;
1299 rld[i].secondary_out_reload = secondary_out_reload;
1300 rld[i].secondary_in_icode = secondary_in_icode;
1301 rld[i].secondary_out_icode = secondary_out_icode;
1302 rld[i].secondary_p = 0;
1304 n_reloads++;
1306 #ifdef SECONDARY_MEMORY_NEEDED
1307 if (out != 0 && (REG_P (out) || GET_CODE (out) == SUBREG)
1308 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1309 && SECONDARY_MEMORY_NEEDED (class,
1310 REGNO_REG_CLASS (reg_or_subregno (out)),
1311 outmode))
1312 get_secondary_mem (out, outmode, opnum, type);
1313 #endif
1315 else
1317 /* We are reusing an existing reload,
1318 but we may have additional information for it.
1319 For example, we may now have both IN and OUT
1320 while the old one may have just one of them. */
1322 /* The modes can be different. If they are, we want to reload in
1323 the larger mode, so that the value is valid for both modes. */
1324 if (inmode != VOIDmode
1325 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1326 rld[i].inmode = inmode;
1327 if (outmode != VOIDmode
1328 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1329 rld[i].outmode = outmode;
1330 if (in != 0)
1332 rtx in_reg = inloc ? *inloc : 0;
1333 /* If we merge reloads for two distinct rtl expressions that
1334 are identical in content, there might be duplicate address
1335 reloads. Remove the extra set now, so that if we later find
1336 that we can inherit this reload, we can get rid of the
1337 address reloads altogether.
1339 Do not do this if both reloads are optional since the result
1340 would be an optional reload which could potentially leave
1341 unresolved address replacements.
1343 It is not sufficient to call transfer_replacements since
1344 choose_reload_regs will remove the replacements for address
1345 reloads of inherited reloads which results in the same
1346 problem. */
1347 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1348 && ! (rld[i].optional && optional))
1350 /* We must keep the address reload with the lower operand
1351 number alive. */
1352 if (opnum > rld[i].opnum)
1354 remove_address_replacements (in);
1355 in = rld[i].in;
1356 in_reg = rld[i].in_reg;
1358 else
1359 remove_address_replacements (rld[i].in);
1361 rld[i].in = in;
1362 rld[i].in_reg = in_reg;
1364 if (out != 0)
1366 rld[i].out = out;
1367 rld[i].out_reg = outloc ? *outloc : 0;
1369 if (reg_class_subset_p (class, rld[i].class))
1370 rld[i].class = class;
1371 rld[i].optional &= optional;
1372 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1373 opnum, rld[i].opnum))
1374 rld[i].when_needed = RELOAD_OTHER;
1375 rld[i].opnum = MIN (rld[i].opnum, opnum);
1378 /* If the ostensible rtx being reloaded differs from the rtx found
1379 in the location to substitute, this reload is not safe to combine
1380 because we cannot reliably tell whether it appears in the insn. */
1382 if (in != 0 && in != *inloc)
1383 rld[i].nocombine = 1;
1385 #if 0
1386 /* This was replaced by changes in find_reloads_address_1 and the new
1387 function inc_for_reload, which go with a new meaning of reload_inc. */
1389 /* If this is an IN/OUT reload in an insn that sets the CC,
1390 it must be for an autoincrement. It doesn't work to store
1391 the incremented value after the insn because that would clobber the CC.
1392 So we must do the increment of the value reloaded from,
1393 increment it, store it back, then decrement again. */
1394 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1396 out = 0;
1397 rld[i].out = 0;
1398 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1399 /* If we did not find a nonzero amount-to-increment-by,
1400 that contradicts the belief that IN is being incremented
1401 in an address in this insn. */
1402 gcc_assert (rld[i].inc != 0);
1404 #endif
1406 /* If we will replace IN and OUT with the reload-reg,
1407 record where they are located so that substitution need
1408 not do a tree walk. */
1410 if (replace_reloads)
1412 if (inloc != 0)
1414 struct replacement *r = &replacements[n_replacements++];
1415 r->what = i;
1416 r->subreg_loc = in_subreg_loc;
1417 r->where = inloc;
1418 r->mode = inmode;
1420 if (outloc != 0 && outloc != inloc)
1422 struct replacement *r = &replacements[n_replacements++];
1423 r->what = i;
1424 r->where = outloc;
1425 r->subreg_loc = out_subreg_loc;
1426 r->mode = outmode;
1430 /* If this reload is just being introduced and it has both
1431 an incoming quantity and an outgoing quantity that are
1432 supposed to be made to match, see if either one of the two
1433 can serve as the place to reload into.
1435 If one of them is acceptable, set rld[i].reg_rtx
1436 to that one. */
1438 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1440 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1441 inmode, outmode,
1442 rld[i].class, i,
1443 earlyclobber_operand_p (out));
1445 /* If the outgoing register already contains the same value
1446 as the incoming one, we can dispense with loading it.
1447 The easiest way to tell the caller that is to give a phony
1448 value for the incoming operand (same as outgoing one). */
1449 if (rld[i].reg_rtx == out
1450 && (REG_P (in) || CONSTANT_P (in))
1451 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1452 static_reload_reg_p, i, inmode))
1453 rld[i].in = out;
1456 /* If this is an input reload and the operand contains a register that
1457 dies in this insn and is used nowhere else, see if it is the right class
1458 to be used for this reload. Use it if so. (This occurs most commonly
1459 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1460 this if it is also an output reload that mentions the register unless
1461 the output is a SUBREG that clobbers an entire register.
1463 Note that the operand might be one of the spill regs, if it is a
1464 pseudo reg and we are in a block where spilling has not taken place.
1465 But if there is no spilling in this block, that is OK.
1466 An explicitly used hard reg cannot be a spill reg. */
1468 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1470 rtx note;
1471 int regno;
1472 enum machine_mode rel_mode = inmode;
1474 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1475 rel_mode = outmode;
1477 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1478 if (REG_NOTE_KIND (note) == REG_DEAD
1479 && REG_P (XEXP (note, 0))
1480 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1481 && reg_mentioned_p (XEXP (note, 0), in)
1482 /* Check that we don't use a hardreg for an uninitialized
1483 pseudo. See also find_dummy_reload(). */
1484 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1485 || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
1486 ORIGINAL_REGNO (XEXP (note, 0))))
1487 && ! refers_to_regno_for_reload_p (regno,
1488 (regno
1489 + hard_regno_nregs[regno]
1490 [rel_mode]),
1491 PATTERN (this_insn), inloc)
1492 /* If this is also an output reload, IN cannot be used as
1493 the reload register if it is set in this insn unless IN
1494 is also OUT. */
1495 && (out == 0 || in == out
1496 || ! hard_reg_set_here_p (regno,
1497 (regno
1498 + hard_regno_nregs[regno]
1499 [rel_mode]),
1500 PATTERN (this_insn)))
1501 /* ??? Why is this code so different from the previous?
1502 Is there any simple coherent way to describe the two together?
1503 What's going on here. */
1504 && (in != out
1505 || (GET_CODE (in) == SUBREG
1506 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1507 / UNITS_PER_WORD)
1508 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1509 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1510 /* Make sure the operand fits in the reg that dies. */
1511 && (GET_MODE_SIZE (rel_mode)
1512 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1513 && HARD_REGNO_MODE_OK (regno, inmode)
1514 && HARD_REGNO_MODE_OK (regno, outmode))
1516 unsigned int offs;
1517 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1518 hard_regno_nregs[regno][outmode]);
1520 for (offs = 0; offs < nregs; offs++)
1521 if (fixed_regs[regno + offs]
1522 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1523 regno + offs))
1524 break;
1526 if (offs == nregs
1527 && (! (refers_to_regno_for_reload_p
1528 (regno, (regno + hard_regno_nregs[regno][inmode]),
1529 in, (rtx *)0))
1530 || can_reload_into (in, regno, inmode)))
1532 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1533 break;
1538 if (out)
1539 output_reloadnum = i;
1541 return i;
1544 /* Record an additional place we must replace a value
1545 for which we have already recorded a reload.
1546 RELOADNUM is the value returned by push_reload
1547 when the reload was recorded.
1548 This is used in insn patterns that use match_dup. */
1550 static void
1551 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1553 if (replace_reloads)
1555 struct replacement *r = &replacements[n_replacements++];
1556 r->what = reloadnum;
1557 r->where = loc;
1558 r->subreg_loc = 0;
1559 r->mode = mode;
1563 /* Duplicate any replacement we have recorded to apply at
1564 location ORIG_LOC to also be performed at DUP_LOC.
1565 This is used in insn patterns that use match_dup. */
1567 static void
1568 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1570 int i, n = n_replacements;
1572 for (i = 0; i < n; i++)
1574 struct replacement *r = &replacements[i];
1575 if (r->where == orig_loc)
1576 push_replacement (dup_loc, r->what, r->mode);
1580 /* Transfer all replacements that used to be in reload FROM to be in
1581 reload TO. */
1583 void
1584 transfer_replacements (int to, int from)
1586 int i;
1588 for (i = 0; i < n_replacements; i++)
1589 if (replacements[i].what == from)
1590 replacements[i].what = to;
1593 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1594 or a subpart of it. If we have any replacements registered for IN_RTX,
1595 cancel the reloads that were supposed to load them.
1596 Return nonzero if we canceled any reloads. */
1598 remove_address_replacements (rtx in_rtx)
1600 int i, j;
1601 char reload_flags[MAX_RELOADS];
1602 int something_changed = 0;
1604 memset (reload_flags, 0, sizeof reload_flags);
1605 for (i = 0, j = 0; i < n_replacements; i++)
1607 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1608 reload_flags[replacements[i].what] |= 1;
1609 else
1611 replacements[j++] = replacements[i];
1612 reload_flags[replacements[i].what] |= 2;
1615 /* Note that the following store must be done before the recursive calls. */
1616 n_replacements = j;
1618 for (i = n_reloads - 1; i >= 0; i--)
1620 if (reload_flags[i] == 1)
1622 deallocate_reload_reg (i);
1623 remove_address_replacements (rld[i].in);
1624 rld[i].in = 0;
1625 something_changed = 1;
1628 return something_changed;
1631 /* If there is only one output reload, and it is not for an earlyclobber
1632 operand, try to combine it with a (logically unrelated) input reload
1633 to reduce the number of reload registers needed.
1635 This is safe if the input reload does not appear in
1636 the value being output-reloaded, because this implies
1637 it is not needed any more once the original insn completes.
1639 If that doesn't work, see we can use any of the registers that
1640 die in this insn as a reload register. We can if it is of the right
1641 class and does not appear in the value being output-reloaded. */
1643 static void
1644 combine_reloads (void)
1646 int i;
1647 int output_reload = -1;
1648 int secondary_out = -1;
1649 rtx note;
1651 /* Find the output reload; return unless there is exactly one
1652 and that one is mandatory. */
1654 for (i = 0; i < n_reloads; i++)
1655 if (rld[i].out != 0)
1657 if (output_reload >= 0)
1658 return;
1659 output_reload = i;
1662 if (output_reload < 0 || rld[output_reload].optional)
1663 return;
1665 /* An input-output reload isn't combinable. */
1667 if (rld[output_reload].in != 0)
1668 return;
1670 /* If this reload is for an earlyclobber operand, we can't do anything. */
1671 if (earlyclobber_operand_p (rld[output_reload].out))
1672 return;
1674 /* If there is a reload for part of the address of this operand, we would
1675 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1676 its life to the point where doing this combine would not lower the
1677 number of spill registers needed. */
1678 for (i = 0; i < n_reloads; i++)
1679 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1680 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1681 && rld[i].opnum == rld[output_reload].opnum)
1682 return;
1684 /* Check each input reload; can we combine it? */
1686 for (i = 0; i < n_reloads; i++)
1687 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1688 /* Life span of this reload must not extend past main insn. */
1689 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1690 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1691 && rld[i].when_needed != RELOAD_OTHER
1692 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1693 == CLASS_MAX_NREGS (rld[output_reload].class,
1694 rld[output_reload].outmode))
1695 && rld[i].inc == 0
1696 && rld[i].reg_rtx == 0
1697 #ifdef SECONDARY_MEMORY_NEEDED
1698 /* Don't combine two reloads with different secondary
1699 memory locations. */
1700 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1701 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1702 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1703 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1704 #endif
1705 && (SMALL_REGISTER_CLASSES
1706 ? (rld[i].class == rld[output_reload].class)
1707 : (reg_class_subset_p (rld[i].class,
1708 rld[output_reload].class)
1709 || reg_class_subset_p (rld[output_reload].class,
1710 rld[i].class)))
1711 && (MATCHES (rld[i].in, rld[output_reload].out)
1712 /* Args reversed because the first arg seems to be
1713 the one that we imagine being modified
1714 while the second is the one that might be affected. */
1715 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1716 rld[i].in)
1717 /* However, if the input is a register that appears inside
1718 the output, then we also can't share.
1719 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1720 If the same reload reg is used for both reg 69 and the
1721 result to be stored in memory, then that result
1722 will clobber the address of the memory ref. */
1723 && ! (REG_P (rld[i].in)
1724 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1725 rld[output_reload].out))))
1726 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1727 rld[i].when_needed != RELOAD_FOR_INPUT)
1728 && (reg_class_size[(int) rld[i].class]
1729 || SMALL_REGISTER_CLASSES)
1730 /* We will allow making things slightly worse by combining an
1731 input and an output, but no worse than that. */
1732 && (rld[i].when_needed == RELOAD_FOR_INPUT
1733 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1735 int j;
1737 /* We have found a reload to combine with! */
1738 rld[i].out = rld[output_reload].out;
1739 rld[i].out_reg = rld[output_reload].out_reg;
1740 rld[i].outmode = rld[output_reload].outmode;
1741 /* Mark the old output reload as inoperative. */
1742 rld[output_reload].out = 0;
1743 /* The combined reload is needed for the entire insn. */
1744 rld[i].when_needed = RELOAD_OTHER;
1745 /* If the output reload had a secondary reload, copy it. */
1746 if (rld[output_reload].secondary_out_reload != -1)
1748 rld[i].secondary_out_reload
1749 = rld[output_reload].secondary_out_reload;
1750 rld[i].secondary_out_icode
1751 = rld[output_reload].secondary_out_icode;
1754 #ifdef SECONDARY_MEMORY_NEEDED
1755 /* Copy any secondary MEM. */
1756 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1757 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1758 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1759 #endif
1760 /* If required, minimize the register class. */
1761 if (reg_class_subset_p (rld[output_reload].class,
1762 rld[i].class))
1763 rld[i].class = rld[output_reload].class;
1765 /* Transfer all replacements from the old reload to the combined. */
1766 for (j = 0; j < n_replacements; j++)
1767 if (replacements[j].what == output_reload)
1768 replacements[j].what = i;
1770 return;
1773 /* If this insn has only one operand that is modified or written (assumed
1774 to be the first), it must be the one corresponding to this reload. It
1775 is safe to use anything that dies in this insn for that output provided
1776 that it does not occur in the output (we already know it isn't an
1777 earlyclobber. If this is an asm insn, give up. */
1779 if (INSN_CODE (this_insn) == -1)
1780 return;
1782 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1783 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1784 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1785 return;
1787 /* See if some hard register that dies in this insn and is not used in
1788 the output is the right class. Only works if the register we pick
1789 up can fully hold our output reload. */
1790 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1791 if (REG_NOTE_KIND (note) == REG_DEAD
1792 && REG_P (XEXP (note, 0))
1793 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1794 rld[output_reload].out)
1795 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1796 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1797 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1798 REGNO (XEXP (note, 0)))
1799 && (hard_regno_nregs[REGNO (XEXP (note, 0))][rld[output_reload].outmode]
1800 <= hard_regno_nregs[REGNO (XEXP (note, 0))][GET_MODE (XEXP (note, 0))])
1801 /* Ensure that a secondary or tertiary reload for this output
1802 won't want this register. */
1803 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1804 || (! (TEST_HARD_REG_BIT
1805 (reg_class_contents[(int) rld[secondary_out].class],
1806 REGNO (XEXP (note, 0))))
1807 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1808 || ! (TEST_HARD_REG_BIT
1809 (reg_class_contents[(int) rld[secondary_out].class],
1810 REGNO (XEXP (note, 0)))))))
1811 && ! fixed_regs[REGNO (XEXP (note, 0))])
1813 rld[output_reload].reg_rtx
1814 = gen_rtx_REG (rld[output_reload].outmode,
1815 REGNO (XEXP (note, 0)));
1816 return;
1820 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1821 See if one of IN and OUT is a register that may be used;
1822 this is desirable since a spill-register won't be needed.
1823 If so, return the register rtx that proves acceptable.
1825 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1826 CLASS is the register class required for the reload.
1828 If FOR_REAL is >= 0, it is the number of the reload,
1829 and in some cases when it can be discovered that OUT doesn't need
1830 to be computed, clear out rld[FOR_REAL].out.
1832 If FOR_REAL is -1, this should not be done, because this call
1833 is just to see if a register can be found, not to find and install it.
1835 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1836 puts an additional constraint on being able to use IN for OUT since
1837 IN must not appear elsewhere in the insn (it is assumed that IN itself
1838 is safe from the earlyclobber). */
1840 static rtx
1841 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1842 enum machine_mode inmode, enum machine_mode outmode,
1843 enum reg_class class, int for_real, int earlyclobber)
1845 rtx in = real_in;
1846 rtx out = real_out;
1847 int in_offset = 0;
1848 int out_offset = 0;
1849 rtx value = 0;
1851 /* If operands exceed a word, we can't use either of them
1852 unless they have the same size. */
1853 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1854 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1855 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1856 return 0;
1858 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1859 respectively refers to a hard register. */
1861 /* Find the inside of any subregs. */
1862 while (GET_CODE (out) == SUBREG)
1864 if (REG_P (SUBREG_REG (out))
1865 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1866 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1867 GET_MODE (SUBREG_REG (out)),
1868 SUBREG_BYTE (out),
1869 GET_MODE (out));
1870 out = SUBREG_REG (out);
1872 while (GET_CODE (in) == SUBREG)
1874 if (REG_P (SUBREG_REG (in))
1875 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1876 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1877 GET_MODE (SUBREG_REG (in)),
1878 SUBREG_BYTE (in),
1879 GET_MODE (in));
1880 in = SUBREG_REG (in);
1883 /* Narrow down the reg class, the same way push_reload will;
1884 otherwise we might find a dummy now, but push_reload won't. */
1885 class = PREFERRED_RELOAD_CLASS (in, class);
1887 /* See if OUT will do. */
1888 if (REG_P (out)
1889 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1891 unsigned int regno = REGNO (out) + out_offset;
1892 unsigned int nwords = hard_regno_nregs[regno][outmode];
1893 rtx saved_rtx;
1895 /* When we consider whether the insn uses OUT,
1896 ignore references within IN. They don't prevent us
1897 from copying IN into OUT, because those refs would
1898 move into the insn that reloads IN.
1900 However, we only ignore IN in its role as this reload.
1901 If the insn uses IN elsewhere and it contains OUT,
1902 that counts. We can't be sure it's the "same" operand
1903 so it might not go through this reload. */
1904 saved_rtx = *inloc;
1905 *inloc = const0_rtx;
1907 if (regno < FIRST_PSEUDO_REGISTER
1908 && HARD_REGNO_MODE_OK (regno, outmode)
1909 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1910 PATTERN (this_insn), outloc))
1912 unsigned int i;
1914 for (i = 0; i < nwords; i++)
1915 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1916 regno + i))
1917 break;
1919 if (i == nwords)
1921 if (REG_P (real_out))
1922 value = real_out;
1923 else
1924 value = gen_rtx_REG (outmode, regno);
1928 *inloc = saved_rtx;
1931 /* Consider using IN if OUT was not acceptable
1932 or if OUT dies in this insn (like the quotient in a divmod insn).
1933 We can't use IN unless it is dies in this insn,
1934 which means we must know accurately which hard regs are live.
1935 Also, the result can't go in IN if IN is used within OUT,
1936 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1937 if (hard_regs_live_known
1938 && REG_P (in)
1939 && REGNO (in) < FIRST_PSEUDO_REGISTER
1940 && (value == 0
1941 || find_reg_note (this_insn, REG_UNUSED, real_out))
1942 && find_reg_note (this_insn, REG_DEAD, real_in)
1943 && !fixed_regs[REGNO (in)]
1944 && HARD_REGNO_MODE_OK (REGNO (in),
1945 /* The only case where out and real_out might
1946 have different modes is where real_out
1947 is a subreg, and in that case, out
1948 has a real mode. */
1949 (GET_MODE (out) != VOIDmode
1950 ? GET_MODE (out) : outmode))
1951 /* But only do all this if we can be sure, that this input
1952 operand doesn't correspond with an uninitialized pseudoreg.
1953 global can assign some hardreg to it, which is the same as
1954 a different pseudo also currently live (as it can ignore the
1955 conflict). So we never must introduce writes to such hardregs,
1956 as they would clobber the other live pseudo using the same.
