Only create gcc/configargs.h if gcc build directory is present
[official-gcc.git] / gcc / emit-rtl.c
blob66b1f7e93a925d0e79124cc000ffedb9cbddb069
1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
38 #include "config.h"
39 #include "system.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "obstack.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "defaults.h"
59 /* Commonly used modes. */
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
70 static int label_num = 1;
72 /* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
76 static int last_label_num;
78 /* Value label_num had when set_new_first_and_last_label_number was called.
79 If label_num has not changed since then, last_label_num is valid. */
81 static int base_label_num;
83 /* Nonzero means do not generate NOTEs for source line numbers. */
85 static int no_line_numbers;
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these except perhaps the floating-point CONST_DOUBLEs
90 are unique; no other rtx-object will be equal to any of these. */
92 rtx global_rtl[GR_MAX];
94 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
96 record a copy of const[012]_rtx. */
98 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
100 rtx const_true_rtx;
102 REAL_VALUE_TYPE dconst0;
103 REAL_VALUE_TYPE dconst1;
104 REAL_VALUE_TYPE dconst2;
105 REAL_VALUE_TYPE dconstm1;
107 /* All references to the following fixed hard registers go through
108 these unique rtl objects. On machines where the frame-pointer and
109 arg-pointer are the same register, they use the same unique object.
111 After register allocation, other rtl objects which used to be pseudo-regs
112 may be clobbered to refer to the frame-pointer register.
113 But references that were originally to the frame-pointer can be
114 distinguished from the others because they contain frame_pointer_rtx.
116 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
117 tricky: until register elimination has taken place hard_frame_pointer_rtx
118 should be used if it is being set, and frame_pointer_rtx otherwise. After
119 register elimination hard_frame_pointer_rtx should always be used.
120 On machines where the two registers are same (most) then these are the
121 same.
123 In an inline procedure, the stack and frame pointer rtxs may not be
124 used for anything else. */
125 rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
126 rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
127 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
128 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
129 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
131 /* This is used to implement __builtin_return_address for some machines.
132 See for instance the MIPS port. */
133 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
135 /* We make one copy of (const_int C) where C is in
136 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
137 to save space during the compilation and simplify comparisons of
138 integers. */
140 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
142 /* A hash table storing CONST_INTs whose absolute value is greater
143 than MAX_SAVED_CONST_INT. */
145 static htab_t const_int_htab;
147 /* start_sequence and gen_sequence can make a lot of rtx expressions which are
148 shortly thrown away. We use two mechanisms to prevent this waste:
150 For sizes up to 5 elements, we keep a SEQUENCE and its associated
151 rtvec for use by gen_sequence. One entry for each size is
152 sufficient because most cases are calls to gen_sequence followed by
153 immediately emitting the SEQUENCE. Reuse is safe since emitting a
154 sequence is destructive on the insn in it anyway and hence can't be
155 redone.
157 We do not bother to save this cached data over nested function calls.
158 Instead, we just reinitialize them. */
160 #define SEQUENCE_RESULT_SIZE 5
162 static rtx sequence_result[SEQUENCE_RESULT_SIZE];
164 /* During RTL generation, we also keep a list of free INSN rtl codes. */
165 static rtx free_insn;
167 #define first_insn (cfun->emit->x_first_insn)
168 #define last_insn (cfun->emit->x_last_insn)
169 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
170 #define last_linenum (cfun->emit->x_last_linenum)
171 #define last_filename (cfun->emit->x_last_filename)
172 #define first_label_num (cfun->emit->x_first_label_num)
174 static rtx make_jump_insn_raw PARAMS ((rtx));
175 static rtx make_call_insn_raw PARAMS ((rtx));
176 static rtx find_line_note PARAMS ((rtx));
177 static void mark_sequence_stack PARAMS ((struct sequence_stack *));
178 static void unshare_all_rtl_1 PARAMS ((rtx));
179 static void unshare_all_decls PARAMS ((tree));
180 static void reset_used_decls PARAMS ((tree));
181 static hashval_t const_int_htab_hash PARAMS ((const void *));
182 static int const_int_htab_eq PARAMS ((const void *,
183 const void *));
184 static int rtx_htab_mark_1 PARAMS ((void **, void *));
185 static void rtx_htab_mark PARAMS ((void *));
188 /* Returns a hash code for X (which is a really a CONST_INT). */
190 static hashval_t
191 const_int_htab_hash (x)
192 const void *x;
194 return (hashval_t) INTVAL ((const struct rtx_def *) x);
197 /* Returns non-zero if the value represented by X (which is really a
198 CONST_INT) is the same as that given by Y (which is really a
199 HOST_WIDE_INT *). */
201 static int
202 const_int_htab_eq (x, y)
203 const void *x;
204 const void *y;
206 return (INTVAL ((const struct rtx_def *) x) == *((const HOST_WIDE_INT *) y));
209 /* Mark the hash-table element X (which is really a pointer to an
210 rtx). */
212 static int
213 rtx_htab_mark_1 (x, data)
214 void **x;
215 void *data ATTRIBUTE_UNUSED;
217 ggc_mark_rtx (*x);
218 return 1;
221 /* Mark all the elements of HTAB (which is really an htab_t full of
222 rtxs). */
224 static void
225 rtx_htab_mark (htab)
226 void *htab;
228 htab_traverse (*((htab_t *) htab), rtx_htab_mark_1, NULL);
231 /* There are some RTL codes that require special attention; the generation
232 functions do the raw handling. If you add to this list, modify
233 special_rtx in gengenrtl.c as well. */
236 gen_rtx_CONST_INT (mode, arg)
237 enum machine_mode mode ATTRIBUTE_UNUSED;
238 HOST_WIDE_INT arg;
240 void **slot;
242 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
243 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
245 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
246 if (const_true_rtx && arg == STORE_FLAG_VALUE)
247 return const_true_rtx;
248 #endif
250 /* Look up the CONST_INT in the hash table. */
251 slot = htab_find_slot_with_hash (const_int_htab, &arg,
252 (hashval_t) arg, INSERT);
253 if (*slot == 0)
254 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
256 return (rtx) *slot;
259 /* CONST_DOUBLEs needs special handling because their length is known
260 only at run-time. */
263 gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2)
264 enum machine_mode mode;
265 rtx arg0;
266 HOST_WIDE_INT arg1, arg2;
268 rtx r = rtx_alloc (CONST_DOUBLE);
269 int i;
271 PUT_MODE (r, mode);
272 XEXP (r, 0) = arg0;
273 X0EXP (r, 1) = NULL_RTX;
274 XWINT (r, 2) = arg1;
275 XWINT (r, 3) = arg2;
277 for (i = GET_RTX_LENGTH (CONST_DOUBLE) - 1; i > 3; --i)
278 XWINT (r, i) = 0;
280 return r;
284 gen_rtx_REG (mode, regno)
285 enum machine_mode mode;
286 int regno;
288 /* In case the MD file explicitly references the frame pointer, have
289 all such references point to the same frame pointer. This is
290 used during frame pointer elimination to distinguish the explicit
291 references to these registers from pseudos that happened to be
292 assigned to them.
294 If we have eliminated the frame pointer or arg pointer, we will
295 be using it as a normal register, for example as a spill
296 register. In such cases, we might be accessing it in a mode that
297 is not Pmode and therefore cannot use the pre-allocated rtx.
299 Also don't do this when we are making new REGs in reload, since
300 we don't want to get confused with the real pointers. */
302 if (mode == Pmode && !reload_in_progress)
304 if (regno == FRAME_POINTER_REGNUM)
305 return frame_pointer_rtx;
306 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
307 if (regno == HARD_FRAME_POINTER_REGNUM)
308 return hard_frame_pointer_rtx;
309 #endif
310 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
311 if (regno == ARG_POINTER_REGNUM)
312 return arg_pointer_rtx;
313 #endif
314 #ifdef RETURN_ADDRESS_POINTER_REGNUM
315 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
316 return return_address_pointer_rtx;
317 #endif
318 if (regno == STACK_POINTER_REGNUM)
319 return stack_pointer_rtx;
322 return gen_rtx_raw_REG (mode, regno);
326 gen_rtx_MEM (mode, addr)
327 enum machine_mode mode;
328 rtx addr;
330 rtx rt = gen_rtx_raw_MEM (mode, addr);
332 /* This field is not cleared by the mere allocation of the rtx, so
333 we clear it here. */
334 MEM_ALIAS_SET (rt) = 0;
336 return rt;
339 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
341 ** This routine generates an RTX of the size specified by
342 ** <code>, which is an RTX code. The RTX structure is initialized
343 ** from the arguments <element1> through <elementn>, which are
344 ** interpreted according to the specific RTX type's format. The
345 ** special machine mode associated with the rtx (if any) is specified
346 ** in <mode>.
348 ** gen_rtx can be invoked in a way which resembles the lisp-like
349 ** rtx it will generate. For example, the following rtx structure:
351 ** (plus:QI (mem:QI (reg:SI 1))
352 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
354 ** ...would be generated by the following C code:
356 ** gen_rtx (PLUS, QImode,
357 ** gen_rtx (MEM, QImode,
358 ** gen_rtx (REG, SImode, 1)),
359 ** gen_rtx (MEM, QImode,
360 ** gen_rtx (PLUS, SImode,
361 ** gen_rtx (REG, SImode, 2),
362 ** gen_rtx (REG, SImode, 3)))),
365 /*VARARGS2*/
367 gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
369 #ifndef ANSI_PROTOTYPES
370 enum rtx_code code;
371 enum machine_mode mode;
372 #endif
373 va_list p;
374 register int i; /* Array indices... */
375 register const char *fmt; /* Current rtx's format... */
376 register rtx rt_val; /* RTX to return to caller... */
378 VA_START (p, mode);
380 #ifndef ANSI_PROTOTYPES
381 code = va_arg (p, enum rtx_code);
382 mode = va_arg (p, enum machine_mode);
383 #endif
385 switch (code)
387 case CONST_INT:
388 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
389 break;
391 case CONST_DOUBLE:
393 rtx arg0 = va_arg (p, rtx);
394 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
395 HOST_WIDE_INT arg2 = va_arg (p, HOST_WIDE_INT);
396 rt_val = gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2);
398 break;
400 case REG:
401 rt_val = gen_rtx_REG (mode, va_arg (p, int));
402 break;
404 case MEM:
405 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
406 break;
408 default:
409 rt_val = rtx_alloc (code); /* Allocate the storage space. */
410 rt_val->mode = mode; /* Store the machine mode... */
412 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
413 for (i = 0; i < GET_RTX_LENGTH (code); i++)
415 switch (*fmt++)
417 case '0': /* Unused field. */
418 break;
420 case 'i': /* An integer? */
421 XINT (rt_val, i) = va_arg (p, int);
422 break;
424 case 'w': /* A wide integer? */
425 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
426 break;
428 case 's': /* A string? */
429 XSTR (rt_val, i) = va_arg (p, char *);
430 break;
432 case 'e': /* An expression? */
433 case 'u': /* An insn? Same except when printing. */
434 XEXP (rt_val, i) = va_arg (p, rtx);
435 break;
437 case 'E': /* An RTX vector? */
438 XVEC (rt_val, i) = va_arg (p, rtvec);
439 break;
441 case 'b': /* A bitmap? */
442 XBITMAP (rt_val, i) = va_arg (p, bitmap);
443 break;
445 case 't': /* A tree? */
446 XTREE (rt_val, i) = va_arg (p, tree);
447 break;
449 default:
450 abort ();
453 break;
456 va_end (p);
457 return rt_val;
460 /* gen_rtvec (n, [rt1, ..., rtn])
462 ** This routine creates an rtvec and stores within it the
463 ** pointers to rtx's which are its arguments.
466 /*VARARGS1*/
467 rtvec
468 gen_rtvec VPARAMS ((int n, ...))
470 #ifndef ANSI_PROTOTYPES
471 int n;
472 #endif
473 int i;
474 va_list p;
475 rtx *vector;
477 VA_START (p, n);
479 #ifndef ANSI_PROTOTYPES
480 n = va_arg (p, int);
481 #endif
483 if (n == 0)
484 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
486 vector = (rtx *) alloca (n * sizeof (rtx));
488 for (i = 0; i < n; i++)
489 vector[i] = va_arg (p, rtx);
490 va_end (p);
492 return gen_rtvec_v (n, vector);
495 rtvec
496 gen_rtvec_v (n, argp)
497 int n;
498 rtx *argp;
500 register int i;
501 register rtvec rt_val;
503 if (n == 0)
504 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
506 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
508 for (i = 0; i < n; i++)
509 rt_val->elem[i] = *argp++;
511 return rt_val;
515 /* Generate a REG rtx for a new pseudo register of mode MODE.
516 This pseudo is assigned the next sequential register number. */
519 gen_reg_rtx (mode)
520 enum machine_mode mode;
522 struct function *f = cfun;
523 register rtx val;
525 /* Don't let anything called after initial flow analysis create new
526 registers. */
527 if (no_new_pseudos)
528 abort ();
530 if (generating_concat_p
531 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
532 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
534 /* For complex modes, don't make a single pseudo.
