2016-09-08 Steven G. Kargl <kargl@gcc.gnu.org>
[official-gcc.git] / gcc / fwprop.c
blob30d5739f0e3815c9d03c76a67a55b5d716c97ed8
1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005-2016 Free Software Foundation, Inc.
3 Contributed by Paolo Bonzini and Steven Bosscher.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "tm_p.h"
30 #include "insn-config.h"
31 #include "emit-rtl.h"
32 #include "recog.h"
34 #include "sparseset.h"
35 #include "cfgrtl.h"
36 #include "cfgcleanup.h"
37 #include "cfgloop.h"
38 #include "tree-pass.h"
39 #include "domwalk.h"
40 #include "rtl-iter.h"
43 /* This pass does simple forward propagation and simplification when an
44 operand of an insn can only come from a single def. This pass uses
45 df.c, so it is global. However, we only do limited analysis of
46 available expressions.
48 1) The pass tries to propagate the source of the def into the use,
49 and checks if the result is independent of the substituted value.
50 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
51 zero, independent of the source register.
53 In particular, we propagate constants into the use site. Sometimes
54 RTL expansion did not put the constant in the same insn on purpose,
55 to satisfy a predicate, and the result will fail to be recognized;
56 but this happens rarely and in this case we can still create a
57 REG_EQUAL note. For multi-word operations, this
59 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
60 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
61 (set (subreg:SI (reg:DI 122) 0)
62 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
63 (set (subreg:SI (reg:DI 122) 4)
64 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
66 can be simplified to the much simpler
68 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
69 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
71 This particular propagation is also effective at putting together
72 complex addressing modes. We are more aggressive inside MEMs, in
73 that all definitions are propagated if the use is in a MEM; if the
74 result is a valid memory address we check address_cost to decide
75 whether the substitution is worthwhile.
77 2) The pass propagates register copies. This is not as effective as
78 the copy propagation done by CSE's canon_reg, which works by walking
79 the instruction chain, it can help the other transformations.
81 We should consider removing this optimization, and instead reorder the
82 RTL passes, because GCSE does this transformation too. With some luck,
83 the CSE pass at the end of rest_of_handle_gcse could also go away.
85 3) The pass looks for paradoxical subregs that are actually unnecessary.
86 Things like this:
88 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
89 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
90 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
91 (subreg:SI (reg:QI 121) 0)))
93 are very common on machines that can only do word-sized operations.
94 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
95 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
96 we can replace the paradoxical subreg with simply (reg:WIDE M). The
97 above will simplify this to
99 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
100 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
101 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
103 where the first two insns are now dead.
105 We used to use reaching definitions to find which uses have a
106 single reaching definition (sounds obvious...), but this is too
107 complex a problem in nasty testcases like PR33928. Now we use the
108 multiple definitions problem in df-problems.c. The similarity
109 between that problem and SSA form creation is taken further, in
110 that fwprop does a dominator walk to create its chains; however,
111 instead of creating a PHI function where multiple definitions meet
112 I just punt and record only singleton use-def chains, which is
113 all that is needed by fwprop. */
116 static int num_changes;
118 static vec<df_ref> use_def_ref;
119 static vec<df_ref> reg_defs;
120 static vec<df_ref> reg_defs_stack;
122 /* The MD bitmaps are trimmed to include only live registers to cut
123 memory usage on testcases like insn-recog.c. Track live registers
124 in the basic block and do not perform forward propagation if the
125 destination is a dead pseudo occurring in a note. */
126 static bitmap local_md;
127 static bitmap local_lr;
129 /* Return the only def in USE's use-def chain, or NULL if there is
130 more than one def in the chain. */
132 static inline df_ref
133 get_def_for_use (df_ref use)
135 return use_def_ref[DF_REF_ID (use)];
139 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
140 TOP_FLAG says which artificials uses should be used, when DEF_REC
141 is an artificial def vector. LOCAL_MD is modified as after a
142 df_md_simulate_* function; we do more or less the same processing
143 done there, so we do not use those functions. */
145 #define DF_MD_GEN_FLAGS \
146 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
148 static void
149 process_defs (df_ref def, int top_flag)
151 for (; def; def = DF_REF_NEXT_LOC (def))
153 df_ref curr_def = reg_defs[DF_REF_REGNO (def)];
154 unsigned int dregno;
156 if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
157 continue;
159 dregno = DF_REF_REGNO (def);
160 if (curr_def)
161 reg_defs_stack.safe_push (curr_def);
162 else
164 /* Do not store anything if "transitioning" from NULL to NULL. But
165 otherwise, push a special entry on the stack to tell the
166 leave_block callback that the entry in reg_defs was NULL. */
167 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
169 else
170 reg_defs_stack.safe_push (def);
173 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
175 bitmap_set_bit (local_md, dregno);
176 reg_defs[dregno] = NULL;
178 else
180 bitmap_clear_bit (local_md, dregno);
181 reg_defs[dregno] = def;
187 /* Fill the use_def_ref vector with values for the uses in USE_REC,
188 taking reaching definitions info from LOCAL_MD and REG_DEFS.
