1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 /* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
35 not get a hard register. */
39 #include "coretypes.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
54 #include "basic-block.h"
59 #include "integrate.h"
60 #include "langhooks.h"
62 #include "cfglayout.h"
63 #include "tree-gimple.h"
64 #include "tree-pass.h"
67 #ifndef LOCAL_ALIGNMENT
68 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
71 #ifndef STACK_ALIGNMENT_NEEDED
72 #define STACK_ALIGNMENT_NEEDED 1
75 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77 /* Some systems use __main in a way incompatible with its use in gcc, in these
78 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
79 give the same symbol without quotes for an alternative entry point. You
80 must define both, or neither. */
82 #define NAME__MAIN "__main"
85 /* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90 /* Similar, but round to the next highest integer that meets the
92 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94 /* Nonzero if function being compiled doesn't contain any calls
95 (ignoring the prologue and epilogue). This is set prior to
96 local register allocation and is valid for the remaining
98 int current_function_is_leaf
;
100 /* Nonzero if function being compiled doesn't modify the stack pointer
101 (ignoring the prologue and epilogue). This is only valid after
102 life_analysis has run. */
103 int current_function_sp_is_unchanging
;
105 /* Nonzero if the function being compiled is a leaf function which only
106 uses leaf registers. This is valid after reload (specifically after
107 sched2) and is useful only if the port defines LEAF_REGISTERS. */
108 int current_function_uses_only_leaf_regs
;
110 /* Nonzero once virtual register instantiation has been done.
111 assign_stack_local uses frame_pointer_rtx when this is nonzero.
112 calls.c:emit_library_call_value_1 uses it to set up
113 post-instantiation libcalls. */
114 int virtuals_instantiated
;
116 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
117 static GTY(()) int funcdef_no
;
119 /* These variables hold pointers to functions to create and destroy
120 target specific, per-function data structures. */
121 struct machine_function
* (*init_machine_status
) (void);
123 /* The currently compiled function. */
124 struct function
*cfun
= 0;
127 DEF_VEC_ALLOC_I(int,heap
);
129 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
130 static VEC(int,heap
) *prologue
;
131 static VEC(int,heap
) *epilogue
;
133 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
135 static VEC(int,heap
) *sibcall_epilogue
;
137 /* In order to evaluate some expressions, such as function calls returning
138 structures in memory, we need to temporarily allocate stack locations.
139 We record each allocated temporary in the following structure.
141 Associated with each temporary slot is a nesting level. When we pop up
142 one level, all temporaries associated with the previous level are freed.
143 Normally, all temporaries are freed after the execution of the statement
144 in which they were created. However, if we are inside a ({...}) grouping,
145 the result may be in a temporary and hence must be preserved. If the
146 result could be in a temporary, we preserve it if we can determine which
147 one it is in. If we cannot determine which temporary may contain the
148 result, all temporaries are preserved. A temporary is preserved by
149 pretending it was allocated at the previous nesting level.
151 Automatic variables are also assigned temporary slots, at the nesting
152 level where they are defined. They are marked a "kept" so that
153 free_temp_slots will not free them. */
155 struct temp_slot
GTY(())
157 /* Points to next temporary slot. */
158 struct temp_slot
*next
;
159 /* Points to previous temporary slot. */
160 struct temp_slot
*prev
;
162 /* The rtx to used to reference the slot. */
164 /* The rtx used to represent the address if not the address of the
165 slot above. May be an EXPR_LIST if multiple addresses exist. */
167 /* The alignment (in bits) of the slot. */
169 /* The size, in units, of the slot. */
171 /* The type of the object in the slot, or zero if it doesn't correspond
172 to a type. We use this to determine whether a slot can be reused.
173 It can be reused if objects of the type of the new slot will always
174 conflict with objects of the type of the old slot. */
176 /* Nonzero if this temporary is currently in use. */
178 /* Nonzero if this temporary has its address taken. */
180 /* Nesting level at which this slot is being used. */
182 /* Nonzero if this should survive a call to free_temp_slots. */
184 /* The offset of the slot from the frame_pointer, including extra space
185 for alignment. This info is for combine_temp_slots. */
186 HOST_WIDE_INT base_offset
;
187 /* The size of the slot, including extra space for alignment. This
188 info is for combine_temp_slots. */
189 HOST_WIDE_INT full_size
;
192 /* Forward declarations. */
194 static rtx
assign_stack_local_1 (enum machine_mode
, HOST_WIDE_INT
, int,
196 static struct temp_slot
*find_temp_slot_from_address (rtx
);
197 static void pad_to_arg_alignment (struct args_size
*, int, struct args_size
*);
198 static void pad_below (struct args_size
*, enum machine_mode
, tree
);
199 static void reorder_blocks_1 (rtx
, tree
, VEC(tree
,heap
) **);
200 static void reorder_fix_fragments (tree
);
201 static int all_blocks (tree
, tree
*);
202 static tree
*get_block_vector (tree
, int *);
203 extern tree
debug_find_var_in_block_tree (tree
, tree
);
204 /* We always define `record_insns' even if it's not used so that we
205 can always export `prologue_epilogue_contains'. */
206 static void record_insns (rtx
, VEC(int,heap
) **) ATTRIBUTE_UNUSED
;
207 static int contains (rtx
, VEC(int,heap
) **);
209 static void emit_return_into_block (basic_block
, rtx
);
211 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
212 static rtx
keep_stack_depressed (rtx
);
214 static void prepare_function_start (tree
);
215 static void do_clobber_return_reg (rtx
, void *);
216 static void do_use_return_reg (rtx
, void *);
217 static void set_insn_locators (rtx
, int) ATTRIBUTE_UNUSED
;
219 /* Pointer to chain of `struct function' for containing functions. */
220 struct function
*outer_function_chain
;
222 /* Given a function decl for a containing function,
223 return the `struct function' for it. */
226 find_function_data (tree decl
)
230 for (p
= outer_function_chain
; p
; p
= p
->outer
)
237 /* Save the current context for compilation of a nested function.
238 This is called from language-specific code. The caller should use
239 the enter_nested langhook to save any language-specific state,
240 since this function knows only about language-independent
244 push_function_context_to (tree context ATTRIBUTE_UNUSED
)
249 init_dummy_function_start ();
252 p
->outer
= outer_function_chain
;
253 outer_function_chain
= p
;
255 lang_hooks
.function
.enter_nested (p
);
261 push_function_context (void)
263 push_function_context_to (current_function_decl
);
266 /* Restore the last saved context, at the end of a nested function.
267 This function is called from language-specific code. */
270 pop_function_context_from (tree context ATTRIBUTE_UNUSED
)
272 struct function
*p
= outer_function_chain
;
275 outer_function_chain
= p
->outer
;
277 current_function_decl
= p
->decl
;
279 lang_hooks
.function
.leave_nested (p
);
281 /* Reset variables that have known state during rtx generation. */
282 virtuals_instantiated
= 0;
283 generating_concat_p
= 1;
287 pop_function_context (void)
289 pop_function_context_from (current_function_decl
);
292 /* Clear out all parts of the state in F that can safely be discarded
293 after the function has been parsed, but not compiled, to let
294 garbage collection reclaim the memory. */
297 free_after_parsing (struct function
*f
)
299 /* f->expr->forced_labels is used by code generation. */
300 /* f->emit->regno_reg_rtx is used by code generation. */
301 /* f->varasm is used by code generation. */
302 /* f->eh->eh_return_stub_label is used by code generation. */
304 lang_hooks
.function
.final (f
);
307 /* Clear out all parts of the state in F that can safely be discarded
308 after the function has been compiled, to let garbage collection
309 reclaim the memory. */
312 free_after_compilation (struct function
*f
)
314 VEC_free (int, heap
, prologue
);
315 VEC_free (int, heap
, epilogue
);
316 VEC_free (int, heap
, sibcall_epilogue
);
325 f
->x_avail_temp_slots
= NULL
;
326 f
->x_used_temp_slots
= NULL
;
327 f
->arg_offset_rtx
= NULL
;
328 f
->return_rtx
= NULL
;
329 f
->internal_arg_pointer
= NULL
;
330 f
->x_nonlocal_goto_handler_labels
= NULL
;
331 f
->x_return_label
= NULL
;
332 f
->x_naked_return_label
= NULL
;
333 f
->x_stack_slot_list
= NULL
;
334 f
->x_tail_recursion_reentry
= NULL
;
335 f
->x_arg_pointer_save_area
= NULL
;
336 f
->x_parm_birth_insn
= NULL
;
337 f
->original_arg_vector
= NULL
;
338 f
->original_decl_initial
= NULL
;
339 f
->epilogue_delay_list
= NULL
;
342 /* Allocate fixed slots in the stack frame of the current function. */
344 /* Return size needed for stack frame based on slots so far allocated in
346 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
347 the caller may have to do that. */
350 get_func_frame_size (struct function
*f
)
352 if (FRAME_GROWS_DOWNWARD
)
353 return -f
->x_frame_offset
;
355 return f
->x_frame_offset
;
358 /* Return size needed for stack frame based on slots so far allocated.
359 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
360 the caller may have to do that. */
362 get_frame_size (void)
364 return get_func_frame_size (cfun
);
367 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
368 with machine mode MODE.
370 ALIGN controls the amount of alignment for the address of the slot:
371 0 means according to MODE,
372 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
373 -2 means use BITS_PER_UNIT,
374 positive specifies alignment boundary in bits.
376 We do not round to stack_boundary here.
378 FUNCTION specifies the function to allocate in. */
381 assign_stack_local_1 (enum machine_mode mode
, HOST_WIDE_INT size
, int align
,
382 struct function
*function
)
385 int bigend_correction
= 0;
386 unsigned int alignment
;
387 int frame_off
, frame_alignment
, frame_phase
;
394 alignment
= BIGGEST_ALIGNMENT
;
396 alignment
= GET_MODE_ALIGNMENT (mode
);
398 /* Allow the target to (possibly) increase the alignment of this
400 type
= lang_hooks
.types
.type_for_mode (mode
, 0);
402 alignment
= LOCAL_ALIGNMENT (type
, alignment
);
404 alignment
/= BITS_PER_UNIT
;
406 else if (align
== -1)
408 alignment
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
409 size
= CEIL_ROUND (size
, alignment
);
411 else if (align
== -2)
412 alignment
= 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
414 alignment
= align
/ BITS_PER_UNIT
;
416 if (FRAME_GROWS_DOWNWARD
)
417 function
->x_frame_offset
-= size
;
419 /* Ignore alignment we can't do with expected alignment of the boundary. */
420 if (alignment
* BITS_PER_UNIT
> PREFERRED_STACK_BOUNDARY
)
421 alignment
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
423 if (function
->stack_alignment_needed
< alignment
* BITS_PER_UNIT
)
424 function
->stack_alignment_needed
= alignment
* BITS_PER_UNIT
;
426 /* Calculate how many bytes the start of local variables is off from
428 frame_alignment
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
429 frame_off
= STARTING_FRAME_OFFSET
% frame_alignment
;
430 frame_phase
= frame_off
? frame_alignment
- frame_off
: 0;
432 /* Round the frame offset to the specified alignment. The default is
433 to always honor requests to align the stack but a port may choose to
434 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
435 if (STACK_ALIGNMENT_NEEDED
439 /* We must be careful here, since FRAME_OFFSET might be negative and
440 division with a negative dividend isn't as well defined as we might
441 like. So we instead assume that ALIGNMENT is a power of two and
442 use logical operations which are unambiguous. */
443 if (FRAME_GROWS_DOWNWARD
)
444 function
->x_frame_offset
445 = (FLOOR_ROUND (function
->x_frame_offset
- frame_phase
,
446 (unsigned HOST_WIDE_INT
) alignment
)
449 function
->x_frame_offset
450 = (CEIL_ROUND (function
->x_frame_offset
- frame_phase
,
451 (unsigned HOST_WIDE_INT
) alignment
)
455 /* On a big-endian machine, if we are allocating more space than we will use,
456 use the least significant bytes of those that are allocated. */
457 if (BYTES_BIG_ENDIAN
&& mode
!= BLKmode
&& GET_MODE_SIZE (mode
) < size
)
458 bigend_correction
= size
- GET_MODE_SIZE (mode
);
460 /* If we have already instantiated virtual registers, return the actual
461 address relative to the frame pointer. */
462 if (function
== cfun
&& virtuals_instantiated
)
463 addr
= plus_constant (frame_pointer_rtx
,
465 (frame_offset
+ bigend_correction
466 + STARTING_FRAME_OFFSET
, Pmode
));
468 addr
= plus_constant (virtual_stack_vars_rtx
,
470 (function
->x_frame_offset
+ bigend_correction
,
473 if (!FRAME_GROWS_DOWNWARD
)
474 function
->x_frame_offset
+= size
;
476 x
= gen_rtx_MEM (mode
, addr
);
477 MEM_NOTRAP_P (x
) = 1;
479 function
->x_stack_slot_list
480 = gen_rtx_EXPR_LIST (VOIDmode
, x
, function
->x_stack_slot_list
);
482 /* Try to detect frame size overflows on native platforms. */
483 #if BITS_PER_WORD >= 32
484 if ((FRAME_GROWS_DOWNWARD
485 ? (unsigned HOST_WIDE_INT
) -function
->x_frame_offset
486 : (unsigned HOST_WIDE_INT
) function
->x_frame_offset
)
487 > ((unsigned HOST_WIDE_INT
) 1 << (BITS_PER_WORD
- 1))
488 /* Leave room for the fixed part of the frame. */
489 - 64 * UNITS_PER_WORD
)
491 error ("%Jtotal size of local objects too large", function
->decl
);
492 /* Avoid duplicate error messages as much as possible. */
493 function
->x_frame_offset
= 0;
500 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
504 assign_stack_local (enum machine_mode mode
, HOST_WIDE_INT size
, int align
)
506 return assign_stack_local_1 (mode
, size
, align
, cfun
);
510 /* Removes temporary slot TEMP from LIST. */
513 cut_slot_from_list (struct temp_slot
*temp
, struct temp_slot
**list
)
516 temp
->next
->prev
= temp
->prev
;
518 temp
->prev
->next
= temp
->next
;
522 temp
->prev
= temp
->next
= NULL
;
525 /* Inserts temporary slot TEMP to LIST. */
528 insert_slot_to_list (struct temp_slot
*temp
, struct temp_slot
**list
)
532 (*list
)->prev
= temp
;
537 /* Returns the list of used temp slots at LEVEL. */
539 static struct temp_slot
**
540 temp_slots_at_level (int level
)
543 if (!used_temp_slots
)
544 VARRAY_GENERIC_PTR_INIT (used_temp_slots
, 3, "used_temp_slots");
546 while (level
>= (int) VARRAY_ACTIVE_SIZE (used_temp_slots
))
547 VARRAY_PUSH_GENERIC_PTR (used_temp_slots
, NULL
);
549 return (struct temp_slot
**) &VARRAY_GENERIC_PTR (used_temp_slots
, level
);
552 /* Returns the maximal temporary slot level. */
555 max_slot_level (void)
557 if (!used_temp_slots
)
560 return VARRAY_ACTIVE_SIZE (used_temp_slots
) - 1;
563 /* Moves temporary slot TEMP to LEVEL. */
566 move_slot_to_level (struct temp_slot
*temp
, int level
)
568 cut_slot_from_list (temp
, temp_slots_at_level (temp
->level
));
569 insert_slot_to_list (temp
, temp_slots_at_level (level
));
573 /* Make temporary slot TEMP available. */
576 make_slot_available (struct temp_slot
*temp
)
578 cut_slot_from_list (temp
, temp_slots_at_level (temp
->level
));
579 insert_slot_to_list (temp
, &avail_temp_slots
);
584 /* Allocate a temporary stack slot and record it for possible later
587 MODE is the machine mode to be given to the returned rtx.
589 SIZE is the size in units of the space required. We do no rounding here
590 since assign_stack_local will do any required rounding.
592 KEEP is 1 if this slot is to be retained after a call to
593 free_temp_slots. Automatic variables for a block are allocated
594 with this flag. KEEP values of 2 or 3 were needed respectively
595 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
596 or for SAVE_EXPRs, but they are now unused.
598 TYPE is the type that will be used for the stack slot. */
601 assign_stack_temp_for_type (enum machine_mode mode
, HOST_WIDE_INT size
,
605 struct temp_slot
*p
, *best_p
= 0, *selected
= NULL
, **pp
;
608 /* If SIZE is -1 it means that somebody tried to allocate a temporary
609 of a variable size. */
610 gcc_assert (size
!= -1);
612 /* These are now unused. */
613 gcc_assert (keep
<= 1);
616 align
= BIGGEST_ALIGNMENT
;
618 align
= GET_MODE_ALIGNMENT (mode
);
621 type
= lang_hooks
.types
.type_for_mode (mode
, 0);
624 align
= LOCAL_ALIGNMENT (type
, align
);
626 /* Try to find an available, already-allocated temporary of the proper
627 mode which meets the size and alignment requirements. Choose the
628 smallest one with the closest alignment. */
629 for (p
= avail_temp_slots
; p
; p
= p
->next
)
631 if (p
->align
>= align
&& p
->size
>= size
&& GET_MODE (p
->slot
) == mode
632 && objects_must_conflict_p (p
->type
, type
)
633 && (best_p
== 0 || best_p
->size
> p
->size
634 || (best_p
->size
== p
->size
&& best_p
->align
> p
->align
)))
636 if (p
->align
== align
&& p
->size
== size
)
639 cut_slot_from_list (selected
, &avail_temp_slots
);
647 /* Make our best, if any, the one to use. */
651 cut_slot_from_list (selected
, &avail_temp_slots
);
653 /* If there are enough aligned bytes left over, make them into a new
654 temp_slot so that the extra bytes don't get wasted. Do this only
655 for BLKmode slots, so that we can be sure of the alignment. */
656 if (GET_MODE (best_p
->slot
) == BLKmode
)
658 int alignment
= best_p
->align
/ BITS_PER_UNIT
;
659 HOST_WIDE_INT rounded_size
= CEIL_ROUND (size
, alignment
);
661 if (best_p
->size
- rounded_size
>= alignment
)
663 p
= ggc_alloc (sizeof (struct temp_slot
));
664 p
->in_use
= p
->addr_taken
= 0;
665 p
->size
= best_p
->size
- rounded_size
;
666 p
->base_offset
= best_p
->base_offset
+ rounded_size
;
667 p
->full_size
= best_p
->full_size
- rounded_size
;
668 p
->slot
= adjust_address_nv (best_p
->slot
, BLKmode
, rounded_size
);
669 p
->align
= best_p
->align
;
671 p
->type
= best_p
->type
;
672 insert_slot_to_list (p
, &avail_temp_slots
);
674 stack_slot_list
= gen_rtx_EXPR_LIST (VOIDmode
, p
->slot
,
677 best_p
->size
= rounded_size
;
678 best_p
->full_size
= rounded_size
;
683 /* If we still didn't find one, make a new temporary. */
686 HOST_WIDE_INT frame_offset_old
= frame_offset
;
688 p
= ggc_alloc (sizeof (struct temp_slot
));
690 /* We are passing an explicit alignment request to assign_stack_local.
691 One side effect of that is assign_stack_local will not round SIZE
692 to ensure the frame offset remains suitably aligned.
694 So for requests which depended on the rounding of SIZE, we go ahead
695 and round it now. We also make sure ALIGNMENT is at least
696 BIGGEST_ALIGNMENT. */
697 gcc_assert (mode
!= BLKmode
|| align
== BIGGEST_ALIGNMENT
);
698 p
->slot
= assign_stack_local (mode
,
700 ? CEIL_ROUND (size
, (int) align
/ BITS_PER_UNIT
)
706 /* The following slot size computation is necessary because we don't
707 know the actual size of the temporary slot until assign_stack_local
708 has performed all the frame alignment and size rounding for the
709 requested temporary. Note that extra space added for alignment
710 can be either above or below this stack slot depending on which
711 way the frame grows. We include the extra space if and only if it
712 is above this slot. */
713 if (FRAME_GROWS_DOWNWARD
)
714 p
->size
= frame_offset_old
- frame_offset
;
718 /* Now define the fields used by combine_temp_slots. */
719 if (FRAME_GROWS_DOWNWARD
)
721 p
->base_offset
= frame_offset
;
722 p
->full_size
= frame_offset_old
- frame_offset
;
726 p
->base_offset
= frame_offset_old
;
727 p
->full_size
= frame_offset
- frame_offset_old
;
738 p
->level
= temp_slot_level
;
741 pp
= temp_slots_at_level (p
->level
);
742 insert_slot_to_list (p
, pp
);
744 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
745 slot
= gen_rtx_MEM (mode
, XEXP (p
->slot
, 0));
746 stack_slot_list
= gen_rtx_EXPR_LIST (VOIDmode
, slot
, stack_slot_list
);
748 /* If we know the alias set for the memory that will be used, use
749 it. If there's no TYPE, then we don't know anything about the
750 alias set for the memory. */
751 set_mem_alias_set (slot
, type
? get_alias_set (type
) : 0);
752 set_mem_align (slot
, align
);
754 /* If a type is specified, set the relevant flags. */
757 MEM_VOLATILE_P (slot
) = TYPE_VOLATILE (type
);
758 MEM_SET_IN_STRUCT_P (slot
, AGGREGATE_TYPE_P (type
));
760 MEM_NOTRAP_P (slot
) = 1;
765 /* Allocate a temporary stack slot and record it for possible later
766 reuse. First three arguments are same as in preceding function. */
769 assign_stack_temp (enum machine_mode mode
, HOST_WIDE_INT size
, int keep
)
771 return assign_stack_temp_for_type (mode
, size
, keep
, NULL_TREE
);
774 /* Assign a temporary.