535 Instead, make a CONCAT of two pseudos.
536 This allows noncontiguous allocation of the real and imaginary parts,
537 which makes much better code. Besides, allocating DCmode
538 pseudos overstrains reload on some machines like the 386. */
539 rtx realpart, imagpart;
540 int size = GET_MODE_UNIT_SIZE (mode);
541 enum machine_mode partmode
542 = mode_for_size (size * BITS_PER_UNIT,
543 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
544 ? MODE_FLOAT : MODE_INT),
547 realpart = gen_reg_rtx (partmode);
548 imagpart = gen_reg_rtx (partmode);
549 return gen_rtx_CONCAT (mode, realpart, imagpart);
552 /* Make sure regno_pointer_flag and regno_reg_rtx are large
553 enough to have an element for this pseudo reg number. */
555 if (reg_rtx_no == f->emit->regno_pointer_flag_length)
557 int old_size = f->emit->regno_pointer_flag_length;
558 rtx *new1;
559 char *new;
560 new = xrealloc (f->emit->regno_pointer_flag, old_size * 2);
561 memset (new + old_size, 0, old_size);
562 f->emit->regno_pointer_flag = new;
564 new = xrealloc (f->emit->regno_pointer_align, old_size * 2);
565 memset (new + old_size, 0, old_size);
566 f->emit->regno_pointer_align = (unsigned char *) new;
568 new1 = (rtx *) xrealloc (f->emit->x_regno_reg_rtx,
569 old_size * 2 * sizeof (rtx));
570 memset (new1 + old_size, 0, old_size * sizeof (rtx));
571 regno_reg_rtx = new1;
573 f->emit->regno_pointer_flag_length = old_size * 2;
576 val = gen_rtx_raw_REG (mode, reg_rtx_no);
577 regno_reg_rtx[reg_rtx_no++] = val;
578 return val;
581 /* Identify REG (which may be a CONCAT) as a user register. */
583 void
584 mark_user_reg (reg)
585 rtx reg;
587 if (GET_CODE (reg) == CONCAT)
589 REG_USERVAR_P (XEXP (reg, 0)) = 1;
590 REG_USERVAR_P (XEXP (reg, 1)) = 1;
592 else if (GET_CODE (reg) == REG)
593 REG_USERVAR_P (reg) = 1;
594 else
595 abort ();
598 /* Identify REG as a probable pointer register and show its alignment
599 as ALIGN, if nonzero. */
601 void
602 mark_reg_pointer (reg, align)
603 rtx reg;
604 int align;
606 if (! REGNO_POINTER_FLAG (REGNO (reg)))
608 REGNO_POINTER_FLAG (REGNO (reg)) = 1;
610 if (align)
611 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
613 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
614 /* We can no-longer be sure just how aligned this pointer is */
615 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
618 /* Return 1 plus largest pseudo reg number used in the current function. */
621 max_reg_num ()
623 return reg_rtx_no;
626 /* Return 1 + the largest label number used so far in the current function. */
629 max_label_num ()
631 if (last_label_num && label_num == base_label_num)
632 return last_label_num;
633 return label_num;
636 /* Return first label number used in this function (if any were used). */
639 get_first_label_num ()
641 return first_label_num;
644 /* Return a value representing some low-order bits of X, where the number
645 of low-order bits is given by MODE. Note that no conversion is done
646 between floating-point and fixed-point values, rather, the bit
647 representation is returned.
649 This function handles the cases in common between gen_lowpart, below,
650 and two variants in cse.c and combine.c. These are the cases that can
651 be safely handled at all points in the compilation.
653 If this is not a case we can handle, return 0. */
656 gen_lowpart_common (mode, x)
657 enum machine_mode mode;
658 register rtx x;
660 int word = 0;
662 if (GET_MODE (x) == mode)
663 return x;
665 /* MODE must occupy no more words than the mode of X. */
666 if (GET_MODE (x) != VOIDmode
667 && ((GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
668 > ((GET_MODE_SIZE (GET_MODE (x)) + (UNITS_PER_WORD - 1))
669 / UNITS_PER_WORD)))
670 return 0;
672 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
673 word = ((GET_MODE_SIZE (GET_MODE (x))
674 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
675 / UNITS_PER_WORD);
677 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
678 && (GET_MODE_CLASS (mode) == MODE_INT
679 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
681 /* If we are getting the low-order part of something that has been
682 sign- or zero-extended, we can either just use the object being
683 extended or make a narrower extension. If we want an even smaller
684 piece than the size of the object being extended, call ourselves
685 recursively.
687 This case is used mostly by combine and cse. */
689 if (GET_MODE (XEXP (x, 0)) == mode)
690 return XEXP (x, 0);
691 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
692 return gen_lowpart_common (mode, XEXP (x, 0));
693 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
694 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
696 else if (GET_CODE (x) == SUBREG
697 && (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
698 || GET_MODE_SIZE (mode) <= UNITS_PER_WORD
699 || GET_MODE_SIZE (mode) == GET_MODE_UNIT_SIZE (GET_MODE (x))))
700 return (GET_MODE (SUBREG_REG (x)) == mode && SUBREG_WORD (x) == 0
701 ? SUBREG_REG (x)
702 : gen_rtx_SUBREG (mode, SUBREG_REG (x), SUBREG_WORD (x) + word));
703 else if (GET_CODE (x) == REG)
705 /* Let the backend decide how many registers to skip. This is needed
706 in particular for Sparc64 where fp regs are smaller than a word. */
707 /* ??? Note that subregs are now ambiguous, in that those against
708 pseudos are sized by the Word Size, while those against hard
709 regs are sized by the underlying register size. Better would be
710 to always interpret the subreg offset parameter as bytes or bits. */
712 if (WORDS_BIG_ENDIAN && REGNO (x) < FIRST_PSEUDO_REGISTER)
713 word = (HARD_REGNO_NREGS (REGNO (x), GET_MODE (x))
714 - HARD_REGNO_NREGS (REGNO (x), mode));
716 /* If the register is not valid for MODE, return 0. If we don't
717 do this, there is no way to fix up the resulting REG later.
718 But we do do this if the current REG is not valid for its
719 mode. This latter is a kludge, but is required due to the
720 way that parameters are passed on some machines, most
721 notably Sparc. */
722 if (REGNO (x) < FIRST_PSEUDO_REGISTER
723 && ! HARD_REGNO_MODE_OK (REGNO (x) + word, mode)
724 && HARD_REGNO_MODE_OK (REGNO (x), GET_MODE (x)))
725 return 0;
726 else if (REGNO (x) < FIRST_PSEUDO_REGISTER
727 /* integrate.c can't handle parts of a return value register. */
728 && (! REG_FUNCTION_VALUE_P (x)
729 || ! rtx_equal_function_value_matters)
730 #ifdef CLASS_CANNOT_CHANGE_MODE
731 && ! (CLASS_CANNOT_CHANGE_MODE_P (mode, GET_MODE (x))
732 && GET_MODE_CLASS (GET_MODE (x)) != MODE_COMPLEX_INT
733 && GET_MODE_CLASS (GET_MODE (x)) != MODE_COMPLEX_FLOAT
734 && (TEST_HARD_REG_BIT
735 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
736 REGNO (x))))
737 #endif
738 /* We want to keep the stack, frame, and arg pointers
739 special. */
740 && x != frame_pointer_rtx
741 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
742 && x != arg_pointer_rtx
743 #endif
744 && x != stack_pointer_rtx)
745 return gen_rtx_REG (mode, REGNO (x) + word);
746 else
747 return gen_rtx_SUBREG (mode, x, word);
749 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
750 from the low-order part of the constant. */
751 else if ((GET_MODE_CLASS (mode) == MODE_INT
752 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
753 && GET_MODE (x) == VOIDmode
754 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
756 /* If MODE is twice the host word size, X is already the desired
757 representation. Otherwise, if MODE is wider than a word, we can't
758 do this. If MODE is exactly a word, return just one CONST_INT. */
760 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
761 return x;
762 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
763 return 0;
764 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
765 return (GET_CODE (x) == CONST_INT ? x
766 : GEN_INT (CONST_DOUBLE_LOW (x)));
767 else
769 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
770 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
771 : CONST_DOUBLE_LOW (x));
773 /* Sign extend to HOST_WIDE_INT. */
774 val = trunc_int_for_mode (val, mode);
776 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
777 : GEN_INT (val));
781 #ifndef REAL_ARITHMETIC
782 /* If X is an integral constant but we want it in floating-point, it
783 must be the case that we have a union of an integer and a floating-point
784 value. If the machine-parameters allow it, simulate that union here
785 and return the result. The two-word and single-word cases are
786 different. */
788 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
789 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
790 || flag_pretend_float)
791 && GET_MODE_CLASS (mode) == MODE_FLOAT
792 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
793 && GET_CODE (x) == CONST_INT
794 && sizeof (float) * HOST_BITS_PER_CHAR == HOST_BITS_PER_WIDE_INT)
796 union {HOST_WIDE_INT i; float d; } u;
798 u.i = INTVAL (x);
799 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
801 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
802 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
803 || flag_pretend_float)
804 && GET_MODE_CLASS (mode) == MODE_FLOAT
805 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
806 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
807 && GET_MODE (x) == VOIDmode
808 && (sizeof (double) * HOST_BITS_PER_CHAR
809 == 2 * HOST_BITS_PER_WIDE_INT))
811 union {HOST_WIDE_INT i[2]; double d; } u;
812 HOST_WIDE_INT low, high;
814 if (GET_CODE (x) == CONST_INT)
815 low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
816 else
817 low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
819 #ifdef HOST_WORDS_BIG_ENDIAN
820 u.i[0] = high, u.i[1] = low;
821 #else
822 u.i[0] = low, u.i[1] = high;
823 #endif
825 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
828 /* Similarly, if this is converting a floating-point value into a
829 single-word integer. Only do this is the host and target parameters are
830 compatible. */
832 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
833 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
834 || flag_pretend_float)
835 && (GET_MODE_CLASS (mode) == MODE_INT
836 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
837 && GET_CODE (x) == CONST_DOUBLE
838 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
839 && GET_MODE_BITSIZE (mode) == BITS_PER_WORD)
840 return operand_subword (x, word, 0, GET_MODE (x));
842 /* Similarly, if this is converting a floating-point value into a
843 two-word integer, we can do this one word at a time and make an
844 integer. Only do this is the host and target parameters are
845 compatible. */
847 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
848 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
849 || flag_pretend_float)
850 && (GET_MODE_CLASS (mode) == MODE_INT
851 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
852 && GET_CODE (x) == CONST_DOUBLE
853 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
854 && GET_MODE_BITSIZE (mode) == 2 * BITS_PER_WORD)
856 rtx lowpart
857 = operand_subword (x, word + WORDS_BIG_ENDIAN, 0, GET_MODE (x));
858 rtx highpart
859 = operand_subword (x, word + ! WORDS_BIG_ENDIAN, 0, GET_MODE (x));
861 if (lowpart && GET_CODE (lowpart) == CONST_INT
862 && highpart && GET_CODE (highpart) == CONST_INT)
863 return immed_double_const (INTVAL (lowpart), INTVAL (highpart), mode);
865 #else /* ifndef REAL_ARITHMETIC */
867 /* When we have a FP emulator, we can handle all conversions between
868 FP and integer operands. This simplifies reload because it
869 doesn't have to deal with constructs like (subreg:DI
870 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
872 else if (mode == SFmode
873 && GET_CODE (x) == CONST_INT)
875 REAL_VALUE_TYPE r;
876 HOST_WIDE_INT i;
878 i = INTVAL (x);
879 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
880 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
882 else if (mode == DFmode
883 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
884 && GET_MODE (x) == VOIDmode)
886 REAL_VALUE_TYPE r;
887 HOST_WIDE_INT i[2];
888 HOST_WIDE_INT low, high;
890 if (GET_CODE (x) == CONST_INT)
892 low = INTVAL (x);
893 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
895 else
897 low = CONST_DOUBLE_LOW (x);
898 high = CONST_DOUBLE_HIGH (x);
901 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
902 target machine. */
903 if (WORDS_BIG_ENDIAN)
904 i[0] = high, i[1] = low;
905 else
906 i[0] = low, i[1] = high;
908 r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
909 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
911 else if ((GET_MODE_CLASS (mode) == MODE_INT
912 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
913 && GET_CODE (x) == CONST_DOUBLE
914 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
916 REAL_VALUE_TYPE r;
917 long i[4]; /* Only the low 32 bits of each 'long' are used. */
918 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
920 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
921 switch (GET_MODE (x))
923 case SFmode:
924 REAL_VALUE_TO_TARGET_SINGLE (r, i[endian]);
925 i[1 - endian] = 0;
926 break;
927 case DFmode:
928 REAL_VALUE_TO_TARGET_DOUBLE (r, i);
929 break;
930 #if LONG_DOUBLE_TYPE_SIZE == 96
931 case XFmode:
932 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
933 i[3-3*endian] = 0;
934 #else
935 case TFmode:
936 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
937 #endif
938 break;
939 default:
940 abort ();
943 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
944 and return it. */
945 #if HOST_BITS_PER_WIDE_INT == 32
946 return immed_double_const (i[endian], i[1 - endian], mode);
947 #else
949 int c;
951 if (HOST_BITS_PER_WIDE_INT != 64)
952 abort ();
954 for (c = 0; c < 4; c++)
955 i[c] &= ~ (0L);
957 switch (GET_MODE (x))
959 case SFmode:
960 case DFmode:
961 return immed_double_const (((unsigned long) i[endian]) |
962 (((HOST_WIDE_INT) i[1-endian]) << 32),
963 0, mode);
964 default:
965 return immed_double_const (((unsigned long) i[endian*3]) |
966 (((HOST_WIDE_INT) i[1+endian]) << 32),
967 ((unsigned long) i[2-endian]) |
968 (((HOST_WIDE_INT) i[3-endian*3]) << 32),
969 mode);
972 #endif
974 #endif /* ifndef REAL_ARITHMETIC */
976 /* Otherwise, we can't do this. */
977 return 0;
980 /* Return the real part (which has mode MODE) of a complex value X.
981 This always comes at the low address in memory. */
984 gen_realpart (mode, x)
985 enum machine_mode mode;
986 register rtx x;
988 if (GET_CODE (x) == CONCAT && GET_MODE (XEXP (x, 0)) == mode)
989 return XEXP (x, 0);
990 else if (WORDS_BIG_ENDIAN
991 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
992 && REG_P (x)
993 && REGNO (x) < FIRST_PSEUDO_REGISTER)
994 fatal ("Unable to access real part of complex value in a hard register on this target");
995 else if (WORDS_BIG_ENDIAN)
996 return gen_highpart (mode, x);
997 else
998 return gen_lowpart (mode, x);
1001 /* Return the imaginary part (which has mode MODE) of a complex value X.
1002 This always comes at the high address in memory. */
1005 gen_imagpart (mode, x)
1006 enum machine_mode mode;
1007 register rtx x;
1009 if (GET_CODE (x) == CONCAT && GET_MODE (XEXP (x, 0)) == mode)
1010 return XEXP (x, 1);
1011 else if (WORDS_BIG_ENDIAN)
1012 return gen_lowpart (mode, x);
1013 else if (!WORDS_BIG_ENDIAN
1014 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1015 && REG_P (x)
1016 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1017 fatal ("Unable to access imaginary part of complex value in a hard register on this target");
1018 else
1019 return gen_highpart (mode, x);
1022 /* Return 1 iff X, assumed to be a SUBREG,
1023 refers to the real part of the complex value in its containing reg.
