Only create gcc/configargs.h if gcc build directory is present
[official-gcc.git] / gcc / global.c
blob7f426df38f6269ca07d594d2b63c22ee3bfbd8a7
1 /* Allocate registers for pseudo-registers that span basic blocks.
2 Copyright (C) 1987, 1988, 1991, 1994, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
26 #include "machmode.h"
27 #include "hard-reg-set.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "basic-block.h"
32 #include "regs.h"
33 #include "function.h"
34 #include "insn-config.h"
35 #include "reload.h"
36 #include "output.h"
37 #include "toplev.h"
39 /* This pass of the compiler performs global register allocation.
40 It assigns hard register numbers to all the pseudo registers
41 that were not handled in local_alloc. Assignments are recorded
42 in the vector reg_renumber, not by changing the rtl code.
43 (Such changes are made by final). The entry point is
44 the function global_alloc.
46 After allocation is complete, the reload pass is run as a subroutine
47 of this pass, so that when a pseudo reg loses its hard reg due to
48 spilling it is possible to make a second attempt to find a hard
49 reg for it. The reload pass is independent in other respects
50 and it is run even when stupid register allocation is in use.
52 1. Assign allocation-numbers (allocnos) to the pseudo-registers
53 still needing allocations and to the pseudo-registers currently
54 allocated by local-alloc which may be spilled by reload.
55 Set up tables reg_allocno and allocno_reg to map
56 reg numbers to allocnos and vice versa.
57 max_allocno gets the number of allocnos in use.
59 2. Allocate a max_allocno by max_allocno conflict bit matrix and clear it.
60 Allocate a max_allocno by FIRST_PSEUDO_REGISTER conflict matrix
61 for conflicts between allocnos and explicit hard register use
62 (which includes use of pseudo-registers allocated by local_alloc).
64 3. For each basic block
65 walk forward through the block, recording which
66 pseudo-registers and which hardware registers are live.
67 Build the conflict matrix between the pseudo-registers
68 and another of pseudo-registers versus hardware registers.
69 Also record the preferred hardware registers
70 for each pseudo-register.
72 4. Sort a table of the allocnos into order of
73 desirability of the variables.
75 5. Allocate the variables in that order; each if possible into
76 a preferred register, else into another register. */
78 /* Number of pseudo-registers which are candidates for allocation. */
80 static int max_allocno;
82 /* Indexed by (pseudo) reg number, gives the allocno, or -1
83 for pseudo registers which are not to be allocated. */
85 static int *reg_allocno;
87 struct allocno
89 int reg;
90 /* Gives the number of consecutive hard registers needed by that
91 pseudo reg. */
92 int size;
94 /* Number of calls crossed by each allocno. */
95 int calls_crossed;
97 /* Number of refs (weighted) to each allocno. */
98 int n_refs;
100 /* Guess at live length of each allocno.
101 This is actually the max of the live lengths of the regs. */
102 int live_length;
104 /* Set of hard regs conflicting with allocno N. */
106 HARD_REG_SET hard_reg_conflicts;
108 /* Set of hard regs preferred by allocno N.
109 This is used to make allocnos go into regs that are copied to or from them,
110 when possible, to reduce register shuffling. */
112 HARD_REG_SET hard_reg_preferences;
114 /* Similar, but just counts register preferences made in simple copy
115 operations, rather than arithmetic. These are given priority because
116 we can always eliminate an insn by using these, but using a register
117 in the above list won't always eliminate an insn. */
119 HARD_REG_SET hard_reg_copy_preferences;
121 /* Similar to hard_reg_preferences, but includes bits for subsequent
122 registers when an allocno is multi-word. The above variable is used for
123 allocation while this is used to build reg_someone_prefers, below. */
125 HARD_REG_SET hard_reg_full_preferences;
127 /* Set of hard registers that some later allocno has a preference for. */
129 HARD_REG_SET regs_someone_prefers;
132 static struct allocno *allocno;
134 /* A vector of the integers from 0 to max_allocno-1,
135 sorted in the order of first-to-be-allocated first. */
137 static int *allocno_order;
139 /* Indexed by (pseudo) reg number, gives the number of another
140 lower-numbered pseudo reg which can share a hard reg with this pseudo
141 *even if the two pseudos would otherwise appear to conflict*. */
143 static int *reg_may_share;
145 /* Define the number of bits in each element of `conflicts' and what
146 type that element has. We use the largest integer format on the
147 host machine. */
149 #define INT_BITS HOST_BITS_PER_WIDE_INT
150 #define INT_TYPE HOST_WIDE_INT
152 /* max_allocno by max_allocno array of bits,
153 recording whether two allocno's conflict (can't go in the same
154 hardware register).
156 `conflicts' is symmetric after the call to mirror_conflicts. */
158 static INT_TYPE *conflicts;
160 /* Number of ints require to hold max_allocno bits.
161 This is the length of a row in `conflicts'. */
163 static int allocno_row_words;
165 /* Two macros to test or store 1 in an element of `conflicts'. */
167 #define CONFLICTP(I, J) \
168 (conflicts[(I) * allocno_row_words + (unsigned)(J) / INT_BITS] \
169 & ((INT_TYPE) 1 << ((unsigned)(J) % INT_BITS)))
171 #define SET_CONFLICT(I, J) \
172 (conflicts[(I) * allocno_row_words + (unsigned)(J) / INT_BITS] \
173 |= ((INT_TYPE) 1 << ((unsigned)(J) % INT_BITS)))
175 /* For any allocno set in ALLOCNO_SET, set ALLOCNO to that allocno,
176 and execute CODE. */
177 #define EXECUTE_IF_SET_IN_ALLOCNO_SET(ALLOCNO_SET, ALLOCNO, CODE) \
178 do { \
179 int i_; \
180 int allocno_; \
181 INT_TYPE *p_ = (ALLOCNO_SET); \
183 for (i_ = allocno_row_words - 1, allocno_ = 0; i_ >= 0; \
184 i_--, allocno_ += INT_BITS) \
186 unsigned INT_TYPE word_ = (unsigned INT_TYPE) *p_++; \
188 for ((ALLOCNO) = allocno_; word_; word_ >>= 1, (ALLOCNO)++) \
190 if (word_ & 1) \
191 {CODE;} \
194 } while (0)
196 /* This doesn't work for non-GNU C due to the way CODE is macro expanded. */
197 #if 0
198 /* For any allocno that conflicts with IN_ALLOCNO, set OUT_ALLOCNO to
199 the conflicting allocno, and execute CODE. This macro assumes that
200 mirror_conflicts has been run. */
201 #define EXECUTE_IF_CONFLICT(IN_ALLOCNO, OUT_ALLOCNO, CODE)\
202 EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + (IN_ALLOCNO) * allocno_row_words,\
203 OUT_ALLOCNO, (CODE))
204 #endif
206 /* Set of hard regs currently live (during scan of all insns). */
208 static HARD_REG_SET hard_regs_live;
210 /* Set of registers that global-alloc isn't supposed to use. */
212 static HARD_REG_SET no_global_alloc_regs;
214 /* Set of registers used so far. */
216 static HARD_REG_SET regs_used_so_far;
218 /* Number of refs (weighted) to each hard reg, as used by local alloc.
219 It is zero for a reg that contains global pseudos or is explicitly used. */
221 static int local_reg_n_refs[FIRST_PSEUDO_REGISTER];
223 /* Guess at live length of each hard reg, as used by local alloc.
224 This is actually the sum of the live lengths of the specific regs. */
226 static int local_reg_live_length[FIRST_PSEUDO_REGISTER];
228 /* Test a bit in TABLE, a vector of HARD_REG_SETs,
229 for vector element I, and hard register number J. */
231 #define REGBITP(TABLE, I, J) TEST_HARD_REG_BIT (allocno[I].TABLE, J)
233 /* Set to 1 a bit in a vector of HARD_REG_SETs. Works like REGBITP. */
235 #define SET_REGBIT(TABLE, I, J) SET_HARD_REG_BIT (allocno[I].TABLE, J)
237 /* Bit mask for allocnos live at current point in the scan. */
239 static INT_TYPE *allocnos_live;
241 /* Test, set or clear bit number I in allocnos_live,
242 a bit vector indexed by allocno. */
244 #define ALLOCNO_LIVE_P(I) \
245 (allocnos_live[(unsigned)(I) / INT_BITS] \
246 & ((INT_TYPE) 1 << ((unsigned)(I) % INT_BITS)))
248 #define SET_ALLOCNO_LIVE(I) \
249 (allocnos_live[(unsigned)(I) / INT_BITS] \
250 |= ((INT_TYPE) 1 << ((unsigned)(I) % INT_BITS)))
252 #define CLEAR_ALLOCNO_LIVE(I) \
253 (allocnos_live[(unsigned)(I) / INT_BITS] \
254 &= ~((INT_TYPE) 1 << ((unsigned)(I) % INT_BITS)))
256 /* This is turned off because it doesn't work right for DImode.
