2016-09-08 Steven G. Kargl <kargl@gcc.gnu.org>
[official-gcc.git] / gcc / ira.c
blobf8a59e3cd6475acdfc07e43834c474ff8b4bef86
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2016 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
31 Major IRA notions are:
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
144 IRA major passes are:
146 o Building IRA internal representation which consists of the
147 following subpasses:
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
156 * IRA creates live ranges of each allocno, calculates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
168 * IRA creates all caps (file ira-build.c).
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloring we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is implemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
330 IRA uses a lot of data representing the target processors. These
331 data are initialized in file ira.c.
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
340 Literature is worth to read for better understanding the code:
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "backend.h"
370 #include "target.h"
371 #include "rtl.h"
372 #include "tree.h"
373 #include "df.h"
374 #include "tm_p.h"
375 #include "insn-config.h"
376 #include "regs.h"
377 #include "ira.h"
378 #include "ira-int.h"
379 #include "diagnostic-core.h"
380 #include "cfgrtl.h"
381 #include "cfgbuild.h"
382 #include "cfgcleanup.h"
383 #include "expr.h"
384 #include "tree-pass.h"
385 #include "output.h"
386 #include "reload.h"
387 #include "cfgloop.h"
388 #include "lra.h"
389 #include "dce.h"
390 #include "dbgcnt.h"
391 #include "rtl-iter.h"
392 #include "shrink-wrap.h"
393 #include "print-rtl.h"
395 struct target_ira default_target_ira;
396 struct target_ira_int default_target_ira_int;
397 #if SWITCHABLE_TARGET
398 struct target_ira *this_target_ira = &default_target_ira;
399 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
400 #endif
402 /* A modified value of flag `-fira-verbose' used internally. */
403 int internal_flag_ira_verbose;
405 /* Dump file of the allocator if it is not NULL. */
406 FILE *ira_dump_file;
408 /* The number of elements in the following array. */
409 int ira_spilled_reg_stack_slots_num;
411 /* The following array contains info about spilled pseudo-registers
412 stack slots used in current function so far. */
413 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
415 /* Correspondingly overall cost of the allocation, overall cost before
416 reload, cost of the allocnos assigned to hard-registers, cost of
417 the allocnos assigned to memory, cost of loads, stores and register
418 move insns generated for pseudo-register live range splitting (see
419 ira-emit.c). */
420 int64_t ira_overall_cost, overall_cost_before;
421 int64_t ira_reg_cost, ira_mem_cost;
422 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
423 int ira_move_loops_num, ira_additional_jumps_num;
425 /* All registers that can be eliminated. */
427 HARD_REG_SET eliminable_regset;
429 /* Value of max_reg_num () before IRA work start. This value helps
430 us to recognize a situation when new pseudos were created during
431 IRA work. */
432 static int max_regno_before_ira;
434 /* Temporary hard reg set used for a different calculation. */
435 static HARD_REG_SET temp_hard_regset;
437 #define last_mode_for_init_move_cost \
438 (this_target_ira_int->x_last_mode_for_init_move_cost)
441 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
442 static void
443 setup_reg_mode_hard_regset (void)
445 int i, m, hard_regno;
447 for (m = 0; m < NUM_MACHINE_MODES; m++)
448 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
450 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
451 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
452 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
453 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
454 hard_regno + i);
459 #define no_unit_alloc_regs \
460 (this_target_ira_int->x_no_unit_alloc_regs)
462 /* The function sets up the three arrays declared above. */
463 static void
464 setup_class_hard_regs (void)
466 int cl, i, hard_regno, n;
467 HARD_REG_SET processed_hard_reg_set;
469 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
470 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
472 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
473 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
474 CLEAR_HARD_REG_SET (processed_hard_reg_set);
475 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
477 ira_non_ordered_class_hard_regs[cl][i] = -1;
478 ira_class_hard_reg_index[cl][i] = -1;
480 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
482 #ifdef REG_ALLOC_ORDER
483 hard_regno = reg_alloc_order[i];
484 #else
485 hard_regno = i;
486 #endif
487 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
488 continue;
489 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
490 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
491 ira_class_hard_reg_index[cl][hard_regno] = -1;
492 else
494 ira_class_hard_reg_index[cl][hard_regno] = n;
495 ira_class_hard_regs[cl][n++] = hard_regno;
498 ira_class_hard_regs_num[cl] = n;
499 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
500 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
501 ira_non_ordered_class_hard_regs[cl][n++] = i;
502 ira_assert (ira_class_hard_regs_num[cl] == n);
506 /* Set up global variables defining info about hard registers for the
507 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
508 that we can use the hard frame pointer for the allocation. */
509 static void
510 setup_alloc_regs (bool use_hard_frame_p)
512 #ifdef ADJUST_REG_ALLOC_ORDER
513 ADJUST_REG_ALLOC_ORDER;
514 #endif
515 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_nonglobal_reg_set);
516 if (! use_hard_frame_p)
517 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
518 setup_class_hard_regs ();
523 #define alloc_reg_class_subclasses \
524 (this_target_ira_int->x_alloc_reg_class_subclasses)
526 /* Initialize the table of subclasses of each reg class. */
527 static void
528 setup_reg_subclasses (void)
530 int i, j;
531 HARD_REG_SET temp_hard_regset2;
533 for (i = 0; i < N_REG_CLASSES; i++)
534 for (j = 0; j < N_REG_CLASSES; j++)
535 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
537 for (i = 0; i < N_REG_CLASSES; i++)
539 if (i == (int) NO_REGS)
540 continue;
542 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
543 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
544 if (hard_reg_set_empty_p (temp_hard_regset))
545 continue;
546 for (j = 0; j < N_REG_CLASSES; j++)
547 if (i != j)
549 enum reg_class *p;
551 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
552 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
553 if (! hard_reg_set_subset_p (temp_hard_regset,
554 temp_hard_regset2))
555 continue;
556 p = &alloc_reg_class_subclasses[j][0];
557 while (*p != LIM_REG_CLASSES) p++;
558 *p = (enum reg_class) i;
565 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
566 static void
567 setup_class_subset_and_memory_move_costs (void)
569 int cl, cl2, mode, cost;
570 HARD_REG_SET temp_hard_regset2;
572 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
573 ira_memory_move_cost[mode][NO_REGS][0]
574 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
575 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
577 if (cl != (int) NO_REGS)
578 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
580 ira_max_memory_move_cost[mode][cl][0]
581 = ira_memory_move_cost[mode][cl][0]
582 = memory_move_cost ((machine_mode) mode,
583 (reg_class_t) cl, false);
584 ira_max_memory_move_cost[mode][cl][1]
585 = ira_memory_move_cost[mode][cl][1]
586 = memory_move_cost ((machine_mode) mode,
587 (reg_class_t) cl, true);
588 /* Costs for NO_REGS are used in cost calculation on the
589 1st pass when the preferred register classes are not
590 known yet. In this case we take the best scenario. */
591 if (ira_memory_move_cost[mode][NO_REGS][0]
592 > ira_memory_move_cost[mode][cl][0])
593 ira_max_memory_move_cost[mode][NO_REGS][0]
594 = ira_memory_move_cost[mode][NO_REGS][0]
595 = ira_memory_move_cost[mode][cl][0];
596 if (ira_memory_move_cost[mode][NO_REGS][1]
597 > ira_memory_move_cost[mode][cl][1])
598 ira_max_memory_move_cost[mode][NO_REGS][1]
599 = ira_memory_move_cost[mode][NO_REGS][1]
600 = ira_memory_move_cost[mode][cl][1];
603 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
604 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
606 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
607 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
608 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
609 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
610 ira_class_subset_p[cl][cl2]
611 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
612 if (! hard_reg_set_empty_p (temp_hard_regset2)
613 && hard_reg_set_subset_p (reg_class_contents[cl2],
614 reg_class_contents[cl]))
615 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
617 cost = ira_memory_move_cost[mode][cl2][0];
618 if (cost > ira_max_memory_move_cost[mode][cl][0])
619 ira_max_memory_move_cost[mode][cl][0] = cost;
620 cost = ira_memory_move_cost[mode][cl2][1];
621 if (cost > ira_max_memory_move_cost[mode][cl][1])
622 ira_max_memory_move_cost[mode][cl][1] = cost;
625 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
626 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
628 ira_memory_move_cost[mode][cl][0]
629 = ira_max_memory_move_cost[mode][cl][0];
630 ira_memory_move_cost[mode][cl][1]
631 = ira_max_memory_move_cost[mode][cl][1];
633 setup_reg_subclasses ();
638 /* Define the following macro if allocation through malloc if
639 preferable. */
640 #define IRA_NO_OBSTACK
642 #ifndef IRA_NO_OBSTACK
643 /* Obstack used for storing all dynamic data (except bitmaps) of the
644 IRA. */
645 static struct obstack ira_obstack;
646 #endif
648 /* Obstack used for storing all bitmaps of the IRA. */
649 static struct bitmap_obstack ira_bitmap_obstack;
651 /* Allocate memory of size LEN for IRA data. */
652 void *
653 ira_allocate (size_t len)
655 void *res;
657 #ifndef IRA_NO_OBSTACK
658 res = obstack_alloc (&ira_obstack, len);
659 #else
660 res = xmalloc (len);
661 #endif
662 return res;
665 /* Free memory ADDR allocated for IRA data. */
666 void
667 ira_free (void *addr ATTRIBUTE_UNUSED)
669 #ifndef IRA_NO_OBSTACK
670 /* do nothing */
671 #else
672 free (addr);
673 #endif
677 /* Allocate and returns bitmap for IRA. */
678 bitmap
679 ira_allocate_bitmap (void)
681 return BITMAP_ALLOC (&ira_bitmap_obstack);
684 /* Free bitmap B allocated for IRA. */
685 void
686 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
688 /* do nothing */
693 /* Output information about allocation of all allocnos (except for
694 caps) into file F. */
695 void
696 ira_print_disposition (FILE *f)
698 int i, n, max_regno;
699 ira_allocno_t a;
700 basic_block bb;
702 fprintf (f, "Disposition:");
703 max_regno = max_reg_num ();
704 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
705 for (a = ira_regno_allocno_map[i];
706 a != NULL;
707 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
709 if (n % 4 == 0)
710 fprintf (f, "\n");
711 n++;
712 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
713 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
714 fprintf (f, "b%-3d", bb->index);
715 else
716 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
717 if (ALLOCNO_HARD_REGNO (a) >= 0)
718 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
719 else
720 fprintf (f, " mem");
722 fprintf (f, "\n");
725 /* Outputs information about allocation of all allocnos into
726 stderr. */
727 void
728 ira_debug_disposition (void)
730 ira_print_disposition (stderr);
735 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
736 register class containing stack registers or NO_REGS if there are
737 no stack registers. To find this class, we iterate through all
738 register pressure classes and choose the first register pressure
739 class containing all the stack registers and having the biggest
740 size. */
741 static void
742 setup_stack_reg_pressure_class (void)
744 ira_stack_reg_pressure_class = NO_REGS;
745 #ifdef STACK_REGS
747 int i, best, size;
748 enum reg_class cl;
749 HARD_REG_SET temp_hard_regset2;
751 CLEAR_HARD_REG_SET (temp_hard_regset);
752 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
753 SET_HARD_REG_BIT (temp_hard_regset, i);
754 best = 0;
755 for (i = 0; i < ira_pressure_classes_num; i++)
757 cl = ira_pressure_classes[i];
758 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
759 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
760 size = hard_reg_set_size (temp_hard_regset2);
761 if (best < size)
763 best = size;
764 ira_stack_reg_pressure_class = cl;
768 #endif
771 /* Find pressure classes which are register classes for which we
772 calculate register pressure in IRA, register pressure sensitive
773 insn scheduling, and register pressure sensitive loop invariant
774 motion.
776 To make register pressure calculation easy, we always use
777 non-intersected register pressure classes. A move of hard
778 registers from one register pressure class is not more expensive
779 than load and store of the hard registers. Most likely an allocno
780 class will be a subset of a register pressure class and in many
781 cases a register pressure class. That makes usage of register
782 pressure classes a good approximation to find a high register
783 pressure. */
784 static void
785 setup_pressure_classes (void)
787 int cost, i, n, curr;
788 int cl, cl2;
789 enum reg_class pressure_classes[N_REG_CLASSES];
790 int m;
791 HARD_REG_SET temp_hard_regset2;
792 bool insert_p;
794 n = 0;
795 for (cl = 0; cl < N_REG_CLASSES; cl++)
797 if (ira_class_hard_regs_num[cl] == 0)
798 continue;
799 if (ira_class_hard_regs_num[cl] != 1
800 /* A register class without subclasses may contain a few
801 hard registers and movement between them is costly
802 (e.g. SPARC FPCC registers). We still should consider it
803 as a candidate for a pressure class. */
804 && alloc_reg_class_subclasses[cl][0] < cl)
806 /* Check that the moves between any hard registers of the
807 current class are not more expensive for a legal mode
808 than load/store of the hard registers of the current
809 class. Such class is a potential candidate to be a
810 register pressure class. */
811 for (m = 0; m < NUM_MACHINE_MODES; m++)
813 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
814 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
815 AND_COMPL_HARD_REG_SET (temp_hard_regset,
816 ira_prohibited_class_mode_regs[cl][m]);
817 if (hard_reg_set_empty_p (temp_hard_regset))
818 continue;
819 ira_init_register_move_cost_if_necessary ((machine_mode) m);
820 cost = ira_register_move_cost[m][cl][cl];
821 if (cost <= ira_max_memory_move_cost[m][cl][1]
822 || cost <= ira_max_memory_move_cost[m][cl][0])
823 break;
825 if (m >= NUM_MACHINE_MODES)
826 continue;
828 curr = 0;
829 insert_p = true;
830 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
831 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
832 /* Remove so far added pressure classes which are subset of the
833 current candidate class. Prefer GENERAL_REGS as a pressure
834 register class to another class containing the same
835 allocatable hard registers. We do this because machine
836 dependent cost hooks might give wrong costs for the latter
837 class but always give the right cost for the former class
838 (GENERAL_REGS). */
839 for (i = 0; i < n; i++)
841 cl2 = pressure_classes[i];
842 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
843 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
844 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
845 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
846 || cl2 == (int) GENERAL_REGS))
848 pressure_classes[curr++] = (enum reg_class) cl2;
849 insert_p = false;
850 continue;
852 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
853 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
854 || cl == (int) GENERAL_REGS))
855 continue;
856 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
857 insert_p = false;
858 pressure_classes[curr++] = (enum reg_class) cl2;
860 /* If the current candidate is a subset of a so far added
861 pressure class, don't add it to the list of the pressure
862 classes. */
863 if (insert_p)
864 pressure_classes[curr++] = (enum reg_class) cl;
865 n = curr;
867 #ifdef ENABLE_IRA_CHECKING
869 HARD_REG_SET ignore_hard_regs;
871 /* Check pressure classes correctness: here we check that hard
872 registers from all register pressure classes contains all hard
873 registers available for the allocation. */
874 CLEAR_HARD_REG_SET (temp_hard_regset);
875 CLEAR_HARD_REG_SET (temp_hard_regset2);
876 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
877 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
879 /* For some targets (like MIPS with MD_REGS), there are some
880 classes with hard registers available for allocation but
881 not able to hold value of any mode. */
882 for (m = 0; m < NUM_MACHINE_MODES; m++)
883 if (contains_reg_of_mode[cl][m])
884 break;
885 if (m >= NUM_MACHINE_MODES)
887 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
888 continue;
890 for (i = 0; i < n; i++)
891 if ((int) pressure_classes[i] == cl)
892 break;
893 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
894 if (i < n)
895 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
897 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
898 /* Some targets (like SPARC with ICC reg) have allocatable regs
899 for which no reg class is defined. */
900 if (REGNO_REG_CLASS (i) == NO_REGS)
901 SET_HARD_REG_BIT (ignore_hard_regs, i);
902 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
903 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
904 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
906 #endif
907 ira_pressure_classes_num = 0;
908 for (i = 0; i < n; i++)
910 cl = (int) pressure_classes[i];
911 ira_reg_pressure_class_p[cl] = true;
912 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
914 setup_stack_reg_pressure_class ();
917 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
918 whose register move cost between any registers of the class is the
919 same as for all its subclasses. We use the data to speed up the
920 2nd pass of calculations of allocno costs. */
921 static void
922 setup_uniform_class_p (void)
924 int i, cl, cl2, m;
926 for (cl = 0; cl < N_REG_CLASSES; cl++)
928 ira_uniform_class_p[cl] = false;
929 if (ira_class_hard_regs_num[cl] == 0)
930 continue;
931 /* We can not use alloc_reg_class_subclasses here because move
932 cost hooks does not take into account that some registers are
933 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
934 is element of alloc_reg_class_subclasses for GENERAL_REGS
935 because SSE regs are unavailable. */
936 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
938 if (ira_class_hard_regs_num[cl2] == 0)
939 continue;
940 for (m = 0; m < NUM_MACHINE_MODES; m++)
941 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
943 ira_init_register_move_cost_if_necessary ((machine_mode) m);
944 if (ira_register_move_cost[m][cl][cl]
945 != ira_register_move_cost[m][cl2][cl2])
946 break;
948 if (m < NUM_MACHINE_MODES)
949 break;
951 if (cl2 == LIM_REG_CLASSES)
952 ira_uniform_class_p[cl] = true;
956 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
957 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
959 Target may have many subtargets and not all target hard registers can
960 be used for allocation, e.g. x86 port in 32-bit mode can not use
961 hard registers introduced in x86-64 like r8-r15). Some classes
962 might have the same allocatable hard registers, e.g. INDEX_REGS
963 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
964 calculations efforts we introduce allocno classes which contain
965 unique non-empty sets of allocatable hard-registers.