775 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
776 and so that should be used in error messages. In either case, we
777 allocate of the given type.
778 KEEP is as for assign_stack_temp.
779 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
780 it is 0 if a register is OK.
781 DONT_PROMOTE is 1 if we should not promote values in register
785 assign_temp (tree type_or_decl
, int keep
, int memory_required
,
786 int dont_promote ATTRIBUTE_UNUSED
)
789 enum machine_mode mode
;
794 if (DECL_P (type_or_decl
))
795 decl
= type_or_decl
, type
= TREE_TYPE (decl
);
797 decl
= NULL
, type
= type_or_decl
;
799 mode
= TYPE_MODE (type
);
801 unsignedp
= TYPE_UNSIGNED (type
);
804 if (mode
== BLKmode
|| memory_required
)
806 HOST_WIDE_INT size
= int_size_in_bytes (type
);
810 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
811 problems with allocating the stack space. */
815 /* Unfortunately, we don't yet know how to allocate variable-sized
816 temporaries. However, sometimes we have a fixed upper limit on
817 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
818 instead. This is the case for Chill variable-sized strings. */
819 if (size
== -1 && TREE_CODE (type
) == ARRAY_TYPE
820 && TYPE_ARRAY_MAX_SIZE (type
) != NULL_TREE
821 && host_integerp (TYPE_ARRAY_MAX_SIZE (type
), 1))
822 size
= tree_low_cst (TYPE_ARRAY_MAX_SIZE (type
), 1);
824 /* If we still haven't been able to get a size, see if the language
825 can compute a maximum size. */
827 && (size_tree
= lang_hooks
.types
.max_size (type
)) != 0
828 && host_integerp (size_tree
, 1))
829 size
= tree_low_cst (size_tree
, 1);
831 /* The size of the temporary may be too large to fit into an integer. */
832 /* ??? Not sure this should happen except for user silliness, so limit
833 this to things that aren't compiler-generated temporaries. The
834 rest of the time we'll die in assign_stack_temp_for_type. */
835 if (decl
&& size
== -1
836 && TREE_CODE (TYPE_SIZE_UNIT (type
)) == INTEGER_CST
)
838 error ("size of variable %q+D is too large", decl
);
842 tmp
= assign_stack_temp_for_type (mode
, size
, keep
, type
);
848 mode
= promote_mode (type
, mode
, &unsignedp
, 0);
851 return gen_reg_rtx (mode
);
854 /* Combine temporary stack slots which are adjacent on the stack.
856 This allows for better use of already allocated stack space. This is only
857 done for BLKmode slots because we can be sure that we won't have alignment
858 problems in this case. */
861 combine_temp_slots (void)
863 struct temp_slot
*p
, *q
, *next
, *next_q
;
866 /* We can't combine slots, because the information about which slot
867 is in which alias set will be lost. */
868 if (flag_strict_aliasing
)
871 /* If there are a lot of temp slots, don't do anything unless
872 high levels of optimization. */
873 if (! flag_expensive_optimizations
)
874 for (p
= avail_temp_slots
, num_slots
= 0; p
; p
= p
->next
, num_slots
++)
875 if (num_slots
> 100 || (num_slots
> 10 && optimize
== 0))
878 for (p
= avail_temp_slots
; p
; p
= next
)
884 if (GET_MODE (p
->slot
) != BLKmode
)
887 for (q
= p
->next
; q
; q
= next_q
)
893 if (GET_MODE (q
->slot
) != BLKmode
)
896 if (p
->base_offset
+ p
->full_size
== q
->base_offset
)
898 /* Q comes after P; combine Q into P. */
900 p
->full_size
+= q
->full_size
;
903 else if (q
->base_offset
+ q
->full_size
== p
->base_offset
)
905 /* P comes after Q; combine P into Q. */
907 q
->full_size
+= p
->full_size
;
912 cut_slot_from_list (q
, &avail_temp_slots
);
915 /* Either delete P or advance past it. */
917 cut_slot_from_list (p
, &avail_temp_slots
);
921 /* Find the temp slot corresponding to the object at address X. */
923 static struct temp_slot
*
924 find_temp_slot_from_address (rtx x
)
930 for (i
= max_slot_level (); i
>= 0; i
--)
931 for (p
= *temp_slots_at_level (i
); p
; p
= p
->next
)
933 if (XEXP (p
->slot
, 0) == x
935 || (GET_CODE (x
) == PLUS
936 && XEXP (x
, 0) == virtual_stack_vars_rtx
937 && GET_CODE (XEXP (x
, 1)) == CONST_INT
938 && INTVAL (XEXP (x
, 1)) >= p
->base_offset
939 && INTVAL (XEXP (x
, 1)) < p
->base_offset
+ p
->full_size
))
942 else if (p
->address
!= 0 && GET_CODE (p
->address
) == EXPR_LIST
)
943 for (next
= p
->address
; next
; next
= XEXP (next
, 1))
944 if (XEXP (next
, 0) == x
)
948 /* If we have a sum involving a register, see if it points to a temp
950 if (GET_CODE (x
) == PLUS
&& REG_P (XEXP (x
, 0))
951 && (p
= find_temp_slot_from_address (XEXP (x
, 0))) != 0)
953 else if (GET_CODE (x
) == PLUS
&& REG_P (XEXP (x
, 1))
954 && (p
= find_temp_slot_from_address (XEXP (x
, 1))) != 0)
960 /* Indicate that NEW is an alternate way of referring to the temp slot
961 that previously was known by OLD. */
964 update_temp_slot_address (rtx old
, rtx
new)
968 if (rtx_equal_p (old
, new))
971 p
= find_temp_slot_from_address (old
);
973 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
974 is a register, see if one operand of the PLUS is a temporary
975 location. If so, NEW points into it. Otherwise, if both OLD and
976 NEW are a PLUS and if there is a register in common between them.
977 If so, try a recursive call on those values. */
980 if (GET_CODE (old
) != PLUS
)
985 update_temp_slot_address (XEXP (old
, 0), new);
986 update_temp_slot_address (XEXP (old
, 1), new);
989 else if (GET_CODE (new) != PLUS
)
992 if (rtx_equal_p (XEXP (old
, 0), XEXP (new, 0)))
993 update_temp_slot_address (XEXP (old
, 1), XEXP (new, 1));
994 else if (rtx_equal_p (XEXP (old
, 1), XEXP (new, 0)))
995 update_temp_slot_address (XEXP (old
, 0), XEXP (new, 1));
996 else if (rtx_equal_p (XEXP (old
, 0), XEXP (new, 1)))
997 update_temp_slot_address (XEXP (old
, 1), XEXP (new, 0));
998 else if (rtx_equal_p (XEXP (old
, 1), XEXP (new, 1)))
999 update_temp_slot_address (XEXP (old
, 0), XEXP (new, 0));
1004 /* Otherwise add an alias for the temp's address. */
1005 else if (p
->address
== 0)
1009 if (GET_CODE (p
->address
) != EXPR_LIST
)
1010 p
->address
= gen_rtx_EXPR_LIST (VOIDmode
, p
->address
, NULL_RTX
);
1012 p
->address
= gen_rtx_EXPR_LIST (VOIDmode
, new, p
->address
);
1016 /* If X could be a reference to a temporary slot, mark the fact that its
1017 address was taken. */
1020 mark_temp_addr_taken (rtx x
)
1022 struct temp_slot
*p
;
1027 /* If X is not in memory or is at a constant address, it cannot be in
1028 a temporary slot. */
1029 if (!MEM_P (x
) || CONSTANT_P (XEXP (x
, 0)))
1032 p
= find_temp_slot_from_address (XEXP (x
, 0));
1037 /* If X could be a reference to a temporary slot, mark that slot as
1038 belonging to the to one level higher than the current level. If X
1039 matched one of our slots, just mark that one. Otherwise, we can't
1040 easily predict which it is, so upgrade all of them. Kept slots
1041 need not be touched.
1043 This is called when an ({...}) construct occurs and a statement
1044 returns a value in memory. */
1047 preserve_temp_slots (rtx x
)
1049 struct temp_slot
*p
= 0, *next
;
1051 /* If there is no result, we still might have some objects whose address
1052 were taken, so we need to make sure they stay around. */
1055 for (p
= *temp_slots_at_level (temp_slot_level
); p
; p
= next
)
1060 move_slot_to_level (p
, temp_slot_level
- 1);
1066 /* If X is a register that is being used as a pointer, see if we have
1067 a temporary slot we know it points to. To be consistent with
1068 the code below, we really should preserve all non-kept slots
1069 if we can't find a match, but that seems to be much too costly. */
1070 if (REG_P (x
) && REG_POINTER (x
))
1071 p
= find_temp_slot_from_address (x
);
1073 /* If X is not in memory or is at a constant address, it cannot be in
1074 a temporary slot, but it can contain something whose address was
1076 if (p
== 0 && (!MEM_P (x
) || CONSTANT_P (XEXP (x
, 0))))
1078 for (p
= *temp_slots_at_level (temp_slot_level
); p
; p
= next
)
1083 move_slot_to_level (p
, temp_slot_level
- 1);
1089 /* First see if we can find a match. */
1091 p
= find_temp_slot_from_address (XEXP (x
, 0));
1095 /* Move everything at our level whose address was taken to our new
1096 level in case we used its address. */
1097 struct temp_slot
*q
;
1099 if (p
->level
== temp_slot_level
)
1101 for (q
= *temp_slots_at_level (temp_slot_level
); q
; q
= next
)
1105 if (p
!= q
&& q
->addr_taken
)
1106 move_slot_to_level (q
, temp_slot_level
- 1);
1109 move_slot_to_level (p
, temp_slot_level
- 1);
1115 /* Otherwise, preserve all non-kept slots at this level. */
1116 for (p
= *temp_slots_at_level (temp_slot_level
); p
; p
= next
)
1121 move_slot_to_level (p
, temp_slot_level
- 1);
1125 /* Free all temporaries used so far. This is normally called at the
1126 end of generating code for a statement. */
1129 free_temp_slots (void)
1131 struct temp_slot
*p
, *next
;
1133 for (p
= *temp_slots_at_level (temp_slot_level
); p
; p
= next
)
1138 make_slot_available (p
);
1141 combine_temp_slots ();
1144 /* Push deeper into the nesting level for stack temporaries. */
1147 push_temp_slots (void)
1152 /* Pop a temporary nesting level. All slots in use in the current level
1156 pop_temp_slots (void)
1158 struct temp_slot
*p
, *next
;
1160 for (p
= *temp_slots_at_level (temp_slot_level
); p
; p
= next
)
1163 make_slot_available (p
);
1166 combine_temp_slots ();
1171 /* Initialize temporary slots. */
1174 init_temp_slots (void)
1176 /* We have not allocated any temporaries yet. */
1177 avail_temp_slots
= 0;
1178 used_temp_slots
= 0;
1179 temp_slot_level
= 0;
1182 /* These routines are responsible for converting virtual register references
1183 to the actual hard register references once RTL generation is complete.
1185 The following four variables are used for communication between the
1186 routines. They contain the offsets of the virtual registers from their
1187 respective hard registers. */
1189 static int in_arg_offset
;
1190 static int var_offset
;
1191 static int dynamic_offset
;
1192 static int out_arg_offset
;
1193 static int cfa_offset
;
1195 /* In most machines, the stack pointer register is equivalent to the bottom
1198 #ifndef STACK_POINTER_OFFSET
1199 #define STACK_POINTER_OFFSET 0
1202 /* If not defined, pick an appropriate default for the offset of dynamically
1203 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1204 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1206 #ifndef STACK_DYNAMIC_OFFSET
1208 /* The bottom of the stack points to the actual arguments. If
1209 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1210 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1211 stack space for register parameters is not pushed by the caller, but
1212 rather part of the fixed stack areas and hence not included in
1213 `current_function_outgoing_args_size'. Nevertheless, we must allow
1214 for it when allocating stack dynamic objects. */
1216 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1217 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1218 ((ACCUMULATE_OUTGOING_ARGS \
1219 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1220 + (STACK_POINTER_OFFSET)) \
1223 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1224 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1225 + (STACK_POINTER_OFFSET))
1230 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1231 is a virtual register, return the equivalent hard register and set the
1232 offset indirectly through the pointer. Otherwise, return 0. */
1235 instantiate_new_reg (rtx x
, HOST_WIDE_INT
*poffset
)
1238 HOST_WIDE_INT offset
;
1240 if (x
== virtual_incoming_args_rtx
)
1241 new = arg_pointer_rtx
, offset
= in_arg_offset
;
1242 else if (x
== virtual_stack_vars_rtx
)
1243 new = frame_pointer_rtx
, offset
= var_offset
;
1244 else if (x
== virtual_stack_dynamic_rtx
)
1245 new = stack_pointer_rtx
, offset
= dynamic_offset
;
1246 else if (x
== virtual_outgoing_args_rtx
)
1247 new = stack_pointer_rtx
, offset
= out_arg_offset
;
1248 else if (x
== virtual_cfa_rtx
)
1250 #ifdef FRAME_POINTER_CFA_OFFSET
1251 new = frame_pointer_rtx
;
1253 new = arg_pointer_rtx
;
1255 offset
= cfa_offset
;
1264 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1265 Instantiate any virtual registers present inside of *LOC. The expression
1266 is simplified, as much as possible, but is not to be considered "valid"
1267 in any sense implied by the target. If any change is made, set CHANGED
1271 instantiate_virtual_regs_in_rtx (rtx
*loc
, void *data
)
1273 HOST_WIDE_INT offset
;
1274 bool *changed
= (bool *) data
;
1281 switch (GET_CODE (x
))
1284 new = instantiate_new_reg (x
, &offset
);
1287 *loc
= plus_constant (new, offset
);
1294 new = instantiate_new_reg (XEXP (x
, 0), &offset
);
1297 new = plus_constant (new, offset
);
1298 *loc
= simplify_gen_binary (PLUS
, GET_MODE (x
), new, XEXP (x
, 1));
1304 /* FIXME -- from old code */
1305 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1306 we can commute the PLUS and SUBREG because pointers into the
1307 frame are well-behaved. */
1317 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1318 matches the predicate for insn CODE operand OPERAND. */
1321 safe_insn_predicate (int code
, int operand
, rtx x
)
1323 const struct insn_operand_data
*op_data
;
1328 op_data
= &insn_data
[code
].operand
[operand
];
1329 if (op_data
->predicate
== NULL
)
1332 return op_data
->predicate (x
, op_data
->mode
);
1335 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1336 registers present inside of insn. The result will be a valid insn. */
1339 instantiate_virtual_regs_in_insn (rtx insn
)
1341 HOST_WIDE_INT offset
;
1343 bool any_change
= false;
1344 rtx set
, new, x
, seq
;
1346 /* There are some special cases to be handled first. */
1347 set
= single_set (insn
);
1350 /* We're allowed to assign to a virtual register. This is interpreted
1351 to mean that the underlying register gets assigned the inverse
1352 transformation. This is used, for example, in the handling of
1354 new = instantiate_new_reg (SET_DEST (set
), &offset
);
1359 for_each_rtx (&SET_SRC (set
), instantiate_virtual_regs_in_rtx
, NULL
);
1360 x
= simplify_gen_binary (PLUS
, GET_MODE (new), SET_SRC (set
),
1362 x
= force_operand (x
, new);
1364 emit_move_insn (new, x
);
1369 emit_insn_before (seq
, insn
);
1374 /* Handle a straight copy from a virtual register by generating a
1375 new add insn. The difference between this and falling through
1376 to the generic case is avoiding a new pseudo and eliminating a
1377 move insn in the initial rtl stream. */
1378 new = instantiate_new_reg (SET_SRC (set
), &offset
);
1379 if (new && offset
!= 0
1380 && REG_P (SET_DEST (set
))
1381 && REGNO (SET_DEST (set
)) > LAST_VIRTUAL_REGISTER
)
1385 x
= expand_simple_binop (GET_MODE (SET_DEST (set
)), PLUS
,
1386 new, GEN_INT (offset
), SET_DEST (set
),
1387 1, OPTAB_LIB_WIDEN
);
1388 if (x
!= SET_DEST (set
))
1389 emit_move_insn (SET_DEST (set
), x
);
1394 emit_insn_before (seq
, insn
);
1399 extract_insn (insn
);
1400 insn_code
= INSN_CODE (insn
);
1402 /* Handle a plus involving a virtual register by determining if the
1403 operands remain valid if they're modified in place. */
1404 if (GET_CODE (SET_SRC (set
)) == PLUS
1405 && recog_data
.n_operands
>= 3
1406 && recog_data
.operand_loc
[1] == &XEXP (SET_SRC (set
), 0)
1407 && recog_data
.operand_loc
[2] == &XEXP (SET_SRC (set
), 1)
1408 && GET_CODE (recog_data
.operand
[2]) == CONST_INT
1409 && (new = instantiate_new_reg (recog_data
.operand
[1], &offset
)))
1411 offset
+= INTVAL (recog_data
.operand
[2]);
1413 /* If the sum is zero, then replace with a plain move. */
1415 && REG_P (SET_DEST (set
))
1416 && REGNO (SET_DEST (set
)) > LAST_VIRTUAL_REGISTER
)
1419 emit_move_insn (SET_DEST (set
), new);
1423 emit_insn_before (seq
, insn
);
1428 x
= gen_int_mode (offset
, recog_data
.operand_mode
[2]);
1430 /* Using validate_change and apply_change_group here leaves
1431 recog_data in an invalid state. Since we know exactly what
1432 we want to check, do those two by hand. */
1433 if (safe_insn_predicate (insn_code
, 1, new)
1434 && safe_insn_predicate (insn_code
, 2, x
))
1436 *recog_data
.operand_loc
[1] = recog_data
.operand
[1] = new;
1437 *recog_data
.operand_loc
[2] = recog_data
.operand
[2] = x
;
1440 /* Fall through into the regular operand fixup loop in
1441 order to take care of operands other than 1 and 2. */
1447 extract_insn (insn
);
1448 insn_code
= INSN_CODE (insn
);
1451 /* In the general case, we expect virtual registers to appear only in
1452 operands, and then only as either bare registers or inside memories. */
1453 for (i
= 0; i
< recog_data
.n_operands
; ++i
)
1455 x
= recog_data
.operand
[i
];
1456 switch (GET_CODE (x
))
1460 rtx addr
= XEXP (x
, 0);
1461 bool changed
= false;
1463 for_each_rtx (&addr
, instantiate_virtual_regs_in_rtx
, &changed
);
1468 x
= replace_equiv_address (x
, addr
);
1472 emit_insn_before (seq
, insn
);
1477 new = instantiate_new_reg (x
, &offset
);
1486 /* Careful, special mode predicates may have stuff in
1487 insn_data[insn_code].operand[i].mode that isn't useful
1488 to us for computing a new value. */
1489 /* ??? Recognize address_operand and/or "p" constraints
1490 to see if (plus new offset) is a valid before we put
1491 this through expand_simple_binop. */
1492 x
= expand_simple_binop (GET_MODE (x
), PLUS
, new,
1493 GEN_INT (offset
), NULL_RTX
,
1494 1, OPTAB_LIB_WIDEN
);
1497 emit_insn_before (seq
, insn
);
1502 new = instantiate_new_reg (SUBREG_REG (x
), &offset
);
1508 new = expand_simple_binop (GET_MODE (new), PLUS
, new,
1509 GEN_INT (offset
), NULL_RTX
,
1510 1, OPTAB_LIB_WIDEN
);
1513 emit_insn_before (seq
, insn
);
1515 x
= simplify_gen_subreg (recog_data
.operand_mode
[i
], new,
1516 GET_MODE (new), SUBREG_BYTE (x
));
1523 /* At this point, X contains the new value for the operand.
