1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Einfo
; use Einfo
;
29 with Errout
; use Errout
;
30 with Exp_Dbug
; use Exp_Dbug
;
31 with Exp_Util
; use Exp_Util
;
32 with Layout
; use Layout
;
33 with Namet
; use Namet
;
34 with Nlists
; use Nlists
;
35 with Nmake
; use Nmake
;
37 with Rtsfind
; use Rtsfind
;
39 with Sem_Aux
; use Sem_Aux
;
40 with Sem_Ch3
; use Sem_Ch3
;
41 with Sem_Ch8
; use Sem_Ch8
;
42 with Sem_Ch13
; use Sem_Ch13
;
43 with Sem_Eval
; use Sem_Eval
;
44 with Sem_Res
; use Sem_Res
;
45 with Sem_Util
; use Sem_Util
;
46 with Sinfo
; use Sinfo
;
47 with Snames
; use Snames
;
48 with Stand
; use Stand
;
49 with Targparm
; use Targparm
;
50 with Tbuild
; use Tbuild
;
51 with Ttypes
; use Ttypes
;
52 with Uintp
; use Uintp
;
54 package body Exp_Pakd
is
56 ---------------------------
57 -- Endian Considerations --
58 ---------------------------
60 -- As described in the specification, bit numbering in a packed array
61 -- is consistent with bit numbering in a record representation clause,
62 -- and hence dependent on the endianness of the machine:
64 -- For little-endian machines, element zero is at the right hand end
65 -- (low order end) of a bit field.
67 -- For big-endian machines, element zero is at the left hand end
68 -- (high order end) of a bit field.
70 -- The shifts that are used to right justify a field therefore differ in
71 -- the two cases. For the little-endian case, we can simply use the bit
72 -- number (i.e. the element number * element size) as the count for a right
73 -- shift. For the big-endian case, we have to subtract the shift count from
74 -- an appropriate constant to use in the right shift. We use rotates
75 -- instead of shifts (which is necessary in the store case to preserve
76 -- other fields), and we expect that the backend will be able to change the
77 -- right rotate into a left rotate, avoiding the subtract, if the machine
78 -- architecture provides such an instruction.
80 ----------------------------------------------
81 -- Entity Tables for Packed Access Routines --
82 ----------------------------------------------
84 -- For the cases of component size = 3,5-7,9-15,17-31,33-63 we call library
85 -- routines. This table provides the entity for the proper routine.
87 type E_Array
is array (Int
range 01 .. 63) of RE_Id
;
89 -- Array of Bits_nn entities. Note that we do not use library routines
90 -- for the 8-bit and 16-bit cases, but we still fill in the table, using
91 -- entries from System.Unsigned, because we also use this table for
92 -- certain special unchecked conversions in the big-endian case.
94 Bits_Id
: constant E_Array
:=
110 16 => RE_Unsigned_16
,
126 32 => RE_Unsigned_32
,
159 -- Array of Get routine entities. These are used to obtain an element from
160 -- a packed array. The N'th entry is used to obtain elements from a packed
161 -- array whose component size is N. RE_Null is used as a null entry, for
162 -- the cases where a library routine is not used.
164 Get_Id
: constant E_Array
:=
229 -- Array of Get routine entities to be used in the case where the packed
230 -- array is itself a component of a packed structure, and therefore may not
231 -- be fully aligned. This only affects the even sizes, since for the odd
232 -- sizes, we do not get any fixed alignment in any case.
234 GetU_Id
: constant E_Array
:=
299 -- Array of Set routine entities. These are used to assign an element of a
300 -- packed array. The N'th entry is used to assign elements for a packed
301 -- array whose component size is N. RE_Null is used as a null entry, for
302 -- the cases where a library routine is not used.
304 Set_Id
: constant E_Array
:=
369 -- Array of Set routine entities to be used in the case where the packed
370 -- array is itself a component of a packed structure, and therefore may not
371 -- be fully aligned. This only affects the even sizes, since for the odd
372 -- sizes, we do not get any fixed alignment in any case.
374 SetU_Id
: constant E_Array
:=
439 -----------------------
440 -- Local Subprograms --
441 -----------------------
443 procedure Compute_Linear_Subscript
446 Subscr
: out Node_Id
);
447 -- Given a constrained array type Atyp, and an indexed component node N
448 -- referencing an array object of this type, build an expression of type
449 -- Standard.Integer representing the zero-based linear subscript value.