967 Pseudo class cost calculation in ira-costs.c is very expensive.
968 Therefore we are trying to decrease number of classes involved in
969 such calculation. Register classes used in the cost calculation
970 are called important classes. They are allocno classes and other
971 non-empty classes whose allocatable hard register sets are inside
972 of an allocno class hard register set. From the first sight, it
973 looks like that they are just allocno classes. It is not true. In
974 example of x86-port in 32-bit mode, allocno classes will contain
975 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
976 registers are the same for the both classes). The important
977 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
978 because a machine description insn constraint may refers for
979 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
980 of the insn constraints. */
981 static void
982 setup_allocno_and_important_classes (void)
984 int i, j, n, cl;
985 bool set_p;
986 HARD_REG_SET temp_hard_regset2;
987 static enum reg_class classes[LIM_REG_CLASSES + 1];
989 n = 0;
990 /* Collect classes which contain unique sets of allocatable hard
991 registers. Prefer GENERAL_REGS to other classes containing the
992 same set of hard registers. */
993 for (i = 0; i < LIM_REG_CLASSES; i++)
995 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
996 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
997 for (j = 0; j < n; j++)
999 cl = classes[j];
1000 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1001 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1002 no_unit_alloc_regs);
1003 if (hard_reg_set_equal_p (temp_hard_regset,
1004 temp_hard_regset2))
1005 break;
1007 if (j >= n)
1008 classes[n++] = (enum reg_class) i;
1009 else if (i == GENERAL_REGS)
1010 /* Prefer general regs. For i386 example, it means that
1011 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1012 (all of them consists of the same available hard
1013 registers). */
1014 classes[j] = (enum reg_class) i;
1016 classes[n] = LIM_REG_CLASSES;
1018 /* Set up classes which can be used for allocnos as classes
1019 containing non-empty unique sets of allocatable hard
1020 registers. */
1021 ira_allocno_classes_num = 0;
1022 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1023 if (ira_class_hard_regs_num[cl] > 0)
1024 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1025 ira_important_classes_num = 0;
1026 /* Add non-allocno classes containing to non-empty set of
1027 allocatable hard regs. */
1028 for (cl = 0; cl < N_REG_CLASSES; cl++)
1029 if (ira_class_hard_regs_num[cl] > 0)
1031 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1032 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1033 set_p = false;
1034 for (j = 0; j < ira_allocno_classes_num; j++)
1036 COPY_HARD_REG_SET (temp_hard_regset2,
1037 reg_class_contents[ira_allocno_classes[j]]);
1038 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1039 if ((enum reg_class) cl == ira_allocno_classes[j])
1040 break;
1041 else if (hard_reg_set_subset_p (temp_hard_regset,
1042 temp_hard_regset2))
1043 set_p = true;
1045 if (set_p && j >= ira_allocno_classes_num)
1046 ira_important_classes[ira_important_classes_num++]
1047 = (enum reg_class) cl;
1049 /* Now add allocno classes to the important classes. */
1050 for (j = 0; j < ira_allocno_classes_num; j++)
1051 ira_important_classes[ira_important_classes_num++]
1052 = ira_allocno_classes[j];
1053 for (cl = 0; cl < N_REG_CLASSES; cl++)
1055 ira_reg_allocno_class_p[cl] = false;
1056 ira_reg_pressure_class_p[cl] = false;
1058 for (j = 0; j < ira_allocno_classes_num; j++)
1059 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1060 setup_pressure_classes ();
1061 setup_uniform_class_p ();
1064 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1065 given by array CLASSES of length CLASSES_NUM. The function is used
1066 make translation any reg class to an allocno class or to an
1067 pressure class. This translation is necessary for some
1068 calculations when we can use only allocno or pressure classes and
1069 such translation represents an approximate representation of all
1070 classes.
1072 The translation in case when allocatable hard register set of a
1073 given class is subset of allocatable hard register set of a class
1074 in CLASSES is pretty simple. We use smallest classes from CLASSES
1075 containing a given class. If allocatable hard register set of a
1076 given class is not a subset of any corresponding set of a class
1077 from CLASSES, we use the cheapest (with load/store point of view)
1078 class from CLASSES whose set intersects with given class set. */
1079 static void
1080 setup_class_translate_array (enum reg_class *class_translate,
1081 int classes_num, enum reg_class *classes)
1083 int cl, mode;
1084 enum reg_class aclass, best_class, *cl_ptr;
1085 int i, cost, min_cost, best_cost;
1087 for (cl = 0; cl < N_REG_CLASSES; cl++)
1088 class_translate[cl] = NO_REGS;
1090 for (i = 0; i < classes_num; i++)
1092 aclass = classes[i];
1093 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1094 (cl = *cl_ptr) != LIM_REG_CLASSES;
1095 cl_ptr++)
1096 if (class_translate[cl] == NO_REGS)
1097 class_translate[cl] = aclass;
1098 class_translate[aclass] = aclass;
1100 /* For classes which are not fully covered by one of given classes
1101 (in other words covered by more one given class), use the
1102 cheapest class. */
1103 for (cl = 0; cl < N_REG_CLASSES; cl++)
1105 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1106 continue;
1107 best_class = NO_REGS;
1108 best_cost = INT_MAX;
1109 for (i = 0; i < classes_num; i++)
1111 aclass = classes[i];
1112 COPY_HARD_REG_SET (temp_hard_regset,
1113 reg_class_contents[aclass]);
1114 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1115 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1116 if (! hard_reg_set_empty_p (temp_hard_regset))
1118 min_cost = INT_MAX;
1119 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1121 cost = (ira_memory_move_cost[mode][aclass][0]
1122 + ira_memory_move_cost[mode][aclass][1]);
1123 if (min_cost > cost)
1124 min_cost = cost;
1126 if (best_class == NO_REGS || best_cost > min_cost)
1128 best_class = aclass;
1129 best_cost = min_cost;
1133 class_translate[cl] = best_class;
1137 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1138 IRA_PRESSURE_CLASS_TRANSLATE. */
1139 static void
1140 setup_class_translate (void)
1142 setup_class_translate_array (ira_allocno_class_translate,
1143 ira_allocno_classes_num, ira_allocno_classes);
1144 setup_class_translate_array (ira_pressure_class_translate,
1145 ira_pressure_classes_num, ira_pressure_classes);
1148 /* Order numbers of allocno classes in original target allocno class
1149 array, -1 for non-allocno classes. */
1150 static int allocno_class_order[N_REG_CLASSES];
1152 /* The function used to sort the important classes. */
1153 static int
1154 comp_reg_classes_func (const void *v1p, const void *v2p)
1156 enum reg_class cl1 = *(const enum reg_class *) v1p;
1157 enum reg_class cl2 = *(const enum reg_class *) v2p;
1158 enum reg_class tcl1, tcl2;
1159 int diff;
1161 tcl1 = ira_allocno_class_translate[cl1];
1162 tcl2 = ira_allocno_class_translate[cl2];
1163 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1164 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1165 return diff;
1166 return (int) cl1 - (int) cl2;
1169 /* For correct work of function setup_reg_class_relation we need to
1170 reorder important classes according to the order of their allocno
1171 classes. It places important classes containing the same
1172 allocatable hard register set adjacent to each other and allocno
1173 class with the allocatable hard register set right after the other
1174 important classes with the same set.
1176 In example from comments of function
1177 setup_allocno_and_important_classes, it places LEGACY_REGS and
1178 GENERAL_REGS close to each other and GENERAL_REGS is after
1179 LEGACY_REGS. */
1180 static void
1181 reorder_important_classes (void)
1183 int i;
1185 for (i = 0; i < N_REG_CLASSES; i++)
1186 allocno_class_order[i] = -1;
1187 for (i = 0; i < ira_allocno_classes_num; i++)
1188 allocno_class_order[ira_allocno_classes[i]] = i;
1189 qsort (ira_important_classes, ira_important_classes_num,
1190 sizeof (enum reg_class), comp_reg_classes_func);
1191 for (i = 0; i < ira_important_classes_num; i++)
1192 ira_important_class_nums[ira_important_classes[i]] = i;
1195 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1196 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1197 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1198 please see corresponding comments in ira-int.h. */
1199 static void
1200 setup_reg_class_relations (void)
1202 int i, cl1, cl2, cl3;
1203 HARD_REG_SET intersection_set, union_set, temp_set2;
1204 bool important_class_p[N_REG_CLASSES];
1206 memset (important_class_p, 0, sizeof (important_class_p));
1207 for (i = 0; i < ira_important_classes_num; i++)
1208 important_class_p[ira_important_classes[i]] = true;
1209 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1211 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1212 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1214 ira_reg_classes_intersect_p[cl1][cl2] = false;
1215 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1216 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1217 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1218 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1219 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1220 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1221 if (hard_reg_set_empty_p (temp_hard_regset)
1222 && hard_reg_set_empty_p (temp_set2))
1224 /* The both classes have no allocatable hard registers
1225 -- take all class hard registers into account and use
1226 reg_class_subunion and reg_class_superunion. */
1227 for (i = 0;; i++)
1229 cl3 = reg_class_subclasses[cl1][i];
1230 if (cl3 == LIM_REG_CLASSES)
1231 break;
1232 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1233 (enum reg_class) cl3))
1234 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1236 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1237 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1238 continue;
1240 ira_reg_classes_intersect_p[cl1][cl2]
1241 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1242 if (important_class_p[cl1] && important_class_p[cl2]
1243 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1245 /* CL1 and CL2 are important classes and CL1 allocatable
1246 hard register set is inside of CL2 allocatable hard
1247 registers -- make CL1 a superset of CL2. */
1248 enum reg_class *p;
1250 p = &ira_reg_class_super_classes[cl1][0];
1251 while (*p != LIM_REG_CLASSES)
1252 p++;
1253 *p++ = (enum reg_class) cl2;
1254 *p = LIM_REG_CLASSES;
1256 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1257 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1258 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1259 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1260 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1261 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1262 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1263 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1264 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1266 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1267 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1268 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1270 /* CL3 allocatable hard register set is inside of
1271 intersection of allocatable hard register sets
1272 of CL1 and CL2. */
1273 if (important_class_p[cl3])
1275 COPY_HARD_REG_SET
1276 (temp_set2,
1277 reg_class_contents
1278 [(int) ira_reg_class_intersect[cl1][cl2]]);
1279 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1280 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1281 /* If the allocatable hard register sets are
1282 the same, prefer GENERAL_REGS or the
1283 smallest class for debugging
1284 purposes. */
1285 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1286 && (cl3 == GENERAL_REGS
1287 || ((ira_reg_class_intersect[cl1][cl2]
1288 != GENERAL_REGS)
1289 && hard_reg_set_subset_p
1290 (reg_class_contents[cl3],
1291 reg_class_contents
1292 [(int)
1293 ira_reg_class_intersect[cl1][cl2]])))))
1294 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1296 COPY_HARD_REG_SET
1297 (temp_set2,
1298 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1299 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1300 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1301 /* Ignore unavailable hard registers and prefer
1302 smallest class for debugging purposes. */
1303 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1304 && hard_reg_set_subset_p
1305 (reg_class_contents[cl3],
1306 reg_class_contents
1307 [(int) ira_reg_class_subset[cl1][cl2]])))
1308 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1310 if (important_class_p[cl3]
1311 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1313 /* CL3 allocatable hard register set is inside of
1314 union of allocatable hard register sets of CL1
1315 and CL2. */
1316 COPY_HARD_REG_SET
1317 (temp_set2,
1318 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1319 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1320 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1321 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1323 && (! hard_reg_set_equal_p (temp_set2,
1324 temp_hard_regset)
1325 || cl3 == GENERAL_REGS
1326 /* If the allocatable hard register sets are the
1327 same, prefer GENERAL_REGS or the smallest
1328 class for debugging purposes. */
1329 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1330 && hard_reg_set_subset_p
1331 (reg_class_contents[cl3],
1332 reg_class_contents
1333 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1334 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1336 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1338 /* CL3 allocatable hard register set contains union
1339 of allocatable hard register sets of CL1 and
1340 CL2. */
1341 COPY_HARD_REG_SET
1342 (temp_set2,
1343 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1344 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1345 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1346 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1348 && (! hard_reg_set_equal_p (temp_set2,
1349 temp_hard_regset)
1350 || cl3 == GENERAL_REGS
1351 /* If the allocatable hard register sets are the
1352 same, prefer GENERAL_REGS or the smallest
1353 class for debugging purposes. */
1354 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1355 && hard_reg_set_subset_p
1356 (reg_class_contents[cl3],
1357 reg_class_contents
1358 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1359 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1366 /* Output all uniform and important classes into file F. */
1367 static void
1368 print_uniform_and_important_classes (FILE *f)
1370 int i, cl;
1372 fprintf (f, "Uniform classes:\n");
1373 for (cl = 0; cl < N_REG_CLASSES; cl++)
1374 if (ira_uniform_class_p[cl])
1375 fprintf (f, " %s", reg_class_names[cl]);
1376 fprintf (f, "\nImportant classes:\n");
1377 for (i = 0; i < ira_important_classes_num; i++)
1378 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1379 fprintf (f, "\n");
1382 /* Output all possible allocno or pressure classes and their
1383 translation map into file F. */
1384 static void
1385 print_translated_classes (FILE *f, bool pressure_p)
1387 int classes_num = (pressure_p
1388 ? ira_pressure_classes_num : ira_allocno_classes_num);
1389 enum reg_class *classes = (pressure_p
1390 ? ira_pressure_classes : ira_allocno_classes);
1391 enum reg_class *class_translate = (pressure_p
1392 ? ira_pressure_class_translate
1393 : ira_allocno_class_translate);
1394 int i;
1396 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1397 for (i = 0; i < classes_num; i++)
1398 fprintf (f, " %s", reg_class_names[classes[i]]);
1399 fprintf (f, "\nClass translation:\n");
1400 for (i = 0; i < N_REG_CLASSES; i++)
1401 fprintf (f, " %s -> %s\n", reg_class_names[i],
1402 reg_class_names[class_translate[i]]);
1405 /* Output all possible allocno and translation classes and the
1406 translation maps into stderr. */
1407 void
1408 ira_debug_allocno_classes (void)
1410 print_uniform_and_important_classes (stderr);
1411 print_translated_classes (stderr, false);
1412 print_translated_classes (stderr, true);
1415 /* Set up different arrays concerning class subsets, allocno and
1416 important classes. */
1417 static void
1418 find_reg_classes (void)
1420 setup_allocno_and_important_classes ();
1421 setup_class_translate ();
1422 reorder_important_classes ();
1423 setup_reg_class_relations ();
1428 /* Set up the array above. */
1429 static void
1430 setup_hard_regno_aclass (void)
1432 int i;
1434 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1436 #if 1
1437 ira_hard_regno_allocno_class[i]
1438 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1439 ? NO_REGS
1440 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1441 #else
1442 int j;
1443 enum reg_class cl;
1444 ira_hard_regno_allocno_class[i] = NO_REGS;
1445 for (j = 0; j < ira_allocno_classes_num; j++)
1447 cl = ira_allocno_classes[j];
1448 if (ira_class_hard_reg_index[cl][i] >= 0)
1450 ira_hard_regno_allocno_class[i] = cl;
1451 break;
1454 #endif
1460 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1461 static void
1462 setup_reg_class_nregs (void)
1464 int i, cl, cl2, m;
1466 for (m = 0; m < MAX_MACHINE_MODE; m++)
1468 for (cl = 0; cl < N_REG_CLASSES; cl++)
1469 ira_reg_class_max_nregs[cl][m]
1470 = ira_reg_class_min_nregs[cl][m]
1471 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1472 for (cl = 0; cl < N_REG_CLASSES; cl++)
1473 for (i = 0;
1474 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1475 i++)
1476 if (ira_reg_class_min_nregs[cl2][m]
1477 < ira_reg_class_min_nregs[cl][m])
1478 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1484 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1485 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1486 static void
1487 setup_prohibited_class_mode_regs (void)
1489 int j, k, hard_regno, cl, last_hard_regno, count;
1491 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1493 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1494 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1495 for (j = 0; j < NUM_MACHINE_MODES; j++)
1497 count = 0;
1498 last_hard_regno = -1;
1499 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1500 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1502 hard_regno = ira_class_hard_regs[cl][k];
1503 if (! HARD_REGNO_MODE_OK (hard_regno, (machine_mode) j))
1504 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1505 hard_regno);
1506 else if (in_hard_reg_set_p (temp_hard_regset,
1507 (machine_mode) j, hard_regno))
1509 last_hard_regno = hard_regno;
1510 count++;
1513 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1518 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1519 spanning from one register pressure class to another one. It is
1520 called after defining the pressure classes. */
1521 static void
1522 clarify_prohibited_class_mode_regs (void)
1524 int j, k, hard_regno, cl, pclass, nregs;
1526 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1527 for (j = 0; j < NUM_MACHINE_MODES; j++)
1529 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1530 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1532 hard_regno = ira_class_hard_regs[cl][k];
1533 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1534 continue;
1535 nregs = hard_regno_nregs[hard_regno][j];
1536 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1538 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1539 hard_regno);
1540 continue;
1542 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1543 for (nregs-- ;nregs >= 0; nregs--)
1544 if (((enum reg_class) pclass
1545 != ira_pressure_class_translate[REGNO_REG_CLASS
1546 (hard_regno + nregs)]))
1548 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1549 hard_regno);
1550 break;
1552 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1553 hard_regno))
1554 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1555 (machine_mode) j, hard_regno);
1560 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1561 and IRA_MAY_MOVE_OUT_COST for MODE. */
1562 void
1563 ira_init_register_move_cost (machine_mode mode)
1565 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1566 bool all_match = true;
1567 unsigned int cl1, cl2;
1569 ira_assert (ira_register_move_cost[mode] == NULL
1570 && ira_may_move_in_cost[mode] == NULL
1571 && ira_may_move_out_cost[mode] == NULL);
1572 ira_assert (have_regs_of_mode[mode]);
1573 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1574 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1576 int cost;
1577 if (!contains_reg_of_mode[cl1][mode]
1578 || !contains_reg_of_mode[cl2][mode])
1580 if ((ira_reg_class_max_nregs[cl1][mode]
1581 > ira_class_hard_regs_num[cl1])
1582 || (ira_reg_class_max_nregs[cl2][mode]
1583 > ira_class_hard_regs_num[cl2]))
1584 cost = 65535;
1585 else
1586 cost = (ira_memory_move_cost[mode][cl1][0]