1957 See also PR20973. */
1958 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
1959 || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
1960 ORIGINAL_REGNO (in))))
1962 unsigned int regno = REGNO (in) + in_offset;
1963 unsigned int nwords = hard_regno_nregs[regno][inmode];
1965 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
1966 && ! hard_reg_set_here_p (regno, regno + nwords,
1967 PATTERN (this_insn))
1968 && (! earlyclobber
1969 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1970 PATTERN (this_insn), inloc)))
1972 unsigned int i;
1974 for (i = 0; i < nwords; i++)
1975 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1976 regno + i))
1977 break;
1979 if (i == nwords)
1981 /* If we were going to use OUT as the reload reg
1982 and changed our mind, it means OUT is a dummy that
1983 dies here. So don't bother copying value to it. */
1984 if (for_real >= 0 && value == real_out)
1985 rld[for_real].out = 0;
1986 if (REG_P (real_in))
1987 value = real_in;
1988 else
1989 value = gen_rtx_REG (inmode, regno);
1994 return value;
1997 /* This page contains subroutines used mainly for determining
1998 whether the IN or an OUT of a reload can serve as the
1999 reload register. */
2001 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2004 earlyclobber_operand_p (rtx x)
2006 int i;
2008 for (i = 0; i < n_earlyclobbers; i++)
2009 if (reload_earlyclobbers[i] == x)
2010 return 1;
2012 return 0;
2015 /* Return 1 if expression X alters a hard reg in the range
2016 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2017 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2018 X should be the body of an instruction. */
2020 static int
2021 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2023 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2025 rtx op0 = SET_DEST (x);
2027 while (GET_CODE (op0) == SUBREG)
2028 op0 = SUBREG_REG (op0);
2029 if (REG_P (op0))
2031 unsigned int r = REGNO (op0);
2033 /* See if this reg overlaps range under consideration. */
2034 if (r < end_regno
2035 && r + hard_regno_nregs[r][GET_MODE (op0)] > beg_regno)
2036 return 1;
2039 else if (GET_CODE (x) == PARALLEL)
2041 int i = XVECLEN (x, 0) - 1;
2043 for (; i >= 0; i--)
2044 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2045 return 1;
2048 return 0;
2051 /* Return 1 if ADDR is a valid memory address for mode MODE,
2052 and check that each pseudo reg has the proper kind of
2053 hard reg. */
2056 strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
2058 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2059 return 0;
2061 win:
2062 return 1;
2065 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2066 if they are the same hard reg, and has special hacks for
2067 autoincrement and autodecrement.
2068 This is specifically intended for find_reloads to use
2069 in determining whether two operands match.
2070 X is the operand whose number is the lower of the two.
2072 The value is 2 if Y contains a pre-increment that matches
2073 a non-incrementing address in X. */
2075 /* ??? To be completely correct, we should arrange to pass
2076 for X the output operand and for Y the input operand.
2077 For now, we assume that the output operand has the lower number
2078 because that is natural in (SET output (... input ...)). */
2081 operands_match_p (rtx x, rtx y)
2083 int i;
2084 RTX_CODE code = GET_CODE (x);
2085 const char *fmt;
2086 int success_2;
2088 if (x == y)
2089 return 1;
2090 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2091 && (REG_P (y) || (GET_CODE (y) == SUBREG
2092 && REG_P (SUBREG_REG (y)))))
2094 int j;
2096 if (code == SUBREG)
2098 i = REGNO (SUBREG_REG (x));
2099 if (i >= FIRST_PSEUDO_REGISTER)
2100 goto slow;
2101 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2102 GET_MODE (SUBREG_REG (x)),
2103 SUBREG_BYTE (x),
2104 GET_MODE (x));
2106 else
2107 i = REGNO (x);
2109 if (GET_CODE (y) == SUBREG)
2111 j = REGNO (SUBREG_REG (y));
2112 if (j >= FIRST_PSEUDO_REGISTER)
2113 goto slow;
2114 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2115 GET_MODE (SUBREG_REG (y)),
2116 SUBREG_BYTE (y),
2117 GET_MODE (y));
2119 else
2120 j = REGNO (y);
2122 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2123 multiple hard register group of scalar integer registers, so that
2124 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2125 register. */
2126 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2127 && SCALAR_INT_MODE_P (GET_MODE (x))
2128 && i < FIRST_PSEUDO_REGISTER)
2129 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2130 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2131 && SCALAR_INT_MODE_P (GET_MODE (y))
2132 && j < FIRST_PSEUDO_REGISTER)
2133 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2135 return i == j;
2137 /* If two operands must match, because they are really a single
2138 operand of an assembler insn, then two postincrements are invalid
2139 because the assembler insn would increment only once.
2140 On the other hand, a postincrement matches ordinary indexing
2141 if the postincrement is the output operand. */
2142 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2143 return operands_match_p (XEXP (x, 0), y);
2144 /* Two preincrements are invalid
2145 because the assembler insn would increment only once.
2146 On the other hand, a preincrement matches ordinary indexing
2147 if the preincrement is the input operand.
2148 In this case, return 2, since some callers need to do special
2149 things when this happens. */
2150 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2151 || GET_CODE (y) == PRE_MODIFY)
2152 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2154 slow:
2156 /* Now we have disposed of all the cases in which different rtx codes
2157 can match. */
2158 if (code != GET_CODE (y))
2159 return 0;
2161 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2162 if (GET_MODE (x) != GET_MODE (y))
2163 return 0;
2165 switch (code)
2167 case CONST_INT:
2168 case CONST_DOUBLE:
2169 return 0;
2171 case LABEL_REF:
2172 return XEXP (x, 0) == XEXP (y, 0);
2173 case SYMBOL_REF:
2174 return XSTR (x, 0) == XSTR (y, 0);
2176 default:
2177 break;
2180 /* Compare the elements. If any pair of corresponding elements
2181 fail to match, return 0 for the whole things. */
2183 success_2 = 0;
2184 fmt = GET_RTX_FORMAT (code);
2185 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2187 int val, j;
2188 switch (fmt[i])
2190 case 'w':
2191 if (XWINT (x, i) != XWINT (y, i))
2192 return 0;
2193 break;
2195 case 'i':
2196 if (XINT (x, i) != XINT (y, i))
2197 return 0;
2198 break;
2200 case 'e':
2201 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2202 if (val == 0)
2203 return 0;
2204 /* If any subexpression returns 2,
2205 we should return 2 if we are successful. */
2206 if (val == 2)
2207 success_2 = 1;
2208 break;
2210 case '0':
2211 break;
2213 case 'E':
2214 if (XVECLEN (x, i) != XVECLEN (y, i))
2215 return 0;
2216 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2218 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2219 if (val == 0)
2220 return 0;
2221 if (val == 2)
2222 success_2 = 1;
2224 break;
2226 /* It is believed that rtx's at this level will never
2227 contain anything but integers and other rtx's,
2228 except for within LABEL_REFs and SYMBOL_REFs. */
2229 default:
2230 gcc_unreachable ();
2233 return 1 + success_2;
2236 /* Describe the range of registers or memory referenced by X.
2237 If X is a register, set REG_FLAG and put the first register
2238 number into START and the last plus one into END.
2239 If X is a memory reference, put a base address into BASE
2240 and a range of integer offsets into START and END.
2241 If X is pushing on the stack, we can assume it causes no trouble,
2242 so we set the SAFE field. */
2244 static struct decomposition
2245 decompose (rtx x)
2247 struct decomposition val;
2248 int all_const = 0;
2250 memset (&val, 0, sizeof (val));
2252 switch (GET_CODE (x))
2254 case MEM:
2256 rtx base = NULL_RTX, offset = 0;
2257 rtx addr = XEXP (x, 0);
2259 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2260 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2262 val.base = XEXP (addr, 0);
2263 val.start = -GET_MODE_SIZE (GET_MODE (x));
2264 val.end = GET_MODE_SIZE (GET_MODE (x));
2265 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2266 return val;
2269 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2271 if (GET_CODE (XEXP (addr, 1)) == PLUS
2272 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2273 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2275 val.base = XEXP (addr, 0);
2276 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2277 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2278 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2279 return val;
2283 if (GET_CODE (addr) == CONST)
2285 addr = XEXP (addr, 0);
2286 all_const = 1;
2288 if (GET_CODE (addr) == PLUS)
2290 if (CONSTANT_P (XEXP (addr, 0)))
2292 base = XEXP (addr, 1);
2293 offset = XEXP (addr, 0);
2295 else if (CONSTANT_P (XEXP (addr, 1)))
2297 base = XEXP (addr, 0);
2298 offset = XEXP (addr, 1);
2302 if (offset == 0)
2304 base = addr;
2305 offset = const0_rtx;
2307 if (GET_CODE (offset) == CONST)
2308 offset = XEXP (offset, 0);
2309 if (GET_CODE (offset) == PLUS)
2311 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2313 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2314 offset = XEXP (offset, 0);
2316 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2318 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2319 offset = XEXP (offset, 1);
2321 else
2323 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2324 offset = const0_rtx;
2327 else if (GET_CODE (offset) != CONST_INT)
2329 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2330 offset = const0_rtx;
2333 if (all_const && GET_CODE (base) == PLUS)
2334 base = gen_rtx_CONST (GET_MODE (base), base);
2336 gcc_assert (GET_CODE (offset) == CONST_INT);
2338 val.start = INTVAL (offset);
2339 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2340 val.base = base;
2342 break;
2344 case REG:
2345 val.reg_flag = 1;
2346 val.start = true_regnum (x);
2347 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2349 /* A pseudo with no hard reg. */
2350 val.start = REGNO (x);
2351 val.end = val.start + 1;
2353 else
2354 /* A hard reg. */
2355 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2356 break;
2358 case SUBREG:
2359 if (!REG_P (SUBREG_REG (x)))
2360 /* This could be more precise, but it's good enough. */
2361 return decompose (SUBREG_REG (x));
2362 val.reg_flag = 1;
2363 val.start = true_regnum (x);
2364 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2365 return decompose (SUBREG_REG (x));
2366 else
2367 /* A hard reg. */
2368 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2369 break;
2371 case SCRATCH:
2372 /* This hasn't been assigned yet, so it can't conflict yet. */
2373 val.safe = 1;
2374 break;
2376 default:
2377 gcc_assert (CONSTANT_P (x));
2378 val.safe = 1;
2379 break;
2381 return val;
2384 /* Return 1 if altering Y will not modify the value of X.
2385 Y is also described by YDATA, which should be decompose (Y). */
2387 static int
2388 immune_p (rtx x, rtx y, struct decomposition ydata)
2390 struct decomposition xdata;
2392 if (ydata.reg_flag)
2393 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2394 if (ydata.safe)
2395 return 1;
2397 gcc_assert (MEM_P (y));
2398 /* If Y is memory and X is not, Y can't affect X. */
2399 if (!MEM_P (x))
2400 return 1;
2402 xdata = decompose (x);
2404 if (! rtx_equal_p (xdata.base, ydata.base))
2406 /* If bases are distinct symbolic constants, there is no overlap. */
2407 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2408 return 1;
2409 /* Constants and stack slots never overlap. */
2410 if (CONSTANT_P (xdata.base)
2411 && (ydata.base == frame_pointer_rtx
2412 || ydata.base == hard_frame_pointer_rtx
2413 || ydata.base == stack_pointer_rtx))
2414 return 1;
2415 if (CONSTANT_P (ydata.base)
2416 && (xdata.base == frame_pointer_rtx
2417 || xdata.base == hard_frame_pointer_rtx
2418 || xdata.base == stack_pointer_rtx))
2419 return 1;
2420 /* If either base is variable, we don't know anything. */
2421 return 0;
2424 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2427 /* Similar, but calls decompose. */
2430 safe_from_earlyclobber (rtx op, rtx clobber)
2432 struct decomposition early_data;
2434 early_data = decompose (clobber);
2435 return immune_p (op, clobber, early_data);
2438 /* Main entry point of this file: search the body of INSN
2439 for values that need reloading and record them with push_reload.
2440 REPLACE nonzero means record also where the values occur
2441 so that subst_reloads can be used.
2443 IND_LEVELS says how many levels of indirection are supported by this
2444 machine; a value of zero means that a memory reference is not a valid
2445 memory address.
2447 LIVE_KNOWN says we have valid information about which hard
2448 regs are live at each point in the program; this is true when
2449 we are called from global_alloc but false when stupid register
2450 allocation has been done.
2452 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2453 which is nonnegative if the reg has been commandeered for reloading into.
2454 It is copied into STATIC_RELOAD_REG_P and referenced from there
2455 by various subroutines.
2457 Return TRUE if some operands need to be changed, because of swapping
2458 commutative operands, reg_equiv_address substitution, or whatever. */
2461 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2462 short *reload_reg_p)
2464 int insn_code_number;
2465 int i, j;
2466 int noperands;
2467 /* These start out as the constraints for the insn
2468 and they are chewed up as we consider alternatives. */
2469 char *constraints[MAX_RECOG_OPERANDS];
2470 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2471 a register. */
2472 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2473 char pref_or_nothing[MAX_RECOG_OPERANDS];
2474 /* Nonzero for a MEM operand whose entire address needs a reload.
2475 May be -1 to indicate the entire address may or may not need a reload. */
2476 int address_reloaded[MAX_RECOG_OPERANDS];
2477 /* Nonzero for an address operand that needs to be completely reloaded.
2478 May be -1 to indicate the entire operand may or may not need a reload. */
2479 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2480 /* Value of enum reload_type to use for operand. */
2481 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2482 /* Value of enum reload_type to use within address of operand. */
2483 enum reload_type address_type[MAX_RECOG_OPERANDS];
2484 /* Save the usage of each operand. */
2485 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2486 int no_input_reloads = 0, no_output_reloads = 0;
2487 int n_alternatives;
2488 int this_alternative[MAX_RECOG_OPERANDS];
2489 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2490 char this_alternative_win[MAX_RECOG_OPERANDS];
2491 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2492 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2493 int this_alternative_matches[MAX_RECOG_OPERANDS];
2494 int swapped;
2495 int goal_alternative[MAX_RECOG_OPERANDS];
2496 int this_alternative_number;
2497 int goal_alternative_number = 0;
2498 int operand_reloadnum[MAX_RECOG_OPERANDS];
2499 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2500 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2501 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2502 char goal_alternative_win[MAX_RECOG_OPERANDS];
2503 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2504 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2505 int goal_alternative_swapped;
2506 int best;
2507 int commutative;
2508 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2509 rtx substed_operand[MAX_RECOG_OPERANDS];
2510 rtx body = PATTERN (insn);
2511 rtx set = single_set (insn);
2512 int goal_earlyclobber = 0, this_earlyclobber;
2513 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2514 int retval = 0;
2516 this_insn = insn;
2517 n_reloads = 0;
2518 n_replacements = 0;
2519 n_earlyclobbers = 0;
2520 replace_reloads = replace;
2521 hard_regs_live_known = live_known;
2522 static_reload_reg_p = reload_reg_p;
2524 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2525 neither are insns that SET cc0. Insns that use CC0 are not allowed
2526 to have any input reloads. */
2527 if (JUMP_P (insn) || CALL_P (insn))
2528 no_output_reloads = 1;
2530 #ifdef HAVE_cc0
2531 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2532 no_input_reloads = 1;
2533 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2534 no_output_reloads = 1;
2535 #endif
2537 #ifdef SECONDARY_MEMORY_NEEDED
2538 /* The eliminated forms of any secondary memory locations are per-insn, so
2539 clear them out here. */
2541 if (secondary_memlocs_elim_used)
2543 memset (secondary_memlocs_elim, 0,
2544 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2545 secondary_memlocs_elim_used = 0;
2547 #endif
2549 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2550 is cheap to move between them. If it is not, there may not be an insn
2551 to do the copy, so we may need a reload. */
2552 if (GET_CODE (body) == SET
2553 && REG_P (SET_DEST (body))
2554 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2555 && REG_P (SET_SRC (body))
2556 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2557 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2558 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2559 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2560 return 0;
2562 extract_insn (insn);
2564 noperands = reload_n_operands = recog_data.n_operands;
2565 n_alternatives = recog_data.n_alternatives;
2567 /* Just return "no reloads" if insn has no operands with constraints. */
2568 if (noperands == 0 || n_alternatives == 0)
2569 return 0;
2571 insn_code_number = INSN_CODE (insn);
2572 this_insn_is_asm = insn_code_number < 0;
2574 memcpy (operand_mode, recog_data.operand_mode,
2575 noperands * sizeof (enum machine_mode));
2576 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2578 commutative = -1;
2580 /* If we will need to know, later, whether some pair of operands
2581 are the same, we must compare them now and save the result.
2582 Reloading the base and index registers will clobber them
2583 and afterward they will fail to match. */
2585 for (i = 0; i < noperands; i++)
2587 char *p;
2588 int c;
2590 substed_operand[i] = recog_data.operand[i];
2591 p = constraints[i];
2593 modified[i] = RELOAD_READ;
2595 /* Scan this operand's constraint to see if it is an output operand,
2596 an in-out operand, is commutative, or should match another. */
2598 while ((c = *p))
2600 p += CONSTRAINT_LEN (c, p);
2601 switch (c)
2603 case '=':
2604 modified[i] = RELOAD_WRITE;
2605 break;
2606 case '+':
2607 modified[i] = RELOAD_READ_WRITE;
2608 break;
2609 case '%':
2611 /* The last operand should not be marked commutative. */
2612 gcc_assert (i != noperands - 1);
2614 /* We currently only support one commutative pair of
2615 operands. Some existing asm code currently uses more
2616 than one pair. Previously, that would usually work,
2617 but sometimes it would crash the compiler. We
2618 continue supporting that case as well as we can by
2619 silently ignoring all but the first pair. In the
2620 future we may handle it correctly. */
2621 if (commutative < 0)
2622 commutative = i;
2623 else
2624 gcc_assert (this_insn_is_asm);
2626 break;
2627 /* Use of ISDIGIT is tempting here, but it may get expensive because
2628 of locale support we don't want. */
2629 case '0': case '1': case '2': case '3': case '4':
2630 case '5': case '6': case '7': case '8': case '9':
2632 c = strtoul (p - 1, &p, 10);
2634 operands_match[c][i]
2635 = operands_match_p (recog_data.operand[c],
2636 recog_data.operand[i]);
2638 /* An operand may not match itself. */
2639 gcc_assert (c != i);
2641 /* If C can be commuted with C+1, and C might need to match I,
2642 then C+1 might also need to match I. */
2643 if (commutative >= 0)
2645 if (c == commutative || c == commutative + 1)
2647 int other = c + (c == commutative ? 1 : -1);
2648 operands_match[other][i]
2649 = operands_match_p (recog_data.operand[other],
2650 recog_data.operand[i]);
2652 if (i == commutative || i == commutative + 1)
2654 int other = i + (i == commutative ? 1 : -1);
2655 operands_match[c][other]
2656 = operands_match_p (recog_data.operand[c],
2657 recog_data.operand[other]);
2659 /* Note that C is supposed to be less than I.
2660 No need to consider altering both C and I because in
2661 that case we would alter one into the other. */
2668 /* Examine each operand that is a memory reference or memory address
2669 and reload parts of the addresses into index registers.
2670 Also here any references to pseudo regs that didn't get hard regs
2671 but are equivalent to constants get replaced in the insn itself
2672 with those constants. Nobody will ever see them again.
2674 Finally, set up the preferred classes of each operand. */
2676 for (i = 0; i < noperands; i++)
2678 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2680 address_reloaded[i] = 0;
2681 address_operand_reloaded[i] = 0;
2682 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2683 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2684 : RELOAD_OTHER);
2685 address_type[i]
2686 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2687 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2688 : RELOAD_OTHER);
2690 if (*constraints[i] == 0)
2691 /* Ignore things like match_operator operands. */
2693 else if (constraints[i][0] == 'p'
2694 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2696 address_operand_reloaded[i]
2697 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2698 recog_data.operand[i],
2699 recog_data.operand_loc[i],
2700 i, operand_type[i], ind_levels, insn);
2702 /* If we now have a simple operand where we used to have a
2703 PLUS or MULT, re-recognize and try again. */
2704 if ((OBJECT_P (*recog_data.operand_loc[i])
2705 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2706 && (GET_CODE (recog_data.operand[i]) == MULT
2707 || GET_CODE (recog_data.operand[i]) == PLUS))
2709 INSN_CODE (insn) = -1;
2710 retval = find_reloads (insn, replace, ind_levels, live_known,
2711 reload_reg_p);
2712 return retval;
2715 recog_data.operand[i] = *recog_data.operand_loc[i];
2716 substed_operand[i] = recog_data.operand[i];
2718 /* Address operands are reloaded in their existing mode,
2719 no matter what is specified in the machine description. */
2720 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2722 else if (code == MEM)
2724 address_reloaded[i]
2725 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2726 recog_data.operand_loc[i],
2727 XEXP (recog_data.operand[i], 0),
2728 &XEXP (recog_data.operand[i], 0),
2729 i, address_type[i], ind_levels, insn);
2730 recog_data.operand[i] = *recog_data.operand_loc[i];
2731 substed_operand[i] = recog_data.operand[i];
2733 else if (code == SUBREG)
2735 rtx reg = SUBREG_REG (recog_data.operand[i]);
2736 rtx op
2737 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2738 ind_levels,
2739 set != 0
2740 && &SET_DEST (set) == recog_data.operand_loc[i],
2741 insn,
2742 &address_reloaded[i]);
2744 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2745 that didn't get a hard register, emit a USE with a REG_EQUAL
2746 note in front so that we might inherit a previous, possibly
2747 wider reload. */
2749 if (replace
2750 && MEM_P (op)
2751 && REG_P (reg)
2752 && (GET_MODE_SIZE (GET_MODE (reg))
2753 >= GET_MODE_SIZE (GET_MODE (op))))
2754 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2755 insn),
2756 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2758 substed_operand[i] = recog_data.operand[i] = op;
2760 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2761 /* We can get a PLUS as an "operand" as a result of register
2762 elimination. See eliminate_regs and gen_reload. We handle
2763 a unary operator by reloading the operand. */
2764 substed_operand[i] = recog_data.operand[i]
2765 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2766 ind_levels, 0, insn,
2767 &address_reloaded[i]);
2768 else if (code == REG)
2770 /* This is equivalent to calling find_reloads_toplev.