189 TOP_FLAG says which artificials uses should be used, when USE_REC
190 is an artificial use vector. */
192 static void
193 process_uses (df_ref use, int top_flag)
195 for (; use; use = DF_REF_NEXT_LOC (use))
196 if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
198 unsigned int uregno = DF_REF_REGNO (use);
199 if (reg_defs[uregno]
200 && !bitmap_bit_p (local_md, uregno)
201 && bitmap_bit_p (local_lr, uregno))
202 use_def_ref[DF_REF_ID (use)] = reg_defs[uregno];
206 class single_def_use_dom_walker : public dom_walker
208 public:
209 single_def_use_dom_walker (cdi_direction direction)
210 : dom_walker (direction) {}
211 virtual edge before_dom_children (basic_block);
212 virtual void after_dom_children (basic_block);
215 edge
216 single_def_use_dom_walker::before_dom_children (basic_block bb)
218 int bb_index = bb->index;
219 struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
220 struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
221 rtx_insn *insn;
223 bitmap_copy (local_md, &md_bb_info->in);
224 bitmap_copy (local_lr, &lr_bb_info->in);
226 /* Push a marker for the leave_block callback. */
227 reg_defs_stack.safe_push (NULL);
229 process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
230 process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
232 /* We don't call df_simulate_initialize_forwards, as it may overestimate
233 the live registers if there are unused artificial defs. We prefer
234 liveness to be underestimated. */
236 FOR_BB_INSNS (bb, insn)
237 if (INSN_P (insn))
239 unsigned int uid = INSN_UID (insn);
240 process_uses (DF_INSN_UID_USES (uid), 0);
241 process_uses (DF_INSN_UID_EQ_USES (uid), 0);
242 process_defs (DF_INSN_UID_DEFS (uid), 0);
243 df_simulate_one_insn_forwards (bb, insn, local_lr);
246 process_uses (df_get_artificial_uses (bb_index), 0);
247 process_defs (df_get_artificial_defs (bb_index), 0);
249 return NULL;
252 /* Pop the definitions created in this basic block when leaving its
253 dominated parts. */
255 void
256 single_def_use_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
258 df_ref saved_def;
259 while ((saved_def = reg_defs_stack.pop ()) != NULL)
261 unsigned int dregno = DF_REF_REGNO (saved_def);
263 /* See also process_defs. */
264 if (saved_def == reg_defs[dregno])
265 reg_defs[dregno] = NULL;
266 else
267 reg_defs[dregno] = saved_def;
272 /* Build a vector holding the reaching definitions of uses reached by a
273 single dominating definition. */
275 static void
276 build_single_def_use_links (void)
278 /* We use the multiple definitions problem to compute our restricted
279 use-def chains. */
280 df_set_flags (DF_EQ_NOTES);
281 df_md_add_problem ();
282 df_note_add_problem ();
283 df_analyze ();
284 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
286 use_def_ref.create (DF_USES_TABLE_SIZE ());
287 use_def_ref.safe_grow_cleared (DF_USES_TABLE_SIZE ());
289 reg_defs.create (max_reg_num ());
290 reg_defs.safe_grow_cleared (max_reg_num ());
292 reg_defs_stack.create (n_basic_blocks_for_fn (cfun) * 10);
293 local_md = BITMAP_ALLOC (NULL);
294 local_lr = BITMAP_ALLOC (NULL);
296 /* Walk the dominator tree looking for single reaching definitions
297 dominating the uses. This is similar to how SSA form is built. */
298 single_def_use_dom_walker (CDI_DOMINATORS)
299 .walk (cfun->cfg->x_entry_block_ptr);
301 BITMAP_FREE (local_lr);
302 BITMAP_FREE (local_md);
303 reg_defs.release ();
304 reg_defs_stack.release ();
308 /* Do not try to replace constant addresses or addresses of local and
309 argument slots. These MEM expressions are made only once and inserted
310 in many instructions, as well as being used to control symbol table
311 output. It is not safe to clobber them.
313 There are some uncommon cases where the address is already in a register
314 for some reason, but we cannot take advantage of that because we have
315 no easy way to unshare the MEM. In addition, looking up all stack
316 addresses is costly. */
318 static bool
319 can_simplify_addr (rtx addr)
321 rtx reg;
323 if (CONSTANT_ADDRESS_P (addr))
324 return false;
326 if (GET_CODE (addr) == PLUS)
327 reg = XEXP (addr, 0);
328 else
329 reg = addr;
331 return (!REG_P (reg)
332 || (REGNO (reg) != FRAME_POINTER_REGNUM
333 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
334 && REGNO (reg) != ARG_POINTER_REGNUM));
337 /* Returns a canonical version of X for the address, from the point of view,
338 that all multiplications are represented as MULT instead of the multiply
339 by a power of 2 being represented as ASHIFT.
341 Every ASHIFT we find has been made by simplify_gen_binary and was not
342 there before, so it is not shared. So we can do this in place. */
344 static void
345 canonicalize_address (rtx x)
347 for (;;)
348 switch (GET_CODE (x))
350 case ASHIFT:
351 if (CONST_INT_P (XEXP (x, 1))
352 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
353 && INTVAL (XEXP (x, 1)) >= 0)
355 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
356 PUT_CODE (x, MULT);
357 XEXP (x, 1) = gen_int_mode (HOST_WIDE_INT_1 << shift,
358 GET_MODE (x));
361 x = XEXP (x, 0);
362 break;
364 case PLUS:
365 if (GET_CODE (XEXP (x, 0)) == PLUS
366 || GET_CODE (XEXP (x, 0)) == ASHIFT
367 || GET_CODE (XEXP (x, 0)) == CONST)
368 canonicalize_address (XEXP (x, 0));
370 x = XEXP (x, 1);
371 break;
373 case CONST:
374 x = XEXP (x, 0);
375 break;
377 default:
378 return;
382 /* OLD is a memory address. Return whether it is good to use NEW instead,
383 for a memory access in the given MODE. */
385 static bool
386 should_replace_address (rtx old_rtx, rtx new_rtx, machine_mode mode,
387 addr_space_t as, bool speed)
389 int gain;
391 if (rtx_equal_p (old_rtx, new_rtx)
392 || !memory_address_addr_space_p (mode, new_rtx, as))
393 return false;
395 /* Copy propagation is always ok. */
396 if (REG_P (old_rtx) && REG_P (new_rtx))
397 return true;
399 /* Prefer the new address if it is less expensive. */
400 gain = (address_cost (old_rtx, mode, as, speed)
401 - address_cost (new_rtx, mode, as, speed));
403 /* If the addresses have equivalent cost, prefer the new address
404 if it has the highest `set_src_cost'. That has the potential of
405 eliminating the most insns without additional costs, and it
406 is the same that cse.c used to do. */
407 if (gain == 0)
408 gain = (set_src_cost (new_rtx, VOIDmode, speed)
409 - set_src_cost (old_rtx, VOIDmode, speed));
411 return (gain > 0);
415 /* Flags for the last parameter of propagate_rtx_1. */
417 enum {
418 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
419 if it is false, propagate_rtx_1 returns false if, for at least
420 one occurrence OLD, it failed to collapse the result to a constant.