450 -- This expression includes any required range checks.
452 procedure Convert_To_PAT_Type
(Aexp
: Node_Id
);
453 -- Given an expression of a packed array type, builds a corresponding
454 -- expression whose type is the implementation type used to represent
455 -- the packed array. Aexp is analyzed and resolved on entry and on exit.
457 procedure Get_Base_And_Bit_Offset
460 Offset
: out Node_Id
);
461 -- Given a node N for a name which involves a packed array reference,
462 -- return the base object of the reference and build an expression of
463 -- type Standard.Integer representing the zero-based offset in bits
464 -- from Base'Address to the first bit of the reference.
466 function Known_Aligned_Enough
(Obj
: Node_Id
; Csiz
: Nat
) return Boolean;
467 -- There are two versions of the Set routines, the ones used when the
468 -- object is known to be sufficiently well aligned given the number of
469 -- bits, and the ones used when the object is not known to be aligned.
470 -- This routine is used to determine which set to use. Obj is a reference
471 -- to the object, and Csiz is the component size of the packed array.
472 -- True is returned if the alignment of object is known to be sufficient,
473 -- defined as 1 for odd bit sizes, 4 for bit sizes divisible by 4, and
476 function Make_Shift_Left
(N
: Node_Id
; S
: Node_Id
) return Node_Id
;
477 -- Build a left shift node, checking for the case of a shift count of zero
479 function Make_Shift_Right
(N
: Node_Id
; S
: Node_Id
) return Node_Id
;
480 -- Build a right shift node, checking for the case of a shift count of zero
482 function RJ_Unchecked_Convert_To
484 Expr
: Node_Id
) return Node_Id
;
485 -- The packed array code does unchecked conversions which in some cases
486 -- may involve non-discrete types with differing sizes. The semantics of
487 -- such conversions is potentially endianness dependent, and the effect
488 -- we want here for such a conversion is to do the conversion in size as
489 -- though numeric items are involved, and we extend or truncate on the
490 -- left side. This happens naturally in the little-endian case, but in
491 -- the big endian case we can get left justification, when what we want
492 -- is right justification. This routine does the unchecked conversion in
493 -- a stepwise manner to ensure that it gives the expected result. Hence
494 -- the name (RJ = Right justified). The parameters Typ and Expr are as
495 -- for the case of a normal Unchecked_Convert_To call.
497 procedure Setup_Enumeration_Packed_Array_Reference
(N
: Node_Id
);
498 -- This routine is called in the Get and Set case for arrays that are
499 -- packed but not bit-packed, meaning that they have at least one
500 -- subscript that is of an enumeration type with a non-standard
501 -- representation. This routine modifies the given node to properly
502 -- reference the corresponding packed array type.
504 procedure Setup_Inline_Packed_Array_Reference
507 Obj
: in out Node_Id
;
509 Shift
: out Node_Id
);
510 -- This procedure performs common processing on the N_Indexed_Component
511 -- parameter given as N, whose prefix is a reference to a packed array.
512 -- This is used for the get and set when the component size is 1, 2, 4,
513 -- or for other component sizes when the packed array type is a modular
514 -- type (i.e. the cases that are handled with inline code).
518 -- N is the N_Indexed_Component node for the packed array reference
520 -- Atyp is the constrained array type (the actual subtype has been
521 -- computed if necessary to obtain the constraints, but this is still
522 -- the original array type, not the Packed_Array_Type value).
524 -- Obj is the object which is to be indexed. It is always of type Atyp.
528 -- Obj is the object containing the desired bit field. It is of type
529 -- Unsigned, Long_Unsigned, or Long_Long_Unsigned, and is either the
530 -- entire value, for the small static case, or the proper selected byte
531 -- from the array in the large or dynamic case. This node is analyzed
532 -- and resolved on return.
534 -- Shift is a node representing the shift count to be used in the
535 -- rotate right instruction that positions the field for access.
536 -- This node is analyzed and resolved on return.
538 -- Cmask is a mask corresponding to the width of the component field.
539 -- Its value is 2 ** Csize - 1 (e.g. 2#1111# for component size of 4).
541 -- Note: in some cases the call to this routine may generate actions
542 -- (for handling multi-use references and the generation of the packed
543 -- array type on the fly). Such actions are inserted into the tree
544 -- directly using Insert_Action.