2771 The code is duplicated for speed.
2772 When we find a pseudo always equivalent to a constant,
2773 we replace it by the constant. We must be sure, however,
2774 that we don't try to replace it in the insn in which it
2775 is being set. */
2776 int regno = REGNO (recog_data.operand[i]);
2777 if (reg_equiv_constant[regno] != 0
2778 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2780 /* Record the existing mode so that the check if constants are
2781 allowed will work when operand_mode isn't specified. */
2783 if (operand_mode[i] == VOIDmode)
2784 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2786 substed_operand[i] = recog_data.operand[i]
2787 = reg_equiv_constant[regno];
2789 if (reg_equiv_memory_loc[regno] != 0
2790 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2791 /* We need not give a valid is_set_dest argument since the case
2792 of a constant equivalence was checked above. */
2793 substed_operand[i] = recog_data.operand[i]
2794 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2795 ind_levels, 0, insn,
2796 &address_reloaded[i]);
2798 /* If the operand is still a register (we didn't replace it with an
2799 equivalent), get the preferred class to reload it into. */
2800 code = GET_CODE (recog_data.operand[i]);
2801 preferred_class[i]
2802 = ((code == REG && REGNO (recog_data.operand[i])
2803 >= FIRST_PSEUDO_REGISTER)
2804 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2805 : NO_REGS);
2806 pref_or_nothing[i]
2807 = (code == REG
2808 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2809 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2812 /* If this is simply a copy from operand 1 to operand 0, merge the
2813 preferred classes for the operands. */
2814 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2815 && recog_data.operand[1] == SET_SRC (set))
2817 preferred_class[0] = preferred_class[1]
2818 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2819 pref_or_nothing[0] |= pref_or_nothing[1];
2820 pref_or_nothing[1] |= pref_or_nothing[0];
2823 /* Now see what we need for pseudo-regs that didn't get hard regs
2824 or got the wrong kind of hard reg. For this, we must consider
2825 all the operands together against the register constraints. */
2827 best = MAX_RECOG_OPERANDS * 2 + 600;
2829 swapped = 0;
2830 goal_alternative_swapped = 0;
2831 try_swapped:
2833 /* The constraints are made of several alternatives.
2834 Each operand's constraint looks like foo,bar,... with commas
2835 separating the alternatives. The first alternatives for all
2836 operands go together, the second alternatives go together, etc.
2838 First loop over alternatives. */
2840 for (this_alternative_number = 0;
2841 this_alternative_number < n_alternatives;
2842 this_alternative_number++)
2844 /* Loop over operands for one constraint alternative. */
2845 /* LOSERS counts those that don't fit this alternative
2846 and would require loading. */
2847 int losers = 0;
2848 /* BAD is set to 1 if it some operand can't fit this alternative
2849 even after reloading. */
2850 int bad = 0;
2851 /* REJECT is a count of how undesirable this alternative says it is
2852 if any reloading is required. If the alternative matches exactly
2853 then REJECT is ignored, but otherwise it gets this much
2854 counted against it in addition to the reloading needed. Each
2855 ? counts three times here since we want the disparaging caused by
2856 a bad register class to only count 1/3 as much. */
2857 int reject = 0;
2859 this_earlyclobber = 0;
2861 for (i = 0; i < noperands; i++)
2863 char *p = constraints[i];
2864 char *end;
2865 int len;
2866 int win = 0;
2867 int did_match = 0;
2868 /* 0 => this operand can be reloaded somehow for this alternative. */
2869 int badop = 1;
2870 /* 0 => this operand can be reloaded if the alternative allows regs. */
2871 int winreg = 0;
2872 int c;
2873 int m;
2874 rtx operand = recog_data.operand[i];
2875 int offset = 0;
2876 /* Nonzero means this is a MEM that must be reloaded into a reg
2877 regardless of what the constraint says. */
2878 int force_reload = 0;
2879 int offmemok = 0;
2880 /* Nonzero if a constant forced into memory would be OK for this
2881 operand. */
2882 int constmemok = 0;
2883 int earlyclobber = 0;
2885 /* If the predicate accepts a unary operator, it means that
2886 we need to reload the operand, but do not do this for
2887 match_operator and friends. */
2888 if (UNARY_P (operand) && *p != 0)
2889 operand = XEXP (operand, 0);
2891 /* If the operand is a SUBREG, extract
2892 the REG or MEM (or maybe even a constant) within.
2893 (Constants can occur as a result of reg_equiv_constant.) */
2895 while (GET_CODE (operand) == SUBREG)
2897 /* Offset only matters when operand is a REG and
2898 it is a hard reg. This is because it is passed
2899 to reg_fits_class_p if it is a REG and all pseudos
2900 return 0 from that function. */
2901 if (REG_P (SUBREG_REG (operand))
2902 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2904 if (!subreg_offset_representable_p
2905 (REGNO (SUBREG_REG (operand)),
2906 GET_MODE (SUBREG_REG (operand)),
2907 SUBREG_BYTE (operand),
2908 GET_MODE (operand)))
2909 force_reload = 1;
2910 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2911 GET_MODE (SUBREG_REG (operand)),
2912 SUBREG_BYTE (operand),
2913 GET_MODE (operand));
2915 operand = SUBREG_REG (operand);
2916 /* Force reload if this is a constant or PLUS or if there may
2917 be a problem accessing OPERAND in the outer mode. */
2918 if (CONSTANT_P (operand)
2919 || GET_CODE (operand) == PLUS
2920 /* We must force a reload of paradoxical SUBREGs
2921 of a MEM because the alignment of the inner value
2922 may not be enough to do the outer reference. On
2923 big-endian machines, it may also reference outside
2924 the object.
2926 On machines that extend byte operations and we have a
2927 SUBREG where both the inner and outer modes are no wider
2928 than a word and the inner mode is narrower, is integral,
2929 and gets extended when loaded from memory, combine.c has
2930 made assumptions about the behavior of the machine in such
2931 register access. If the data is, in fact, in memory we
2932 must always load using the size assumed to be in the
2933 register and let the insn do the different-sized
2934 accesses.
2936 This is doubly true if WORD_REGISTER_OPERATIONS. In
2937 this case eliminate_regs has left non-paradoxical
2938 subregs for push_reload to see. Make sure it does
2939 by forcing the reload.
2941 ??? When is it right at this stage to have a subreg
2942 of a mem that is _not_ to be handled specially? IMO
2943 those should have been reduced to just a mem. */
2944 || ((MEM_P (operand)
2945 || (REG_P (operand)
2946 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2947 #ifndef WORD_REGISTER_OPERATIONS
2948 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2949 < BIGGEST_ALIGNMENT)
2950 && (GET_MODE_SIZE (operand_mode[i])
2951 > GET_MODE_SIZE (GET_MODE (operand))))
2952 || BYTES_BIG_ENDIAN
2953 #ifdef LOAD_EXTEND_OP
2954 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2955 && (GET_MODE_SIZE (GET_MODE (operand))
2956 <= UNITS_PER_WORD)
2957 && (GET_MODE_SIZE (operand_mode[i])
2958 > GET_MODE_SIZE (GET_MODE (operand)))
2959 && INTEGRAL_MODE_P (GET_MODE (operand))
2960 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
2961 #endif
2963 #endif
2966 force_reload = 1;
2969 this_alternative[i] = (int) NO_REGS;
2970 this_alternative_win[i] = 0;
2971 this_alternative_match_win[i] = 0;
2972 this_alternative_offmemok[i] = 0;
2973 this_alternative_earlyclobber[i] = 0;
2974 this_alternative_matches[i] = -1;
2976 /* An empty constraint or empty alternative
2977 allows anything which matched the pattern. */
2978 if (*p == 0 || *p == ',')
2979 win = 1, badop = 0;
2981 /* Scan this alternative's specs for this operand;
2982 set WIN if the operand fits any letter in this alternative.
2983 Otherwise, clear BADOP if this operand could
2984 fit some letter after reloads,
2985 or set WINREG if this operand could fit after reloads
2986 provided the constraint allows some registers. */
2989 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
2991 case '\0':
2992 len = 0;
2993 break;
2994 case ',':
2995 c = '\0';
2996 break;
2998 case '=': case '+': case '*':
2999 break;
3001 case '%':
3002 /* We only support one commutative marker, the first
3003 one. We already set commutative above. */
3004 break;
3006 case '?':
3007 reject += 6;
3008 break;
3010 case '!':
3011 reject = 600;
3012 break;
3014 case '#':
3015 /* Ignore rest of this alternative as far as
3016 reloading is concerned. */
3018 p++;
3019 while (*p && *p != ',');
3020 len = 0;
3021 break;
3023 case '0': case '1': case '2': case '3': case '4':
3024 case '5': case '6': case '7': case '8': case '9':
3025 m = strtoul (p, &end, 10);
3026 p = end;
3027 len = 0;
3029 this_alternative_matches[i] = m;
3030 /* We are supposed to match a previous operand.
3031 If we do, we win if that one did.
3032 If we do not, count both of the operands as losers.
3033 (This is too conservative, since most of the time
3034 only a single reload insn will be needed to make
3035 the two operands win. As a result, this alternative
3036 may be rejected when it is actually desirable.) */
3037 if ((swapped && (m != commutative || i != commutative + 1))
3038 /* If we are matching as if two operands were swapped,
3039 also pretend that operands_match had been computed
3040 with swapped.
3041 But if I is the second of those and C is the first,
3042 don't exchange them, because operands_match is valid
3043 only on one side of its diagonal. */
3044 ? (operands_match
3045 [(m == commutative || m == commutative + 1)
3046 ? 2 * commutative + 1 - m : m]
3047 [(i == commutative || i == commutative + 1)
3048 ? 2 * commutative + 1 - i : i])
3049 : operands_match[m][i])
3051 /* If we are matching a non-offsettable address where an
3052 offsettable address was expected, then we must reject
3053 this combination, because we can't reload it. */
3054 if (this_alternative_offmemok[m]
3055 && MEM_P (recog_data.operand[m])
3056 && this_alternative[m] == (int) NO_REGS
3057 && ! this_alternative_win[m])
3058 bad = 1;
3060 did_match = this_alternative_win[m];
3062 else
3064 /* Operands don't match. */
3065 rtx value;
3066 int loc1, loc2;
3067 /* Retroactively mark the operand we had to match
3068 as a loser, if it wasn't already. */
3069 if (this_alternative_win[m])
3070 losers++;
3071 this_alternative_win[m] = 0;
3072 if (this_alternative[m] == (int) NO_REGS)
3073 bad = 1;
3074 /* But count the pair only once in the total badness of
3075 this alternative, if the pair can be a dummy reload.
3076 The pointers in operand_loc are not swapped; swap
3077 them by hand if necessary. */
3078 if (swapped && i == commutative)
3079 loc1 = commutative + 1;
3080 else if (swapped && i == commutative + 1)
3081 loc1 = commutative;
3082 else
3083 loc1 = i;
3084 if (swapped && m == commutative)
3085 loc2 = commutative + 1;
3086 else if (swapped && m == commutative + 1)
3087 loc2 = commutative;
3088 else
3089 loc2 = m;
3090 value
3091 = find_dummy_reload (recog_data.operand[i],
3092 recog_data.operand[m],
3093 recog_data.operand_loc[loc1],
3094 recog_data.operand_loc[loc2],
3095 operand_mode[i], operand_mode[m],
3096 this_alternative[m], -1,
3097 this_alternative_earlyclobber[m]);
3099 if (value != 0)
3100 losers--;
3102 /* This can be fixed with reloads if the operand
3103 we are supposed to match can be fixed with reloads. */
3104 badop = 0;
3105 this_alternative[i] = this_alternative[m];
3107 /* If we have to reload this operand and some previous
3108 operand also had to match the same thing as this
3109 operand, we don't know how to do that. So reject this
3110 alternative. */
3111 if (! did_match || force_reload)
3112 for (j = 0; j < i; j++)
3113 if (this_alternative_matches[j]
3114 == this_alternative_matches[i])
3115 badop = 1;
3116 break;
3118 case 'p':
3119 /* All necessary reloads for an address_operand
3120 were handled in find_reloads_address. */
3121 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3122 win = 1;
3123 badop = 0;
3124 break;
3126 case 'm':
3127 if (force_reload)
3128 break;
3129 if (MEM_P (operand)
3130 || (REG_P (operand)
3131 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3132 && reg_renumber[REGNO (operand)] < 0))
3133 win = 1;
3134 if (CONST_POOL_OK_P (operand))
3135 badop = 0;
3136 constmemok = 1;
3137 break;
3139 case '<':
3140 if (MEM_P (operand)
3141 && ! address_reloaded[i]
3142 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3143 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3144 win = 1;
3145 break;
3147 case '>':
3148 if (MEM_P (operand)
3149 && ! address_reloaded[i]
3150 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3151 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3152 win = 1;
3153 break;
3155 /* Memory operand whose address is not offsettable. */
3156 case 'V':
3157 if (force_reload)
3158 break;
3159 if (MEM_P (operand)
3160 && ! (ind_levels ? offsettable_memref_p (operand)
3161 : offsettable_nonstrict_memref_p (operand))
3162 /* Certain mem addresses will become offsettable
3163 after they themselves are reloaded. This is important;
3164 we don't want our own handling of unoffsettables
3165 to override the handling of reg_equiv_address. */
3166 && !(REG_P (XEXP (operand, 0))
3167 && (ind_levels == 0
3168 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3169 win = 1;
3170 break;
3172 /* Memory operand whose address is offsettable. */
3173 case 'o':
3174 if (force_reload)
3175 break;
3176 if ((MEM_P (operand)
3177 /* If IND_LEVELS, find_reloads_address won't reload a
3178 pseudo that didn't get a hard reg, so we have to
3179 reject that case. */
3180 && ((ind_levels ? offsettable_memref_p (operand)
3181 : offsettable_nonstrict_memref_p (operand))
3182 /* A reloaded address is offsettable because it is now
3183 just a simple register indirect. */
3184 || address_reloaded[i] == 1))
3185 || (REG_P (operand)
3186 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3187 && reg_renumber[REGNO (operand)] < 0
3188 /* If reg_equiv_address is nonzero, we will be
3189 loading it into a register; hence it will be
3190 offsettable, but we cannot say that reg_equiv_mem
3191 is offsettable without checking. */
3192 && ((reg_equiv_mem[REGNO (operand)] != 0
3193 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3194 || (reg_equiv_address[REGNO (operand)] != 0))))
3195 win = 1;
3196 if (CONST_POOL_OK_P (operand)
3197 || MEM_P (operand))
3198 badop = 0;
3199 constmemok = 1;
3200 offmemok = 1;
3201 break;
3203 case '&':
3204 /* Output operand that is stored before the need for the
3205 input operands (and their index registers) is over. */
3206 earlyclobber = 1, this_earlyclobber = 1;
3207 break;
3209 case 'E':
3210 case 'F':
3211 if (GET_CODE (operand) == CONST_DOUBLE
3212 || (GET_CODE (operand) == CONST_VECTOR
3213 && (GET_MODE_CLASS (GET_MODE (operand))
3214 == MODE_VECTOR_FLOAT)))
3215 win = 1;
3216 break;
3218 case 'G':
3219 case 'H':
3220 if (GET_CODE (operand) == CONST_DOUBLE
3221 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3222 win = 1;
3223 break;
3225 case 's':
3226 if (GET_CODE (operand) == CONST_INT
3227 || (GET_CODE (operand) == CONST_DOUBLE
3228 && GET_MODE (operand) == VOIDmode))
3229 break;
3230 case 'i':
3231 if (CONSTANT_P (operand)
3232 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3233 win = 1;
3234 break;
3236 case 'n':
3237 if (GET_CODE (operand) == CONST_INT
3238 || (GET_CODE (operand) == CONST_DOUBLE
3239 && GET_MODE (operand) == VOIDmode))
3240 win = 1;
3241 break;
3243 case 'I':
3244 case 'J':
3245 case 'K':
3246 case 'L':
3247 case 'M':
3248 case 'N':
3249 case 'O':
3250 case 'P':
3251 if (GET_CODE (operand) == CONST_INT
3252 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3253 win = 1;
3254 break;
3256 case 'X':
3257 win = 1;
3258 break;
3260 case 'g':
3261 if (! force_reload
3262 /* A PLUS is never a valid operand, but reload can make
3263 it from a register when eliminating registers. */
3264 && GET_CODE (operand) != PLUS
3265 /* A SCRATCH is not a valid operand. */
3266 && GET_CODE (operand) != SCRATCH
3267 && (! CONSTANT_P (operand)
3268 || ! flag_pic
3269 || LEGITIMATE_PIC_OPERAND_P (operand))
3270 && (GENERAL_REGS == ALL_REGS
3271 || !REG_P (operand)
3272 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3273 && reg_renumber[REGNO (operand)] < 0)))
3274 win = 1;
3275 /* Drop through into 'r' case. */
3277 case 'r':
3278 this_alternative[i]
3279 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3280 goto reg;
3282 default:
3283 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3285 #ifdef EXTRA_CONSTRAINT_STR
3286 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3288 if (force_reload)
3289 break;
3290 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3291 win = 1;
3292 /* If the address was already reloaded,
3293 we win as well. */
3294 else if (MEM_P (operand)
3295 && address_reloaded[i] == 1)
3296 win = 1;
3297 /* Likewise if the address will be reloaded because
3298 reg_equiv_address is nonzero. For reg_equiv_mem
3299 we have to check. */
3300 else if (REG_P (operand)
3301 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3302 && reg_renumber[REGNO (operand)] < 0
3303 && ((reg_equiv_mem[REGNO (operand)] != 0
3304 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3305 || (reg_equiv_address[REGNO (operand)] != 0)))
3306 win = 1;
3308 /* If we didn't already win, we can reload
3309 constants via force_const_mem, and other
3310 MEMs by reloading the address like for 'o'. */
3311 if (CONST_POOL_OK_P (operand)
3312 || MEM_P (operand))
3313 badop = 0;
3314 constmemok = 1;
3315 offmemok = 1;
3316 break;
3318 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3320 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3321 win = 1;
3323 /* If we didn't already win, we can reload
3324 the address into a base register. */
3325 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3326 badop = 0;
3327 break;
3330 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3331 win = 1;
3332 #endif
3333 break;
3336 this_alternative[i]
3337 = (int) (reg_class_subunion
3338 [this_alternative[i]]
3339 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3340 reg:
3341 if (GET_MODE (operand) == BLKmode)
3342 break;
3343 winreg = 1;
3344 if (REG_P (operand)
3345 && reg_fits_class_p (operand, this_alternative[i],
3346 offset, GET_MODE (recog_data.operand[i])))
3347 win = 1;
3348 break;
3350 while ((p += len), c);
3352 constraints[i] = p;
3354 /* If this operand could be handled with a reg,
3355 and some reg is allowed, then this operand can be handled. */
3356 if (winreg && this_alternative[i] != (int) NO_REGS)
3357 badop = 0;
3359 /* Record which operands fit this alternative. */
3360 this_alternative_earlyclobber[i] = earlyclobber;
3361 if (win && ! force_reload)
3362 this_alternative_win[i] = 1;
3363 else if (did_match && ! force_reload)
3364 this_alternative_match_win[i] = 1;
3365 else
3367 int const_to_mem = 0;
3369 this_alternative_offmemok[i] = offmemok;
3370 losers++;
3371 if (badop)
3372 bad = 1;
3373 /* Alternative loses if it has no regs for a reg operand. */
3374 if (REG_P (operand)
3375 && this_alternative[i] == (int) NO_REGS
3376 && this_alternative_matches[i] < 0)
3377 bad = 1;
3379 /* If this is a constant that is reloaded into the desired
3380 class by copying it to memory first, count that as another
3381 reload. This is consistent with other code and is
3382 required to avoid choosing another alternative when
3383 the constant is moved into memory by this function on
3384 an early reload pass. Note that the test here is
3385 precisely the same as in the code below that calls
3386 force_const_mem. */
3387 if (CONST_POOL_OK_P (operand)
3388 && ((PREFERRED_RELOAD_CLASS (operand,
3389 (enum reg_class) this_alternative[i])
3390 == NO_REGS)
3391 || no_input_reloads)
3392 && operand_mode[i] != VOIDmode)
3394 const_to_mem = 1;
3395 if (this_alternative[i] != (int) NO_REGS)
3396 losers++;
3399 /* If we can't reload this value at all, reject this
3400 alternative. Note that we could also lose due to
3401 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3402 here. */
3404 if (! CONSTANT_P (operand)
3405 && (enum reg_class) this_alternative[i] != NO_REGS
3406 && (PREFERRED_RELOAD_CLASS (operand,
3407 (enum reg_class) this_alternative[i])
3408 == NO_REGS))
3409 bad = 1;
3411 /* Alternative loses if it requires a type of reload not
3412 permitted for this insn. We can always reload SCRATCH
3413 and objects with a REG_UNUSED note. */
3414 else if (GET_CODE (operand) != SCRATCH
3415 && modified[i] != RELOAD_READ && no_output_reloads
3416 && ! find_reg_note (insn, REG_UNUSED, operand))
3417 bad = 1;
3418 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3419 && ! const_to_mem)
3420 bad = 1;
3422 /* We prefer to reload pseudos over reloading other things,
3423 since such reloads may be able to be eliminated later.
3424 If we are reloading a SCRATCH, we won't be generating any
3425 insns, just using a register, so it is also preferred.
3426 So bump REJECT in other cases. Don't do this in the
3427 case where we are forcing a constant into memory and
3428 it will then win since we don't want to have a different
3429 alternative match then. */
3430 if (! (REG_P (operand)
3431 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3432 && GET_CODE (operand) != SCRATCH
3433 && ! (const_to_mem && constmemok))
3434 reject += 2;
3436 /* Input reloads can be inherited more often than output
3437 reloads can be removed, so penalize output reloads. */
3438 if (operand_type[i] != RELOAD_FOR_INPUT
3439 && GET_CODE (operand) != SCRATCH)
3440 reject++;
3443 /* If this operand is a pseudo register that didn't get a hard
3444 reg and this alternative accepts some register, see if the
3445 class that we want is a subset of the preferred class for this
3446 register. If not, but it intersects that class, use the
3447 preferred class instead. If it does not intersect the preferred
3448 class, show that usage of this alternative should be discouraged;
3449 it will be discouraged more still if the register is `preferred
3450 or nothing'. We do this because it increases the chance of
3451 reusing our spill register in a later insn and avoiding a pair
3452 of memory stores and loads.