421 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
422 collapse to zero if replacing (reg:M B) with (reg:M A).
424 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
425 propagate_rtx_1 just tries to make cheaper and valid memory
426 addresses. */
427 PR_CAN_APPEAR = 1,
429 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
430 outside memory addresses. This is needed because propagate_rtx_1 does
431 not do any analysis on memory; thus it is very conservative and in general
432 it will fail if non-read-only MEMs are found in the source expression.
434 PR_HANDLE_MEM is set when the source of the propagation was not
435 another MEM. Then, it is safe not to treat non-read-only MEMs as
436 ``opaque'' objects. */
437 PR_HANDLE_MEM = 2,
439 /* Set when costs should be optimized for speed. */
440 PR_OPTIMIZE_FOR_SPEED = 4
444 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
445 resulting expression. Replace *PX with a new RTL expression if an
446 occurrence of OLD was found.
448 This is only a wrapper around simplify-rtx.c: do not add any pattern
449 matching code here. (The sole exception is the handling of LO_SUM, but
450 that is because there is no simplify_gen_* function for LO_SUM). */
452 static bool
453 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
455 rtx x = *px, tem = NULL_RTX, op0, op1, op2;
456 enum rtx_code code = GET_CODE (x);
457 machine_mode mode = GET_MODE (x);
458 machine_mode op_mode;
459 bool can_appear = (flags & PR_CAN_APPEAR) != 0;
460 bool valid_ops = true;
462 if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
464 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
465 they have side effects or not). */
466 *px = (side_effects_p (x)
467 ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
468 : gen_rtx_SCRATCH (GET_MODE (x)));
469 return false;
472 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
473 address, and we are *not* inside one. */
474 if (x == old_rtx)
476 *px = new_rtx;
477 return can_appear;
480 /* If this is an expression, try recursive substitution. */
481 switch (GET_RTX_CLASS (code))
483 case RTX_UNARY:
484 op0 = XEXP (x, 0);
485 op_mode = GET_MODE (op0);
486 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
487 if (op0 == XEXP (x, 0))
488 return true;
489 tem = simplify_gen_unary (code, mode, op0, op_mode);
490 break;
492 case RTX_BIN_ARITH:
493 case RTX_COMM_ARITH:
494 op0 = XEXP (x, 0);
495 op1 = XEXP (x, 1);
496 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
497 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
498 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
499 return true;
500 tem = simplify_gen_binary (code, mode, op0, op1);
501 break;
503 case RTX_COMPARE:
504 case RTX_COMM_COMPARE:
505 op0 = XEXP (x, 0);
506 op1 = XEXP (x, 1);
507 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
508 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
509 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
510 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
511 return true;
512 tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
513 break;
515 case RTX_TERNARY:
516 case RTX_BITFIELD_OPS:
517 op0 = XEXP (x, 0);
518 op1 = XEXP (x, 1);
519 op2 = XEXP (x, 2);
520 op_mode = GET_MODE (op0);
521 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
522 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
523 valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
524 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
525 return true;
526 if (op_mode == VOIDmode)
527 op_mode = GET_MODE (op0);
528 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
529 break;
531 case RTX_EXTRA:
532 /* The only case we try to handle is a SUBREG. */
533 if (code == SUBREG)
535 op0 = XEXP (x, 0);
536 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
537 if (op0 == XEXP (x, 0))
538 return true;
539 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
540 SUBREG_BYTE (x));
542 break;
544 case RTX_OBJ:
545 if (code == MEM && x != new_rtx)
547 rtx new_op0;
548 op0 = XEXP (x, 0);
550 /* There are some addresses that we cannot work on. */
551 if (!can_simplify_addr (op0))
552 return true;
554 op0 = new_op0 = targetm.delegitimize_address (op0);
555 valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
556 flags | PR_CAN_APPEAR);
558 /* Dismiss transformation that we do not want to carry on. */
559 if (!valid_ops
560 || new_op0 == op0
561 || !(GET_MODE (new_op0) == GET_MODE (op0)
562 || GET_MODE (new_op0) == VOIDmode))
563 return true;
565 canonicalize_address (new_op0);
567 /* Copy propagations are always ok. Otherwise check the costs. */
568 if (!(REG_P (old_rtx) && REG_P (new_rtx))
569 && !should_replace_address (op0, new_op0, GET_MODE (x),
570 MEM_ADDR_SPACE (x),
571 flags & PR_OPTIMIZE_FOR_SPEED))
572 return true;
574 tem = replace_equiv_address_nv (x, new_op0);
577 else if (code == LO_SUM)
579 op0 = XEXP (x, 0);
580 op1 = XEXP (x, 1);
582 /* The only simplification we do attempts to remove references to op0
583 or make it constant -- in both cases, op0's invalidity will not
584 make the result invalid. */
585 propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
586 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
587 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
588 return true;
590 /* (lo_sum (high x) x) -> x */
591 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
592 tem = op1;
593 else
594 tem = gen_rtx_LO_SUM (mode, op0, op1);
596 /* OP1 is likely not a legitimate address, otherwise there would have
597 been no LO_SUM. We want it to disappear if it is invalid, return
598 false in that case. */
599 return memory_address_p (mode, tem);
602 else if (code == REG)
604 if (rtx_equal_p (x, old_rtx))
606 *px = new_rtx;
607 return can_appear;
610 break;
612 default:
613 break;
616 /* No change, no trouble. */
617 if (tem == NULL_RTX)
618 return true;
620 *px = tem;
622 /* Allow replacements that simplify operations on a vector or complex
623 value to a component. The most prominent case is
624 (subreg ([vec_]concat ...)). */
625 if (REG_P (tem) && !HARD_REGISTER_P (tem)
626 && (VECTOR_MODE_P (GET_MODE (new_rtx))
627 || COMPLEX_MODE_P (GET_MODE (new_rtx)))
628 && GET_MODE (tem) == GET_MODE_INNER (GET_MODE (new_rtx)))
629 return true;
631 /* The replacement we made so far is valid, if all of the recursive
632 replacements were valid, or we could simplify everything to
633 a constant. */
634 return valid_ops || can_appear || CONSTANT_P (tem);
638 /* Return true if X constains a non-constant mem. */
640 static bool
641 varying_mem_p (const_rtx x)
643 subrtx_iterator::array_type array;
644 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
645 if (MEM_P (*iter) && !MEM_READONLY_P (*iter))
646 return true;
647 return false;
651 /* Replace all occurrences of OLD in X with NEW and try to simplify the
652 resulting expression (in mode MODE). Return a new expression if it is
653 a constant, otherwise X.