1524 Validate the new value vs the insn predicate. Note that
1525 asm insns will have insn_code -1 here. */
1526 if (!safe_insn_predicate (insn_code
, i
, x
))
1527 x
= force_reg (insn_data
[insn_code
].operand
[i
].mode
, x
);
1529 *recog_data
.operand_loc
[i
] = recog_data
.operand
[i
] = x
;
1535 /* Propagate operand changes into the duplicates. */
1536 for (i
= 0; i
< recog_data
.n_dups
; ++i
)
1537 *recog_data
.dup_loc
[i
]
1538 = recog_data
.operand
[(unsigned)recog_data
.dup_num
[i
]];
1540 /* Force re-recognition of the instruction for validation. */
1541 INSN_CODE (insn
) = -1;
1544 if (asm_noperands (PATTERN (insn
)) >= 0)
1546 if (!check_asm_operands (PATTERN (insn
)))
1548 error_for_asm (insn
, "impossible constraint in %<asm%>");
1554 if (recog_memoized (insn
) < 0)
1555 fatal_insn_not_found (insn
);
1559 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1560 do any instantiation required. */
1563 instantiate_decl (rtx x
)
1570 /* If this is a CONCAT, recurse for the pieces. */
1571 if (GET_CODE (x
) == CONCAT
)
1573 instantiate_decl (XEXP (x
, 0));
1574 instantiate_decl (XEXP (x
, 1));
1578 /* If this is not a MEM, no need to do anything. Similarly if the
1579 address is a constant or a register that is not a virtual register. */
1584 if (CONSTANT_P (addr
)
1586 && (REGNO (addr
) < FIRST_VIRTUAL_REGISTER
1587 || REGNO (addr
) > LAST_VIRTUAL_REGISTER
)))
1590 for_each_rtx (&XEXP (x
, 0), instantiate_virtual_regs_in_rtx
, NULL
);
1593 /* Helper for instantiate_decls called via walk_tree: Process all decls
1594 in the given DECL_VALUE_EXPR. */
1597 instantiate_expr (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
1603 if (DECL_P (t
) && DECL_RTL_SET_P (t
))
1604 instantiate_decl (DECL_RTL (t
));
1609 /* Subroutine of instantiate_decls: Process all decls in the given
1610 BLOCK node and all its subblocks. */
1613 instantiate_decls_1 (tree let
)
1617 for (t
= BLOCK_VARS (let
); t
; t
= TREE_CHAIN (t
))
1619 if (DECL_RTL_SET_P (t
))
1620 instantiate_decl (DECL_RTL (t
));
1621 if (TREE_CODE (t
) == VAR_DECL
&& DECL_HAS_VALUE_EXPR_P (t
))
1623 tree v
= DECL_VALUE_EXPR (t
);
1624 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1628 /* Process all subblocks. */
1629 for (t
= BLOCK_SUBBLOCKS (let
); t
; t
= TREE_CHAIN (t
))
1630 instantiate_decls_1 (t
);
1633 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1634 all virtual registers in their DECL_RTL's. */
1637 instantiate_decls (tree fndecl
)
1641 /* Process all parameters of the function. */
1642 for (decl
= DECL_ARGUMENTS (fndecl
); decl
; decl
= TREE_CHAIN (decl
))
1644 instantiate_decl (DECL_RTL (decl
));
1645 instantiate_decl (DECL_INCOMING_RTL (decl
));
1646 if (DECL_HAS_VALUE_EXPR_P (decl
))
1648 tree v
= DECL_VALUE_EXPR (decl
);
1649 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1653 /* Now process all variables defined in the function or its subblocks. */
1654 instantiate_decls_1 (DECL_INITIAL (fndecl
));
1657 /* Pass through the INSNS of function FNDECL and convert virtual register
1658 references to hard register references. */
1661 instantiate_virtual_regs (void)
1665 /* Compute the offsets to use for this function. */
1666 in_arg_offset
= FIRST_PARM_OFFSET (current_function_decl
);
1667 var_offset
= STARTING_FRAME_OFFSET
;
1668 dynamic_offset
= STACK_DYNAMIC_OFFSET (current_function_decl
);
1669 out_arg_offset
= STACK_POINTER_OFFSET
;
1670 #ifdef FRAME_POINTER_CFA_OFFSET
1671 cfa_offset
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
1673 cfa_offset
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
1676 /* Initialize recognition, indicating that volatile is OK. */
1679 /* Scan through all the insns, instantiating every virtual register still
1681 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1684 /* These patterns in the instruction stream can never be recognized.
1685 Fortunately, they shouldn't contain virtual registers either. */
1686 if (GET_CODE (PATTERN (insn
)) == USE
1687 || GET_CODE (PATTERN (insn
)) == CLOBBER
1688 || GET_CODE (PATTERN (insn
)) == ADDR_VEC
1689 || GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
1690 || GET_CODE (PATTERN (insn
)) == ASM_INPUT
)
1693 instantiate_virtual_regs_in_insn (insn
);
1695 if (INSN_DELETED_P (insn
))
1698 for_each_rtx (®_NOTES (insn
), instantiate_virtual_regs_in_rtx
, NULL
);
1700 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1701 if (GET_CODE (insn
) == CALL_INSN
)
1702 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn
),
1703 instantiate_virtual_regs_in_rtx
, NULL
);
1706 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1707 instantiate_decls (current_function_decl
);
1709 /* Indicate that, from now on, assign_stack_local should use
1710 frame_pointer_rtx. */
1711 virtuals_instantiated
= 1;
1714 struct tree_opt_pass pass_instantiate_virtual_regs
=
1718 instantiate_virtual_regs
, /* execute */
1721 0, /* static_pass_number */
1723 0, /* properties_required */
1724 0, /* properties_provided */
1725 0, /* properties_destroyed */
1726 0, /* todo_flags_start */
1727 TODO_dump_func
, /* todo_flags_finish */
1732 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1733 This means a type for which function calls must pass an address to the
1734 function or get an address back from the function.
1735 EXP may be a type node or an expression (whose type is tested). */
1738 aggregate_value_p (tree exp
, tree fntype
)
1740 int i
, regno
, nregs
;
1743 tree type
= (TYPE_P (exp
)) ? exp
: TREE_TYPE (exp
);
1746 switch (TREE_CODE (fntype
))
1749 fntype
= get_callee_fndecl (fntype
);
1750 fntype
= fntype
? TREE_TYPE (fntype
) : 0;
1753 fntype
= TREE_TYPE (fntype
);
1758 case IDENTIFIER_NODE
:
1762 /* We don't expect other rtl types here. */
1766 if (TREE_CODE (type
) == VOID_TYPE
)
1768 /* If the front end has decided that this needs to be passed by
1769 reference, do so. */
1770 if ((TREE_CODE (exp
) == PARM_DECL
|| TREE_CODE (exp
) == RESULT_DECL
)
1771 && DECL_BY_REFERENCE (exp
))
1773 if (targetm
.calls
.return_in_memory (type
, fntype
))
1775 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1776 and thus can't be returned in registers. */
1777 if (TREE_ADDRESSABLE (type
))
1779 if (flag_pcc_struct_return
&& AGGREGATE_TYPE_P (type
))
1781 /* Make sure we have suitable call-clobbered regs to return
1782 the value in; if not, we must return it in memory. */
1783 reg
= hard_function_value (type
, 0, fntype
, 0);
1785 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1790 regno
= REGNO (reg
);
1791 nregs
= hard_regno_nregs
[regno
][TYPE_MODE (type
)];
1792 for (i
= 0; i
< nregs
; i
++)
1793 if (! call_used_regs
[regno
+ i
])
1798 /* Return true if we should assign DECL a pseudo register; false if it
1799 should live on the local stack. */
1802 use_register_for_decl (tree decl
)
1804 /* Honor volatile. */
1805 if (TREE_SIDE_EFFECTS (decl
))
1808 /* Honor addressability. */
1809 if (TREE_ADDRESSABLE (decl
))
1812 /* Only register-like things go in registers. */
1813 if (DECL_MODE (decl
) == BLKmode
)
1816 /* If -ffloat-store specified, don't put explicit float variables
1818 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1819 propagates values across these stores, and it probably shouldn't. */
1820 if (flag_float_store
&& FLOAT_TYPE_P (TREE_TYPE (decl
)))
1823 /* If we're not interested in tracking debugging information for
1824 this decl, then we can certainly put it in a register. */
1825 if (DECL_IGNORED_P (decl
))
1828 return (optimize
|| DECL_REGISTER (decl
));
1831 /* Return true if TYPE should be passed by invisible reference. */
1834 pass_by_reference (CUMULATIVE_ARGS
*ca
, enum machine_mode mode
,
1835 tree type
, bool named_arg
)
1839 /* If this type contains non-trivial constructors, then it is
1840 forbidden for the middle-end to create any new copies. */
1841 if (TREE_ADDRESSABLE (type
))
1844 /* GCC post 3.4 passes *all* variable sized types by reference. */
1845 if (!TYPE_SIZE (type
) || TREE_CODE (TYPE_SIZE (type
)) != INTEGER_CST
)
1849 return targetm
.calls
.pass_by_reference (ca
, mode
, type
, named_arg
);
1852 /* Return true if TYPE, which is passed by reference, should be callee
1853 copied instead of caller copied. */
1856 reference_callee_copied (CUMULATIVE_ARGS
*ca
, enum machine_mode mode
,
1857 tree type
, bool named_arg
)
1859 if (type
&& TREE_ADDRESSABLE (type
))
1861 return targetm
.calls
.callee_copies (ca
, mode
, type
, named_arg
);
1864 /* Structures to communicate between the subroutines of assign_parms.
1865 The first holds data persistent across all parameters, the second
1866 is cleared out for each parameter. */
1868 struct assign_parm_data_all
1870 CUMULATIVE_ARGS args_so_far
;
1871 struct args_size stack_args_size
;
1872 tree function_result_decl
;
1874 rtx conversion_insns
;
1875 HOST_WIDE_INT pretend_args_size
;
1876 HOST_WIDE_INT extra_pretend_bytes
;
1877 int reg_parm_stack_space
;
1880 struct assign_parm_data_one
1886 enum machine_mode nominal_mode
;
1887 enum machine_mode passed_mode
;
1888 enum machine_mode promoted_mode
;
1889 struct locate_and_pad_arg_data locate
;
1891 BOOL_BITFIELD named_arg
: 1;
1892 BOOL_BITFIELD passed_pointer
: 1;
1893 BOOL_BITFIELD on_stack
: 1;
1894 BOOL_BITFIELD loaded_in_reg
: 1;
1897 /* A subroutine of assign_parms. Initialize ALL. */
1900 assign_parms_initialize_all (struct assign_parm_data_all
*all
)
1904 memset (all
, 0, sizeof (*all
));
1906 fntype
= TREE_TYPE (current_function_decl
);
1908 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1909 INIT_CUMULATIVE_INCOMING_ARGS (all
->args_so_far
, fntype
, NULL_RTX
);
1911 INIT_CUMULATIVE_ARGS (all
->args_so_far
, fntype
, NULL_RTX
,
1912 current_function_decl
, -1);
1915 #ifdef REG_PARM_STACK_SPACE
1916 all
->reg_parm_stack_space
= REG_PARM_STACK_SPACE (current_function_decl
);
1920 /* If ARGS contains entries with complex types, split the entry into two
1921 entries of the component type. Return a new list of substitutions are
1922 needed, else the old list. */
1925 split_complex_args (tree args
)
1929 /* Before allocating memory, check for the common case of no complex. */
1930 for (p
= args
; p
; p
= TREE_CHAIN (p
))
1932 tree type
= TREE_TYPE (p
);
1933 if (TREE_CODE (type
) == COMPLEX_TYPE
1934 && targetm
.calls
.split_complex_arg (type
))
1940 args
= copy_list (args
);
1942 for (p
= args
; p
; p
= TREE_CHAIN (p
))
1944 tree type
= TREE_TYPE (p
);
1945 if (TREE_CODE (type
) == COMPLEX_TYPE
1946 && targetm
.calls
.split_complex_arg (type
))
1949 tree subtype
= TREE_TYPE (type
);
1950 bool addressable
= TREE_ADDRESSABLE (p
);
1952 /* Rewrite the PARM_DECL's type with its component. */
1953 TREE_TYPE (p
) = subtype
;
1954 DECL_ARG_TYPE (p
) = TREE_TYPE (DECL_ARG_TYPE (p
));
1955 DECL_MODE (p
) = VOIDmode
;
1956 DECL_SIZE (p
) = NULL
;
1957 DECL_SIZE_UNIT (p
) = NULL
;
1958 /* If this arg must go in memory, put it in a pseudo here.
1959 We can't allow it to go in memory as per normal parms,
1960 because the usual place might not have the imag part
1961 adjacent to the real part. */
1962 DECL_ARTIFICIAL (p
) = addressable
;
1963 DECL_IGNORED_P (p
) = addressable
;
1964 TREE_ADDRESSABLE (p
) = 0;
1967 /* Build a second synthetic decl. */
1968 decl
= build_decl (PARM_DECL
, NULL_TREE
, subtype
);
1969 DECL_ARG_TYPE (decl
) = DECL_ARG_TYPE (p
);
1970 DECL_ARTIFICIAL (decl
) = addressable
;
1971 DECL_IGNORED_P (decl
) = addressable
;
1972 layout_decl (decl
, 0);
1974 /* Splice it in; skip the new decl. */
1975 TREE_CHAIN (decl
) = TREE_CHAIN (p
);
1976 TREE_CHAIN (p
) = decl
;
1984 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
1985 the hidden struct return argument, and (abi willing) complex args.
1986 Return the new parameter list. */
1989 assign_parms_augmented_arg_list (struct assign_parm_data_all
*all
)
1991 tree fndecl
= current_function_decl
;
1992 tree fntype
= TREE_TYPE (fndecl
);
1993 tree fnargs
= DECL_ARGUMENTS (fndecl
);
1995 /* If struct value address is treated as the first argument, make it so. */
1996 if (aggregate_value_p (DECL_RESULT (fndecl
), fndecl
)
1997 && ! current_function_returns_pcc_struct
1998 && targetm
.calls
.struct_value_rtx (TREE_TYPE (fndecl
), 1) == 0)
2000 tree type
= build_pointer_type (TREE_TYPE (fntype
));
2003 decl
= build_decl (PARM_DECL
, NULL_TREE
, type
);
2004 DECL_ARG_TYPE (decl
) = type
;
2005 DECL_ARTIFICIAL (decl
) = 1;
2006 DECL_IGNORED_P (decl
) = 1;
2008 TREE_CHAIN (decl
) = fnargs
;
2010 all
->function_result_decl
= decl
;
2013 all
->orig_fnargs
= fnargs
;
2015 /* If the target wants to split complex arguments into scalars, do so. */
2016 if (targetm
.calls
.split_complex_arg
)
2017 fnargs
= split_complex_args (fnargs
);
2022 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2023 data for the parameter. Incorporate ABI specifics such as pass-by-
2024 reference and type promotion. */
2027 assign_parm_find_data_types (struct assign_parm_data_all
*all
, tree parm
,
2028 struct assign_parm_data_one
*data
)
2030 tree nominal_type
, passed_type
;
2031 enum machine_mode nominal_mode
, passed_mode
, promoted_mode
;
2033 memset (data
, 0, sizeof (*data
));
2035 /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
2036 if (!current_function_stdarg
)
2037 data
->named_arg
= 1; /* No varadic parms. */
2038 else if (TREE_CHAIN (parm
))
2039 data
->named_arg
= 1; /* Not the last non-varadic parm. */
2040 else if (targetm
.calls
.strict_argument_naming (&all
->args_so_far
))
2041 data
->named_arg
= 1; /* Only varadic ones are unnamed. */
2043 data
->named_arg
= 0; /* Treat as varadic. */
2045 nominal_type
= TREE_TYPE (parm
);
2046 passed_type
= DECL_ARG_TYPE (parm
);
2048 /* Look out for errors propagating this far. Also, if the parameter's
2049 type is void then its value doesn't matter. */
2050 if (TREE_TYPE (parm
) == error_mark_node
2051 /* This can happen after weird syntax errors
2052 or if an enum type is defined among the parms. */
2053 || TREE_CODE (parm
) != PARM_DECL
2054 || passed_type
== NULL
2055 || VOID_TYPE_P (nominal_type
))
2057 nominal_type
= passed_type
= void_type_node
;
2058 nominal_mode
= passed_mode
= promoted_mode
= VOIDmode
;
2062 /* Find mode of arg as it is passed, and mode of arg as it should be
2063 during execution of this function. */
2064 passed_mode
= TYPE_MODE (passed_type
);
2065 nominal_mode
= TYPE_MODE (nominal_type
);
2067 /* If the parm is to be passed as a transparent union, use the type of
2068 the first field for the tests below. We have already verified that
2069 the modes are the same. */
2070 if (TREE_CODE (passed_type
) == UNION_TYPE
2071 && TYPE_TRANSPARENT_UNION (passed_type
))
2072 passed_type
= TREE_TYPE (TYPE_FIELDS (passed_type
));
2074 /* See if this arg was passed by invisible reference. */
2075 if (pass_by_reference (&all
->args_so_far
, passed_mode
,
2076 passed_type
, data
->named_arg
))
2078 passed_type
= nominal_type
= build_pointer_type (passed_type
);
2079 data
->passed_pointer
= true;
2080 passed_mode
= nominal_mode
= Pmode
;
2083 /* Find mode as it is passed by the ABI. */
2084 promoted_mode
= passed_mode
;
2085 if (targetm
.calls
.promote_function_args (TREE_TYPE (current_function_decl
)))
2087 int unsignedp
= TYPE_UNSIGNED (passed_type
);
2088 promoted_mode
= promote_mode (passed_type
, promoted_mode
,
2093 data
->nominal_type
= nominal_type
;
2094 data
->passed_type
= passed_type
;
2095 data
->nominal_mode
= nominal_mode
;
2096 data
->passed_mode
= passed_mode
;
2097 data
->promoted_mode
= promoted_mode
;
2100 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2103 assign_parms_setup_varargs (struct assign_parm_data_all
*all
,
2104 struct assign_parm_data_one
*data
, bool no_rtl
)
2106 int varargs_pretend_bytes
= 0;
2108 targetm
.calls
.setup_incoming_varargs (&all
->args_so_far
,
2109 data
->promoted_mode
,
2111 &varargs_pretend_bytes
, no_rtl
);
2113 /* If the back-end has requested extra stack space, record how much is
2114 needed. Do not change pretend_args_size otherwise since it may be
2115 nonzero from an earlier partial argument. */
2116 if (varargs_pretend_bytes
> 0)
2117 all
->pretend_args_size
= varargs_pretend_bytes
;
2120 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2121 the incoming location of the current parameter. */
2124 assign_parm_find_entry_rtl (struct assign_parm_data_all
*all
,
2125 struct assign_parm_data_one
*data
)
2127 HOST_WIDE_INT pretend_bytes
= 0;
2131 if (data
->promoted_mode
== VOIDmode
)
2133 data
->entry_parm
= data
->stack_parm
= const0_rtx
;
2137 #ifdef FUNCTION_INCOMING_ARG
2138 entry_parm
= FUNCTION_INCOMING_ARG (all
->args_so_far
, data
->promoted_mode
,
2139 data
->passed_type
, data
->named_arg
);
2141 entry_parm
= FUNCTION_ARG (all
->args_so_far
, data
->promoted_mode
,
2142 data
->passed_type
, data
->named_arg
);
2145 if (entry_parm
== 0)
2146 data
->promoted_mode
= data
->passed_mode
;
2148 /* Determine parm's home in the stack, in case it arrives in the stack
2149 or we should pretend it did. Compute the stack position and rtx where
2150 the argument arrives and its size.
2152 There is one complexity here: If this was a parameter that would
2153 have been passed in registers, but wasn't only because it is
2154 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2155 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2156 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2157 as it was the previous time. */
2158 in_regs
= entry_parm
!= 0;
2159 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2162 if (!in_regs
&& !data
->named_arg
)
2164 if (targetm
.calls
.pretend_outgoing_varargs_named (&all
->args_so_far
))
2167 #ifdef FUNCTION_INCOMING_ARG
2168 tem
= FUNCTION_INCOMING_ARG (all
->args_so_far
, data
->promoted_mode
,
2169 data
->passed_type
, true);
2171 tem
= FUNCTION_ARG (all
->args_so_far
, data
->promoted_mode
,
2172 data
->passed_type
, true);
2174 in_regs
= tem
!= NULL
;
2178 /* If this parameter was passed both in registers and in the stack, use
2179 the copy on the stack. */
2180 if (targetm
.calls
.must_pass_in_stack (data
->promoted_mode
,
2188 partial
= targetm
.calls
.arg_partial_bytes (&all
->args_so_far
,
2189 data
->promoted_mode
,
2192 data
->partial
= partial
;
2194 /* The caller might already have allocated stack space for the
2195 register parameters. */
2196 if (partial
!= 0 && all
->reg_parm_stack_space
== 0)
2198 /* Part of this argument is passed in registers and part
2199 is passed on the stack. Ask the prologue code to extend
2200 the stack part so that we can recreate the full value.
2202 PRETEND_BYTES is the size of the registers we need to store.
2203 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2204 stack space that the prologue should allocate.
