1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
5 -- S Y S T E M . F A T _ G E N --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
30 ------------------------------------------------------------------------------
32 -- The implementation here is portable to any IEEE implementation. It does
33 -- not handle non-binary radix, and also assumes that model numbers and
34 -- machine numbers are basically identical, which is not true of all possible
35 -- floating-point implementations. On a non-IEEE machine, this body must be
36 -- specialized appropriately, or better still, its generic instantiations
37 -- should be replaced by efficient machine-specific code.
39 with Ada
.Unchecked_Conversion
;
41 package body System
.Fat_Gen
is
43 Float_Radix
: constant T
:= T
(T
'Machine_Radix);
44 Radix_To_M_Minus_1
: constant T
:= Float_Radix
** (T
'Machine_Mantissa - 1);
46 pragma Assert
(T
'Machine_Radix = 2);
47 -- This version does not handle radix 16
49 -- Constants for Decompose and Scaling
51 Rad
: constant T
:= T
(T
'Machine_Radix);
52 Invrad
: constant T
:= 1.0 / Rad
;
54 subtype Expbits
is Integer range 0 .. 6;
55 -- 2 ** (2 ** 7) might overflow. How big can radix-16 exponents get?
57 Log_Power
: constant array (Expbits
) of Integer := (1, 2, 4, 8, 16, 32, 64);
59 R_Power
: constant array (Expbits
) of T
:=
68 R_Neg_Power
: constant array (Expbits
) of T
:=
77 -----------------------
78 -- Local Subprograms --
79 -----------------------
81 procedure Decompose
(XX
: T
; Frac
: out T
; Expo
: out UI
);
82 -- Decomposes a floating-point number into fraction and exponent parts.
83 -- Both results are signed, with Frac having the sign of XX, and UI has
84 -- the sign of the exponent. The absolute value of Frac is in the range
85 -- 0.0 <= Frac < 1.0. If Frac = 0.0 or -0.0, then Expo is always zero.
87 function Gradual_Scaling
(Adjustment
: UI
) return T
;
88 -- Like Scaling with a first argument of 1.0, but returns the smallest
89 -- denormal rather than zero when the adjustment is smaller than
90 -- Machine_Emin. Used for Succ and Pred.
96 function Adjacent
(X
, Towards
: T
) return T
is
100 elsif Towards
> X
then
111 function Ceiling
(X
: T
) return T
is
112 XT
: constant T
:= Truncation
(X
);
127 function Compose
(Fraction
: T
; Exponent
: UI
) return T
is
130 pragma Unreferenced
(Arg_Exp
);
132 Decompose
(Fraction
, Arg_Frac
, Arg_Exp
);
133 return Scaling
(Arg_Frac
, Exponent
);
140 function Copy_Sign
(Value
, Sign
: T
) return T
is
143 function Is_Negative
(V
: T
) return Boolean;
144 pragma Import
(Intrinsic
, Is_Negative
);
149 if Is_Negative
(Sign
) then
160 procedure Decompose
(XX
: T
; Frac
: out T
; Expo
: out UI
) is
161 X
: constant T
:= T
'Machine (XX
);
166 -- The normalized exponent of zero is zero, see RM A.5.2(15)
171 -- Check for infinities, transfinites, whatnot
173 elsif X
> T
'Safe_Last then
175 Expo
:= T
'Machine_Emax + 1;
177 elsif X
< T
'Safe_First then
179 Expo
:= T
'Machine_Emax + 2; -- how many extra negative values?
182 -- Case of nonzero finite x. Essentially, we just multiply
183 -- by Rad ** (+-2**N) to reduce the range.