655 Simplifications where occurrences of NEW collapse to a constant are always
656 accepted. All simplifications are accepted if NEW is a pseudo too.
657 Otherwise, we accept simplifications that have a lower or equal cost. */
659 static rtx
660 propagate_rtx (rtx x, machine_mode mode, rtx old_rtx, rtx new_rtx,
661 bool speed)
663 rtx tem;
664 bool collapsed;
665 int flags;
667 if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
668 return NULL_RTX;
670 flags = 0;
671 if (REG_P (new_rtx)
672 || CONSTANT_P (new_rtx)
673 || (GET_CODE (new_rtx) == SUBREG
674 && REG_P (SUBREG_REG (new_rtx))
675 && (GET_MODE_SIZE (mode)
676 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (new_rtx))))))
677 flags |= PR_CAN_APPEAR;
678 if (!varying_mem_p (new_rtx))
679 flags |= PR_HANDLE_MEM;
681 if (speed)
682 flags |= PR_OPTIMIZE_FOR_SPEED;
684 tem = x;
685 collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
686 if (tem == x || !collapsed)
687 return NULL_RTX;
689 /* gen_lowpart_common will not be able to process VOIDmode entities other
690 than CONST_INTs. */
691 if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
692 return NULL_RTX;
694 if (GET_MODE (tem) == VOIDmode)
695 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
696 else
697 gcc_assert (GET_MODE (tem) == mode);
699 return tem;
705 /* Return true if the register from reference REF is killed
706 between FROM to (but not including) TO. */
708 static bool
709 local_ref_killed_between_p (df_ref ref, rtx_insn *from, rtx_insn *to)
711 rtx_insn *insn;
713 for (insn = from; insn != to; insn = NEXT_INSN (insn))
715 df_ref def;
716 if (!INSN_P (insn))
717 continue;
719 FOR_EACH_INSN_DEF (def, insn)
720 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
721 return true;
723 return false;
727 /* Check if the given DEF is available in INSN. This would require full
728 computation of available expressions; we check only restricted conditions:
729 - if DEF is the sole definition of its register, go ahead;
730 - in the same basic block, we check for no definitions killing the
731 definition of DEF_INSN;
732 - if USE's basic block has DEF's basic block as the sole predecessor,
733 we check if the definition is killed after DEF_INSN or before
734 TARGET_INSN insn, in their respective basic blocks. */
735 static bool
736 use_killed_between (df_ref use, rtx_insn *def_insn, rtx_insn *target_insn)
738 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
739 basic_block target_bb = BLOCK_FOR_INSN (target_insn);
740 int regno;
741 df_ref def;
743 /* We used to have a def reaching a use that is _before_ the def,
744 with the def not dominating the use even though the use and def
745 are in the same basic block, when a register may be used
746 uninitialized in a loop. This should not happen anymore since
747 we do not use reaching definitions, but still we test for such
748 cases and assume that DEF is not available. */
749 if (def_bb == target_bb
750 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
751 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
752 return true;
754 /* Check if the reg in USE has only one definition. We already
755 know that this definition reaches use, or we wouldn't be here.