2206 Internally, gcc assumes that the argument pointer is aligned
2207 to STACK_BOUNDARY bits. This is used both for alignment
2208 optimizations (see init_emit) and to locate arguments that are
2209 aligned to more than PARM_BOUNDARY bits. We must preserve this
2210 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2211 a stack boundary. */
2213 /* We assume at most one partial arg, and it must be the first
2214 argument on the stack. */
2215 gcc_assert (!all
->extra_pretend_bytes
&& !all
->pretend_args_size
);
2217 pretend_bytes
= partial
;
2218 all
->pretend_args_size
= CEIL_ROUND (pretend_bytes
, STACK_BYTES
);
2220 /* We want to align relative to the actual stack pointer, so
2221 don't include this in the stack size until later. */
2222 all
->extra_pretend_bytes
= all
->pretend_args_size
;
2226 locate_and_pad_parm (data
->promoted_mode
, data
->passed_type
, in_regs
,
2227 entry_parm
? data
->partial
: 0, current_function_decl
,
2228 &all
->stack_args_size
, &data
->locate
);
2230 /* Adjust offsets to include the pretend args. */
2231 pretend_bytes
= all
->extra_pretend_bytes
- pretend_bytes
;
2232 data
->locate
.slot_offset
.constant
+= pretend_bytes
;
2233 data
->locate
.offset
.constant
+= pretend_bytes
;
2235 data
->entry_parm
= entry_parm
;
2238 /* A subroutine of assign_parms. If there is actually space on the stack
2239 for this parm, count it in stack_args_size and return true. */
2242 assign_parm_is_stack_parm (struct assign_parm_data_all
*all
,
2243 struct assign_parm_data_one
*data
)
2245 /* Trivially true if we've no incoming register. */
2246 if (data
->entry_parm
== NULL
)
2248 /* Also true if we're partially in registers and partially not,
2249 since we've arranged to drop the entire argument on the stack. */
2250 else if (data
->partial
!= 0)
2252 /* Also true if the target says that it's passed in both registers
2253 and on the stack. */
2254 else if (GET_CODE (data
->entry_parm
) == PARALLEL
2255 && XEXP (XVECEXP (data
->entry_parm
, 0, 0), 0) == NULL_RTX
)
2257 /* Also true if the target says that there's stack allocated for
2258 all register parameters. */
2259 else if (all
->reg_parm_stack_space
> 0)
2261 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2265 all
->stack_args_size
.constant
+= data
->locate
.size
.constant
;
2266 if (data
->locate
.size
.var
)
2267 ADD_PARM_SIZE (all
->stack_args_size
, data
->locate
.size
.var
);
2272 /* A subroutine of assign_parms. Given that this parameter is allocated
2273 stack space by the ABI, find it. */
2276 assign_parm_find_stack_rtl (tree parm
, struct assign_parm_data_one
*data
)
2278 rtx offset_rtx
, stack_parm
;
2279 unsigned int align
, boundary
;
2281 /* If we're passing this arg using a reg, make its stack home the
2282 aligned stack slot. */
2283 if (data
->entry_parm
)
2284 offset_rtx
= ARGS_SIZE_RTX (data
->locate
.slot_offset
);
2286 offset_rtx
= ARGS_SIZE_RTX (data
->locate
.offset
);
2288 stack_parm
= current_function_internal_arg_pointer
;
2289 if (offset_rtx
!= const0_rtx
)
2290 stack_parm
= gen_rtx_PLUS (Pmode
, stack_parm
, offset_rtx
);
2291 stack_parm
= gen_rtx_MEM (data
->promoted_mode
, stack_parm
);
2293 set_mem_attributes (stack_parm
, parm
, 1);
2295 boundary
= data
->locate
.boundary
;
2296 align
= BITS_PER_UNIT
;
2298 /* If we're padding upward, we know that the alignment of the slot
2299 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2300 intentionally forcing upward padding. Otherwise we have to come
2301 up with a guess at the alignment based on OFFSET_RTX. */
2302 if (data
->locate
.where_pad
!= downward
|| data
->entry_parm
)
2304 else if (GET_CODE (offset_rtx
) == CONST_INT
)
2306 align
= INTVAL (offset_rtx
) * BITS_PER_UNIT
| boundary
;
2307 align
= align
& -align
;
2309 set_mem_align (stack_parm
, align
);
2311 if (data
->entry_parm
)
2312 set_reg_attrs_for_parm (data
->entry_parm
, stack_parm
);
2314 data
->stack_parm
= stack_parm
;
2317 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2318 always valid and contiguous. */
2321 assign_parm_adjust_entry_rtl (struct assign_parm_data_one
*data
)
2323 rtx entry_parm
= data
->entry_parm
;
2324 rtx stack_parm
= data
->stack_parm
;
2326 /* If this parm was passed part in regs and part in memory, pretend it
2327 arrived entirely in memory by pushing the register-part onto the stack.
2328 In the special case of a DImode or DFmode that is split, we could put
2329 it together in a pseudoreg directly, but for now that's not worth
2331 if (data
->partial
!= 0)
2333 /* Handle calls that pass values in multiple non-contiguous
2334 locations. The Irix 6 ABI has examples of this. */
2335 if (GET_CODE (entry_parm
) == PARALLEL
)
2336 emit_group_store (validize_mem (stack_parm
), entry_parm
,
2338 int_size_in_bytes (data
->passed_type
));
2341 gcc_assert (data
->partial
% UNITS_PER_WORD
== 0);
2342 move_block_from_reg (REGNO (entry_parm
), validize_mem (stack_parm
),
2343 data
->partial
/ UNITS_PER_WORD
);
2346 entry_parm
= stack_parm
;
2349 /* If we didn't decide this parm came in a register, by default it came
2351 else if (entry_parm
== NULL
)
2352 entry_parm
= stack_parm
;
2354 /* When an argument is passed in multiple locations, we can't make use
2355 of this information, but we can save some copying if the whole argument
2356 is passed in a single register. */
2357 else if (GET_CODE (entry_parm
) == PARALLEL
2358 && data
->nominal_mode
!= BLKmode
2359 && data
->passed_mode
!= BLKmode
)
2361 size_t i
, len
= XVECLEN (entry_parm
, 0);
2363 for (i
= 0; i
< len
; i
++)
2364 if (XEXP (XVECEXP (entry_parm
, 0, i
), 0) != NULL_RTX
2365 && REG_P (XEXP (XVECEXP (entry_parm
, 0, i
), 0))
2366 && (GET_MODE (XEXP (XVECEXP (entry_parm
, 0, i
), 0))
2367 == data
->passed_mode
)
2368 && INTVAL (XEXP (XVECEXP (entry_parm
, 0, i
), 1)) == 0)
2370 entry_parm
= XEXP (XVECEXP (entry_parm
, 0, i
), 0);
2375 data
->entry_parm
= entry_parm
;
2378 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2379 always valid and properly aligned. */
2382 assign_parm_adjust_stack_rtl (struct assign_parm_data_one
*data
)
2384 rtx stack_parm
= data
->stack_parm
;
2386 /* If we can't trust the parm stack slot to be aligned enough for its
2387 ultimate type, don't use that slot after entry. We'll make another
2388 stack slot, if we need one. */
2390 && ((STRICT_ALIGNMENT
2391 && GET_MODE_ALIGNMENT (data
->nominal_mode
) > MEM_ALIGN (stack_parm
))
2392 || (data
->nominal_type
2393 && TYPE_ALIGN (data
->nominal_type
) > MEM_ALIGN (stack_parm
)
2394 && MEM_ALIGN (stack_parm
) < PREFERRED_STACK_BOUNDARY
)))
2397 /* If parm was passed in memory, and we need to convert it on entry,
2398 don't store it back in that same slot. */
2399 else if (data
->entry_parm
== stack_parm
2400 && data
->nominal_mode
!= BLKmode
2401 && data
->nominal_mode
!= data
->passed_mode
)
2404 /* If stack protection is in effect for this function, don't leave any
2405 pointers in their passed stack slots. */
2406 else if (cfun
->stack_protect_guard
2407 && (flag_stack_protect
== 2
2408 || data
->passed_pointer
2409 || POINTER_TYPE_P (data
->nominal_type
)))
2412 data
->stack_parm
= stack_parm
;
2415 /* A subroutine of assign_parms. Return true if the current parameter
2416 should be stored as a BLKmode in the current frame. */
2419 assign_parm_setup_block_p (struct assign_parm_data_one
*data
)
2421 if (data
->nominal_mode
== BLKmode
)
2423 if (GET_CODE (data
->entry_parm
) == PARALLEL
)
2426 #ifdef BLOCK_REG_PADDING
2427 /* Only assign_parm_setup_block knows how to deal with register arguments
2428 that are padded at the least significant end. */
2429 if (REG_P (data
->entry_parm
)
2430 && GET_MODE_SIZE (data
->promoted_mode
) < UNITS_PER_WORD
2431 && (BLOCK_REG_PADDING (data
->passed_mode
, data
->passed_type
, 1)
2432 == (BYTES_BIG_ENDIAN
? upward
: downward
)))
2439 /* A subroutine of assign_parms. Arrange for the parameter to be
2440 present and valid in DATA->STACK_RTL. */
2443 assign_parm_setup_block (struct assign_parm_data_all
*all
,
2444 tree parm
, struct assign_parm_data_one
*data
)
2446 rtx entry_parm
= data
->entry_parm
;
2447 rtx stack_parm
= data
->stack_parm
;
2449 HOST_WIDE_INT size_stored
;
2450 rtx orig_entry_parm
= entry_parm
;
2452 if (GET_CODE (entry_parm
) == PARALLEL
)
2453 entry_parm
= emit_group_move_into_temps (entry_parm
);
2455 /* If we've a non-block object that's nevertheless passed in parts,
2456 reconstitute it in register operations rather than on the stack. */
2457 if (GET_CODE (entry_parm
) == PARALLEL
2458 && data
->nominal_mode
!= BLKmode
)
2460 rtx elt0
= XEXP (XVECEXP (orig_entry_parm
, 0, 0), 0);
2462 if ((XVECLEN (entry_parm
, 0) > 1
2463 || hard_regno_nregs
[REGNO (elt0
)][GET_MODE (elt0
)] > 1)
2464 && use_register_for_decl (parm
))
2466 rtx parmreg
= gen_reg_rtx (data
->nominal_mode
);
2468 push_to_sequence (all
->conversion_insns
);
2470 /* For values returned in multiple registers, handle possible
2471 incompatible calls to emit_group_store.
2473 For example, the following would be invalid, and would have to
2474 be fixed by the conditional below:
2476 emit_group_store ((reg:SF), (parallel:DF))
2477 emit_group_store ((reg:SI), (parallel:DI))
2479 An example of this are doubles in e500 v2:
2480 (parallel:DF (expr_list (reg:SI) (const_int 0))
2481 (expr_list (reg:SI) (const_int 4))). */
2482 if (data
->nominal_mode
!= data
->passed_mode
)
2484 rtx t
= gen_reg_rtx (GET_MODE (entry_parm
));
2485 emit_group_store (t
, entry_parm
, NULL_TREE
,
2486 GET_MODE_SIZE (GET_MODE (entry_parm
)));
2487 convert_move (parmreg
, t
, 0);
2490 emit_group_store (parmreg
, entry_parm
, data
->nominal_type
,
2491 int_size_in_bytes (data
->nominal_type
));
2493 all
->conversion_insns
= get_insns ();
2496 SET_DECL_RTL (parm
, parmreg
);
2501 size
= int_size_in_bytes (data
->passed_type
);
2502 size_stored
= CEIL_ROUND (size
, UNITS_PER_WORD
);
2503 if (stack_parm
== 0)
2505 DECL_ALIGN (parm
) = MAX (DECL_ALIGN (parm
), BITS_PER_WORD
);
2506 stack_parm
= assign_stack_local (BLKmode
, size_stored
,
2508 if (GET_MODE_SIZE (GET_MODE (entry_parm
)) == size
)
2509 PUT_MODE (stack_parm
, GET_MODE (entry_parm
));
2510 set_mem_attributes (stack_parm
, parm
, 1);
2513 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2514 calls that pass values in multiple non-contiguous locations. */
2515 if (REG_P (entry_parm
) || GET_CODE (entry_parm
) == PARALLEL
)
2519 /* Note that we will be storing an integral number of words.
2520 So we have to be careful to ensure that we allocate an
2521 integral number of words. We do this above when we call
2522 assign_stack_local if space was not allocated in the argument
2523 list. If it was, this will not work if PARM_BOUNDARY is not
2524 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2525 if it becomes a problem. Exception is when BLKmode arrives
2526 with arguments not conforming to word_mode. */
2528 if (data
->stack_parm
== 0)
2530 else if (GET_CODE (entry_parm
) == PARALLEL
)
2533 gcc_assert (!size
|| !(PARM_BOUNDARY
% BITS_PER_WORD
));
2535 mem
= validize_mem (stack_parm
);
2537 /* Handle values in multiple non-contiguous locations. */
2538 if (GET_CODE (entry_parm
) == PARALLEL
)
2540 push_to_sequence (all
->conversion_insns
);
2541 emit_group_store (mem
, entry_parm
, data
->passed_type
, size
);
2542 all
->conversion_insns
= get_insns ();
2549 /* If SIZE is that of a mode no bigger than a word, just use
2550 that mode's store operation. */
2551 else if (size
<= UNITS_PER_WORD
)
2553 enum machine_mode mode
2554 = mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
, 0);
2557 #ifdef BLOCK_REG_PADDING
2558 && (size
== UNITS_PER_WORD
2559 || (BLOCK_REG_PADDING (mode
, data
->passed_type
, 1)
2560 != (BYTES_BIG_ENDIAN
? upward
: downward
)))
2564 rtx reg
= gen_rtx_REG (mode
, REGNO (entry_parm
));
2565 emit_move_insn (change_address (mem
, mode
, 0), reg
);
2568 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2569 machine must be aligned to the left before storing
2570 to memory. Note that the previous test doesn't
2571 handle all cases (e.g. SIZE == 3). */
2572 else if (size
!= UNITS_PER_WORD
2573 #ifdef BLOCK_REG_PADDING
2574 && (BLOCK_REG_PADDING (mode
, data
->passed_type
, 1)
2582 int by
= (UNITS_PER_WORD
- size
) * BITS_PER_UNIT
;
2583 rtx reg
= gen_rtx_REG (word_mode
, REGNO (entry_parm
));
2585 x
= expand_shift (LSHIFT_EXPR
, word_mode
, reg
,
2586 build_int_cst (NULL_TREE
, by
),
2588 tem
= change_address (mem
, word_mode
, 0);
2589 emit_move_insn (tem
, x
);
2592 move_block_from_reg (REGNO (entry_parm
), mem
,
2593 size_stored
/ UNITS_PER_WORD
);
2596 move_block_from_reg (REGNO (entry_parm
), mem
,
2597 size_stored
/ UNITS_PER_WORD
);
2599 else if (data
->stack_parm
== 0)
2601 push_to_sequence (all
->conversion_insns
);
2602 emit_block_move (stack_parm
, data
->entry_parm
, GEN_INT (size
),
2604 all
->conversion_insns
= get_insns ();
2608 data
->stack_parm
= stack_parm
;
2609 SET_DECL_RTL (parm
, stack_parm
);
2612 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2613 parameter. Get it there. Perform all ABI specified conversions. */
2616 assign_parm_setup_reg (struct assign_parm_data_all
*all
, tree parm
,
2617 struct assign_parm_data_one
*data
)
2620 enum machine_mode promoted_nominal_mode
;
2621 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (parm
));
2622 bool did_conversion
= false;
2624 /* Store the parm in a pseudoregister during the function, but we may
2625 need to do it in a wider mode. */
2627 promoted_nominal_mode
2628 = promote_mode (data
->nominal_type
, data
->nominal_mode
, &unsignedp
, 0);
2630 parmreg
= gen_reg_rtx (promoted_nominal_mode
);
2632 if (!DECL_ARTIFICIAL (parm
))
2633 mark_user_reg (parmreg
);
2635 /* If this was an item that we received a pointer to,
2636 set DECL_RTL appropriately. */
2637 if (data
->passed_pointer
)
2639 rtx x
= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data
->passed_type
)), parmreg
);
2640 set_mem_attributes (x
, parm
, 1);
2641 SET_DECL_RTL (parm
, x
);
2644 SET_DECL_RTL (parm
, parmreg
);
2646 /* Copy the value into the register. */
2647 if (data
->nominal_mode
!= data
->passed_mode
2648 || promoted_nominal_mode
!= data
->promoted_mode
)
2652 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2653 mode, by the caller. We now have to convert it to
2654 NOMINAL_MODE, if different. However, PARMREG may be in
2655 a different mode than NOMINAL_MODE if it is being stored
2658 If ENTRY_PARM is a hard register, it might be in a register
2659 not valid for operating in its mode (e.g., an odd-numbered
2660 register for a DFmode). In that case, moves are the only
2661 thing valid, so we can't do a convert from there. This
2662 occurs when the calling sequence allow such misaligned
2665 In addition, the conversion may involve a call, which could
2666 clobber parameters which haven't been copied to pseudo
2667 registers yet. Therefore, we must first copy the parm to
2668 a pseudo reg here, and save the conversion until after all
2669 parameters have been moved. */
2671 rtx tempreg
= gen_reg_rtx (GET_MODE (data
->entry_parm
));
2673 emit_move_insn (tempreg
, validize_mem (data
->entry_parm
));
2675 push_to_sequence (all
->conversion_insns
);
2676 tempreg
= convert_to_mode (data
->nominal_mode
, tempreg
, unsignedp
);
2678 if (GET_CODE (tempreg
) == SUBREG
2679 && GET_MODE (tempreg
) == data
->nominal_mode
2680 && REG_P (SUBREG_REG (tempreg
))
2681 && data
->nominal_mode
== data
->passed_mode
2682 && GET_MODE (SUBREG_REG (tempreg
)) == GET_MODE (data
->entry_parm
)
2683 && GET_MODE_SIZE (GET_MODE (tempreg
))
2684 < GET_MODE_SIZE (GET_MODE (data
->entry_parm
)))
2686 /* The argument is already sign/zero extended, so note it
2688 SUBREG_PROMOTED_VAR_P (tempreg
) = 1;
2689 SUBREG_PROMOTED_UNSIGNED_SET (tempreg
, unsignedp
);
2692 /* TREE_USED gets set erroneously during expand_assignment. */
2693 save_tree_used
= TREE_USED (parm
);
2694 expand_assignment (parm
, make_tree (data
->nominal_type
, tempreg
));
2695 TREE_USED (parm
) = save_tree_used
;
2696 all
->conversion_insns
= get_insns ();
2699 did_conversion
= true;
2702 emit_move_insn (parmreg
, validize_mem (data
->entry_parm
));
2704 /* If we were passed a pointer but the actual value can safely live
2705 in a register, put it in one. */
2706 if (data
->passed_pointer
2707 && TYPE_MODE (TREE_TYPE (parm
)) != BLKmode
2708 /* If by-reference argument was promoted, demote it. */
2709 && (TYPE_MODE (TREE_TYPE (parm
)) != GET_MODE (DECL_RTL (parm
))
2710 || use_register_for_decl (parm
)))
2712 /* We can't use nominal_mode, because it will have been set to
2713 Pmode above. We must use the actual mode of the parm. */
2714 parmreg
= gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm
)));
2715 mark_user_reg (parmreg
);
2717 if (GET_MODE (parmreg
) != GET_MODE (DECL_RTL (parm
)))
2719 rtx tempreg
= gen_reg_rtx (GET_MODE (DECL_RTL (parm
)));
2720 int unsigned_p
= TYPE_UNSIGNED (TREE_TYPE (parm
));
2722 push_to_sequence (all
->conversion_insns
);
2723 emit_move_insn (tempreg
, DECL_RTL (parm
));
2724 tempreg
= convert_to_mode (GET_MODE (parmreg
), tempreg
, unsigned_p
);
2725 emit_move_insn (parmreg
, tempreg
);
2726 all
->conversion_insns
= get_insns ();
2729 did_conversion
= true;
2732 emit_move_insn (parmreg
, DECL_RTL (parm
));
2734 SET_DECL_RTL (parm
, parmreg
);
2736 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2738 data
->stack_parm
= NULL
;
2741 /* Mark the register as eliminable if we did no conversion and it was
2742 copied from memory at a fixed offset, and the arg pointer was not
2743 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2744 offset formed an invalid address, such memory-equivalences as we
2745 make here would screw up life analysis for it. */
2746 if (data
->nominal_mode
== data
->passed_mode
2748 && data
->stack_parm
!= 0
2749 && MEM_P (data
->stack_parm
)
2750 && data
->locate
.offset
.var
== 0
2751 && reg_mentioned_p (virtual_incoming_args_rtx
,
2752 XEXP (data
->stack_parm
, 0)))
2754 rtx linsn
= get_last_insn ();
2757 /* Mark complex types separately. */
2758 if (GET_CODE (parmreg
) == CONCAT
)
2760 enum machine_mode submode
2761 = GET_MODE_INNER (GET_MODE (parmreg
));
2762 int regnor
= REGNO (XEXP (parmreg
, 0));
2763 int regnoi
= REGNO (XEXP (parmreg
, 1));
2764 rtx stackr
= adjust_address_nv (data
->stack_parm
, submode
, 0);
2765 rtx stacki
= adjust_address_nv (data
->stack_parm
, submode
,
2766 GET_MODE_SIZE (submode
));
2768 /* Scan backwards for the set of the real and
2770 for (sinsn
= linsn
; sinsn
!= 0;
2771 sinsn
= prev_nonnote_insn (sinsn
))
2773 set
= single_set (sinsn
);
2777 if (SET_DEST (set
) == regno_reg_rtx
[regnoi
])
2779 = gen_rtx_EXPR_LIST (REG_EQUIV
, stacki
,
2781 else if (SET_DEST (set
) == regno_reg_rtx
[regnor
])
2783 = gen_rtx_EXPR_LIST (REG_EQUIV
, stackr
,
2787 else if ((set
= single_set (linsn
)) != 0
2788 && SET_DEST (set
) == parmreg
)
2790 = gen_rtx_EXPR_LIST (REG_EQUIV
,
2791 data
->stack_parm
, REG_NOTES (linsn
));
2794 /* For pointer data type, suggest pointer register. */
2795 if (POINTER_TYPE_P (TREE_TYPE (parm
)))
2796 mark_reg_pointer (parmreg
,
2797 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm
))));
2800 /* A subroutine of assign_parms. Allocate stack space to hold the current
2801 parameter. Get it there. Perform all ABI specified conversions. */
2804 assign_parm_setup_stack (struct assign_parm_data_all
*all
, tree parm
,
2805 struct assign_parm_data_one
*data
)
2807 /* Value must be stored in the stack slot STACK_PARM during function
2809 bool to_conversion
= false;
2811 if (data
->promoted_mode
!= data
->nominal_mode
)
2813 /* Conversion is required. */
2814 rtx tempreg
= gen_reg_rtx (GET_MODE (data
->entry_parm
));
2816 emit_move_insn (tempreg
, validize_mem (data
->entry_parm
));
2818 push_to_sequence (all
->conversion_insns
);
2819 to_conversion
= true;
2821 data
->entry_parm
= convert_to_mode (data
->nominal_mode
, tempreg
,
2822 TYPE_UNSIGNED (TREE_TYPE (parm
)));
2824 if (data
->stack_parm
)
2825 /* ??? This may need a big-endian conversion on sparc64. */
2827 = adjust_address (data
->stack_parm
, data
->nominal_mode
, 0);
2830 if (data
->entry_parm
!= data
->stack_parm
)
2834 if (data
->stack_parm
== 0)
2837 = assign_stack_local (GET_MODE (data
->entry_parm