189 -- Ax * Rad ** Ex is invariant
193 while Ax
>= R_Power
(Expbits
'Last) loop
194 Ax
:= Ax
* R_Neg_Power
(Expbits
'Last);
195 Ex
:= Ex
+ Log_Power
(Expbits
'Last);
200 for N
in reverse Expbits
'First .. Expbits
'Last - 1 loop
201 if Ax
>= R_Power
(N
) then
202 Ax
:= Ax
* R_Neg_Power
(N
);
203 Ex
:= Ex
+ Log_Power
(N
);
218 while Ax
< R_Neg_Power
(Expbits
'Last) loop
219 Ax
:= Ax
* R_Power
(Expbits
'Last);
220 Ex
:= Ex
- Log_Power
(Expbits
'Last);
223 -- Rad ** -64 <= Ax < 1
225 for N
in reverse Expbits
'First .. Expbits
'Last - 1 loop
226 if Ax
< R_Neg_Power
(N
) then
227 Ax
:= Ax
* R_Power
(N
);
228 Ex
:= Ex
- Log_Power
(N
);
231 -- R_Neg_Power (N) <= Ax < 1
236 Frac
:= (if X
> 0.0 then Ax
else -Ax
);
246 function Exponent
(X
: T
) return UI
is
249 pragma Unreferenced
(X_Frac
);
251 Decompose
(X
, X_Frac
, X_Exp
);
259 function Floor
(X
: T
) return T
is
260 XT
: constant T
:= Truncation
(X
);
275 function Fraction
(X
: T
) return T
is
278 pragma Unreferenced
(X_Exp
);
280 Decompose
(X
, X_Frac
, X_Exp
);
284 ---------------------
285 -- Gradual_Scaling --
286 ---------------------
288 function Gradual_Scaling
(Adjustment
: UI
) return T
is
291 Ex
: UI
:= Adjustment
;
294 if Adjustment
< T
'Machine_Emin - 1 then
295 Y
:= 2.0 ** T
'Machine_Emin;
297 Ex
:= Ex
- T
'Machine_Emin;
299 Y
:= T
'Machine (Y
/ 2.0);
312 return Scaling
(1.0, Adjustment
);
320 function Leading_Part
(X
: T
; Radix_Digits
: UI
) return T
is
325 if Radix_Digits
>= T
'Machine_Mantissa then
328 elsif Radix_Digits
<= 0 then
329 raise Constraint_Error
;
332 L
:= Exponent
(X
) - Radix_Digits
;
333 Y
:= Truncation
(Scaling
(X
, -L
));
343 -- The trick with Machine is to force the compiler to store the result
344 -- in memory so that we do not have extra precision used. The compiler
345 -- is clever, so we have to outwit its possible optimizations. We do
346 -- this by using an intermediate pragma Volatile location.
348 function Machine
(X
: T
) return T
is
350 pragma Volatile
(Temp
);
356 ----------------------
357 -- Machine_Rounding --
358 ----------------------
360 -- For now, the implementation is identical to that of Rounding, which is
361 -- a permissible behavior, but is not the most efficient possible approach.
363 function Machine_Rounding
(X
: T
) return T
is
368 Result
:= Truncation
(abs X
);
369 Tail
:= abs X
- Result
;
372 Result
:= Result
+ 1.0;
381 -- For zero case, make sure sign of zero is preserved
386 end Machine_Rounding
;
392 -- We treat Model as identical to Machine. This is true of IEEE and other
393 -- nice floating-point systems, but not necessarily true of all systems.
395 function Model
(X
: T
) return T
is
404 -- Subtract from the given number a number equivalent to the value of its
405 -- least significant bit. Given that the most significant bit represents
406 -- a value of 1.0 * radix ** (exp - 1), the value we want is obtained by
407 -- shifting this by (mantissa-1) bits to the right, i.e. decreasing the
408 -- exponent by that amount.
410 -- Zero has to be treated specially, since its exponent is zero
412 function Pred
(X
: T
) return T
is
421 Decompose
(X
, X_Frac
, X_Exp
);
423 -- A special case, if the number we had was a positive power of
424 -- two, then we want to subtract half of what we would otherwise
425 -- subtract, since the exponent is going to be reduced.
427 -- Note that X_Frac has the same sign as X, so if X_Frac is 0.5,
428 -- then we know that we have a positive number (and hence a
429 -- positive power of 2).