257 (And it is only used for DImode, so the other cases are worthless.)
258 The problem is that it isn't true that there is NO possibility of conflict;
259 only that there is no conflict if the two pseudos get the exact same regs.
260 If they were allocated with a partial overlap, there would be a conflict.
261 We can't safely turn off the conflict unless we have another way to
262 prevent the partial overlap.
264 Idea: change hard_reg_conflicts so that instead of recording which
265 hard regs the allocno may not overlap, it records where the allocno
266 may not start. Change both where it is used and where it is updated.
267 Then there is a way to record that (reg:DI 108) may start at 10
268 but not at 9 or 11. There is still the question of how to record
269 this semi-conflict between two pseudos. */
270 #if 0
271 /* Reg pairs for which conflict after the current insn
272 is inhibited by a REG_NO_CONFLICT note.
273 If the table gets full, we ignore any other notes--that is conservative. */
274 #define NUM_NO_CONFLICT_PAIRS 4
275 /* Number of pairs in use in this insn. */
276 int n_no_conflict_pairs;
277 static struct { int allocno1, allocno2;}
278 no_conflict_pairs[NUM_NO_CONFLICT_PAIRS];
279 #endif /* 0 */
281 /* Record all regs that are set in any one insn.
282 Communication from mark_reg_{store,clobber} and global_conflicts. */
284 static rtx *regs_set;
285 static int n_regs_set;
287 /* All registers that can be eliminated. */
289 static HARD_REG_SET eliminable_regset;
291 static int allocno_compare PARAMS ((const PTR, const PTR));
292 static void global_conflicts PARAMS ((void));
293 static void mirror_conflicts PARAMS ((void));
294 static void expand_preferences PARAMS ((void));
295 static void prune_preferences PARAMS ((void));
296 static void find_reg PARAMS ((int, HARD_REG_SET, int, int, int));
297 static void record_one_conflict PARAMS ((int));
298 static void record_conflicts PARAMS ((int *, int));
299 static void mark_reg_store PARAMS ((rtx, rtx, void *));
300 static void mark_reg_clobber PARAMS ((rtx, rtx, void *));
301 static void mark_reg_conflicts PARAMS ((rtx));
302 static void mark_reg_death PARAMS ((rtx));
303 static void mark_reg_live_nc PARAMS ((int, enum machine_mode));
304 static void set_preference PARAMS ((rtx, rtx));
305 static void dump_conflicts PARAMS ((FILE *));
306 static void reg_becomes_live PARAMS ((rtx, rtx, void *));
307 static void reg_dies PARAMS ((int, enum machine_mode,
308 struct insn_chain *));
310 /* Perform allocation of pseudo-registers not allocated by local_alloc.
311 FILE is a file to output debugging information on,
312 or zero if such output is not desired.
314 Return value is nonzero if reload failed
315 and we must not do any more for this function. */
318 global_alloc (file)
319 FILE *file;
321 int retval;
322 #ifdef ELIMINABLE_REGS
323 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
324 #endif
325 int need_fp
326 = (! flag_omit_frame_pointer
327 #ifdef EXIT_IGNORE_STACK
328 || (current_function_calls_alloca && EXIT_IGNORE_STACK)
329 #endif
330 || FRAME_POINTER_REQUIRED);
332 register size_t i;
333 rtx x;
335 max_allocno = 0;
337 /* A machine may have certain hard registers that
338 are safe to use only within a basic block. */
340 CLEAR_HARD_REG_SET (no_global_alloc_regs);
342 /* Build the regset of all eliminable registers and show we can't use those
343 that we already know won't be eliminated. */
344 #ifdef ELIMINABLE_REGS
345 for (i = 0; i < ARRAY_SIZE (eliminables); i++)
347 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
349 if (! CAN_ELIMINATE (eliminables[i].from, eliminables[i].to)
350 || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp))
351 SET_HARD_REG_BIT (no_global_alloc_regs, eliminables[i].from);
353 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
354 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
355 if (need_fp)
356 SET_HARD_REG_BIT (no_global_alloc_regs, HARD_FRAME_POINTER_REGNUM);
357 #endif
359 #else
360 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
361 if (need_fp)
362 SET_HARD_REG_BIT (no_global_alloc_regs, FRAME_POINTER_REGNUM);
363 #endif
365 /* Track which registers have already been used. Start with registers
366 explicitly in the rtl, then registers allocated by local register
367 allocation. */
369 CLEAR_HARD_REG_SET (regs_used_so_far);
370 #ifdef LEAF_REGISTERS
371 /* If we are doing the leaf function optimization, and this is a leaf
372 function, it means that the registers that take work to save are those
373 that need a register window. So prefer the ones that can be used in
374 a leaf function. */
376 char *cheap_regs;
377 char *leaf_regs = LEAF_REGISTERS;
379 if (only_leaf_regs_used () && leaf_function_p ())
380 cheap_regs = leaf_regs;
381 else
382 cheap_regs = call_used_regs;
383 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
384 if (regs_ever_live[i] || cheap_regs[i])
385 SET_HARD_REG_BIT (regs_used_so_far, i);
387 #else
388 /* We consider registers that do not have to be saved over calls as if
389 they were already used since there is no cost in using them. */
390 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
391 if (regs_ever_live[i] || call_used_regs[i])
392 SET_HARD_REG_BIT (regs_used_so_far, i);
393 #endif
395 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
396 if (reg_renumber[i] >= 0)
397 SET_HARD_REG_BIT (regs_used_so_far, reg_renumber[i]);
399 /* Establish mappings from register number to allocation number
400 and vice versa. In the process, count the allocnos. */
402 reg_allocno = (int *) xmalloc (max_regno * sizeof (int));
404 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
405 reg_allocno[i] = -1;
407 /* Initialize the shared-hard-reg mapping
408 from the list of pairs that may share. */
409 reg_may_share = (int *) xcalloc (max_regno, sizeof (int));
410 for (x = regs_may_share; x; x = XEXP (XEXP (x, 1), 1))
412 int r1 = REGNO (XEXP (x, 0));
413 int r2 = REGNO (XEXP (XEXP (x, 1), 0));
414 if (r1 > r2)
415 reg_may_share[r1] = r2;
416 else
417 reg_may_share[r2] = r1;
420 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
421 /* Note that reg_live_length[i] < 0 indicates a "constant" reg
422 that we are supposed to refrain from putting in a hard reg.