1024 Complex values are always stored with the real part in the first word,
1025 regardless of WORDS_BIG_ENDIAN. */
1028 subreg_realpart_p (x)
1029 rtx x;
1031 if (GET_CODE (x) != SUBREG)
1032 abort ();
1034 return ((unsigned int) SUBREG_WORD (x) * UNITS_PER_WORD
1035 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1038 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1039 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1040 least-significant part of X.
1041 MODE specifies how big a part of X to return;
1042 it usually should not be larger than a word.
1043 If X is a MEM whose address is a QUEUED, the value may be so also. */
1046 gen_lowpart (mode, x)
1047 enum machine_mode mode;
1048 register rtx x;
1050 rtx result = gen_lowpart_common (mode, x);
1052 if (result)
1053 return result;
1054 else if (GET_CODE (x) == REG)
1056 /* Must be a hard reg that's not valid in MODE. */
1057 result = gen_lowpart_common (mode, copy_to_reg (x));
1058 if (result == 0)
1059 abort ();
1060 return result;
1062 else if (GET_CODE (x) == MEM)
1064 /* The only additional case we can do is MEM. */
1065 register int offset = 0;
1066 if (WORDS_BIG_ENDIAN)
1067 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1068 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1070 if (BYTES_BIG_ENDIAN)
1071 /* Adjust the address so that the address-after-the-data
1072 is unchanged. */
1073 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1074 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1076 return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
1078 else if (GET_CODE (x) == ADDRESSOF)
1079 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1080 else
1081 abort ();
1084 /* Like `gen_lowpart', but refer to the most significant part.
1085 This is used to access the imaginary part of a complex number. */
1088 gen_highpart (mode, x)
1089 enum machine_mode mode;
1090 register rtx x;
1092 /* This case loses if X is a subreg. To catch bugs early,
1093 complain if an invalid MODE is used even in other cases. */
1094 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
1095 && GET_MODE_SIZE (mode) != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1096 abort ();
1097 if (GET_CODE (x) == CONST_DOUBLE
1098 #if !(TARGET_FLOAT_FORMAT != HOST_FLOAT_FORMAT || defined (REAL_IS_NOT_DOUBLE))
1099 && GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT
1100 #endif
1102 return GEN_INT (CONST_DOUBLE_HIGH (x) & GET_MODE_MASK (mode));
1103 else if (GET_CODE (x) == CONST_INT)
1105 if (HOST_BITS_PER_WIDE_INT <= BITS_PER_WORD)
1106 return const0_rtx;
1107 return GEN_INT (INTVAL (x) >> (HOST_BITS_PER_WIDE_INT - BITS_PER_WORD));
1109 else if (GET_CODE (x) == MEM)
1111 register int offset = 0;
1112 if (! WORDS_BIG_ENDIAN)
1113 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1114 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1116 if (! BYTES_BIG_ENDIAN
1117 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
1118 offset -= (GET_MODE_SIZE (mode)
1119 - MIN (UNITS_PER_WORD,
1120 GET_MODE_SIZE (GET_MODE (x))));
1122 return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
1124 else if (GET_CODE (x) == SUBREG)
1126 /* The only time this should occur is when we are looking at a
1127 multi-word item with a SUBREG whose mode is the same as that of the
1128 item. It isn't clear what we would do if it wasn't. */
1129 if (SUBREG_WORD (x) != 0)
1130 abort ();
1131 return gen_highpart (mode, SUBREG_REG (x));
1133 else if (GET_CODE (x) == REG)
1135 int word;
1137 /* Let the backend decide how many registers to skip. This is needed
1138 in particular for sparc64 where fp regs are smaller than a word. */
1139 /* ??? Note that subregs are now ambiguous, in that those against
1140 pseudos are sized by the word size, while those against hard
1141 regs are sized by the underlying register size. Better would be
1142 to always interpret the subreg offset parameter as bytes or bits. */
1144 if (WORDS_BIG_ENDIAN)
1145 word = 0;
1146 else if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1147 word = (HARD_REGNO_NREGS (REGNO (x), GET_MODE (x))
1148 - HARD_REGNO_NREGS (REGNO (x), mode));
1149 else
1150 word = ((GET_MODE_SIZE (GET_MODE (x))
1151 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
1152 / UNITS_PER_WORD);
1154 if (REGNO (x) < FIRST_PSEUDO_REGISTER
1155 /* integrate.c can't handle parts of a return value register. */
1156 && (! REG_FUNCTION_VALUE_P (x)
1157 || ! rtx_equal_function_value_matters)
1158 /* We want to keep the stack, frame, and arg pointers special. */
1159 && x != frame_pointer_rtx
1160 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1161 && x != arg_pointer_rtx
1162 #endif
1163 && x != stack_pointer_rtx)
1164 return gen_rtx_REG (mode, REGNO (x) + word);
1165 else
1166 return gen_rtx_SUBREG (mode, x, word);
1168 else
1169 abort ();
1172 /* Return 1 iff X, assumed to be a SUBREG,
1173 refers to the least significant part of its containing reg.
1174 If X is not a SUBREG, always return 1 (it is its own low part!). */
1177 subreg_lowpart_p (x)
1178 rtx x;
1180 if (GET_CODE (x) != SUBREG)
1181 return 1;
1182 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1183 return 0;
1185 if (WORDS_BIG_ENDIAN
1186 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) > UNITS_PER_WORD)
1187 return (SUBREG_WORD (x)
1188 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
1189 - MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD))
1190 / UNITS_PER_WORD));
1192 return SUBREG_WORD (x) == 0;
1195 /* Return subword I of operand OP.
1196 The word number, I, is interpreted as the word number starting at the
1197 low-order address. Word 0 is the low-order word if not WORDS_BIG_ENDIAN,
1198 otherwise it is the high-order word.
1200 If we cannot extract the required word, we return zero. Otherwise, an
1201 rtx corresponding to the requested word will be returned.
1203 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1204 reload has completed, a valid address will always be returned. After
1205 reload, if a valid address cannot be returned, we return zero.
1207 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1208 it is the responsibility of the caller.
1210 MODE is the mode of OP in case it is a CONST_INT. */
1213 operand_subword (op, i, validate_address, mode)
1214 rtx op;
1215 unsigned int i;
1216 int validate_address;
1217 enum machine_mode mode;
1219 HOST_WIDE_INT val;
1220 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1222 if (mode == VOIDmode)
1223 mode = GET_MODE (op);
1225 if (mode == VOIDmode)
1226 abort ();
1228 /* If OP is narrower than a word, fail. */
1229 if (mode != BLKmode
1230 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1231 return 0;
1233 /* If we want a word outside OP, return zero. */
1234 if (mode != BLKmode
1235 && (i + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1236 return const0_rtx;
1238 /* If OP is already an integer word, return it. */
1239 if (GET_MODE_CLASS (mode) == MODE_INT
1240 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1241 return op;
1243 /* If OP is a REG or SUBREG, we can handle it very simply. */
1244 if (GET_CODE (op) == REG)
1246 /* ??? There is a potential problem with this code. It does not
1247 properly handle extractions of a subword from a hard register
1248 that is larger than word_mode. Presumably the check for
1249 HARD_REGNO_MODE_OK catches these most of these cases. */
1251 /* If OP is a hard register, but OP + I is not a hard register,
1252 then extracting a subword is impossible.
1254 For example, consider if OP is the last hard register and it is
1255 larger than word_mode. If we wanted word N (for N > 0) because a
1256 part of that hard register was known to contain a useful value,
1257 then OP + I would refer to a pseudo, not the hard register we
1258 actually wanted. */
1259 if (REGNO (op) < FIRST_PSEUDO_REGISTER
1260 && REGNO (op) + i >= FIRST_PSEUDO_REGISTER)
1261 return 0;
1263 /* If the register is not valid for MODE, return 0. Note we
1264 have to check both OP and OP + I since they may refer to
1265 different parts of the register file.
1267 Consider if OP refers to the last 96bit FP register and we want
1268 subword 3 because that subword is known to contain a value we
1269 needed. */
1270 if (REGNO (op) < FIRST_PSEUDO_REGISTER
1271 && (! HARD_REGNO_MODE_OK (REGNO (op), word_mode)
1272 || ! HARD_REGNO_MODE_OK (REGNO (op) + i, word_mode)))
1273 return 0;
1274 else if (REGNO (op) >= FIRST_PSEUDO_REGISTER
1275 || (REG_FUNCTION_VALUE_P (op)
1276 && rtx_equal_function_value_matters)
1277 /* We want to keep the stack, frame, and arg pointers
1278 special. */
1279 || op == frame_pointer_rtx
1280 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1281 || op == arg_pointer_rtx
1282 #endif
1283 || op == stack_pointer_rtx)
1284 return gen_rtx_SUBREG (word_mode, op, i);
1285 else
1286 return gen_rtx_REG (word_mode, REGNO (op) + i);
1288 else if (GET_CODE (op) == SUBREG)
1289 return gen_rtx_SUBREG (word_mode, SUBREG_REG (op), i + SUBREG_WORD (op));
1290 else if (GET_CODE (op) == CONCAT)
1292 unsigned int partwords
1293 = GET_MODE_UNIT_SIZE (GET_MODE (op)) / UNITS_PER_WORD;
1295 if (i < partwords)
1296 return operand_subword (XEXP (op, 0), i, validate_address, mode);
1297 return operand_subword (XEXP (op, 1), i - partwords,
1298 validate_address, mode);
1301 /* Form a new MEM at the requested address. */
1302 if (GET_CODE (op) == MEM)
1304 rtx addr = plus_constant (XEXP (op, 0), i * UNITS_PER_WORD);
1305 rtx new;
1307 if (validate_address)
1309 if (reload_completed)
1311 if (! strict_memory_address_p (word_mode, addr))
1312 return 0;
1314 else
1315 addr = memory_address (word_mode, addr);
1318 new = gen_rtx_MEM (word_mode, addr);
1319 MEM_COPY_ATTRIBUTES (new, op);
1320 return new;
1323 /* The only remaining cases are when OP is a constant. If the host and
1324 target floating formats are the same, handling two-word floating
1325 constants are easy. Note that REAL_VALUE_TO_TARGET_{SINGLE,DOUBLE}
1326 are defined as returning one or two 32 bit values, respectively,
1327 and not values of BITS_PER_WORD bits. */
1328 #ifdef REAL_ARITHMETIC
1329 /* The output is some bits, the width of the target machine's word.
1330 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1331 host can't. */
1332 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1333 && GET_MODE_CLASS (mode) == MODE_FLOAT
1334 && GET_MODE_BITSIZE (mode) == 64
1335 && GET_CODE (op) == CONST_DOUBLE)
1337 long k[2];
1338 REAL_VALUE_TYPE rv;
1340 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1341 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1343 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1344 which the words are written depends on the word endianness.
1345 ??? This is a potential portability problem and should
1346 be fixed at some point.
1348 We must excercise caution with the sign bit. By definition there
1349 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1350 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1351 So we explicitly mask and sign-extend as necessary. */
1352 if (BITS_PER_WORD == 32)
1354 val = k[i];
1355 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1356 return GEN_INT (val);
1358 #if HOST_BITS_PER_WIDE_INT >= 64
1359 else if (BITS_PER_WORD >= 64 && i == 0)
1361 val = k[! WORDS_BIG_ENDIAN];
1362 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1363 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1364 return GEN_INT (val);
1366 #endif
1367 else if (BITS_PER_WORD == 16)
1369 val = k[i >> 1];
1370 if ((i & 1) == !WORDS_BIG_ENDIAN)
1371 val >>= 16;
1372 val &= 0xffff;
1373 return GEN_INT (val);
1375 else
1376 abort ();
1378 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1379 && GET_MODE_CLASS (mode) == MODE_FLOAT
1380 && GET_MODE_BITSIZE (mode) > 64
1381 && GET_CODE (op) == CONST_DOUBLE)
1383 long k[4];
1384 REAL_VALUE_TYPE rv;
1386 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1387 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1389 if (BITS_PER_WORD == 32)
1391 val = k[i];
1392 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1393 return GEN_INT (val);
1395 #if HOST_BITS_PER_WIDE_INT >= 64
1396 else if (BITS_PER_WORD >= 64 && i <= 1)
1398 val = k[i*2 + ! WORDS_BIG_ENDIAN];
1399 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1400 val |= (HOST_WIDE_INT) k[i*2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1401 return GEN_INT (val);
1403 #endif
1404 else
1405 abort ();
1407 #else /* no REAL_ARITHMETIC */
1408 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1409 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1410 || flag_pretend_float)
1411 && GET_MODE_CLASS (mode) == MODE_FLOAT
1412 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1413 && GET_CODE (op) == CONST_DOUBLE)
1415 /* The constant is stored in the host's word-ordering,
1416 but we want to access it in the target's word-ordering. Some
1417 compilers don't like a conditional inside macro args, so we have two
1418 copies of the return. */
1419 #ifdef HOST_WORDS_BIG_ENDIAN
1420 return GEN_INT (i == WORDS_BIG_ENDIAN
1421 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
1422 #else
1423 return GEN_INT (i != WORDS_BIG_ENDIAN
1424 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
1425 #endif
1427 #endif /* no REAL_ARITHMETIC */
1429 /* Single word float is a little harder, since single- and double-word
1430 values often do not have the same high-order bits. We have already
1431 verified that we want the only defined word of the single-word value. */
1432 #ifdef REAL_ARITHMETIC
1433 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1434 && GET_MODE_BITSIZE (mode) == 32
1435 && GET_CODE (op) == CONST_DOUBLE)
1437 long l;
1438 REAL_VALUE_TYPE rv;
1440 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1441 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1443 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1444 val = l;
1445 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1447 if (BITS_PER_WORD == 16)
1449 if ((i & 1) == !WORDS_BIG_ENDIAN)
1450 val >>= 16;
1451 val &= 0xffff;
1454 return GEN_INT (val);
1456 #else
1457 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1458 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1459 || flag_pretend_float)
1460 && sizeof (float) * 8 == HOST_BITS_PER_WIDE_INT
1461 && GET_MODE_CLASS (mode) == MODE_FLOAT
1462 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1463 && GET_CODE (op) == CONST_DOUBLE)
1465 double d;
1466 union {float f; HOST_WIDE_INT i; } u;
1468 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1470 u.f = d;
1471 return GEN_INT (u.i);
1473 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1474 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1475 || flag_pretend_float)
1476 && sizeof (double) * 8 == HOST_BITS_PER_WIDE_INT
1477 && GET_MODE_CLASS (mode) == MODE_FLOAT
1478 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1479 && GET_CODE (op) == CONST_DOUBLE)
1481 double d;
1482 union {double d; HOST_WIDE_INT i; } u;
1484 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1486 u.d = d;
1487 return GEN_INT (u.i);
1489 #endif /* no REAL_ARITHMETIC */
1491 /* The only remaining cases that we can handle are integers.