3454 Don't bother with this if this alternative will accept this
3455 operand.
3457 Don't do this for a multiword operand, since it is only a
3458 small win and has the risk of requiring more spill registers,
3459 which could cause a large loss.
3461 Don't do this if the preferred class has only one register
3462 because we might otherwise exhaust the class. */
3464 if (! win && ! did_match
3465 && this_alternative[i] != (int) NO_REGS
3466 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3467 && reg_class_size [(int) preferred_class[i]] > 0
3468 && ! SMALL_REGISTER_CLASS_P (preferred_class[i]))
3470 if (! reg_class_subset_p (this_alternative[i],
3471 preferred_class[i]))
3473 /* Since we don't have a way of forming the intersection,
3474 we just do something special if the preferred class
3475 is a subset of the class we have; that's the most
3476 common case anyway. */
3477 if (reg_class_subset_p (preferred_class[i],
3478 this_alternative[i]))
3479 this_alternative[i] = (int) preferred_class[i];
3480 else
3481 reject += (2 + 2 * pref_or_nothing[i]);
3486 /* Now see if any output operands that are marked "earlyclobber"
3487 in this alternative conflict with any input operands
3488 or any memory addresses. */
3490 for (i = 0; i < noperands; i++)
3491 if (this_alternative_earlyclobber[i]
3492 && (this_alternative_win[i] || this_alternative_match_win[i]))
3494 struct decomposition early_data;
3496 early_data = decompose (recog_data.operand[i]);
3498 gcc_assert (modified[i] != RELOAD_READ);
3500 if (this_alternative[i] == NO_REGS)
3502 this_alternative_earlyclobber[i] = 0;
3503 gcc_assert (this_insn_is_asm);
3504 error_for_asm (this_insn,
3505 "%<&%> constraint used with no register class");
3508 for (j = 0; j < noperands; j++)
3509 /* Is this an input operand or a memory ref? */
3510 if ((MEM_P (recog_data.operand[j])
3511 || modified[j] != RELOAD_WRITE)
3512 && j != i
3513 /* Ignore things like match_operator operands. */
3514 && *recog_data.constraints[j] != 0
3515 /* Don't count an input operand that is constrained to match
3516 the early clobber operand. */
3517 && ! (this_alternative_matches[j] == i
3518 && rtx_equal_p (recog_data.operand[i],
3519 recog_data.operand[j]))
3520 /* Is it altered by storing the earlyclobber operand? */
3521 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3522 early_data))
3524 /* If the output is in a non-empty few-regs class,
3525 it's costly to reload it, so reload the input instead. */
3526 if (SMALL_REGISTER_CLASS_P (this_alternative[i])
3527 && (REG_P (recog_data.operand[j])
3528 || GET_CODE (recog_data.operand[j]) == SUBREG))
3530 losers++;
3531 this_alternative_win[j] = 0;
3532 this_alternative_match_win[j] = 0;
3534 else
3535 break;
3537 /* If an earlyclobber operand conflicts with something,
3538 it must be reloaded, so request this and count the cost. */
3539 if (j != noperands)
3541 losers++;
3542 this_alternative_win[i] = 0;
3543 this_alternative_match_win[j] = 0;
3544 for (j = 0; j < noperands; j++)
3545 if (this_alternative_matches[j] == i
3546 && this_alternative_match_win[j])
3548 this_alternative_win[j] = 0;
3549 this_alternative_match_win[j] = 0;
3550 losers++;
3555 /* If one alternative accepts all the operands, no reload required,
3556 choose that alternative; don't consider the remaining ones. */
3557 if (losers == 0)
3559 /* Unswap these so that they are never swapped at `finish'. */
3560 if (commutative >= 0)
3562 recog_data.operand[commutative] = substed_operand[commutative];
3563 recog_data.operand[commutative + 1]
3564 = substed_operand[commutative + 1];
3566 for (i = 0; i < noperands; i++)
3568 goal_alternative_win[i] = this_alternative_win[i];
3569 goal_alternative_match_win[i] = this_alternative_match_win[i];
3570 goal_alternative[i] = this_alternative[i];
3571 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3572 goal_alternative_matches[i] = this_alternative_matches[i];
3573 goal_alternative_earlyclobber[i]
3574 = this_alternative_earlyclobber[i];
3576 goal_alternative_number = this_alternative_number;
3577 goal_alternative_swapped = swapped;
3578 goal_earlyclobber = this_earlyclobber;
3579 goto finish;
3582 /* REJECT, set by the ! and ? constraint characters and when a register
3583 would be reloaded into a non-preferred class, discourages the use of
3584 this alternative for a reload goal. REJECT is incremented by six
3585 for each ? and two for each non-preferred class. */
3586 losers = losers * 6 + reject;
3588 /* If this alternative can be made to work by reloading,
3589 and it needs less reloading than the others checked so far,
3590 record it as the chosen goal for reloading. */
3591 if (! bad && best > losers)
3593 for (i = 0; i < noperands; i++)
3595 goal_alternative[i] = this_alternative[i];
3596 goal_alternative_win[i] = this_alternative_win[i];
3597 goal_alternative_match_win[i] = this_alternative_match_win[i];
3598 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3599 goal_alternative_matches[i] = this_alternative_matches[i];
3600 goal_alternative_earlyclobber[i]
3601 = this_alternative_earlyclobber[i];
3603 goal_alternative_swapped = swapped;
3604 best = losers;
3605 goal_alternative_number = this_alternative_number;
3606 goal_earlyclobber = this_earlyclobber;
3610 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3611 then we need to try each alternative twice,
3612 the second time matching those two operands
3613 as if we had exchanged them.
3614 To do this, really exchange them in operands.
3616 If we have just tried the alternatives the second time,
3617 return operands to normal and drop through. */
3619 if (commutative >= 0)
3621 swapped = !swapped;
3622 if (swapped)
3624 enum reg_class tclass;
3625 int t;
3627 recog_data.operand[commutative] = substed_operand[commutative + 1];
3628 recog_data.operand[commutative + 1] = substed_operand[commutative];
3629 /* Swap the duplicates too. */
3630 for (i = 0; i < recog_data.n_dups; i++)
3631 if (recog_data.dup_num[i] == commutative
3632 || recog_data.dup_num[i] == commutative + 1)
3633 *recog_data.dup_loc[i]
3634 = recog_data.operand[(int) recog_data.dup_num[i]];
3636 tclass = preferred_class[commutative];
3637 preferred_class[commutative] = preferred_class[commutative + 1];
3638 preferred_class[commutative + 1] = tclass;
3640 t = pref_or_nothing[commutative];
3641 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3642 pref_or_nothing[commutative + 1] = t;
3644 t = address_reloaded[commutative];
3645 address_reloaded[commutative] = address_reloaded[commutative + 1];
3646 address_reloaded[commutative + 1] = t;
3648 memcpy (constraints, recog_data.constraints,
3649 noperands * sizeof (char *));
3650 goto try_swapped;
3652 else
3654 recog_data.operand[commutative] = substed_operand[commutative];
3655 recog_data.operand[commutative + 1]
3656 = substed_operand[commutative + 1];
3657 /* Unswap the duplicates too. */
3658 for (i = 0; i < recog_data.n_dups; i++)
3659 if (recog_data.dup_num[i] == commutative
3660 || recog_data.dup_num[i] == commutative + 1)
3661 *recog_data.dup_loc[i]
3662 = recog_data.operand[(int) recog_data.dup_num[i]];
3666 /* The operands don't meet the constraints.
3667 goal_alternative describes the alternative
3668 that we could reach by reloading the fewest operands.
3669 Reload so as to fit it. */
3671 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3673 /* No alternative works with reloads?? */
3674 if (insn_code_number >= 0)
3675 fatal_insn ("unable to generate reloads for:", insn);
3676 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3677 /* Avoid further trouble with this insn. */
3678 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3679 n_reloads = 0;
3680 return 0;
3683 /* Jump to `finish' from above if all operands are valid already.
3684 In that case, goal_alternative_win is all 1. */
3685 finish:
3687 /* Right now, for any pair of operands I and J that are required to match,
3688 with I < J,
3689 goal_alternative_matches[J] is I.
3690 Set up goal_alternative_matched as the inverse function:
3691 goal_alternative_matched[I] = J. */
3693 for (i = 0; i < noperands; i++)
3694 goal_alternative_matched[i] = -1;
3696 for (i = 0; i < noperands; i++)
3697 if (! goal_alternative_win[i]
3698 && goal_alternative_matches[i] >= 0)
3699 goal_alternative_matched[goal_alternative_matches[i]] = i;
3701 for (i = 0; i < noperands; i++)
3702 goal_alternative_win[i] |= goal_alternative_match_win[i];
3704 /* If the best alternative is with operands 1 and 2 swapped,
3705 consider them swapped before reporting the reloads. Update the
3706 operand numbers of any reloads already pushed. */
3708 if (goal_alternative_swapped)
3710 rtx tem;
3712 tem = substed_operand[commutative];
3713 substed_operand[commutative] = substed_operand[commutative + 1];
3714 substed_operand[commutative + 1] = tem;
3715 tem = recog_data.operand[commutative];
3716 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3717 recog_data.operand[commutative + 1] = tem;
3718 tem = *recog_data.operand_loc[commutative];
3719 *recog_data.operand_loc[commutative]
3720 = *recog_data.operand_loc[commutative + 1];
3721 *recog_data.operand_loc[commutative + 1] = tem;
3723 for (i = 0; i < n_reloads; i++)
3725 if (rld[i].opnum == commutative)
3726 rld[i].opnum = commutative + 1;
3727 else if (rld[i].opnum == commutative + 1)
3728 rld[i].opnum = commutative;
3732 for (i = 0; i < noperands; i++)
3734 operand_reloadnum[i] = -1;
3736 /* If this is an earlyclobber operand, we need to widen the scope.
3737 The reload must remain valid from the start of the insn being
3738 reloaded until after the operand is stored into its destination.
3739 We approximate this with RELOAD_OTHER even though we know that we
3740 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3742 One special case that is worth checking is when we have an
3743 output that is earlyclobber but isn't used past the insn (typically
3744 a SCRATCH). In this case, we only need have the reload live
3745 through the insn itself, but not for any of our input or output
3746 reloads.
3747 But we must not accidentally narrow the scope of an existing
3748 RELOAD_OTHER reload - leave these alone.
3750 In any case, anything needed to address this operand can remain
3751 however they were previously categorized. */
3753 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3754 operand_type[i]
3755 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3756 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3759 /* Any constants that aren't allowed and can't be reloaded
3760 into registers are here changed into memory references. */
3761 for (i = 0; i < noperands; i++)
3762 if (! goal_alternative_win[i]
3763 && CONST_POOL_OK_P (recog_data.operand[i])
3764 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3765 (enum reg_class) goal_alternative[i])
3766 == NO_REGS)
3767 || no_input_reloads)
3768 && operand_mode[i] != VOIDmode)
3770 substed_operand[i] = recog_data.operand[i]
3771 = find_reloads_toplev (force_const_mem (operand_mode[i],
3772 recog_data.operand[i]),
3773 i, address_type[i], ind_levels, 0, insn,
3774 NULL);
3775 if (alternative_allows_memconst (recog_data.constraints[i],
3776 goal_alternative_number))
3777 goal_alternative_win[i] = 1;
3780 /* Likewise any invalid constants appearing as operand of a PLUS
3781 that is to be reloaded. */
3782 for (i = 0; i < noperands; i++)
3783 if (! goal_alternative_win[i]
3784 && GET_CODE (recog_data.operand[i]) == PLUS
3785 && CONST_POOL_OK_P (XEXP (recog_data.operand[i], 1))
3786 && (PREFERRED_RELOAD_CLASS (XEXP (recog_data.operand[i], 1),
3787 (enum reg_class) goal_alternative[i])
3788 == NO_REGS)
3789 && operand_mode[i] != VOIDmode)
3791 rtx tem = force_const_mem (operand_mode[i],
3792 XEXP (recog_data.operand[i], 1));
3793 tem = gen_rtx_PLUS (operand_mode[i],
3794 XEXP (recog_data.operand[i], 0), tem);
3796 substed_operand[i] = recog_data.operand[i]
3797 = find_reloads_toplev (tem, i, address_type[i],
3798 ind_levels, 0, insn, NULL);
3801 /* Record the values of the earlyclobber operands for the caller. */
3802 if (goal_earlyclobber)
3803 for (i = 0; i < noperands; i++)
3804 if (goal_alternative_earlyclobber[i])
3805 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3807 /* Now record reloads for all the operands that need them. */
3808 for (i = 0; i < noperands; i++)
3809 if (! goal_alternative_win[i])
3811 /* Operands that match previous ones have already been handled. */
3812 if (goal_alternative_matches[i] >= 0)
3814 /* Handle an operand with a nonoffsettable address
3815 appearing where an offsettable address will do
3816 by reloading the address into a base register.
3818 ??? We can also do this when the operand is a register and
3819 reg_equiv_mem is not offsettable, but this is a bit tricky,
3820 so we don't bother with it. It may not be worth doing. */
3821 else if (goal_alternative_matched[i] == -1
3822 && goal_alternative_offmemok[i]
3823 && MEM_P (recog_data.operand[i]))
3825 operand_reloadnum[i]
3826 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3827 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3828 MODE_BASE_REG_CLASS (VOIDmode),
3829 GET_MODE (XEXP (recog_data.operand[i], 0)),
3830 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3831 rld[operand_reloadnum[i]].inc
3832 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3834 /* If this operand is an output, we will have made any
3835 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3836 now we are treating part of the operand as an input, so
3837 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3839 if (modified[i] == RELOAD_WRITE)
3841 for (j = 0; j < n_reloads; j++)
3843 if (rld[j].opnum == i)
3845 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3846 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3847 else if (rld[j].when_needed
3848 == RELOAD_FOR_OUTADDR_ADDRESS)
3849 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3854 else if (goal_alternative_matched[i] == -1)
3856 operand_reloadnum[i]
3857 = push_reload ((modified[i] != RELOAD_WRITE
3858 ? recog_data.operand[i] : 0),
3859 (modified[i] != RELOAD_READ
3860 ? recog_data.operand[i] : 0),
3861 (modified[i] != RELOAD_WRITE
3862 ? recog_data.operand_loc[i] : 0),
3863 (modified[i] != RELOAD_READ
3864 ? recog_data.operand_loc[i] : 0),
3865 (enum reg_class) goal_alternative[i],
3866 (modified[i] == RELOAD_WRITE
3867 ? VOIDmode : operand_mode[i]),
3868 (modified[i] == RELOAD_READ
3869 ? VOIDmode : operand_mode[i]),
3870 (insn_code_number < 0 ? 0
3871 : insn_data[insn_code_number].operand[i].strict_low),
3872 0, i, operand_type[i]);
3874 /* In a matching pair of operands, one must be input only
3875 and the other must be output only.
3876 Pass the input operand as IN and the other as OUT. */
3877 else if (modified[i] == RELOAD_READ
3878 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3880 operand_reloadnum[i]
3881 = push_reload (recog_data.operand[i],
3882 recog_data.operand[goal_alternative_matched[i]],
3883 recog_data.operand_loc[i],
3884 recog_data.operand_loc[goal_alternative_matched[i]],
3885 (enum reg_class) goal_alternative[i],
3886 operand_mode[i],
3887 operand_mode[goal_alternative_matched[i]],
3888 0, 0, i, RELOAD_OTHER);
3889 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3891 else if (modified[i] == RELOAD_WRITE
3892 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3894 operand_reloadnum[goal_alternative_matched[i]]
3895 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3896 recog_data.operand[i],
3897 recog_data.operand_loc[goal_alternative_matched[i]],
3898 recog_data.operand_loc[i],
3899 (enum reg_class) goal_alternative[i],
3900 operand_mode[goal_alternative_matched[i]],
3901 operand_mode[i],
3902 0, 0, i, RELOAD_OTHER);
3903 operand_reloadnum[i] = output_reloadnum;
3905 else
3907 gcc_assert (insn_code_number < 0);
3908 error_for_asm (insn, "inconsistent operand constraints "
3909 "in an %<asm%>");
3910 /* Avoid further trouble with this insn. */
3911 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3912 n_reloads = 0;
3913 return 0;
3916 else if (goal_alternative_matched[i] < 0
3917 && goal_alternative_matches[i] < 0
3918 && address_operand_reloaded[i] != 1
3919 && optimize)
3921 /* For each non-matching operand that's a MEM or a pseudo-register
3922 that didn't get a hard register, make an optional reload.
3923 This may get done even if the insn needs no reloads otherwise. */
3925 rtx operand = recog_data.operand[i];
3927 while (GET_CODE (operand) == SUBREG)
3928 operand = SUBREG_REG (operand);
3929 if ((MEM_P (operand)
3930 || (REG_P (operand)
3931 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3932 /* If this is only for an output, the optional reload would not
3933 actually cause us to use a register now, just note that
3934 something is stored here. */
3935 && ((enum reg_class) goal_alternative[i] != NO_REGS
3936 || modified[i] == RELOAD_WRITE)
3937 && ! no_input_reloads
3938 /* An optional output reload might allow to delete INSN later.
3939 We mustn't make in-out reloads on insns that are not permitted
3940 output reloads.
3941 If this is an asm, we can't delete it; we must not even call
3942 push_reload for an optional output reload in this case,
3943 because we can't be sure that the constraint allows a register,
3944 and push_reload verifies the constraints for asms. */
3945 && (modified[i] == RELOAD_READ
3946 || (! no_output_reloads && ! this_insn_is_asm)))
3947 operand_reloadnum[i]
3948 = push_reload ((modified[i] != RELOAD_WRITE
3949 ? recog_data.operand[i] : 0),
3950 (modified[i] != RELOAD_READ
3951 ? recog_data.operand[i] : 0),
3952 (modified[i] != RELOAD_WRITE
3953 ? recog_data.operand_loc[i] : 0),
3954 (modified[i] != RELOAD_READ
3955 ? recog_data.operand_loc[i] : 0),
3956 (enum reg_class) goal_alternative[i],
3957 (modified[i] == RELOAD_WRITE
3958 ? VOIDmode : operand_mode[i]),
3959 (modified[i] == RELOAD_READ
3960 ? VOIDmode : operand_mode[i]),
3961 (insn_code_number < 0 ? 0
3962 : insn_data[insn_code_number].operand[i].strict_low),
3963 1, i, operand_type[i]);
3964 /* If a memory reference remains (either as a MEM or a pseudo that
3965 did not get a hard register), yet we can't make an optional
3966 reload, check if this is actually a pseudo register reference;
3967 we then need to emit a USE and/or a CLOBBER so that reload
3968 inheritance will do the right thing. */
3969 else if (replace
3970 && (MEM_P (operand)
3971 || (REG_P (operand)
3972 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3973 && reg_renumber [REGNO (operand)] < 0)))
3975 operand = *recog_data.operand_loc[i];
3977 while (GET_CODE (operand) == SUBREG)
3978 operand = SUBREG_REG (operand);
3979 if (REG_P (operand))
3981 if (modified[i] != RELOAD_WRITE)
3982 /* We mark the USE with QImode so that we recognize
3983 it as one that can be safely deleted at the end
3984 of reload. */
3985 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
3986 insn), QImode);
3987 if (modified[i] != RELOAD_READ)
3988 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3992 else if (goal_alternative_matches[i] >= 0
3993 && goal_alternative_win[goal_alternative_matches[i]]
3994 && modified[i] == RELOAD_READ
3995 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3996 && ! no_input_reloads && ! no_output_reloads
3997 && optimize)
3999 /* Similarly, make an optional reload for a pair of matching
4000 objects that are in MEM or a pseudo that didn't get a hard reg. */
4002 rtx operand = recog_data.operand[i];
4004 while (GET_CODE (operand) == SUBREG)
4005 operand = SUBREG_REG (operand);
4006 if ((MEM_P (operand)
4007 || (REG_P (operand)
4008 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4009 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
4010 != NO_REGS))
4011 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4012 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4013 recog_data.operand[i],
4014 recog_data.operand_loc[goal_alternative_matches[i]],
4015 recog_data.operand_loc[i],
4016 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4017 operand_mode[goal_alternative_matches[i]],
4018 operand_mode[i],
4019 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4022 /* Perform whatever substitutions on the operands we are supposed
4023 to make due to commutativity or replacement of registers
4024 with equivalent constants or memory slots. */
4026 for (i = 0; i < noperands; i++)
4028 /* We only do this on the last pass through reload, because it is
4029 possible for some data (like reg_equiv_address) to be changed during
4030 later passes. Moreover, we lose the opportunity to get a useful
4031 reload_{in,out}_reg when we do these replacements. */
4033 if (replace)
4035 rtx substitution = substed_operand[i];
4037 *recog_data.operand_loc[i] = substitution;
4039 /* If we're replacing an operand with a LABEL_REF, we need
4040 to make sure that there's a REG_LABEL note attached to
4041 this instruction. */
4042 if (!JUMP_P (insn)
4043 && GET_CODE (substitution) == LABEL_REF
4044 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
4045 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
4046 XEXP (substitution, 0),
4047 REG_NOTES (insn));
4049 else
4050 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4053 /* If this insn pattern contains any MATCH_DUP's, make sure that
4054 they will be substituted if the operands they match are substituted.
4055 Also do now any substitutions we already did on the operands.
4057 Don't do this if we aren't making replacements because we might be
4058 propagating things allocated by frame pointer elimination into places
4059 it doesn't expect. */
4061 if (insn_code_number >= 0 && replace)
4062 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4064 int opno = recog_data.dup_num[i];
4065 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4066 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4069 #if 0
4070 /* This loses because reloading of prior insns can invalidate the equivalence
4071 (or at least find_equiv_reg isn't smart enough to find it any more),
4072 causing this insn to need more reload regs than it needed before.