756 However, this is invalid for hard registers because if they are
757 live at the beginning of the function it does not mean that we
758 have an uninitialized access. */
759 regno = DF_REF_REGNO (use);
760 def = DF_REG_DEF_CHAIN (regno);
761 if (def
762 && DF_REF_NEXT_REG (def) == NULL
763 && regno >= FIRST_PSEUDO_REGISTER)
764 return false;
766 /* Check locally if we are in the same basic block. */
767 if (def_bb == target_bb)
768 return local_ref_killed_between_p (use, def_insn, target_insn);
770 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
771 if (single_pred_p (target_bb)
772 && single_pred (target_bb) == def_bb)
774 df_ref x;
776 /* See if USE is killed between DEF_INSN and the last insn in the
777 basic block containing DEF_INSN. */
778 x = df_bb_regno_last_def_find (def_bb, regno);
779 if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
780 return true;
782 /* See if USE is killed between TARGET_INSN and the first insn in the
783 basic block containing TARGET_INSN. */
784 x = df_bb_regno_first_def_find (target_bb, regno);
785 if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
786 return true;
788 return false;
791 /* Otherwise assume the worst case. */
792 return true;
796 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
797 would require full computation of available expressions;
798 we check only restricted conditions, see use_killed_between. */
799 static bool
800 all_uses_available_at (rtx_insn *def_insn, rtx_insn *target_insn)
802 df_ref use;
803 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
804 rtx def_set = single_set (def_insn);
805 rtx_insn *next;
807 gcc_assert (def_set);
809 /* If target_insn comes right after def_insn, which is very common
810 for addresses, we can use a quicker test. Ignore debug insns
811 other than target insns for this. */
812 next = NEXT_INSN (def_insn);
813 while (next && next != target_insn && DEBUG_INSN_P (next))
814 next = NEXT_INSN (next);
815 if (next == target_insn && REG_P (SET_DEST (def_set)))
817 rtx def_reg = SET_DEST (def_set);
819 /* If the insn uses the reg that it defines, the substitution is
820 invalid. */
821 FOR_EACH_INSN_INFO_USE (use, insn_info)
822 if (rtx_equal_p (DF_REF_REG (use), def_reg))
823 return false;
824 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
825 if (rtx_equal_p (DF_REF_REG (use), def_reg))
826 return false;
828 else
830 rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
832 /* Look at all the uses of DEF_INSN, and see if they are not
833 killed between DEF_INSN and TARGET_INSN. */
834 FOR_EACH_INSN_INFO_USE (use, insn_info)
836 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
837 return false;
838 if (use_killed_between (use, def_insn, target_insn))
839 return false;
841 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
843 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
844 return false;
845 if (use_killed_between (use, def_insn, target_insn))
846 return false;
850 return true;
854 static df_ref *active_defs;
855 static sparseset active_defs_check;
857 /* Fill the ACTIVE_DEFS array with the use->def link for the registers
858 mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK
859 too, for checking purposes. */
861 static void
862 register_active_defs (df_ref use)
864 for (; use; use = DF_REF_NEXT_LOC (use))
866 df_ref def = get_def_for_use (use);
867 int regno = DF_REF_REGNO (use);
869 if (flag_checking)
870 sparseset_set_bit (active_defs_check, regno);
871 active_defs[regno] = def;
876 /* Build the use->def links that we use to update the dataflow info
877 for new uses. Note that building the links is very cheap and if
878 it were done earlier, they could be used to rule out invalid
879 propagations (in addition to what is done in all_uses_available_at).
880 I'm not doing this yet, though. */
882 static void
883 update_df_init (rtx_insn *def_insn, rtx_insn *insn)
885 if (flag_checking)
886 sparseset_clear (active_defs_check);
887 register_active_defs (DF_INSN_USES (def_insn));
888 register_active_defs (DF_INSN_USES (insn));
889 register_active_defs (DF_INSN_EQ_USES (insn));
893 /* Update the USE_DEF_REF array for the given use, using the active definitions
894 in the ACTIVE_DEFS array to match pseudos to their def. */
896 static inline void
897 update_uses (df_ref use)
899 for (; use; use = DF_REF_NEXT_LOC (use))
901 int regno = DF_REF_REGNO (use);
903 /* Set up the use-def chain. */
904 if (DF_REF_ID (use) >= (int) use_def_ref.length ())
905 use_def_ref.safe_grow_cleared (DF_REF_ID (use) + 1);
907 if (flag_checking)
908 gcc_assert (sparseset_bit_p (active_defs_check, regno));
909 use_def_ref[DF_REF_ID (use)] = active_defs[regno];
914 /* Update the USE_DEF_REF array for the uses in INSN. Only update note
915 uses if NOTES_ONLY is true. */
917 static void
918 update_df (rtx_insn *insn, rtx note)
920 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
922 if (note)
924 df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE);
925 df_notes_rescan (insn);
927 else
929 df_uses_create (&PATTERN (insn), insn, 0);
930 df_insn_rescan (insn);
931 update_uses (DF_INSN_INFO_USES (insn_info));
934 update_uses (DF_INSN_INFO_EQ_USES (insn_info));
938 /* Try substituting NEW into LOC, which originated from forward propagation
939 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
940 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
941 new insn is not recognized. Return whether the substitution was
942 performed. */
944 static bool
945 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx_insn *def_insn,
946 bool set_reg_equal)
948 rtx_insn *insn = DF_REF_INSN (use);
949 rtx set = single_set (insn);
950 rtx note = NULL_RTX;
951 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
952 int old_cost = 0;
953 bool ok;
955 update_df_init (def_insn, insn);
957 /* forward_propagate_subreg may be operating on an instruction with
958 multiple sets. If so, assume the cost of the new instruction is
959 not greater than the old one. */
960 if (set)