1587 + ira_memory_move_cost[mode][cl2][1]) * 2;
1589 else
1591 cost = register_move_cost (mode, (enum reg_class) cl1,
1592 (enum reg_class) cl2);
1593 ira_assert (cost < 65535);
1595 all_match &= (last_move_cost[cl1][cl2] == cost);
1596 last_move_cost[cl1][cl2] = cost;
1598 if (all_match && last_mode_for_init_move_cost != -1)
1600 ira_register_move_cost[mode]
1601 = ira_register_move_cost[last_mode_for_init_move_cost];
1602 ira_may_move_in_cost[mode]
1603 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1604 ira_may_move_out_cost[mode]
1605 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1606 return;
1608 last_mode_for_init_move_cost = mode;
1609 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1610 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1611 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1612 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1613 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1615 int cost;
1616 enum reg_class *p1, *p2;
1618 if (last_move_cost[cl1][cl2] == 65535)
1620 ira_register_move_cost[mode][cl1][cl2] = 65535;
1621 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1622 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1624 else
1626 cost = last_move_cost[cl1][cl2];
1628 for (p2 = &reg_class_subclasses[cl2][0];
1629 *p2 != LIM_REG_CLASSES; p2++)
1630 if (ira_class_hard_regs_num[*p2] > 0
1631 && (ira_reg_class_max_nregs[*p2][mode]
1632 <= ira_class_hard_regs_num[*p2]))
1633 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1635 for (p1 = &reg_class_subclasses[cl1][0];
1636 *p1 != LIM_REG_CLASSES; p1++)
1637 if (ira_class_hard_regs_num[*p1] > 0
1638 && (ira_reg_class_max_nregs[*p1][mode]
1639 <= ira_class_hard_regs_num[*p1]))
1640 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1642 ira_assert (cost <= 65535);
1643 ira_register_move_cost[mode][cl1][cl2] = cost;
1645 if (ira_class_subset_p[cl1][cl2])
1646 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1647 else
1648 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1650 if (ira_class_subset_p[cl2][cl1])
1651 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1652 else
1653 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1660 /* This is called once during compiler work. It sets up
1661 different arrays whose values don't depend on the compiled
1662 function. */
1663 void
1664 ira_init_once (void)
1666 ira_init_costs_once ();
1667 lra_init_once ();
1670 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1671 ira_may_move_out_cost for each mode. */
1672 void
1673 target_ira_int::free_register_move_costs (void)
1675 int mode, i;
1677 /* Reset move_cost and friends, making sure we only free shared
1678 table entries once. */
1679 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1680 if (x_ira_register_move_cost[mode])
1682 for (i = 0;
1683 i < mode && (x_ira_register_move_cost[i]
1684 != x_ira_register_move_cost[mode]);
1685 i++)
1687 if (i == mode)
1689 free (x_ira_register_move_cost[mode]);
1690 free (x_ira_may_move_in_cost[mode]);
1691 free (x_ira_may_move_out_cost[mode]);
1694 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1695 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1696 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1697 last_mode_for_init_move_cost = -1;
1700 target_ira_int::~target_ira_int ()
1702 free_ira_costs ();
1703 free_register_move_costs ();
1706 /* This is called every time when register related information is
1707 changed. */
1708 void
1709 ira_init (void)
1711 this_target_ira_int->free_register_move_costs ();
1712 setup_reg_mode_hard_regset ();
1713 setup_alloc_regs (flag_omit_frame_pointer != 0);
1714 setup_class_subset_and_memory_move_costs ();
1715 setup_reg_class_nregs ();
1716 setup_prohibited_class_mode_regs ();
1717 find_reg_classes ();
1718 clarify_prohibited_class_mode_regs ();
1719 setup_hard_regno_aclass ();
1720 ira_init_costs ();
1724 #define ira_prohibited_mode_move_regs_initialized_p \
1725 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1727 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1728 static void
1729 setup_prohibited_mode_move_regs (void)
1731 int i, j;
1732 rtx test_reg1, test_reg2, move_pat;
1733 rtx_insn *move_insn;
1735 if (ira_prohibited_mode_move_regs_initialized_p)
1736 return;
1737 ira_prohibited_mode_move_regs_initialized_p = true;
1738 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1739 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1740 move_pat = gen_rtx_SET (test_reg1, test_reg2);
1741 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1742 for (i = 0; i < NUM_MACHINE_MODES; i++)
1744 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1745 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1747 if (! HARD_REGNO_MODE_OK (j, (machine_mode) i))
1748 continue;
1749 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1750 set_mode_and_regno (test_reg2, (machine_mode) i, j);
1751 INSN_CODE (move_insn) = -1;
1752 recog_memoized (move_insn);
1753 if (INSN_CODE (move_insn) < 0)
1754 continue;
1755 extract_insn (move_insn);
1756 /* We don't know whether the move will be in code that is optimized
1757 for size or speed, so consider all enabled alternatives. */
1758 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1759 continue;
1760 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1767 /* Setup possible alternatives in ALTS for INSN. */
1768 void
1769 ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
1771 /* MAP nalt * nop -> start of constraints for given operand and
1772 alternative. */
1773 static vec<const char *> insn_constraints;
1774 int nop, nalt;
1775 bool curr_swapped;
1776 const char *p;
1777 int commutative = -1;
1779 extract_insn (insn);
1780 alternative_mask preferred = get_preferred_alternatives (insn);
1781 CLEAR_HARD_REG_SET (alts);
1782 insn_constraints.release ();
1783 insn_constraints.safe_grow_cleared (recog_data.n_operands
1784 * recog_data.n_alternatives + 1);
1785 /* Check that the hard reg set is enough for holding all
1786 alternatives. It is hard to imagine the situation when the
1787 assertion is wrong. */
1788 ira_assert (recog_data.n_alternatives
1789 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1790 FIRST_PSEUDO_REGISTER));
1791 for (curr_swapped = false;; curr_swapped = true)
1793 /* Calculate some data common for all alternatives to speed up the
1794 function. */
1795 for (nop = 0; nop < recog_data.n_operands; nop++)
1797 for (nalt = 0, p = recog_data.constraints[nop];
1798 nalt < recog_data.n_alternatives;
1799 nalt++)
1801 insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1802 while (*p && *p != ',')
1804 /* We only support one commutative marker, the first
1805 one. We already set commutative above. */
1806 if (*p == '%' && commutative < 0)
1807 commutative = nop;
1808 p++;
1810 if (*p)
1811 p++;
1814 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1816 if (!TEST_BIT (preferred, nalt)
1817 || TEST_HARD_REG_BIT (alts, nalt))
1818 continue;
1820 for (nop = 0; nop < recog_data.n_operands; nop++)
1822 int c, len;
1824 rtx op = recog_data.operand[nop];
1825 p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1826 if (*p == 0 || *p == ',')
1827 continue;
1830 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1832 case '#':
1833 case ',':
1834 c = '\0';
1835 /* FALLTHRU */
1836 case '\0':
1837 len = 0;
1838 break;
1840 case '%':
1841 /* The commutative modifier is handled above. */
1842 break;
1844 case '0': case '1': case '2': case '3': case '4':
1845 case '5': case '6': case '7': case '8': case '9':
1846 goto op_success;
1847 break;
1849 case 'g':
1850 goto op_success;
1851 break;
1853 default:
1855 enum constraint_num cn = lookup_constraint (p);
1856 switch (get_constraint_type (cn))
1858 case CT_REGISTER:
1859 if (reg_class_for_constraint (cn) != NO_REGS)
1860 goto op_success;
1861 break;
1863 case CT_CONST_INT:
1864 if (CONST_INT_P (op)
1865 && (insn_const_int_ok_for_constraint
1866 (INTVAL (op), cn)))
1867 goto op_success;
1868 break;
1870 case CT_ADDRESS:
1871 case CT_MEMORY:
1872 case CT_SPECIAL_MEMORY:
1873 goto op_success;
1875 case CT_FIXED_FORM:
1876 if (constraint_satisfied_p (op, cn))
1877 goto op_success;
1878 break;
1880 break;
1883 while (p += len, c);
1884 break;
1885 op_success:
1888 if (nop >= recog_data.n_operands)
1889 SET_HARD_REG_BIT (alts, nalt);
1891 if (commutative < 0)
1892 break;
1893 /* Swap forth and back to avoid changing recog_data. */
1894 std::swap (recog_data.operand[commutative],
1895 recog_data.operand[commutative + 1]);
1896 if (curr_swapped)
1897 break;
1901 /* Return the number of the output non-early clobber operand which
1902 should be the same in any case as operand with number OP_NUM (or
1903 negative value if there is no such operand). The function takes
1904 only really possible alternatives into consideration. */
1906 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1908 int curr_alt, c, original, dup;
1909 bool ignore_p, use_commut_op_p;
1910 const char *str;
1912 if (op_num < 0 || recog_data.n_alternatives == 0)
1913 return -1;
1914 /* We should find duplications only for input operands. */
1915 if (recog_data.operand_type[op_num] != OP_IN)
1916 return -1;
1917 str = recog_data.constraints[op_num];
1918 use_commut_op_p = false;
1919 for (;;)
1921 rtx op = recog_data.operand[op_num];
1923 for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1924 original = -1;;)
1926 c = *str;
1927 if (c == '\0')
1928 break;
1929 if (c == '#')
1930 ignore_p = true;
1931 else if (c == ',')
1933 curr_alt++;
1934 ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
1936 else if (! ignore_p)
1937 switch (c)
1939 case 'g':
1940 goto fail;
1941 default:
1943 enum constraint_num cn = lookup_constraint (str);
1944 enum reg_class cl = reg_class_for_constraint (cn);
1945 if (cl != NO_REGS
1946 && !targetm.class_likely_spilled_p (cl))
1947 goto fail;
1948 if (constraint_satisfied_p (op, cn))
1949 goto fail;
1950 break;
1953 case '0': case '1': case '2': case '3': case '4':
1954 case '5': case '6': case '7': case '8': case '9':
1955 if (original != -1 && original != c)
1956 goto fail;
1957 original = c;
1958 break;
1960 str += CONSTRAINT_LEN (c, str);
1962 if (original == -1)
1963 goto fail;
1964 dup = -1;
1965 for (ignore_p = false, str = recog_data.constraints[original - '0'];
1966 *str != 0;
1967 str++)
1968 if (ignore_p)
1970 if (*str == ',')
1971 ignore_p = false;
1973 else if (*str == '#')
1974 ignore_p = true;
1975 else if (! ignore_p)
1977 if (*str == '=')
1978 dup = original - '0';
1979 /* It is better ignore an alternative with early clobber. */
1980 else if (*str == '&')
1981 goto fail;
1983 if (dup >= 0)
1984 return dup;
1985 fail:
1986 if (use_commut_op_p)
1987 break;
1988 use_commut_op_p = true;
1989 if (recog_data.constraints[op_num][0] == '%')
1990 str = recog_data.constraints[op_num + 1];
1991 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
1992 str = recog_data.constraints[op_num - 1];
1993 else
1994 break;
1996 return -1;
2001 /* Search forward to see if the source register of a copy insn dies
2002 before either it or the destination register is modified, but don't
2003 scan past the end of the basic block. If so, we can replace the
2004 source with the destination and let the source die in the copy
2005 insn.
2007 This will reduce the number of registers live in that range and may
2008 enable the destination and the source coalescing, thus often saving
2009 one register in addition to a register-register copy. */
2011 static void
2012 decrease_live_ranges_number (void)
2014 basic_block bb;
2015 rtx_insn *insn;
2016 rtx set, src, dest, dest_death, note;
2017 rtx_insn *p, *q;
2018 int sregno, dregno;
2020 if (! flag_expensive_optimizations)
2021 return;
2023 if (ira_dump_file)
2024 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2026 FOR_EACH_BB_FN (bb, cfun)
2027 FOR_BB_INSNS (bb, insn)
2029 set = single_set (insn);
2030 if (! set)
2031 continue;
2032 src = SET_SRC (set);
2033 dest = SET_DEST (set);
2034 if (! REG_P (src) || ! REG_P (dest)
2035 || find_reg_note (insn, REG_DEAD, src))
2036 continue;
2037 sregno = REGNO (src);
2038 dregno = REGNO (dest);
2040 /* We don't want to mess with hard regs if register classes
2041 are small. */
2042 if (sregno == dregno
2043 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2044 && (sregno < FIRST_PSEUDO_REGISTER
2045 || dregno < FIRST_PSEUDO_REGISTER))
2046 /* We don't see all updates to SP if they are in an
2047 auto-inc memory reference, so we must disallow this
2048 optimization on them. */
2049 || sregno == STACK_POINTER_REGNUM
2050 || dregno == STACK_POINTER_REGNUM)
2051 continue;
2053 dest_death = NULL_RTX;
2055 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2057 if (! INSN_P (p))
2058 continue;
2059 if (BLOCK_FOR_INSN (p) != bb)
2060 break;
2062 if (reg_set_p (src, p) || reg_set_p (dest, p)
2063 /* If SRC is an asm-declared register, it must not be
2064 replaced in any asm. Unfortunately, the REG_EXPR
2065 tree for the asm variable may be absent in the SRC
2066 rtx, so we can't check the actual register
2067 declaration easily (the asm operand will have it,
2068 though). To avoid complicating the test for a rare
2069 case, we just don't perform register replacement
2070 for a hard reg mentioned in an asm. */
2071 || (sregno < FIRST_PSEUDO_REGISTER
2072 && asm_noperands (PATTERN (p)) >= 0
2073 && reg_overlap_mentioned_p (src, PATTERN (p)))
2074 /* Don't change hard registers used by a call. */
2075 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2076 && find_reg_fusage (p, USE, src))
2077 /* Don't change a USE of a register. */
2078 || (GET_CODE (PATTERN (p)) == USE
2079 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2080 break;
2082 /* See if all of SRC dies in P. This test is slightly
2083 more conservative than it needs to be. */
2084 if ((note = find_regno_note (p, REG_DEAD, sregno))
2085 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2087 int failed = 0;
2089 /* We can do the optimization. Scan forward from INSN
2090 again, replacing regs as we go. Set FAILED if a
2091 replacement can't be done. In that case, we can't
2092 move the death note for SRC. This should be
2093 rare. */
2095 /* Set to stop at next insn. */
2096 for (q = next_real_insn (insn);
2097 q != next_real_insn (p);
2098 q = next_real_insn (q))
2100 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2102 /* If SRC is a hard register, we might miss
2103 some overlapping registers with
2104 validate_replace_rtx, so we would have to
2105 undo it. We can't if DEST is present in
2106 the insn, so fail in that combination of
2107 cases. */
2108 if (sregno < FIRST_PSEUDO_REGISTER
2109 && reg_mentioned_p (dest, PATTERN (q)))
2110 failed = 1;
2112 /* Attempt to replace all uses. */
2113 else if (!validate_replace_rtx (src, dest, q))
2114 failed = 1;
2116 /* If this succeeded, but some part of the
2117 register is still present, undo the
2118 replacement. */
2119 else if (sregno < FIRST_PSEUDO_REGISTER
2120 && reg_overlap_mentioned_p (src, PATTERN (q)))
2122 validate_replace_rtx (dest, src, q);
2123 failed = 1;
2127 /* If DEST dies here, remove the death note and
2128 save it for later. Make sure ALL of DEST dies
2129 here; again, this is overly conservative. */
2130 if (! dest_death
2131 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2133 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2134 remove_note (q, dest_death);
2135 else
2137 failed = 1;
2138 dest_death = 0;
2143 if (! failed)
2145 /* Move death note of SRC from P to INSN. */
2146 remove_note (p, note);
2147 XEXP (note, 1) = REG_NOTES (insn);
2148 REG_NOTES (insn) = note;
2151 /* DEST is also dead if INSN has a REG_UNUSED note for
2152 DEST. */
2153 if (! dest_death
2154 && (dest_death
2155 = find_regno_note (insn, REG_UNUSED, dregno)))
2157 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2158 remove_note (insn, dest_death);
2161 /* Put death note of DEST on P if we saw it die. */
2162 if (dest_death)
2164 XEXP (dest_death, 1) = REG_NOTES (p);
2165 REG_NOTES (p) = dest_death;
2167 break;
2170 /* If SRC is a hard register which is set or killed in
2171 some other way, we can't do this optimization. */
2172 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2173 break;
2180 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2181 static bool
2182 ira_bad_reload_regno_1 (int regno, rtx x)
2184 int x_regno, n, i;
2185 ira_allocno_t a;
2186 enum reg_class pref;
2188 /* We only deal with pseudo regs. */
2189 if (! x || GET_CODE (x) != REG)
2190 return false;
2192 x_regno = REGNO (x);
2193 if (x_regno < FIRST_PSEUDO_REGISTER)
2194 return false;
2196 /* If the pseudo prefers REGNO explicitly, then do not consider
2197 REGNO a bad spill choice. */
2198 pref = reg_preferred_class (x_regno);
2199 if (reg_class_size[pref] == 1)
2200 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2202 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2203 poor choice for a reload regno. */
2204 a = ira_regno_allocno_map[x_regno];
2205 n = ALLOCNO_NUM_OBJECTS (a);
2206 for (i = 0; i < n; i++)
2208 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2209 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2210 return true;
2212 return false;
2215 /* Return nonzero if REGNO is a particularly bad choice for reloading
2216 IN or OUT. */
2217 bool
2218 ira_bad_reload_regno (int regno, rtx in, rtx out)
2220 return (ira_bad_reload_regno_1 (regno, in)
2221 || ira_bad_reload_regno_1 (regno, out));
2224 /* Add register clobbers from asm statements. */
2225 static void
2226 compute_regs_asm_clobbered (void)
2228 basic_block bb;
2230 FOR_EACH_BB_FN (bb, cfun)
2232 rtx_insn *insn;
2233 FOR_BB_INSNS_REVERSE (bb, insn)
2235 df_ref def;
2237 if (NONDEBUG_INSN_P (insn) && asm_noperands (PATTERN (insn)) >= 0)
2238 FOR_EACH_INSN_DEF (def, insn)
2240 unsigned int dregno = DF_REF_REGNO (def);
2241 if (HARD_REGISTER_NUM_P (dregno))
2242 add_to_hard_reg_set (&crtl->asm_clobbers,
2243 GET_MODE (DF_REF_REAL_REG (def)),
2244 dregno);
2251 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2252 REGS_EVER_LIVE. */
2253 void
2254 ira_setup_eliminable_regset (void)
2256 #ifdef ELIMINABLE_REGS
2257 int i;
2258 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2259 #endif
2260 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2261 sp for alloca. So we can't eliminate the frame pointer in that
2262 case. At some point, we should improve this by emitting the
2263 sp-adjusting insns for this case. */
2264 frame_pointer_needed
2265 = (! flag_omit_frame_pointer
2266 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2267 /* We need the frame pointer to catch stack overflow exceptions if
2268 the stack pointer is moving (as for the alloca case just above). */
2269 || (STACK_CHECK_MOVING_SP
2270 && flag_stack_check
2271 && flag_exceptions
2272 && cfun->can_throw_non_call_exceptions)
2273 || crtl->accesses_prior_frames
2274 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2275 /* We need a frame pointer for all Cilk Plus functions that use
2276 Cilk keywords. */
2277 || (flag_cilkplus && cfun->is_cilk_function)
2278 || targetm.frame_pointer_required ());
2280 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2281 RTL is very small. So if we use frame pointer for RA and RTL
2282 actually prevents this, we will spill pseudos assigned to the
2283 frame pointer in LRA. */
2285 if (frame_pointer_needed)
2286 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2288 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2289 CLEAR_HARD_REG_SET (eliminable_regset);
2291 compute_regs_asm_clobbered ();
2293 /* Build the regset of all eliminable registers and show we can't
2294 use those that we already know won't be eliminated. */
2295 #ifdef ELIMINABLE_REGS
2296 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2298 bool cannot_elim
2299 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2300 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2302 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2304 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2306 if (cannot_elim)
2307 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2309 else if (cannot_elim)
2310 error ("%s cannot be used in asm here",
2311 reg_names[eliminables[i].from]);
2312 else
2313 df_set_regs_ever_live (eliminables[i].from, true);
2315 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2317 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2319 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2320 if (frame_pointer_needed)
2321 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2323 else if (frame_pointer_needed)
2324 error ("%s cannot be used in asm here",
2325 reg_names[HARD_FRAME_POINTER_REGNUM]);
2326 else
2327 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2330 #else
2331 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2333 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
2334 if (frame_pointer_needed)
2335 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
2337 else if (frame_pointer_needed)
2338 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
2339 else
2340 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
2341 #endif
2346 /* Vector of substitutions of register numbers,
2347 used to map pseudo regs into hardware regs.