4073 It may be too late to make the reload regs available.
4074 Now this optimization is done safely in choose_reload_regs. */
4076 /* For each reload of a reg into some other class of reg,
4077 search for an existing equivalent reg (same value now) in the right class.
4078 We can use it as long as we don't need to change its contents. */
4079 for (i = 0; i < n_reloads; i++)
4080 if (rld[i].reg_rtx == 0
4081 && rld[i].in != 0
4082 && REG_P (rld[i].in)
4083 && rld[i].out == 0)
4085 rld[i].reg_rtx
4086 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4087 static_reload_reg_p, 0, rld[i].inmode);
4088 /* Prevent generation of insn to load the value
4089 because the one we found already has the value. */
4090 if (rld[i].reg_rtx)
4091 rld[i].in = rld[i].reg_rtx;
4093 #endif
4095 /* Perhaps an output reload can be combined with another
4096 to reduce needs by one. */
4097 if (!goal_earlyclobber)
4098 combine_reloads ();
4100 /* If we have a pair of reloads for parts of an address, they are reloading
4101 the same object, the operands themselves were not reloaded, and they
4102 are for two operands that are supposed to match, merge the reloads and
4103 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4105 for (i = 0; i < n_reloads; i++)
4107 int k;
4109 for (j = i + 1; j < n_reloads; j++)
4110 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4111 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4112 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4113 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4114 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4115 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4116 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4117 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4118 && rtx_equal_p (rld[i].in, rld[j].in)
4119 && (operand_reloadnum[rld[i].opnum] < 0
4120 || rld[operand_reloadnum[rld[i].opnum]].optional)
4121 && (operand_reloadnum[rld[j].opnum] < 0
4122 || rld[operand_reloadnum[rld[j].opnum]].optional)
4123 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4124 || (goal_alternative_matches[rld[j].opnum]
4125 == rld[i].opnum)))
4127 for (k = 0; k < n_replacements; k++)
4128 if (replacements[k].what == j)
4129 replacements[k].what = i;
4131 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4132 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4133 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4134 else
4135 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4136 rld[j].in = 0;
4140 /* Scan all the reloads and update their type.
4141 If a reload is for the address of an operand and we didn't reload
4142 that operand, change the type. Similarly, change the operand number
4143 of a reload when two operands match. If a reload is optional, treat it
4144 as though the operand isn't reloaded.
4146 ??? This latter case is somewhat odd because if we do the optional
4147 reload, it means the object is hanging around. Thus we need only
4148 do the address reload if the optional reload was NOT done.
4150 Change secondary reloads to be the address type of their operand, not
4151 the normal type.
4153 If an operand's reload is now RELOAD_OTHER, change any
4154 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4155 RELOAD_FOR_OTHER_ADDRESS. */
4157 for (i = 0; i < n_reloads; i++)
4159 if (rld[i].secondary_p
4160 && rld[i].when_needed == operand_type[rld[i].opnum])
4161 rld[i].when_needed = address_type[rld[i].opnum];
4163 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4164 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4165 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4166 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4167 && (operand_reloadnum[rld[i].opnum] < 0
4168 || rld[operand_reloadnum[rld[i].opnum]].optional))
4170 /* If we have a secondary reload to go along with this reload,
4171 change its type to RELOAD_FOR_OPADDR_ADDR. */
4173 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4174 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4175 && rld[i].secondary_in_reload != -1)
4177 int secondary_in_reload = rld[i].secondary_in_reload;
4179 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4181 /* If there's a tertiary reload we have to change it also. */
4182 if (secondary_in_reload > 0
4183 && rld[secondary_in_reload].secondary_in_reload != -1)
4184 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4185 = RELOAD_FOR_OPADDR_ADDR;
4188 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4189 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4190 && rld[i].secondary_out_reload != -1)
4192 int secondary_out_reload = rld[i].secondary_out_reload;
4194 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4196 /* If there's a tertiary reload we have to change it also. */
4197 if (secondary_out_reload
4198 && rld[secondary_out_reload].secondary_out_reload != -1)
4199 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4200 = RELOAD_FOR_OPADDR_ADDR;
4203 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4204 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4205 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4206 else
4207 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4210 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4211 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4212 && operand_reloadnum[rld[i].opnum] >= 0
4213 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4214 == RELOAD_OTHER))
4215 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4217 if (goal_alternative_matches[rld[i].opnum] >= 0)
4218 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4221 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4222 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4223 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4225 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4226 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4227 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4228 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4229 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4230 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4231 This is complicated by the fact that a single operand can have more
4232 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4233 choose_reload_regs without affecting code quality, and cases that
4234 actually fail are extremely rare, so it turns out to be better to fix
4235 the problem here by not generating cases that choose_reload_regs will
4236 fail for. */
4237 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4238 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4239 a single operand.
4240 We can reduce the register pressure by exploiting that a
4241 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4242 does not conflict with any of them, if it is only used for the first of
4243 the RELOAD_FOR_X_ADDRESS reloads. */
4245 int first_op_addr_num = -2;
4246 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4247 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4248 int need_change = 0;
4249 /* We use last_op_addr_reload and the contents of the above arrays
4250 first as flags - -2 means no instance encountered, -1 means exactly
4251 one instance encountered.
4252 If more than one instance has been encountered, we store the reload
4253 number of the first reload of the kind in question; reload numbers
4254 are known to be non-negative. */
4255 for (i = 0; i < noperands; i++)
4256 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4257 for (i = n_reloads - 1; i >= 0; i--)
4259 switch (rld[i].when_needed)
4261 case RELOAD_FOR_OPERAND_ADDRESS:
4262 if (++first_op_addr_num >= 0)
4264 first_op_addr_num = i;
4265 need_change = 1;
4267 break;
4268 case RELOAD_FOR_INPUT_ADDRESS:
4269 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4271 first_inpaddr_num[rld[i].opnum] = i;
4272 need_change = 1;
4274 break;
4275 case RELOAD_FOR_OUTPUT_ADDRESS:
4276 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4278 first_outpaddr_num[rld[i].opnum] = i;
4279 need_change = 1;
4281 break;
4282 default:
4283 break;
4287 if (need_change)
4289 for (i = 0; i < n_reloads; i++)
4291 int first_num;
4292 enum reload_type type;
4294 switch (rld[i].when_needed)
4296 case RELOAD_FOR_OPADDR_ADDR:
4297 first_num = first_op_addr_num;
4298 type = RELOAD_FOR_OPERAND_ADDRESS;
4299 break;
4300 case RELOAD_FOR_INPADDR_ADDRESS:
4301 first_num = first_inpaddr_num[rld[i].opnum];
4302 type = RELOAD_FOR_INPUT_ADDRESS;
4303 break;
4304 case RELOAD_FOR_OUTADDR_ADDRESS:
4305 first_num = first_outpaddr_num[rld[i].opnum];
4306 type = RELOAD_FOR_OUTPUT_ADDRESS;
4307 break;
4308 default:
4309 continue;
4311 if (first_num < 0)
4312 continue;
4313 else if (i > first_num)
4314 rld[i].when_needed = type;
4315 else
4317 /* Check if the only TYPE reload that uses reload I is
4318 reload FIRST_NUM. */
4319 for (j = n_reloads - 1; j > first_num; j--)
4321 if (rld[j].when_needed == type
4322 && (rld[i].secondary_p
4323 ? rld[j].secondary_in_reload == i
4324 : reg_mentioned_p (rld[i].in, rld[j].in)))
4326 rld[i].when_needed = type;
4327 break;
4335 /* See if we have any reloads that are now allowed to be merged
4336 because we've changed when the reload is needed to
4337 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4338 check for the most common cases. */
4340 for (i = 0; i < n_reloads; i++)
4341 if (rld[i].in != 0 && rld[i].out == 0
4342 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4343 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4344 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4345 for (j = 0; j < n_reloads; j++)
4346 if (i != j && rld[j].in != 0 && rld[j].out == 0
4347 && rld[j].when_needed == rld[i].when_needed
4348 && MATCHES (rld[i].in, rld[j].in)
4349 && rld[i].class == rld[j].class
4350 && !rld[i].nocombine && !rld[j].nocombine
4351 && rld[i].reg_rtx == rld[j].reg_rtx)
4353 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4354 transfer_replacements (i, j);
4355 rld[j].in = 0;
4358 #ifdef HAVE_cc0
4359 /* If we made any reloads for addresses, see if they violate a
4360 "no input reloads" requirement for this insn. But loads that we
4361 do after the insn (such as for output addresses) are fine. */
4362 if (no_input_reloads)
4363 for (i = 0; i < n_reloads; i++)
4364 gcc_assert (rld[i].in == 0
4365 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4366 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4367 #endif
4369 /* Compute reload_mode and reload_nregs. */
4370 for (i = 0; i < n_reloads; i++)
4372 rld[i].mode
4373 = (rld[i].inmode == VOIDmode
4374 || (GET_MODE_SIZE (rld[i].outmode)
4375 > GET_MODE_SIZE (rld[i].inmode)))
4376 ? rld[i].outmode : rld[i].inmode;
4378 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4381 /* Special case a simple move with an input reload and a
4382 destination of a hard reg, if the hard reg is ok, use it. */
4383 for (i = 0; i < n_reloads; i++)
4384 if (rld[i].when_needed == RELOAD_FOR_INPUT
4385 && GET_CODE (PATTERN (insn)) == SET
4386 && REG_P (SET_DEST (PATTERN (insn)))
4387 && SET_SRC (PATTERN (insn)) == rld[i].in)
4389 rtx dest = SET_DEST (PATTERN (insn));
4390 unsigned int regno = REGNO (dest);
4392 if (regno < FIRST_PSEUDO_REGISTER
4393 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4394 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4396 int nr = hard_regno_nregs[regno][rld[i].mode];
4397 int ok = 1, nri;
4399 for (nri = 1; nri < nr; nri ++)
4400 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
4401 ok = 0;
4403 if (ok)
4404 rld[i].reg_rtx = dest;
4408 return retval;
4411 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4412 accepts a memory operand with constant address. */
4414 static int
4415 alternative_allows_memconst (const char *constraint, int altnum)
4417 int c;
4418 /* Skip alternatives before the one requested. */
4419 while (altnum > 0)
4421 while (*constraint++ != ',');
4422 altnum--;
4424 /* Scan the requested alternative for 'm' or 'o'.
4425 If one of them is present, this alternative accepts memory constants. */
4426 for (; (c = *constraint) && c != ',' && c != '#';
4427 constraint += CONSTRAINT_LEN (c, constraint))
4428 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
4429 return 1;
4430 return 0;
4433 /* Scan X for memory references and scan the addresses for reloading.
4434 Also checks for references to "constant" regs that we want to eliminate
4435 and replaces them with the values they stand for.
4436 We may alter X destructively if it contains a reference to such.
4437 If X is just a constant reg, we return the equivalent value
4438 instead of X.
4440 IND_LEVELS says how many levels of indirect addressing this machine
4441 supports.
4443 OPNUM and TYPE identify the purpose of the reload.
4445 IS_SET_DEST is true if X is the destination of a SET, which is not
4446 appropriate to be replaced by a constant.
4448 INSN, if nonzero, is the insn in which we do the reload. It is used
4449 to determine if we may generate output reloads, and where to put USEs
4450 for pseudos that we have to replace with stack slots.
4452 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4453 result of find_reloads_address. */
4455 static rtx
4456 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4457 int ind_levels, int is_set_dest, rtx insn,
4458 int *address_reloaded)
4460 RTX_CODE code = GET_CODE (x);
4462 const char *fmt = GET_RTX_FORMAT (code);
4463 int i;
4464 int copied;
4466 if (code == REG)
4468 /* This code is duplicated for speed in find_reloads. */
4469 int regno = REGNO (x);
4470 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4471 x = reg_equiv_constant[regno];
4472 #if 0
4473 /* This creates (subreg (mem...)) which would cause an unnecessary
4474 reload of the mem. */
4475 else if (reg_equiv_mem[regno] != 0)
4476 x = reg_equiv_mem[regno];
4477 #endif
4478 else if (reg_equiv_memory_loc[regno]
4479 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4481 rtx mem = make_memloc (x, regno);
4482 if (reg_equiv_address[regno]
4483 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4485 /* If this is not a toplevel operand, find_reloads doesn't see
4486 this substitution. We have to emit a USE of the pseudo so
4487 that delete_output_reload can see it. */
4488 if (replace_reloads && recog_data.operand[opnum] != x)
4489 /* We mark the USE with QImode so that we recognize it
4490 as one that can be safely deleted at the end of
4491 reload. */
4492 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4493 QImode);
4494 x = mem;
4495 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4496 opnum, type, ind_levels, insn);
4497 if (address_reloaded)
4498 *address_reloaded = i;
4501 return x;
4503 if (code == MEM)
4505 rtx tem = x;
4507 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4508 opnum, type, ind_levels, insn);
4509 if (address_reloaded)
4510 *address_reloaded = i;
4512 return tem;
4515 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4517 /* Check for SUBREG containing a REG that's equivalent to a
4518 constant. If the constant has a known value, truncate it
4519 right now. Similarly if we are extracting a single-word of a
4520 multi-word constant. If the constant is symbolic, allow it
4521 to be substituted normally. push_reload will strip the
4522 subreg later. The constant must not be VOIDmode, because we
4523 will lose the mode of the register (this should never happen
4524 because one of the cases above should handle it). */
4526 int regno = REGNO (SUBREG_REG (x));
4527 rtx tem;
4529 if (subreg_lowpart_p (x)
4530 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4531 && reg_equiv_constant[regno] != 0
4532 && (tem = gen_lowpart_common (GET_MODE (x),
4533 reg_equiv_constant[regno])) != 0)
4534 return tem;
4536 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4537 && reg_equiv_constant[regno] != 0)
4539 tem =
4540 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4541 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4542 gcc_assert (tem);
4543 return tem;
4546 /* If the subreg contains a reg that will be converted to a mem,
4547 convert the subreg to a narrower memref now.
4548 Otherwise, we would get (subreg (mem ...) ...),
4549 which would force reload of the mem.
4551 We also need to do this if there is an equivalent MEM that is
4552 not offsettable. In that case, alter_subreg would produce an
4553 invalid address on big-endian machines.
4555 For machines that extend byte loads, we must not reload using
4556 a wider mode if we have a paradoxical SUBREG. find_reloads will
4557 force a reload in that case. So we should not do anything here. */
4559 else if (regno >= FIRST_PSEUDO_REGISTER
4560 #ifdef LOAD_EXTEND_OP
4561 && (GET_MODE_SIZE (GET_MODE (x))
4562 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4563 #endif
4564 && (reg_equiv_address[regno] != 0
4565 || (reg_equiv_mem[regno] != 0
4566 && (! strict_memory_address_p (GET_MODE (x),
4567 XEXP (reg_equiv_mem[regno], 0))
4568 || ! offsettable_memref_p (reg_equiv_mem[regno])
4569 || num_not_at_initial_offset))))
4570 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4571 insn);
4574 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4576 if (fmt[i] == 'e')
4578 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4579 ind_levels, is_set_dest, insn,
4580 address_reloaded);
4581 /* If we have replaced a reg with it's equivalent memory loc -
4582 that can still be handled here e.g. if it's in a paradoxical
4583 subreg - we must make the change in a copy, rather than using
4584 a destructive change. This way, find_reloads can still elect
4585 not to do the change. */
4586 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4588 x = shallow_copy_rtx (x);
4589 copied = 1;
4591 XEXP (x, i) = new_part;
4594 return x;
4597 /* Return a mem ref for the memory equivalent of reg REGNO.
4598 This mem ref is not shared with anything. */
4600 static rtx
4601 make_memloc (rtx ad, int regno)
4603 /* We must rerun eliminate_regs, in case the elimination
4604 offsets have changed. */
4605 rtx tem
4606 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4608 /* If TEM might contain a pseudo, we must copy it to avoid
4609 modifying it when we do the substitution for the reload. */
4610 if (rtx_varies_p (tem, 0))
4611 tem = copy_rtx (tem);
4613 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4614 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4616 /* Copy the result if it's still the same as the equivalence, to avoid
4617 modifying it when we do the substitution for the reload. */
4618 if (tem == reg_equiv_memory_loc[regno])
4619 tem = copy_rtx (tem);
4620 return tem;
4623 /* Returns true if AD could be turned into a valid memory reference
4624 to mode MODE by reloading the part pointed to by PART into a
4625 register. */
4627 static int
4628 maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
4630 int retv;
4631 rtx tem = *part;
4632 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4634 *part = reg;
4635 retv = memory_address_p (mode, ad);
4636 *part = tem;
4638 return retv;
4641 /* Record all reloads needed for handling memory address AD
4642 which appears in *LOC in a memory reference to mode MODE
4643 which itself is found in location *MEMREFLOC.
4644 Note that we take shortcuts assuming that no multi-reg machine mode
4645 occurs as part of an address.
4647 OPNUM and TYPE specify the purpose of this reload.
4649 IND_LEVELS says how many levels of indirect addressing this machine
4650 supports.
4652 INSN, if nonzero, is the insn in which we do the reload. It is used
4653 to determine if we may generate output reloads, and where to put USEs
4654 for pseudos that we have to replace with stack slots.
4656 Value is one if this address is reloaded or replaced as a whole; it is
4657 zero if the top level of this address was not reloaded or replaced, and
4658 it is -1 if it may or may not have been reloaded or replaced.
4660 Note that there is no verification that the address will be valid after
4661 this routine does its work. Instead, we rely on the fact that the address
4662 was valid when reload started. So we need only undo things that reload
4663 could have broken. These are wrong register types, pseudos not allocated
4664 to a hard register, and frame pointer elimination. */
4666 static int
4667 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4668 rtx *loc, int opnum, enum reload_type type,
4669 int ind_levels, rtx insn)
4671 int regno;
4672 int removed_and = 0;
4673 int op_index;
4674 rtx tem;
4676 /* If the address is a register, see if it is a legitimate address and
4677 reload if not. We first handle the cases where we need not reload
4678 or where we must reload in a non-standard way. */
4680 if (REG_P (ad))
4682 regno = REGNO (ad);
4684 /* If the register is equivalent to an invariant expression, substitute
4685 the invariant, and eliminate any eliminable register references. */
4686 tem = reg_equiv_constant[regno];
4687 if (tem != 0
4688 && (tem = eliminate_regs (tem, mode, insn))
4689 && strict_memory_address_p (mode, tem))
4691 *loc = ad = tem;
4692 return 0;
4695 tem = reg_equiv_memory_loc[regno];
4696 if (tem != 0)
4698 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4700 tem = make_memloc (ad, regno);
4701 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4703 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4704 &XEXP (tem, 0), opnum,
4705 ADDR_TYPE (type), ind_levels, insn);
4707 /* We can avoid a reload if the register's equivalent memory
4708 expression is valid as an indirect memory address.
4709 But not all addresses are valid in a mem used as an indirect
4710 address: only reg or reg+constant. */
4712 if (ind_levels > 0
4713 && strict_memory_address_p (mode, tem)
4714 && (REG_P (XEXP (tem, 0))
4715 || (GET_CODE (XEXP (tem, 0)) == PLUS
4716 && REG_P (XEXP (XEXP (tem, 0), 0))
4717 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4719 /* TEM is not the same as what we'll be replacing the
4720 pseudo with after reload, put a USE in front of INSN
4721 in the final reload pass. */
4722 if (replace_reloads
4723 && num_not_at_initial_offset
4724 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4726 *loc = tem;
4727 /* We mark the USE with QImode so that we
4728 recognize it as one that can be safely
4729 deleted at the end of reload. */
4730 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4731 insn), QImode);
4733 /* This doesn't really count as replacing the address
4734 as a whole, since it is still a memory access. */
4736 return 0;
4738 ad = tem;
4742 /* The only remaining case where we can avoid a reload is if this is a
4743 hard register that is valid as a base register and which is not the
4744 subject of a CLOBBER in this insn. */
4746 else if (regno < FIRST_PSEUDO_REGISTER
4747 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4748 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4749 return 0;
4751 /* If we do not have one of the cases above, we must do the reload. */
4752 push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4753 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4754 return 1;
4757 if (strict_memory_address_p (mode, ad))
4759 /* The address appears valid, so reloads are not needed.
4760 But the address may contain an eliminable register.
4761 This can happen because a machine with indirect addressing
4762 may consider a pseudo register by itself a valid address even when
4763 it has failed to get a hard reg.