961 old_cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
962 if (dump_file)
964 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
965 print_inline_rtx (dump_file, *loc, 2);
966 fprintf (dump_file, "\n with ");
967 print_inline_rtx (dump_file, new_rtx, 2);
968 fprintf (dump_file, "\n");
971 validate_unshare_change (insn, loc, new_rtx, true);
972 if (!verify_changes (0))
974 if (dump_file)
975 fprintf (dump_file, "Changes to insn %d not recognized\n",
976 INSN_UID (insn));
977 ok = false;
980 else if (DF_REF_TYPE (use) == DF_REF_REG_USE
981 && set
982 && (set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed)
983 > old_cost))
985 if (dump_file)
986 fprintf (dump_file, "Changes to insn %d not profitable\n",
987 INSN_UID (insn));
988 ok = false;
991 else
993 if (dump_file)
994 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
995 ok = true;
998 if (ok)
1000 confirm_change_group ();
1001 num_changes++;
1003 else
1005 cancel_changes (0);
1007 /* Can also record a simplified value in a REG_EQUAL note,
1008 making a new one if one does not already exist. */
1009 if (set_reg_equal)
1011 /* If there are any paradoxical SUBREGs, don't add REG_EQUAL note,
1012 because the bits in there can be anything and so might not
1013 match the REG_EQUAL note content. See PR70574. */
1014 subrtx_var_iterator::array_type array;
1015 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
1017 rtx x = *iter;
1018 if (SUBREG_P (x) && paradoxical_subreg_p (x))
1020 set_reg_equal = false;
1021 break;
1025 if (set_reg_equal)
1027 if (dump_file)
1028 fprintf (dump_file, " Setting REG_EQUAL note\n");
1030 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1035 if ((ok || note) && !CONSTANT_P (new_rtx))
1036 update_df (insn, note);
1038 return ok;
1041 /* For the given single_set INSN, containing SRC known to be a
1042 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1043 is redundant due to the register being set by a LOAD_EXTEND_OP
1044 load from memory. */
1046 static bool
1047 free_load_extend (rtx src, rtx_insn *insn)
1049 rtx reg;
1050 df_ref def, use;
1052 reg = XEXP (src, 0);
1053 #ifdef LOAD_EXTEND_OP
1054 if (LOAD_EXTEND_OP (GET_MODE (reg)) != GET_CODE (src))
1055 #endif
1056 return false;
1058 FOR_EACH_INSN_USE (use, insn)
1059 if (!DF_REF_IS_ARTIFICIAL (use)
1060 && DF_REF_TYPE (use) == DF_REF_REG_USE
1061 && DF_REF_REG (use) == reg)
1062 break;
1063 if (!use)
1064 return false;
1066 def = get_def_for_use (use);
1067 if (!def)
1068 return false;
1070 if (DF_REF_IS_ARTIFICIAL (def))
1071 return false;
1073 if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1075 rtx patt = PATTERN (DF_REF_INSN (def));
1077 if (GET_CODE (patt) == SET
1078 && GET_CODE (SET_SRC (patt)) == MEM
1079 && rtx_equal_p (SET_DEST (patt), reg))
1080 return true;
1082 return false;
1085 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1087 static bool
1088 forward_propagate_subreg (df_ref use, rtx_insn *def_insn, rtx def_set)
1090 rtx use_reg = DF_REF_REG (use);
1091 rtx_insn *use_insn;
1092 rtx src;
1094 /* Only consider subregs... */
1095 machine_mode use_mode = GET_MODE (use_reg);
1096 if (GET_CODE (use_reg) != SUBREG
1097 || !REG_P (SET_DEST (def_set)))
1098 return false;
1100 /* If this is a paradoxical SUBREG... */
1101 if (GET_MODE_SIZE (use_mode)
1102 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
1104 /* If this is a paradoxical SUBREG, we have no idea what value the
1105 extra bits would have. However, if the operand is equivalent to
1106 a SUBREG whose operand is the same as our mode, and all the modes
1107 are within a word, we can just use the inner operand because
1108 these SUBREGs just say how to treat the register. */
1109 use_insn = DF_REF_INSN (use);
1110 src = SET_SRC (def_set);
1111 if (GET_CODE (src) == SUBREG
1112 && REG_P (SUBREG_REG (src))
1113 && REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER
1114 && GET_MODE (SUBREG_REG (src)) == use_mode
1115 && subreg_lowpart_p (src)
1116 && all_uses_available_at (def_insn, use_insn))
1117 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1118 def_insn, false);
1121 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1122 is the low part of the reg being extended then just use the inner
1123 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1124 be removed due to it matching a LOAD_EXTEND_OP load from memory,
1125 or due to the operation being a no-op when applied to registers.
1126 For example, if we have:
1128 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
1129 B: (... (subreg:SI (reg:DI X)) ...)
1131 and mode_rep_extended says that Y is already sign-extended,
1132 the backend will typically allow A to be combined with the
1133 definition of Y or, failing that, allow A to be deleted after
1134 reload through register tying. Introducing more uses of Y
1135 prevents both optimisations. */
1136 else if (subreg_lowpart_p (use_reg))
1138 use_insn = DF_REF_INSN (use);
1139 src = SET_SRC (def_set);
1140 if ((GET_CODE (src) == ZERO_EXTEND
1141 || GET_CODE (src) == SIGN_EXTEND)
1142 && REG_P (XEXP (src, 0))
1143 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
1144 && GET_MODE (XEXP (src, 0)) == use_mode
1145 && !free_load_extend (src, def_insn)
1146 && (targetm.mode_rep_extended (use_mode, GET_MODE (src))
1147 != (int) GET_CODE (src))
1148 && all_uses_available_at (def_insn, use_insn))
1149 return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1150 def_insn, false);
1153 return false;
1156 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1158 static bool
1159 forward_propagate_asm (df_ref use, rtx_insn *def_insn, rtx def_set, rtx reg)
1161 rtx_insn *use_insn = DF_REF_INSN (use);
1162 rtx src, use_pat, asm_operands, new_rtx, *loc;
1163 int speed_p, i;
1164 df_ref uses;
1166 gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1168 src = SET_SRC (def_set);
1169 use_pat = PATTERN (use_insn);
1171 /* In __asm don't replace if src might need more registers than
1172 reg, as that could increase register pressure on the __asm. */