423 -2 means do make an allocno but don't allocate it. */
424 if (REG_N_REFS (i) != 0 && REG_LIVE_LENGTH (i) != -1
425 /* Don't allocate pseudos that cross calls,
426 if this function receives a nonlocal goto. */
427 && (! current_function_has_nonlocal_label
428 || REG_N_CALLS_CROSSED (i) == 0))
430 if (reg_renumber[i] < 0 && reg_may_share[i] && reg_allocno[reg_may_share[i]] >= 0)
431 reg_allocno[i] = reg_allocno[reg_may_share[i]];
432 else
433 reg_allocno[i] = max_allocno++;
434 if (REG_LIVE_LENGTH (i) == 0)
435 abort ();
437 else
438 reg_allocno[i] = -1;
440 allocno = (struct allocno *) xcalloc (max_allocno, sizeof (struct allocno));
442 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
443 if (reg_allocno[i] >= 0)
445 int num = reg_allocno[i];
446 allocno[num].reg = i;
447 allocno[num].size = PSEUDO_REGNO_SIZE (i);
448 allocno[num].calls_crossed += REG_N_CALLS_CROSSED (i);
449 allocno[num].n_refs += REG_N_REFS (i);
450 if (allocno[num].live_length < REG_LIVE_LENGTH (i))
451 allocno[num].live_length = REG_LIVE_LENGTH (i);
454 /* Calculate amount of usage of each hard reg by pseudos
455 allocated by local-alloc. This is to see if we want to
456 override it. */
457 bzero ((char *) local_reg_live_length, sizeof local_reg_live_length);
458 bzero ((char *) local_reg_n_refs, sizeof local_reg_n_refs);
459 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
460 if (reg_renumber[i] >= 0)
462 int regno = reg_renumber[i];
463 int endregno = regno + HARD_REGNO_NREGS (regno, PSEUDO_REGNO_MODE (i));
464 int j;
466 for (j = regno; j < endregno; j++)
468 local_reg_n_refs[j] += REG_N_REFS (i);
469 local_reg_live_length[j] += REG_LIVE_LENGTH (i);
473 /* We can't override local-alloc for a reg used not just by local-alloc. */
474 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
475 if (regs_ever_live[i])
476 local_reg_n_refs[i] = 0;
478 allocno_row_words = (max_allocno + INT_BITS - 1) / INT_BITS;
480 /* We used to use alloca here, but the size of what it would try to
481 allocate would occasionally cause it to exceed the stack limit and
482 cause unpredictable core dumps. Some examples were > 2Mb in size. */
483 conflicts = (INT_TYPE *) xcalloc (max_allocno * allocno_row_words,
484 sizeof (INT_TYPE));
486 allocnos_live = (INT_TYPE *) xmalloc (allocno_row_words * sizeof (INT_TYPE));
488 /* If there is work to be done (at least one reg to allocate),
489 perform global conflict analysis and allocate the regs. */
491 if (max_allocno > 0)
493 /* Scan all the insns and compute the conflicts among allocnos
494 and between allocnos and hard regs. */
496 global_conflicts ();
498 mirror_conflicts ();
500 /* Eliminate conflicts between pseudos and eliminable registers. If
501 the register is not eliminated, the pseudo won't really be able to
502 live in the eliminable register, so the conflict doesn't matter.
503 If we do eliminate the register, the conflict will no longer exist.
504 So in either case, we can ignore the conflict. Likewise for
505 preferences. */
507 for (i = 0; i < (size_t) max_allocno; i++)
509 AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_conflicts,
510 eliminable_regset);
511 AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_copy_preferences,
512 eliminable_regset);
513 AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_preferences,
514 eliminable_regset);
517 /* Try to expand the preferences by merging them between allocnos. */
519 expand_preferences ();
521 /* Determine the order to allocate the remaining pseudo registers. */
523 allocno_order = (int *) xmalloc (max_allocno * sizeof (int));
524 for (i = 0; i < (size_t) max_allocno; i++)
525 allocno_order[i] = i;
527 /* Default the size to 1, since allocno_compare uses it to divide by.
528 Also convert allocno_live_length of zero to -1. A length of zero
529 can occur when all the registers for that allocno have reg_live_length
530 equal to -2. In this case, we want to make an allocno, but not
531 allocate it. So avoid the divide-by-zero and set it to a low
532 priority. */
534 for (i = 0; i < (size_t) max_allocno; i++)
536 if (allocno[i].size == 0)
537 allocno[i].size = 1;
538 if (allocno[i].live_length == 0)
539 allocno[i].live_length = -1;
542 qsort (allocno_order, max_allocno, sizeof (int), allocno_compare);
544 prune_preferences ();
546 if (file)
547 dump_conflicts (file);
549 /* Try allocating them, one by one, in that order,
550 except for parameters marked with reg_live_length[regno] == -2. */
552 for (i = 0; i < (size_t) max_allocno; i++)
553 if (reg_renumber[allocno[allocno_order[i]].reg] < 0
554 && REG_LIVE_LENGTH (allocno[allocno_order[i]].reg) >= 0)
556 /* If we have more than one register class,
557 first try allocating in the class that is cheapest
558 for this pseudo-reg. If that fails, try any reg. */
559 if (N_REG_CLASSES > 1)
561 find_reg (allocno_order[i], 0, 0, 0, 0);
562 if (reg_renumber[allocno[allocno_order[i]].reg] >= 0)
563 continue;
565 if (reg_alternate_class (allocno[allocno_order[i]].reg) != NO_REGS)
566 find_reg (allocno_order[i], 0, 1, 0, 0);
569 free (allocno_order);
572 /* Do the reloads now while the allocno data still exist, so that we can
573 try to assign new hard regs to any pseudo regs that are spilled. */
575 #if 0 /* We need to eliminate regs even if there is no rtl code,
576 for the sake of debugging information. */
577 if (n_basic_blocks > 0)
578 #endif
580 build_insn_chain (get_insns ());
581 retval = reload (get_insns (), 1);
584 /* Clean up. */
585 free (reg_allocno);
586 free (reg_may_share);
587 free (allocno);
588 free (conflicts);
589 free (allocnos_live);
591 return retval;
594 /* Sort predicate for ordering the allocnos.
595 Returns -1 (1) if *v1 should be allocated before (after) *v2. */
597 static int
598 allocno_compare (v1p, v2p)
599 const PTR v1p;
600 const PTR v2p;
602 int v1 = *(const int *)v1p, v2 = *(const int *)v2p;
603 /* Note that the quotient will never be bigger than
604 the value of floor_log2 times the maximum number of
605 times a register can occur in one insn (surely less than 100).
606 Multiplying this by 10000 can't overflow. */
607 register int pri1
608 = (((double) (floor_log2 (allocno[v1].n_refs) * allocno[v1].n_refs)
609 / allocno[v1].live_length)
610 * 10000 * allocno[v1].size);
611 register int pri2
612 = (((double) (floor_log2 (allocno[v2].n_refs) * allocno[v2].n_refs)
613 / allocno[v2].live_length)
614 * 10000 * allocno[v2].size);
615 if (pri2 - pri1)
616 return pri2 - pri1;
618 /* If regs are equally good, sort by allocno,
619 so that the results of qsort leave nothing to chance. */
620 return v1 - v2;
623 /* Scan the rtl code and record all conflicts and register preferences in the
624 conflict matrices and preference tables. */
626 static void
627 global_conflicts ()
629 register int b, i;
630 register rtx insn;
631 int *block_start_allocnos;
633 /* Make a vector that mark_reg_{store,clobber} will store in. */
634 regs_set = (rtx *) xmalloc (max_parallel * sizeof (rtx) * 2);
636 block_start_allocnos = (int *) xmalloc (max_allocno * sizeof (int));
638 for (b = 0; b < n_basic_blocks; b++)
640 bzero ((char *) allocnos_live, allocno_row_words * sizeof (INT_TYPE));
642 /* Initialize table of registers currently live
643 to the state at the beginning of this basic block.
644 This also marks the conflicts among hard registers
645 and any allocnos that are live.
647 For pseudo-regs, there is only one bit for each one
648 no matter how many hard regs it occupies.
649 This is ok; we know the size from PSEUDO_REGNO_SIZE.
650 For explicit hard regs, we cannot know the size that way
651 since one hard reg can be used with various sizes.
652 Therefore, we must require that all the hard regs
653 implicitly live as part of a multi-word hard reg
654 are explicitly marked in basic_block_live_at_start. */
657 register regset old = BASIC_BLOCK (b)->global_live_at_start;
658 int ax = 0;
660 REG_SET_TO_HARD_REG_SET (hard_regs_live, old);
661 EXECUTE_IF_SET_IN_REG_SET (old, FIRST_PSEUDO_REGISTER, i,
663 register int a = reg_allocno[i];
664 if (a >= 0)
666 SET_ALLOCNO_LIVE (a);
667 block_start_allocnos[ax++] = a;
669 else if ((a = reg_renumber[i]) >= 0)
670 mark_reg_live_nc
671 (a, PSEUDO_REGNO_MODE (i));
674 /* Record that each allocno now live conflicts with each hard reg
675 now live.
677 It is not necessary to mark any conflicts between pseudos as
678 this point, even for pseudos which are live at the start of
679 the basic block.
681 Given two pseudos X and Y and any point in the CFG P.
683 On any path to point P where X and Y are live one of the
684 following conditions must be true:
686 1. X is live at some instruction on the path that
687 evaluates Y.
689 2. Y is live at some instruction on the path that
690 evaluates X.
692 3. Either X or Y is not evaluted on the path to P
693 (ie it is used uninitialized) and thus the
694 conflict can be ignored.