432 return X
- Gradual_Scaling
(X_Exp
- T
'Machine_Mantissa - 1);
434 -- Otherwise the exponent is unchanged
437 return X
- Gradual_Scaling
(X_Exp
- T
'Machine_Mantissa);
446 function Remainder
(X
, Y
: T
) return T
is
460 pragma Unreferenced
(Arg_Frac
);
464 raise Constraint_Error
;
480 P_Exp
:= Exponent
(P
);
483 Decompose
(Arg
, Arg_Frac
, Arg_Exp
);
484 Decompose
(P
, P_Frac
, P_Exp
);
486 P
:= Compose
(P_Frac
, Arg_Exp
);
487 K
:= Arg_Exp
- P_Exp
;
491 for Cnt
in reverse 0 .. K
loop
492 if IEEE_Rem
>= P
then
494 IEEE_Rem
:= IEEE_Rem
- P
;
503 -- That completes the calculation of modulus remainder. The final
504 -- step is get the IEEE remainder. Here we need to compare Rem with
505 -- (abs Y) / 2. We must be careful of unrepresentable Y/2 value
506 -- caused by subnormal numbers
517 if A
> B
or else (A
= B
and then not P_Even
) then
518 IEEE_Rem
:= IEEE_Rem
- abs Y
;
521 return Sign_X
* IEEE_Rem
;
528 function Rounding
(X
: T
) return T
is
533 Result
:= Truncation
(abs X
);
534 Tail
:= abs X
- Result
;
537 Result
:= Result
+ 1.0;
546 -- For zero case, make sure sign of zero is preserved
557 -- Return x * rad ** adjustment quickly, or quietly underflow to zero,
558 -- or overflow naturally.
560 function Scaling
(X
: T
; Adjustment
: UI
) return T
is
562 if X
= 0.0 or else Adjustment
= 0 then
566 -- Nonzero x essentially, just multiply repeatedly by Rad ** (+-2**n)
570 Ex
: UI
:= Adjustment
;
572 -- Y * Rad ** Ex is invariant
576 while Ex
<= -Log_Power
(Expbits
'Last) loop
577 Y
:= Y
* R_Neg_Power
(Expbits
'Last);
578 Ex
:= Ex
+ Log_Power
(Expbits
'Last);
583 for N
in reverse Expbits
'First .. Expbits
'Last - 1 loop
584 if Ex
<= -Log_Power
(N
) then
585 Y
:= Y
* R_Neg_Power
(N
);
586 Ex
:= Ex
+ Log_Power
(N
);
589 -- -Log_Power (N) < Ex <= 0
598 while Ex
>= Log_Power
(Expbits
'Last) loop
599 Y
:= Y
* R_Power
(Expbits
'Last);
600 Ex
:= Ex
- Log_Power
(Expbits
'Last);
605 for N
in reverse Expbits
'First .. Expbits
'Last - 1 loop
606 if Ex
>= Log_Power
(N
) then
607 Y
:= Y
* R_Power
(N
);
608 Ex
:= Ex
- Log_Power
(N
);
611 -- 0 <= Ex < Log_Power (N)
627 -- Similar computation to that of Pred: find value of least significant
628 -- bit of given number, and add. Zero has to be treated specially since
629 -- the exponent can be zero, and also we want the smallest denormal if
630 -- denormals are supported.
632 function Succ
(X
: T
) return T
is
639 X1
:= 2.0 ** T
'Machine_Emin;
641 -- Following loop generates smallest denormal
644 X2
:= T
'Machine (X1
/ 2.0);
652 Decompose
(X
, X_Frac
, X_Exp
);
654 -- A special case, if the number we had was a negative power of two,
655 -- then we want to add half of what we would otherwise add, since the
656 -- exponent is going to be reduced.