1492 Convert to proper endianness now since these cases need it.
1493 At this point, i == 0 means the low-order word.
1495 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1496 in general. However, if OP is (const_int 0), we can just return
1497 it for any word. */
1499 if (op == const0_rtx)
1500 return op;
1502 if (GET_MODE_CLASS (mode) != MODE_INT
1503 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1504 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1505 return 0;
1507 if (WORDS_BIG_ENDIAN)
1508 i = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - i;
1510 /* Find out which word on the host machine this value is in and get
1511 it from the constant. */
1512 val = (i / size_ratio == 0
1513 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1514 : (GET_CODE (op) == CONST_INT
1515 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1517 /* Get the value we want into the low bits of val. */
1518 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1519 val = ((val >> ((i % size_ratio) * BITS_PER_WORD)));
1521 val = trunc_int_for_mode (val, word_mode);
1523 return GEN_INT (val);
1526 /* Similar to `operand_subword', but never return 0. If we can't extract
1527 the required subword, put OP into a register and try again. If that fails,
1528 abort. We always validate the address in this case. It is not valid
1529 to call this function after reload; it is mostly meant for RTL
1530 generation.
1532 MODE is the mode of OP, in case it is CONST_INT. */
1535 operand_subword_force (op, i, mode)
1536 rtx op;
1537 unsigned int i;
1538 enum machine_mode mode;
1540 rtx result = operand_subword (op, i, 1, mode);
1542 if (result)
1543 return result;
1545 if (mode != BLKmode && mode != VOIDmode)
1547 /* If this is a register which can not be accessed by words, copy it
1548 to a pseudo register. */
1549 if (GET_CODE (op) == REG)
1550 op = copy_to_reg (op);
1551 else
1552 op = force_reg (mode, op);
1555 result = operand_subword (op, i, 1, mode);
1556 if (result == 0)
1557 abort ();
1559 return result;
1562 /* Given a compare instruction, swap the operands.
1563 A test instruction is changed into a compare of 0 against the operand. */
1565 void
1566 reverse_comparison (insn)
1567 rtx insn;
1569 rtx body = PATTERN (insn);
1570 rtx comp;
1572 if (GET_CODE (body) == SET)
1573 comp = SET_SRC (body);
1574 else
1575 comp = SET_SRC (XVECEXP (body, 0, 0));
1577 if (GET_CODE (comp) == COMPARE)
1579 rtx op0 = XEXP (comp, 0);
1580 rtx op1 = XEXP (comp, 1);
1581 XEXP (comp, 0) = op1;
1582 XEXP (comp, 1) = op0;
1584 else
1586 rtx new = gen_rtx_COMPARE (VOIDmode,
1587 CONST0_RTX (GET_MODE (comp)), comp);
1588 if (GET_CODE (body) == SET)
1589 SET_SRC (body) = new;
1590 else
1591 SET_SRC (XVECEXP (body, 0, 0)) = new;
1595 /* Return a memory reference like MEMREF, but with its mode changed
1596 to MODE and its address changed to ADDR.
1597 (VOIDmode means don't change the mode.
1598 NULL for ADDR means don't change the address.) */
1601 change_address (memref, mode, addr)
1602 rtx memref;
1603 enum machine_mode mode;
1604 rtx addr;
1606 rtx new;
1608 if (GET_CODE (memref) != MEM)
1609 abort ();
1610 if (mode == VOIDmode)
1611 mode = GET_MODE (memref);
1612 if (addr == 0)
1613 addr = XEXP (memref, 0);
1615 /* If reload is in progress or has completed, ADDR must be valid.
1616 Otherwise, we can call memory_address to make it valid. */
1617 if (reload_completed || reload_in_progress)
1619 if (! memory_address_p (mode, addr))
1620 abort ();
1622 else
1623 addr = memory_address (mode, addr);
1625 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1626 return memref;
1628 new = gen_rtx_MEM (mode, addr);
1629 MEM_COPY_ATTRIBUTES (new, memref);
1630 return new;
1633 /* Return a newly created CODE_LABEL rtx with a unique label number. */
1636 gen_label_rtx ()
1638 register rtx label;
1640 label = gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX,
1641 NULL_RTX, label_num++, NULL_PTR, NULL_PTR);
1643 LABEL_NUSES (label) = 0;
1644 LABEL_ALTERNATE_NAME (label) = NULL;
1645 return label;
1648 /* For procedure integration. */
1650 /* Install new pointers to the first and last insns in the chain.
1651 Also, set cur_insn_uid to one higher than the last in use.
1652 Used for an inline-procedure after copying the insn chain. */
1654 void
1655 set_new_first_and_last_insn (first, last)
1656 rtx first, last;
1658 rtx insn;
1660 first_insn = first;
1661 last_insn = last;
1662 cur_insn_uid = 0;
1664 for (insn = first; insn; insn = NEXT_INSN (insn))
1665 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
1667 cur_insn_uid++;
1670 /* Set the range of label numbers found in the current function.
1671 This is used when belatedly compiling an inline function. */
1673 void
1674 set_new_first_and_last_label_num (first, last)
1675 int first, last;
1677 base_label_num = label_num;
1678 first_label_num = first;
1679 last_label_num = last;
1682 /* Set the last label number found in the current function.
1683 This is used when belatedly compiling an inline function. */
1685 void
1686 set_new_last_label_num (last)
1687 int last;
1689 base_label_num = label_num;
1690 last_label_num = last;
1693 /* Restore all variables describing the current status from the structure *P.
1694 This is used after a nested function. */
1696 void
1697 restore_emit_status (p)
1698 struct function *p ATTRIBUTE_UNUSED;
1700 last_label_num = 0;
1701 clear_emit_caches ();
1704 /* Clear out all parts of the state in F that can safely be discarded
1705 after the function has been compiled, to let garbage collection
1706 reclaim the memory. */
1708 void
1709 free_emit_status (f)
1710 struct function *f;
1712 free (f->emit->x_regno_reg_rtx);
1713 free (f->emit->regno_pointer_flag);
1714 free (f->emit->regno_pointer_align);
1715 free (f->emit);
1716 f->emit = NULL;
1719 /* Go through all the RTL insn bodies and copy any invalid shared
1720 structure. This routine should only be called once. */
1722 void
1723 unshare_all_rtl (fndecl, insn)
1724 tree fndecl;
1725 rtx insn;
1727 tree decl;
1729 /* Make sure that virtual parameters are not shared. */
1730 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1731 DECL_RTL (decl) = copy_rtx_if_shared (DECL_RTL (decl));
1733 /* Make sure that virtual stack slots are not shared. */
1734 unshare_all_decls (DECL_INITIAL (fndecl));
1736 /* Unshare just about everything else. */
1737 unshare_all_rtl_1 (insn);
1739 /* Make sure the addresses of stack slots found outside the insn chain
1740 (such as, in DECL_RTL of a variable) are not shared
1741 with the insn chain.
1743 This special care is necessary when the stack slot MEM does not
1744 actually appear in the insn chain. If it does appear, its address
1745 is unshared from all else at that point. */
1746 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
1749 /* Go through all the RTL insn bodies and copy any invalid shared
1750 structure, again. This is a fairly expensive thing to do so it
1751 should be done sparingly. */
1753 void
1754 unshare_all_rtl_again (insn)
1755 rtx insn;
1757 rtx p;
1758 tree decl;
1760 for (p = insn; p; p = NEXT_INSN (p))
1761 if (INSN_P (p))
1763 reset_used_flags (PATTERN (p));
1764 reset_used_flags (REG_NOTES (p));
1765 reset_used_flags (LOG_LINKS (p));
1768 /* Make sure that virtual stack slots are not shared. */
1769 reset_used_decls (DECL_INITIAL (cfun->decl));
1771 /* Make sure that virtual parameters are not shared. */
1772 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
1773 reset_used_flags (DECL_RTL (decl));
1775 reset_used_flags (stack_slot_list);
1777 unshare_all_rtl (cfun->decl, insn);
1780 /* Go through all the RTL insn bodies and copy any invalid shared structure.
1781 Assumes the mark bits are cleared at entry. */
1783 static void
1784 unshare_all_rtl_1 (insn)
1785 rtx insn;
1787 for (; insn; insn = NEXT_INSN (insn))
1788 if (INSN_P (insn))
1790 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
1791 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
1792 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
1796 /* Go through all virtual stack slots of a function and copy any
1797 shared structure. */
1798 static void
1799 unshare_all_decls (blk)
1800 tree blk;
1802 tree t;
1804 /* Copy shared decls. */
1805 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
1806 DECL_RTL (t) = copy_rtx_if_shared (DECL_RTL (t));
1808 /* Now process sub-blocks. */
1809 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
1810 unshare_all_decls (t);
1813 /* Go through all virtual stack slots of a function and mark them as
1814 not shared. */
1815 static void
1816 reset_used_decls (blk)
1817 tree blk;
1819 tree t;
1821 /* Mark decls. */
1822 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
1823 reset_used_flags (DECL_RTL (t));
1825 /* Now process sub-blocks. */
1826 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
1827 reset_used_decls (t);
1830 /* Mark ORIG as in use, and return a copy of it if it was already in use.
1831 Recursively does the same for subexpressions. */
1834 copy_rtx_if_shared (orig)
1835 rtx orig;
1837 register rtx x = orig;
1838 register int i;
1839 register enum rtx_code code;
1840 register const char *format_ptr;
1841 int copied = 0;
1843 if (x == 0)
1844 return 0;
1846 code = GET_CODE (x);
1848 /* These types may be freely shared. */
1850 switch (code)
1852 case REG:
1853 case QUEUED:
1854 case CONST_INT:
1855 case CONST_DOUBLE:
1856 case SYMBOL_REF:
1857 case CODE_LABEL:
1858 case PC:
1859 case CC0:
1860 case SCRATCH:
1861 /* SCRATCH must be shared because they represent distinct values. */
1862 return x;
1864 case CONST:
1865 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
1866 a LABEL_REF, it isn't sharable. */
1867 if (GET_CODE (XEXP (x, 0)) == PLUS
1868 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
1869 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
1870 return x;
1871 break;
1873 case INSN:
1874 case JUMP_INSN:
1875 case CALL_INSN:
1876 case NOTE:
1877 case BARRIER:
1878 /* The chain of insns is not being copied. */
1879 return x;
1881 case MEM:
1882 /* A MEM is allowed to be shared if its address is constant.
1884 We used to allow sharing of MEMs which referenced
1885 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
1886 that can lose. instantiate_virtual_regs will not unshare
1887 the MEMs, and combine may change the structure of the address
1888 because it looks safe and profitable in one context, but
1889 in some other context it creates unrecognizable RTL. */
1890 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
1891 return x;
1893 break;
1895 default:
1896 break;
1899 /* This rtx may not be shared. If it has already been seen,
1900 replace it with a copy of itself. */
1902 if (x->used)
1904 register rtx copy;
1906 copy = rtx_alloc (code);
1907 bcopy ((char *) x, (char *) copy,
1908 (sizeof (*copy) - sizeof (copy->fld)
1909 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
1910 x = copy;
1911 copied = 1;
1913 x->used = 1;
1915 /* Now scan the subexpressions recursively.
1916 We can store any replaced subexpressions directly into X
1917 since we know X is not shared! Any vectors in X
1918 must be copied if X was copied. */
1920 format_ptr = GET_RTX_FORMAT (code);
1922 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1924 switch (*format_ptr++)
1926 case 'e':
1927 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
1928 break;
1930 case 'E':
1931 if (XVEC (x, i) != NULL)
1933 register int j;
1934 int len = XVECLEN (x, i);
1936 if (copied && len > 0)
1937 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
1938 for (j = 0; j < len; j++)
1939 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
1941 break;
1944 return x;
1947 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
1948 to look for shared sub-parts. */
1950 void
1951 reset_used_flags (x)
1952 rtx x;
1954 register int i, j;
1955 register enum rtx_code code;
1956 register const char *format_ptr;
1958 if (x == 0)
1959 return;
1961 code = GET_CODE (x);
1963 /* These types may be freely shared so we needn't do any resetting
1964 for them. */
1966 switch (code)
1968 case REG:
1969 case QUEUED:
1970 case CONST_INT:
1971 case CONST_DOUBLE:
1972 case SYMBOL_REF:
1973 case CODE_LABEL:
1974 case PC:
1975 case CC0:
1976 return;
1978 case INSN:
1979 case JUMP_INSN:
1980 case CALL_INSN:
1981 case NOTE:
1982 case LABEL_REF:
1983 case BARRIER:
1984 /* The chain of insns is not being copied. */
1985 return;
1987 default:
1988 break;
1991 x->used = 0;
1993 format_ptr = GET_RTX_FORMAT (code);
1994 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1996 switch (*format_ptr++)
1998 case 'e':
1999 reset_used_flags (XEXP (x, i));
2000 break;
2002 case 'E':
2003 for (j = 0; j < XVECLEN (x, i); j++)
2004 reset_used_flags (XVECEXP (x, i, j));
2005 break;
2010 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2011 Return X or the rtx for the pseudo reg the value of X was copied into.