696 In cases #1 and #2 the conflict will be recorded when we
697 scan the instruction that makes either X or Y become live. */
698 record_conflicts (block_start_allocnos, ax);
700 #ifdef STACK_REGS
702 /* Pseudos can't go in stack regs at the start of a basic block
703 that is reached by an abnormal edge. */
705 edge e;
706 for (e = BASIC_BLOCK (b)->pred; e ; e = e->pred_next)
707 if (e->flags & EDGE_ABNORMAL)
708 break;
709 if (e != NULL)
710 for (ax = FIRST_STACK_REG; ax <= LAST_STACK_REG; ax++)
711 record_one_conflict (ax);
713 #endif
716 insn = BLOCK_HEAD (b);
718 /* Scan the code of this basic block, noting which allocnos
719 and hard regs are born or die. When one is born,
720 record a conflict with all others currently live. */
722 while (1)
724 register RTX_CODE code = GET_CODE (insn);
725 register rtx link;
727 /* Make regs_set an empty set. */
729 n_regs_set = 0;
731 if (code == INSN || code == CALL_INSN || code == JUMP_INSN)
734 #if 0
735 int i = 0;
736 for (link = REG_NOTES (insn);
737 link && i < NUM_NO_CONFLICT_PAIRS;
738 link = XEXP (link, 1))
739 if (REG_NOTE_KIND (link) == REG_NO_CONFLICT)
741 no_conflict_pairs[i].allocno1
742 = reg_allocno[REGNO (SET_DEST (PATTERN (insn)))];
743 no_conflict_pairs[i].allocno2
744 = reg_allocno[REGNO (XEXP (link, 0))];
745 i++;
747 #endif /* 0 */
749 /* Mark any registers clobbered by INSN as live,
750 so they conflict with the inputs. */
752 note_stores (PATTERN (insn), mark_reg_clobber, NULL);
754 /* Mark any registers dead after INSN as dead now. */
756 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
757 if (REG_NOTE_KIND (link) == REG_DEAD)
758 mark_reg_death (XEXP (link, 0));
760 /* Mark any registers set in INSN as live,
761 and mark them as conflicting with all other live regs.
762 Clobbers are processed again, so they conflict with
763 the registers that are set. */
765 note_stores (PATTERN (insn), mark_reg_store, NULL);
767 #ifdef AUTO_INC_DEC
768 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
769 if (REG_NOTE_KIND (link) == REG_INC)
770 mark_reg_store (XEXP (link, 0), NULL_RTX, NULL);
771 #endif
773 /* If INSN has multiple outputs, then any reg that dies here
774 and is used inside of an output
775 must conflict with the other outputs.
777 It is unsafe to use !single_set here since it will ignore an
778 unused output. Just because an output is unused does not mean
779 the compiler can assume the side effect will not occur.
780 Consider if REG appears in the address of an output and we
781 reload the output. If we allocate REG to the same hard
782 register as an unused output we could set the hard register
783 before the output reload insn. */
784 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
785 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
786 if (REG_NOTE_KIND (link) == REG_DEAD)
788 int used_in_output = 0;
789 int i;
790 rtx reg = XEXP (link, 0);
792 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
794 rtx set = XVECEXP (PATTERN (insn), 0, i);
795 if (GET_CODE (set) == SET
796 && GET_CODE (SET_DEST (set)) != REG
797 && !rtx_equal_p (reg, SET_DEST (set))
798 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
799 used_in_output = 1;
801 if (used_in_output)
802 mark_reg_conflicts (reg);
805 /* Mark any registers set in INSN and then never used. */
807 while (n_regs_set > 0)
808 if (find_regno_note (insn, REG_UNUSED,
809 REGNO (regs_set[--n_regs_set])))
810 mark_reg_death (regs_set[n_regs_set]);
813 if (insn == BLOCK_END (b))
814 break;
815 insn = NEXT_INSN (insn);
819 /* Clean up. */
820 free (block_start_allocnos);
821 free (regs_set);
823 /* Expand the preference information by looking for cases where one allocno
824 dies in an insn that sets an allocno. If those two allocnos don't conflict,
825 merge any preferences between those allocnos. */
827 static void
828 expand_preferences ()
830 rtx insn;
831 rtx link;
832 rtx set;
834 /* We only try to handle the most common cases here. Most of the cases
835 where this wins are reg-reg copies. */
837 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
838 if (INSN_P (insn)
839 && (set = single_set (insn)) != 0
840 && GET_CODE (SET_DEST (set)) == REG
841 && reg_allocno[REGNO (SET_DEST (set))] >= 0)
842 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
843 if (REG_NOTE_KIND (link) == REG_DEAD
844 && GET_CODE (XEXP (link, 0)) == REG
845 && reg_allocno[REGNO (XEXP (link, 0))] >= 0
846 && ! CONFLICTP (reg_allocno[REGNO (SET_DEST (set))],
847 reg_allocno[REGNO (XEXP (link, 0))]))
849 int a1 = reg_allocno[REGNO (SET_DEST (set))];
850 int a2 = reg_allocno[REGNO (XEXP (link, 0))];
852 if (XEXP (link, 0) == SET_SRC (set))
854 IOR_HARD_REG_SET (allocno[a1].hard_reg_copy_preferences,
855 allocno[a2].hard_reg_copy_preferences);
856 IOR_HARD_REG_SET (allocno[a2].hard_reg_copy_preferences,
857 allocno[a1].hard_reg_copy_preferences);
860 IOR_HARD_REG_SET (allocno[a1].hard_reg_preferences,
861 allocno[a2].hard_reg_preferences);
862 IOR_HARD_REG_SET (allocno[a2].hard_reg_preferences,
863 allocno[a1].hard_reg_preferences);
864 IOR_HARD_REG_SET (allocno[a1].hard_reg_full_preferences,
865 allocno[a2].hard_reg_full_preferences);
866 IOR_HARD_REG_SET (allocno[a2].hard_reg_full_preferences,
867 allocno[a1].hard_reg_full_preferences);
871 /* Prune the preferences for global registers to exclude registers that cannot
872 be used.
874 Compute `regs_someone_prefers', which is a bitmask of the hard registers
875 that are preferred by conflicting registers of lower priority. If possible,
876 we will avoid using these registers. */
878 static void
879 prune_preferences ()
881 int i;
882 int num;
883 int *allocno_to_order = (int *) xmalloc (max_allocno * sizeof (int));
885 /* Scan least most important to most important.
886 For each allocno, remove from preferences registers that cannot be used,
887 either because of conflicts or register type. Then compute all registers
888 preferred by each lower-priority register that conflicts. */
890 for (i = max_allocno - 1; i >= 0; i--)
892 HARD_REG_SET temp;
894 num = allocno_order[i];
895 allocno_to_order[num] = i;
896 COPY_HARD_REG_SET (temp, allocno[num].hard_reg_conflicts);
898 if (allocno[num].calls_crossed == 0)
899 IOR_HARD_REG_SET (temp, fixed_reg_set);
900 else
901 IOR_HARD_REG_SET (temp, call_used_reg_set);
903 IOR_COMPL_HARD_REG_SET
904 (temp,
905 reg_class_contents[(int) reg_preferred_class (allocno[num].reg)]);
907 AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_preferences, temp);
908 AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_copy_preferences, temp);
909 AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_full_preferences, temp);
912 for (i = max_allocno - 1; i >= 0; i--)
914 /* Merge in the preferences of lower-priority registers (they have
915 already been pruned). If we also prefer some of those registers,
916 don't exclude them unless we are of a smaller size (in which case
917 we want to give the lower-priority allocno the first chance for
918 these registers). */
919 HARD_REG_SET temp, temp2;
920 int allocno2;
922 num = allocno_order[i];
924 CLEAR_HARD_REG_SET (temp);
925 CLEAR_HARD_REG_SET (temp2);
927 EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + num * allocno_row_words,
928 allocno2,
930 if (allocno_to_order[allocno2] > i)
932 if (allocno[allocno2].size <= allocno[num].size)
933 IOR_HARD_REG_SET (temp,
934 allocno[allocno2].hard_reg_full_preferences);
935 else
936 IOR_HARD_REG_SET (temp2,
937 allocno[allocno2].hard_reg_full_preferences);
941 AND_COMPL_HARD_REG_SET (temp, allocno[num].hard_reg_full_preferences);
942 IOR_HARD_REG_SET (temp, temp2);
943 COPY_HARD_REG_SET (allocno[num].regs_someone_prefers, temp);
945 free (allocno_to_order);
948 /* Assign a hard register to allocno NUM; look for one that is the beginning
949 of a long enough stretch of hard regs none of which conflicts with ALLOCNO.