4764 So do a tree-walk to find and eliminate all such regs. */
4766 /* But first quickly dispose of a common case. */
4767 if (GET_CODE (ad) == PLUS
4768 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4769 && REG_P (XEXP (ad, 0))
4770 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4771 return 0;
4773 subst_reg_equivs_changed = 0;
4774 *loc = subst_reg_equivs (ad, insn);
4776 if (! subst_reg_equivs_changed)
4777 return 0;
4779 /* Check result for validity after substitution. */
4780 if (strict_memory_address_p (mode, ad))
4781 return 0;
4784 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4787 if (memrefloc)
4789 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4790 ind_levels, win);
4792 break;
4793 win:
4794 *memrefloc = copy_rtx (*memrefloc);
4795 XEXP (*memrefloc, 0) = ad;
4796 move_replacements (&ad, &XEXP (*memrefloc, 0));
4797 return -1;
4799 while (0);
4800 #endif
4802 /* The address is not valid. We have to figure out why. First see if
4803 we have an outer AND and remove it if so. Then analyze what's inside. */
4805 if (GET_CODE (ad) == AND)
4807 removed_and = 1;
4808 loc = &XEXP (ad, 0);
4809 ad = *loc;
4812 /* One possibility for why the address is invalid is that it is itself
4813 a MEM. This can happen when the frame pointer is being eliminated, a
4814 pseudo is not allocated to a hard register, and the offset between the
4815 frame and stack pointers is not its initial value. In that case the
4816 pseudo will have been replaced by a MEM referring to the
4817 stack pointer. */
4818 if (MEM_P (ad))
4820 /* First ensure that the address in this MEM is valid. Then, unless
4821 indirect addresses are valid, reload the MEM into a register. */
4822 tem = ad;
4823 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4824 opnum, ADDR_TYPE (type),
4825 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4827 /* If tem was changed, then we must create a new memory reference to
4828 hold it and store it back into memrefloc. */
4829 if (tem != ad && memrefloc)
4831 *memrefloc = copy_rtx (*memrefloc);
4832 copy_replacements (tem, XEXP (*memrefloc, 0));
4833 loc = &XEXP (*memrefloc, 0);
4834 if (removed_and)
4835 loc = &XEXP (*loc, 0);
4838 /* Check similar cases as for indirect addresses as above except
4839 that we can allow pseudos and a MEM since they should have been
4840 taken care of above. */
4842 if (ind_levels == 0
4843 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4844 || MEM_P (XEXP (tem, 0))
4845 || ! (REG_P (XEXP (tem, 0))
4846 || (GET_CODE (XEXP (tem, 0)) == PLUS
4847 && REG_P (XEXP (XEXP (tem, 0), 0))
4848 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4850 /* Must use TEM here, not AD, since it is the one that will
4851 have any subexpressions reloaded, if needed. */
4852 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4853 MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4854 VOIDmode, 0,
4855 0, opnum, type);
4856 return ! removed_and;
4858 else
4859 return 0;
4862 /* If we have address of a stack slot but it's not valid because the
4863 displacement is too large, compute the sum in a register.
4864 Handle all base registers here, not just fp/ap/sp, because on some
4865 targets (namely SH) we can also get too large displacements from
4866 big-endian corrections. */
4867 else if (GET_CODE (ad) == PLUS
4868 && REG_P (XEXP (ad, 0))
4869 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4870 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4871 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4873 /* Unshare the MEM rtx so we can safely alter it. */
4874 if (memrefloc)
4876 *memrefloc = copy_rtx (*memrefloc);
4877 loc = &XEXP (*memrefloc, 0);
4878 if (removed_and)
4879 loc = &XEXP (*loc, 0);
4882 if (double_reg_address_ok)
4884 /* Unshare the sum as well. */
4885 *loc = ad = copy_rtx (ad);
4887 /* Reload the displacement into an index reg.
4888 We assume the frame pointer or arg pointer is a base reg. */
4889 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4890 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4891 type, ind_levels);
4892 return 0;
4894 else
4896 /* If the sum of two regs is not necessarily valid,
4897 reload the sum into a base reg.
4898 That will at least work. */
4899 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4900 Pmode, opnum, type, ind_levels);
4902 return ! removed_and;
4905 /* If we have an indexed stack slot, there are three possible reasons why
4906 it might be invalid: The index might need to be reloaded, the address
4907 might have been made by frame pointer elimination and hence have a
4908 constant out of range, or both reasons might apply.
4910 We can easily check for an index needing reload, but even if that is the
4911 case, we might also have an invalid constant. To avoid making the
4912 conservative assumption and requiring two reloads, we see if this address
4913 is valid when not interpreted strictly. If it is, the only problem is
4914 that the index needs a reload and find_reloads_address_1 will take care
4915 of it.
4917 Handle all base registers here, not just fp/ap/sp, because on some
4918 targets (namely SPARC) we can also get invalid addresses from preventive
4919 subreg big-endian corrections made by find_reloads_toplev. We
4920 can also get expressions involving LO_SUM (rather than PLUS) from
4921 find_reloads_subreg_address.
4923 If we decide to do something, it must be that `double_reg_address_ok'
4924 is true. We generate a reload of the base register + constant and
4925 rework the sum so that the reload register will be added to the index.
4926 This is safe because we know the address isn't shared.
4928 We check for the base register as both the first and second operand of
4929 the innermost PLUS and/or LO_SUM. */
4931 for (op_index = 0; op_index < 2; ++op_index)
4933 rtx operand;
4935 if (!(GET_CODE (ad) == PLUS
4936 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4937 && (GET_CODE (XEXP (ad, 0)) == PLUS
4938 || GET_CODE (XEXP (ad, 0)) == LO_SUM)))
4939 continue;
4941 operand = XEXP (XEXP (ad, 0), op_index);
4942 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
4943 continue;
4945 if ((REG_MODE_OK_FOR_BASE_P (operand, mode)
4946 || operand == frame_pointer_rtx
4947 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4948 || operand == hard_frame_pointer_rtx
4949 #endif
4950 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4951 || operand == arg_pointer_rtx
4952 #endif
4953 || operand == stack_pointer_rtx)
4954 && ! maybe_memory_address_p (mode, ad,
4955 &XEXP (XEXP (ad, 0), 1 - op_index)))
4957 rtx offset_reg;
4958 rtx addend;
4960 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
4961 addend = XEXP (XEXP (ad, 0), 1 - op_index);
4963 /* Form the adjusted address. */
4964 if (GET_CODE (XEXP (ad, 0)) == PLUS)
4965 ad = gen_rtx_PLUS (GET_MODE (ad),
4966 op_index == 0 ? offset_reg : addend,
4967 op_index == 0 ? addend : offset_reg);
4968 else
4969 ad = gen_rtx_LO_SUM (GET_MODE (ad),
4970 op_index == 0 ? offset_reg : addend,
4971 op_index == 0 ? addend : offset_reg);
4972 *loc = ad;
4974 find_reloads_address_part (XEXP (ad, op_index),
4975 &XEXP (ad, op_index),
4976 MODE_BASE_REG_CLASS (mode),
4977 GET_MODE (ad), opnum, type, ind_levels);
4978 find_reloads_address_1 (mode,
4979 XEXP (ad, 1 - op_index), 1,
4980 &XEXP (ad, 1 - op_index), opnum,
4981 type, 0, insn);
4983 return 0;
4987 /* See if address becomes valid when an eliminable register
4988 in a sum is replaced. */
4990 tem = ad;
4991 if (GET_CODE (ad) == PLUS)
4992 tem = subst_indexed_address (ad);
4993 if (tem != ad && strict_memory_address_p (mode, tem))
4995 /* Ok, we win that way. Replace any additional eliminable
4996 registers. */
4998 subst_reg_equivs_changed = 0;
4999 tem = subst_reg_equivs (tem, insn);
5001 /* Make sure that didn't make the address invalid again. */
5003 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
5005 *loc = tem;
5006 return 0;
5010 /* If constants aren't valid addresses, reload the constant address
5011 into a register. */
5012 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
5014 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5015 Unshare it so we can safely alter it. */
5016 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5017 && CONSTANT_POOL_ADDRESS_P (ad))
5019 *memrefloc = copy_rtx (*memrefloc);
5020 loc = &XEXP (*memrefloc, 0);
5021 if (removed_and)
5022 loc = &XEXP (*loc, 0);
5025 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
5026 Pmode, opnum, type, ind_levels);
5027 return ! removed_and;
5030 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
5031 insn);
5034 /* Find all pseudo regs appearing in AD
5035 that are eliminable in favor of equivalent values
5036 and do not have hard regs; replace them by their equivalents.
5037 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5038 front of it for pseudos that we have to replace with stack slots. */
5040 static rtx
5041 subst_reg_equivs (rtx ad, rtx insn)
5043 RTX_CODE code = GET_CODE (ad);
5044 int i;
5045 const char *fmt;
5047 switch (code)
5049 case HIGH:
5050 case CONST_INT:
5051 case CONST:
5052 case CONST_DOUBLE:
5053 case CONST_VECTOR:
5054 case SYMBOL_REF:
5055 case LABEL_REF:
5056 case PC:
5057 case CC0:
5058 return ad;
5060 case REG:
5062 int regno = REGNO (ad);
5064 if (reg_equiv_constant[regno] != 0)
5066 subst_reg_equivs_changed = 1;
5067 return reg_equiv_constant[regno];
5069 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5071 rtx mem = make_memloc (ad, regno);
5072 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5074 subst_reg_equivs_changed = 1;
5075 /* We mark the USE with QImode so that we recognize it
5076 as one that can be safely deleted at the end of
5077 reload. */
5078 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5079 QImode);
5080 return mem;
5084 return ad;
5086 case PLUS:
5087 /* Quickly dispose of a common case. */
5088 if (XEXP (ad, 0) == frame_pointer_rtx
5089 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5090 return ad;
5091 break;
5093 default:
5094 break;
5097 fmt = GET_RTX_FORMAT (code);
5098 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5099 if (fmt[i] == 'e')
5100 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5101 return ad;
5104 /* Compute the sum of X and Y, making canonicalizations assumed in an
5105 address, namely: sum constant integers, surround the sum of two
5106 constants with a CONST, put the constant as the second operand, and
5107 group the constant on the outermost sum.
5109 This routine assumes both inputs are already in canonical form. */
5112 form_sum (rtx x, rtx y)
5114 rtx tem;
5115 enum machine_mode mode = GET_MODE (x);
5117 if (mode == VOIDmode)
5118 mode = GET_MODE (y);
5120 if (mode == VOIDmode)
5121 mode = Pmode;
5123 if (GET_CODE (x) == CONST_INT)
5124 return plus_constant (y, INTVAL (x));
5125 else if (GET_CODE (y) == CONST_INT)
5126 return plus_constant (x, INTVAL (y));
5127 else if (CONSTANT_P (x))
5128 tem = x, x = y, y = tem;
5130 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5131 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5133 /* Note that if the operands of Y are specified in the opposite
5134 order in the recursive calls below, infinite recursion will occur. */
5135 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5136 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5138 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5139 constant will have been placed second. */
5140 if (CONSTANT_P (x) && CONSTANT_P (y))
5142 if (GET_CODE (x) == CONST)
5143 x = XEXP (x, 0);
5144 if (GET_CODE (y) == CONST)
5145 y = XEXP (y, 0);
5147 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5150 return gen_rtx_PLUS (mode, x, y);
5153 /* If ADDR is a sum containing a pseudo register that should be
5154 replaced with a constant (from reg_equiv_constant),
5155 return the result of doing so, and also apply the associative
5156 law so that the result is more likely to be a valid address.
5157 (But it is not guaranteed to be one.)
5159 Note that at most one register is replaced, even if more are
5160 replaceable. Also, we try to put the result into a canonical form
5161 so it is more likely to be a valid address.
5163 In all other cases, return ADDR. */
5165 static rtx
5166 subst_indexed_address (rtx addr)
5168 rtx op0 = 0, op1 = 0, op2 = 0;
5169 rtx tem;
5170 int regno;
5172 if (GET_CODE (addr) == PLUS)
5174 /* Try to find a register to replace. */
5175 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5176 if (REG_P (op0)
5177 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5178 && reg_renumber[regno] < 0
5179 && reg_equiv_constant[regno] != 0)
5180 op0 = reg_equiv_constant[regno];
5181 else if (REG_P (op1)
5182 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5183 && reg_renumber[regno] < 0
5184 && reg_equiv_constant[regno] != 0)
5185 op1 = reg_equiv_constant[regno];
5186 else if (GET_CODE (op0) == PLUS
5187 && (tem = subst_indexed_address (op0)) != op0)
5188 op0 = tem;
5189 else if (GET_CODE (op1) == PLUS
5190 && (tem = subst_indexed_address (op1)) != op1)
5191 op1 = tem;
5192 else
5193 return addr;
5195 /* Pick out up to three things to add. */
5196 if (GET_CODE (op1) == PLUS)
5197 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5198 else if (GET_CODE (op0) == PLUS)
5199 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5201 /* Compute the sum. */
5202 if (op2 != 0)
5203 op1 = form_sum (op1, op2);
5204 if (op1 != 0)
5205 op0 = form_sum (op0, op1);
5207 return op0;
5209 return addr;
5212 /* Update the REG_INC notes for an insn. It updates all REG_INC
5213 notes for the instruction which refer to REGNO the to refer
5214 to the reload number.
5216 INSN is the insn for which any REG_INC notes need updating.
5218 REGNO is the register number which has been reloaded.
5220 RELOADNUM is the reload number. */
5222 static void
5223 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5224 int reloadnum ATTRIBUTE_UNUSED)
5226 #ifdef AUTO_INC_DEC
5227 rtx link;
5229 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5230 if (REG_NOTE_KIND (link) == REG_INC
5231 && (int) REGNO (XEXP (link, 0)) == regno)
5232 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5233 #endif
5236 /* Record the pseudo registers we must reload into hard registers in a
5237 subexpression of a would-be memory address, X referring to a value
5238 in mode MODE. (This function is not called if the address we find
5239 is strictly valid.)
5241 CONTEXT = 1 means we are considering regs as index regs,
5242 = 0 means we are considering them as base regs, = 2 means we
5243 are considering them as base regs for REG + REG.
5245 OPNUM and TYPE specify the purpose of any reloads made.
5247 IND_LEVELS says how many levels of indirect addressing are
5248 supported at this point in the address.
5250 INSN, if nonzero, is the insn in which we do the reload. It is used
5251 to determine if we may generate output reloads.
5253 We return nonzero if X, as a whole, is reloaded or replaced. */
5255 /* Note that we take shortcuts assuming that no multi-reg machine mode
5256 occurs as part of an address.
5257 Also, this is not fully machine-customizable; it works for machines
5258 such as VAXen and 68000's and 32000's, but other possible machines
5259 could have addressing modes that this does not handle right.
5260 If you add push_reload calls here, you need to make sure gen_reload
5261 handles those cases gracefully. */
5263 static int
5264 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5265 rtx *loc, int opnum, enum reload_type type,
5266 int ind_levels, rtx insn)
5268 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE) \
5269 ((CONTEXT) == 2 \
5270 ? REGNO_MODE_OK_FOR_REG_BASE_P (REGNO, MODE) \
5271 : (CONTEXT) == 1 \
5272 ? REGNO_OK_FOR_INDEX_P (REGNO) \
5273 : REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE))
5275 enum reg_class context_reg_class;
5276 RTX_CODE code = GET_CODE (x);
5278 if (context == 2)
5279 context_reg_class = MODE_BASE_REG_REG_CLASS (mode);
5280 else if (context == 1)
5281 context_reg_class = INDEX_REG_CLASS;
5282 else
5283 context_reg_class = MODE_BASE_REG_CLASS (mode);
5285 switch (code)
5287 case PLUS:
5289 rtx orig_op0 = XEXP (x, 0);
5290 rtx orig_op1 = XEXP (x, 1);
5291 RTX_CODE code0 = GET_CODE (orig_op0);
5292 RTX_CODE code1 = GET_CODE (orig_op1);
5293 rtx op0 = orig_op0;
5294 rtx op1 = orig_op1;
5296 if (GET_CODE (op0) == SUBREG)
5298 op0 = SUBREG_REG (op0);
5299 code0 = GET_CODE (op0);
5300 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5301 op0 = gen_rtx_REG (word_mode,
5302 (REGNO (op0) +
5303 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5304 GET_MODE (SUBREG_REG (orig_op0)),
5305 SUBREG_BYTE (orig_op0),
5306 GET_MODE (orig_op0))));
5309 if (GET_CODE (op1) == SUBREG)
5311 op1 = SUBREG_REG (op1);
5312 code1 = GET_CODE (op1);
5313 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5314 /* ??? Why is this given op1's mode and above for
5315 ??? op0 SUBREGs we use word_mode? */
5316 op1 = gen_rtx_REG (GET_MODE (op1),
5317 (REGNO (op1) +
5318 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5319 GET_MODE (SUBREG_REG (orig_op1)),
5320 SUBREG_BYTE (orig_op1),
5321 GET_MODE (orig_op1))));
5323 /* Plus in the index register may be created only as a result of
5324 register remateralization for expression like &localvar*4. Reload it.
5325 It may be possible to combine the displacement on the outer level,
5326 but it is probably not worthwhile to do so. */
5327 if (context == 1)
5329 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5330 opnum, ADDR_TYPE (type), ind_levels, insn);
5331 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5332 context_reg_class,
5333 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5334 return 1;
5337 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5338 || code0 == ZERO_EXTEND || code1 == MEM)
5340 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5341 type, ind_levels, insn);
5342 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5343 type, ind_levels, insn);
5346 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5347 || code1 == ZERO_EXTEND || code0 == MEM)
5349 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5350 type, ind_levels, insn);
5351 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5352 type, ind_levels, insn);
5355 else if (code0 == CONST_INT || code0 == CONST
5356 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5357 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5358 type, ind_levels, insn);
5360 else if (code1 == CONST_INT || code1 == CONST
5361 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5362 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5363 type, ind_levels, insn);
5365 else if (code0 == REG && code1 == REG)
5367 if (REG_OK_FOR_INDEX_P (op0)
5368 && REG_MODE_OK_FOR_REG_BASE_P (op1, mode))
5369 return 0;
5370 else if (REG_OK_FOR_INDEX_P (op1)
5371 && REG_MODE_OK_FOR_REG_BASE_P (op0, mode))
5372 return 0;
5373 else if (REG_MODE_OK_FOR_REG_BASE_P (op1, mode))
5374 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5375 type, ind_levels, insn);
5376 else if (REG_MODE_OK_FOR_REG_BASE_P (op0, mode))
5377 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5378 type, ind_levels, insn);
5379 else if (REG_OK_FOR_INDEX_P (op1))
5380 find_reloads_address_1 (mode, orig_op0, 2, &XEXP (x, 0), opnum,
5381 type, ind_levels, insn);
5382 else if (REG_OK_FOR_INDEX_P (op0))
5383 find_reloads_address_1 (mode, orig_op1, 2, &XEXP (x, 1), opnum,
5384 type, ind_levels, insn);
5385 else
5387 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5388 type, ind_levels, insn);
5389 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5390 type, ind_levels, insn);
5394 else if (code0 == REG)
5396 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5397 type, ind_levels, insn);
5398 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5399 type, ind_levels, insn);
5402 else if (code1 == REG)
5404 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5405 type, ind_levels, insn);
5406 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5407 type, ind_levels, insn);
5411 return 0;
5413 case POST_MODIFY:
5414 case PRE_MODIFY:
5416 rtx op0 = XEXP (x, 0);
5417 rtx op1 = XEXP (x, 1);
5418 int regno;
5419 int reloadnum;
5421 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5422 return 0;
5424 /* Currently, we only support {PRE,POST}_MODIFY constructs
5425 where a base register is {inc,dec}remented by the contents
5426 of another register or by a constant value. Thus, these
5427 operands must match. */
5428 gcc_assert (op0 == XEXP (op1, 0));
5430 /* Require index register (or constant). Let's just handle the
5431 register case in the meantime... If the target allows
5432 auto-modify by a constant then we could try replacing a pseudo
5433 register with its equivalent constant where applicable. */
5434 if (REG_P (XEXP (op1, 1)))
5435 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5436 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5437 opnum, type, ind_levels, insn);
5439 gcc_assert (REG_P (XEXP (op1, 0)));
5441 regno = REGNO (XEXP (op1, 0));
5443 /* A register that is incremented cannot be constant! */
5444 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5445 || reg_equiv_constant[regno] == 0);
5447 /* Handle a register that is equivalent to a memory location
5448 which cannot be addressed directly. */
5449 if (reg_equiv_memory_loc[regno] != 0
5450 && (reg_equiv_address[regno] != 0
5451 || num_not_at_initial_offset))
5453 rtx tem = make_memloc (XEXP (x, 0), regno);
5455 if (reg_equiv_address[regno]
5456 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5458 /* First reload the memory location's address.
5459 We can't use ADDR_TYPE (type) here, because we need to
5460 write back the value after reading it, hence we actually
5461 need two registers. */
5462 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5463 &XEXP (tem, 0), opnum,
5464 RELOAD_OTHER,
5465 ind_levels, insn);
5467 /* Then reload the memory location into a base
5468 register. */
5469 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5470 &XEXP (op1, 0),
5471 MODE_BASE_REG_CLASS (mode),
5472 GET_MODE (x), GET_MODE (x), 0,
5473 0, opnum, RELOAD_OTHER);
5475 update_auto_inc_notes (this_insn, regno, reloadnum);
5476 return 0;
5480 if (reg_renumber[regno] >= 0)
5481 regno = reg_renumber[regno];
5483 /* We require a base register here... */
5484 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5486 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5487 &XEXP (op1, 0), &XEXP (x, 0),
5488 MODE_BASE_REG_CLASS (mode),
5489 GET_MODE (x), GET_MODE (x), 0, 0,
5490 opnum, RELOAD_OTHER);
5492 update_auto_inc_notes (this_insn, regno, reloadnum);
5493 return 0;
5496 return 0;
5498 case POST_INC:
5499 case POST_DEC:
5500 case PRE_INC:
5501 case PRE_DEC:
5502 if (REG_P (XEXP (x, 0)))
5504 int regno = REGNO (XEXP (x, 0));
5505 int value = 0;
5506 rtx x_orig = x;
5508 /* A register that is incremented cannot be constant! */
5509 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5510 || reg_equiv_constant[regno] == 0);
5512 /* Handle a register that is equivalent to a memory location
5513 which cannot be addressed directly. */
5514 if (reg_equiv_memory_loc[regno] != 0
5515 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5517 rtx tem = make_memloc (XEXP (x, 0), regno);
5518 if (reg_equiv_address[regno]
5519 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5521 /* First reload the memory location's address.
5522 We can't use ADDR_TYPE (type) here, because we need to
5523 write back the value after reading it, hence we actually
5524 need two registers. */
5525 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5526 &XEXP (tem, 0), opnum, type,
5527 ind_levels, insn);
5528 /* Put this inside a new increment-expression. */
5529 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5530 /* Proceed to reload that, as if it contained a register. */
5534 /* If we have a hard register that is ok as an index,
5535 don't make a reload. If an autoincrement of a nice register
5536 isn't "valid", it must be that no autoincrement is "valid".