2012 OTHER must be valid as a SET_DEST. */
2015 make_safe_from (x, other)
2016 rtx x, other;
2018 while (1)
2019 switch (GET_CODE (other))
2021 case SUBREG:
2022 other = SUBREG_REG (other);
2023 break;
2024 case STRICT_LOW_PART:
2025 case SIGN_EXTEND:
2026 case ZERO_EXTEND:
2027 other = XEXP (other, 0);
2028 break;
2029 default:
2030 goto done;
2032 done:
2033 if ((GET_CODE (other) == MEM
2034 && ! CONSTANT_P (x)
2035 && GET_CODE (x) != REG
2036 && GET_CODE (x) != SUBREG)
2037 || (GET_CODE (other) == REG
2038 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2039 || reg_mentioned_p (other, x))))
2041 rtx temp = gen_reg_rtx (GET_MODE (x));
2042 emit_move_insn (temp, x);
2043 return temp;
2045 return x;
2048 /* Emission of insns (adding them to the doubly-linked list). */
2050 /* Return the first insn of the current sequence or current function. */
2053 get_insns ()
2055 return first_insn;
2058 /* Return the last insn emitted in current sequence or current function. */
2061 get_last_insn ()
2063 return last_insn;
2066 /* Specify a new insn as the last in the chain. */
2068 void
2069 set_last_insn (insn)
2070 rtx insn;
2072 if (NEXT_INSN (insn) != 0)
2073 abort ();
2074 last_insn = insn;
2077 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2080 get_last_insn_anywhere ()
2082 struct sequence_stack *stack;
2083 if (last_insn)
2084 return last_insn;
2085 for (stack = seq_stack; stack; stack = stack->next)
2086 if (stack->last != 0)
2087 return stack->last;
2088 return 0;
2091 /* Return a number larger than any instruction's uid in this function. */
2094 get_max_uid ()
2096 return cur_insn_uid;
2099 /* Renumber instructions so that no instruction UIDs are wasted. */
2101 void
2102 renumber_insns (stream)
2103 FILE *stream;
2105 rtx insn;
2107 /* If we're not supposed to renumber instructions, don't. */
2108 if (!flag_renumber_insns)
2109 return;
2111 /* If there aren't that many instructions, then it's not really
2112 worth renumbering them. */
2113 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2114 return;
2116 cur_insn_uid = 1;
2118 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2120 if (stream)
2121 fprintf (stream, "Renumbering insn %d to %d\n",
2122 INSN_UID (insn), cur_insn_uid);
2123 INSN_UID (insn) = cur_insn_uid++;
2127 /* Return the next insn. If it is a SEQUENCE, return the first insn
2128 of the sequence. */
2131 next_insn (insn)
2132 rtx insn;
2134 if (insn)
2136 insn = NEXT_INSN (insn);
2137 if (insn && GET_CODE (insn) == INSN
2138 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2139 insn = XVECEXP (PATTERN (insn), 0, 0);
2142 return insn;
2145 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2146 of the sequence. */
2149 previous_insn (insn)
2150 rtx insn;
2152 if (insn)
2154 insn = PREV_INSN (insn);
2155 if (insn && GET_CODE (insn) == INSN
2156 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2157 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2160 return insn;
2163 /* Return the next insn after INSN that is not a NOTE. This routine does not
2164 look inside SEQUENCEs. */
2167 next_nonnote_insn (insn)
2168 rtx insn;
2170 while (insn)
2172 insn = NEXT_INSN (insn);
2173 if (insn == 0 || GET_CODE (insn) != NOTE)
2174 break;
2177 return insn;
2180 /* Return the previous insn before INSN that is not a NOTE. This routine does
2181 not look inside SEQUENCEs. */
2184 prev_nonnote_insn (insn)
2185 rtx insn;
2187 while (insn)
2189 insn = PREV_INSN (insn);
2190 if (insn == 0 || GET_CODE (insn) != NOTE)
2191 break;
2194 return insn;
2197 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2198 or 0, if there is none. This routine does not look inside
2199 SEQUENCEs. */
2202 next_real_insn (insn)
2203 rtx insn;
2205 while (insn)
2207 insn = NEXT_INSN (insn);
2208 if (insn == 0 || GET_CODE (insn) == INSN
2209 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2210 break;
2213 return insn;
2216 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2217 or 0, if there is none. This routine does not look inside
2218 SEQUENCEs. */
2221 prev_real_insn (insn)
2222 rtx insn;
2224 while (insn)
2226 insn = PREV_INSN (insn);
2227 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
2228 || GET_CODE (insn) == JUMP_INSN)
2229 break;
2232 return insn;
2235 /* Find the next insn after INSN that really does something. This routine
2236 does not look inside SEQUENCEs. Until reload has completed, this is the
2237 same as next_real_insn. */
2240 active_insn_p (insn)
2241 rtx insn;
2243 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2244 || (GET_CODE (insn) == INSN
2245 && (! reload_completed
2246 || (GET_CODE (PATTERN (insn)) != USE
2247 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2251 next_active_insn (insn)
2252 rtx insn;
2254 while (insn)
2256 insn = NEXT_INSN (insn);
2257 if (insn == 0 || active_insn_p (insn))
2258 break;
2261 return insn;
2264 /* Find the last insn before INSN that really does something. This routine
2265 does not look inside SEQUENCEs. Until reload has completed, this is the
2266 same as prev_real_insn. */
2269 prev_active_insn (insn)
2270 rtx insn;
2272 while (insn)
2274 insn = PREV_INSN (insn);
2275 if (insn == 0 || active_insn_p (insn))
2276 break;
2279 return insn;
2282 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2285 next_label (insn)
2286 rtx insn;
2288 while (insn)
2290 insn = NEXT_INSN (insn);
2291 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2292 break;
2295 return insn;
2298 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2301 prev_label (insn)
2302 rtx insn;
2304 while (insn)
2306 insn = PREV_INSN (insn);
2307 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2308 break;
2311 return insn;
2314 #ifdef HAVE_cc0
2315 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2316 and REG_CC_USER notes so we can find it. */
2318 void
2319 link_cc0_insns (insn)
2320 rtx insn;
2322 rtx user = next_nonnote_insn (insn);
2324 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
2325 user = XVECEXP (PATTERN (user), 0, 0);
2327 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
2328 REG_NOTES (user));
2329 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
2332 /* Return the next insn that uses CC0 after INSN, which is assumed to
2333 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2334 applied to the result of this function should yield INSN).
2336 Normally, this is simply the next insn. However, if a REG_CC_USER note
2337 is present, it contains the insn that uses CC0.
2339 Return 0 if we can't find the insn. */
2342 next_cc0_user (insn)
2343 rtx insn;
2345 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
2347 if (note)
2348 return XEXP (note, 0);
2350 insn = next_nonnote_insn (insn);
2351 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
2352 insn = XVECEXP (PATTERN (insn), 0, 0);
2354 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
2355 return insn;
2357 return 0;
2360 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
2361 note, it is the previous insn. */
2364 prev_cc0_setter (insn)
2365 rtx insn;
2367 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2369 if (note)
2370 return XEXP (note, 0);
2372 insn = prev_nonnote_insn (insn);
2373 if (! sets_cc0_p (PATTERN (insn)))
2374 abort ();
2376 return insn;
2378 #endif
2380 /* Try splitting insns that can be split for better scheduling.
2381 PAT is the pattern which might split.
2382 TRIAL is the insn providing PAT.
2383 LAST is non-zero if we should return the last insn of the sequence produced.
2385 If this routine succeeds in splitting, it returns the first or last
2386 replacement insn depending on the value of LAST. Otherwise, it
2387 returns TRIAL. If the insn to be returned can be split, it will be. */
2390 try_split (pat, trial, last)
2391 rtx pat, trial;
2392 int last;
2394 rtx before = PREV_INSN (trial);
2395 rtx after = NEXT_INSN (trial);
2396 rtx seq = split_insns (pat, trial);
2397 int has_barrier = 0;
2398 rtx tem;
2400 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
2401 We may need to handle this specially. */
2402 if (after && GET_CODE (after) == BARRIER)
2404 has_barrier = 1;
2405 after = NEXT_INSN (after);
2408 if (seq)
2410 /* SEQ can either be a SEQUENCE or the pattern of a single insn.
2411 The latter case will normally arise only when being done so that
2412 it, in turn, will be split (SFmode on the 29k is an example). */
2413 if (GET_CODE (seq) == SEQUENCE)
2415 int i;
2417 /* Avoid infinite loop if any insn of the result matches
2418 the original pattern. */
2419 for (i = 0; i < XVECLEN (seq, 0); i++)
2420 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN
2421 && rtx_equal_p (PATTERN (XVECEXP (seq, 0, i)), pat))
2422 return trial;
2424 /* If we are splitting a JUMP_INSN, look for the JUMP_INSN in
2425 SEQ and copy our JUMP_LABEL to it. If JUMP_LABEL is non-zero,
2426 increment the usage count so we don't delete the label. */
2428 if (GET_CODE (trial) == JUMP_INSN)
2429 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2430 if (GET_CODE (XVECEXP (seq, 0, i)) == JUMP_INSN)
2432 JUMP_LABEL (XVECEXP (seq, 0, i)) = JUMP_LABEL (trial);
2434 if (JUMP_LABEL (trial))
2435 LABEL_NUSES (JUMP_LABEL (trial))++;
2438 tem = emit_insn_after (seq, before);
2440 delete_insn (trial);
2441 if (has_barrier)
2442 emit_barrier_after (tem);
2444 /* Recursively call try_split for each new insn created; by the
2445 time control returns here that insn will be fully split, so
2446 set LAST and continue from the insn after the one returned.
2447 We can't use next_active_insn here since AFTER may be a note.
2448 Ignore deleted insns, which can be occur if not optimizing. */
2449 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
2450 if (! INSN_DELETED_P (tem) && INSN_P (tem))
2451 tem = try_split (PATTERN (tem), tem, 1);
2453 /* Avoid infinite loop if the result matches the original pattern. */
2454 else if (rtx_equal_p (seq, pat))
2455 return trial;
2456 else
2458 PATTERN (trial) = seq;
2459 INSN_CODE (trial) = -1;
2460 try_split (seq, trial, last);
2463 /* Return either the first or the last insn, depending on which was
2464 requested. */
2465 return last
2466 ? (after ? prev_active_insn (after) : last_insn)
2467 : next_active_insn (before);
2470 return trial;
2473 /* Make and return an INSN rtx, initializing all its slots.
2474 Store PATTERN in the pattern slots. */
2477 make_insn_raw (pattern)
2478 rtx pattern;
2480 register rtx insn;
2482 insn = rtx_alloc (INSN);
2484 INSN_UID (insn) = cur_insn_uid++;
2485 PATTERN (insn) = pattern;
2486 INSN_CODE (insn) = -1;
2487 LOG_LINKS (insn) = NULL;
2488 REG_NOTES (insn) = NULL;
2490 #ifdef ENABLE_RTL_CHECKING
2491 if (insn
2492 && INSN_P (insn)
2493 && (returnjump_p (insn)
2494 || (GET_CODE (insn) == SET
2495 && SET_DEST (insn) == pc_rtx)))
2497 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
2498 debug_rtx (insn);
2500 #endif
2502 return insn;
2505 /* Like `make_insn' but make a JUMP_INSN instead of an insn. */
2507 static rtx
2508 make_jump_insn_raw (pattern)
2509 rtx pattern;
2511 register rtx insn;
2513 insn = rtx_alloc (JUMP_INSN);
2514 INSN_UID (insn) = cur_insn_uid++;
2516 PATTERN (insn) = pattern;
2517 INSN_CODE (insn) = -1;
2518 LOG_LINKS (insn) = NULL;
2519 REG_NOTES (insn) = NULL;
2520 JUMP_LABEL (insn) = NULL;
2522 return insn;
2525 /* Like `make_insn' but make a CALL_INSN instead of an insn. */
2527 static rtx
2528 make_call_insn_raw (pattern)
2529 rtx pattern;
2531 register rtx insn;
2533 insn = rtx_alloc (CALL_INSN);
2534 INSN_UID (insn) = cur_insn_uid++;
2536 PATTERN (insn) = pattern;
2537 INSN_CODE (insn) = -1;
2538 LOG_LINKS (insn) = NULL;
2539 REG_NOTES (insn) = NULL;
2540 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
2542 return insn;
2545 /* Add INSN to the end of the doubly-linked list.
2546 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
2548 void
2549 add_insn (insn)
2550 register rtx insn;
2552 PREV_INSN (insn) = last_insn;
2553 NEXT_INSN (insn) = 0;
2555 if (NULL != last_insn)
2556 NEXT_INSN (last_insn) = insn;
2558 if (NULL == first_insn)
2559 first_insn = insn;
2561 last_insn = insn;
2564 /* Add INSN into the doubly-linked list after insn AFTER. This and
2565 the next should be the only functions called to insert an insn once
2566 delay slots have been filled since only they know how to update a
2567 SEQUENCE. */
2569 void
2570 add_insn_after (insn, after)
2571 rtx insn, after;
2573 rtx next = NEXT_INSN (after);
2575 if (optimize && INSN_DELETED_P (after))
2576 abort ();
2578 NEXT_INSN (insn) = next;
2579 PREV_INSN (insn) = after;
2581 if (next)
2583 PREV_INSN (next) = insn;
2584 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2585 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
2587 else if (last_insn == after)
2588 last_insn = insn;
2589 else
2591 struct sequence_stack *stack = seq_stack;
2592 /* Scan all pending sequences too. */
2593 for (; stack; stack = stack->next)
2594 if (after == stack->last)
2596 stack->last = insn;
2597 break;
2600 if (stack == 0)
2601 abort ();
2604 NEXT_INSN (after) = insn;
2605 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
2607 rtx sequence = PATTERN (after);
2608 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
2612 /* Add INSN into the doubly-linked list before insn BEFORE. This and
2613 the previous should be the only functions called to insert an insn once
2614 delay slots have been filled since only they know how to update a
2615 SEQUENCE. */
2617 void
2618 add_insn_before (insn, before)
2619 rtx insn, before;
2621 rtx prev = PREV_INSN (before);
2623 if (optimize && INSN_DELETED_P (before))
2624 abort ();
2626 PREV_INSN (insn) = prev;
2627 NEXT_INSN (insn) = before;
2629 if (prev)
2631 NEXT_INSN (prev) = insn;
2632 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2634 rtx sequence = PATTERN (prev);
2635 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
2638 else if (first_insn == before)
2639 first_insn = insn;
2640 else
2642 struct sequence_stack *stack = seq_stack;
2643 /* Scan all pending sequences too. */
2644 for (; stack; stack = stack->next)
2645 if (before == stack->first)
2647 stack->first = insn;
2648 break;
2651 if (stack == 0)
2652 abort ();
2655 PREV_INSN (before) = insn;
2656 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
2657 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
2660 /* Remove an insn from its doubly-linked list. This function knows how
2661 to handle sequences. */
2662 void
2663 remove_insn (insn)
2664 rtx insn;
2666 rtx next = NEXT_INSN (insn);
2667 rtx prev = PREV_INSN (insn);
2668 if (prev)
2670 NEXT_INSN (prev) = next;
2671 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2673 rtx sequence = PATTERN (prev);
2674 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
2677 else if (first_insn == insn)
2678 first_insn = next;
2679 else
2681 struct sequence_stack *stack = seq_stack;
2682 /* Scan all pending sequences too. */
2683 for (; stack; stack = stack->next)
2684 if (insn == stack->first)
2686 stack->first = next;
2687 break;
2690 if (stack == 0)
2691 abort ();
2694 if (next)
2696 PREV_INSN (next) = prev;
2697 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2698 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
2700 else if (last_insn == insn)
2701 last_insn = prev;
2702 else
2704 struct sequence_stack *stack = seq_stack;
2705 /* Scan all pending sequences too. */
2706 for (; stack; stack = stack->next)
2707 if (insn == stack->last)
2709 stack->last = prev;
2710 break;
2713 if (stack == 0)
2714 abort ();
2718 /* Delete all insns made since FROM.