1173 uses = DF_INSN_USES (def_insn);
1174 if (uses && DF_REF_NEXT_LOC (uses))
1175 return false;
1177 update_df_init (def_insn, use_insn);
1178 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1179 asm_operands = NULL_RTX;
1180 switch (GET_CODE (use_pat))
1182 case ASM_OPERANDS:
1183 asm_operands = use_pat;
1184 break;
1185 case SET:
1186 if (MEM_P (SET_DEST (use_pat)))
1188 loc = &SET_DEST (use_pat);
1189 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1190 if (new_rtx)
1191 validate_unshare_change (use_insn, loc, new_rtx, true);
1193 asm_operands = SET_SRC (use_pat);
1194 break;
1195 case PARALLEL:
1196 for (i = 0; i < XVECLEN (use_pat, 0); i++)
1197 if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1199 if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1201 loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1202 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1203 src, speed_p);
1204 if (new_rtx)
1205 validate_unshare_change (use_insn, loc, new_rtx, true);
1207 asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1209 else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1210 asm_operands = XVECEXP (use_pat, 0, i);
1211 break;
1212 default:
1213 gcc_unreachable ();
1216 gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1217 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1219 loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1220 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1221 if (new_rtx)
1222 validate_unshare_change (use_insn, loc, new_rtx, true);
1225 if (num_changes_pending () == 0 || !apply_change_group ())
1226 return false;
1228 update_df (use_insn, NULL);
1229 num_changes++;
1230 return true;
1233 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1234 result. */
1236 static bool
1237 forward_propagate_and_simplify (df_ref use, rtx_insn *def_insn, rtx def_set)
1239 rtx_insn *use_insn = DF_REF_INSN (use);
1240 rtx use_set = single_set (use_insn);
1241 rtx src, reg, new_rtx, *loc;
1242 bool set_reg_equal;
1243 machine_mode mode;
1244 int asm_use = -1;
1246 if (INSN_CODE (use_insn) < 0)
1247 asm_use = asm_noperands (PATTERN (use_insn));
1249 if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
1250 return false;
1252 /* Do not propagate into PC, CC0, etc. */
1253 if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1254 return false;
1256 /* If def and use are subreg, check if they match. */
1257 reg = DF_REF_REG (use);
1258 if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG)
1260 if (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg))
1261 return false;
1263 /* Check if the def had a subreg, but the use has the whole reg. */
1264 else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1265 return false;
1266 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1267 previous case, the optimization is possible and often useful indeed. */
1268 else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1269 reg = SUBREG_REG (reg);
1271 /* Make sure that we can treat REG as having the same mode as the
1272 source of DEF_SET. */
1273 if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg))
1274 return false;
1276 /* Check if the substitution is valid (last, because it's the most
1277 expensive check!). */
1278 src = SET_SRC (def_set);
1279 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1280 return false;
1282 /* Check if the def is loading something from the constant pool; in this
1283 case we would undo optimization such as compress_float_constant.
1284 Still, we can set a REG_EQUAL note. */
1285 if (MEM_P (src) && MEM_READONLY_P (src))
1287 rtx x = avoid_constant_pool_reference (src);
1288 if (x != src && use_set)
1290 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1291 rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1292 rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1293 if (old_rtx != new_rtx)
1294 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1296 return false;
1299 if (asm_use >= 0)
1300 return forward_propagate_asm (use, def_insn, def_set, reg);
1302 /* Else try simplifying. */
1304 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1306 loc = &SET_DEST (use_set);
1307 set_reg_equal = false;
1309 else if (!use_set)
1311 loc = &INSN_VAR_LOCATION_LOC (use_insn);
1312 set_reg_equal = false;
1314 else
1316 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1317 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1318 loc = &XEXP (note, 0);
1319 else
1320 loc = &SET_SRC (use_set);
1322 /* Do not replace an existing REG_EQUAL note if the insn is not
1323 recognized. Either we're already replacing in the note, or we'll
1324 separately try plugging the definition in the note and simplifying.
1325 And only install a REQ_EQUAL note when the destination is a REG
1326 that isn't mentioned in USE_SET, as the note would be invalid
1327 otherwise. We also don't want to install a note if we are merely
1328 propagating a pseudo since verifying that this pseudo isn't dead
1329 is a pain; moreover such a note won't help anything.
1330 If the use is a paradoxical subreg, make sure we don't add a
1331 REG_EQUAL note for it, because it is not equivalent, it is one
1332 possible value for it, but we can't rely on it holding that value.
1333 See PR70574. */
1334 set_reg_equal = (note == NULL_RTX
1335 && REG_P (SET_DEST (use_set))
1336 && !REG_P (src)
1337 && !(GET_CODE (src) == SUBREG
1338 && REG_P (SUBREG_REG (src)))
1339 && !reg_mentioned_p (SET_DEST (use_set),
1340 SET_SRC (use_set))
1341 && !paradoxical_subreg_p (DF_REF_REG (use)));
1344 if (GET_MODE (*loc) == VOIDmode)
1345 mode = GET_MODE (SET_DEST (use_set));
1346 else
1347 mode = GET_MODE (*loc);
1349 new_rtx = propagate_rtx (*loc, mode, reg, src,
1350 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1352 if (!new_rtx)
1353 return false;
1355 return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1359 /* Given a use USE of an insn, if it has a single reaching
1360 definition, try to forward propagate it into that insn.