950 The registers marked in PREFREGS are tried first.
952 LOSERS, if non-zero, is a HARD_REG_SET indicating registers that cannot
953 be used for this allocation.
955 If ALT_REGS_P is zero, consider only the preferred class of ALLOCNO's reg.
956 Otherwise ignore that preferred class and use the alternate class.
958 If ACCEPT_CALL_CLOBBERED is nonzero, accept a call-clobbered hard reg that
959 will have to be saved and restored at calls.
961 RETRYING is nonzero if this is called from retry_global_alloc.
963 If we find one, record it in reg_renumber.
964 If not, do nothing. */
966 static void
967 find_reg (num, losers, alt_regs_p, accept_call_clobbered, retrying)
968 int num;
969 HARD_REG_SET losers;
970 int alt_regs_p;
971 int accept_call_clobbered;
972 int retrying;
974 register int i, best_reg, pass;
975 #ifdef HARD_REG_SET
976 register /* Declare it register if it's a scalar. */
977 #endif
978 HARD_REG_SET used, used1, used2;
980 enum reg_class class = (alt_regs_p
981 ? reg_alternate_class (allocno[num].reg)
982 : reg_preferred_class (allocno[num].reg));
983 enum machine_mode mode = PSEUDO_REGNO_MODE (allocno[num].reg);
985 if (accept_call_clobbered)
986 COPY_HARD_REG_SET (used1, call_fixed_reg_set);
987 else if (allocno[num].calls_crossed == 0)
988 COPY_HARD_REG_SET (used1, fixed_reg_set);
989 else
990 COPY_HARD_REG_SET (used1, call_used_reg_set);
992 /* Some registers should not be allocated in global-alloc. */
993 IOR_HARD_REG_SET (used1, no_global_alloc_regs);
994 if (losers)
995 IOR_HARD_REG_SET (used1, losers);
997 IOR_COMPL_HARD_REG_SET (used1, reg_class_contents[(int) class]);
998 COPY_HARD_REG_SET (used2, used1);
1000 IOR_HARD_REG_SET (used1, allocno[num].hard_reg_conflicts);
1002 #ifdef CLASS_CANNOT_CHANGE_MODE
1003 if (REG_CHANGES_MODE (allocno[num].reg))
1004 IOR_HARD_REG_SET (used1,
1005 reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE]);
1006 #endif
1008 /* Try each hard reg to see if it fits. Do this in two passes.
1009 In the first pass, skip registers that are preferred by some other pseudo
1010 to give it a better chance of getting one of those registers. Only if
1011 we can't get a register when excluding those do we take one of them.
1012 However, we never allocate a register for the first time in pass 0. */
1014 COPY_HARD_REG_SET (used, used1);
1015 IOR_COMPL_HARD_REG_SET (used, regs_used_so_far);
1016 IOR_HARD_REG_SET (used, allocno[num].regs_someone_prefers);
1018 best_reg = -1;
1019 for (i = FIRST_PSEUDO_REGISTER, pass = 0;
1020 pass <= 1 && i >= FIRST_PSEUDO_REGISTER;
1021 pass++)
1023 if (pass == 1)
1024 COPY_HARD_REG_SET (used, used1);
1025 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1027 #ifdef REG_ALLOC_ORDER
1028 int regno = reg_alloc_order[i];
1029 #else
1030 int regno = i;
1031 #endif
1032 if (! TEST_HARD_REG_BIT (used, regno)
1033 && HARD_REGNO_MODE_OK (regno, mode)
1034 && (allocno[num].calls_crossed == 0
1035 || accept_call_clobbered
1036 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
1038 register int j;
1039 register int lim = regno + HARD_REGNO_NREGS (regno, mode);
1040 for (j = regno + 1;
1041 (j < lim
1042 && ! TEST_HARD_REG_BIT (used, j));
1043 j++);
1044 if (j == lim)
1046 best_reg = regno;
1047 break;
1049 #ifndef REG_ALLOC_ORDER
1050 i = j; /* Skip starting points we know will lose */
1051 #endif
1056 /* See if there is a preferred register with the same class as the register
1057 we allocated above. Making this restriction prevents register
1058 preferencing from creating worse register allocation.
1060 Remove from the preferred registers and conflicting registers. Note that
1061 additional conflicts may have been added after `prune_preferences' was
1062 called.
1064 First do this for those register with copy preferences, then all
1065 preferred registers. */
1067 AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_copy_preferences, used);
1068 GO_IF_HARD_REG_SUBSET (allocno[num].hard_reg_copy_preferences,
1069 reg_class_contents[(int) NO_REGS], no_copy_prefs);
1071 if (best_reg >= 0)
1073 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1074 if (TEST_HARD_REG_BIT (allocno[num].hard_reg_copy_preferences, i)
1075 && HARD_REGNO_MODE_OK (i, mode)
1076 && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
1077 || reg_class_subset_p (REGNO_REG_CLASS (i),
1078 REGNO_REG_CLASS (best_reg))
1079 || reg_class_subset_p (REGNO_REG_CLASS (best_reg),
1080 REGNO_REG_CLASS (i))))
1082 register int j;
1083 register int lim = i + HARD_REGNO_NREGS (i, mode);
1084 for (j = i + 1;
1085 (j < lim
1086 && ! TEST_HARD_REG_BIT (used, j)
1087 && (REGNO_REG_CLASS (j)
1088 == REGNO_REG_CLASS (best_reg + (j - i))
1089 || reg_class_subset_p (REGNO_REG_CLASS (j),
1090 REGNO_REG_CLASS (best_reg + (j - i)))
1091 || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
1092 REGNO_REG_CLASS (j))));
1093 j++);
1094 if (j == lim)
1096 best_reg = i;
1097 goto no_prefs;
1101 no_copy_prefs:
1103 AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_preferences, used);
1104 GO_IF_HARD_REG_SUBSET (allocno[num].hard_reg_preferences,
1105 reg_class_contents[(int) NO_REGS], no_prefs);
1107 if (best_reg >= 0)
1109 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1110 if (TEST_HARD_REG_BIT (allocno[num].hard_reg_preferences, i)
1111 && HARD_REGNO_MODE_OK (i, mode)
1112 && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
1113 || reg_class_subset_p (REGNO_REG_CLASS (i),
1114 REGNO_REG_CLASS (best_reg))
1115 || reg_class_subset_p (REGNO_REG_CLASS (best_reg),
1116 REGNO_REG_CLASS (i))))
1118 register int j;
1119 register int lim = i + HARD_REGNO_NREGS (i, mode);
1120 for (j = i + 1;
1121 (j < lim
1122 && ! TEST_HARD_REG_BIT (used, j)
1123 && (REGNO_REG_CLASS (j)
1124 == REGNO_REG_CLASS (best_reg + (j - i))
1125 || reg_class_subset_p (REGNO_REG_CLASS (j),
1126 REGNO_REG_CLASS (best_reg + (j - i)))
1127 || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
1128 REGNO_REG_CLASS (j))));
1129 j++);
1130 if (j == lim)
1132 best_reg = i;
1133 break;
1137 no_prefs:
1139 /* If we haven't succeeded yet, try with caller-saves.
1140 We need not check to see if the current function has nonlocal
1141 labels because we don't put any pseudos that are live over calls in
1142 registers in that case. */
1144 if (flag_caller_saves && best_reg < 0)
1146 /* Did not find a register. If it would be profitable to
1147 allocate a call-clobbered register and save and restore it
1148 around calls, do that. */
1149 if (! accept_call_clobbered
1150 && allocno[num].calls_crossed != 0
1151 && CALLER_SAVE_PROFITABLE (allocno[num].n_refs,
1152 allocno[num].calls_crossed))
1154 HARD_REG_SET new_losers;
1155 if (! losers)
1156 CLEAR_HARD_REG_SET (new_losers);
1157 else
1158 COPY_HARD_REG_SET (new_losers, losers);
1160 IOR_HARD_REG_SET(new_losers, losing_caller_save_reg_set);
1161 find_reg (num, new_losers, alt_regs_p, 1, retrying);
1162 if (reg_renumber[allocno[num].reg] >= 0)
1164 caller_save_needed = 1;
1165 return;
1170 /* If we haven't succeeded yet,
1171 see if some hard reg that conflicts with us
1172 was utilized poorly by local-alloc.