),
2838 GET_MODE_SIZE (GET_MODE (data
->entry_parm
)),
2839 TYPE_ALIGN (data
->passed_type
));
2840 set_mem_attributes (data
->stack_parm
, parm
, 1);
2843 dest
= validize_mem (data
->stack_parm
);
2844 src
= validize_mem (data
->entry_parm
);
2848 /* Use a block move to handle potentially misaligned entry_parm. */
2850 push_to_sequence (all
->conversion_insns
);
2851 to_conversion
= true;
2853 emit_block_move (dest
, src
,
2854 GEN_INT (int_size_in_bytes (data
->passed_type
)),
2858 emit_move_insn (dest
, src
);
2863 all
->conversion_insns
= get_insns ();
2867 SET_DECL_RTL (parm
, data
->stack_parm
);
2870 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2871 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2874 assign_parms_unsplit_complex (struct assign_parm_data_all
*all
, tree fnargs
)
2877 tree orig_fnargs
= all
->orig_fnargs
;
2879 for (parm
= orig_fnargs
; parm
; parm
= TREE_CHAIN (parm
))
2881 if (TREE_CODE (TREE_TYPE (parm
)) == COMPLEX_TYPE
2882 && targetm
.calls
.split_complex_arg (TREE_TYPE (parm
)))
2884 rtx tmp
, real
, imag
;
2885 enum machine_mode inner
= GET_MODE_INNER (DECL_MODE (parm
));
2887 real
= DECL_RTL (fnargs
);
2888 imag
= DECL_RTL (TREE_CHAIN (fnargs
));
2889 if (inner
!= GET_MODE (real
))
2891 real
= gen_lowpart_SUBREG (inner
, real
);
2892 imag
= gen_lowpart_SUBREG (inner
, imag
);
2895 if (TREE_ADDRESSABLE (parm
))
2898 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (parm
));
2900 /* split_complex_arg put the real and imag parts in
2901 pseudos. Move them to memory. */
2902 tmp
= assign_stack_local (DECL_MODE (parm
), size
,
2903 TYPE_ALIGN (TREE_TYPE (parm
)));
2904 set_mem_attributes (tmp
, parm
, 1);
2905 rmem
= adjust_address_nv (tmp
, inner
, 0);
2906 imem
= adjust_address_nv (tmp
, inner
, GET_MODE_SIZE (inner
));
2907 push_to_sequence (all
->conversion_insns
);
2908 emit_move_insn (rmem
, real
);
2909 emit_move_insn (imem
, imag
);
2910 all
->conversion_insns
= get_insns ();
2914 tmp
= gen_rtx_CONCAT (DECL_MODE (parm
), real
, imag
);
2915 SET_DECL_RTL (parm
, tmp
);
2917 real
= DECL_INCOMING_RTL (fnargs
);
2918 imag
= DECL_INCOMING_RTL (TREE_CHAIN (fnargs
));
2919 if (inner
!= GET_MODE (real
))
2921 real
= gen_lowpart_SUBREG (inner
, real
);
2922 imag
= gen_lowpart_SUBREG (inner
, imag
);
2924 tmp
= gen_rtx_CONCAT (DECL_MODE (parm
), real
, imag
);
2925 set_decl_incoming_rtl (parm
, tmp
);
2926 fnargs
= TREE_CHAIN (fnargs
);
2930 SET_DECL_RTL (parm
, DECL_RTL (fnargs
));
2931 set_decl_incoming_rtl (parm
, DECL_INCOMING_RTL (fnargs
));
2933 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2934 instead of the copy of decl, i.e. FNARGS. */
2935 if (DECL_INCOMING_RTL (parm
) && MEM_P (DECL_INCOMING_RTL (parm
)))
2936 set_mem_expr (DECL_INCOMING_RTL (parm
), parm
);
2939 fnargs
= TREE_CHAIN (fnargs
);
2943 /* Assign RTL expressions to the function's parameters. This may involve
2944 copying them into registers and using those registers as the DECL_RTL. */
2947 assign_parms (tree fndecl
)
2949 struct assign_parm_data_all all
;
2952 current_function_internal_arg_pointer
2953 = targetm
.calls
.internal_arg_pointer ();
2955 assign_parms_initialize_all (&all
);
2956 fnargs
= assign_parms_augmented_arg_list (&all
);
2958 for (parm
= fnargs
; parm
; parm
= TREE_CHAIN (parm
))
2960 struct assign_parm_data_one data
;
2962 /* Extract the type of PARM; adjust it according to ABI. */
2963 assign_parm_find_data_types (&all
, parm
, &data
);
2965 /* Early out for errors and void parameters. */
2966 if (data
.passed_mode
== VOIDmode
)
2968 SET_DECL_RTL (parm
, const0_rtx
);
2969 DECL_INCOMING_RTL (parm
) = DECL_RTL (parm
);
2973 if (current_function_stdarg
&& !TREE_CHAIN (parm
))
2974 assign_parms_setup_varargs (&all
, &data
, false);
2976 /* Find out where the parameter arrives in this function. */
2977 assign_parm_find_entry_rtl (&all
, &data
);
2979 /* Find out where stack space for this parameter might be. */
2980 if (assign_parm_is_stack_parm (&all
, &data
))
2982 assign_parm_find_stack_rtl (parm
, &data
);
2983 assign_parm_adjust_entry_rtl (&data
);
2986 /* Record permanently how this parm was passed. */
2987 set_decl_incoming_rtl (parm
, data
.entry_parm
);
2989 /* Update info on where next arg arrives in registers. */
2990 FUNCTION_ARG_ADVANCE (all
.args_so_far
, data
.promoted_mode
,
2991 data
.passed_type
, data
.named_arg
);
2993 assign_parm_adjust_stack_rtl (&data
);
2995 if (assign_parm_setup_block_p (&data
))
2996 assign_parm_setup_block (&all
, parm
, &data
);
2997 else if (data
.passed_pointer
|| use_register_for_decl (parm
))
2998 assign_parm_setup_reg (&all
, parm
, &data
);
3000 assign_parm_setup_stack (&all
, parm
, &data
);
3003 if (targetm
.calls
.split_complex_arg
&& fnargs
!= all
.orig_fnargs
)
3004 assign_parms_unsplit_complex (&all
, fnargs
);
3006 /* Output all parameter conversion instructions (possibly including calls)
3007 now that all parameters have been copied out of hard registers. */
3008 emit_insn (all
.conversion_insns
);
3010 /* If we are receiving a struct value address as the first argument, set up
3011 the RTL for the function result. As this might require code to convert
3012 the transmitted address to Pmode, we do this here to ensure that possible
3013 preliminary conversions of the address have been emitted already. */
3014 if (all
.function_result_decl
)
3016 tree result
= DECL_RESULT (current_function_decl
);
3017 rtx addr
= DECL_RTL (all
.function_result_decl
);
3020 if (DECL_BY_REFERENCE (result
))
3024 addr
= convert_memory_address (Pmode
, addr
);
3025 x
= gen_rtx_MEM (DECL_MODE (result
), addr
);
3026 set_mem_attributes (x
, result
, 1);
3028 SET_DECL_RTL (result
, x
);
3031 /* We have aligned all the args, so add space for the pretend args. */
3032 current_function_pretend_args_size
= all
.pretend_args_size
;
3033 all
.stack_args_size
.constant
+= all
.extra_pretend_bytes
;
3034 current_function_args_size
= all
.stack_args_size
.constant
;
3036 /* Adjust function incoming argument size for alignment and
3039 #ifdef REG_PARM_STACK_SPACE
3040 current_function_args_size
= MAX (current_function_args_size
,
3041 REG_PARM_STACK_SPACE (fndecl
));
3044 current_function_args_size
= CEIL_ROUND (current_function_args_size
,
3045 PARM_BOUNDARY
/ BITS_PER_UNIT
);
3047 #ifdef ARGS_GROW_DOWNWARD
3048 current_function_arg_offset_rtx
3049 = (all
.stack_args_size
.var
== 0 ? GEN_INT (-all
.stack_args_size
.constant
)
3050 : expand_expr (size_diffop (all
.stack_args_size
.var
,
3051 size_int (-all
.stack_args_size
.constant
)),
3052 NULL_RTX
, VOIDmode
, 0));
3054 current_function_arg_offset_rtx
= ARGS_SIZE_RTX (all
.stack_args_size
);
3057 /* See how many bytes, if any, of its args a function should try to pop
3060 current_function_pops_args
= RETURN_POPS_ARGS (fndecl
, TREE_TYPE (fndecl
),
3061 current_function_args_size
);
3063 /* For stdarg.h function, save info about
3064 regs and stack space used by the named args. */
3066 current_function_args_info
= all
.args_so_far
;
3068 /* Set the rtx used for the function return value. Put this in its
3069 own variable so any optimizers that need this information don't have
3070 to include tree.h. Do this here so it gets done when an inlined
3071 function gets output. */
3073 current_function_return_rtx
3074 = (DECL_RTL_SET_P (DECL_RESULT (fndecl
))
3075 ? DECL_RTL (DECL_RESULT (fndecl
)) : NULL_RTX
);
3077 /* If scalar return value was computed in a pseudo-reg, or was a named
3078 return value that got dumped to the stack, copy that to the hard
3080 if (DECL_RTL_SET_P (DECL_RESULT (fndecl
)))
3082 tree decl_result
= DECL_RESULT (fndecl
);
3083 rtx decl_rtl
= DECL_RTL (decl_result
);
3085 if (REG_P (decl_rtl
)
3086 ? REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
3087 : DECL_REGISTER (decl_result
))
3091 real_decl_rtl
= targetm
.calls
.function_value (TREE_TYPE (decl_result
),
3093 REG_FUNCTION_VALUE_P (real_decl_rtl
) = 1;
3094 /* The delay slot scheduler assumes that current_function_return_rtx
3095 holds the hard register containing the return value, not a
3096 temporary pseudo. */
3097 current_function_return_rtx
= real_decl_rtl
;
3102 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3103 For all seen types, gimplify their sizes. */
3106 gimplify_parm_type (tree
*tp
, int *walk_subtrees
, void *data
)
3113 if (POINTER_TYPE_P (t
))
3115 else if (TYPE_SIZE (t
) && !TREE_CONSTANT (TYPE_SIZE (t
))
3116 && !TYPE_SIZES_GIMPLIFIED (t
))
3118 gimplify_type_sizes (t
, (tree
*) data
);
3126 /* Gimplify the parameter list for current_function_decl. This involves
3127 evaluating SAVE_EXPRs of variable sized parameters and generating code
3128 to implement callee-copies reference parameters. Returns a list of
3129 statements to add to the beginning of the function, or NULL if nothing
3133 gimplify_parameters (void)
3135 struct assign_parm_data_all all
;
3136 tree fnargs
, parm
, stmts
= NULL
;
3138 assign_parms_initialize_all (&all
);
3139 fnargs
= assign_parms_augmented_arg_list (&all
);
3141 for (parm
= fnargs
; parm
; parm
= TREE_CHAIN (parm
))
3143 struct assign_parm_data_one data
;
3145 /* Extract the type of PARM; adjust it according to ABI. */
3146 assign_parm_find_data_types (&all
, parm
, &data
);
3148 /* Early out for errors and void parameters. */
3149 if (data
.passed_mode
== VOIDmode
|| DECL_SIZE (parm
) == NULL
)
3152 /* Update info on where next arg arrives in registers. */
3153 FUNCTION_ARG_ADVANCE (all
.args_so_far
, data
.promoted_mode
,
3154 data
.passed_type
, data
.named_arg
);
3156 /* ??? Once upon a time variable_size stuffed parameter list
3157 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3158 turned out to be less than manageable in the gimple world.
3159 Now we have to hunt them down ourselves. */
3160 walk_tree_without_duplicates (&data
.passed_type
,
3161 gimplify_parm_type
, &stmts
);
3163 if (!TREE_CONSTANT (DECL_SIZE (parm
)))
3165 gimplify_one_sizepos (&DECL_SIZE (parm
), &stmts
);
3166 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm
), &stmts
);
3169 if (data
.passed_pointer
)
3171 tree type
= TREE_TYPE (data
.passed_type
);
3172 if (reference_callee_copied (&all
.args_so_far
, TYPE_MODE (type
),
3173 type
, data
.named_arg
))
3177 /* For constant sized objects, this is trivial; for
3178 variable-sized objects, we have to play games. */
3179 if (TREE_CONSTANT (DECL_SIZE (parm
)))
3181 local
= create_tmp_var (type
, get_name (parm
));
3182 DECL_IGNORED_P (local
) = 0;
3186 tree ptr_type
, addr
, args
;
3188 ptr_type
= build_pointer_type (type
);
3189 addr
= create_tmp_var (ptr_type
, get_name (parm
));
3190 DECL_IGNORED_P (addr
) = 0;
3191 local
= build_fold_indirect_ref (addr
);
3193 args
= tree_cons (NULL
, DECL_SIZE_UNIT (parm
), NULL
);
3194 t
= built_in_decls
[BUILT_IN_ALLOCA
];
3195 t
= build_function_call_expr (t
, args
);
3196 t
= fold_convert (ptr_type
, t
);
3197 t
= build2 (MODIFY_EXPR
, void_type_node
, addr
, t
);
3198 gimplify_and_add (t
, &stmts
);
3201 t
= build2 (MODIFY_EXPR
, void_type_node
, local
, parm
);
3202 gimplify_and_add (t
, &stmts
);
3204 SET_DECL_VALUE_EXPR (parm
, local
);
3205 DECL_HAS_VALUE_EXPR_P (parm
) = 1;
3213 /* Indicate whether REGNO is an incoming argument to the current function
3214 that was promoted to a wider mode. If so, return the RTX for the
3215 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3216 that REGNO is promoted from and whether the promotion was signed or
3220 promoted_input_arg (unsigned int regno
, enum machine_mode
*pmode
, int *punsignedp
)
3224 for (arg
= DECL_ARGUMENTS (current_function_decl
); arg
;
3225 arg
= TREE_CHAIN (arg
))
3226 if (REG_P (DECL_INCOMING_RTL (arg
))
3227 && REGNO (DECL_INCOMING_RTL (arg
)) == regno
3228 && TYPE_MODE (DECL_ARG_TYPE (arg
)) == TYPE_MODE (TREE_TYPE (arg
)))
3230 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (arg
));
3231 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (arg
));
3233 mode
= promote_mode (TREE_TYPE (arg
), mode
, &unsignedp
, 1);
3234 if (mode
== GET_MODE (DECL_INCOMING_RTL (arg
))
3235 && mode
!= DECL_MODE (arg
))
3237 *pmode
= DECL_MODE (arg
);
3238 *punsignedp
= unsignedp
;
3239 return DECL_INCOMING_RTL (arg
);
3247 /* Compute the size and offset from the start of the stacked arguments for a
3248 parm passed in mode PASSED_MODE and with type TYPE.
3250 INITIAL_OFFSET_PTR points to the current offset into the stacked
3253 The starting offset and size for this parm are returned in
3254 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3255 nonzero, the offset is that of stack slot, which is returned in
3256 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3257 padding required from the initial offset ptr to the stack slot.
3259 IN_REGS is nonzero if the argument will be passed in registers. It will
3260 never be set if REG_PARM_STACK_SPACE is not defined.
3262 FNDECL is the function in which the argument was defined.
3264 There are two types of rounding that are done. The first, controlled by
3265 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3266 list to be aligned to the specific boundary (in bits). This rounding
3267 affects the initial and starting offsets, but not the argument size.
3269 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3270 optionally rounds the size of the parm to PARM_BOUNDARY. The
3271 initial offset is not affected by this rounding, while the size always
3272 is and the starting offset may be. */
3274 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3275 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3276 callers pass in the total size of args so far as
3277 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3280 locate_and_pad_parm (enum machine_mode passed_mode
, tree type
, int in_regs
,
3281 int partial
, tree fndecl ATTRIBUTE_UNUSED
,
3282 struct args_size
*initial_offset_ptr
,
3283 struct locate_and_pad_arg_data
*locate
)
3286 enum direction where_pad
;
3287 unsigned int boundary
;
3288 int reg_parm_stack_space
= 0;
3289 int part_size_in_regs
;
3291 #ifdef REG_PARM_STACK_SPACE
3292 reg_parm_stack_space
= REG_PARM_STACK_SPACE (fndecl
);
3294 /* If we have found a stack parm before we reach the end of the
3295 area reserved for registers, skip that area. */
3298 if (reg_parm_stack_space
> 0)
3300 if (initial_offset_ptr
->var
)
3302 initial_offset_ptr
->var
3303 = size_binop (MAX_EXPR
, ARGS_SIZE_TREE (*initial_offset_ptr
),
3304 ssize_int (reg_parm_stack_space
));
3305 initial_offset_ptr
->constant
= 0;
3307 else if (initial_offset_ptr
->constant
< reg_parm_stack_space
)
3308 initial_offset_ptr
->constant
= reg_parm_stack_space
;
3311 #endif /* REG_PARM_STACK_SPACE */
3313 part_size_in_regs
= (reg_parm_stack_space
== 0 ? partial
: 0);
3316 = type
? size_in_bytes (type
) : size_int (GET_MODE_SIZE (passed_mode
));
3317 where_pad
= FUNCTION_ARG_PADDING (passed_mode
, type
);
3318 boundary
= FUNCTION_ARG_BOUNDARY (passed_mode
, type
);
3319 locate
->where_pad
= where_pad
;
3320 locate
->boundary
= boundary
;
3322 /* Remember if the outgoing parameter requires extra alignment on the
3323 calling function side. */
3324 if (boundary
> PREFERRED_STACK_BOUNDARY
)
3325 boundary
= PREFERRED_STACK_BOUNDARY
;
3326 if (cfun
->stack_alignment_needed
< boundary
)
3327 cfun
->stack_alignment_needed
= boundary
;
3329 #ifdef ARGS_GROW_DOWNWARD
3330 locate
->slot_offset
.constant
= -initial_offset_ptr
->constant
;
3331 if (initial_offset_ptr
->var
)
3332 locate
->slot_offset
.var
= size_binop (MINUS_EXPR
, ssize_int (0),
3333 initial_offset_ptr
->var
);
3337 if (where_pad
!= none
3338 && (!host_integerp (sizetree
, 1)
3339 || (tree_low_cst (sizetree
, 1) * BITS_PER_UNIT
) % PARM_BOUNDARY
))
3340 s2
= round_up (s2
, PARM_BOUNDARY
/ BITS_PER_UNIT
);
3341 SUB_PARM_SIZE (locate
->slot_offset
, s2
);
3344 locate
->slot_offset
.constant
+= part_size_in_regs
;
3347 #ifdef REG_PARM_STACK_SPACE
3348 || REG_PARM_STACK_SPACE (fndecl
) > 0
3351 pad_to_arg_alignment (&locate
->slot_offset
, boundary
,
3352 &locate
->alignment_pad
);
3354 locate
->size
.constant
= (-initial_offset_ptr
->constant
3355 - locate
->slot_offset
.constant
);
3356 if (initial_offset_ptr
->var
)
3357 locate
->size
.var
= size_binop (MINUS_EXPR
,
3358 size_binop (MINUS_EXPR
,
3360 initial_offset_ptr
->var
),
3361 locate
->slot_offset
.var
);
3363 /* Pad_below needs the pre-rounded size to know how much to pad
3365 locate
->offset
= locate
->slot_offset
;
3366 if (where_pad
== downward
)
3367 pad_below (&locate
->offset
, passed_mode
, sizetree
);
3369 #else /* !ARGS_GROW_DOWNWARD */
3371 #ifdef REG_PARM_STACK_SPACE
3372 || REG_PARM_STACK_SPACE (fndecl
) > 0
3375 pad_to_arg_alignment (initial_offset_ptr
, boundary
,
3376 &locate
->alignment_pad
);
3377 locate
->slot_offset
= *initial_offset_ptr
;
3379 #ifdef PUSH_ROUNDING
3380 if (passed_mode
!= BLKmode
)
3381 sizetree
= size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree
)));
3384 /* Pad_below needs the pre-rounded size to know how much to pad below
3385 so this must be done before rounding up. */
3386 locate
->offset
= locate
->slot_offset
;
3387 if (where_pad
== downward
)
3388 pad_below (&locate
->offset
, passed_mode
, sizetree
);
3390 if (where_pad
!= none
3391 && (!host_integerp (sizetree
, 1)
3392 || (tree_low_cst (sizetree
, 1) * BITS_PER_UNIT
) % PARM_BOUNDARY
))
3393 sizetree
= round_up (sizetree
, PARM_BOUNDARY
/ BITS_PER_UNIT
);
3395 ADD_PARM_SIZE (locate
->size
, sizetree
);
3397 locate
->size
.constant
-= part_size_in_regs
;
3398 #endif /* ARGS_GROW_DOWNWARD */
3401 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3402 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3405 pad_to_arg_alignment (struct args_size
*offset_ptr
, int boundary
,
3406 struct args_size
*alignment_pad
)
3408 tree save_var
= NULL_TREE
;
3409 HOST_WIDE_INT save_constant
= 0;
3410 int boundary_in_bytes
= boundary
/ BITS_PER_UNIT
;
3411 HOST_WIDE_INT sp_offset
= STACK_POINTER_OFFSET
;
3413 #ifdef SPARC_STACK_BOUNDARY_HACK
3414 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3415 the real alignment of %sp. However, when it does this, the
3416 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3417 if (SPARC_STACK_BOUNDARY_HACK
)
3421 if (boundary
> PARM_BOUNDARY
&& boundary
> STACK_BOUNDARY
)
3423 save_var
= offset_ptr
->var
;
3424 save_constant
= offset_ptr
->constant
;
3427 alignment_pad
->var
= NULL_TREE
;
3428 alignment_pad
->constant
= 0;
3430 if (boundary
> BITS_PER_UNIT
)
3432 if (offset_ptr
->var
)
3434 tree sp_offset_tree
= ssize_int (sp_offset
);
3435 tree offset
= size_binop (PLUS_EXPR
,
3436 ARGS_SIZE_TREE (*offset_ptr
),
3438 #ifdef ARGS_GROW_DOWNWARD
3439 tree rounded
= round_down (offset
, boundary
/ BITS_PER_UNIT
);
3441 tree rounded
= round_up (offset
, boundary
/ BITS_PER_UNIT
);
3444 offset_ptr
->var
= size_binop (MINUS_EXPR
, rounded
, sp_offset_tree
);
3445 /* ARGS_SIZE_TREE includes constant term. */
3446 offset_ptr
->constant
= 0;
3447 if (boundary
> PARM_BOUNDARY
&& boundary
> STACK_BOUNDARY
)
3448 alignment_pad
->var
= size_binop (MINUS_EXPR
, offset_ptr
->var
,
3453 offset_ptr
->constant
= -sp_offset
+
3454 #ifdef ARGS_GROW_DOWNWARD
3455 FLOOR_ROUND (offset_ptr
->constant
+ sp_offset
, boundary_in_bytes
);
3457 CEIL_ROUND (offset_ptr
->constant
+ sp_offset
, boundary_in_bytes
);
3459 if (boundary
> PARM_BOUNDARY
&& boundary
> STACK_BOUNDARY
)
3460 alignment_pad
->constant
= offset_ptr
->constant
- save_constant
;
3466 pad_below (struct args_size
*offset_ptr
, enum machine_mode passed_mode
, tree sizetree
)
3468 if (passed_mode
!= BLKmode
)
3470 if (GET_MODE_BITSIZE (passed_mode
) % PARM_BOUNDARY
)
3471 offset_ptr
->constant
3472 += (((GET_MODE_BITSIZE (passed_mode
) + PARM_BOUNDARY
- 1)
3473 / PARM_BOUNDARY
* PARM_BOUNDARY
/ BITS_PER_UNIT
)
3474 - GET_MODE_SIZE (passed_mode
));
3478 if (TREE_CODE (sizetree
) != INTEGER_CST
3479 || (TREE_INT_CST_LOW (sizetree
) * BITS_PER_UNIT
) % PARM_BOUNDARY
)
3481 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3482 tree s2
= round_up (sizetree
, PARM_BOUNDARY
/ BITS_PER_UNIT
);
3484 ADD_PARM_SIZE (*offset_ptr
, s2
);
3485 SUB_PARM_SIZE (*offset_ptr
, sizetree
);
3490 /* Walk the tree of blocks describing the binding levels within a function
3491 and warn about variables the might be killed by setjmp or vfork.