2348 This is set up as a result of register allocation.
2349 Element N is the hard reg assigned to pseudo reg N,
2350 or is -1 if no hard reg was assigned.
2351 If N is a hard reg number, element N is N. */
2352 short *reg_renumber;
2354 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2355 the allocation found by IRA. */
2356 static void
2357 setup_reg_renumber (void)
2359 int regno, hard_regno;
2360 ira_allocno_t a;
2361 ira_allocno_iterator ai;
2363 caller_save_needed = 0;
2364 FOR_EACH_ALLOCNO (a, ai)
2366 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2367 continue;
2368 /* There are no caps at this point. */
2369 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2370 if (! ALLOCNO_ASSIGNED_P (a))
2371 /* It can happen if A is not referenced but partially anticipated
2372 somewhere in a region. */
2373 ALLOCNO_ASSIGNED_P (a) = true;
2374 ira_free_allocno_updated_costs (a);
2375 hard_regno = ALLOCNO_HARD_REGNO (a);
2376 regno = ALLOCNO_REGNO (a);
2377 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2378 if (hard_regno >= 0)
2380 int i, nwords;
2381 enum reg_class pclass;
2382 ira_object_t obj;
2384 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2385 nwords = ALLOCNO_NUM_OBJECTS (a);
2386 for (i = 0; i < nwords; i++)
2388 obj = ALLOCNO_OBJECT (a, i);
2389 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2390 reg_class_contents[pclass]);
2392 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2393 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2394 call_used_reg_set))
2396 ira_assert (!optimize || flag_caller_saves
2397 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2398 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2399 || regno >= ira_reg_equiv_len
2400 || ira_equiv_no_lvalue_p (regno));
2401 caller_save_needed = 1;
2407 /* Set up allocno assignment flags for further allocation
2408 improvements. */
2409 static void
2410 setup_allocno_assignment_flags (void)
2412 int hard_regno;
2413 ira_allocno_t a;
2414 ira_allocno_iterator ai;
2416 FOR_EACH_ALLOCNO (a, ai)
2418 if (! ALLOCNO_ASSIGNED_P (a))
2419 /* It can happen if A is not referenced but partially anticipated
2420 somewhere in a region. */
2421 ira_free_allocno_updated_costs (a);
2422 hard_regno = ALLOCNO_HARD_REGNO (a);
2423 /* Don't assign hard registers to allocnos which are destination
2424 of removed store at the end of loop. It has no sense to keep
2425 the same value in different hard registers. It is also
2426 impossible to assign hard registers correctly to such
2427 allocnos because the cost info and info about intersected
2428 calls are incorrect for them. */
2429 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2430 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2431 || (ALLOCNO_MEMORY_COST (a)
2432 - ALLOCNO_CLASS_COST (a)) < 0);
2433 ira_assert
2434 (hard_regno < 0
2435 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2436 reg_class_contents[ALLOCNO_CLASS (a)]));
2440 /* Evaluate overall allocation cost and the costs for using hard
2441 registers and memory for allocnos. */
2442 static void
2443 calculate_allocation_cost (void)
2445 int hard_regno, cost;
2446 ira_allocno_t a;
2447 ira_allocno_iterator ai;
2449 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2450 FOR_EACH_ALLOCNO (a, ai)
2452 hard_regno = ALLOCNO_HARD_REGNO (a);
2453 ira_assert (hard_regno < 0
2454 || (ira_hard_reg_in_set_p
2455 (hard_regno, ALLOCNO_MODE (a),
2456 reg_class_contents[ALLOCNO_CLASS (a)])));
2457 if (hard_regno < 0)
2459 cost = ALLOCNO_MEMORY_COST (a);
2460 ira_mem_cost += cost;
2462 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2464 cost = (ALLOCNO_HARD_REG_COSTS (a)
2465 [ira_class_hard_reg_index
2466 [ALLOCNO_CLASS (a)][hard_regno]]);
2467 ira_reg_cost += cost;
2469 else
2471 cost = ALLOCNO_CLASS_COST (a);
2472 ira_reg_cost += cost;
2474 ira_overall_cost += cost;
2477 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2479 fprintf (ira_dump_file,
2480 "+++Costs: overall %" PRId64
2481 ", reg %" PRId64
2482 ", mem %" PRId64
2483 ", ld %" PRId64
2484 ", st %" PRId64
2485 ", move %" PRId64,
2486 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2487 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2488 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
2489 ira_move_loops_num, ira_additional_jumps_num);
2494 #ifdef ENABLE_IRA_CHECKING
2495 /* Check the correctness of the allocation. We do need this because
2496 of complicated code to transform more one region internal
2497 representation into one region representation. */
2498 static void
2499 check_allocation (void)
2501 ira_allocno_t a;
2502 int hard_regno, nregs, conflict_nregs;
2503 ira_allocno_iterator ai;
2505 FOR_EACH_ALLOCNO (a, ai)
2507 int n = ALLOCNO_NUM_OBJECTS (a);
2508 int i;
2510 if (ALLOCNO_CAP_MEMBER (a) != NULL
2511 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2512 continue;
2513 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2514 if (nregs == 1)
2515 /* We allocated a single hard register. */
2516 n = 1;
2517 else if (n > 1)
2518 /* We allocated multiple hard registers, and we will test
2519 conflicts in a granularity of single hard regs. */
2520 nregs = 1;
2522 for (i = 0; i < n; i++)
2524 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2525 ira_object_t conflict_obj;
2526 ira_object_conflict_iterator oci;
2527 int this_regno = hard_regno;
2528 if (n > 1)
2530 if (REG_WORDS_BIG_ENDIAN)
2531 this_regno += n - i - 1;
2532 else
2533 this_regno += i;
2535 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2537 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2538 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2539 if (conflict_hard_regno < 0)
2540 continue;
2542 conflict_nregs
2543 = (hard_regno_nregs
2544 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2546 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2547 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2549 if (REG_WORDS_BIG_ENDIAN)
2550 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2551 - OBJECT_SUBWORD (conflict_obj) - 1);
2552 else
2553 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2554 conflict_nregs = 1;
2557 if ((conflict_hard_regno <= this_regno
2558 && this_regno < conflict_hard_regno + conflict_nregs)
2559 || (this_regno <= conflict_hard_regno
2560 && conflict_hard_regno < this_regno + nregs))
2562 fprintf (stderr, "bad allocation for %d and %d\n",
2563 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2564 gcc_unreachable ();
2570 #endif
2572 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2573 be already calculated. */
2574 static void
2575 setup_reg_equiv_init (void)
2577 int i;
2578 int max_regno = max_reg_num ();
2580 for (i = 0; i < max_regno; i++)
2581 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2584 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2585 are insns which were generated for such movement. It is assumed
2586 that FROM_REGNO and TO_REGNO always have the same value at the
2587 point of any move containing such registers. This function is used
2588 to update equiv info for register shuffles on the region borders
2589 and for caller save/restore insns. */
2590 void
2591 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2593 rtx_insn *insn;
2594 rtx x, note;
2596 if (! ira_reg_equiv[from_regno].defined_p
2597 && (! ira_reg_equiv[to_regno].defined_p
2598 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2599 && ! MEM_READONLY_P (x))))
2600 return;
2601 insn = insns;
2602 if (NEXT_INSN (insn) != NULL_RTX)
2604 if (! ira_reg_equiv[to_regno].defined_p)
2606 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2607 return;
2609 ira_reg_equiv[to_regno].defined_p = false;
2610 ira_reg_equiv[to_regno].memory
2611 = ira_reg_equiv[to_regno].constant
2612 = ira_reg_equiv[to_regno].invariant
2613 = ira_reg_equiv[to_regno].init_insns = NULL;
2614 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2615 fprintf (ira_dump_file,
2616 " Invalidating equiv info for reg %d\n", to_regno);
2617 return;
2619 /* It is possible that FROM_REGNO still has no equivalence because
2620 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2621 insn was not processed yet. */
2622 if (ira_reg_equiv[from_regno].defined_p)
2624 ira_reg_equiv[to_regno].defined_p = true;
2625 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2627 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2628 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2629 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2630 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2631 ira_reg_equiv[to_regno].memory = x;
2632 if (! MEM_READONLY_P (x))
2633 /* We don't add the insn to insn init list because memory
2634 equivalence is just to say what memory is better to use
2635 when the pseudo is spilled. */
2636 return;
2638 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2640 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2641 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2642 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2643 ira_reg_equiv[to_regno].constant = x;
2645 else
2647 x = ira_reg_equiv[from_regno].invariant;
2648 ira_assert (x != NULL_RTX);
2649 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2650 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2651 ira_reg_equiv[to_regno].invariant = x;
2653 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2655 note = set_unique_reg_note (insn, REG_EQUIV, x);
2656 gcc_assert (note != NULL_RTX);
2657 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2659 fprintf (ira_dump_file,
2660 " Adding equiv note to insn %u for reg %d ",
2661 INSN_UID (insn), to_regno);
2662 dump_value_slim (ira_dump_file, x, 1);
2663 fprintf (ira_dump_file, "\n");
2667 ira_reg_equiv[to_regno].init_insns
2668 = gen_rtx_INSN_LIST (VOIDmode, insn,
2669 ira_reg_equiv[to_regno].init_insns);
2670 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2671 fprintf (ira_dump_file,
2672 " Adding equiv init move insn %u to reg %d\n",
2673 INSN_UID (insn), to_regno);
2676 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2677 by IRA. */
2678 static void
2679 fix_reg_equiv_init (void)
2681 int max_regno = max_reg_num ();
2682 int i, new_regno, max;
2683 rtx set;
2684 rtx_insn_list *x, *next, *prev;
2685 rtx_insn *insn;
2687 if (max_regno_before_ira < max_regno)
2689 max = vec_safe_length (reg_equivs);
2690 grow_reg_equivs ();
2691 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2692 for (prev = NULL, x = reg_equiv_init (i);
2693 x != NULL_RTX;
2694 x = next)
2696 next = x->next ();
2697 insn = x->insn ();
2698 set = single_set (insn);
2699 ira_assert (set != NULL_RTX
2700 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2701 if (REG_P (SET_DEST (set))
2702 && ((int) REGNO (SET_DEST (set)) == i
2703 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2704 new_regno = REGNO (SET_DEST (set));
2705 else if (REG_P (SET_SRC (set))
2706 && ((int) REGNO (SET_SRC (set)) == i
2707 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2708 new_regno = REGNO (SET_SRC (set));
2709 else
2710 gcc_unreachable ();
2711 if (new_regno == i)
2712 prev = x;
2713 else
2715 /* Remove the wrong list element. */
2716 if (prev == NULL_RTX)
2717 reg_equiv_init (i) = next;
2718 else
2719 XEXP (prev, 1) = next;
2720 XEXP (x, 1) = reg_equiv_init (new_regno);
2721 reg_equiv_init (new_regno) = x;
2727 #ifdef ENABLE_IRA_CHECKING
2728 /* Print redundant memory-memory copies. */
2729 static void
2730 print_redundant_copies (void)
2732 int hard_regno;
2733 ira_allocno_t a;
2734 ira_copy_t cp, next_cp;
2735 ira_allocno_iterator ai;
2737 FOR_EACH_ALLOCNO (a, ai)
2739 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2740 /* It is a cap. */
2741 continue;
2742 hard_regno = ALLOCNO_HARD_REGNO (a);
2743 if (hard_regno >= 0)
2744 continue;
2745 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2746 if (cp->first == a)
2747 next_cp = cp->next_first_allocno_copy;
2748 else
2750 next_cp = cp->next_second_allocno_copy;
2751 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2752 && cp->insn != NULL_RTX
2753 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2754 fprintf (ira_dump_file,
2755 " Redundant move from %d(freq %d):%d\n",
2756 INSN_UID (cp->insn), cp->freq, hard_regno);
2760 #endif
2762 /* Setup preferred and alternative classes for new pseudo-registers
2763 created by IRA starting with START. */
2764 static void
2765 setup_preferred_alternate_classes_for_new_pseudos (int start)
2767 int i, old_regno;
2768 int max_regno = max_reg_num ();
2770 for (i = start; i < max_regno; i++)
2772 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2773 ira_assert (i != old_regno);
2774 setup_reg_classes (i, reg_preferred_class (old_regno),
2775 reg_alternate_class (old_regno),
2776 reg_allocno_class (old_regno));
2777 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2778 fprintf (ira_dump_file,
2779 " New r%d: setting preferred %s, alternative %s\n",
2780 i, reg_class_names[reg_preferred_class (old_regno)],
2781 reg_class_names[reg_alternate_class (old_regno)]);
2786 /* The number of entries allocated in reg_info. */
2787 static int allocated_reg_info_size;
2789 /* Regional allocation can create new pseudo-registers. This function
2790 expands some arrays for pseudo-registers. */
2791 static void
2792 expand_reg_info (void)
2794 int i;
2795 int size = max_reg_num ();
2797 resize_reg_info ();
2798 for (i = allocated_reg_info_size; i < size; i++)
2799 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2800 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2801 allocated_reg_info_size = size;
2804 /* Return TRUE if there is too high register pressure in the function.
2805 It is used to decide when stack slot sharing is worth to do. */
2806 static bool
2807 too_high_register_pressure_p (void)
2809 int i;
2810 enum reg_class pclass;
2812 for (i = 0; i < ira_pressure_classes_num; i++)
2814 pclass = ira_pressure_classes[i];
2815 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2816 return true;
2818 return false;
2823 /* Indicate that hard register number FROM was eliminated and replaced with
2824 an offset from hard register number TO. The status of hard registers live
2825 at the start of a basic block is updated by replacing a use of FROM with
2826 a use of TO. */
2828 void
2829 mark_elimination (int from, int to)
2831 basic_block bb;
2832 bitmap r;
2834 FOR_EACH_BB_FN (bb, cfun)
2836 r = DF_LR_IN (bb);
2837 if (bitmap_bit_p (r, from))
2839 bitmap_clear_bit (r, from);
2840 bitmap_set_bit (r, to);
2842 if (! df_live)
2843 continue;
2844 r = DF_LIVE_IN (bb);
2845 if (bitmap_bit_p (r, from))
2847 bitmap_clear_bit (r, from);
2848 bitmap_set_bit (r, to);
2855 /* The length of the following array. */
2856 int ira_reg_equiv_len;
2858 /* Info about equiv. info for each register. */
2859 struct ira_reg_equiv_s *ira_reg_equiv;
2861 /* Expand ira_reg_equiv if necessary. */
2862 void
2863 ira_expand_reg_equiv (void)
2865 int old = ira_reg_equiv_len;
2867 if (ira_reg_equiv_len > max_reg_num ())
2868 return;
2869 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2870 ira_reg_equiv
2871 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2872 ira_reg_equiv_len
2873 * sizeof (struct ira_reg_equiv_s));
2874 gcc_assert (old < ira_reg_equiv_len);
2875 memset (ira_reg_equiv + old, 0,
2876 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2879 static void
2880 init_reg_equiv (void)
2882 ira_reg_equiv_len = 0;
2883 ira_reg_equiv = NULL;
2884 ira_expand_reg_equiv ();
2887 static void
2888 finish_reg_equiv (void)
2890 free (ira_reg_equiv);
2895 struct equivalence
2897 /* Set when a REG_EQUIV note is found or created. Use to
2898 keep track of what memory accesses might be created later,
2899 e.g. by reload. */
2900 rtx replacement;
2901 rtx *src_p;
2903 /* The list of each instruction which initializes this register.
2905 NULL indicates we know nothing about this register's equivalence
2906 properties.