2719 FROM becomes the new last instruction. */
2721 void
2722 delete_insns_since (from)
2723 rtx from;
2725 if (from == 0)
2726 first_insn = 0;
2727 else
2728 NEXT_INSN (from) = 0;
2729 last_insn = from;
2732 /* This function is deprecated, please use sequences instead.
2734 Move a consecutive bunch of insns to a different place in the chain.
2735 The insns to be moved are those between FROM and TO.
2736 They are moved to a new position after the insn AFTER.
2737 AFTER must not be FROM or TO or any insn in between.
2739 This function does not know about SEQUENCEs and hence should not be
2740 called after delay-slot filling has been done. */
2742 void
2743 reorder_insns (from, to, after)
2744 rtx from, to, after;
2746 /* Splice this bunch out of where it is now. */
2747 if (PREV_INSN (from))
2748 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
2749 if (NEXT_INSN (to))
2750 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
2751 if (last_insn == to)
2752 last_insn = PREV_INSN (from);
2753 if (first_insn == from)
2754 first_insn = NEXT_INSN (to);
2756 /* Make the new neighbors point to it and it to them. */
2757 if (NEXT_INSN (after))
2758 PREV_INSN (NEXT_INSN (after)) = to;
2760 NEXT_INSN (to) = NEXT_INSN (after);
2761 PREV_INSN (from) = after;
2762 NEXT_INSN (after) = from;
2763 if (after == last_insn)
2764 last_insn = to;
2767 /* Return the line note insn preceding INSN. */
2769 static rtx
2770 find_line_note (insn)
2771 rtx insn;
2773 if (no_line_numbers)
2774 return 0;
2776 for (; insn; insn = PREV_INSN (insn))
2777 if (GET_CODE (insn) == NOTE
2778 && NOTE_LINE_NUMBER (insn) >= 0)
2779 break;
2781 return insn;
2784 /* Like reorder_insns, but inserts line notes to preserve the line numbers
2785 of the moved insns when debugging. This may insert a note between AFTER
2786 and FROM, and another one after TO. */
2788 void
2789 reorder_insns_with_line_notes (from, to, after)
2790 rtx from, to, after;
2792 rtx from_line = find_line_note (from);
2793 rtx after_line = find_line_note (after);
2795 reorder_insns (from, to, after);
2797 if (from_line == after_line)
2798 return;
2800 if (from_line)
2801 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
2802 NOTE_LINE_NUMBER (from_line),
2803 after);
2804 if (after_line)
2805 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
2806 NOTE_LINE_NUMBER (after_line),
2807 to);
2810 /* Remove unnecessary notes from the instruction stream. */
2812 void
2813 remove_unnecessary_notes ()
2815 rtx insn;
2816 rtx next;
2818 /* We must not remove the first instruction in the function because
2819 the compiler depends on the first instruction being a note. */
2820 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
2822 /* Remember what's next. */
2823 next = NEXT_INSN (insn);
2825 /* We're only interested in notes. */
2826 if (GET_CODE (insn) != NOTE)
2827 continue;
2829 /* By now, all notes indicating lexical blocks should have
2830 NOTE_BLOCK filled in. */
2831 if ((NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2832 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
2833 && NOTE_BLOCK (insn) == NULL_TREE)
2834 abort ();
2836 /* Remove NOTE_INSN_DELETED notes. */
2837 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
2838 remove_insn (insn);
2839 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
2841 /* Scan back to see if there are any non-note instructions
2842 between INSN and the beginning of this block. If not,
2843 then there is no PC range in the generated code that will
2844 actually be in this block, so there's no point in
2845 remembering the existence of the block. */
2846 rtx prev;
2848 for (prev = PREV_INSN (insn); prev; prev = PREV_INSN (prev))
2850 /* This block contains a real instruction. Note that we
2851 don't include labels; if the only thing in the block
2852 is a label, then there are still no PC values that
2853 lie within the block. */
2854 if (INSN_P (prev))
2855 break;
2857 /* We're only interested in NOTEs. */
2858 if (GET_CODE (prev) != NOTE)
2859 continue;
2861 if (NOTE_LINE_NUMBER (prev) == NOTE_INSN_BLOCK_BEG)
2863 /* If the BLOCKs referred to by these notes don't
2864 match, then something is wrong with our BLOCK
2865 nesting structure. */
2866 if (NOTE_BLOCK (prev) != NOTE_BLOCK (insn))
2867 abort ();
2869 if (debug_ignore_block (NOTE_BLOCK (insn)))
2871 remove_insn (prev);
2872 remove_insn (insn);
2874 break;
2876 else if (NOTE_LINE_NUMBER (prev) == NOTE_INSN_BLOCK_END)
2877 /* There's a nested block. We need to leave the
2878 current block in place since otherwise the debugger
2879 wouldn't be able to show symbols from our block in
2880 the nested block. */
2881 break;
2888 /* Emit an insn of given code and pattern
2889 at a specified place within the doubly-linked list. */
2891 /* Make an instruction with body PATTERN
2892 and output it before the instruction BEFORE. */
2895 emit_insn_before (pattern, before)
2896 register rtx pattern, before;
2898 register rtx insn = before;
2900 if (GET_CODE (pattern) == SEQUENCE)
2902 register int i;
2904 for (i = 0; i < XVECLEN (pattern, 0); i++)
2906 insn = XVECEXP (pattern, 0, i);
2907 add_insn_before (insn, before);
2910 else
2912 insn = make_insn_raw (pattern);
2913 add_insn_before (insn, before);
2916 return insn;
2919 /* Similar to emit_insn_before, but update basic block boundaries as well. */
2922 emit_block_insn_before (pattern, before, block)
2923 rtx pattern, before;
2924 basic_block block;
2926 rtx prev = PREV_INSN (before);
2927 rtx r = emit_insn_before (pattern, before);
2928 if (block && block->head == before)
2929 block->head = NEXT_INSN (prev);
2930 return r;
2933 /* Make an instruction with body PATTERN and code JUMP_INSN
2934 and output it before the instruction BEFORE. */
2937 emit_jump_insn_before (pattern, before)
2938 register rtx pattern, before;
2940 register rtx insn;
2942 if (GET_CODE (pattern) == SEQUENCE)
2943 insn = emit_insn_before (pattern, before);
2944 else
2946 insn = make_jump_insn_raw (pattern);
2947 add_insn_before (insn, before);
2950 return insn;
2953 /* Make an instruction with body PATTERN and code CALL_INSN
2954 and output it before the instruction BEFORE. */
2957 emit_call_insn_before (pattern, before)
2958 register rtx pattern, before;
2960 register rtx insn;
2962 if (GET_CODE (pattern) == SEQUENCE)
2963 insn = emit_insn_before (pattern, before);
2964 else
2966 insn = make_call_insn_raw (pattern);
2967 add_insn_before (insn, before);
2968 PUT_CODE (insn, CALL_INSN);
2971 return insn;
2974 /* Make an insn of code BARRIER
2975 and output it before the insn BEFORE. */
2978 emit_barrier_before (before)
2979 register rtx before;
2981 register rtx insn = rtx_alloc (BARRIER);
2983 INSN_UID (insn) = cur_insn_uid++;
2985 add_insn_before (insn, before);
2986 return insn;
2989 /* Emit the label LABEL before the insn BEFORE. */
2992 emit_label_before (label, before)
2993 rtx label, before;
2995 /* This can be called twice for the same label as a result of the
2996 confusion that follows a syntax error! So make it harmless. */
2997 if (INSN_UID (label) == 0)
2999 INSN_UID (label) = cur_insn_uid++;
3000 add_insn_before (label, before);
3003 return label;
3006 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3009 emit_note_before (subtype, before)
3010 int subtype;
3011 rtx before;
3013 register rtx note = rtx_alloc (NOTE);
3014 INSN_UID (note) = cur_insn_uid++;
3015 NOTE_SOURCE_FILE (note) = 0;
3016 NOTE_LINE_NUMBER (note) = subtype;
3018 add_insn_before (note, before);
3019 return note;
3022 /* Make an insn of code INSN with body PATTERN
3023 and output it after the insn AFTER. */
3026 emit_insn_after (pattern, after)
3027 register rtx pattern, after;
3029 register rtx insn = after;
3031 if (GET_CODE (pattern) == SEQUENCE)
3033 register int i;
3035 for (i = 0; i < XVECLEN (pattern, 0); i++)
3037 insn = XVECEXP (pattern, 0, i);
3038 add_insn_after (insn, after);
3039 after = insn;
3042 else
3044 insn = make_insn_raw (pattern);
3045 add_insn_after (insn, after);
3048 return insn;
3051 /* Similar to emit_insn_after, except that line notes are to be inserted so
3052 as to act as if this insn were at FROM. */
3054 void
3055 emit_insn_after_with_line_notes (pattern, after, from)
3056 rtx pattern, after, from;
3058 rtx from_line = find_line_note (from);
3059 rtx after_line = find_line_note (after);
3060 rtx insn = emit_insn_after (pattern, after);
3062 if (from_line)
3063 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3064 NOTE_LINE_NUMBER (from_line),
3065 after);
3067 if (after_line)
3068 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3069 NOTE_LINE_NUMBER (after_line),
3070 insn);
3073 /* Similar to emit_insn_after, but update basic block boundaries as well. */
3076 emit_block_insn_after (pattern, after, block)
3077 rtx pattern, after;
3078 basic_block block;
3080 rtx r = emit_insn_after (pattern, after);
3081 if (block && block->end == after)
3082 block->end = r;
3083 return r;
3086 /* Make an insn of code JUMP_INSN with body PATTERN
3087 and output it after the insn AFTER. */
3090 emit_jump_insn_after (pattern, after)
3091 register rtx pattern, after;
3093 register rtx insn;
3095 if (GET_CODE (pattern) == SEQUENCE)
3096 insn = emit_insn_after (pattern, after);
3097 else
3099 insn = make_jump_insn_raw (pattern);
3100 add_insn_after (insn, after);
3103 return insn;
3106 /* Make an insn of code BARRIER
3107 and output it after the insn AFTER. */
3110 emit_barrier_after (after)
3111 register rtx after;
3113 register rtx insn = rtx_alloc (BARRIER);
3115 INSN_UID (insn) = cur_insn_uid++;
3117 add_insn_after (insn, after);
3118 return insn;
3121 /* Emit the label LABEL after the insn AFTER. */
3124 emit_label_after (label, after)
3125 rtx label, after;
3127 /* This can be called twice for the same label
3128 as a result of the confusion that follows a syntax error!
3129 So make it harmless. */
3130 if (INSN_UID (label) == 0)
3132 INSN_UID (label) = cur_insn_uid++;
3133 add_insn_after (label, after);
3136 return label;
3139 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
3142 emit_note_after (subtype, after)
3143 int subtype;
3144 rtx after;
3146 register rtx note = rtx_alloc (NOTE);
3147 INSN_UID (note) = cur_insn_uid++;
3148 NOTE_SOURCE_FILE (note) = 0;
3149 NOTE_LINE_NUMBER (note) = subtype;
3150 add_insn_after (note, after);
3151 return note;
3154 /* Emit a line note for FILE and LINE after the insn AFTER. */
3157 emit_line_note_after (file, line, after)
3158 const char *file;
3159 int line;
3160 rtx after;
3162 register rtx note;
3164 if (no_line_numbers && line > 0)
3166 cur_insn_uid++;
3167 return 0;
3170 note = rtx_alloc (NOTE);
3171 INSN_UID (note) = cur_insn_uid++;
3172 NOTE_SOURCE_FILE (note) = file;
3173 NOTE_LINE_NUMBER (note) = line;
3174 add_insn_after (note, after);
3175 return note;
3178 /* Make an insn of code INSN with pattern PATTERN
3179 and add it to the end of the doubly-linked list.
3180 If PATTERN is a SEQUENCE, take the elements of it
3181 and emit an insn for each element.
3183 Returns the last insn emitted. */
3186 emit_insn (pattern)
3187 rtx pattern;
3189 rtx insn = last_insn;
3191 if (GET_CODE (pattern) == SEQUENCE)
3193 register int i;
3195 for (i = 0; i < XVECLEN (pattern, 0); i++)
3197 insn = XVECEXP (pattern, 0, i);
3198 add_insn (insn);
3201 else
3203 insn = make_insn_raw (pattern);
3204 add_insn (insn);
3207 return insn;
3210 /* Emit the insns in a chain starting with INSN.