1361 Return true if cfg cleanup will be needed. */
1363 static bool
1364 forward_propagate_into (df_ref use)
1366 df_ref def;
1367 rtx_insn *def_insn, *use_insn;
1368 rtx def_set;
1369 rtx parent;
1371 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1372 return false;
1373 if (DF_REF_IS_ARTIFICIAL (use))
1374 return false;
1376 /* Only consider uses that have a single definition. */
1377 def = get_def_for_use (use);
1378 if (!def)
1379 return false;
1380 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1381 return false;
1382 if (DF_REF_IS_ARTIFICIAL (def))
1383 return false;
1385 /* Do not propagate loop invariant definitions inside the loop. */
1386 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1387 return false;
1389 /* Check if the use is still present in the insn! */
1390 use_insn = DF_REF_INSN (use);
1391 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1392 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1393 else
1394 parent = PATTERN (use_insn);
1396 if (!reg_mentioned_p (DF_REF_REG (use), parent))
1397 return false;
1399 def_insn = DF_REF_INSN (def);
1400 if (multiple_sets (def_insn))
1401 return false;
1402 def_set = single_set (def_insn);
1403 if (!def_set)
1404 return false;
1406 /* Only try one kind of propagation. If two are possible, we'll
1407 do it on the following iterations. */
1408 if (forward_propagate_and_simplify (use, def_insn, def_set)
1409 || forward_propagate_subreg (use, def_insn, def_set))
1411 if (cfun->can_throw_non_call_exceptions
1412 && find_reg_note (use_insn, REG_EH_REGION, NULL_RTX)
1413 && purge_dead_edges (DF_REF_BB (use)))
1414 return true;
1416 return false;
1420 static void
1421 fwprop_init (void)
1423 num_changes = 0;
1424 calculate_dominance_info (CDI_DOMINATORS);
1426 /* We do not always want to propagate into loops, so we have to find
1427 loops and be careful about them. Avoid CFG modifications so that
1428 we don't have to update dominance information afterwards for
1429 build_single_def_use_links. */
1430 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
1432 build_single_def_use_links ();
1433 df_set_flags (DF_DEFER_INSN_RESCAN);
1435 active_defs = XNEWVEC (df_ref, max_reg_num ());
1436 if (flag_checking)
1437 active_defs_check = sparseset_alloc (max_reg_num ());
1440 static void
1441 fwprop_done (void)
1443 loop_optimizer_finalize ();
1445 use_def_ref.release ();
1446 free (active_defs);
1447 if (flag_checking)
1448 sparseset_free (active_defs_check);
1450 free_dominance_info (CDI_DOMINATORS);
1451 cleanup_cfg (0);
1452 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1454 if (dump_file)
1455 fprintf (dump_file,
1456 "\nNumber of successful forward propagations: %d\n\n",
1457 num_changes);
1461 /* Main entry point. */
1463 static bool
1464 gate_fwprop (void)
1466 return optimize > 0 && flag_forward_propagate;
1469 static unsigned int
1470 fwprop (void)
1472 unsigned i;
1474 fwprop_init ();
1476 /* Go through all the uses. df_uses_create will create new ones at the
1477 end, and we'll go through them as well.
1479 Do not forward propagate addresses into loops until after unrolling.
1480 CSE did so because it was able to fix its own mess, but we are not. */
1482 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1484 df_ref use = DF_USES_GET (i);
1485 if (use)
1486 if (DF_REF_TYPE (use) == DF_REF_REG_USE
1487 || DF_REF_BB (use)->loop_father == NULL
1488 /* The outer most loop is not really a loop. */
1489 || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1490 forward_propagate_into (use);
1493 fwprop_done ();
1494 return 0;
1497 namespace {
1499 const pass_data pass_data_rtl_fwprop =
1501 RTL_PASS, /* type */
1502 "fwprop1", /* name */
1503 OPTGROUP_NONE, /* optinfo_flags */
1504 TV_FWPROP, /* tv_id */
1505 0, /* properties_required */
1506 0, /* properties_provided */
1507 0, /* properties_destroyed */
1508 0, /* todo_flags_start */
1509 TODO_df_finish, /* todo_flags_finish */
1512 class pass_rtl_fwprop : public rtl_opt_pass
1514 public:
1515 pass_rtl_fwprop (gcc::context *ctxt)
1516 : rtl_opt_pass (pass_data_rtl_fwprop, ctxt)
1519 /* opt_pass methods: */
1520 virtual bool gate (function *) { return gate_fwprop (); }
1521 virtual unsigned int execute (function *) { return fwprop (); }
1523 }; // class pass_rtl_fwprop
1525 } // anon namespace
1527 rtl_opt_pass *
1528 make_pass_rtl_fwprop (gcc::context *ctxt)
1530 return new pass_rtl_fwprop (ctxt);
1533 static unsigned int
1534 fwprop_addr (void)
1536 unsigned i;
1538 fwprop_init ();
1540 /* Go through all the uses. df_uses_create will create new ones at the
1541 end, and we'll go through them as well. */
1542 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1544 df_ref use = DF_USES_GET (i);
1545 if (use)
1546 if (DF_REF_TYPE (use) != DF_REF_REG_USE
1547 && DF_REF_BB (use)->loop_father != NULL
1548 /* The outer most loop is not really a loop. */
1549 && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1550 forward_propagate_into (use);
1553 fwprop_done ();
1554 return 0;
1557 namespace {
1559 const pass_data pass_data_rtl_fwprop_addr =
1561 RTL_PASS, /* type */
1562 "fwprop2", /* name */
1563 OPTGROUP_NONE, /* optinfo_flags */
1564 TV_FWPROP, /* tv_id */
1565 0, /* properties_required */
1566 0, /* properties_provided */
1567 0, /* properties_destroyed */
1568 0, /* todo_flags_start */
1569 TODO_df_finish, /* todo_flags_finish */
1572 class pass_rtl_fwprop_addr : public rtl_opt_pass
1574 public:
1575 pass_rtl_fwprop_addr (gcc::context *ctxt)
1576 : rtl_opt_pass (pass_data_rtl_fwprop_addr, ctxt)
1579 /* opt_pass methods: */
1580 virtual bool gate (function *) { return gate_fwprop (); }
1581 virtual unsigned int execute (function *) { return fwprop_addr (); }
1583 }; // class pass_rtl_fwprop_addr
1585 } // anon namespace
1587 rtl_opt_pass *
1588 make_pass_rtl_fwprop_addr (gcc::context *ctxt)
1590 return new pass_rtl_fwprop_addr (ctxt);