2908 An INSN_LIST with a NULL insn indicates this pseudo is already
2909 known to not have a valid equivalence. */
2910 rtx_insn_list *init_insns;
2912 /* Loop depth is used to recognize equivalences which appear
2913 to be present within the same loop (or in an inner loop). */
2914 short loop_depth;
2915 /* Nonzero if this had a preexisting REG_EQUIV note. */
2916 unsigned char is_arg_equivalence : 1;
2917 /* Set when an attempt should be made to replace a register
2918 with the associated src_p entry. */
2919 unsigned char replace : 1;
2920 /* Set if this register has no known equivalence. */
2921 unsigned char no_equiv : 1;
2922 /* Set if this register is mentioned in a paradoxical subreg. */
2923 unsigned char pdx_subregs : 1;
2926 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2927 structure for that register. */
2928 static struct equivalence *reg_equiv;
2930 /* Used for communication between the following two functions. */
2931 struct equiv_mem_data
2933 /* A MEM that we wish to ensure remains unchanged. */
2934 rtx equiv_mem;
2936 /* Set true if EQUIV_MEM is modified. */
2937 bool equiv_mem_modified;
2940 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2941 Called via note_stores. */
2942 static void
2943 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2944 void *data)
2946 struct equiv_mem_data *info = (struct equiv_mem_data *) data;
2948 if ((REG_P (dest)
2949 && reg_overlap_mentioned_p (dest, info->equiv_mem))
2950 || (MEM_P (dest)
2951 && anti_dependence (info->equiv_mem, dest)))
2952 info->equiv_mem_modified = true;
2955 enum valid_equiv { valid_none, valid_combine, valid_reload };
2957 /* Verify that no store between START and the death of REG invalidates
2958 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2959 by storing into an overlapping memory location, or with a non-const
2960 CALL_INSN.
2962 Return VALID_RELOAD if MEMREF remains valid for both reload and
2963 combine_and_move insns, VALID_COMBINE if only valid for
2964 combine_and_move_insns, and VALID_NONE otherwise. */
2965 static enum valid_equiv
2966 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2968 rtx_insn *insn;
2969 rtx note;
2970 struct equiv_mem_data info = { memref, false };
2971 enum valid_equiv ret = valid_reload;
2973 /* If the memory reference has side effects or is volatile, it isn't a
2974 valid equivalence. */
2975 if (side_effects_p (memref))
2976 return valid_none;
2978 for (insn = start; insn; insn = NEXT_INSN (insn))
2980 if (!INSN_P (insn))
2981 continue;
2983 if (find_reg_note (insn, REG_DEAD, reg))
2984 return ret;
2986 if (CALL_P (insn))
2988 /* We can combine a reg def from one insn into a reg use in
2989 another over a call if the memory is readonly or the call
2990 const/pure. However, we can't set reg_equiv notes up for
2991 reload over any call. The problem is the equivalent form
2992 may reference a pseudo which gets assigned a call
2993 clobbered hard reg. When we later replace REG with its
2994 equivalent form, the value in the call-clobbered reg has
2995 been changed and all hell breaks loose. */
2996 ret = valid_combine;
2997 if (!MEM_READONLY_P (memref)
2998 && !RTL_CONST_OR_PURE_CALL_P (insn))
2999 return valid_none;
3002 note_stores (PATTERN (insn), validate_equiv_mem_from_store, &info);
3003 if (info.equiv_mem_modified)
3004 return valid_none;
3006 /* If a register mentioned in MEMREF is modified via an
3007 auto-increment, we lose the equivalence. Do the same if one
3008 dies; although we could extend the life, it doesn't seem worth
3009 the trouble. */
3011 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3012 if ((REG_NOTE_KIND (note) == REG_INC
3013 || REG_NOTE_KIND (note) == REG_DEAD)
3014 && REG_P (XEXP (note, 0))
3015 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
3016 return valid_none;
3019 return valid_none;
3022 /* Returns zero if X is known to be invariant. */
3023 static int
3024 equiv_init_varies_p (rtx x)
3026 RTX_CODE code = GET_CODE (x);
3027 int i;
3028 const char *fmt;
3030 switch (code)
3032 case MEM:
3033 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3035 case CONST:
3036 CASE_CONST_ANY:
3037 case SYMBOL_REF:
3038 case LABEL_REF:
3039 return 0;
3041 case REG:
3042 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3044 case ASM_OPERANDS:
3045 if (MEM_VOLATILE_P (x))
3046 return 1;
3048 /* Fall through. */
3050 default:
3051 break;
3054 fmt = GET_RTX_FORMAT (code);
3055 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3056 if (fmt[i] == 'e')
3058 if (equiv_init_varies_p (XEXP (x, i)))
3059 return 1;
3061 else if (fmt[i] == 'E')
3063 int j;
3064 for (j = 0; j < XVECLEN (x, i); j++)
3065 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3066 return 1;
3069 return 0;
3072 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3073 X is only movable if the registers it uses have equivalent initializations
3074 which appear to be within the same loop (or in an inner loop) and movable
3075 or if they are not candidates for local_alloc and don't vary. */
3076 static int
3077 equiv_init_movable_p (rtx x, int regno)
3079 int i, j;
3080 const char *fmt;
3081 enum rtx_code code = GET_CODE (x);
3083 switch (code)
3085 case SET:
3086 return equiv_init_movable_p (SET_SRC (x), regno);
3088 case CC0:
3089 case CLOBBER:
3090 return 0;
3092 case PRE_INC:
3093 case PRE_DEC:
3094 case POST_INC:
3095 case POST_DEC:
3096 case PRE_MODIFY:
3097 case POST_MODIFY:
3098 return 0;
3100 case REG:
3101 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3102 && reg_equiv[REGNO (x)].replace)
3103 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3104 && ! rtx_varies_p (x, 0)));
3106 case UNSPEC_VOLATILE:
3107 return 0;
3109 case ASM_OPERANDS:
3110 if (MEM_VOLATILE_P (x))
3111 return 0;
3113 /* Fall through. */
3115 default:
3116 break;
3119 fmt = GET_RTX_FORMAT (code);
3120 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3121 switch (fmt[i])
3123 case 'e':
3124 if (! equiv_init_movable_p (XEXP (x, i), regno))
3125 return 0;
3126 break;
3127 case 'E':
3128 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3129 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3130 return 0;
3131 break;
3134 return 1;
3137 /* TRUE if X references a memory location that would be affected by a store
3138 to MEMREF. */
3139 static int
3140 memref_referenced_p (rtx memref, rtx x)
3142 int i, j;
3143 const char *fmt;
3144 enum rtx_code code = GET_CODE (x);
3146 switch (code)
3148 case CONST:
3149 case LABEL_REF:
3150 case SYMBOL_REF:
3151 CASE_CONST_ANY:
3152 case PC:
3153 case CC0:
3154 case HIGH:
3155 case LO_SUM:
3156 return 0;
3158 case REG:
3159 return (reg_equiv[REGNO (x)].replacement
3160 && memref_referenced_p (memref,
3161 reg_equiv[REGNO (x)].replacement));
3163 case MEM:
3164 if (true_dependence (memref, VOIDmode, x))
3165 return 1;
3166 break;
3168 case SET:
3169 /* If we are setting a MEM, it doesn't count (its address does), but any
3170 other SET_DEST that has a MEM in it is referencing the MEM. */
3171 if (MEM_P (SET_DEST (x)))
3173 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3174 return 1;
3176 else if (memref_referenced_p (memref, SET_DEST (x)))
3177 return 1;
3179 return memref_referenced_p (memref, SET_SRC (x));
3181 default:
3182 break;
3185 fmt = GET_RTX_FORMAT (code);
3186 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3187 switch (fmt[i])
3189 case 'e':
3190 if (memref_referenced_p (memref, XEXP (x, i)))
3191 return 1;
3192 break;
3193 case 'E':
3194 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3195 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3196 return 1;
3197 break;
3200 return 0;
3203 /* TRUE if some insn in the range (START, END] references a memory location
3204 that would be affected by a store to MEMREF.
3206 Callers should not call this routine if START is after END in the
3207 RTL chain. */
3209 static int
3210 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3212 rtx_insn *insn;
3214 for (insn = NEXT_INSN (start);
3215 insn && insn != NEXT_INSN (end);
3216 insn = NEXT_INSN (insn))
3218 if (!NONDEBUG_INSN_P (insn))
3219 continue;
3221 if (memref_referenced_p (memref, PATTERN (insn)))
3222 return 1;
3224 /* Nonconst functions may access memory. */
3225 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3226 return 1;
3229 gcc_assert (insn == NEXT_INSN (end));
3230 return 0;
3233 /* Mark REG as having no known equivalence.
3234 Some instructions might have been processed before and furnished
3235 with REG_EQUIV notes for this register; these notes will have to be
3236 removed.
3237 STORE is the piece of RTL that does the non-constant / conflicting
3238 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3239 but needs to be there because this function is called from note_stores. */
3240 static void
3241 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3242 void *data ATTRIBUTE_UNUSED)
3244 int regno;
3245 rtx_insn_list *list;
3247 if (!REG_P (reg))
3248 return;
3249 regno = REGNO (reg);
3250 reg_equiv[regno].no_equiv = 1;
3251 list = reg_equiv[regno].init_insns;
3252 if (list && list->insn () == NULL)
3253 return;
3254 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3255 reg_equiv[regno].replacement = NULL_RTX;
3256 /* This doesn't matter for equivalences made for argument registers, we
3257 should keep their initialization insns. */
3258 if (reg_equiv[regno].is_arg_equivalence)
3259 return;
3260 ira_reg_equiv[regno].defined_p = false;
3261 ira_reg_equiv[regno].init_insns = NULL;
3262 for (; list; list = list->next ())
3264 rtx_insn *insn = list->insn ();
3265 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3269 /* Check whether the SUBREG is a paradoxical subreg and set the result
3270 in PDX_SUBREGS. */
3272 static void
3273 set_paradoxical_subreg (rtx_insn *insn)
3275 subrtx_iterator::array_type array;
3276 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3278 const_rtx subreg = *iter;
3279 if (GET_CODE (subreg) == SUBREG)
3281 const_rtx reg = SUBREG_REG (subreg);
3282 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3283 reg_equiv[REGNO (reg)].pdx_subregs = true;
3288 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3289 equivalent replacement. */
3291 static rtx
3292 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3294 if (REG_P (loc))
3296 bitmap cleared_regs = (bitmap) data;
3297 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3298 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3299 NULL_RTX, adjust_cleared_regs, data);
3301 return NULL_RTX;
3304 /* Find registers that are equivalent to a single value throughout the
3305 compilation (either because they can be referenced in memory or are
3306 set once from a single constant). Lower their priority for a
3307 register.
3309 If such a register is only referenced once, try substituting its
3310 value into the using insn. If it succeeds, we can eliminate the
3311 register completely.
3313 Initialize init_insns in ira_reg_equiv array. */
3314 static void
3315 update_equiv_regs (void)
3317 rtx_insn *insn;
3318 basic_block bb;
3320 /* Scan insns and set pdx_subregs if the reg is used in a
3321 paradoxical subreg. Don't set such reg equivalent to a mem,
3322 because lra will not substitute such equiv memory in order to
3323 prevent access beyond allocated memory for paradoxical memory subreg. */
3324 FOR_EACH_BB_FN (bb, cfun)
3325 FOR_BB_INSNS (bb, insn)
3326 if (NONDEBUG_INSN_P (insn))
3327 set_paradoxical_subreg (insn);
3329 /* Scan the insns and find which registers have equivalences. Do this
3330 in a separate scan of the insns because (due to -fcse-follow-jumps)
3331 a register can be set below its use. */
3332 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3333 FOR_EACH_BB_FN (bb, cfun)
3335 int loop_depth = bb_loop_depth (bb);
3337 for (insn = BB_HEAD (bb);
3338 insn != NEXT_INSN (BB_END (bb));
3339 insn = NEXT_INSN (insn))
3341 rtx note;
3342 rtx set;
3343 rtx dest, src;
3344 int regno;
3346 if (! INSN_P (insn))
3347 continue;
3349 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3350 if (REG_NOTE_KIND (note) == REG_INC)
3351 no_equiv (XEXP (note, 0), note, NULL);
3353 set = single_set (insn);
3355 /* If this insn contains more (or less) than a single SET,
3356 only mark all destinations as having no known equivalence. */
3357 if (set == NULL_RTX
3358 || side_effects_p (SET_SRC (set)))
3360 note_stores (PATTERN (insn), no_equiv, NULL);
3361 continue;
3363 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3365 int i;
3367 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3369 rtx part = XVECEXP (PATTERN (insn), 0, i);
3370 if (part != set)
3371 note_stores (part, no_equiv, NULL);
3375 dest = SET_DEST (set);
3376 src = SET_SRC (set);
3378 /* See if this is setting up the equivalence between an argument
3379 register and its stack slot. */
3380 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3381 if (note)
3383 gcc_assert (REG_P (dest));
3384 regno = REGNO (dest);
3386 /* Note that we don't want to clear init_insns in
3387 ira_reg_equiv even if there are multiple sets of this
3388 register. */
3389 reg_equiv[regno].is_arg_equivalence = 1;
3391 /* The insn result can have equivalence memory although
3392 the equivalence is not set up by the insn. We add
3393 this insn to init insns as it is a flag for now that
3394 regno has an equivalence. We will remove the insn
3395 from init insn list later. */
3396 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3397 ira_reg_equiv[regno].init_insns
3398 = gen_rtx_INSN_LIST (VOIDmode, insn,
3399 ira_reg_equiv[regno].init_insns);
3401 /* Continue normally in case this is a candidate for
3402 replacements. */
3405 if (!optimize)
3406 continue;
3408 /* We only handle the case of a pseudo register being set
3409 once, or always to the same value. */
3410 /* ??? The mn10200 port breaks if we add equivalences for
3411 values that need an ADDRESS_REGS register and set them equivalent
3412 to a MEM of a pseudo. The actual problem is in the over-conservative
3413 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3414 calculate_needs, but we traditionally work around this problem
3415 here by rejecting equivalences when the destination is in a register
3416 that's likely spilled. This is fragile, of course, since the
3417 preferred class of a pseudo depends on all instructions that set
3418 or use it. */
3420 if (!REG_P (dest)
3421 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3422 || (reg_equiv[regno].init_insns
3423 && reg_equiv[regno].init_insns->insn () == NULL)
3424 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3425 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3427 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3428 also set somewhere else to a constant. */
3429 note_stores (set, no_equiv, NULL);
3430 continue;
3433 /* Don't set reg mentioned in a paradoxical subreg
3434 equivalent to a mem. */
3435 if (MEM_P (src) && reg_equiv[regno].pdx_subregs)
3437 note_stores (set, no_equiv, NULL);
3438 continue;
3441 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3443 /* cse sometimes generates function invariants, but doesn't put a
3444 REG_EQUAL note on the insn. Since this note would be redundant,
3445 there's no point creating it earlier than here. */
3446 if (! note && ! rtx_varies_p (src, 0))
3447 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3449 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3450 since it represents a function call. */
3451 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3452 note = NULL_RTX;
3454 if (DF_REG_DEF_COUNT (regno) != 1)
3456 bool equal_p = true;
3457 rtx_insn_list *list;
3459 /* If we have already processed this pseudo and determined it
3460 can not have an equivalence, then honor that decision. */
3461 if (reg_equiv[regno].no_equiv)
3462 continue;
3464 if (! note
3465 || rtx_varies_p (XEXP (note, 0), 0)
3466 || (reg_equiv[regno].replacement
3467 && ! rtx_equal_p (XEXP (note, 0),
3468 reg_equiv[regno].replacement)))
3470 no_equiv (dest, set, NULL);
3471 continue;
3474 list = reg_equiv[regno].init_insns;
3475 for (; list; list = list->next ())
3477 rtx note_tmp;
3478 rtx_insn *insn_tmp;
3480 insn_tmp = list->insn ();
3481 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3482 gcc_assert (note_tmp);
3483 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3485 equal_p = false;
3486 break;
3490 if (! equal_p)
3492 no_equiv (dest, set, NULL);
3493 continue;
3497 /* Record this insn as initializing this register. */
3498 reg_equiv[regno].init_insns
3499 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3501 /* If this register is known to be equal to a constant, record that
3502 it is always equivalent to the constant. */
3503 if (DF_REG_DEF_COUNT (regno) == 1
3504 && note && ! rtx_varies_p (XEXP (note, 0), 0))
3506 rtx note_value = XEXP (note, 0);
3507 remove_note (insn, note);
3508 set_unique_reg_note (insn, REG_EQUIV, note_value);
3511 /* If this insn introduces a "constant" register, decrease the priority
3512 of that register. Record this insn if the register is only used once
3513 more and the equivalence value is the same as our source.
3515 The latter condition is checked for two reasons: First, it is an
3516 indication that it may be more efficient to actually emit the insn
3517 as written (if no registers are available, reload will substitute
3518 the equivalence). Secondly, it avoids problems with any registers
3519 dying in this insn whose death notes would be missed.