3211 Return the last insn emitted. */
3214 emit_insns (insn)
3215 rtx insn;
3217 rtx last = 0;
3219 while (insn)
3221 rtx next = NEXT_INSN (insn);
3222 add_insn (insn);
3223 last = insn;
3224 insn = next;
3227 return last;
3230 /* Emit the insns in a chain starting with INSN and place them in front of
3231 the insn BEFORE. Return the last insn emitted. */
3234 emit_insns_before (insn, before)
3235 rtx insn;
3236 rtx before;
3238 rtx last = 0;
3240 while (insn)
3242 rtx next = NEXT_INSN (insn);
3243 add_insn_before (insn, before);
3244 last = insn;
3245 insn = next;
3248 return last;
3251 /* Emit the insns in a chain starting with FIRST and place them in back of
3252 the insn AFTER. Return the last insn emitted. */
3255 emit_insns_after (first, after)
3256 register rtx first;
3257 register rtx after;
3259 register rtx last;
3260 register rtx after_after;
3262 if (!after)
3263 abort ();
3265 if (!first)
3266 return first;
3268 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3269 continue;
3271 after_after = NEXT_INSN (after);
3273 NEXT_INSN (after) = first;
3274 PREV_INSN (first) = after;
3275 NEXT_INSN (last) = after_after;
3276 if (after_after)
3277 PREV_INSN (after_after) = last;
3279 if (after == last_insn)
3280 last_insn = last;
3281 return last;
3284 /* Make an insn of code JUMP_INSN with pattern PATTERN
3285 and add it to the end of the doubly-linked list. */
3288 emit_jump_insn (pattern)
3289 rtx pattern;
3291 if (GET_CODE (pattern) == SEQUENCE)
3292 return emit_insn (pattern);
3293 else
3295 register rtx insn = make_jump_insn_raw (pattern);
3296 add_insn (insn);
3297 return insn;
3301 /* Make an insn of code CALL_INSN with pattern PATTERN
3302 and add it to the end of the doubly-linked list. */
3305 emit_call_insn (pattern)
3306 rtx pattern;
3308 if (GET_CODE (pattern) == SEQUENCE)
3309 return emit_insn (pattern);
3310 else
3312 register rtx insn = make_call_insn_raw (pattern);
3313 add_insn (insn);
3314 PUT_CODE (insn, CALL_INSN);
3315 return insn;
3319 /* Add the label LABEL to the end of the doubly-linked list. */
3322 emit_label (label)
3323 rtx label;
3325 /* This can be called twice for the same label
3326 as a result of the confusion that follows a syntax error!
3327 So make it harmless. */
3328 if (INSN_UID (label) == 0)
3330 INSN_UID (label) = cur_insn_uid++;
3331 add_insn (label);
3333 return label;
3336 /* Make an insn of code BARRIER
3337 and add it to the end of the doubly-linked list. */
3340 emit_barrier ()
3342 register rtx barrier = rtx_alloc (BARRIER);
3343 INSN_UID (barrier) = cur_insn_uid++;
3344 add_insn (barrier);
3345 return barrier;
3348 /* Make an insn of code NOTE
3349 with data-fields specified by FILE and LINE
3350 and add it to the end of the doubly-linked list,
3351 but only if line-numbers are desired for debugging info. */
3354 emit_line_note (file, line)
3355 const char *file;
3356 int line;
3358 set_file_and_line_for_stmt (file, line);
3360 #if 0
3361 if (no_line_numbers)
3362 return 0;
3363 #endif
3365 return emit_note (file, line);
3368 /* Make an insn of code NOTE
3369 with data-fields specified by FILE and LINE
3370 and add it to the end of the doubly-linked list.
3371 If it is a line-number NOTE, omit it if it matches the previous one. */
3374 emit_note (file, line)
3375 const char *file;
3376 int line;
3378 register rtx note;
3380 if (line > 0)
3382 if (file && last_filename && !strcmp (file, last_filename)
3383 && line == last_linenum)
3384 return 0;
3385 last_filename = file;
3386 last_linenum = line;
3389 if (no_line_numbers && line > 0)
3391 cur_insn_uid++;
3392 return 0;
3395 note = rtx_alloc (NOTE);
3396 INSN_UID (note) = cur_insn_uid++;
3397 NOTE_SOURCE_FILE (note) = file;
3398 NOTE_LINE_NUMBER (note) = line;
3399 add_insn (note);
3400 return note;
3403 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
3406 emit_line_note_force (file, line)
3407 const char *file;
3408 int line;
3410 last_linenum = -1;
3411 return emit_line_note (file, line);
3414 /* Cause next statement to emit a line note even if the line number
3415 has not changed. This is used at the beginning of a function. */
3417 void
3418 force_next_line_note ()
3420 last_linenum = -1;
3423 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
3424 note of this type already exists, remove it first. */
3426 void
3427 set_unique_reg_note (insn, kind, datum)
3428 rtx insn;
3429 enum reg_note kind;
3430 rtx datum;
3432 rtx note = find_reg_note (insn, kind, NULL_RTX);
3434 /* First remove the note if there already is one. */
3435 if (note)
3436 remove_note (insn, note);
3438 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
3441 /* Return an indication of which type of insn should have X as a body.
3442 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
3444 enum rtx_code
3445 classify_insn (x)
3446 rtx x;
3448 if (GET_CODE (x) == CODE_LABEL)
3449 return CODE_LABEL;
3450 if (GET_CODE (x) == CALL)
3451 return CALL_INSN;
3452 if (GET_CODE (x) == RETURN)
3453 return JUMP_INSN;
3454 if (GET_CODE (x) == SET)
3456 if (SET_DEST (x) == pc_rtx)
3457 return JUMP_INSN;
3458 else if (GET_CODE (SET_SRC (x)) == CALL)
3459 return CALL_INSN;
3460 else
3461 return INSN;
3463 if (GET_CODE (x) == PARALLEL)
3465 register int j;
3466 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
3467 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
3468 return CALL_INSN;
3469 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3470 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
3471 return JUMP_INSN;
3472 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3473 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
3474 return CALL_INSN;
3476 return INSN;
3479 /* Emit the rtl pattern X as an appropriate kind of insn.
3480 If X is a label, it is simply added into the insn chain. */
3483 emit (x)
3484 rtx x;
3486 enum rtx_code code = classify_insn (x);
3488 if (code == CODE_LABEL)
3489 return emit_label (x);
3490 else if (code == INSN)
3491 return emit_insn (x);
3492 else if (code == JUMP_INSN)
3494 register rtx insn = emit_jump_insn (x);
3495 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
3496 return emit_barrier ();
3497 return insn;
3499 else if (code == CALL_INSN)
3500 return emit_call_insn (x);
3501 else
3502 abort ();
3505 /* Begin emitting insns to a sequence which can be packaged in an
3506 RTL_EXPR. If this sequence will contain something that might cause
3507 the compiler to pop arguments to function calls (because those
3508 pops have previously been deferred; see INHIBIT_DEFER_POP for more
3509 details), use do_pending_stack_adjust before calling this function.
3510 That will ensure that the deferred pops are not accidentally
3511 emitted in the middle of this sequence. */
3513 void
3514 start_sequence ()
3516 struct sequence_stack *tem;
3518 tem = (struct sequence_stack *) xmalloc (sizeof (struct sequence_stack));
3520 tem->next = seq_stack;
3521 tem->first = first_insn;
3522 tem->last = last_insn;
3523 tem->sequence_rtl_expr = seq_rtl_expr;
3525 seq_stack = tem;
3527 first_insn = 0;
3528 last_insn = 0;
3531 /* Similarly, but indicate that this sequence will be placed in T, an
3532 RTL_EXPR. See the documentation for start_sequence for more
3533 information about how to use this function. */
3535 void
3536 start_sequence_for_rtl_expr (t)
3537 tree t;
3539 start_sequence ();
3541 seq_rtl_expr = t;
3544 /* Set up the insn chain starting with FIRST as the current sequence,
3545 saving the previously current one. See the documentation for
3546 start_sequence for more information about how to use this function. */
3548 void
3549 push_to_sequence (first)
3550 rtx first;
3552 rtx last;
3554 start_sequence ();
3556 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
3558 first_insn = first;
3559 last_insn = last;
3562 /* Set up the insn chain from a chain stort in FIRST to LAST. */
3564 void
3565 push_to_full_sequence (first, last)
3566 rtx first, last;
3568 start_sequence ();
3569 first_insn = first;
3570 last_insn = last;
3571 /* We really should have the end of the insn chain here. */
3572 if (last && NEXT_INSN (last))
3573 abort ();
3576 /* Set up the outer-level insn chain
3577 as the current sequence, saving the previously current one. */
3579 void
3580 push_topmost_sequence ()
3582 struct sequence_stack *stack, *top = NULL;
3584 start_sequence ();
3586 for (stack = seq_stack; stack; stack = stack->next)
3587 top = stack;
3589 first_insn = top->first;
3590 last_insn = top->last;
3591 seq_rtl_expr = top->sequence_rtl_expr;
3594 /* After emitting to the outer-level insn chain, update the outer-level
3595 insn chain, and restore the previous saved state. */
3597 void
3598 pop_topmost_sequence ()
3600 struct sequence_stack *stack, *top = NULL;
3602 for (stack = seq_stack; stack; stack = stack->next)
3603 top = stack;
3605 top->first = first_insn;
3606 top->last = last_insn;
3607 /* ??? Why don't we save seq_rtl_expr here? */
3609 end_sequence ();
3612 /* After emitting to a sequence, restore previous saved state.
3614 To get the contents of the sequence just made, you must call
3615 `gen_sequence' *before* calling here.
3617 If the compiler might have deferred popping arguments while
3618 generating this sequence, and this sequence will not be immediately
3619 inserted into the instruction stream, use do_pending_stack_adjust
3620 before calling gen_sequence. That will ensure that the deferred
3621 pops are inserted into this sequence, and not into some random
3622 location in the instruction stream. See INHIBIT_DEFER_POP for more
3623 information about deferred popping of arguments. */
3625 void
3626 end_sequence ()
3628 struct sequence_stack *tem = seq_stack;
3630 first_insn = tem->first;
3631 last_insn = tem->last;
3632 seq_rtl_expr = tem->sequence_rtl_expr;
3633 seq_stack = tem->next;
3635 free (tem);
3638 /* This works like end_sequence, but records the old sequence in FIRST
3639 and LAST. */
3641 void
3642 end_full_sequence (first, last)
3643 rtx *first, *last;
3645 *first = first_insn;
3646 *last = last_insn;
3647 end_sequence();
3650 /* Return 1 if currently emitting into a sequence. */
3653 in_sequence_p ()
3655 return seq_stack != 0;
3658 /* Generate a SEQUENCE rtx containing the insns already emitted
3659 to the current sequence.
3661 This is how the gen_... function from a DEFINE_EXPAND
3662 constructs the SEQUENCE that it returns. */
3665 gen_sequence ()
3667 rtx result;
3668 rtx tem;
3669 int i;
3670 int len;
3672 /* Count the insns in the chain. */
3673 len = 0;
3674 for (tem = first_insn; tem; tem = NEXT_INSN (tem))
3675 len++;
3677 /* If only one insn, return it rather than a SEQUENCE.
3678 (Now that we cache SEQUENCE expressions, it isn't worth special-casing
3679 the case of an empty list.)
3680 We only return the pattern of an insn if its code is INSN and it
3681 has no notes. This ensures that no information gets lost. */
3682 if (len == 1
3683 && ! RTX_FRAME_RELATED_P (first_insn)
3684 && GET_CODE (first_insn) == INSN
3685 /* Don't throw away any reg notes. */
3686 && REG_NOTES (first_insn) == 0)
3687 return PATTERN (first_insn);
3689 result = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (len));
3691 for (i = 0, tem = first_insn; tem; tem = NEXT_INSN (tem), i++)
3692 XVECEXP (result, 0, i) = tem;
3694 return result;
3697 /* Put the various virtual registers into REGNO_REG_RTX. */
3699 void
3700 init_virtual_regs (es)
3701 struct emit_status *es;
3703 rtx *ptr = es->x_regno_reg_rtx;
3704 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
3705 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
3706 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
3707 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
3708 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
3711 void
3712 clear_emit_caches ()
3714 int i;
3716 /* Clear the start_sequence/gen_sequence cache. */
3717 for (i = 0; i < SEQUENCE_RESULT_SIZE; i++)
3718 sequence_result[i] = 0;
3719 free_insn = 0;
3722 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
3723 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
3724 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
3725 static int copy_insn_n_scratches;
3727 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
3728 copied an ASM_OPERANDS.
3729 In that case, it is the original input-operand vector. */
3730 static rtvec orig_asm_operands_vector;
3732 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
3733 copied an ASM_OPERANDS.
3734 In that case, it is the copied input-operand vector. */
3735 static rtvec copy_asm_operands_vector;
3737 /* Likewise for the constraints vector. */
3738 static rtvec orig_asm_constraints_vector;
3739 static rtvec copy_asm_constraints_vector;
3741 /* Recursively create a new copy of an rtx for copy_insn.