5537 If that is true and something made an autoincrement anyway,
5538 this must be a special context where one is allowed.
5539 (For example, a "push" instruction.)
5540 We can't improve this address, so leave it alone. */
5542 /* Otherwise, reload the autoincrement into a suitable hard reg
5543 and record how much to increment by. */
5545 if (reg_renumber[regno] >= 0)
5546 regno = reg_renumber[regno];
5547 if (regno >= FIRST_PSEUDO_REGISTER
5548 || !REG_OK_FOR_CONTEXT (context, regno, mode))
5550 int reloadnum;
5552 /* If we can output the register afterwards, do so, this
5553 saves the extra update.
5554 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5555 CALL_INSN - and it does not set CC0.
5556 But don't do this if we cannot directly address the
5557 memory location, since this will make it harder to
5558 reuse address reloads, and increases register pressure.
5559 Also don't do this if we can probably update x directly. */
5560 rtx equiv = (MEM_P (XEXP (x, 0))
5561 ? XEXP (x, 0)
5562 : reg_equiv_mem[regno]);
5563 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5564 if (insn && NONJUMP_INSN_P (insn) && equiv
5565 && memory_operand (equiv, GET_MODE (equiv))
5566 #ifdef HAVE_cc0
5567 && ! sets_cc0_p (PATTERN (insn))
5568 #endif
5569 && ! (icode != CODE_FOR_nothing
5570 && ((*insn_data[icode].operand[0].predicate)
5571 (equiv, Pmode))
5572 && ((*insn_data[icode].operand[1].predicate)
5573 (equiv, Pmode))))
5575 /* We use the original pseudo for loc, so that
5576 emit_reload_insns() knows which pseudo this
5577 reload refers to and updates the pseudo rtx, not
5578 its equivalent memory location, as well as the
5579 corresponding entry in reg_last_reload_reg. */
5580 loc = &XEXP (x_orig, 0);
5581 x = XEXP (x, 0);
5582 reloadnum
5583 = push_reload (x, x, loc, loc,
5584 context_reg_class,
5585 GET_MODE (x), GET_MODE (x), 0, 0,
5586 opnum, RELOAD_OTHER);
5588 else
5590 reloadnum
5591 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5592 context_reg_class,
5593 GET_MODE (x), GET_MODE (x), 0, 0,
5594 opnum, type);
5595 rld[reloadnum].inc
5596 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5598 value = 1;
5601 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5602 reloadnum);
5604 return value;
5607 else if (MEM_P (XEXP (x, 0)))
5609 /* This is probably the result of a substitution, by eliminate_regs,
5610 of an equivalent address for a pseudo that was not allocated to a
5611 hard register. Verify that the specified address is valid and
5612 reload it into a register. */
5613 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5614 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5615 rtx link;
5616 int reloadnum;
5618 /* Since we know we are going to reload this item, don't decrement
5619 for the indirection level.
5621 Note that this is actually conservative: it would be slightly
5622 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5623 reload1.c here. */
5624 /* We can't use ADDR_TYPE (type) here, because we need to
5625 write back the value after reading it, hence we actually
5626 need two registers. */
5627 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5628 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5629 opnum, type, ind_levels, insn);
5631 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5632 context_reg_class,
5633 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5634 rld[reloadnum].inc
5635 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5637 link = FIND_REG_INC_NOTE (this_insn, tem);
5638 if (link != 0)
5639 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5641 return 1;
5643 return 0;
5645 case TRUNCATE:
5646 case SIGN_EXTEND:
5647 case ZERO_EXTEND:
5648 /* Look for parts to reload in the inner expression and reload them
5649 too, in addition to this operation. Reloading all inner parts in
5650 addition to this one shouldn't be necessary, but at this point,
5651 we don't know if we can possibly omit any part that *can* be
5652 reloaded. Targets that are better off reloading just either part
5653 (or perhaps even a different part of an outer expression), should
5654 define LEGITIMIZE_RELOAD_ADDRESS. */
5655 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), XEXP (x, 0),
5656 context, &XEXP (x, 0), opnum,
5657 type, ind_levels, insn);
5658 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5659 context_reg_class,
5660 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5661 return 1;
5663 case MEM:
5664 /* This is probably the result of a substitution, by eliminate_regs, of
5665 an equivalent address for a pseudo that was not allocated to a hard
5666 register. Verify that the specified address is valid and reload it
5667 into a register.
5669 Since we know we are going to reload this item, don't decrement for
5670 the indirection level.
5672 Note that this is actually conservative: it would be slightly more
5673 efficient to use the value of SPILL_INDIRECT_LEVELS from
5674 reload1.c here. */
5676 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5677 opnum, ADDR_TYPE (type), ind_levels, insn);
5678 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5679 context_reg_class,
5680 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5681 return 1;
5683 case REG:
5685 int regno = REGNO (x);
5687 if (reg_equiv_constant[regno] != 0)
5689 find_reloads_address_part (reg_equiv_constant[regno], loc,
5690 context_reg_class,
5691 GET_MODE (x), opnum, type, ind_levels);
5692 return 1;
5695 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5696 that feeds this insn. */
5697 if (reg_equiv_mem[regno] != 0)
5699 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5700 context_reg_class,
5701 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5702 return 1;
5704 #endif
5706 if (reg_equiv_memory_loc[regno]
5707 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5709 rtx tem = make_memloc (x, regno);
5710 if (reg_equiv_address[regno] != 0
5711 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5713 x = tem;
5714 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5715 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5716 ind_levels, insn);
5720 if (reg_renumber[regno] >= 0)
5721 regno = reg_renumber[regno];
5723 if (regno >= FIRST_PSEUDO_REGISTER
5724 || !REG_OK_FOR_CONTEXT (context, regno, mode))
5726 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5727 context_reg_class,
5728 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5729 return 1;
5732 /* If a register appearing in an address is the subject of a CLOBBER
5733 in this insn, reload it into some other register to be safe.
5734 The CLOBBER is supposed to make the register unavailable
5735 from before this insn to after it. */
5736 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5738 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5739 context_reg_class,
5740 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5741 return 1;
5744 return 0;
5746 case SUBREG:
5747 if (REG_P (SUBREG_REG (x)))
5749 /* If this is a SUBREG of a hard register and the resulting register
5750 is of the wrong class, reload the whole SUBREG. This avoids
5751 needless copies if SUBREG_REG is multi-word. */
5752 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5754 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5756 if (! REG_OK_FOR_CONTEXT (context, regno, mode))
5758 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5759 context_reg_class,
5760 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5761 return 1;
5764 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5765 is larger than the class size, then reload the whole SUBREG. */
5766 else
5768 enum reg_class class = context_reg_class;
5769 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5770 > reg_class_size[class])
5772 x = find_reloads_subreg_address (x, 0, opnum,
5773 ADDR_TYPE (type),
5774 ind_levels, insn);
5775 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5776 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5777 return 1;
5781 break;
5783 default:
5784 break;
5788 const char *fmt = GET_RTX_FORMAT (code);
5789 int i;
5791 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5793 if (fmt[i] == 'e')
5794 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5795 opnum, type, ind_levels, insn);
5799 #undef REG_OK_FOR_CONTEXT
5800 return 0;
5803 /* X, which is found at *LOC, is a part of an address that needs to be
5804 reloaded into a register of class CLASS. If X is a constant, or if
5805 X is a PLUS that contains a constant, check that the constant is a
5806 legitimate operand and that we are supposed to be able to load
5807 it into the register.
5809 If not, force the constant into memory and reload the MEM instead.
5811 MODE is the mode to use, in case X is an integer constant.
5813 OPNUM and TYPE describe the purpose of any reloads made.
5815 IND_LEVELS says how many levels of indirect addressing this machine
5816 supports. */
5818 static void
5819 find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
5820 enum machine_mode mode, int opnum,
5821 enum reload_type type, int ind_levels)
5823 if (CONSTANT_P (x)
5824 && (! LEGITIMATE_CONSTANT_P (x)
5825 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5827 rtx tem;
5829 tem = x = force_const_mem (mode, x);
5830 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5831 opnum, type, ind_levels, 0);
5834 else if (GET_CODE (x) == PLUS
5835 && CONSTANT_P (XEXP (x, 1))
5836 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5837 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5839 rtx tem;
5841 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5842 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5843 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5844 opnum, type, ind_levels, 0);
5847 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5848 mode, VOIDmode, 0, 0, opnum, type);
5851 /* X, a subreg of a pseudo, is a part of an address that needs to be
5852 reloaded.
5854 If the pseudo is equivalent to a memory location that cannot be directly
5855 addressed, make the necessary address reloads.
5857 If address reloads have been necessary, or if the address is changed
5858 by register elimination, return the rtx of the memory location;
5859 otherwise, return X.
5861 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5862 memory location.
5864 OPNUM and TYPE identify the purpose of the reload.
5866 IND_LEVELS says how many levels of indirect addressing are
5867 supported at this point in the address.
5869 INSN, if nonzero, is the insn in which we do the reload. It is used
5870 to determine where to put USEs for pseudos that we have to replace with
5871 stack slots. */
5873 static rtx
5874 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
5875 enum reload_type type, int ind_levels, rtx insn)
5877 int regno = REGNO (SUBREG_REG (x));
5879 if (reg_equiv_memory_loc[regno])
5881 /* If the address is not directly addressable, or if the address is not
5882 offsettable, then it must be replaced. */
5883 if (! force_replace
5884 && (reg_equiv_address[regno]
5885 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5886 force_replace = 1;
5888 if (force_replace || num_not_at_initial_offset)
5890 rtx tem = make_memloc (SUBREG_REG (x), regno);
5892 /* If the address changes because of register elimination, then
5893 it must be replaced. */
5894 if (force_replace
5895 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5897 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5898 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5899 int offset;
5901 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
5902 hold the correct (negative) byte offset. */
5903 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
5904 offset = inner_size - outer_size;
5905 else
5906 offset = SUBREG_BYTE (x);
5908 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5909 PUT_MODE (tem, GET_MODE (x));
5911 /* If this was a paradoxical subreg that we replaced, the
5912 resulting memory must be sufficiently aligned to allow
5913 us to widen the mode of the memory. */
5914 if (outer_size > inner_size)
5916 rtx base;
5918 base = XEXP (tem, 0);
5919 if (GET_CODE (base) == PLUS)
5921 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5922 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5923 return x;
5924 base = XEXP (base, 0);
5926 if (!REG_P (base)
5927 || (REGNO_POINTER_ALIGN (REGNO (base))
5928 < outer_size * BITS_PER_UNIT))
5929 return x;
5932 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5933 &XEXP (tem, 0), opnum, type,
5934 ind_levels, insn);
5936 /* If this is not a toplevel operand, find_reloads doesn't see
5937 this substitution. We have to emit a USE of the pseudo so
5938 that delete_output_reload can see it. */
5939 if (replace_reloads && recog_data.operand[opnum] != x)
5940 /* We mark the USE with QImode so that we recognize it
5941 as one that can be safely deleted at the end of
5942 reload. */
5943 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5944 SUBREG_REG (x)),
5945 insn), QImode);
5946 x = tem;
5950 return x;
5953 /* Substitute into the current INSN the registers into which we have reloaded
5954 the things that need reloading. The array `replacements'
5955 contains the locations of all pointers that must be changed
5956 and says what to replace them with.
5958 Return the rtx that X translates into; usually X, but modified. */
5960 void
5961 subst_reloads (rtx insn)
5963 int i;
5965 for (i = 0; i < n_replacements; i++)
5967 struct replacement *r = &replacements[i];
5968 rtx reloadreg = rld[r->what].reg_rtx;
5969 if (reloadreg)
5971 #ifdef ENABLE_CHECKING
5972 /* Internal consistency test. Check that we don't modify
5973 anything in the equivalence arrays. Whenever something from
5974 those arrays needs to be reloaded, it must be unshared before
5975 being substituted into; the equivalence must not be modified.
5976 Otherwise, if the equivalence is used after that, it will
5977 have been modified, and the thing substituted (probably a
5978 register) is likely overwritten and not a usable equivalence. */
5979 int check_regno;
5981 for (check_regno = 0; check_regno < max_regno; check_regno++)
5983 #define CHECK_MODF(ARRAY) \
5984 gcc_assert (!ARRAY[check_regno] \
5985 || !loc_mentioned_in_p (r->where, \
5986 ARRAY[check_regno]))
5988 CHECK_MODF (reg_equiv_constant);
5989 CHECK_MODF (reg_equiv_memory_loc);
5990 CHECK_MODF (reg_equiv_address);
5991 CHECK_MODF (reg_equiv_mem);
5992 #undef CHECK_MODF
5994 #endif /* ENABLE_CHECKING */
5996 /* If we're replacing a LABEL_REF with a register, add a
5997 REG_LABEL note to indicate to flow which label this
5998 register refers to. */
5999 if (GET_CODE (*r->where) == LABEL_REF
6000 && JUMP_P (insn))
6002 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
6003 XEXP (*r->where, 0),
6004 REG_NOTES (insn));
6005 JUMP_LABEL (insn) = XEXP (*r->where, 0);
6008 /* Encapsulate RELOADREG so its machine mode matches what
6009 used to be there. Note that gen_lowpart_common will
6010 do the wrong thing if RELOADREG is multi-word. RELOADREG
6011 will always be a REG here. */
6012 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6013 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6015 /* If we are putting this into a SUBREG and RELOADREG is a
6016 SUBREG, we would be making nested SUBREGs, so we have to fix
6017 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
6019 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
6021 if (GET_MODE (*r->subreg_loc)
6022 == GET_MODE (SUBREG_REG (reloadreg)))
6023 *r->subreg_loc = SUBREG_REG (reloadreg);
6024 else
6026 int final_offset =
6027 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
6029 /* When working with SUBREGs the rule is that the byte
6030 offset must be a multiple of the SUBREG's mode. */
6031 final_offset = (final_offset /
6032 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6033 final_offset = (final_offset *
6034 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6036 *r->where = SUBREG_REG (reloadreg);
6037 SUBREG_BYTE (*r->subreg_loc) = final_offset;
6040 else
6041 *r->where = reloadreg;
6043 /* If reload got no reg and isn't optional, something's wrong. */
6044 else
6045 gcc_assert (rld[r->what].optional);
6049 /* Make a copy of any replacements being done into X and move those
6050 copies to locations in Y, a copy of X. */
6052 void
6053 copy_replacements (rtx x, rtx y)
6055 /* We can't support X being a SUBREG because we might then need to know its
6056 location if something inside it was replaced. */
6057 gcc_assert (GET_CODE (x) != SUBREG);
6059 copy_replacements_1 (&x, &y, n_replacements);
6062 static void
6063 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6065 int i, j;
6066 rtx x, y;
6067 struct replacement *r;
6068 enum rtx_code code;
6069 const char *fmt;
6071 for (j = 0; j < orig_replacements; j++)
6073 if (replacements[j].subreg_loc == px)
6075 r = &replacements[n_replacements++];
6076 r->where = replacements[j].where;
6077 r->subreg_loc = py;
6078 r->what = replacements[j].what;
6079 r->mode = replacements[j].mode;
6081 else if (replacements[j].where == px)
6083 r = &replacements[n_replacements++];
6084 r->where = py;
6085 r->subreg_loc = 0;
6086 r->what = replacements[j].what;
6087 r->mode = replacements[j].mode;
6091 x = *px;
6092 y = *py;
6093 code = GET_CODE (x);
6094 fmt = GET_RTX_FORMAT (code);
6096 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6098 if (fmt[i] == 'e')
6099 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6100 else if (fmt[i] == 'E')
6101 for (j = XVECLEN (x, i); --j >= 0; )
6102 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6103 orig_replacements);
6107 /* Change any replacements being done to *X to be done to *Y. */
6109 void
6110 move_replacements (rtx *x, rtx *y)
6112 int i;
6114 for (i = 0; i < n_replacements; i++)
6115 if (replacements[i].subreg_loc == x)
6116 replacements[i].subreg_loc = y;
6117 else if (replacements[i].where == x)
6119 replacements[i].where = y;
6120 replacements[i].subreg_loc = 0;
6124 /* If LOC was scheduled to be replaced by something, return the replacement.
6125 Otherwise, return *LOC. */
6128 find_replacement (rtx *loc)
6130 struct replacement *r;
6132 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6134 rtx reloadreg = rld[r->what].reg_rtx;
6136 if (reloadreg && r->where == loc)
6138 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6139 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6141 return reloadreg;
6143 else if (reloadreg && r->subreg_loc == loc)
6145 /* RELOADREG must be either a REG or a SUBREG.
6147 ??? Is it actually still ever a SUBREG? If so, why? */
6149 if (REG_P (reloadreg))
6150 return gen_rtx_REG (GET_MODE (*loc),
6151 (REGNO (reloadreg) +
6152 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6153 GET_MODE (SUBREG_REG (*loc)),
6154 SUBREG_BYTE (*loc),
6155 GET_MODE (*loc))));
6156 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6157 return reloadreg;
6158 else
6160 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6162 /* When working with SUBREGs the rule is that the byte
6163 offset must be a multiple of the SUBREG's mode. */
6164 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6165 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6166 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6167 final_offset);
6172 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6173 what's inside and make a new rtl if so. */
6174 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6175 || GET_CODE (*loc) == MULT)
6177 rtx x = find_replacement (&XEXP (*loc, 0));
6178 rtx y = find_replacement (&XEXP (*loc, 1));
6180 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6181 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6184 return *loc;
6187 /* Return nonzero if register in range [REGNO, ENDREGNO)
6188 appears either explicitly or implicitly in X
6189 other than being stored into (except for earlyclobber operands).
6191 References contained within the substructure at LOC do not count.
6192 LOC may be zero, meaning don't ignore anything.
6194 This is similar to refers_to_regno_p in rtlanal.c except that we
6195 look at equivalences for pseudos that didn't get hard registers. */
6197 static int
6198 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6199 rtx x, rtx *loc)
6201 int i;
6202 unsigned int r;
6203 RTX_CODE code;
6204 const char *fmt;
6206 if (x == 0)
6207 return 0;
6209 repeat:
6210 code = GET_CODE (x);
6212 switch (code)
6214 case REG:
6215 r = REGNO (x);
6217 /* If this is a pseudo, a hard register must not have been allocated.
6218 X must therefore either be a constant or be in memory. */
6219 if (r >= FIRST_PSEUDO_REGISTER)
6221 if (reg_equiv_memory_loc[r])
6222 return refers_to_regno_for_reload_p (regno, endregno,
6223 reg_equiv_memory_loc[r],
6224 (rtx*) 0);
6226 gcc_assert (reg_equiv_constant[r] || reg_equiv_invariant[r]);
6227 return 0;
6230 return (endregno > r
6231 && regno < r + (r < FIRST_PSEUDO_REGISTER
6232 ? hard_regno_nregs[r][GET_MODE (x)]
6233 : 1));
6235 case SUBREG:
6236 /* If this is a SUBREG of a hard reg, we can see exactly which
6237 registers are being modified. Otherwise, handle normally. */
6238 if (REG_P (SUBREG_REG (x))
6239 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6241 unsigned int inner_regno = subreg_regno (x);
6242 unsigned int inner_endregno
6243 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6244 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
6246 return endregno > inner_regno && regno < inner_endregno;
6248 break;
6250 case CLOBBER:
6251 case SET:
6252 if (&SET_DEST (x) != loc
6253 /* Note setting a SUBREG counts as referring to the REG it is in for
6254 a pseudo but not for hard registers since we can
6255 treat each word individually. */
6256 && ((GET_CODE (SET_DEST (x)) == SUBREG
6257 && loc != &SUBREG_REG (SET_DEST (x))
6258 && REG_P (SUBREG_REG (SET_DEST (x)))
6259 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6260 && refers_to_regno_for_reload_p (regno, endregno,
6261 SUBREG_REG (SET_DEST (x)),
6262 loc))
6263 /* If the output is an earlyclobber operand, this is
6264 a conflict. */
6265 || ((!REG_P (SET_DEST (x))
6266 || earlyclobber_operand_p (SET_DEST (x)))
6267 && refers_to_regno_for_reload_p (regno, endregno,
6268 SET_DEST (x), loc))))
6269 return 1;
6271 if (code == CLOBBER || loc == &SET_SRC (x))
6272 return 0;
6273 x = SET_SRC (x);
6274 goto repeat;
6276 default:
6277 break;
6280 /* X does not match, so try its subexpressions. */
6282 fmt = GET_RTX_FORMAT (code);
6283 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6285 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6287 if (i == 0)
6289 x = XEXP (x, 0);
6290 goto repeat;
6292 else
6293 if (refers_to_regno_for_reload_p (regno, endregno,
6294 XEXP (x, i), loc))
6295 return 1;
6297 else if (fmt[i] == 'E')
6299 int j;
6300 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6301 if (loc != &XVECEXP (x, i, j)
6302 && refers_to_regno_for_reload_p (regno, endregno,
6303 XVECEXP (x, i, j), loc))
6304 return 1;
6307 return 0;
6310 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6311 we check if any register number in X conflicts with the relevant register
6312 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6313 contains a MEM (we don't bother checking for memory addresses that can't
6314 conflict because we expect this to be a rare case.
6316 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6317 that we look at equivalences for pseudos that didn't get hard registers. */
6320 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6322 int regno, endregno;
6324 /* Overly conservative. */
6325 if (GET_CODE (x) == STRICT_LOW_PART
6326 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6327 x = XEXP (x, 0);
6329 /* If either argument is a constant, then modifying X can not affect IN. */
6330 if (CONSTANT_P (x) || CONSTANT_P (in))
6331 return 0;
6332 else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
6333 return refers_to_mem_for_reload_p (in);
6334 else if (GET_CODE (x) == SUBREG)
6336 regno = REGNO (SUBREG_REG (x));
6337 if (regno < FIRST_PSEUDO_REGISTER)
6338 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6339 GET_MODE (SUBREG_REG (x)),
6340 SUBREG_BYTE (x),
6341 GET_MODE (x));
6343 else if (REG_P (x))
6345 regno = REGNO (x);
6347 /* If this is a pseudo, it must not have been assigned a hard register.