546 function Revert_Storage_Order
(N
: Node_Id
) return Node_Id
;
547 -- Perform appropriate justification and byte ordering adjustments for N,
548 -- an element of a packed array type, when both the component type and
549 -- the enclosing packed array type have reverse scalar storage order.
550 -- On little-endian targets, the value is left justified before byte
551 -- swapping. The Etype of the returned expression is an integer type of
552 -- an appropriate power-of-2 size.
554 --------------------------
555 -- Revert_Storage_Order --
556 --------------------------
558 function Revert_Storage_Order
(N
: Node_Id
) return Node_Id
is
559 Loc
: constant Source_Ptr
:= Sloc
(N
);
560 T
: constant Entity_Id
:= Etype
(N
);
561 T_Size
: constant Uint
:= RM_Size
(T
);
575 -- Array component size is less than a byte: no swapping needed
578 Swap_T
:= RTE
(RE_Unsigned_8
);
581 -- Select byte swapping function depending on array component size
584 Swap_RE
:= RE_Bswap_16
;
586 elsif T_Size
<= 32 then
587 Swap_RE
:= RE_Bswap_32
;
589 else pragma Assert
(T_Size
<= 64);
590 Swap_RE
:= RE_Bswap_64
;
593 Swap_F
:= RTE
(Swap_RE
);
594 Swap_T
:= Etype
(Swap_F
);
598 Shift
:= Esize
(Swap_T
) - T_Size
;
600 Arg
:= RJ_Unchecked_Convert_To
(Swap_T
, N
);
602 if not Bytes_Big_Endian
and then Shift
> Uint_0
then
604 Make_Op_Shift_Left
(Loc
,
606 Right_Opnd
=> Make_Integer_Literal
(Loc
, Shift
));
609 if Present
(Swap_F
) then
611 Make_Function_Call
(Loc
,
612 Name
=> New_Occurrence_Of
(Swap_F
, Loc
),
613 Parameter_Associations
=> New_List
(Arg
));
618 Set_Etype
(Adjusted
, Swap_T
);
620 end Revert_Storage_Order
;
622 ------------------------------
623 -- Compute_Linear_Subscript --
624 ------------------------------
626 procedure Compute_Linear_Subscript
629 Subscr
: out Node_Id
)
631 Loc
: constant Source_Ptr
:= Sloc
(N
);
640 -- Loop through dimensions
642 Indx
:= First_Index
(Atyp
);
643 Oldsub
:= First
(Expressions
(N
));
645 while Present
(Indx
) loop
646 Styp
:= Etype
(Indx
);
647 Newsub
:= Relocate_Node
(Oldsub
);
649 -- Get expression for the subscript value. First, if Do_Range_Check
650 -- is set on a subscript, then we must do a range check against the
651 -- original bounds (not the bounds of the packed array type). We do
652 -- this by introducing a subtype conversion.
654 if Do_Range_Check
(Newsub
)
655 and then Etype
(Newsub
) /= Styp
657 Newsub
:= Convert_To
(Styp
, Newsub
);
660 -- Now evolve the expression for the subscript. First convert
661 -- the subscript to be zero based and of an integer type.
663 -- Case of integer type, where we just subtract to get lower bound
665 if Is_Integer_Type
(Styp
) then
667 -- If length of integer type is smaller than standard integer,
668 -- then we convert to integer first, then do the subtract
670 -- Integer (subscript) - Integer (Styp'First)
672 if Esize
(Styp
) < Esize
(Standard_Integer
) then
674 Make_Op_Subtract
(Loc
,
675 Left_Opnd
=> Convert_To
(Standard_Integer
, Newsub
),
677 Convert_To
(Standard_Integer
,
678 Make_Attribute_Reference
(Loc
,
679 Prefix
=> New_Occurrence_Of
(Styp
, Loc
),
680 Attribute_Name
=> Name_First
)));
682 -- For larger integer types, subtract first, then convert to
683 -- integer, this deals with strange long long integer bounds.
685 -- Integer (subscript - Styp'First)
689 Convert_To
(Standard_Integer
,
690 Make_Op_Subtract
(Loc
,
693 Make_Attribute_Reference
(Loc
,
694 Prefix
=> New_Occurrence_Of
(Styp
, Loc
),
695 Attribute_Name
=> Name_First
)));
698 -- For the enumeration case, we have to use 'Pos to get the value
699 -- to work with before subtracting the lower bound.