3492 This is done after calling flow_analysis and before global_alloc
3493 clobbers the pseudo-regs to hard regs. */
3496 setjmp_vars_warning (tree block
)
3500 for (decl
= BLOCK_VARS (block
); decl
; decl
= TREE_CHAIN (decl
))
3502 if (TREE_CODE (decl
) == VAR_DECL
3503 && DECL_RTL_SET_P (decl
)
3504 && REG_P (DECL_RTL (decl
))
3505 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl
))))
3506 warning (0, "variable %q+D might be clobbered by %<longjmp%>"
3511 for (sub
= BLOCK_SUBBLOCKS (block
); sub
; sub
= TREE_CHAIN (sub
))
3512 setjmp_vars_warning (sub
);
3515 /* Do the appropriate part of setjmp_vars_warning
3516 but for arguments instead of local variables. */
3519 setjmp_args_warning (void)
3522 for (decl
= DECL_ARGUMENTS (current_function_decl
);
3523 decl
; decl
= TREE_CHAIN (decl
))
3524 if (DECL_RTL (decl
) != 0
3525 && REG_P (DECL_RTL (decl
))
3526 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl
))))
3527 warning (0, "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3532 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3533 and create duplicate blocks. */
3534 /* ??? Need an option to either create block fragments or to create
3535 abstract origin duplicates of a source block. It really depends
3536 on what optimization has been performed. */
3539 reorder_blocks (void)
3541 tree block
= DECL_INITIAL (current_function_decl
);
3542 VEC(tree
,heap
) *block_stack
;
3544 if (block
== NULL_TREE
)
3547 block_stack
= VEC_alloc (tree
, heap
, 10);
3549 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3550 clear_block_marks (block
);
3552 /* Prune the old trees away, so that they don't get in the way. */
3553 BLOCK_SUBBLOCKS (block
) = NULL_TREE
;
3554 BLOCK_CHAIN (block
) = NULL_TREE
;
3556 /* Recreate the block tree from the note nesting. */
3557 reorder_blocks_1 (get_insns (), block
, &block_stack
);
3558 BLOCK_SUBBLOCKS (block
) = blocks_nreverse (BLOCK_SUBBLOCKS (block
));
3560 /* Remove deleted blocks from the block fragment chains. */
3561 reorder_fix_fragments (block
);
3563 VEC_free (tree
, heap
, block_stack
);
3566 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3569 clear_block_marks (tree block
)
3573 TREE_ASM_WRITTEN (block
) = 0;
3574 clear_block_marks (BLOCK_SUBBLOCKS (block
));
3575 block
= BLOCK_CHAIN (block
);
3580 reorder_blocks_1 (rtx insns
, tree current_block
, VEC(tree
,heap
) **p_block_stack
)
3584 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
3588 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_BEG
)
3590 tree block
= NOTE_BLOCK (insn
);
3592 /* If we have seen this block before, that means it now
3593 spans multiple address regions. Create a new fragment. */
3594 if (TREE_ASM_WRITTEN (block
))
3596 tree new_block
= copy_node (block
);
3599 origin
= (BLOCK_FRAGMENT_ORIGIN (block
)
3600 ? BLOCK_FRAGMENT_ORIGIN (block
)
3602 BLOCK_FRAGMENT_ORIGIN (new_block
) = origin
;
3603 BLOCK_FRAGMENT_CHAIN (new_block
)
3604 = BLOCK_FRAGMENT_CHAIN (origin
);
3605 BLOCK_FRAGMENT_CHAIN (origin
) = new_block
;
3607 NOTE_BLOCK (insn
) = new_block
;
3611 BLOCK_SUBBLOCKS (block
) = 0;
3612 TREE_ASM_WRITTEN (block
) = 1;
3613 /* When there's only one block for the entire function,
3614 current_block == block and we mustn't do this, it
3615 will cause infinite recursion. */
3616 if (block
!= current_block
)
3618 BLOCK_SUPERCONTEXT (block
) = current_block
;
3619 BLOCK_CHAIN (block
) = BLOCK_SUBBLOCKS (current_block
);
3620 BLOCK_SUBBLOCKS (current_block
) = block
;
3621 current_block
= block
;
3623 VEC_safe_push (tree
, heap
, *p_block_stack
, block
);
3625 else if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_END
)
3627 NOTE_BLOCK (insn
) = VEC_pop (tree
, *p_block_stack
);
3628 BLOCK_SUBBLOCKS (current_block
)
3629 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block
));
3630 current_block
= BLOCK_SUPERCONTEXT (current_block
);
3636 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3637 appears in the block tree, select one of the fragments to become
3638 the new origin block. */
3641 reorder_fix_fragments (tree block
)
3645 tree dup_origin
= BLOCK_FRAGMENT_ORIGIN (block
);
3646 tree new_origin
= NULL_TREE
;
3650 if (! TREE_ASM_WRITTEN (dup_origin
))
3652 new_origin
= BLOCK_FRAGMENT_CHAIN (dup_origin
);
3654 /* Find the first of the remaining fragments. There must
3655 be at least one -- the current block. */
3656 while (! TREE_ASM_WRITTEN (new_origin
))
3657 new_origin
= BLOCK_FRAGMENT_CHAIN (new_origin
);
3658 BLOCK_FRAGMENT_ORIGIN (new_origin
) = NULL_TREE
;
3661 else if (! dup_origin
)
3664 /* Re-root the rest of the fragments to the new origin. In the
3665 case that DUP_ORIGIN was null, that means BLOCK was the origin
3666 of a chain of fragments and we want to remove those fragments
3667 that didn't make it to the output. */
3670 tree
*pp
= &BLOCK_FRAGMENT_CHAIN (new_origin
);
3675 if (TREE_ASM_WRITTEN (chain
))
3677 BLOCK_FRAGMENT_ORIGIN (chain
) = new_origin
;
3679 pp
= &BLOCK_FRAGMENT_CHAIN (chain
);
3681 chain
= BLOCK_FRAGMENT_CHAIN (chain
);
3686 reorder_fix_fragments (BLOCK_SUBBLOCKS (block
));
3687 block
= BLOCK_CHAIN (block
);
3691 /* Reverse the order of elements in the chain T of blocks,
3692 and return the new head of the chain (old last element). */
3695 blocks_nreverse (tree t
)
3697 tree prev
= 0, decl
, next
;
3698 for (decl
= t
; decl
; decl
= next
)
3700 next
= BLOCK_CHAIN (decl
);
3701 BLOCK_CHAIN (decl
) = prev
;
3707 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3708 non-NULL, list them all into VECTOR, in a depth-first preorder
3709 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3713 all_blocks (tree block
, tree
*vector
)
3719 TREE_ASM_WRITTEN (block
) = 0;
3721 /* Record this block. */
3723 vector
[n_blocks
] = block
;
3727 /* Record the subblocks, and their subblocks... */
3728 n_blocks
+= all_blocks (BLOCK_SUBBLOCKS (block
),
3729 vector
? vector
+ n_blocks
: 0);
3730 block
= BLOCK_CHAIN (block
);
3736 /* Return a vector containing all the blocks rooted at BLOCK. The
3737 number of elements in the vector is stored in N_BLOCKS_P. The
3738 vector is dynamically allocated; it is the caller's responsibility
3739 to call `free' on the pointer returned. */
3742 get_block_vector (tree block
, int *n_blocks_p
)
3746 *n_blocks_p
= all_blocks (block
, NULL
);
3747 block_vector
= xmalloc (*n_blocks_p
* sizeof (tree
));
3748 all_blocks (block
, block_vector
);
3750 return block_vector
;
3753 static GTY(()) int next_block_index
= 2;
3755 /* Set BLOCK_NUMBER for all the blocks in FN. */
3758 number_blocks (tree fn
)
3764 /* For SDB and XCOFF debugging output, we start numbering the blocks
3765 from 1 within each function, rather than keeping a running
3767 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3768 if (write_symbols
== SDB_DEBUG
|| write_symbols
== XCOFF_DEBUG
)
3769 next_block_index
= 1;
3772 block_vector
= get_block_vector (DECL_INITIAL (fn
), &n_blocks
);
3774 /* The top-level BLOCK isn't numbered at all. */
3775 for (i
= 1; i
< n_blocks
; ++i
)
3776 /* We number the blocks from two. */
3777 BLOCK_NUMBER (block_vector
[i
]) = next_block_index
++;
3779 free (block_vector
);
3784 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3787 debug_find_var_in_block_tree (tree var
, tree block
)
3791 for (t
= BLOCK_VARS (block
); t
; t
= TREE_CHAIN (t
))
3795 for (t
= BLOCK_SUBBLOCKS (block
); t
; t
= TREE_CHAIN (t
))
3797 tree ret
= debug_find_var_in_block_tree (var
, t
);
3805 /* Allocate a function structure for FNDECL and set its contents
3809 allocate_struct_function (tree fndecl
)
3812 tree fntype
= fndecl
? TREE_TYPE (fndecl
) : NULL_TREE
;
3814 cfun
= ggc_alloc_cleared (sizeof (struct function
));
3816 cfun
->stack_alignment_needed
= STACK_BOUNDARY
;
3817 cfun
->preferred_stack_boundary
= STACK_BOUNDARY
;
3819 current_function_funcdef_no
= funcdef_no
++;
3821 cfun
->function_frequency
= FUNCTION_FREQUENCY_NORMAL
;
3823 init_eh_for_function ();
3825 lang_hooks
.function
.init (cfun
);
3826 if (init_machine_status
)
3827 cfun
->machine
= (*init_machine_status
) ();
3832 DECL_STRUCT_FUNCTION (fndecl
) = cfun
;
3833 cfun
->decl
= fndecl
;
3835 result
= DECL_RESULT (fndecl
);
3836 if (aggregate_value_p (result
, fndecl
))
3838 #ifdef PCC_STATIC_STRUCT_RETURN
3839 current_function_returns_pcc_struct
= 1;
3841 current_function_returns_struct
= 1;
3844 current_function_returns_pointer
= POINTER_TYPE_P (TREE_TYPE (result
));
3846 current_function_stdarg
3848 && TYPE_ARG_TYPES (fntype
) != 0
3849 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype
)))
3850 != void_type_node
));
3852 /* Assume all registers in stdarg functions need to be saved. */
3853 cfun
->va_list_gpr_size
= VA_LIST_MAX_GPR_SIZE
;
3854 cfun
->va_list_fpr_size
= VA_LIST_MAX_FPR_SIZE
;
3857 /* Reset cfun, and other non-struct-function variables to defaults as
3858 appropriate for emitting rtl at the start of a function. */
3861 prepare_function_start (tree fndecl
)
3863 if (fndecl
&& DECL_STRUCT_FUNCTION (fndecl
))
3864 cfun
= DECL_STRUCT_FUNCTION (fndecl
);
3866 allocate_struct_function (fndecl
);
3868 init_varasm_status (cfun
);
3871 cse_not_expected
= ! optimize
;
3873 /* Caller save not needed yet. */
3874 caller_save_needed
= 0;
3876 /* We haven't done register allocation yet. */
3879 /* Indicate that we have not instantiated virtual registers yet. */
3880 virtuals_instantiated
= 0;
3882 /* Indicate that we want CONCATs now. */
3883 generating_concat_p
= 1;
3885 /* Indicate we have no need of a frame pointer yet. */
3886 frame_pointer_needed
= 0;
3889 /* Initialize the rtl expansion mechanism so that we can do simple things
3890 like generate sequences. This is used to provide a context during global
3891 initialization of some passes. */
3893 init_dummy_function_start (void)
3895 prepare_function_start (NULL
);
3898 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3899 and initialize static variables for generating RTL for the statements
3903 init_function_start (tree subr
)
3905 prepare_function_start (subr
);
3907 /* Prevent ever trying to delete the first instruction of a
3908 function. Also tell final how to output a linenum before the
3909 function prologue. Note linenums could be missing, e.g. when
3910 compiling a Java .class file. */
3911 if (! DECL_IS_BUILTIN (subr
))
3912 emit_line_note (DECL_SOURCE_LOCATION (subr
));
3914 /* Make sure first insn is a note even if we don't want linenums.
3915 This makes sure the first insn will never be deleted.
3916 Also, final expects a note to appear there. */
3917 emit_note (NOTE_INSN_DELETED
);
3919 /* Warn if this value is an aggregate type,
3920 regardless of which calling convention we are using for it. */
3921 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr
))))
3922 warning (OPT_Waggregate_return
, "function returns an aggregate");
3925 /* Make sure all values used by the optimization passes have sane
3928 init_function_for_compilation (void)
3932 /* No prologue/epilogue insns yet. Make sure that these vectors are
3934 gcc_assert (VEC_length (int, prologue
) == 0);
3935 gcc_assert (VEC_length (int, epilogue
) == 0);
3936 gcc_assert (VEC_length (int, sibcall_epilogue
) == 0);
3939 struct tree_opt_pass pass_init_function
=
3943 init_function_for_compilation
, /* execute */
3946 0, /* static_pass_number */
3948 0, /* properties_required */
3949 0, /* properties_provided */
3950 0, /* properties_destroyed */
3951 0, /* todo_flags_start */
3952 0, /* todo_flags_finish */
3958 expand_main_function (void)
3960 #if (defined(INVOKE__main) \
3961 || (!defined(HAS_INIT_SECTION) \
3962 && !defined(INIT_SECTION_ASM_OP) \
3963 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
3964 emit_library_call (init_one_libfunc (NAME__MAIN
), LCT_NORMAL
, VOIDmode
, 0);
3968 /* Expand code to initialize the stack_protect_guard. This is invoked at
3969 the beginning of a function to be protected. */
3971 #ifndef HAVE_stack_protect_set
3972 # define HAVE_stack_protect_set 0
3973 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
3977 stack_protect_prologue (void)
3979 tree guard_decl
= targetm
.stack_protect_guard ();
3982 /* Avoid expand_expr here, because we don't want guard_decl pulled
3983 into registers unless absolutely necessary. And we know that
3984 cfun->stack_protect_guard is a local stack slot, so this skips
3986 x
= validize_mem (DECL_RTL (cfun
->stack_protect_guard
));
3987 y
= validize_mem (DECL_RTL (guard_decl
));
3989 /* Allow the target to copy from Y to X without leaking Y into a
3991 if (HAVE_stack_protect_set
)
3993 rtx insn
= gen_stack_protect_set (x
, y
);
4001 /* Otherwise do a straight move. */
4002 emit_move_insn (x
, y
);
4005 /* Expand code to verify the stack_protect_guard. This is invoked at
4006 the end of a function to be protected. */
4008 #ifndef HAVE_stack_protect_test
4009 # define HAVE_stack_protect_test 0
4010 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4014 stack_protect_epilogue (void)
4016 tree guard_decl
= targetm
.stack_protect_guard ();
4017 rtx label
= gen_label_rtx ();
4020 /* Avoid expand_expr here, because we don't want guard_decl pulled
4021 into registers unless absolutely necessary. And we know that
4022 cfun->stack_protect_guard is a local stack slot, so this skips
4024 x
= validize_mem (DECL_RTL (cfun
->stack_protect_guard
));
4025 y
= validize_mem (DECL_RTL (guard_decl
));
4027 /* Allow the target to compare Y with X without leaking either into
4029 switch (HAVE_stack_protect_test
!= 0)
4032 tmp
= gen_stack_protect_test (x
, y
, label
);
4041 emit_cmp_and_jump_insns (x
, y
, EQ
, NULL_RTX
, ptr_mode
, 1, label
);
4045 /* The noreturn predictor has been moved to the tree level. The rtl-level
4046 predictors estimate this branch about 20%, which isn't enough to get
4047 things moved out of line. Since this is the only extant case of adding
4048 a noreturn function at the rtl level, it doesn't seem worth doing ought
4049 except adding the prediction by hand. */
4050 tmp
= get_last_insn ();
4052 predict_insn_def (tmp
, PRED_NORETURN
, TAKEN
);
4054 expand_expr_stmt (targetm
.stack_protect_fail ());
4058 /* Start the RTL for a new function, and set variables used for
4060 SUBR is the FUNCTION_DECL node.
4061 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4062 the function's parameters, which must be run at any return statement. */
4065 expand_function_start (tree subr
)
4067 /* Make sure volatile mem refs aren't considered
4068 valid operands of arithmetic insns. */
4069 init_recog_no_volatile ();
4071 current_function_profile
4073 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr
));
4075 current_function_limit_stack
4076 = (stack_limit_rtx
!= NULL_RTX
&& ! DECL_NO_LIMIT_STACK (subr
));
4078 /* Make the label for return statements to jump to. Do not special
4079 case machines with special return instructions -- they will be
4080 handled later during jump, ifcvt, or epilogue creation. */
4081 return_label
= gen_label_rtx ();
4083 /* Initialize rtx used to return the value. */
4084 /* Do this before assign_parms so that we copy the struct value address
4085 before any library calls that assign parms might generate. */
4087 /* Decide whether to return the value in memory or in a register. */
4088 if (aggregate_value_p (DECL_RESULT (subr
), subr
))
4090 /* Returning something that won't go in a register. */
4091 rtx value_address
= 0;
4093 #ifdef PCC_STATIC_STRUCT_RETURN
4094 if (current_function_returns_pcc_struct
)
4096 int size
= int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr
)));
4097 value_address
= assemble_static_space (size
);
4102 rtx sv
= targetm
.calls
.struct_value_rtx (TREE_TYPE (subr
), 1);
4103 /* Expect to be passed the address of a place to store the value.
4104 If it is passed as an argument, assign_parms will take care of
4108 value_address
= gen_reg_rtx (Pmode
);
4109 emit_move_insn (value_address
, sv
);
4114 rtx x
= value_address
;
4115 if (!DECL_BY_REFERENCE (DECL_RESULT (subr
)))
4117 x
= gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr
)), x
);
4118 set_mem_attributes (x
, DECL_RESULT (subr
), 1);
4120 SET_DECL_RTL (DECL_RESULT (subr
), x
);
4123 else if (DECL_MODE (DECL_RESULT (subr
)) == VOIDmode
)
4124 /* If return mode is void, this decl rtl should not be used. */
4125 SET_DECL_RTL (DECL_RESULT (subr
), NULL_RTX
);
4128 /* Compute the return values into a pseudo reg, which we will copy
4129 into the true return register after the cleanups are done. */
4130 tree return_type
= TREE_TYPE (DECL_RESULT (subr
));
4131 if (TYPE_MODE (return_type
) != BLKmode
4132 && targetm
.calls
.return_in_msb (return_type
))
4133 /* expand_function_end will insert the appropriate padding in
4134 this case. Use the return value's natural (unpadded) mode
4135 within the function proper. */
4136 SET_DECL_RTL (DECL_RESULT (subr
),
4137 gen_reg_rtx (TYPE_MODE (return_type
)));
4140 /* In order to figure out what mode to use for the pseudo, we
4141 figure out what the mode of the eventual return register will
4142 actually be, and use that. */
4143 rtx hard_reg
= hard_function_value (return_type
, subr
, 0, 1);
4145 /* Structures that are returned in registers are not
4146 aggregate_value_p, so we may see a PARALLEL or a REG. */
4147 if (REG_P (hard_reg
))
4148 SET_DECL_RTL (DECL_RESULT (subr
),
4149 gen_reg_rtx (GET_MODE (hard_reg
)));
4152 gcc_assert (GET_CODE (hard_reg
) == PARALLEL
);
4153 SET_DECL_RTL (DECL_RESULT (subr
), gen_group_rtx (hard_reg
));
4157 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4158 result to the real return register(s). */
4159 DECL_REGISTER (DECL_RESULT (subr
)) = 1;
4162 /* Initialize rtx for parameters and local variables.