1173 If so, kick out the regs that were put there by local-alloc
1174 so we can use it instead. */
1175 if (best_reg < 0 && !retrying
1176 /* Let's not bother with multi-reg allocnos. */
1177 && allocno[num].size == 1)
1179 /* Count from the end, to find the least-used ones first. */
1180 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1182 #ifdef REG_ALLOC_ORDER
1183 int regno = reg_alloc_order[i];
1184 #else
1185 int regno = i;
1186 #endif
1188 if (local_reg_n_refs[regno] != 0
1189 /* Don't use a reg no good for this pseudo. */
1190 && ! TEST_HARD_REG_BIT (used2, regno)
1191 && HARD_REGNO_MODE_OK (regno, mode)
1192 #ifdef CLASS_CANNOT_CHANGE_MODE
1193 && ! (REG_CHANGES_MODE (allocno[num].reg)
1194 && (TEST_HARD_REG_BIT
1195 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1196 regno)))
1197 #endif
1200 /* We explicitly evaluate the divide results into temporary
1201 variables so as to avoid excess precision problems that occur
1202 on a i386-unknown-sysv4.2 (unixware) host. */
1204 double tmp1 = ((double) local_reg_n_refs[regno]
1205 / local_reg_live_length[regno]);
1206 double tmp2 = ((double) allocno[num].n_refs
1207 / allocno[num].live_length);
1209 if (tmp1 < tmp2)
1211 /* Hard reg REGNO was used less in total by local regs
1212 than it would be used by this one allocno! */
1213 int k;
1214 for (k = 0; k < max_regno; k++)
1215 if (reg_renumber[k] >= 0)
1217 int r = reg_renumber[k];
1218 int endregno
1219 = r + HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (k));
1221 if (regno >= r && regno < endregno)
1222 reg_renumber[k] = -1;
1225 best_reg = regno;
1226 break;
1232 /* Did we find a register? */
1234 if (best_reg >= 0)
1236 register int lim, j;
1237 HARD_REG_SET this_reg;
1239 /* Yes. Record it as the hard register of this pseudo-reg. */
1240 reg_renumber[allocno[num].reg] = best_reg;
1241 /* Also of any pseudo-regs that share with it. */
1242 if (reg_may_share[allocno[num].reg])
1243 for (j = FIRST_PSEUDO_REGISTER; j < max_regno; j++)
1244 if (reg_allocno[j] == num)
1245 reg_renumber[j] = best_reg;
1247 /* Make a set of the hard regs being allocated. */
1248 CLEAR_HARD_REG_SET (this_reg);
1249 lim = best_reg + HARD_REGNO_NREGS (best_reg, mode);
1250 for (j = best_reg; j < lim; j++)
1252 SET_HARD_REG_BIT (this_reg, j);
1253 SET_HARD_REG_BIT (regs_used_so_far, j);
1254 /* This is no longer a reg used just by local regs. */
1255 local_reg_n_refs[j] = 0;
1257 /* For each other pseudo-reg conflicting with this one,
1258 mark it as conflicting with the hard regs this one occupies. */
1259 lim = num;
1260 EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + lim * allocno_row_words, j,
1262 IOR_HARD_REG_SET (allocno[j].hard_reg_conflicts, this_reg);
1267 /* Called from `reload' to look for a hard reg to put pseudo reg REGNO in.
1268 Perhaps it had previously seemed not worth a hard reg,
1269 or perhaps its old hard reg has been commandeered for reloads.
1270 FORBIDDEN_REGS indicates certain hard regs that may not be used, even if
1271 they do not appear to be allocated.
1272 If FORBIDDEN_REGS is zero, no regs are forbidden. */
1274 void
1275 retry_global_alloc (regno, forbidden_regs)
1276 int regno;
1277 HARD_REG_SET forbidden_regs;
1279 int allocno = reg_allocno[regno];
1280 if (allocno >= 0)
1282 /* If we have more than one register class,
1283 first try allocating in the class that is cheapest
1284 for this pseudo-reg. If that fails, try any reg. */
1285 if (N_REG_CLASSES > 1)
1286 find_reg (allocno, forbidden_regs, 0, 0, 1);
1287 if (reg_renumber[regno] < 0
1288 && reg_alternate_class (regno) != NO_REGS)
1289 find_reg (allocno, forbidden_regs, 1, 0, 1);
1291 /* If we found a register, modify the RTL for the register to
1292 show the hard register, and mark that register live. */
1293 if (reg_renumber[regno] >= 0)
1295 REGNO (regno_reg_rtx[regno]) = reg_renumber[regno];
1296 mark_home_live (regno);
1301 /* Record a conflict between register REGNO
1302 and everything currently live.
1303 REGNO must not be a pseudo reg that was allocated
1304 by local_alloc; such numbers must be translated through
1305 reg_renumber before calling here. */
1307 static void
1308 record_one_conflict (regno)
1309 int regno;
1311 register int j;
1313 if (regno < FIRST_PSEUDO_REGISTER)
1314 /* When a hard register becomes live,
1315 record conflicts with live pseudo regs. */
1316 EXECUTE_IF_SET_IN_ALLOCNO_SET (allocnos_live, j,
1318 SET_HARD_REG_BIT (allocno[j].hard_reg_conflicts, regno);
1320 else
1321 /* When a pseudo-register becomes live,
1322 record conflicts first with hard regs,
1323 then with other pseudo regs. */
1325 register int ialloc = reg_allocno[regno];
1326 register int ialloc_prod = ialloc * allocno_row_words;
1327 IOR_HARD_REG_SET (allocno[ialloc].hard_reg_conflicts, hard_regs_live);
1328 for (j = allocno_row_words - 1; j >= 0; j--)
1330 #if 0
1331 int k;
1332 for (k = 0; k < n_no_conflict_pairs; k++)
1333 if (! ((j == no_conflict_pairs[k].allocno1
1334 && ialloc == no_conflict_pairs[k].allocno2)
1336 (j == no_conflict_pairs[k].allocno2
1337 && ialloc == no_conflict_pairs[k].allocno1)))
1338 #endif /* 0 */
1339 conflicts[ialloc_prod + j] |= allocnos_live[j];
1344 /* Record all allocnos currently live as conflicting
1345 with all hard regs currently live.
1347 ALLOCNO_VEC is a vector of LEN allocnos, all allocnos that
1348 are currently live. Their bits are also flagged in allocnos_live. */
1350 static void
1351 record_conflicts (allocno_vec, len)
1352 register int *allocno_vec;
1353 register int len;
1355 register int num;
1356 register int ialloc_prod;
1358 while (--len >= 0)
1360 num = allocno_vec[len];
1361 ialloc_prod = num * allocno_row_words;
1362 IOR_HARD_REG_SET (allocno[num].hard_reg_conflicts, hard_regs_live);
1366 /* If CONFLICTP (i, j) is true, make sure CONFLICTP (j, i) is also true. */
1367 static void
1368 mirror_conflicts ()
1370 register int i, j;
1371 int rw = allocno_row_words;
1372 int rwb = rw * INT_BITS;
1373 INT_TYPE *p = conflicts;
1374 INT_TYPE *q0 = conflicts, *q1, *q2;
1375 unsigned INT_TYPE mask;
1377 for (i = max_allocno - 1, mask = 1; i >= 0; i--, mask <<= 1)
1379 if (! mask)
1381 mask = 1;
1382 q0++;
1384 for (j = allocno_row_words - 1, q1 = q0; j >= 0; j--, q1 += rwb)
1386 unsigned INT_TYPE word;
1388 for (word = (unsigned INT_TYPE) *p++, q2 = q1; word;
1389 word >>= 1, q2 += rw)
1391 if (word & 1)
1392 *q2 |= mask;
1398 /* Handle the case where REG is set by the insn being scanned,
1399 during the forward scan to accumulate conflicts.
1400 Store a 1 in regs_live or allocnos_live for this register, record how many
1401 consecutive hardware registers it actually needs,
1402 and record a conflict with all other registers already live.
1404 Note that even if REG does not remain alive after this insn,
1405 we must mark it here as live, to ensure a conflict between
1406 REG and any other regs set in this insn that really do live.
1407 This is because those other regs could be considered after this.
1409 REG might actually be something other than a register;
1410 if so, we do nothing.