658 -- Note that X_Frac has the same sign as X, so if X_Frac is -0.5,
659 -- then we know that we have a negative number (and hence a negative
662 if X_Frac
= -0.5 then
663 return X
+ Gradual_Scaling
(X_Exp
- T
'Machine_Mantissa - 1);
665 -- Otherwise the exponent is unchanged
668 return X
+ Gradual_Scaling
(X_Exp
- T
'Machine_Mantissa);
677 -- The basic approach is to compute
679 -- T'Machine (RM1 + N) - RM1
681 -- where N >= 0.0 and RM1 = radix ** (mantissa - 1)
683 -- This works provided that the intermediate result (RM1 + N) does not
684 -- have extra precision (which is why we call Machine). When we compute
685 -- RM1 + N, the exponent of N will be normalized and the mantissa shifted
686 -- shifted appropriately so the lower order bits, which cannot contribute
687 -- to the integer part of N, fall off on the right. When we subtract RM1
688 -- again, the significant bits of N are shifted to the left, and what we
689 -- have is an integer, because only the first e bits are different from
690 -- zero (assuming binary radix here).
692 function Truncation
(X
: T
) return T
is
698 if Result
>= Radix_To_M_Minus_1
then
702 Result
:= Machine
(Radix_To_M_Minus_1
+ Result
) - Radix_To_M_Minus_1
;
704 if Result
> abs X
then
705 Result
:= Result
- 1.0;
714 -- For zero case, make sure sign of zero is preserved
722 -----------------------
723 -- Unbiased_Rounding --
724 -----------------------
726 function Unbiased_Rounding
(X
: T
) return T
is
727 Abs_X
: constant T
:= abs X
;
732 Result
:= Truncation
(Abs_X
);
733 Tail
:= Abs_X
- Result
;
736 Result
:= Result
+ 1.0;
738 elsif Tail
= 0.5 then
739 Result
:= 2.0 * Truncation
((Result
/ 2.0) + 0.5);
748 -- For zero case, make sure sign of zero is preserved
753 end Unbiased_Rounding
;
759 -- Note: this routine does not work for VAX float. We compensate for this
760 -- in Exp_Attr by using the Valid functions in Vax_Float_Operations rather
761 -- than the corresponding instantiation of this function.
763 function Valid
(X
: not null access T
) return Boolean is
765 IEEE_Emin
: constant Integer := T
'Machine_Emin - 1;
766 IEEE_Emax
: constant Integer := T
'Machine_Emax - 1;
768 IEEE_Bias
: constant Integer := -(IEEE_Emin
- 1);
770 subtype IEEE_Exponent_Range
is
771 Integer range IEEE_Emin
- 1 .. IEEE_Emax
+ 1;
773 -- The implementation of this floating point attribute uses a
774 -- representation type Float_Rep that allows direct access to the
775 -- exponent and mantissa parts of a floating point number.
777 -- The Float_Rep type is an array of Float_Word elements. This
778 -- representation is chosen to make it possible to size the type based
779 -- on a generic parameter. Since the array size is known at compile
780 -- time, efficient code can still be generated. The size of Float_Word
781 -- elements should be large enough to allow accessing the exponent in
782 -- one read, but small enough so that all floating point object sizes
783 -- are a multiple of the Float_Word'Size.
785 -- The following conditions must be met for all possible instantiations
786 -- of the attributes package:
788 -- - T'Size is an integral multiple of Float_Word'Size
790 -- - The exponent and sign are completely contained in a single
791 -- component of Float_Rep, named Most_Significant_Word (MSW).
793 -- - The sign occupies the most significant bit of the MSW and the
794 -- exponent is in the following bits. Unused bits (if any) are in
795 -- the least significant part.
797 type Float_Word
is mod 2**Positive'Min (System
.Word_Size
, 32);
798 type Rep_Index
is range 0 .. 7;
800 Rep_Words
: constant Positive :=
801 (T
'Size + Float_Word
'Size - 1) / Float_Word
'Size;
802 Rep_Last
: constant Rep_Index
:=
804 (Rep_Index
(Rep_Words
- 1),
805 (T
'Mantissa + 16) / Float_Word
'Size);
806 -- Determine the number of Float_Words needed for representing the
807 -- entire floating-point value. Do not take into account excessive
808 -- padding, as occurs on IA-64 where 80 bits floats get padded to 128
809 -- bits. In general, the exponent field cannot be larger than 15 bits,
810 -- even for 128-bit floating-point types, so the final format size
811 -- won't be larger than T'Mantissa + 16.