4163 In some cases this requires emitting insns. */
4164 assign_parms (subr
);
4166 /* If function gets a static chain arg, store it. */
4167 if (cfun
->static_chain_decl
)
4169 tree parm
= cfun
->static_chain_decl
;
4170 rtx local
= gen_reg_rtx (Pmode
);
4172 set_decl_incoming_rtl (parm
, static_chain_incoming_rtx
);
4173 SET_DECL_RTL (parm
, local
);
4174 mark_reg_pointer (local
, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm
))));
4176 emit_move_insn (local
, static_chain_incoming_rtx
);
4179 /* If the function receives a non-local goto, then store the
4180 bits we need to restore the frame pointer. */
4181 if (cfun
->nonlocal_goto_save_area
)
4186 /* ??? We need to do this save early. Unfortunately here is
4187 before the frame variable gets declared. Help out... */
4188 expand_var (TREE_OPERAND (cfun
->nonlocal_goto_save_area
, 0));
4190 t_save
= build4 (ARRAY_REF
, ptr_type_node
,
4191 cfun
->nonlocal_goto_save_area
,
4192 integer_zero_node
, NULL_TREE
, NULL_TREE
);
4193 r_save
= expand_expr (t_save
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4194 r_save
= convert_memory_address (Pmode
, r_save
);
4196 emit_move_insn (r_save
, virtual_stack_vars_rtx
);
4197 update_nonlocal_goto_save_area ();
4200 /* The following was moved from init_function_start.
4201 The move is supposed to make sdb output more accurate. */
4202 /* Indicate the beginning of the function body,
4203 as opposed to parm setup. */
4204 emit_note (NOTE_INSN_FUNCTION_BEG
);
4206 if (!NOTE_P (get_last_insn ()))
4207 emit_note (NOTE_INSN_DELETED
);
4208 parm_birth_insn
= get_last_insn ();
4210 if (current_function_profile
)
4213 PROFILE_HOOK (current_function_funcdef_no
);
4217 /* After the display initializations is where the tail-recursion label
4218 should go, if we end up needing one. Ensure we have a NOTE here
4219 since some things (like trampolines) get placed before this. */
4220 tail_recursion_reentry
= emit_note (NOTE_INSN_DELETED
);
4222 /* Make sure there is a line number after the function entry setup code. */
4223 force_next_line_note ();
4226 /* Undo the effects of init_dummy_function_start. */
4228 expand_dummy_function_end (void)
4230 /* End any sequences that failed to be closed due to syntax errors. */
4231 while (in_sequence_p ())
4234 /* Outside function body, can't compute type's actual size
4235 until next function's body starts. */
4237 free_after_parsing (cfun
);
4238 free_after_compilation (cfun
);
4242 /* Call DOIT for each hard register used as a return value from
4243 the current function. */
4246 diddle_return_value (void (*doit
) (rtx
, void *), void *arg
)
4248 rtx outgoing
= current_function_return_rtx
;
4253 if (REG_P (outgoing
))
4254 (*doit
) (outgoing
, arg
);
4255 else if (GET_CODE (outgoing
) == PARALLEL
)
4259 for (i
= 0; i
< XVECLEN (outgoing
, 0); i
++)
4261 rtx x
= XEXP (XVECEXP (outgoing
, 0, i
), 0);
4263 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
4270 do_clobber_return_reg (rtx reg
, void *arg ATTRIBUTE_UNUSED
)
4272 emit_insn (gen_rtx_CLOBBER (VOIDmode
, reg
));
4276 clobber_return_register (void)
4278 diddle_return_value (do_clobber_return_reg
, NULL
);
4280 /* In case we do use pseudo to return value, clobber it too. */
4281 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl
)))
4283 tree decl_result
= DECL_RESULT (current_function_decl
);
4284 rtx decl_rtl
= DECL_RTL (decl_result
);
4285 if (REG_P (decl_rtl
) && REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
)
4287 do_clobber_return_reg (decl_rtl
, NULL
);
4293 do_use_return_reg (rtx reg
, void *arg ATTRIBUTE_UNUSED
)
4295 emit_insn (gen_rtx_USE (VOIDmode
, reg
));
4299 use_return_register (void)
4301 diddle_return_value (do_use_return_reg
, NULL
);
4304 /* Possibly warn about unused parameters. */
4306 do_warn_unused_parameter (tree fn
)
4310 for (decl
= DECL_ARGUMENTS (fn
);
4311 decl
; decl
= TREE_CHAIN (decl
))
4312 if (!TREE_USED (decl
) && TREE_CODE (decl
) == PARM_DECL
4313 && DECL_NAME (decl
) && !DECL_ARTIFICIAL (decl
))
4314 warning (OPT_Wunused_parameter
, "unused parameter %q+D", decl
);
4317 static GTY(()) rtx initial_trampoline
;
4319 /* Generate RTL for the end of the current function. */
4322 expand_function_end (void)
4326 /* If arg_pointer_save_area was referenced only from a nested
4327 function, we will not have initialized it yet. Do that now. */
4328 if (arg_pointer_save_area
&& ! cfun
->arg_pointer_save_area_init
)
4329 get_arg_pointer_save_area (cfun
);
4331 /* If we are doing stack checking and this function makes calls,
4332 do a stack probe at the start of the function to ensure we have enough
4333 space for another stack frame. */
4334 if (flag_stack_check
&& ! STACK_CHECK_BUILTIN
)
4338 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4342 probe_stack_range (STACK_CHECK_PROTECT
,
4343 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE
));
4346 emit_insn_before (seq
, tail_recursion_reentry
);
4351 /* Possibly warn about unused parameters.
4352 When frontend does unit-at-a-time, the warning is already
4353 issued at finalization time. */
4354 if (warn_unused_parameter
4355 && !lang_hooks
.callgraph
.expand_function
)
4356 do_warn_unused_parameter (current_function_decl
);
4358 /* End any sequences that failed to be closed due to syntax errors. */
4359 while (in_sequence_p ())
4362 clear_pending_stack_adjust ();
4363 do_pending_stack_adjust ();
4365 /* Mark the end of the function body.
4366 If control reaches this insn, the function can drop through
4367 without returning a value. */
4368 emit_note (NOTE_INSN_FUNCTION_END
);
4370 /* Must mark the last line number note in the function, so that the test
4371 coverage code can avoid counting the last line twice. This just tells
4372 the code to ignore the immediately following line note, since there
4373 already exists a copy of this note somewhere above. This line number
4374 note is still needed for debugging though, so we can't delete it. */
4375 if (flag_test_coverage
)
4376 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER
);
4378 /* Output a linenumber for the end of the function.
4379 SDB depends on this. */
4380 force_next_line_note ();
4381 emit_line_note (input_location
);
4383 /* Before the return label (if any), clobber the return
4384 registers so that they are not propagated live to the rest of
4385 the function. This can only happen with functions that drop
4386 through; if there had been a return statement, there would
4387 have either been a return rtx, or a jump to the return label.
4389 We delay actual code generation after the current_function_value_rtx
4391 clobber_after
= get_last_insn ();
4393 /* Output the label for the actual return from the function. */
4394 emit_label (return_label
);
4396 if (USING_SJLJ_EXCEPTIONS
)
4398 /* Let except.c know where it should emit the call to unregister
4399 the function context for sjlj exceptions. */
4400 if (flag_exceptions
)
4401 sjlj_emit_function_exit_after (get_last_insn ());
4405 /* @@@ This is a kludge. We want to ensure that instructions that
4406 may trap are not moved into the epilogue by scheduling, because
4407 we don't always emit unwind information for the epilogue.
4408 However, not all machine descriptions define a blockage insn, so
4409 emit an ASM_INPUT to act as one. */
4410 if (flag_non_call_exceptions
)
4411 emit_insn (gen_rtx_ASM_INPUT (VOIDmode
, ""));
4414 /* If this is an implementation of throw, do what's necessary to
4415 communicate between __builtin_eh_return and the epilogue. */
4416 expand_eh_return ();
4418 /* If scalar return value was computed in a pseudo-reg, or was a named
4419 return value that got dumped to the stack, copy that to the hard
4421 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl
)))
4423 tree decl_result
= DECL_RESULT (current_function_decl
);
4424 rtx decl_rtl
= DECL_RTL (decl_result
);
4426 if (REG_P (decl_rtl
)
4427 ? REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
4428 : DECL_REGISTER (decl_result
))
4430 rtx real_decl_rtl
= current_function_return_rtx
;
4432 /* This should be set in assign_parms. */
4433 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl
));
4435 /* If this is a BLKmode structure being returned in registers,
4436 then use the mode computed in expand_return. Note that if
4437 decl_rtl is memory, then its mode may have been changed,
4438 but that current_function_return_rtx has not. */
4439 if (GET_MODE (real_decl_rtl
) == BLKmode
)
4440 PUT_MODE (real_decl_rtl
, GET_MODE (decl_rtl
));
4442 /* If a non-BLKmode return value should be padded at the least
4443 significant end of the register, shift it left by the appropriate
4444 amount. BLKmode results are handled using the group load/store
4446 if (TYPE_MODE (TREE_TYPE (decl_result
)) != BLKmode
4447 && targetm
.calls
.return_in_msb (TREE_TYPE (decl_result
)))
4449 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl
),
4450 REGNO (real_decl_rtl
)),
4452 shift_return_value (GET_MODE (decl_rtl
), true, real_decl_rtl
);
4454 /* If a named return value dumped decl_return to memory, then
4455 we may need to re-do the PROMOTE_MODE signed/unsigned
4457 else if (GET_MODE (real_decl_rtl
) != GET_MODE (decl_rtl
))
4459 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (decl_result
));
4461 if (targetm
.calls
.promote_function_return (TREE_TYPE (current_function_decl
)))
4462 promote_mode (TREE_TYPE (decl_result
), GET_MODE (decl_rtl
),
4465 convert_move (real_decl_rtl
, decl_rtl
, unsignedp
);
4467 else if (GET_CODE (real_decl_rtl
) == PARALLEL
)
4469 /* If expand_function_start has created a PARALLEL for decl_rtl,
4470 move the result to the real return registers. Otherwise, do
4471 a group load from decl_rtl for a named return. */
4472 if (GET_CODE (decl_rtl
) == PARALLEL
)
4473 emit_group_move (real_decl_rtl
, decl_rtl
);
4475 emit_group_load (real_decl_rtl
, decl_rtl
,
4476 TREE_TYPE (decl_result
),
4477 int_size_in_bytes (TREE_TYPE (decl_result
)));
4479 /* In the case of complex integer modes smaller than a word, we'll
4480 need to generate some non-trivial bitfield insertions. Do that
4481 on a pseudo and not the hard register. */
4482 else if (GET_CODE (decl_rtl
) == CONCAT
4483 && GET_MODE_CLASS (GET_MODE (decl_rtl
)) == MODE_COMPLEX_INT
4484 && GET_MODE_BITSIZE (GET_MODE (decl_rtl
)) <= BITS_PER_WORD
)
4486 int old_generating_concat_p
;
4489 old_generating_concat_p
= generating_concat_p
;
4490 generating_concat_p
= 0;
4491 tmp
= gen_reg_rtx (GET_MODE (decl_rtl
));
4492 generating_concat_p
= old_generating_concat_p
;
4494 emit_move_insn (tmp
, decl_rtl
);
4495 emit_move_insn (real_decl_rtl
, tmp
);
4498 emit_move_insn (real_decl_rtl
, decl_rtl
);
4502 /* If returning a structure, arrange to return the address of the value
4503 in a place where debuggers expect to find it.
4505 If returning a structure PCC style,
4506 the caller also depends on this value.
4507 And current_function_returns_pcc_struct is not necessarily set. */
4508 if (current_function_returns_struct
4509 || current_function_returns_pcc_struct
)
4511 rtx value_address
= DECL_RTL (DECL_RESULT (current_function_decl
));
4512 tree type
= TREE_TYPE (DECL_RESULT (current_function_decl
));
4515 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl
)))
4516 type
= TREE_TYPE (type
);
4518 value_address
= XEXP (value_address
, 0);
4520 outgoing
= targetm
.calls
.function_value (build_pointer_type (type
),
4521 current_function_decl
, true);
4523 /* Mark this as a function return value so integrate will delete the
4524 assignment and USE below when inlining this function. */
4525 REG_FUNCTION_VALUE_P (outgoing
) = 1;
4527 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4528 value_address
= convert_memory_address (GET_MODE (outgoing
),
4531 emit_move_insn (outgoing
, value_address
);
4533 /* Show return register used to hold result (in this case the address
4535 current_function_return_rtx
= outgoing
;
4538 /* Emit the actual code to clobber return register. */
4543 clobber_return_register ();
4544 expand_naked_return ();
4548 emit_insn_after (seq
, clobber_after
);
4551 /* Output the label for the naked return from the function. */
4552 emit_label (naked_return_label
);
4554 /* If stack protection is enabled for this function, check the guard. */
4555 if (cfun
->stack_protect_guard
)
4556 stack_protect_epilogue ();
4558 /* If we had calls to alloca, and this machine needs
4559 an accurate stack pointer to exit the function,
4560 insert some code to save and restore the stack pointer. */
4561 if (! EXIT_IGNORE_STACK
4562 && current_function_calls_alloca
)
4566 emit_stack_save (SAVE_FUNCTION
, &tem
, parm_birth_insn
);
4567 emit_stack_restore (SAVE_FUNCTION
, tem
, NULL_RTX
);
4570 /* ??? This should no longer be necessary since stupid is no longer with
4571 us, but there are some parts of the compiler (eg reload_combine, and
4572 sh mach_dep_reorg) that still try and compute their own lifetime info
4573 instead of using the general framework. */
4574 use_return_register ();
4578 get_arg_pointer_save_area (struct function
*f
)
4580 rtx ret
= f
->x_arg_pointer_save_area
;
4584 ret
= assign_stack_local_1 (Pmode
, GET_MODE_SIZE (Pmode
), 0, f
);
4585 f
->x_arg_pointer_save_area
= ret
;
4588 if (f
== cfun
&& ! f
->arg_pointer_save_area_init
)
4592 /* Save the arg pointer at the beginning of the function. The
4593 generated stack slot may not be a valid memory address, so we
4594 have to check it and fix it if necessary. */
4596 emit_move_insn (validize_mem (ret
), virtual_incoming_args_rtx
);
4600 push_topmost_sequence ();
4601 emit_insn_after (seq
, entry_of_function ());
4602 pop_topmost_sequence ();
4608 /* Extend a vector that records the INSN_UIDs of INSNS
4609 (a list of one or more insns). */
4612 record_insns (rtx insns
, VEC(int,heap
) **vecp
)
4616 for (tmp
= insns
; tmp
!= NULL_RTX
; tmp
= NEXT_INSN (tmp
))
4617 VEC_safe_push (int, heap
, *vecp
, INSN_UID (tmp
));
4620 /* Set the locator of the insn chain starting at INSN to LOC. */
4622 set_insn_locators (rtx insn
, int loc
)
4624 while (insn
!= NULL_RTX
)
4627 INSN_LOCATOR (insn
) = loc
;
4628 insn
= NEXT_INSN (insn
);
4632 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4633 be running after reorg, SEQUENCE rtl is possible. */
4636 contains (rtx insn
, VEC(int,heap
) **vec
)
4640 if (NONJUMP_INSN_P (insn
)
4641 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
4644 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
4645 for (j
= VEC_length (int, *vec
) - 1; j
>= 0; --j
)
4646 if (INSN_UID (XVECEXP (PATTERN (insn
), 0, i
))
4647 == VEC_index (int, *vec
, j
))
4653 for (j
= VEC_length (int, *vec
) - 1; j
>= 0; --j
)
4654 if (INSN_UID (insn
) == VEC_index (int, *vec
, j
))
4661 prologue_epilogue_contains (rtx insn
)
4663 if (contains (insn
, &prologue
))
4665 if (contains (insn
, &epilogue
))
4671 sibcall_epilogue_contains (rtx insn
)
4673 if (sibcall_epilogue
)
4674 return contains (insn
, &sibcall_epilogue
);
4679 /* Insert gen_return at the end of block BB. This also means updating
4680 block_for_insn appropriately. */
4683 emit_return_into_block (basic_block bb
, rtx line_note
)
4685 emit_jump_insn_after (gen_return (), BB_END (bb
));
4687 emit_note_copy_after (line_note
, PREV_INSN (BB_END (bb
)));
4689 #endif /* HAVE_return */
4691 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4693 /* These functions convert the epilogue into a variant that does not
4694 modify the stack pointer. This is used in cases where a function
4695 returns an object whose size is not known until it is computed.
4696 The called function leaves the object on the stack, leaves the
4697 stack depressed, and returns a pointer to the object.
4699 What we need to do is track all modifications and references to the
4700 stack pointer, deleting the modifications and changing the
4701 references to point to the location the stack pointer would have
4702 pointed to had the modifications taken place.
4704 These functions need to be portable so we need to make as few
4705 assumptions about the epilogue as we can. However, the epilogue
4706 basically contains three things: instructions to reset the stack
4707 pointer, instructions to reload registers, possibly including the
4708 frame pointer, and an instruction to return to the caller.
4710 We must be sure of what a relevant epilogue insn is doing. We also
4711 make no attempt to validate the insns we make since if they are
4712 invalid, we probably can't do anything valid. The intent is that
4713 these routines get "smarter" as more and more machines start to use
4714 them and they try operating on different epilogues.