701 -- Integer (Styp'Pos (subscr)) - Integer (Styp'Pos (Styp'First));
703 -- This is not quite right for bizarre cases where the size of the
704 -- enumeration type is > Integer'Size bits due to rep clause ???
707 pragma Assert
(Is_Enumeration_Type
(Styp
));
710 Make_Op_Subtract
(Loc
,
711 Left_Opnd
=> Convert_To
(Standard_Integer
,
712 Make_Attribute_Reference
(Loc
,
713 Prefix
=> New_Occurrence_Of
(Styp
, Loc
),
714 Attribute_Name
=> Name_Pos
,
715 Expressions
=> New_List
(Newsub
))),
718 Convert_To
(Standard_Integer
,
719 Make_Attribute_Reference
(Loc
,
720 Prefix
=> New_Occurrence_Of
(Styp
, Loc
),
721 Attribute_Name
=> Name_Pos
,
722 Expressions
=> New_List
(
723 Make_Attribute_Reference
(Loc
,
724 Prefix
=> New_Occurrence_Of
(Styp
, Loc
),
725 Attribute_Name
=> Name_First
)))));
728 Set_Paren_Count
(Newsub
, 1);
730 -- For the first subscript, we just copy that subscript value
735 -- Otherwise, we must multiply what we already have by the current
736 -- stride and then add in the new value to the evolving subscript.
742 Make_Op_Multiply
(Loc
,
745 Make_Attribute_Reference
(Loc
,
746 Attribute_Name
=> Name_Range_Length
,
747 Prefix
=> New_Occurrence_Of
(Styp
, Loc
))),
748 Right_Opnd
=> Newsub
);
751 -- Move to next subscript
756 end Compute_Linear_Subscript
;
758 -------------------------
759 -- Convert_To_PAT_Type --
760 -------------------------
762 -- The PAT is always obtained from the actual subtype
764 procedure Convert_To_PAT_Type
(Aexp
: Node_Id
) is
768 Convert_To_Actual_Subtype
(Aexp
);
769 Act_ST
:= Underlying_Type
(Etype
(Aexp
));
770 Create_Packed_Array_Type
(Act_ST
);
772 -- Just replace the etype with the packed array type. This works because
773 -- the expression will not be further analyzed, and Gigi considers the
774 -- two types equivalent in any case.
776 -- This is not strictly the case ??? If the reference is an actual in
777 -- call, the expansion of the prefix is delayed, and must be reanalyzed,
778 -- see Reset_Packed_Prefix. On the other hand, if the prefix is a simple
779 -- array reference, reanalysis can produce spurious type errors when the
780 -- PAT type is replaced again with the original type of the array. Same
781 -- for the case of a dereference. Ditto for function calls: expansion
782 -- may introduce additional actuals which will trigger errors if call is
783 -- reanalyzed. The following is correct and minimal, but the handling of
784 -- more complex packed expressions in actuals is confused. Probably the
785 -- problem only remains for actuals in calls.
787 Set_Etype
(Aexp
, Packed_Array_Type
(Act_ST
));
789 if Is_Entity_Name
(Aexp
)
791 (Nkind
(Aexp
) = N_Indexed_Component
792 and then Is_Entity_Name
(Prefix
(Aexp
)))
793 or else Nkind_In
(Aexp
, N_Explicit_Dereference
, N_Function_Call
)
797 end Convert_To_PAT_Type
;
799 ------------------------------
800 -- Create_Packed_Array_Type --
801 ------------------------------
803 procedure Create_Packed_Array_Type
(Typ
: Entity_Id
) is
804 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
805 Ctyp
: constant Entity_Id
:= Component_Type
(Typ
);
806 Csize
: constant Uint
:= Component_Size
(Typ
);
821 procedure Install_PAT
;
822 -- This procedure is called with Decl set to the declaration for the
823 -- packed array type. It creates the type and installs it as required.
825 procedure Set_PB_Type
;
826 -- Sets PB_Type to Packed_Bytes{1,2,4} as required by the alignment
827 -- requirements (see documentation in the spec of this package).
833 procedure Install_PAT
is
834 Pushed_Scope
: Boolean := False;
837 -- We do not want to put the declaration we have created in the tree
838 -- since it is often hard, and sometimes impossible to find a proper
839 -- place for it (the impossible case arises for a packed array type
840 -- with bounds depending on the discriminant, a declaration cannot
841 -- be put inside the record, and the reference to the discriminant
842 -- cannot be outside the record).