814 array (Rep_Index
range 0 .. Rep_Index
(Rep_Words
- 1)) of Float_Word
;
816 pragma Suppress_Initialization
(Float_Rep
);
817 -- This pragma suppresses the generation of an initialization procedure
818 -- for type Float_Rep when operating in Initialize/Normalize_Scalars
819 -- mode. This is not just a matter of efficiency, but of functionality,
820 -- since Valid has a pragma Inline_Always, which is not permitted if
821 -- there are nested subprograms present.
823 Most_Significant_Word
: constant Rep_Index
:=
824 Rep_Last
* Standard
'Default_Bit_Order;
825 -- Finding the location of the Exponent_Word is a bit tricky. In general
826 -- we assume Word_Order = Bit_Order. This expression needs to be refined
829 Exponent_Factor
: constant Float_Word
:=
830 2**(Float_Word
'Size - 1) /
831 Float_Word
(IEEE_Emax
- IEEE_Emin
+ 3) *
832 Boolean'Pos (Most_Significant_Word
/= 2) +
833 Boolean'Pos (Most_Significant_Word
= 2);
834 -- Factor that the extracted exponent needs to be divided by to be in
835 -- range 0 .. IEEE_Emax - IEEE_Emin + 2. Special kludge: Exponent_Factor
836 -- is 1 for x86/IA64 double extended as GCC adds unused bits to the
839 Exponent_Mask
: constant Float_Word
:=
840 Float_Word
(IEEE_Emax
- IEEE_Emin
+ 2) *
842 -- Value needed to mask out the exponent field. This assumes that the
843 -- range IEEE_Emin - 1 .. IEEE_Emax + contains 2**N values, for some N
846 function To_Float
is new Ada
.Unchecked_Conversion
(Float_Rep
, T
);
848 type Float_Access
is access all T
;
849 function To_Address
is
850 new Ada
.Unchecked_Conversion
(Float_Access
, System
.Address
);
852 XA
: constant System
.Address
:= To_Address
(Float_Access
(X
));
855 pragma Import
(Ada
, R
);
856 for R
'Address use XA
;
857 -- R is a view of the input floating-point parameter. Note that we
858 -- must avoid copying the actual bits of this parameter in float
859 -- form (since it may be a signalling NaN.
861 E
: constant IEEE_Exponent_Range
:=
862 Integer ((R
(Most_Significant_Word
) and Exponent_Mask
) /
865 -- Mask/Shift T to only get bits from the exponent. Then convert biased
866 -- value to integer value.
869 -- Float_Rep representation of significant of X.all
874 -- All denormalized numbers are valid, so the only invalid numbers
875 -- are overflows and NaNs, both with exponent = Emax + 1.
877 return E
/= IEEE_Emax
+ 1;
881 -- All denormalized numbers except 0.0 are invalid
883 -- Set exponent of X to zero, so we end up with the significand, which
884 -- definitely is a valid number and can be converted back to a float.
887 SR
(Most_Significant_Word
) :=
888 (SR
(Most_Significant_Word
)
889 and not Exponent_Mask
) + Float_Word
(IEEE_Bias
) * Exponent_Factor
;
891 return (E
in IEEE_Emin
.. IEEE_Emax
) or else
892 ((E
= IEEE_Emin
- 1) and then abs To_Float
(SR
) = 1.0);
895 ---------------------
896 -- Unaligned_Valid --
897 ---------------------
899 function Unaligned_Valid
(A
: System
.Address
) return Boolean is
900 subtype FS
is String (1 .. T
'Size / Character'Size);
901 type FSP
is access FS
;
903 function To_FSP
is new Ada
.Unchecked_Conversion
(Address
, FSP
);
908 -- Note that we have to be sure that we do not load the value into a
909 -- floating-point register, since a signalling NaN may cause a trap.
910 -- The following assignment is what does the actual alignment, since
911 -- we know that the target Local_T is aligned.
913 To_FSP
(Local_T
'Address).all := To_FSP
(A
).all;
915 -- Now that we have an aligned value, we can use the normal aligned
916 -- version of Valid to obtain the required result.
918 return Valid
(Local_T
'Access);