3742 This function differs from copy_rtx in that it handles SCRATCHes and
3743 ASM_OPERANDs properly.
3744 Normally, this function is not used directly; use copy_insn as front end.
3745 However, you could first copy an insn pattern with copy_insn and then use
3746 this function afterwards to properly copy any REG_NOTEs containing
3747 SCRATCHes. */
3750 copy_insn_1 (orig)
3751 register rtx orig;
3753 register rtx copy;
3754 register int i, j;
3755 register RTX_CODE code;
3756 register const char *format_ptr;
3758 code = GET_CODE (orig);
3760 switch (code)
3762 case REG:
3763 case QUEUED:
3764 case CONST_INT:
3765 case CONST_DOUBLE:
3766 case SYMBOL_REF:
3767 case CODE_LABEL:
3768 case PC:
3769 case CC0:
3770 case ADDRESSOF:
3771 return orig;
3773 case SCRATCH:
3774 for (i = 0; i < copy_insn_n_scratches; i++)
3775 if (copy_insn_scratch_in[i] == orig)
3776 return copy_insn_scratch_out[i];
3777 break;
3779 case CONST:
3780 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
3781 a LABEL_REF, it isn't sharable. */
3782 if (GET_CODE (XEXP (orig, 0)) == PLUS
3783 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
3784 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
3785 return orig;
3786 break;
3788 /* A MEM with a constant address is not sharable. The problem is that
3789 the constant address may need to be reloaded. If the mem is shared,
3790 then reloading one copy of this mem will cause all copies to appear
3791 to have been reloaded. */
3793 default:
3794 break;
3797 copy = rtx_alloc (code);
3799 /* Copy the various flags, and other information. We assume that
3800 all fields need copying, and then clear the fields that should
3801 not be copied. That is the sensible default behavior, and forces
3802 us to explicitly document why we are *not* copying a flag. */
3803 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
3805 /* We do not copy the USED flag, which is used as a mark bit during
3806 walks over the RTL. */
3807 copy->used = 0;
3809 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
3810 if (GET_RTX_CLASS (code) == 'i')
3812 copy->jump = 0;
3813 copy->call = 0;
3814 copy->frame_related = 0;
3817 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
3819 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
3821 copy->fld[i] = orig->fld[i];
3822 switch (*format_ptr++)
3824 case 'e':
3825 if (XEXP (orig, i) != NULL)
3826 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
3827 break;
3829 case 'E':
3830 case 'V':
3831 if (XVEC (orig, i) == orig_asm_constraints_vector)
3832 XVEC (copy, i) = copy_asm_constraints_vector;
3833 else if (XVEC (orig, i) == orig_asm_operands_vector)
3834 XVEC (copy, i) = copy_asm_operands_vector;
3835 else if (XVEC (orig, i) != NULL)
3837 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
3838 for (j = 0; j < XVECLEN (copy, i); j++)
3839 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
3841 break;
3843 case 't':
3844 case 'w':
3845 case 'i':
3846 case 's':
3847 case 'S':
3848 case 'u':
3849 case '0':
3850 /* These are left unchanged. */
3851 break;
3853 default:
3854 abort ();
3858 if (code == SCRATCH)
3860 i = copy_insn_n_scratches++;
3861 if (i >= MAX_RECOG_OPERANDS)
3862 abort ();
3863 copy_insn_scratch_in[i] = orig;
3864 copy_insn_scratch_out[i] = copy;
3866 else if (code == ASM_OPERANDS)
3868 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
3869 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
3870 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
3871 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
3874 return copy;
3877 /* Create a new copy of an rtx.
3878 This function differs from copy_rtx in that it handles SCRATCHes and
3879 ASM_OPERANDs properly.
3880 INSN doesn't really have to be a full INSN; it could be just the
3881 pattern. */
3883 copy_insn (insn)
3884 rtx insn;
3886 copy_insn_n_scratches = 0;
3887 orig_asm_operands_vector = 0;
3888 orig_asm_constraints_vector = 0;
3889 copy_asm_operands_vector = 0;
3890 copy_asm_constraints_vector = 0;
3891 return copy_insn_1 (insn);
3894 /* Initialize data structures and variables in this file
3895 before generating rtl for each function. */
3897 void
3898 init_emit ()
3900 struct function *f = cfun;
3902 f->emit = (struct emit_status *) xmalloc (sizeof (struct emit_status));
3903 first_insn = NULL;
3904 last_insn = NULL;
3905 seq_rtl_expr = NULL;
3906 cur_insn_uid = 1;
3907 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
3908 last_linenum = 0;
3909 last_filename = 0;
3910 first_label_num = label_num;
3911 last_label_num = 0;
3912 seq_stack = NULL;
3914 clear_emit_caches ();
3916 /* Init the tables that describe all the pseudo regs. */
3918 f->emit->regno_pointer_flag_length = LAST_VIRTUAL_REGISTER + 101;
3920 f->emit->regno_pointer_flag
3921 = (char *) xcalloc (f->emit->regno_pointer_flag_length, sizeof (char));
3923 f->emit->regno_pointer_align
3924 = (unsigned char *) xcalloc (f->emit->regno_pointer_flag_length,
3925 sizeof (unsigned char));
3927 regno_reg_rtx
3928 = (rtx *) xcalloc (f->emit->regno_pointer_flag_length * sizeof (rtx),
3929 sizeof (rtx));
3931 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
3932 init_virtual_regs (f->emit);
3934 /* Indicate that the virtual registers and stack locations are
3935 all pointers. */
3936 REGNO_POINTER_FLAG (STACK_POINTER_REGNUM) = 1;
3937 REGNO_POINTER_FLAG (FRAME_POINTER_REGNUM) = 1;
3938 REGNO_POINTER_FLAG (HARD_FRAME_POINTER_REGNUM) = 1;
3939 REGNO_POINTER_FLAG (ARG_POINTER_REGNUM) = 1;
3941 REGNO_POINTER_FLAG (VIRTUAL_INCOMING_ARGS_REGNUM) = 1;
3942 REGNO_POINTER_FLAG (VIRTUAL_STACK_VARS_REGNUM) = 1;
3943 REGNO_POINTER_FLAG (VIRTUAL_STACK_DYNAMIC_REGNUM) = 1;
3944 REGNO_POINTER_FLAG (VIRTUAL_OUTGOING_ARGS_REGNUM) = 1;
3945 REGNO_POINTER_FLAG (VIRTUAL_CFA_REGNUM) = 1;
3947 #ifdef STACK_BOUNDARY
3948 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
3949 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
3950 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
3951 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
3953 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
3954 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
3955 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
3956 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
3957 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
3958 #endif
3960 #ifdef INIT_EXPANDERS
3961 INIT_EXPANDERS;
3962 #endif
3965 /* Mark SS for GC. */
3967 static void
3968 mark_sequence_stack (ss)
3969 struct sequence_stack *ss;
3971 while (ss)
3973 ggc_mark_rtx (ss->first);
3974 ggc_mark_tree (ss->sequence_rtl_expr);
3975 ss = ss->next;
3979 /* Mark ES for GC. */
3981 void
3982 mark_emit_status (es)
3983 struct emit_status *es;
3985 rtx *r;
3986 int i;
3988 if (es == 0)
3989 return;
3991 for (i = es->regno_pointer_flag_length, r = es->x_regno_reg_rtx;
3992 i > 0; --i, ++r)
3993 ggc_mark_rtx (*r);
3995 mark_sequence_stack (es->sequence_stack);
3996 ggc_mark_tree (es->sequence_rtl_expr);
3997 ggc_mark_rtx (es->x_first_insn);
4000 /* Create some permanent unique rtl objects shared between all functions.
4001 LINE_NUMBERS is nonzero if line numbers are to be generated. */
4003 void
4004 init_emit_once (line_numbers)
4005 int line_numbers;
4007 int i;
4008 enum machine_mode mode;
4009 enum machine_mode double_mode;
4011 no_line_numbers = ! line_numbers;
4013 /* Compute the word and byte modes. */
4015 byte_mode = VOIDmode;
4016 word_mode = VOIDmode;
4017 double_mode = VOIDmode;
4019 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4020 mode = GET_MODE_WIDER_MODE (mode))
4022 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
4023 && byte_mode == VOIDmode)
4024 byte_mode = mode;
4026 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
4027 && word_mode == VOIDmode)
4028 word_mode = mode;
4031 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4032 mode = GET_MODE_WIDER_MODE (mode))
4034 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
4035 && double_mode == VOIDmode)
4036 double_mode = mode;
4039 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
4041 /* Assign register numbers to the globally defined register rtx.
4042 This must be done at runtime because the register number field
4043 is in a union and some compilers can't initialize unions. */
4045 pc_rtx = gen_rtx (PC, VOIDmode);
4046 cc0_rtx = gen_rtx (CC0, VOIDmode);
4047 stack_pointer_rtx = gen_rtx_raw_REG (Pmode, STACK_POINTER_REGNUM);
4048 frame_pointer_rtx = gen_rtx_raw_REG (Pmode, FRAME_POINTER_REGNUM);
4049 if (hard_frame_pointer_rtx == 0)
4050 hard_frame_pointer_rtx = gen_rtx_raw_REG (Pmode,
4051 HARD_FRAME_POINTER_REGNUM);
4052 if (arg_pointer_rtx == 0)
4053 arg_pointer_rtx = gen_rtx_raw_REG (Pmode, ARG_POINTER_REGNUM);
4054 virtual_incoming_args_rtx =
4055 gen_rtx_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
4056 virtual_stack_vars_rtx =
4057 gen_rtx_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
4058 virtual_stack_dynamic_rtx =
4059 gen_rtx_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
4060 virtual_outgoing_args_rtx =
4061 gen_rtx_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
4062 virtual_cfa_rtx = gen_rtx_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
4064 /* These rtx must be roots if GC is enabled. */
4065 ggc_add_rtx_root (global_rtl, GR_MAX);
4067 #ifdef INIT_EXPANDERS
4068 /* This is to initialize save_machine_status and restore_machine_status before
4069 the first call to push_function_context_to. This is needed by the Chill
4070 front end which calls push_function_context_to before the first cal to
4071 init_function_start. */
4072 INIT_EXPANDERS;
4073 #endif
4075 /* Create the unique rtx's for certain rtx codes and operand values. */
4077 /* Don't use gen_rtx here since gen_rtx in this case
4078 tries to use these variables. */
4079 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
4080 const_int_rtx[i + MAX_SAVED_CONST_INT] =
4081 gen_rtx_raw_CONST_INT (VOIDmode, i);
4082 ggc_add_rtx_root (const_int_rtx, 2 * MAX_SAVED_CONST_INT + 1);
4084 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
4085 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
4086 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
4087 else
4088 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
4090 dconst0 = REAL_VALUE_ATOF ("0", double_mode);
4091 dconst1 = REAL_VALUE_ATOF ("1", double_mode);
4092 dconst2 = REAL_VALUE_ATOF ("2", double_mode);
4093 dconstm1 = REAL_VALUE_ATOF ("-1", double_mode);
4095 for (i = 0; i <= 2; i++)
4097 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4098 mode = GET_MODE_WIDER_MODE (mode))
4100 rtx tem = rtx_alloc (CONST_DOUBLE);
4101 union real_extract u;
4103 bzero ((char *) &u, sizeof u); /* Zero any holes in a structure. */
4104 u.d = i == 0 ? dconst0 : i == 1 ? dconst1 : dconst2;
4106 bcopy ((char *) &u, (char *) &CONST_DOUBLE_LOW (tem), sizeof u);
4107 CONST_DOUBLE_MEM (tem) = cc0_rtx;
4108 CONST_DOUBLE_CHAIN (tem) = NULL_RTX;
4109 PUT_MODE (tem, mode);
4111 const_tiny_rtx[i][(int) mode] = tem;
4114 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
4116 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4117 mode = GET_MODE_WIDER_MODE (mode))
4118 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
4120 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
4121 mode != VOIDmode;
4122 mode = GET_MODE_WIDER_MODE (mode))
4123 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
4126 for (mode = CCmode; mode < MAX_MACHINE_MODE; ++mode)
4127 if (GET_MODE_CLASS (mode) == MODE_CC)
4128 const_tiny_rtx[0][(int) mode] = const0_rtx;
4130 const_tiny_rtx[0][(int) BImode] = const0_rtx;
4131 if (STORE_FLAG_VALUE == 1)
4132 const_tiny_rtx[1][(int) BImode] = const1_rtx;
4134 /* For bounded pointers, `&const_tiny_rtx[0][0]' is not the same as
4135 `(rtx *) const_tiny_rtx'. The former has bounds that only cover
4136 `const_tiny_rtx[0]', whereas the latter has bounds that cover all. */
4137 ggc_add_rtx_root ((rtx *) const_tiny_rtx, sizeof const_tiny_rtx / sizeof (rtx));
4138 ggc_add_rtx_root (&const_true_rtx, 1);
4140 #ifdef RETURN_ADDRESS_POINTER_REGNUM
4141 return_address_pointer_rtx
4142 = gen_rtx_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
4143 #endif
4145 #ifdef STRUCT_VALUE
4146 struct_value_rtx = STRUCT_VALUE;
4147 #else
4148 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
4149 #endif
4151 #ifdef STRUCT_VALUE_INCOMING
4152 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
4153 #else
4154 #ifdef STRUCT_VALUE_INCOMING_REGNUM
4155 struct_value_incoming_rtx
4156 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
4157 #else
4158 struct_value_incoming_rtx = struct_value_rtx;
4159 #endif
4160 #endif
4162 #ifdef STATIC_CHAIN_REGNUM
4163 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
4165 #ifdef STATIC_CHAIN_INCOMING_REGNUM
4166 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
4167 static_chain_incoming_rtx
4168 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
4169 else
4170 #endif
4171 static_chain_incoming_rtx = static_chain_rtx;
4172 #endif
4174 #ifdef STATIC_CHAIN
4175 static_chain_rtx = STATIC_CHAIN;
4177 #ifdef STATIC_CHAIN_INCOMING
4178 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
4179 #else
4180 static_chain_incoming_rtx = static_chain_rtx;
4181 #endif
4182 #endif
4184 #ifdef PIC_OFFSET_TABLE_REGNUM
4185 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
4186 #endif
4188 ggc_add_rtx_root (&pic_offset_table_rtx, 1);
4189 ggc_add_rtx_root (&struct_value_rtx, 1);
4190 ggc_add_rtx_root (&struct_value_incoming_rtx, 1);
4191 ggc_add_rtx_root (&static_chain_rtx, 1);
4192 ggc_add_rtx_root (&static_chain_incoming_rtx, 1);
4193 ggc_add_rtx_root (&return_address_pointer_rtx, 1);
4195 /* Initialize the CONST_INT hash table. */
4196 const_int_htab = htab_create (37, const_int_htab_hash,
4197 const_int_htab_eq, NULL);
4198 ggc_add_root (&const_int_htab, 1, sizeof (const_int_htab),
4199 rtx_htab_mark);
4202 /* Query and clear/ restore no_line_numbers. This is used by the
4203 switch / case handling in stmt.c to give proper line numbers in
4204 warnings about unreachable code. */
4207 force_line_numbers ()
4209 int old = no_line_numbers;
4211 no_line_numbers = 0;
4212 if (old)
4213 force_next_line_note ();
4214 return old;
4217 void
4218 restore_line_number_status (old_value)
4219 int old_value;
4221 no_line_numbers = old_value;