3521 If we don't have a REG_EQUIV note, see if this insn is loading
3522 a register used only in one basic block from a MEM. If so, and the
3523 MEM remains unchanged for the life of the register, add a REG_EQUIV
3524 note. */
3525 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3527 rtx replacement = NULL_RTX;
3528 if (note)
3529 replacement = XEXP (note, 0);
3530 else if (REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3531 && MEM_P (SET_SRC (set)))
3533 enum valid_equiv validity;
3534 validity = validate_equiv_mem (insn, dest, SET_SRC (set));
3535 if (validity != valid_none)
3537 replacement = copy_rtx (SET_SRC (set));
3538 if (validity == valid_reload)
3539 note = set_unique_reg_note (insn, REG_EQUIV, replacement);
3543 /* If we haven't done so, record for reload that this is an
3544 equivalencing insn. */
3545 if (note && !reg_equiv[regno].is_arg_equivalence)
3546 ira_reg_equiv[regno].init_insns
3547 = gen_rtx_INSN_LIST (VOIDmode, insn,
3548 ira_reg_equiv[regno].init_insns);
3550 if (replacement)
3552 reg_equiv[regno].replacement = replacement;
3553 reg_equiv[regno].src_p = &SET_SRC (set);
3554 reg_equiv[regno].loop_depth = (short) loop_depth;
3556 /* Don't mess with things live during setjmp. */
3557 if (optimize && !bitmap_bit_p (setjmp_crosses, regno))
3559 /* If the register is referenced exactly twice, meaning it is
3560 set once and used once, indicate that the reference may be
3561 replaced by the equivalence we computed above. Do this
3562 even if the register is only used in one block so that
3563 dependencies can be handled where the last register is
3564 used in a different block (i.e. HIGH / LO_SUM sequences)
3565 and to reduce the number of registers alive across
3566 calls. */
3568 if (REG_N_REFS (regno) == 2
3569 && (rtx_equal_p (replacement, src)
3570 || ! equiv_init_varies_p (src))
3571 && NONJUMP_INSN_P (insn)
3572 && equiv_init_movable_p (PATTERN (insn), regno))
3573 reg_equiv[regno].replace = 1;
3580 /* For insns that set a MEM to the contents of a REG that is only used
3581 in a single basic block, see if the register is always equivalent
3582 to that memory location and if moving the store from INSN to the
3583 insn that sets REG is safe. If so, put a REG_EQUIV note on the
3584 initializing insn. */
3585 static void
3586 add_store_equivs (void)
3588 bitmap_head seen_insns;
3590 bitmap_initialize (&seen_insns, NULL);
3591 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3593 rtx set, src, dest;
3594 unsigned regno;
3595 rtx_insn *init_insn;
3597 bitmap_set_bit (&seen_insns, INSN_UID (insn));
3599 if (! INSN_P (insn))
3600 continue;
3602 set = single_set (insn);
3603 if (! set)
3604 continue;
3606 dest = SET_DEST (set);
3607 src = SET_SRC (set);
3609 /* Don't add a REG_EQUIV note if the insn already has one. The existing
3610 REG_EQUIV is likely more useful than the one we are adding. */
3611 if (MEM_P (dest) && REG_P (src)
3612 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3613 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3614 && DF_REG_DEF_COUNT (regno) == 1
3615 && ! reg_equiv[regno].pdx_subregs
3616 && reg_equiv[regno].init_insns != NULL
3617 && (init_insn = reg_equiv[regno].init_insns->insn ()) != 0
3618 && bitmap_bit_p (&seen_insns, INSN_UID (init_insn))
3619 && ! find_reg_note (init_insn, REG_EQUIV, NULL_RTX)
3620 && validate_equiv_mem (init_insn, src, dest) == valid_reload
3621 && ! memref_used_between_p (dest, init_insn, insn)
3622 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3623 multiple sets. */
3624 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3626 /* This insn makes the equivalence, not the one initializing
3627 the register. */
3628 ira_reg_equiv[regno].init_insns
3629 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3630 df_notes_rescan (init_insn);
3631 if (dump_file)
3632 fprintf (dump_file,
3633 "Adding REG_EQUIV to insn %d for source of insn %d\n",
3634 INSN_UID (init_insn),
3635 INSN_UID (insn));
3638 bitmap_clear (&seen_insns);
3641 /* Scan all regs killed in an insn to see if any of them are registers
3642 only used that once. If so, see if we can replace the reference
3643 with the equivalent form. If we can, delete the initializing
3644 reference and this register will go away. If we can't replace the
3645 reference, and the initializing reference is within the same loop
3646 (or in an inner loop), then move the register initialization just
3647 before the use, so that they are in the same basic block. */
3648 static void
3649 combine_and_move_insns (void)
3651 bitmap cleared_regs = BITMAP_ALLOC (NULL);
3652 int max = max_reg_num ();
3654 for (int regno = FIRST_PSEUDO_REGISTER; regno < max; regno++)
3656 if (!reg_equiv[regno].replace)
3657 continue;
3659 rtx_insn *use_insn = 0;
3660 for (df_ref use = DF_REG_USE_CHAIN (regno);
3661 use;
3662 use = DF_REF_NEXT_REG (use))
3663 if (DF_REF_INSN_INFO (use))
3665 if (DEBUG_INSN_P (DF_REF_INSN (use)))
3666 continue;
3667 gcc_assert (!use_insn);
3668 use_insn = DF_REF_INSN (use);
3670 gcc_assert (use_insn);
3672 /* Don't substitute into jumps. indirect_jump_optimize does
3673 this for anything we are prepared to handle. */
3674 if (JUMP_P (use_insn))
3675 continue;
3677 df_ref def = DF_REG_DEF_CHAIN (regno);
3678 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && DF_REF_INSN_INFO (def));
3679 rtx_insn *def_insn = DF_REF_INSN (def);
3681 /* We may not move instructions that can throw, since that
3682 changes basic block boundaries and we are not prepared to
3683 adjust the CFG to match. */
3684 if (can_throw_internal (def_insn))
3685 continue;
3687 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3688 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3689 if (bb_loop_depth (use_bb) > bb_loop_depth (def_bb))
3690 continue;
3692 if (asm_noperands (PATTERN (def_insn)) < 0
3693 && validate_replace_rtx (regno_reg_rtx[regno],
3694 *reg_equiv[regno].src_p, use_insn))
3696 rtx link;
3697 /* Append the REG_DEAD notes from def_insn. */
3698 for (rtx *p = &REG_NOTES (def_insn); (link = *p) != 0; )
3700 if (REG_NOTE_KIND (XEXP (link, 0)) == REG_DEAD)
3702 *p = XEXP (link, 1);
3703 XEXP (link, 1) = REG_NOTES (use_insn);
3704 REG_NOTES (use_insn) = link;
3706 else
3707 p = &XEXP (link, 1);
3710 remove_death (regno, use_insn);
3711 SET_REG_N_REFS (regno, 0);
3712 REG_FREQ (regno) = 0;
3713 delete_insn (def_insn);
3715 reg_equiv[regno].init_insns = NULL;
3716 ira_reg_equiv[regno].init_insns = NULL;
3717 bitmap_set_bit (cleared_regs, regno);
3720 /* Move the initialization of the register to just before
3721 USE_INSN. Update the flow information. */
3722 else if (prev_nondebug_insn (use_insn) != def_insn)
3724 rtx_insn *new_insn;
3726 new_insn = emit_insn_before (PATTERN (def_insn), use_insn);
3727 REG_NOTES (new_insn) = REG_NOTES (def_insn);
3728 REG_NOTES (def_insn) = 0;
3729 /* Rescan it to process the notes. */
3730 df_insn_rescan (new_insn);
3732 /* Make sure this insn is recognized before reload begins,
3733 otherwise eliminate_regs_in_insn will die. */
3734 INSN_CODE (new_insn) = INSN_CODE (def_insn);
3736 delete_insn (def_insn);
3738 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3740 REG_BASIC_BLOCK (regno) = use_bb->index;
3741 REG_N_CALLS_CROSSED (regno) = 0;
3743 if (use_insn == BB_HEAD (use_bb))
3744 BB_HEAD (use_bb) = new_insn;
3746 /* We know regno dies in use_insn, but inside a loop
3747 REG_DEAD notes might be missing when def_insn was in
3748 another basic block. However, when we move def_insn into
3749 this bb we'll definitely get a REG_DEAD note and reload
3750 will see the death. It's possible that update_equiv_regs
3751 set up an equivalence referencing regno for a reg set by
3752 use_insn, when regno was seen as non-local. Now that
3753 regno is local to this block, and dies, such an
3754 equivalence is invalid. */
3755 if (find_reg_note (use_insn, REG_EQUIV, NULL_RTX))
3757 rtx set = single_set (use_insn);
3758 if (set && REG_P (SET_DEST (set)))
3759 no_equiv (SET_DEST (set), set, NULL);
3762 ira_reg_equiv[regno].init_insns
3763 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3764 bitmap_set_bit (cleared_regs, regno);
3768 if (!bitmap_empty_p (cleared_regs))
3770 basic_block bb;
3772 FOR_EACH_BB_FN (bb, cfun)
3774 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3775 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3776 if (!df_live)
3777 continue;
3778 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3779 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3782 /* Last pass - adjust debug insns referencing cleared regs. */
3783 if (MAY_HAVE_DEBUG_INSNS)
3784 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3785 if (DEBUG_INSN_P (insn))
3787 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3788 INSN_VAR_LOCATION_LOC (insn)
3789 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3790 adjust_cleared_regs,
3791 (void *) cleared_regs);
3792 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3793 df_insn_rescan (insn);
3797 BITMAP_FREE (cleared_regs);
3800 /* A pass over indirect jumps, converting simple cases to direct jumps.
3801 Combine does this optimization too, but only within a basic block. */
3802 static void
3803 indirect_jump_optimize (void)
3805 basic_block bb;
3806 bool rebuild_p = false;
3808 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3810 rtx_insn *insn = BB_END (bb);
3811 if (!JUMP_P (insn)
3812 || find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3813 continue;
3815 rtx x = pc_set (insn);
3816 if (!x || !REG_P (SET_SRC (x)))
3817 continue;
3819 int regno = REGNO (SET_SRC (x));
3820 if (DF_REG_DEF_COUNT (regno) == 1)
3822 df_ref def = DF_REG_DEF_CHAIN (regno);
3823 if (!DF_REF_IS_ARTIFICIAL (def))
3825 rtx_insn *def_insn = DF_REF_INSN (def);
3826 rtx lab = NULL_RTX;
3827 rtx set = single_set (def_insn);
3828 if (set && GET_CODE (SET_SRC (set)) == LABEL_REF)
3829 lab = SET_SRC (set);
3830 else
3832 rtx eqnote = find_reg_note (def_insn, REG_EQUAL, NULL_RTX);
3833 if (eqnote && GET_CODE (XEXP (eqnote, 0)) == LABEL_REF)
3834 lab = XEXP (eqnote, 0);
3836 if (lab && validate_replace_rtx (SET_SRC (x), lab, insn))
3837 rebuild_p = true;
3842 if (rebuild_p)
3844 timevar_push (TV_JUMP);
3845 rebuild_jump_labels (get_insns ());
3846 if (purge_all_dead_edges ())
3847 delete_unreachable_blocks ();
3848 timevar_pop (TV_JUMP);
3852 /* Set up fields memory, constant, and invariant from init_insns in
3853 the structures of array ira_reg_equiv. */
3854 static void
3855 setup_reg_equiv (void)
3857 int i;
3858 rtx_insn_list *elem, *prev_elem, *next_elem;
3859 rtx_insn *insn;
3860 rtx set, x;
3862 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3863 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3864 elem;
3865 prev_elem = elem, elem = next_elem)
3867 next_elem = elem->next ();
3868 insn = elem->insn ();
3869 set = single_set (insn);
3871 /* Init insns can set up equivalence when the reg is a destination or
3872 a source (in this case the destination is memory). */
3873 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3875 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3877 x = XEXP (x, 0);
3878 if (REG_P (SET_DEST (set))
3879 && REGNO (SET_DEST (set)) == (unsigned int) i
3880 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3882 /* This insn reporting the equivalence but
3883 actually not setting it. Remove it from the
3884 list. */
3885 if (prev_elem == NULL)
3886 ira_reg_equiv[i].init_insns = next_elem;
3887 else
3888 XEXP (prev_elem, 1) = next_elem;
3889 elem = prev_elem;
3892 else if (REG_P (SET_DEST (set))
3893 && REGNO (SET_DEST (set)) == (unsigned int) i)
3894 x = SET_SRC (set);
3895 else
3897 gcc_assert (REG_P (SET_SRC (set))
3898 && REGNO (SET_SRC (set)) == (unsigned int) i);
3899 x = SET_DEST (set);
3901 if (! function_invariant_p (x)
3902 || ! flag_pic
3903 /* A function invariant is often CONSTANT_P but may
3904 include a register. We promise to only pass
3905 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3906 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3908 /* It can happen that a REG_EQUIV note contains a MEM
3909 that is not a legitimate memory operand. As later
3910 stages of reload assume that all addresses found in
3911 the lra_regno_equiv_* arrays were originally
3912 legitimate, we ignore such REG_EQUIV notes. */
3913 if (memory_operand (x, VOIDmode))
3915 ira_reg_equiv[i].defined_p = true;
3916 ira_reg_equiv[i].memory = x;
3917 continue;
3919 else if (function_invariant_p (x))
3921 machine_mode mode;
3923 mode = GET_MODE (SET_DEST (set));
3924 if (GET_CODE (x) == PLUS
3925 || x == frame_pointer_rtx || x == arg_pointer_rtx)
3926 /* This is PLUS of frame pointer and a constant,
3927 or fp, or argp. */
3928 ira_reg_equiv[i].invariant = x;
3929 else if (targetm.legitimate_constant_p (mode, x))
3930 ira_reg_equiv[i].constant = x;
3931 else
3933 ira_reg_equiv[i].memory = force_const_mem (mode, x);
3934 if (ira_reg_equiv[i].memory == NULL_RTX)
3936 ira_reg_equiv[i].defined_p = false;
3937 ira_reg_equiv[i].init_insns = NULL;
3938 break;
3941 ira_reg_equiv[i].defined_p = true;
3942 continue;
3946 ira_reg_equiv[i].defined_p = false;
3947 ira_reg_equiv[i].init_insns = NULL;
3948 break;
3954 /* Print chain C to FILE. */
3955 static void
3956 print_insn_chain (FILE *file, struct insn_chain *c)
3958 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
3959 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
3960 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
3964 /* Print all reload_insn_chains to FILE. */
3965 static void
3966 print_insn_chains (FILE *file)
3968 struct insn_chain *c;
3969 for (c = reload_insn_chain; c ; c = c->next)
3970 print_insn_chain (file, c);
3973 /* Return true if pseudo REGNO should be added to set live_throughout
3974 or dead_or_set of the insn chains for reload consideration. */
3975 static bool
3976 pseudo_for_reload_consideration_p (int regno)
3978 /* Consider spilled pseudos too for IRA because they still have a
3979 chance to get hard-registers in the reload when IRA is used. */
3980 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
3983 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
3984 REG to the number of nregs, and INIT_VALUE to get the
3985 initialization. ALLOCNUM need not be the regno of REG. */
3986 static void
3987 init_live_subregs (bool init_value, sbitmap *live_subregs,
3988 bitmap live_subregs_used, int allocnum, rtx reg)
3990 unsigned int regno = REGNO (SUBREG_REG (reg));
3991 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
3993 gcc_assert (size > 0);
3995 /* Been there, done that. */
3996 if (bitmap_bit_p (live_subregs_used, allocnum))
3997 return;
3999 /* Create a new one. */
4000 if (live_subregs[allocnum] == NULL)
4001 live_subregs[allocnum] = sbitmap_alloc (size);
4003 /* If the entire reg was live before blasting into subregs, we need
4004 to init all of the subregs to ones else init to 0. */
4005 if (init_value)
4006 bitmap_ones (live_subregs[allocnum]);
4007 else
4008 bitmap_clear (live_subregs[allocnum]);
4010 bitmap_set_bit (live_subregs_used, allocnum);
4013 /* Walk the insns of the current function and build reload_insn_chain,
4014 and record register life information. */
4015 static void
4016 build_insn_chain (void)
4018 unsigned int i;
4019 struct insn_chain **p = &reload_insn_chain;
4020 basic_block bb;
4021 struct insn_chain *c = NULL;
4022 struct insn_chain *next = NULL;
4023 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
4024 bitmap elim_regset = BITMAP_ALLOC (NULL);
4025 /* live_subregs is a vector used to keep accurate information about
4026 which hardregs are live in multiword pseudos. live_subregs and
4027 live_subregs_used are indexed by pseudo number. The live_subreg
4028 entry for a particular pseudo is only used if the corresponding
4029 element is non zero in live_subregs_used. The sbitmap size of
4030 live_subreg[allocno] is number of bytes that the pseudo can
4031 occupy. */
4032 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4033 bitmap live_subregs_used = BITMAP_ALLOC (NULL);
4035 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4036 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4037 bitmap_set_bit (elim_regset, i);
4038 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4040 bitmap_iterator bi;
4041 rtx_insn *insn;
4043 CLEAR_REG_SET (live_relevant_regs);
4044 bitmap_clear (live_subregs_used);
4046 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4048 if (i >= FIRST_PSEUDO_REGISTER)
4049 break;
4050 bitmap_set_bit (live_relevant_regs, i);
4053 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4054 FIRST_PSEUDO_REGISTER, i, bi)
4056 if (pseudo_for_reload_consideration_p (i))
4057 bitmap_set_bit (live_relevant_regs, i);
4060 FOR_BB_INSNS_REVERSE (bb, insn)
4062 if (!NOTE_P (insn) && !BARRIER_P (insn))
4064 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4065 df_ref def, use;
4067 c = new_insn_chain ();
4068 c->next = next;
4069 next = c;
4070 *p = c;
4071 p = &c->prev;
4073 c->insn = insn;
4074 c->block = bb->index;
4076 if (NONDEBUG_INSN_P (insn))
4077 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4079 unsigned int regno = DF_REF_REGNO (def);
4081 /* Ignore may clobbers because these are generated
4082 from calls. However, every other kind of def is
4083 added to dead_or_set. */
4084 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4086 if (regno < FIRST_PSEUDO_REGISTER)
4088 if (!fixed_regs[regno])
4089 bitmap_set_bit (&c->dead_or_set, regno);
4091 else if (pseudo_for_reload_consideration_p (regno))
4092 bitmap_set_bit (&c->dead_or_set, regno);
4095 if ((regno < FIRST_PSEUDO_REGISTER
4096 || reg_renumber[regno] >= 0
4097 || ira_conflicts_p)
4098 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4100 rtx reg = DF_REF_REG (def);
4102 /* We can model subregs, but not if they are
4103 wrapped in ZERO_EXTRACTS. */
4104 if (GET_CODE (reg) == SUBREG
4105 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
4107 unsigned int start = SUBREG_BYTE (reg);
4108 unsigned int last = start
4109 + GET_MODE_SIZE (GET_MODE (reg));
4111 init_live_subregs
4112 (bitmap_bit_p (live_relevant_regs, regno),
4113 live_subregs, live_subregs_used, regno, reg);
4115 if (!DF_REF_FLAGS_IS_SET
4116 (def, DF_REF_STRICT_LOW_PART))
4118 /* Expand the range to cover entire words.