6348 Therefore, it must either be in memory or be a constant. */
6350 if (regno >= FIRST_PSEUDO_REGISTER)
6352 if (reg_equiv_memory_loc[regno])
6353 return refers_to_mem_for_reload_p (in);
6354 gcc_assert (reg_equiv_constant[regno]);
6355 return 0;
6358 else if (MEM_P (x))
6359 return refers_to_mem_for_reload_p (in);
6360 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6361 || GET_CODE (x) == CC0)
6362 return reg_mentioned_p (x, in);
6363 else
6365 gcc_assert (GET_CODE (x) == PLUS);
6367 /* We actually want to know if X is mentioned somewhere inside IN.
6368 We must not say that (plus (sp) (const_int 124)) is in
6369 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6370 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6371 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6372 while (MEM_P (in))
6373 in = XEXP (in, 0);
6374 if (REG_P (in))
6375 return 0;
6376 else if (GET_CODE (in) == PLUS)
6377 return (reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6378 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6379 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6380 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6383 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6384 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
6386 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6389 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6390 registers. */
6392 static int
6393 refers_to_mem_for_reload_p (rtx x)
6395 const char *fmt;
6396 int i;
6398 if (MEM_P (x))
6399 return 1;
6401 if (REG_P (x))
6402 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6403 && reg_equiv_memory_loc[REGNO (x)]);
6405 fmt = GET_RTX_FORMAT (GET_CODE (x));
6406 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6407 if (fmt[i] == 'e'
6408 && (MEM_P (XEXP (x, i))
6409 || refers_to_mem_for_reload_p (XEXP (x, i))))
6410 return 1;
6412 return 0;
6415 /* Check the insns before INSN to see if there is a suitable register
6416 containing the same value as GOAL.
6417 If OTHER is -1, look for a register in class CLASS.
6418 Otherwise, just see if register number OTHER shares GOAL's value.
6420 Return an rtx for the register found, or zero if none is found.
6422 If RELOAD_REG_P is (short *)1,
6423 we reject any hard reg that appears in reload_reg_rtx
6424 because such a hard reg is also needed coming into this insn.
6426 If RELOAD_REG_P is any other nonzero value,
6427 it is a vector indexed by hard reg number
6428 and we reject any hard reg whose element in the vector is nonnegative
6429 as well as any that appears in reload_reg_rtx.
6431 If GOAL is zero, then GOALREG is a register number; we look
6432 for an equivalent for that register.
6434 MODE is the machine mode of the value we want an equivalence for.
6435 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6437 This function is used by jump.c as well as in the reload pass.
6439 If GOAL is the sum of the stack pointer and a constant, we treat it
6440 as if it were a constant except that sp is required to be unchanging. */
6443 find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
6444 short *reload_reg_p, int goalreg, enum machine_mode mode)
6446 rtx p = insn;
6447 rtx goaltry, valtry, value, where;
6448 rtx pat;
6449 int regno = -1;
6450 int valueno;
6451 int goal_mem = 0;
6452 int goal_const = 0;
6453 int goal_mem_addr_varies = 0;
6454 int need_stable_sp = 0;
6455 int nregs;
6456 int valuenregs;
6457 int num = 0;
6459 if (goal == 0)
6460 regno = goalreg;
6461 else if (REG_P (goal))
6462 regno = REGNO (goal);
6463 else if (MEM_P (goal))
6465 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6466 if (MEM_VOLATILE_P (goal))
6467 return 0;
6468 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6469 return 0;
6470 /* An address with side effects must be reexecuted. */
6471 switch (code)
6473 case POST_INC:
6474 case PRE_INC:
6475 case POST_DEC:
6476 case PRE_DEC:
6477 case POST_MODIFY:
6478 case PRE_MODIFY:
6479 return 0;
6480 default:
6481 break;
6483 goal_mem = 1;
6485 else if (CONSTANT_P (goal))
6486 goal_const = 1;
6487 else if (GET_CODE (goal) == PLUS
6488 && XEXP (goal, 0) == stack_pointer_rtx
6489 && CONSTANT_P (XEXP (goal, 1)))
6490 goal_const = need_stable_sp = 1;
6491 else if (GET_CODE (goal) == PLUS
6492 && XEXP (goal, 0) == frame_pointer_rtx
6493 && CONSTANT_P (XEXP (goal, 1)))
6494 goal_const = 1;
6495 else
6496 return 0;
6498 num = 0;
6499 /* Scan insns back from INSN, looking for one that copies
6500 a value into or out of GOAL.
6501 Stop and give up if we reach a label. */
6503 while (1)
6505 p = PREV_INSN (p);
6506 num++;
6507 if (p == 0 || LABEL_P (p)
6508 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6509 return 0;
6511 if (NONJUMP_INSN_P (p)
6512 /* If we don't want spill regs ... */
6513 && (! (reload_reg_p != 0
6514 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6515 /* ... then ignore insns introduced by reload; they aren't
6516 useful and can cause results in reload_as_needed to be
6517 different from what they were when calculating the need for
6518 spills. If we notice an input-reload insn here, we will
6519 reject it below, but it might hide a usable equivalent.
6520 That makes bad code. It may even fail: perhaps no reg was
6521 spilled for this insn because it was assumed we would find
6522 that equivalent. */
6523 || INSN_UID (p) < reload_first_uid))
6525 rtx tem;
6526 pat = single_set (p);
6528 /* First check for something that sets some reg equal to GOAL. */
6529 if (pat != 0
6530 && ((regno >= 0
6531 && true_regnum (SET_SRC (pat)) == regno
6532 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6534 (regno >= 0
6535 && true_regnum (SET_DEST (pat)) == regno
6536 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6538 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6539 /* When looking for stack pointer + const,
6540 make sure we don't use a stack adjust. */
6541 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6542 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6543 || (goal_mem
6544 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6545 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6546 || (goal_mem
6547 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6548 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6549 /* If we are looking for a constant,
6550 and something equivalent to that constant was copied
6551 into a reg, we can use that reg. */
6552 || (goal_const && REG_NOTES (p) != 0
6553 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6554 && ((rtx_equal_p (XEXP (tem, 0), goal)
6555 && (valueno
6556 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6557 || (REG_P (SET_DEST (pat))
6558 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6559 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6560 && GET_CODE (goal) == CONST_INT
6561 && 0 != (goaltry
6562 = operand_subword (XEXP (tem, 0), 0, 0,
6563 VOIDmode))
6564 && rtx_equal_p (goal, goaltry)
6565 && (valtry
6566 = operand_subword (SET_DEST (pat), 0, 0,
6567 VOIDmode))
6568 && (valueno = true_regnum (valtry)) >= 0)))
6569 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6570 NULL_RTX))
6571 && REG_P (SET_DEST (pat))
6572 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6573 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6574 && GET_CODE (goal) == CONST_INT
6575 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6576 VOIDmode))
6577 && rtx_equal_p (goal, goaltry)
6578 && (valtry
6579 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6580 && (valueno = true_regnum (valtry)) >= 0)))
6582 if (other >= 0)
6584 if (valueno != other)
6585 continue;
6587 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6588 continue;
6589 else
6591 int i;
6593 for (i = hard_regno_nregs[valueno][mode] - 1; i >= 0; i--)
6594 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6595 valueno + i))
6596 break;
6597 if (i >= 0)
6598 continue;
6600 value = valtry;
6601 where = p;
6602 break;
6607 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6608 (or copying VALUE into GOAL, if GOAL is also a register).
6609 Now verify that VALUE is really valid. */
6611 /* VALUENO is the register number of VALUE; a hard register. */
6613 /* Don't try to re-use something that is killed in this insn. We want
6614 to be able to trust REG_UNUSED notes. */
6615 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6616 return 0;
6618 /* If we propose to get the value from the stack pointer or if GOAL is
6619 a MEM based on the stack pointer, we need a stable SP. */
6620 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6621 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6622 goal)))
6623 need_stable_sp = 1;
6625 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6626 if (GET_MODE (value) != mode)
6627 return 0;
6629 /* Reject VALUE if it was loaded from GOAL
6630 and is also a register that appears in the address of GOAL. */
6632 if (goal_mem && value == SET_DEST (single_set (where))
6633 && refers_to_regno_for_reload_p (valueno,
6634 (valueno
6635 + hard_regno_nregs[valueno][mode]),
6636 goal, (rtx*) 0))
6637 return 0;
6639 /* Reject registers that overlap GOAL. */
6641 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6642 nregs = hard_regno_nregs[regno][mode];
6643 else
6644 nregs = 1;
6645 valuenregs = hard_regno_nregs[valueno][mode];
6647 if (!goal_mem && !goal_const
6648 && regno + nregs > valueno && regno < valueno + valuenregs)
6649 return 0;
6651 /* Reject VALUE if it is one of the regs reserved for reloads.
6652 Reload1 knows how to reuse them anyway, and it would get
6653 confused if we allocated one without its knowledge.
6654 (Now that insns introduced by reload are ignored above,
6655 this case shouldn't happen, but I'm not positive.) */
6657 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6659 int i;
6660 for (i = 0; i < valuenregs; ++i)
6661 if (reload_reg_p[valueno + i] >= 0)
6662 return 0;
6665 /* Reject VALUE if it is a register being used for an input reload
6666 even if it is not one of those reserved. */
6668 if (reload_reg_p != 0)
6670 int i;
6671 for (i = 0; i < n_reloads; i++)
6672 if (rld[i].reg_rtx != 0 && rld[i].in)
6674 int regno1 = REGNO (rld[i].reg_rtx);
6675 int nregs1 = hard_regno_nregs[regno1]
6676 [GET_MODE (rld[i].reg_rtx)];
6677 if (regno1 < valueno + valuenregs
6678 && regno1 + nregs1 > valueno)
6679 return 0;
6683 if (goal_mem)
6684 /* We must treat frame pointer as varying here,
6685 since it can vary--in a nonlocal goto as generated by expand_goto. */
6686 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6688 /* Now verify that the values of GOAL and VALUE remain unaltered
6689 until INSN is reached. */
6691 p = insn;
6692 while (1)
6694 p = PREV_INSN (p);
6695 if (p == where)
6696 return value;
6698 /* Don't trust the conversion past a function call
6699 if either of the two is in a call-clobbered register, or memory. */
6700 if (CALL_P (p))
6702 int i;
6704 if (goal_mem || need_stable_sp)
6705 return 0;
6707 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6708 for (i = 0; i < nregs; ++i)
6709 if (call_used_regs[regno + i]
6710 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6711 return 0;
6713 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6714 for (i = 0; i < valuenregs; ++i)
6715 if (call_used_regs[valueno + i]
6716 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
6717 return 0;
6720 if (INSN_P (p))
6722 pat = PATTERN (p);
6724 /* Watch out for unspec_volatile, and volatile asms. */
6725 if (volatile_insn_p (pat))
6726 return 0;
6728 /* If this insn P stores in either GOAL or VALUE, return 0.
6729 If GOAL is a memory ref and this insn writes memory, return 0.
6730 If GOAL is a memory ref and its address is not constant,
6731 and this insn P changes a register used in GOAL, return 0. */
6733 if (GET_CODE (pat) == COND_EXEC)
6734 pat = COND_EXEC_CODE (pat);
6735 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6737 rtx dest = SET_DEST (pat);
6738 while (GET_CODE (dest) == SUBREG
6739 || GET_CODE (dest) == ZERO_EXTRACT
6740 || GET_CODE (dest) == STRICT_LOW_PART)
6741 dest = XEXP (dest, 0);
6742 if (REG_P (dest))
6744 int xregno = REGNO (dest);
6745 int xnregs;
6746 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6747 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6748 else
6749 xnregs = 1;
6750 if (xregno < regno + nregs && xregno + xnregs > regno)
6751 return 0;
6752 if (xregno < valueno + valuenregs
6753 && xregno + xnregs > valueno)
6754 return 0;
6755 if (goal_mem_addr_varies
6756 && reg_overlap_mentioned_for_reload_p (dest, goal))
6757 return 0;
6758 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6759 return 0;
6761 else if (goal_mem && MEM_P (dest)
6762 && ! push_operand (dest, GET_MODE (dest)))
6763 return 0;
6764 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6765 && reg_equiv_memory_loc[regno] != 0)
6766 return 0;
6767 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6768 return 0;
6770 else if (GET_CODE (pat) == PARALLEL)
6772 int i;
6773 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6775 rtx v1 = XVECEXP (pat, 0, i);
6776 if (GET_CODE (v1) == COND_EXEC)
6777 v1 = COND_EXEC_CODE (v1);
6778 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6780 rtx dest = SET_DEST (v1);
6781 while (GET_CODE (dest) == SUBREG
6782 || GET_CODE (dest) == ZERO_EXTRACT
6783 || GET_CODE (dest) == STRICT_LOW_PART)
6784 dest = XEXP (dest, 0);
6785 if (REG_P (dest))
6787 int xregno = REGNO (dest);
6788 int xnregs;
6789 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6790 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6791 else
6792 xnregs = 1;
6793 if (xregno < regno + nregs
6794 && xregno + xnregs > regno)
6795 return 0;
6796 if (xregno < valueno + valuenregs
6797 && xregno + xnregs > valueno)
6798 return 0;
6799 if (goal_mem_addr_varies
6800 && reg_overlap_mentioned_for_reload_p (dest,
6801 goal))
6802 return 0;
6803 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6804 return 0;
6806 else if (goal_mem && MEM_P (dest)
6807 && ! push_operand (dest, GET_MODE (dest)))
6808 return 0;
6809 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6810 && reg_equiv_memory_loc[regno] != 0)
6811 return 0;
6812 else if (need_stable_sp
6813 && push_operand (dest, GET_MODE (dest)))
6814 return 0;
6819 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
6821 rtx link;
6823 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6824 link = XEXP (link, 1))
6826 pat = XEXP (link, 0);
6827 if (GET_CODE (pat) == CLOBBER)
6829 rtx dest = SET_DEST (pat);
6831 if (REG_P (dest))
6833 int xregno = REGNO (dest);
6834 int xnregs
6835 = hard_regno_nregs[xregno][GET_MODE (dest)];
6837 if (xregno < regno + nregs
6838 && xregno + xnregs > regno)
6839 return 0;
6840 else if (xregno < valueno + valuenregs
6841 && xregno + xnregs > valueno)
6842 return 0;
6843 else if (goal_mem_addr_varies
6844 && reg_overlap_mentioned_for_reload_p (dest,
6845 goal))
6846 return 0;
6849 else if (goal_mem && MEM_P (dest)
6850 && ! push_operand (dest, GET_MODE (dest)))
6851 return 0;
6852 else if (need_stable_sp
6853 && push_operand (dest, GET_MODE (dest)))
6854 return 0;
6859 #ifdef AUTO_INC_DEC
6860 /* If this insn auto-increments or auto-decrements
6861 either regno or valueno, return 0 now.
6862 If GOAL is a memory ref and its address is not constant,
6863 and this insn P increments a register used in GOAL, return 0. */
6865 rtx link;
6867 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6868 if (REG_NOTE_KIND (link) == REG_INC
6869 && REG_P (XEXP (link, 0)))
6871 int incno = REGNO (XEXP (link, 0));
6872 if (incno < regno + nregs && incno >= regno)
6873 return 0;
6874 if (incno < valueno + valuenregs && incno >= valueno)
6875 return 0;
6876 if (goal_mem_addr_varies
6877 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6878 goal))
6879 return 0;
6882 #endif
6887 /* Find a place where INCED appears in an increment or decrement operator
6888 within X, and return the amount INCED is incremented or decremented by.
6889 The value is always positive. */
6891 static int
6892 find_inc_amount (rtx x, rtx inced)
6894 enum rtx_code code = GET_CODE (x);
6895 const char *fmt;
6896 int i;
6898 if (code == MEM)
6900 rtx addr = XEXP (x, 0);
6901 if ((GET_CODE (addr) == PRE_DEC
6902 || GET_CODE (addr) == POST_DEC
6903 || GET_CODE (addr) == PRE_INC
6904 || GET_CODE (addr) == POST_INC)
6905 && XEXP (addr, 0) == inced)
6906 return GET_MODE_SIZE (GET_MODE (x));
6907 else if ((GET_CODE (addr) == PRE_MODIFY
6908 || GET_CODE (addr) == POST_MODIFY)
6909 && GET_CODE (XEXP (addr, 1)) == PLUS
6910 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6911 && XEXP (addr, 0) == inced
6912 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6914 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6915 return i < 0 ? -i : i;
6919 fmt = GET_RTX_FORMAT (code);
6920 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6922 if (fmt[i] == 'e')
6924 int tem = find_inc_amount (XEXP (x, i), inced);
6925 if (tem != 0)
6926 return tem;
6928 if (fmt[i] == 'E')
6930 int j;
6931 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6933 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6934 if (tem != 0)
6935 return tem;
6940 return 0;
6943 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6944 If SETS is nonzero, also consider SETs. REGNO must refer to a hard
6945 register. */
6948 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
6949 int sets)
6951 unsigned int nregs, endregno;
6953 /* regno must be a hard register. */
6954 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
6956 nregs = hard_regno_nregs[regno][mode];
6957 endregno = regno + nregs;
6959 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6960 || (sets && GET_CODE (PATTERN (insn)) == SET))
6961 && REG_P (XEXP (PATTERN (insn), 0)))
6963 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6965 return test >= regno && test < endregno;
6968 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6970 int i = XVECLEN (PATTERN (insn), 0) - 1;
6972 for (; i >= 0; i--)
6974 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6975 if ((GET_CODE (elt) == CLOBBER
6976 || (sets && GET_CODE (PATTERN (insn)) == SET))
6977 && REG_P (XEXP (elt, 0)))
6979 unsigned int test = REGNO (XEXP (elt, 0));
6981 if (test >= regno && test < endregno)
6982 return 1;
6987 return 0;
6990 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
6992 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
6994 int regno;
6996 if (GET_MODE (reloadreg) == mode)
6997 return reloadreg;
6999 regno = REGNO (reloadreg);
7001 if (WORDS_BIG_ENDIAN)
7002 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7003 - (int) hard_regno_nregs[regno][mode];
7005 return gen_rtx_REG (mode, regno);
7008 static const char *const reload_when_needed_name[] =
7010 "RELOAD_FOR_INPUT",
7011 "RELOAD_FOR_OUTPUT",
7012 "RELOAD_FOR_INSN",
7013 "RELOAD_FOR_INPUT_ADDRESS",
7014 "RELOAD_FOR_INPADDR_ADDRESS",
7015 "RELOAD_FOR_OUTPUT_ADDRESS",
7016 "RELOAD_FOR_OUTADDR_ADDRESS",
7017 "RELOAD_FOR_OPERAND_ADDRESS",
7018 "RELOAD_FOR_OPADDR_ADDR",
7019 "RELOAD_OTHER",
7020 "RELOAD_FOR_OTHER_ADDRESS"
7023 /* These functions are used to print the variables set by 'find_reloads' */
7025 void
7026 debug_reload_to_stream (FILE *f)
7028 int r;
7029 const char *prefix;
7031 if (! f)
7032 f = stderr;
7033 for (r = 0; r < n_reloads; r++)
7035 fprintf (f, "Reload %d: ", r);
7037 if (rld[r].in != 0)
7039 fprintf (f, "reload_in (%s) = ",
7040 GET_MODE_NAME (rld[r].inmode));
7041 print_inline_rtx (f, rld[r].in, 24);
7042 fprintf (f, "\n\t");
7045 if (rld[r].out != 0)
7047 fprintf (f, "reload_out (%s) = ",
7048 GET_MODE_NAME (rld[r].outmode));
7049 print_inline_rtx (f, rld[r].out, 24);
7050 fprintf (f, "\n\t");
7053 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
7055 fprintf (f, "%s (opnum = %d)",
7056 reload_when_needed_name[(int) rld[r].when_needed],
7057 rld[r].opnum);
7059 if (rld[r].optional)
7060 fprintf (f, ", optional");
7062 if (rld[r].nongroup)
7063 fprintf (f, ", nongroup");
7065 if (rld[r].inc != 0)
7066 fprintf (f, ", inc by %d", rld[r].inc);
7068 if (rld[r].nocombine)
7069 fprintf (f, ", can't combine");
7071 if (rld[r].secondary_p)
7072 fprintf (f, ", secondary_reload_p");
7074 if (rld[r].in_reg != 0)
7076 fprintf (f, "\n\treload_in_reg: ");
7077 print_inline_rtx (f, rld[r].in_reg, 24);
7080 if (rld[r].out_reg != 0)
7082 fprintf (f, "\n\treload_out_reg: ");
7083 print_inline_rtx (f, rld[r].out_reg, 24);
7086 if (rld[r].reg_rtx != 0)
7088 fprintf (f, "\n\treload_reg_rtx: ");
7089 print_inline_rtx (f, rld[r].reg_rtx, 24);
7092 prefix = "\n\t";
7093 if (rld[r].secondary_in_reload != -1)
7095 fprintf (f, "%ssecondary_in_reload = %d",
7096 prefix, rld[r].secondary_in_reload);
7097 prefix = ", ";
7100 if (rld[r].secondary_out_reload != -1)
7101 fprintf (f, "%ssecondary_out_reload = %d\n",
7102 prefix, rld[r].secondary_out_reload);
7104 prefix = "\n\t";
7105 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7107 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7108 insn_data[rld[r].secondary_in_icode].name);
7109 prefix = ", ";
7112 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7113 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7114 insn_data[rld[r].secondary_out_icode].name);
7116 fprintf (f, "\n");
7120 void
7121 debug_reload (void)
7123 debug_reload_to_stream (stderr);