1412 SETTER is 0 if this register was modified by an auto-increment (i.e.,
1413 a REG_INC note was found for it). */
1415 static void
1416 mark_reg_store (reg, setter, data)
1417 rtx reg, setter;
1418 void *data ATTRIBUTE_UNUSED;
1420 register int regno;
1422 /* WORD is which word of a multi-register group is being stored.
1423 For the case where the store is actually into a SUBREG of REG.
1424 Except we don't use it; I believe the entire REG needs to be
1425 made live. */
1426 int word = 0;
1428 if (GET_CODE (reg) == SUBREG)
1430 word = SUBREG_WORD (reg);
1431 reg = SUBREG_REG (reg);
1434 if (GET_CODE (reg) != REG)
1435 return;
1437 regs_set[n_regs_set++] = reg;
1439 if (setter && GET_CODE (setter) != CLOBBER)
1440 set_preference (reg, SET_SRC (setter));
1442 regno = REGNO (reg);
1444 /* Either this is one of the max_allocno pseudo regs not allocated,
1445 or it is or has a hardware reg. First handle the pseudo-regs. */
1446 if (regno >= FIRST_PSEUDO_REGISTER)
1448 if (reg_allocno[regno] >= 0)
1450 SET_ALLOCNO_LIVE (reg_allocno[regno]);
1451 record_one_conflict (regno);
1455 if (reg_renumber[regno] >= 0)
1456 regno = reg_renumber[regno] /* + word */;
1458 /* Handle hardware regs (and pseudos allocated to hard regs). */
1459 if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
1461 register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1462 while (regno < last)
1464 record_one_conflict (regno);
1465 SET_HARD_REG_BIT (hard_regs_live, regno);
1466 regno++;
1471 /* Like mark_reg_set except notice just CLOBBERs; ignore SETs. */
1473 static void
1474 mark_reg_clobber (reg, setter, data)
1475 rtx reg, setter;
1476 void *data ATTRIBUTE_UNUSED;
1478 if (GET_CODE (setter) == CLOBBER)
1479 mark_reg_store (reg, setter, data);
1482 /* Record that REG has conflicts with all the regs currently live.
1483 Do not mark REG itself as live. */
1485 static void
1486 mark_reg_conflicts (reg)
1487 rtx reg;
1489 register int regno;
1491 if (GET_CODE (reg) == SUBREG)
1492 reg = SUBREG_REG (reg);
1494 if (GET_CODE (reg) != REG)
1495 return;
1497 regno = REGNO (reg);
1499 /* Either this is one of the max_allocno pseudo regs not allocated,
1500 or it is or has a hardware reg. First handle the pseudo-regs. */
1501 if (regno >= FIRST_PSEUDO_REGISTER)
1503 if (reg_allocno[regno] >= 0)
1504 record_one_conflict (regno);
1507 if (reg_renumber[regno] >= 0)
1508 regno = reg_renumber[regno];
1510 /* Handle hardware regs (and pseudos allocated to hard regs). */
1511 if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
1513 register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1514 while (regno < last)
1516 record_one_conflict (regno);
1517 regno++;
1522 /* Mark REG as being dead (following the insn being scanned now).
1523 Store a 0 in regs_live or allocnos_live for this register. */
1525 static void
1526 mark_reg_death (reg)
1527 rtx reg;
1529 register int regno = REGNO (reg);
1531 /* Either this is one of the max_allocno pseudo regs not allocated,
1532 or it is a hardware reg. First handle the pseudo-regs. */
1533 if (regno >= FIRST_PSEUDO_REGISTER)
1535 if (reg_allocno[regno] >= 0)
1536 CLEAR_ALLOCNO_LIVE (reg_allocno[regno]);
1539 /* For pseudo reg, see if it has been assigned a hardware reg. */
1540 if (reg_renumber[regno] >= 0)
1541 regno = reg_renumber[regno];
1543 /* Handle hardware regs (and pseudos allocated to hard regs). */
1544 if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
1546 /* Pseudo regs already assigned hardware regs are treated
1547 almost the same as explicit hardware regs. */
1548 register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1549 while (regno < last)
1551 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
1552 regno++;
1557 /* Mark hard reg REGNO as currently live, assuming machine mode MODE
1558 for the value stored in it. MODE determines how many consecutive
1559 registers are actually in use. Do not record conflicts;
1560 it is assumed that the caller will do that. */
1562 static void
1563 mark_reg_live_nc (regno, mode)
1564 register int regno;
1565 enum machine_mode mode;
1567 register int last = regno + HARD_REGNO_NREGS (regno, mode);
1568 while (regno < last)
1570 SET_HARD_REG_BIT (hard_regs_live, regno);
1571 regno++;
1575 /* Try to set a preference for an allocno to a hard register.
1576 We are passed DEST and SRC which are the operands of a SET. It is known
1577 that SRC is a register. If SRC or the first operand of SRC is a register,
1578 try to set a preference. If one of the two is a hard register and the other
1579 is a pseudo-register, mark the preference.
1581 Note that we are not as aggressive as local-alloc in trying to tie a
1582 pseudo-register to a hard register. */
1584 static void
1585 set_preference (dest, src)
1586 rtx dest, src;
1588 unsigned int src_regno, dest_regno;
1589 /* Amount to add to the hard regno for SRC, or subtract from that for DEST,
1590 to compensate for subregs in SRC or DEST. */
1591 int offset = 0;
1592 unsigned int i;
1593 int copy = 1;
1595 if (GET_RTX_FORMAT (GET_CODE (src))[0] == 'e')
1596 src = XEXP (src, 0), copy = 0;
1598 /* Get the reg number for both SRC and DEST.
1599 If neither is a reg, give up. */
1601 if (GET_CODE (src) == REG)
1602 src_regno = REGNO (src);
1603 else if (GET_CODE (src) == SUBREG && GET_CODE (SUBREG_REG (src)) == REG)
1605 src_regno = REGNO (SUBREG_REG (src));
1606 offset += SUBREG_WORD (src);
1608 else
1609 return;
1611 if (GET_CODE (dest) == REG)
1612 dest_regno = REGNO (dest);
1613 else if (GET_CODE (dest) == SUBREG && GET_CODE (SUBREG_REG (dest)) == REG)
1615 dest_regno = REGNO (SUBREG_REG (dest));
1616 offset -= SUBREG_WORD (dest);
1618 else
1619 return;
1621 /* Convert either or both to hard reg numbers. */
1623 if (reg_renumber[src_regno] >= 0)
1624 src_regno = reg_renumber[src_regno];
1626 if (reg_renumber[dest_regno] >= 0)
1627 dest_regno = reg_renumber[dest_regno];
1629 /* Now if one is a hard reg and the other is a global pseudo
1630 then give the other a preference. */
1632 if (dest_regno < FIRST_PSEUDO_REGISTER && src_regno >= FIRST_PSEUDO_REGISTER
1633 && reg_allocno[src_regno] >= 0)
1635 dest_regno -= offset;
1636 if (dest_regno < FIRST_PSEUDO_REGISTER)
1638 if (copy)
1639 SET_REGBIT (hard_reg_copy_preferences,
1640 reg_allocno[src_regno], dest_regno);
1642 SET_REGBIT (hard_reg_preferences,
1643 reg_allocno[src_regno], dest_regno);
1644 for (i = dest_regno;
1645 i < dest_regno + HARD_REGNO_NREGS (dest_regno, GET_MODE (dest));
1646 i++)
1647 SET_REGBIT (hard_reg_full_preferences, reg_allocno[src_regno], i);
1651 if (src_regno < FIRST_PSEUDO_REGISTER && dest_regno >= FIRST_PSEUDO_REGISTER
1652 && reg_allocno[dest_regno] >= 0)
1654 src_regno += offset;
1655 if (src_regno < FIRST_PSEUDO_REGISTER)
1657 if (copy)
1658 SET_REGBIT (hard_reg_copy_preferences,
1659 reg_allocno[dest_regno], src_regno);
1661 SET_REGBIT (hard_reg_preferences,
1662 reg_allocno[dest_regno], src_regno);
1663 for (i = src_regno;
1664 i < src_regno + HARD_REGNO_NREGS (src_regno, GET_MODE (src));
1665 i++)
1666 SET_REGBIT (hard_reg_full_preferences, reg_allocno[dest_regno], i);
1671 /* Indicate that hard register number FROM was eliminated and replaced with
1672 an offset from hard register number TO. The status of hard registers live
1673 at the start of a basic block is updated by replacing a use of FROM with
1674 a use of TO. */
1676 void
1677 mark_elimination (from, to)
1678 int from, to;
1680 int i;
1682 for (i = 0; i < n_basic_blocks; i++)
1684 register regset r = BASIC_BLOCK (i)->global_live_at_start;
1685 if (REGNO_REG_SET_P (r, from))
1687 CLEAR_REGNO_REG_SET (r, from);
1688 SET_REGNO_REG_SET (r, to);
1693 /* Used for communication between the following functions. Holds the
1694 current life information. */
1695 static regset live_relevant_regs;
1697 /* Record in live_relevant_regs and REGS_SET that register REG became live.