4119 Bytes added here are "don't care". */
4120 start
4121 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4122 last = ((last + UNITS_PER_WORD - 1)
4123 / UNITS_PER_WORD * UNITS_PER_WORD);
4126 /* Ignore the paradoxical bits. */
4127 if (last > SBITMAP_SIZE (live_subregs[regno]))
4128 last = SBITMAP_SIZE (live_subregs[regno]);
4130 while (start < last)
4132 bitmap_clear_bit (live_subregs[regno], start);
4133 start++;
4136 if (bitmap_empty_p (live_subregs[regno]))
4138 bitmap_clear_bit (live_subregs_used, regno);
4139 bitmap_clear_bit (live_relevant_regs, regno);
4141 else
4142 /* Set live_relevant_regs here because
4143 that bit has to be true to get us to
4144 look at the live_subregs fields. */
4145 bitmap_set_bit (live_relevant_regs, regno);
4147 else
4149 /* DF_REF_PARTIAL is generated for
4150 subregs, STRICT_LOW_PART, and
4151 ZERO_EXTRACT. We handle the subreg
4152 case above so here we have to keep from
4153 modeling the def as a killing def. */
4154 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4156 bitmap_clear_bit (live_subregs_used, regno);
4157 bitmap_clear_bit (live_relevant_regs, regno);
4163 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4164 bitmap_copy (&c->live_throughout, live_relevant_regs);
4166 if (NONDEBUG_INSN_P (insn))
4167 FOR_EACH_INSN_INFO_USE (use, insn_info)
4169 unsigned int regno = DF_REF_REGNO (use);
4170 rtx reg = DF_REF_REG (use);
4172 /* DF_REF_READ_WRITE on a use means that this use
4173 is fabricated from a def that is a partial set
4174 to a multiword reg. Here, we only model the
4175 subreg case that is not wrapped in ZERO_EXTRACT
4176 precisely so we do not need to look at the
4177 fabricated use. */
4178 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4179 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4180 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4181 continue;
4183 /* Add the last use of each var to dead_or_set. */
4184 if (!bitmap_bit_p (live_relevant_regs, regno))
4186 if (regno < FIRST_PSEUDO_REGISTER)
4188 if (!fixed_regs[regno])
4189 bitmap_set_bit (&c->dead_or_set, regno);
4191 else if (pseudo_for_reload_consideration_p (regno))
4192 bitmap_set_bit (&c->dead_or_set, regno);
4195 if (regno < FIRST_PSEUDO_REGISTER
4196 || pseudo_for_reload_consideration_p (regno))
4198 if (GET_CODE (reg) == SUBREG
4199 && !DF_REF_FLAGS_IS_SET (use,
4200 DF_REF_SIGN_EXTRACT
4201 | DF_REF_ZERO_EXTRACT))
4203 unsigned int start = SUBREG_BYTE (reg);
4204 unsigned int last = start
4205 + GET_MODE_SIZE (GET_MODE (reg));
4207 init_live_subregs
4208 (bitmap_bit_p (live_relevant_regs, regno),
4209 live_subregs, live_subregs_used, regno, reg);
4211 /* Ignore the paradoxical bits. */
4212 if (last > SBITMAP_SIZE (live_subregs[regno]))
4213 last = SBITMAP_SIZE (live_subregs[regno]);
4215 while (start < last)
4217 bitmap_set_bit (live_subregs[regno], start);
4218 start++;
4221 else
4222 /* Resetting the live_subregs_used is
4223 effectively saying do not use the subregs
4224 because we are reading the whole
4225 pseudo. */
4226 bitmap_clear_bit (live_subregs_used, regno);
4227 bitmap_set_bit (live_relevant_regs, regno);
4233 /* FIXME!! The following code is a disaster. Reload needs to see the
4234 labels and jump tables that are just hanging out in between
4235 the basic blocks. See pr33676. */
4236 insn = BB_HEAD (bb);
4238 /* Skip over the barriers and cruft. */
4239 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4240 || BLOCK_FOR_INSN (insn) == bb))
4241 insn = PREV_INSN (insn);
4243 /* While we add anything except barriers and notes, the focus is
4244 to get the labels and jump tables into the
4245 reload_insn_chain. */
4246 while (insn)
4248 if (!NOTE_P (insn) && !BARRIER_P (insn))
4250 if (BLOCK_FOR_INSN (insn))
4251 break;
4253 c = new_insn_chain ();
4254 c->next = next;
4255 next = c;
4256 *p = c;
4257 p = &c->prev;
4259 /* The block makes no sense here, but it is what the old
4260 code did. */
4261 c->block = bb->index;
4262 c->insn = insn;
4263 bitmap_copy (&c->live_throughout, live_relevant_regs);
4265 insn = PREV_INSN (insn);
4269 reload_insn_chain = c;
4270 *p = NULL;
4272 for (i = 0; i < (unsigned int) max_regno; i++)
4273 if (live_subregs[i] != NULL)
4274 sbitmap_free (live_subregs[i]);
4275 free (live_subregs);
4276 BITMAP_FREE (live_subregs_used);
4277 BITMAP_FREE (live_relevant_regs);
4278 BITMAP_FREE (elim_regset);
4280 if (dump_file)
4281 print_insn_chains (dump_file);
4284 /* Examine the rtx found in *LOC, which is read or written to as determined
4285 by TYPE. Return false if we find a reason why an insn containing this
4286 rtx should not be moved (such as accesses to non-constant memory), true
4287 otherwise. */
4288 static bool
4289 rtx_moveable_p (rtx *loc, enum op_type type)
4291 const char *fmt;
4292 rtx x = *loc;
4293 enum rtx_code code = GET_CODE (x);
4294 int i, j;
4296 code = GET_CODE (x);
4297 switch (code)
4299 case CONST:
4300 CASE_CONST_ANY:
4301 case SYMBOL_REF:
4302 case LABEL_REF:
4303 return true;
4305 case PC:
4306 return type == OP_IN;
4308 case CC0:
4309 return false;
4311 case REG:
4312 if (x == frame_pointer_rtx)
4313 return true;
4314 if (HARD_REGISTER_P (x))
4315 return false;
4317 return true;
4319 case MEM:
4320 if (type == OP_IN && MEM_READONLY_P (x))
4321 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4322 return false;
4324 case SET:
4325 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4326 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4328 case STRICT_LOW_PART:
4329 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4331 case ZERO_EXTRACT:
4332 case SIGN_EXTRACT:
4333 return (rtx_moveable_p (&XEXP (x, 0), type)
4334 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4335 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4337 case CLOBBER:
4338 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4340 case UNSPEC_VOLATILE:
4341 /* It is a bad idea to consider insns with such rtl
4342 as moveable ones. The insn scheduler also considers them as barrier
4343 for a reason. */
4344 return false;
4346 default:
4347 break;
4350 fmt = GET_RTX_FORMAT (code);
4351 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4353 if (fmt[i] == 'e')
4355 if (!rtx_moveable_p (&XEXP (x, i), type))
4356 return false;
4358 else if (fmt[i] == 'E')
4359 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4361 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4362 return false;
4365 return true;
4368 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4369 to give dominance relationships between two insns I1 and I2. */
4370 static bool
4371 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4373 basic_block bb1 = BLOCK_FOR_INSN (i1);
4374 basic_block bb2 = BLOCK_FOR_INSN (i2);
4376 if (bb1 == bb2)
4377 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4378 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4381 /* Record the range of register numbers added by find_moveable_pseudos. */
4382 int first_moveable_pseudo, last_moveable_pseudo;
4384 /* These two vectors hold data for every register added by
4385 find_movable_pseudos, with index 0 holding data for the
4386 first_moveable_pseudo. */
4387 /* The original home register. */
4388 static vec<rtx> pseudo_replaced_reg;
4390 /* Look for instances where we have an instruction that is known to increase
4391 register pressure, and whose result is not used immediately. If it is
4392 possible to move the instruction downwards to just before its first use,
4393 split its lifetime into two ranges. We create a new pseudo to compute the
4394 value, and emit a move instruction just before the first use. If, after
4395 register allocation, the new pseudo remains unallocated, the function
4396 move_unallocated_pseudos then deletes the move instruction and places
4397 the computation just before the first use.
4399 Such a move is safe and profitable if all the input registers remain live
4400 and unchanged between the original computation and its first use. In such
4401 a situation, the computation is known to increase register pressure, and
4402 moving it is known to at least not worsen it.
4404 We restrict moves to only those cases where a register remains unallocated,
4405 in order to avoid interfering too much with the instruction schedule. As
4406 an exception, we may move insns which only modify their input register
4407 (typically induction variables), as this increases the freedom for our
4408 intended transformation, and does not limit the second instruction
4409 scheduler pass. */
4411 static void
4412 find_moveable_pseudos (void)
4414 unsigned i;
4415 int max_regs = max_reg_num ();
4416 int max_uid = get_max_uid ();
4417 basic_block bb;
4418 int *uid_luid = XNEWVEC (int, max_uid);
4419 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4420 /* A set of registers which are live but not modified throughout a block. */
4421 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4422 last_basic_block_for_fn (cfun));
4423 /* A set of registers which only exist in a given basic block. */
4424 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4425 last_basic_block_for_fn (cfun));
4426 /* A set of registers which are set once, in an instruction that can be
4427 moved freely downwards, but are otherwise transparent to a block. */
4428 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4429 last_basic_block_for_fn (cfun));
4430 bitmap_head live, used, set, interesting, unusable_as_input;
4431 bitmap_iterator bi;
4432 bitmap_initialize (&interesting, 0);
4434 first_moveable_pseudo = max_regs;
4435 pseudo_replaced_reg.release ();
4436 pseudo_replaced_reg.safe_grow_cleared (max_regs);
4438 df_analyze ();
4439 calculate_dominance_info (CDI_DOMINATORS);
4441 i = 0;
4442 bitmap_initialize (&live, 0);
4443 bitmap_initialize (&used, 0);
4444 bitmap_initialize (&set, 0);
4445 bitmap_initialize (&unusable_as_input, 0);
4446 FOR_EACH_BB_FN (bb, cfun)
4448 rtx_insn *insn;
4449 bitmap transp = bb_transp_live + bb->index;
4450 bitmap moveable = bb_moveable_reg_sets + bb->index;
4451 bitmap local = bb_local + bb->index;
4453 bitmap_initialize (local, 0);
4454 bitmap_initialize (transp, 0);
4455 bitmap_initialize (moveable, 0);
4456 bitmap_copy (&live, df_get_live_out (bb));
4457 bitmap_and_into (&live, df_get_live_in (bb));
4458 bitmap_copy (transp, &live);
4459 bitmap_clear (moveable);
4460 bitmap_clear (&live);
4461 bitmap_clear (&used);
4462 bitmap_clear (&set);
4463 FOR_BB_INSNS (bb, insn)
4464 if (NONDEBUG_INSN_P (insn))
4466 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4467 df_ref def, use;
4469 uid_luid[INSN_UID (insn)] = i++;
4471 def = df_single_def (insn_info);
4472 use = df_single_use (insn_info);
4473 if (use
4474 && def
4475 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4476 && !bitmap_bit_p (&set, DF_REF_REGNO (use))
4477 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4479 unsigned regno = DF_REF_REGNO (use);
4480 bitmap_set_bit (moveable, regno);
4481 bitmap_set_bit (&set, regno);
4482 bitmap_set_bit (&used, regno);
4483 bitmap_clear_bit (transp, regno);
4484 continue;
4486 FOR_EACH_INSN_INFO_USE (use, insn_info)
4488 unsigned regno = DF_REF_REGNO (use);
4489 bitmap_set_bit (&used, regno);
4490 if (bitmap_clear_bit (moveable, regno))
4491 bitmap_clear_bit (transp, regno);
4494 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4496 unsigned regno = DF_REF_REGNO (def);
4497 bitmap_set_bit (&set, regno);
4498 bitmap_clear_bit (transp, regno);
4499 bitmap_clear_bit (moveable, regno);
4504 bitmap_clear (&live);
4505 bitmap_clear (&used);
4506 bitmap_clear (&set);
4508 FOR_EACH_BB_FN (bb, cfun)
4510 bitmap local = bb_local + bb->index;
4511 rtx_insn *insn;
4513 FOR_BB_INSNS (bb, insn)
4514 if (NONDEBUG_INSN_P (insn))
4516 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4517 rtx_insn *def_insn;
4518 rtx closest_use, note;
4519 df_ref def, use;
4520 unsigned regno;
4521 bool all_dominated, all_local;
4522 machine_mode mode;
4524 def = df_single_def (insn_info);
4525 /* There must be exactly one def in this insn. */
4526 if (!def || !single_set (insn))
4527 continue;
4528 /* This must be the only definition of the reg. We also limit
4529 which modes we deal with so that we can assume we can generate
4530 move instructions. */
4531 regno = DF_REF_REGNO (def);
4532 mode = GET_MODE (DF_REF_REG (def));
4533 if (DF_REG_DEF_COUNT (regno) != 1
4534 || !DF_REF_INSN_INFO (def)
4535 || HARD_REGISTER_NUM_P (regno)
4536 || DF_REG_EQ_USE_COUNT (regno) > 0
4537 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4538 continue;
4539 def_insn = DF_REF_INSN (def);
4541 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4542 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4543 break;
4545 if (note)
4547 if (dump_file)
4548 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4549 regno);
4550 bitmap_set_bit (&unusable_as_input, regno);
4551 continue;
4554 use = DF_REG_USE_CHAIN (regno);
4555 all_dominated = true;
4556 all_local = true;
4557 closest_use = NULL_RTX;
4558 for (; use; use = DF_REF_NEXT_REG (use))
4560 rtx_insn *insn;
4561 if (!DF_REF_INSN_INFO (use))
4563 all_dominated = false;
4564 all_local = false;
4565 break;
4567 insn = DF_REF_INSN (use);
4568 if (DEBUG_INSN_P (insn))
4569 continue;
4570 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4571 all_local = false;
4572 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4573 all_dominated = false;
4574 if (closest_use != insn && closest_use != const0_rtx)
4576 if (closest_use == NULL_RTX)
4577 closest_use = insn;
4578 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4579 closest_use = insn;
4580 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4581 closest_use = const0_rtx;
4584 if (!all_dominated)
4586 if (dump_file)
4587 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4588 regno);
4589 continue;
4591 if (all_local)
4592 bitmap_set_bit (local, regno);
4593 if (closest_use == const0_rtx || closest_use == NULL
4594 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4596 if (dump_file)
4597 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4598 closest_use == const0_rtx || closest_use == NULL
4599 ? " (no unique first use)" : "");
4600 continue;
4602 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4604 if (dump_file)
4605 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4606 regno);
4607 continue;
4610 bitmap_set_bit (&interesting, regno);
4611 /* If we get here, we know closest_use is a non-NULL insn
4612 (as opposed to const_0_rtx). */
4613 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4615 if (dump_file && (all_local || all_dominated))
4617 fprintf (dump_file, "Reg %u:", regno);
4618 if (all_local)
4619 fprintf (dump_file, " local to bb %d", bb->index);
4620 if (all_dominated)
4621 fprintf (dump_file, " def dominates all uses");
4622 if (closest_use != const0_rtx)
4623 fprintf (dump_file, " has unique first use");
4624 fputs ("\n", dump_file);
4629 EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
4631 df_ref def = DF_REG_DEF_CHAIN (i);
4632 rtx_insn *def_insn = DF_REF_INSN (def);
4633 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4634 bitmap def_bb_local = bb_local + def_block->index;
4635 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4636 bitmap def_bb_transp = bb_transp_live + def_block->index;
4637 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4638 rtx_insn *use_insn = closest_uses[i];
4639 df_ref use;
4640 bool all_ok = true;
4641 bool all_transp = true;
4643 if (!REG_P (DF_REF_REG (def)))
4644 continue;
4646 if (!local_to_bb_p)
4648 if (dump_file)
4649 fprintf (dump_file, "Reg %u not local to one basic block\n",
4651 continue;
4653 if (reg_equiv_init (i) != NULL_RTX)
4655 if (dump_file)
4656 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4658 continue;
4660 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4662 if (dump_file)
4663 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4664 INSN_UID (def_insn), i);
4665 continue;
4667 if (dump_file)
4668 fprintf (dump_file, "Examining insn %d, def for %d\n",
4669 INSN_UID (def_insn), i);
4670 FOR_EACH_INSN_USE (use, def_insn)
4672 unsigned regno = DF_REF_REGNO (use);
4673 if (bitmap_bit_p (&unusable_as_input, regno))
4675 all_ok = false;
4676 if (dump_file)
4677 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4678 break;
4680 if (!bitmap_bit_p (def_bb_transp, regno))
4682 if (bitmap_bit_p (def_bb_moveable, regno)
4683 && !control_flow_insn_p (use_insn)
4684 && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
4686 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4688 rtx_insn *x = NEXT_INSN (def_insn);
4689 while (!modified_in_p (DF_REF_REG (use), x))
4691 gcc_assert (x != use_insn);
4692 x = NEXT_INSN (x);
4694 if (dump_file)
4695 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4696 regno, INSN_UID (x));
4697 emit_insn_after (PATTERN (x), use_insn);
4698 set_insn_deleted (x);
4700 else
4702 if (dump_file)
4703 fprintf (dump_file, " input reg %u modified between def and use\n",
4704 regno);
4705 all_transp = false;
4708 else
4709 all_transp = false;
4712 if (!all_ok)
4713 continue;
4714 if (!dbg_cnt (ira_move))
4715 break;
4716 if (dump_file)
4717 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4719 if (all_transp)
4721 rtx def_reg = DF_REF_REG (def);
4722 rtx newreg = ira_create_new_reg (def_reg);
4723 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4725 unsigned nregno = REGNO (newreg);
4726 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4727 nregno -= max_regs;
4728 pseudo_replaced_reg[nregno] = def_reg;
4733 FOR_EACH_BB_FN (bb, cfun)
4735 bitmap_clear (bb_local + bb->index);
4736 bitmap_clear (bb_transp_live + bb->index);
4737 bitmap_clear (bb_moveable_reg_sets + bb->index);
4739 bitmap_clear (&interesting);
4740 bitmap_clear (&unusable_as_input);
4741 free (uid_luid);
4742 free (closest_uses);
4743 free (bb_local);
4744 free (bb_transp_live);
4745 free (bb_moveable_reg_sets);
4747 last_moveable_pseudo = max_reg_num ();
4749 fix_reg_equiv_init ();
4750 expand_reg_info ();
4751 regstat_free_n_sets_and_refs ();
4752 regstat_free_ri ();
4753 regstat_init_n_sets_and_refs ();
4754 regstat_compute_ri ();
4755 free_dominance_info (CDI_DOMINATORS);
4758 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4759 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4760 the destination. Otherwise return NULL. */
4762 static rtx
4763 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4765 rtx src = SET_SRC (set);
4766 rtx dest = SET_DEST (set);
4767 if (!REG_P (src) || !HARD_REGISTER_P (src)
4768 || !REG_P (dest) || HARD_REGISTER_P (dest)
4769 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4770 return NULL;
4771 return dest;
4774 /* If insn is interesting for parameter range-splitting shrink-wrapping
4775 preparation, i.e. it is a single set from a hard register to a pseudo, which
4776 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4777 parallel statement with only one such statement, return the destination.