4716 We use the following structure to track what the part of the
4717 epilogue that we've already processed has done. We keep two copies
4718 of the SP equivalence, one for use during the insn we are
4719 processing and one for use in the next insn. The difference is
4720 because one part of a PARALLEL may adjust SP and the other may use
4725 rtx sp_equiv_reg
; /* REG that SP is set from, perhaps SP. */
4726 HOST_WIDE_INT sp_offset
; /* Offset from SP_EQUIV_REG of present SP. */
4727 rtx new_sp_equiv_reg
; /* REG to be used at end of insn. */
4728 HOST_WIDE_INT new_sp_offset
; /* Offset to be used at end of insn. */
4729 rtx equiv_reg_src
; /* If nonzero, the value that SP_EQUIV_REG
4730 should be set to once we no longer need
4732 rtx const_equiv
[FIRST_PSEUDO_REGISTER
]; /* Any known constant equivalences
4736 static void handle_epilogue_set (rtx
, struct epi_info
*);
4737 static void update_epilogue_consts (rtx
, rtx
, void *);
4738 static void emit_equiv_load (struct epi_info
*);
4740 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4741 no modifications to the stack pointer. Return the new list of insns. */
4744 keep_stack_depressed (rtx insns
)
4747 struct epi_info info
;
4750 /* If the epilogue is just a single instruction, it must be OK as is. */
4751 if (NEXT_INSN (insns
) == NULL_RTX
)
4754 /* Otherwise, start a sequence, initialize the information we have, and
4755 process all the insns we were given. */
4758 info
.sp_equiv_reg
= stack_pointer_rtx
;
4760 info
.equiv_reg_src
= 0;
4762 for (j
= 0; j
< FIRST_PSEUDO_REGISTER
; j
++)
4763 info
.const_equiv
[j
] = 0;
4767 while (insn
!= NULL_RTX
)
4769 next
= NEXT_INSN (insn
);
4778 /* If this insn references the register that SP is equivalent to and
4779 we have a pending load to that register, we must force out the load
4780 first and then indicate we no longer know what SP's equivalent is. */
4781 if (info
.equiv_reg_src
!= 0
4782 && reg_referenced_p (info
.sp_equiv_reg
, PATTERN (insn
)))
4784 emit_equiv_load (&info
);
4785 info
.sp_equiv_reg
= 0;
4788 info
.new_sp_equiv_reg
= info
.sp_equiv_reg
;
4789 info
.new_sp_offset
= info
.sp_offset
;
4791 /* If this is a (RETURN) and the return address is on the stack,
4792 update the address and change to an indirect jump. */
4793 if (GET_CODE (PATTERN (insn
)) == RETURN
4794 || (GET_CODE (PATTERN (insn
)) == PARALLEL
4795 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == RETURN
))
4797 rtx retaddr
= INCOMING_RETURN_ADDR_RTX
;
4799 HOST_WIDE_INT offset
= 0;
4800 rtx jump_insn
, jump_set
;
4802 /* If the return address is in a register, we can emit the insn
4803 unchanged. Otherwise, it must be a MEM and we see what the
4804 base register and offset are. In any case, we have to emit any
4805 pending load to the equivalent reg of SP, if any. */
4806 if (REG_P (retaddr
))
4808 emit_equiv_load (&info
);
4816 gcc_assert (MEM_P (retaddr
));
4818 ret_ptr
= XEXP (retaddr
, 0);
4820 if (REG_P (ret_ptr
))
4822 base
= gen_rtx_REG (Pmode
, REGNO (ret_ptr
));
4827 gcc_assert (GET_CODE (ret_ptr
) == PLUS
4828 && REG_P (XEXP (ret_ptr
, 0))
4829 && GET_CODE (XEXP (ret_ptr
, 1)) == CONST_INT
);
4830 base
= gen_rtx_REG (Pmode
, REGNO (XEXP (ret_ptr
, 0)));
4831 offset
= INTVAL (XEXP (ret_ptr
, 1));
4835 /* If the base of the location containing the return pointer
4836 is SP, we must update it with the replacement address. Otherwise,
4837 just build the necessary MEM. */
4838 retaddr
= plus_constant (base
, offset
);
4839 if (base
== stack_pointer_rtx
)
4840 retaddr
= simplify_replace_rtx (retaddr
, stack_pointer_rtx
,
4841 plus_constant (info
.sp_equiv_reg
,
4844 retaddr
= gen_rtx_MEM (Pmode
, retaddr
);
4845 MEM_NOTRAP_P (retaddr
) = 1;
4847 /* If there is a pending load to the equivalent register for SP
4848 and we reference that register, we must load our address into
4849 a scratch register and then do that load. */
4850 if (info
.equiv_reg_src
4851 && reg_overlap_mentioned_p (info
.equiv_reg_src
, retaddr
))
4856 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
4857 if (HARD_REGNO_MODE_OK (regno
, Pmode
)
4858 && !fixed_regs
[regno
]
4859 && TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
)
4861 (EXIT_BLOCK_PTR
->il
.rtl
->global_live_at_start
, regno
)
4862 && !refers_to_regno_p (regno
,
4863 regno
+ hard_regno_nregs
[regno
]
4865 info
.equiv_reg_src
, NULL
)
4866 && info
.const_equiv
[regno
] == 0)
4869 gcc_assert (regno
< FIRST_PSEUDO_REGISTER
);
4871 reg
= gen_rtx_REG (Pmode
, regno
);
4872 emit_move_insn (reg
, retaddr
);
4876 emit_equiv_load (&info
);
4877 jump_insn
= emit_jump_insn (gen_indirect_jump (retaddr
));
4879 /* Show the SET in the above insn is a RETURN. */
4880 jump_set
= single_set (jump_insn
);
4881 gcc_assert (jump_set
);
4882 SET_IS_RETURN_P (jump_set
) = 1;
4885 /* If SP is not mentioned in the pattern and its equivalent register, if
4886 any, is not modified, just emit it. Otherwise, if neither is set,
4887 replace the reference to SP and emit the insn. If none of those are
4888 true, handle each SET individually. */
4889 else if (!reg_mentioned_p (stack_pointer_rtx
, PATTERN (insn
))
4890 && (info
.sp_equiv_reg
== stack_pointer_rtx
4891 || !reg_set_p (info
.sp_equiv_reg
, insn
)))
4893 else if (! reg_set_p (stack_pointer_rtx
, insn
)
4894 && (info
.sp_equiv_reg
== stack_pointer_rtx
4895 || !reg_set_p (info
.sp_equiv_reg
, insn
)))
4899 changed
= validate_replace_rtx (stack_pointer_rtx
,
4900 plus_constant (info
.sp_equiv_reg
,
4903 gcc_assert (changed
);
4907 else if (GET_CODE (PATTERN (insn
)) == SET
)
4908 handle_epilogue_set (PATTERN (insn
), &info
);
4909 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
4911 for (j
= 0; j
< XVECLEN (PATTERN (insn
), 0); j
++)
4912 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, j
)) == SET
)
4913 handle_epilogue_set (XVECEXP (PATTERN (insn
), 0, j
), &info
);
4918 info
.sp_equiv_reg
= info
.new_sp_equiv_reg
;
4919 info
.sp_offset
= info
.new_sp_offset
;
4921 /* Now update any constants this insn sets. */
4922 note_stores (PATTERN (insn
), update_epilogue_consts
, &info
);
4926 insns
= get_insns ();
4931 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4932 structure that contains information about what we've seen so far. We
4933 process this SET by either updating that data or by emitting one or
4937 handle_epilogue_set (rtx set
, struct epi_info
*p
)
4939 /* First handle the case where we are setting SP. Record what it is being
4940 set from, which we must be able to determine */
4941 if (reg_set_p (stack_pointer_rtx
, set
))
4943 gcc_assert (SET_DEST (set
) == stack_pointer_rtx
);
4945 if (GET_CODE (SET_SRC (set
)) == PLUS
)
4947 p
->new_sp_equiv_reg
= XEXP (SET_SRC (set
), 0);
4948 if (GET_CODE (XEXP (SET_SRC (set
), 1)) == CONST_INT
)
4949 p
->new_sp_offset
= INTVAL (XEXP (SET_SRC (set
), 1));
4952 gcc_assert (REG_P (XEXP (SET_SRC (set
), 1))
4953 && (REGNO (XEXP (SET_SRC (set
), 1))
4954 < FIRST_PSEUDO_REGISTER
)
4955 && p
->const_equiv
[REGNO (XEXP (SET_SRC (set
), 1))]);
4957 = INTVAL (p
->const_equiv
[REGNO (XEXP (SET_SRC (set
), 1))]);
4961 p
->new_sp_equiv_reg
= SET_SRC (set
), p
->new_sp_offset
= 0;
4963 /* If we are adjusting SP, we adjust from the old data. */
4964 if (p
->new_sp_equiv_reg
== stack_pointer_rtx
)
4966 p
->new_sp_equiv_reg
= p
->sp_equiv_reg
;
4967 p
->new_sp_offset
+= p
->sp_offset
;
4970 gcc_assert (p
->new_sp_equiv_reg
&& REG_P (p
->new_sp_equiv_reg
));
4975 /* Next handle the case where we are setting SP's equivalent
4976 register. We must not already have a value to set it to. We
4977 could update, but there seems little point in handling that case.
4978 Note that we have to allow for the case where we are setting the
4979 register set in the previous part of a PARALLEL inside a single
4980 insn. But use the old offset for any updates within this insn.
4981 We must allow for the case where the register is being set in a
4982 different (usually wider) mode than Pmode). */
4983 else if (p
->new_sp_equiv_reg
!= 0 && reg_set_p (p
->new_sp_equiv_reg
, set
))
4985 gcc_assert (!p
->equiv_reg_src
4986 && REG_P (p
->new_sp_equiv_reg
)
4987 && REG_P (SET_DEST (set
))
4988 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set
)))
4990 && REGNO (p
->new_sp_equiv_reg
) == REGNO (SET_DEST (set
)));
4992 = simplify_replace_rtx (SET_SRC (set
), stack_pointer_rtx
,
4993 plus_constant (p
->sp_equiv_reg
,
4997 /* Otherwise, replace any references to SP in the insn to its new value
4998 and emit the insn. */
5001 SET_SRC (set
) = simplify_replace_rtx (SET_SRC (set
), stack_pointer_rtx
,
5002 plus_constant (p
->sp_equiv_reg
,
5004 SET_DEST (set
) = simplify_replace_rtx (SET_DEST (set
), stack_pointer_rtx
,
5005 plus_constant (p
->sp_equiv_reg
,
5011 /* Update the tracking information for registers set to constants. */
5014 update_epilogue_consts (rtx dest
, rtx x
, void *data
)
5016 struct epi_info
*p
= (struct epi_info
*) data
;
5019 if (!REG_P (dest
) || REGNO (dest
) >= FIRST_PSEUDO_REGISTER
)
5022 /* If we are either clobbering a register or doing a partial set,
5023 show we don't know the value. */
5024 else if (GET_CODE (x
) == CLOBBER
|| ! rtx_equal_p (dest
, SET_DEST (x
)))
5025 p
->const_equiv
[REGNO (dest
)] = 0;
5027 /* If we are setting it to a constant, record that constant. */
5028 else if (GET_CODE (SET_SRC (x
)) == CONST_INT
)
5029 p
->const_equiv
[REGNO (dest
)] = SET_SRC (x
);
5031 /* If this is a binary operation between a register we have been tracking
5032 and a constant, see if we can compute a new constant value. */
5033 else if (ARITHMETIC_P (SET_SRC (x
))
5034 && REG_P (XEXP (SET_SRC (x
), 0))
5035 && REGNO (XEXP (SET_SRC (x
), 0)) < FIRST_PSEUDO_REGISTER
5036 && p
->const_equiv
[REGNO (XEXP (SET_SRC (x
), 0))] != 0
5037 && GET_CODE (XEXP (SET_SRC (x
), 1)) == CONST_INT
5038 && 0 != (new = simplify_binary_operation
5039 (GET_CODE (SET_SRC (x
)), GET_MODE (dest
),
5040 p
->const_equiv
[REGNO (XEXP (SET_SRC (x
), 0))],
5041 XEXP (SET_SRC (x
), 1)))
5042 && GET_CODE (new) == CONST_INT
)
5043 p
->const_equiv
[REGNO (dest
)] = new;
5045 /* Otherwise, we can't do anything with this value. */
5047 p
->const_equiv
[REGNO (dest
)] = 0;
5050 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
5053 emit_equiv_load (struct epi_info
*p
)
5055 if (p
->equiv_reg_src
!= 0)
5057 rtx dest
= p
->sp_equiv_reg
;
5059 if (GET_MODE (p
->equiv_reg_src
) != GET_MODE (dest
))
5060 dest
= gen_rtx_REG (GET_MODE (p
->equiv_reg_src
),
5061 REGNO (p
->sp_equiv_reg
));
5063 emit_move_insn (dest
, p
->equiv_reg_src
);
5064 p
->equiv_reg_src
= 0;
5069 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5070 this into place with notes indicating where the prologue ends and where
5071 the epilogue begins. Update the basic block information when possible. */
5074 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED
)
5078 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5081 #ifdef HAVE_prologue
5082 rtx prologue_end
= NULL_RTX
;
5084 #if defined (HAVE_epilogue) || defined(HAVE_return)
5085 rtx epilogue_end
= NULL_RTX
;
5089 #ifdef HAVE_prologue
5093 seq
= gen_prologue ();
5096 /* Retain a map of the prologue insns. */
5097 record_insns (seq
, &prologue
);
5098 prologue_end
= emit_note (NOTE_INSN_PROLOGUE_END
);
5102 set_insn_locators (seq
, prologue_locator
);
5104 /* Can't deal with multiple successors of the entry block
5105 at the moment. Function should always have at least one
5107 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR
));
5109 insert_insn_on_edge (seq
, single_succ_edge (ENTRY_BLOCK_PTR
));
5114 /* If the exit block has no non-fake predecessors, we don't need
5116 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
5117 if ((e
->flags
& EDGE_FAKE
) == 0)
5123 if (optimize
&& HAVE_return
)
5125 /* If we're allowed to generate a simple return instruction,
5126 then by definition we don't need a full epilogue. Examine
5127 the block that falls through to EXIT. If it does not
5128 contain any code, examine its predecessors and try to
5129 emit (conditional) return instructions. */
5134 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
5135 if (e
->flags
& EDGE_FALLTHRU
)
5141 /* Verify that there are no active instructions in the last block. */
5142 label
= BB_END (last
);
5143 while (label
&& !LABEL_P (label
))
5145 if (active_insn_p (label
))
5147 label
= PREV_INSN (label
);
5150 if (BB_HEAD (last
) == label
&& LABEL_P (label
))
5153 rtx epilogue_line_note
= NULL_RTX
;
5155 /* Locate the line number associated with the closing brace,
5156 if we can find one. */
5157 for (seq
= get_last_insn ();
5158 seq
&& ! active_insn_p (seq
);
5159 seq
= PREV_INSN (seq
))
5160 if (NOTE_P (seq
) && NOTE_LINE_NUMBER (seq
) > 0)
5162 epilogue_line_note
= seq
;
5166 for (ei2
= ei_start (last
->preds
); (e
= ei_safe_edge (ei2
)); )
5168 basic_block bb
= e
->src
;
5171 if (bb
== ENTRY_BLOCK_PTR
)
5178 if (!JUMP_P (jump
) || JUMP_LABEL (jump
) != label
)
5184 /* If we have an unconditional jump, we can replace that
5185 with a simple return instruction. */
5186 if (simplejump_p (jump
))
5188 emit_return_into_block (bb
, epilogue_line_note
);
5192 /* If we have a conditional jump, we can try to replace
5193 that with a conditional return instruction. */
5194 else if (condjump_p (jump
))
5196 if (! redirect_jump (jump
, 0, 0))
5202 /* If this block has only one successor, it both jumps
5203 and falls through to the fallthru block, so we can't
5205 if (single_succ_p (bb
))
5217 /* Fix up the CFG for the successful change we just made. */
5218 redirect_edge_succ (e
, EXIT_BLOCK_PTR
);
5221 /* Emit a return insn for the exit fallthru block. Whether
5222 this is still reachable will be determined later. */
5224 emit_barrier_after (BB_END (last
));
5225 emit_return_into_block (last
, epilogue_line_note
);
5226 epilogue_end
= BB_END (last
);
5227 single_succ_edge (last
)->flags
&= ~EDGE_FALLTHRU
;
5232 /* Find the edge that falls through to EXIT. Other edges may exist
5233 due to RETURN instructions, but those don't need epilogues.
5234 There really shouldn't be a mixture -- either all should have
5235 been converted or none, however... */
5237 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
5238 if (e
->flags
& EDGE_FALLTHRU
)
5243 #ifdef HAVE_epilogue
5247 epilogue_end
= emit_note (NOTE_INSN_EPILOGUE_BEG
);
5249 seq
= gen_epilogue ();
5251 #ifdef INCOMING_RETURN_ADDR_RTX
5252 /* If this function returns with the stack depressed and we can support
5253 it, massage the epilogue to actually do that. */
5254 if (TREE_CODE (TREE_TYPE (current_function_decl
)) == FUNCTION_TYPE
5255 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl
)))
5256 seq
= keep_stack_depressed (seq
);
5259 emit_jump_insn (seq
);
5261 /* Retain a map of the epilogue insns. */
5262 record_insns (seq
, &epilogue
);
5263 set_insn_locators (seq
, epilogue_locator
);
5268 insert_insn_on_edge (seq
, e
);
5276 if (! next_active_insn (BB_END (e
->src
)))
5278 /* We have a fall-through edge to the exit block, the source is not
5279 at the end of the function, and there will be an assembler epilogue
5280 at the end of the function.
5281 We can't use force_nonfallthru here, because that would try to
5282 use return. Inserting a jump 'by hand' is extremely messy, so
5283 we take advantage of cfg_layout_finalize using
5284 fixup_fallthru_exit_predecessor. */
5285 cfg_layout_initialize (0);
5286 FOR_EACH_BB (cur_bb
)
5287 if (cur_bb
->index
>= NUM_FIXED_BLOCKS
5288 && cur_bb
->next_bb
->index
>= NUM_FIXED_BLOCKS
)
5289 cur_bb
->aux
= cur_bb
->next_bb
;
5290 cfg_layout_finalize ();
5295 commit_edge_insertions ();
5297 #ifdef HAVE_sibcall_epilogue
5298 /* Emit sibling epilogues before any sibling call sites. */
5299 for (ei
= ei_start (EXIT_BLOCK_PTR
->preds
); (e
= ei_safe_edge (ei
)); )
5301 basic_block bb
= e
->src
;
5302 rtx insn
= BB_END (bb
);
5305 || ! SIBLING_CALL_P (insn
))
5312 emit_insn (gen_sibcall_epilogue ());
5316 /* Retain a map of the epilogue insns. Used in life analysis to
5317 avoid getting rid of sibcall epilogue insns. Do this before we
5318 actually emit the sequence. */
5319 record_insns (seq
, &sibcall_epilogue
);
5320 set_insn_locators (seq
, epilogue_locator
);
5322 emit_insn_before (seq
, insn
);
5327 #ifdef HAVE_prologue
5328 /* This is probably all useless now that we use locators. */
5333 /* GDB handles `break f' by setting a breakpoint on the first
5334 line note after the prologue. Which means (1) that if
5335 there are line number notes before where we inserted the
5336 prologue we should move them, and (2) we should generate a
5337 note before the end of the first basic block, if there isn't
5340 ??? This behavior is completely broken when dealing with
5341 multiple entry functions. We simply place the note always
5342 into first basic block and let alternate entry points
5346 for (insn
= prologue_end
; insn
; insn
= prev
)
5348 prev
= PREV_INSN (insn
);
5349 if (NOTE_P (insn
) && NOTE_LINE_NUMBER (insn
) > 0)
5351 /* Note that we cannot reorder the first insn in the
5352 chain, since rest_of_compilation relies on that
5353 remaining constant. */
5356 reorder_insns (insn
, insn
, prologue_end
);
5360 /* Find the last line number note in the first block. */
5361 for (insn
= BB_END (ENTRY_BLOCK_PTR
->next_bb
);
5362 insn
!= prologue_end
&& insn
;
5363 insn
= PREV_INSN (insn
))
5364 if (NOTE_P (insn
) && NOTE_LINE_NUMBER (insn
) > 0)
5367 /* If we didn't find one, make a copy of the first line number
5371 for (insn
= next_active_insn (prologue_end
);
5373 insn
= PREV_INSN (insn
))
5374 if (NOTE_P (insn
) && NOTE_LINE_NUMBER (insn
) > 0)
5376 emit_note_copy_after (insn
, prologue_end
);
5382 #ifdef HAVE_epilogue
5387 /* Similarly, move any line notes that appear after the epilogue.
5388 There is no need, however, to be quite so anal about the existence
5389 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5390 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5392 for (insn
= epilogue_end
; insn
; insn
= next
)
5394 next
= NEXT_INSN (insn
);
5396 && (NOTE_LINE_NUMBER (insn
) > 0
5397 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_FUNCTION_BEG
5398 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_FUNCTION_END
))
5399 reorder_insns (insn
, insn
, PREV_INSN (epilogue_end
));
5405 /* Reposition the prologue-end and epilogue-begin notes after instruction
5406 scheduling and delayed branch scheduling. */
5409 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED
)
5411 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5412 rtx insn
, last
, note
;
5415 if ((len
= VEC_length (int, prologue
)) > 0)
5419 /* Scan from the beginning until we reach the last prologue insn.
5420 We apparently can't depend on basic_block_{head,end} after
5422 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
5426 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_PROLOGUE_END
)
5429 else if (contains (insn
, &prologue
))
5439 /* Find the prologue-end note if we haven't already, and
5440 move it to just after the last prologue insn. */
5443 for (note
= last
; (note
= NEXT_INSN (note
));)
5445 && NOTE_LINE_NUMBER (note
) == NOTE_INSN_PROLOGUE_END
)
5449 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5451 last
= NEXT_INSN (last
);
5452 reorder_insns (note
, note
, last
);
5456 if ((len
= VEC_length (int, epilogue
)) > 0)
5460 /* Scan from the end until we reach the first epilogue insn.
5461 We apparently can't depend on basic_block_{head,end} after
5463 for (insn
= get_last_insn (); insn
; insn
= PREV_INSN (insn
))
5467 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_EPILOGUE_BEG
)
5470 else if (contains (insn
, &epilogue
))
5480 /* Find the epilogue-begin note if we haven't already, and
5481 move it to just before the first epilogue insn. */
5484 for (note
= insn
; (note
= PREV_INSN (note
));)
5486 && NOTE_LINE_NUMBER (note
) == NOTE_INSN_EPILOGUE_BEG
)
5490 if (PREV_INSN (last
) != note
)
5491 reorder_insns (note
, note
, PREV_INSN (last
));
5494 #endif /* HAVE_prologue or HAVE_epilogue */
5497 /* Resets insn_block_boundaries array. */
5500 reset_block_changes (void)
5502 VARRAY_TREE_INIT (cfun
->ib_boundaries_block
, 100, "ib_boundaries_block");
5503 VARRAY_PUSH_TREE (cfun
->ib_boundaries_block
, NULL_TREE
);
5506 /* Record the boundary for BLOCK. */
5508 record_block_change (tree block
)
5516 if(!cfun
->ib_boundaries_block
)
5519 last_block
= VARRAY_TOP_TREE (cfun
->ib_boundaries_block
);
5520 VARRAY_POP (cfun
->ib_boundaries_block
);
5522 for (i
= VARRAY_ACTIVE_SIZE (cfun
->ib_boundaries_block
); i
< n
; i
++)
5523 VARRAY_PUSH_TREE (cfun
->ib_boundaries_block
, last_block
);
5525 VARRAY_PUSH_TREE (cfun
->ib_boundaries_block
, block
);
5528 /* Finishes record of boundaries. */
5529 void finalize_block_changes (void)
5531 record_block_change (DECL_INITIAL (current_function_decl
));
5534 /* For INSN return the BLOCK it belongs to. */
5536 check_block_change (rtx insn
, tree
*block
)
5538 unsigned uid
= INSN_UID (insn
);
5540 if (uid
>= VARRAY_ACTIVE_SIZE (cfun
->ib_boundaries_block
))
5543 *block
= VARRAY_TREE (cfun
->ib_boundaries_block
, uid
);
5546 /* Releases the ib_boundaries_block records. */
5548 free_block_changes (void)
5550 cfun
->ib_boundaries_block
= NULL
;
5553 /* Returns the name of the current function. */
5555 current_function_name (void)
5557 return lang_hooks
.decl_printable_name (cfun
->decl
, 2);
5562 rest_of_handle_check_leaf_regs (void)
5564 #ifdef LEAF_REGISTERS
5565 current_function_uses_only_leaf_regs
5566 = optimize
> 0 && only_leaf_regs_used () && leaf_function_p ();
5570 struct tree_opt_pass pass_leaf_regs
=
5574 rest_of_handle_check_leaf_regs
, /* execute */
5577 0, /* static_pass_number */
5579 0, /* properties_required */
5580 0, /* properties_provided */
5581 0, /* properties_destroyed */
5582 0, /* todo_flags_start */
5583 0, /* todo_flags_finish */
5588 #include "gt-function.h"