1698 This is called via note_stores. */
1699 static void
1700 reg_becomes_live (reg, setter, regs_set)
1701 rtx reg;
1702 rtx setter ATTRIBUTE_UNUSED;
1703 void *regs_set;
1705 int regno;
1707 if (GET_CODE (reg) == SUBREG)
1708 reg = SUBREG_REG (reg);
1710 if (GET_CODE (reg) != REG)
1711 return;
1713 regno = REGNO (reg);
1714 if (regno < FIRST_PSEUDO_REGISTER)
1716 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
1717 while (nregs-- > 0)
1719 SET_REGNO_REG_SET (live_relevant_regs, regno);
1720 if (! fixed_regs[regno])
1721 SET_REGNO_REG_SET ((regset) regs_set, regno);
1722 regno++;
1725 else if (reg_renumber[regno] >= 0)
1727 SET_REGNO_REG_SET (live_relevant_regs, regno);
1728 SET_REGNO_REG_SET ((regset) regs_set, regno);
1732 /* Record in live_relevant_regs that register REGNO died. */
1733 static void
1734 reg_dies (regno, mode, chain)
1735 int regno;
1736 enum machine_mode mode;
1737 struct insn_chain *chain;
1739 if (regno < FIRST_PSEUDO_REGISTER)
1741 int nregs = HARD_REGNO_NREGS (regno, mode);
1742 while (nregs-- > 0)
1744 CLEAR_REGNO_REG_SET (live_relevant_regs, regno);
1745 if (! fixed_regs[regno])
1746 SET_REGNO_REG_SET (&chain->dead_or_set, regno);
1747 regno++;
1750 else
1752 CLEAR_REGNO_REG_SET (live_relevant_regs, regno);
1753 if (reg_renumber[regno] >= 0)
1754 SET_REGNO_REG_SET (&chain->dead_or_set, regno);
1758 /* Walk the insns of the current function and build reload_insn_chain,
1759 and record register life information. */
1760 void
1761 build_insn_chain (first)
1762 rtx first;
1764 struct insn_chain **p = &reload_insn_chain;
1765 struct insn_chain *prev = 0;
1766 int b = 0;
1767 regset_head live_relevant_regs_head;
1769 live_relevant_regs = INITIALIZE_REG_SET (live_relevant_regs_head);
1771 for (; first; first = NEXT_INSN (first))
1773 struct insn_chain *c;
1775 if (first == BLOCK_HEAD (b))
1777 int i;
1779 CLEAR_REG_SET (live_relevant_regs);
1781 EXECUTE_IF_SET_IN_BITMAP
1782 (BASIC_BLOCK (b)->global_live_at_start, 0, i,
1784 if (i < FIRST_PSEUDO_REGISTER
1785 ? ! TEST_HARD_REG_BIT (eliminable_regset, i)
1786 : reg_renumber[i] >= 0)
1787 SET_REGNO_REG_SET (live_relevant_regs, i);
1791 if (GET_CODE (first) != NOTE && GET_CODE (first) != BARRIER)
1793 c = new_insn_chain ();
1794 c->prev = prev;
1795 prev = c;
1796 *p = c;
1797 p = &c->next;
1798 c->insn = first;
1799 c->block = b;
1801 if (INSN_P (first))
1803 rtx link;
1805 /* Mark the death of everything that dies in this instruction. */
1807 for (link = REG_NOTES (first); link; link = XEXP (link, 1))
1808 if (REG_NOTE_KIND (link) == REG_DEAD
1809 && GET_CODE (XEXP (link, 0)) == REG)
1810 reg_dies (REGNO (XEXP (link, 0)), GET_MODE (XEXP (link, 0)),
1813 COPY_REG_SET (&c->live_throughout, live_relevant_regs);
1815 /* Mark everything born in this instruction as live. */
1817 note_stores (PATTERN (first), reg_becomes_live,
1818 &c->dead_or_set);
1820 else
1821 COPY_REG_SET (&c->live_throughout, live_relevant_regs);
1823 if (INSN_P (first))
1825 rtx link;
1827 /* Mark anything that is set in this insn and then unused as dying. */
1829 for (link = REG_NOTES (first); link; link = XEXP (link, 1))
1830 if (REG_NOTE_KIND (link) == REG_UNUSED
1831 && GET_CODE (XEXP (link, 0)) == REG)
1832 reg_dies (REGNO (XEXP (link, 0)), GET_MODE (XEXP (link, 0)),
1837 if (first == BLOCK_END (b))
1838 b++;
1840 /* Stop after we pass the end of the last basic block. Verify that
1841 no real insns are after the end of the last basic block.
1843 We may want to reorganize the loop somewhat since this test should
1844 always be the right exit test. */
1845 if (b == n_basic_blocks)
1847 for (first = NEXT_INSN (first) ; first; first = NEXT_INSN (first))
1848 if (INSN_P (first) && GET_CODE (PATTERN (first)) != USE)
1849 abort ();
1850 break;
1853 FREE_REG_SET (live_relevant_regs);
1854 *p = 0;
1857 /* Print debugging trace information if -dg switch is given,
1858 showing the information on which the allocation decisions are based. */
1860 static void
1861 dump_conflicts (file)
1862 FILE *file;
1864 register int i;
1865 register int has_preferences;
1866 register int nregs;
1867 nregs = 0;
1868 for (i = 0; i < max_allocno; i++)
1870 if (reg_renumber[allocno[allocno_order[i]].reg] >= 0)
1871 continue;
1872 nregs++;
1874 fprintf (file, ";; %d regs to allocate:", nregs);
1875 for (i = 0; i < max_allocno; i++)
1877 int j;
1878 if (reg_renumber[allocno[allocno_order[i]].reg] >= 0)
1879 continue;
1880 fprintf (file, " %d", allocno[allocno_order[i]].reg);
1881 for (j = 0; j < max_regno; j++)
1882 if (reg_allocno[j] == allocno_order[i]
1883 && j != allocno[allocno_order[i]].reg)
1884 fprintf (file, "+%d", j);
1885 if (allocno[allocno_order[i]].size != 1)
1886 fprintf (file, " (%d)", allocno[allocno_order[i]].size);
1888 fprintf (file, "\n");
1890 for (i = 0; i < max_allocno; i++)
1892 register int j;
1893 fprintf (file, ";; %d conflicts:", allocno[i].reg);
1894 for (j = 0; j < max_allocno; j++)
1895 if (CONFLICTP (j, i))
1896 fprintf (file, " %d", allocno[j].reg);
1897 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1898 if (TEST_HARD_REG_BIT (allocno[i].hard_reg_conflicts, j))
1899 fprintf (file, " %d", j);
1900 fprintf (file, "\n");
1902 has_preferences = 0;
1903 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1904 if (TEST_HARD_REG_BIT (allocno[i].hard_reg_preferences, j))
1905 has_preferences = 1;
1907 if (! has_preferences)
1908 continue;
1909 fprintf (file, ";; %d preferences:", allocno[i].reg);
1910 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1911 if (TEST_HARD_REG_BIT (allocno[i].hard_reg_preferences, j))
1912 fprintf (file, " %d", j);
1913 fprintf (file, "\n");
1915 fprintf (file, "\n");
1918 void
1919 dump_global_regs (file)
1920 FILE *file;
1922 register int i, j;
1924 fprintf (file, ";; Register dispositions:\n");
1925 for (i = FIRST_PSEUDO_REGISTER, j = 0; i < max_regno; i++)
1926 if (reg_renumber[i] >= 0)
1928 fprintf (file, "%d in %d ", i, reg_renumber[i]);
1929 if (++j % 6 == 0)
1930 fprintf (file, "\n");
1933 fprintf (file, "\n\n;; Hard regs used: ");
1934 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1935 if (regs_ever_live[i])
1936 fprintf (file, " %d", i);
1937 fprintf (file, "\n\n");