4778 Otherwise return NULL. */
4780 static rtx
4781 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4783 if (!INSN_P (insn))
4784 return NULL;
4785 rtx pat = PATTERN (insn);
4786 if (GET_CODE (pat) == SET)
4787 return interesting_dest_for_shprep_1 (pat, call_dom);
4789 if (GET_CODE (pat) != PARALLEL)
4790 return NULL;
4791 rtx ret = NULL;
4792 for (int i = 0; i < XVECLEN (pat, 0); i++)
4794 rtx sub = XVECEXP (pat, 0, i);
4795 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4796 continue;
4797 if (GET_CODE (sub) != SET
4798 || side_effects_p (sub))
4799 return NULL;
4800 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4801 if (dest && ret)
4802 return NULL;
4803 if (dest)
4804 ret = dest;
4806 return ret;
4809 /* Split live ranges of pseudos that are loaded from hard registers in the
4810 first BB in a BB that dominates all non-sibling call if such a BB can be
4811 found and is not in a loop. Return true if the function has made any
4812 changes. */
4814 static bool
4815 split_live_ranges_for_shrink_wrap (void)
4817 basic_block bb, call_dom = NULL;
4818 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4819 rtx_insn *insn, *last_interesting_insn = NULL;
4820 bitmap_head need_new, reachable;
4821 vec<basic_block> queue;
4823 if (!SHRINK_WRAPPING_ENABLED)
4824 return false;
4826 bitmap_initialize (&need_new, 0);
4827 bitmap_initialize (&reachable, 0);
4828 queue.create (n_basic_blocks_for_fn (cfun));
4830 FOR_EACH_BB_FN (bb, cfun)
4831 FOR_BB_INSNS (bb, insn)
4832 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4834 if (bb == first)
4836 bitmap_clear (&need_new);
4837 bitmap_clear (&reachable);
4838 queue.release ();
4839 return false;
4842 bitmap_set_bit (&need_new, bb->index);
4843 bitmap_set_bit (&reachable, bb->index);
4844 queue.quick_push (bb);
4845 break;
4848 if (queue.is_empty ())
4850 bitmap_clear (&need_new);
4851 bitmap_clear (&reachable);
4852 queue.release ();
4853 return false;
4856 while (!queue.is_empty ())
4858 edge e;
4859 edge_iterator ei;
4861 bb = queue.pop ();
4862 FOR_EACH_EDGE (e, ei, bb->succs)
4863 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4864 && bitmap_set_bit (&reachable, e->dest->index))
4865 queue.quick_push (e->dest);
4867 queue.release ();
4869 FOR_BB_INSNS (first, insn)
4871 rtx dest = interesting_dest_for_shprep (insn, NULL);
4872 if (!dest)
4873 continue;
4875 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4877 bitmap_clear (&need_new);
4878 bitmap_clear (&reachable);
4879 return false;
4882 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4883 use;
4884 use = DF_REF_NEXT_REG (use))
4886 int ubbi = DF_REF_BB (use)->index;
4887 if (bitmap_bit_p (&reachable, ubbi))
4888 bitmap_set_bit (&need_new, ubbi);
4890 last_interesting_insn = insn;
4893 bitmap_clear (&reachable);
4894 if (!last_interesting_insn)
4896 bitmap_clear (&need_new);
4897 return false;
4900 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, &need_new);
4901 bitmap_clear (&need_new);
4902 if (call_dom == first)
4903 return false;
4905 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4906 while (bb_loop_depth (call_dom) > 0)
4907 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4908 loop_optimizer_finalize ();
4910 if (call_dom == first)
4911 return false;
4913 calculate_dominance_info (CDI_POST_DOMINATORS);
4914 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4916 free_dominance_info (CDI_POST_DOMINATORS);
4917 return false;
4919 free_dominance_info (CDI_POST_DOMINATORS);
4921 if (dump_file)
4922 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
4923 call_dom->index);
4925 bool ret = false;
4926 FOR_BB_INSNS (first, insn)
4928 rtx dest = interesting_dest_for_shprep (insn, call_dom);
4929 if (!dest || dest == pic_offset_table_rtx)
4930 continue;
4932 rtx newreg = NULL_RTX;
4933 df_ref use, next;
4934 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
4936 rtx_insn *uin = DF_REF_INSN (use);
4937 next = DF_REF_NEXT_REG (use);
4939 basic_block ubb = BLOCK_FOR_INSN (uin);
4940 if (ubb == call_dom
4941 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
4943 if (!newreg)
4944 newreg = ira_create_new_reg (dest);
4945 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
4949 if (newreg)
4951 rtx_insn *new_move = gen_move_insn (newreg, dest);
4952 emit_insn_after (new_move, bb_note (call_dom));
4953 if (dump_file)
4955 fprintf (dump_file, "Split live-range of register ");
4956 print_rtl_single (dump_file, dest);
4958 ret = true;
4961 if (insn == last_interesting_insn)
4962 break;
4964 apply_change_group ();
4965 return ret;
4968 /* Perform the second half of the transformation started in
4969 find_moveable_pseudos. We look for instances where the newly introduced
4970 pseudo remains unallocated, and remove it by moving the definition to
4971 just before its use, replacing the move instruction generated by
4972 find_moveable_pseudos. */
4973 static void
4974 move_unallocated_pseudos (void)
4976 int i;
4977 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
4978 if (reg_renumber[i] < 0)
4980 int idx = i - first_moveable_pseudo;
4981 rtx other_reg = pseudo_replaced_reg[idx];
4982 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
4983 /* The use must follow all definitions of OTHER_REG, so we can
4984 insert the new definition immediately after any of them. */
4985 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
4986 rtx_insn *move_insn = DF_REF_INSN (other_def);
4987 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
4988 rtx set;
4989 int success;
4991 if (dump_file)
4992 fprintf (dump_file, "moving def of %d (insn %d now) ",
4993 REGNO (other_reg), INSN_UID (def_insn));
4995 delete_insn (move_insn);
4996 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
4997 delete_insn (DF_REF_INSN (other_def));
4998 delete_insn (def_insn);
5000 set = single_set (newinsn);
5001 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5002 gcc_assert (success);
5003 if (dump_file)
5004 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5005 INSN_UID (newinsn), i);
5006 SET_REG_N_REFS (i, 0);
5010 /* If the backend knows where to allocate pseudos for hard
5011 register initial values, register these allocations now. */
5012 static void
5013 allocate_initial_values (void)
5015 if (targetm.allocate_initial_value)
5017 rtx hreg, preg, x;
5018 int i, regno;
5020 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5022 if (! initial_value_entry (i, &hreg, &preg))
5023 break;
5025 x = targetm.allocate_initial_value (hreg);
5026 regno = REGNO (preg);
5027 if (x && REG_N_SETS (regno) <= 1)
5029 if (MEM_P (x))
5030 reg_equiv_memory_loc (regno) = x;
5031 else
5033 basic_block bb;
5034 int new_regno;
5036 gcc_assert (REG_P (x));
5037 new_regno = REGNO (x);
5038 reg_renumber[regno] = new_regno;
5039 /* Poke the regno right into regno_reg_rtx so that even
5040 fixed regs are accepted. */
5041 SET_REGNO (preg, new_regno);
5042 /* Update global register liveness information. */
5043 FOR_EACH_BB_FN (bb, cfun)
5045 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5046 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5047 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5048 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5054 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5055 &hreg, &preg));
5060 /* True when we use LRA instead of reload pass for the current
5061 function. */
5062 bool ira_use_lra_p;
5064 /* True if we have allocno conflicts. It is false for non-optimized
5065 mode or when the conflict table is too big. */
5066 bool ira_conflicts_p;
5068 /* Saved between IRA and reload. */
5069 static int saved_flag_ira_share_spill_slots;
5071 /* This is the main entry of IRA. */
5072 static void
5073 ira (FILE *f)
5075 bool loops_p;
5076 int ira_max_point_before_emit;
5077 bool saved_flag_caller_saves = flag_caller_saves;
5078 enum ira_region saved_flag_ira_region = flag_ira_region;
5080 /* Perform target specific PIC register initialization. */
5081 targetm.init_pic_reg ();
5083 ira_conflicts_p = optimize > 0;
5085 ira_use_lra_p = targetm.lra_p ();
5086 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5087 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5088 use simplified and faster algorithms in LRA. */
5089 lra_simple_p
5090 = (ira_use_lra_p
5091 && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
5092 if (lra_simple_p)
5094 /* It permits to skip live range splitting in LRA. */
5095 flag_caller_saves = false;
5096 /* There is no sense to do regional allocation when we use
5097 simplified LRA. */
5098 flag_ira_region = IRA_REGION_ONE;
5099 ira_conflicts_p = false;
5102 #ifndef IRA_NO_OBSTACK
5103 gcc_obstack_init (&ira_obstack);
5104 #endif
5105 bitmap_obstack_initialize (&ira_bitmap_obstack);
5107 /* LRA uses its own infrastructure to handle caller save registers. */
5108 if (flag_caller_saves && !ira_use_lra_p)
5109 init_caller_save ();
5111 if (flag_ira_verbose < 10)
5113 internal_flag_ira_verbose = flag_ira_verbose;
5114 ira_dump_file = f;
5116 else
5118 internal_flag_ira_verbose = flag_ira_verbose - 10;
5119 ira_dump_file = stderr;
5122 setup_prohibited_mode_move_regs ();
5123 decrease_live_ranges_number ();
5124 df_note_add_problem ();
5126 /* DF_LIVE can't be used in the register allocator, too many other
5127 parts of the compiler depend on using the "classic" liveness
5128 interpretation of the DF_LR problem. See PR38711.
5129 Remove the problem, so that we don't spend time updating it in
5130 any of the df_analyze() calls during IRA/LRA. */
5131 if (optimize > 1)
5132 df_remove_problem (df_live);
5133 gcc_checking_assert (df_live == NULL);
5135 if (flag_checking)
5136 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5138 df_analyze ();
5140 init_reg_equiv ();
5141 if (ira_conflicts_p)
5143 calculate_dominance_info (CDI_DOMINATORS);
5145 if (split_live_ranges_for_shrink_wrap ())
5146 df_analyze ();
5148 free_dominance_info (CDI_DOMINATORS);
5151 df_clear_flags (DF_NO_INSN_RESCAN);
5153 indirect_jump_optimize ();
5154 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5155 df_analyze ();
5157 regstat_init_n_sets_and_refs ();
5158 regstat_compute_ri ();
5160 /* If we are not optimizing, then this is the only place before
5161 register allocation where dataflow is done. And that is needed
5162 to generate these warnings. */
5163 if (warn_clobbered)
5164 generate_setjmp_warnings ();
5166 /* Determine if the current function is a leaf before running IRA
5167 since this can impact optimizations done by the prologue and
5168 epilogue thus changing register elimination offsets. */
5169 crtl->is_leaf = leaf_function_p ();
5171 if (resize_reg_info () && flag_ira_loop_pressure)
5172 ira_set_pseudo_classes (true, ira_dump_file);
5174 init_alias_analysis ();
5175 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5176 reg_equiv = XCNEWVEC (struct equivalence, max_reg_num ());
5177 update_equiv_regs ();
5179 /* Don't move insns if live range shrinkage or register
5180 pressure-sensitive scheduling were done because it will not
5181 improve allocation but likely worsen insn scheduling. */
5182 if (optimize
5183 && !flag_live_range_shrinkage
5184 && !(flag_sched_pressure && flag_schedule_insns))
5185 combine_and_move_insns ();
5187 /* Gather additional equivalences with memory. */
5188 if (optimize)
5189 add_store_equivs ();
5191 loop_optimizer_finalize ();
5192 free_dominance_info (CDI_DOMINATORS);
5193 end_alias_analysis ();
5194 free (reg_equiv);
5196 setup_reg_equiv ();
5197 grow_reg_equivs ();
5198 setup_reg_equiv_init ();
5200 allocated_reg_info_size = max_reg_num ();
5202 /* It is not worth to do such improvement when we use a simple
5203 allocation because of -O0 usage or because the function is too
5204 big. */
5205 if (ira_conflicts_p)
5206 find_moveable_pseudos ();
5208 max_regno_before_ira = max_reg_num ();
5209 ira_setup_eliminable_regset ();
5211 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5212 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5213 ira_move_loops_num = ira_additional_jumps_num = 0;
5215 ira_assert (current_loops == NULL);
5216 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5217 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5219 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5220 fprintf (ira_dump_file, "Building IRA IR\n");
5221 loops_p = ira_build ();
5223 ira_assert (ira_conflicts_p || !loops_p);
5225 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5226 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5227 /* It is just wasting compiler's time to pack spilled pseudos into
5228 stack slots in this case -- prohibit it. We also do this if
5229 there is setjmp call because a variable not modified between
5230 setjmp and longjmp the compiler is required to preserve its
5231 value and sharing slots does not guarantee it. */
5232 flag_ira_share_spill_slots = FALSE;
5234 ira_color ();
5236 ira_max_point_before_emit = ira_max_point;
5238 ira_initiate_emit_data ();
5240 ira_emit (loops_p);
5242 max_regno = max_reg_num ();
5243 if (ira_conflicts_p)
5245 if (! loops_p)
5247 if (! ira_use_lra_p)
5248 ira_initiate_assign ();
5250 else
5252 expand_reg_info ();
5254 if (ira_use_lra_p)
5256 ira_allocno_t a;
5257 ira_allocno_iterator ai;
5259 FOR_EACH_ALLOCNO (a, ai)
5261 int old_regno = ALLOCNO_REGNO (a);
5262 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5264 ALLOCNO_REGNO (a) = new_regno;
5266 if (old_regno != new_regno)
5267 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5268 reg_alternate_class (old_regno),
5269 reg_allocno_class (old_regno));
5273 else
5275 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5276 fprintf (ira_dump_file, "Flattening IR\n");
5277 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5279 /* New insns were generated: add notes and recalculate live
5280 info. */
5281 df_analyze ();
5283 /* ??? Rebuild the loop tree, but why? Does the loop tree
5284 change if new insns were generated? Can that be handled
5285 by updating the loop tree incrementally? */
5286 loop_optimizer_finalize ();
5287 free_dominance_info (CDI_DOMINATORS);
5288 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5289 | LOOPS_HAVE_RECORDED_EXITS);
5291 if (! ira_use_lra_p)
5293 setup_allocno_assignment_flags ();
5294 ira_initiate_assign ();
5295 ira_reassign_conflict_allocnos (max_regno);
5300 ira_finish_emit_data ();
5302 setup_reg_renumber ();
5304 calculate_allocation_cost ();
5306 #ifdef ENABLE_IRA_CHECKING
5307 if (ira_conflicts_p)
5308 check_allocation ();
5309 #endif
5311 if (max_regno != max_regno_before_ira)
5313 regstat_free_n_sets_and_refs ();
5314 regstat_free_ri ();
5315 regstat_init_n_sets_and_refs ();
5316 regstat_compute_ri ();
5319 overall_cost_before = ira_overall_cost;
5320 if (! ira_conflicts_p)
5321 grow_reg_equivs ();
5322 else
5324 fix_reg_equiv_init ();
5326 #ifdef ENABLE_IRA_CHECKING
5327 print_redundant_copies ();
5328 #endif
5329 if (! ira_use_lra_p)
5331 ira_spilled_reg_stack_slots_num = 0;
5332 ira_spilled_reg_stack_slots
5333 = ((struct ira_spilled_reg_stack_slot *)
5334 ira_allocate (max_regno
5335 * sizeof (struct ira_spilled_reg_stack_slot)));
5336 memset (ira_spilled_reg_stack_slots, 0,
5337 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5340 allocate_initial_values ();
5342 /* See comment for find_moveable_pseudos call. */
5343 if (ira_conflicts_p)
5344 move_unallocated_pseudos ();
5346 /* Restore original values. */
5347 if (lra_simple_p)
5349 flag_caller_saves = saved_flag_caller_saves;
5350 flag_ira_region = saved_flag_ira_region;
5354 static void
5355 do_reload (void)
5357 basic_block bb;
5358 bool need_dce;
5359 unsigned pic_offset_table_regno = INVALID_REGNUM;
5361 if (flag_ira_verbose < 10)
5362 ira_dump_file = dump_file;
5364 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5365 after reload to avoid possible wrong usages of hard reg assigned
5366 to it. */
5367 if (pic_offset_table_rtx
5368 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5369 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5371 timevar_push (TV_RELOAD);
5372 if (ira_use_lra_p)
5374 if (current_loops != NULL)
5376 loop_optimizer_finalize ();
5377 free_dominance_info (CDI_DOMINATORS);
5379 FOR_ALL_BB_FN (bb, cfun)
5380 bb->loop_father = NULL;
5381 current_loops = NULL;
5383 ira_destroy ();
5385 lra (ira_dump_file);
5386 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5387 LRA. */
5388 vec_free (reg_equivs);
5389 reg_equivs = NULL;
5390 need_dce = false;
5392 else
5394 df_set_flags (DF_NO_INSN_RESCAN);
5395 build_insn_chain ();
5397 need_dce = reload (get_insns (), ira_conflicts_p);
5400 timevar_pop (TV_RELOAD);
5402 timevar_push (TV_IRA);
5404 if (ira_conflicts_p && ! ira_use_lra_p)
5406 ira_free (ira_spilled_reg_stack_slots);
5407 ira_finish_assign ();
5410 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5411 && overall_cost_before != ira_overall_cost)
5412 fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5413 ira_overall_cost);
5415 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5417 if (! ira_use_lra_p)
5419 ira_destroy ();
5420 if (current_loops != NULL)
5422 loop_optimizer_finalize ();
5423 free_dominance_info (CDI_DOMINATORS);
5425 FOR_ALL_BB_FN (bb, cfun)
5426 bb->loop_father = NULL;
5427 current_loops = NULL;
5429 regstat_free_ri ();
5430 regstat_free_n_sets_and_refs ();
5433 if (optimize)
5434 cleanup_cfg (CLEANUP_EXPENSIVE);
5436 finish_reg_equiv ();
5438 bitmap_obstack_release (&ira_bitmap_obstack);
5439 #ifndef IRA_NO_OBSTACK
5440 obstack_free (&ira_obstack, NULL);
5441 #endif
5443 /* The code after the reload has changed so much that at this point
5444 we might as well just rescan everything. Note that
5445 df_rescan_all_insns is not going to help here because it does not
5446 touch the artificial uses and defs. */
5447 df_finish_pass (true);
5448 df_scan_alloc (NULL);
5449 df_scan_blocks ();
5451 if (optimize > 1)
5453 df_live_add_problem ();
5454 df_live_set_all_dirty ();
5457 if (optimize)
5458 df_analyze ();
5460 if (need_dce && optimize)
5461 run_fast_dce ();
5463 /* Diagnose uses of the hard frame pointer when it is used as a global
5464 register. Often we can get away with letting the user appropriate
5465 the frame pointer, but we should let them know when code generation
5466 makes that impossible. */
5467 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5469 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5470 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5471 "frame pointer required, but reserved");
5472 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5475 /* If we are doing generic stack checking, give a warning if this
5476 function's frame size is larger than we expect. */
5477 if (flag_stack_check == GENERIC_STACK_CHECK)
5479 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
5481 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5482 if (df_regs_ever_live_p (i) && !fixed_regs[i] && call_used_regs[i])
5483 size += UNITS_PER_WORD;
5485 if (size > STACK_CHECK_MAX_FRAME_SIZE)
5486 warning (0, "frame size too large for reliable stack checking");
5489 if (pic_offset_table_regno != INVALID_REGNUM)
5490 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5492 timevar_pop (TV_IRA);
5495 /* Run the integrated register allocator. */
5497 namespace {
5499 const pass_data pass_data_ira =
5501 RTL_PASS, /* type */
5502 "ira", /* name */
5503 OPTGROUP_NONE, /* optinfo_flags */
5504 TV_IRA, /* tv_id */
5505 0, /* properties_required */
5506 0, /* properties_provided */
5507 0, /* properties_destroyed */
5508 0, /* todo_flags_start */
5509 TODO_do_not_ggc_collect, /* todo_flags_finish */
5512 class pass_ira : public rtl_opt_pass
5514 public:
5515 pass_ira (gcc::context *ctxt)
5516 : rtl_opt_pass (pass_data_ira, ctxt)
5519 /* opt_pass methods: */
5520 virtual bool gate (function *)
5522 return !targetm.no_register_allocation;
5524 virtual unsigned int execute (function *)
5526 ira (dump_file);
5527 return 0;
5530 }; // class pass_ira
5532 } // anon namespace
5534 rtl_opt_pass *
5535 make_pass_ira (gcc::context *ctxt)
5537 return new pass_ira (ctxt);
5540 namespace {
5542 const pass_data pass_data_reload =
5544 RTL_PASS, /* type */
5545 "reload", /* name */
5546 OPTGROUP_NONE, /* optinfo_flags */
5547 TV_RELOAD, /* tv_id */
5548 0, /* properties_required */
5549 0, /* properties_provided */
5550 0, /* properties_destroyed */
5551 0, /* todo_flags_start */
5552 0, /* todo_flags_finish */
5555 class pass_reload : public rtl_opt_pass
5557 public:
5558 pass_reload (gcc::context *ctxt)
5559 : rtl_opt_pass (pass_data_reload, ctxt)
5562 /* opt_pass methods: */
5563 virtual bool gate (function *)
5565 return !targetm.no_register_allocation;
5567 virtual unsigned int execute (function *)
5569 do_reload ();
5570 return 0;
5573 }; // class pass_reload
5575 } // anon namespace
5577 rtl_opt_pass *
5578 make_pass_reload (gcc::context *ctxt)
5580 return new pass_reload (ctxt);