844 -- The solution is to analyze the declaration while temporarily
845 -- attached to the tree at an appropriate point, and then we install
846 -- the resulting type as an Itype in the packed array type field of
847 -- the original type, so that no explicit declaration is required.
849 -- Note: the packed type is created in the scope of its parent
850 -- type. There are at least some cases where the current scope
851 -- is deeper, and so when this is the case, we temporarily reset
852 -- the scope for the definition. This is clearly safe, since the
853 -- first use of the packed array type will be the implicit
854 -- reference from the corresponding unpacked type when it is
857 if Is_Itype
(Typ
) then
858 Set_Parent
(Decl
, Associated_Node_For_Itype
(Typ
));
860 Set_Parent
(Decl
, Declaration_Node
(Typ
));
863 if Scope
(Typ
) /= Current_Scope
then
864 Push_Scope
(Scope
(Typ
));
865 Pushed_Scope
:= True;
868 Set_Is_Itype
(PAT
, True);
869 Set_Packed_Array_Type
(Typ
, PAT
);
870 Analyze
(Decl
, Suppress
=> All_Checks
);
876 -- Set Esize and RM_Size to the actual size of the packed object
877 -- Do not reset RM_Size if already set, as happens in the case of
880 if Unknown_Esize
(PAT
) then
881 Set_Esize
(PAT
, PASize
);
884 if Unknown_RM_Size
(PAT
) then
885 Set_RM_Size
(PAT
, PASize
);
888 Adjust_Esize_Alignment
(PAT
);
890 -- Set remaining fields of packed array type
892 Init_Alignment
(PAT
);
893 Set_Parent
(PAT
, Empty
);
894 Set_Associated_Node_For_Itype
(PAT
, Typ
);
895 Set_Is_Packed_Array_Type
(PAT
, True);
896 Set_Original_Array_Type
(PAT
, Typ
);
898 -- We definitely do not want to delay freezing for packed array
899 -- types. This is of particular importance for the itypes that
900 -- are generated for record components depending on discriminants
901 -- where there is no place to put the freeze node.
903 Set_Has_Delayed_Freeze
(PAT
, False);
904 Set_Has_Delayed_Freeze
(Etype
(PAT
), False);
906 -- If we did allocate a freeze node, then clear out the reference
907 -- since it is obsolete (should we delete the freeze node???)
909 Set_Freeze_Node
(PAT
, Empty
);
910 Set_Freeze_Node
(Etype
(PAT
), Empty
);
917 procedure Set_PB_Type
is
919 -- If the user has specified an explicit alignment for the
920 -- type or component, take it into account.
922 if Csize
<= 2 or else Csize
= 4 or else Csize
mod 2 /= 0
923 or else Alignment
(Typ
) = 1
924 or else Component_Alignment
(Typ
) = Calign_Storage_Unit
926 PB_Type
:= RTE
(RE_Packed_Bytes1
);
928 elsif Csize
mod 4 /= 0
929 or else Alignment
(Typ
) = 2
931 PB_Type
:= RTE
(RE_Packed_Bytes2
);
934 PB_Type
:= RTE
(RE_Packed_Bytes4
);
938 -- Start of processing for Create_Packed_Array_Type
941 -- If we already have a packed array type, nothing to do
943 if Present
(Packed_Array_Type
(Typ
)) then
947 -- If our immediate ancestor subtype is constrained, and it already
948 -- has a packed array type, then just share the same type, since the
949 -- bounds must be the same. If the ancestor is not an array type but
950 -- a private type, as can happen with multiple instantiations, create
951 -- a new packed type, to avoid privacy issues.
953 if Ekind
(Typ
) = E_Array_Subtype
then
954 Ancest
:= Ancestor_Subtype
(Typ
);
957 and then Is_Array_Type
(Ancest
)
958 and then Is_Constrained
(Ancest
)
959 and then Present
(Packed_Array_Type
(Ancest
))
961 Set_Packed_Array_Type
(Typ
, Packed_Array_Type
(Ancest
));
966 -- We preset the result type size from the size of the original array
967 -- type, since this size clearly belongs to the packed array type. The
968 -- size of the conceptual unpacked type is always set to unknown.
970 PASize
:= RM_Size
(Typ
);
972 -- Case of an array where at least one index is of an enumeration
973 -- type with a non-standard representation, but the component size
974 -- is not appropriate for bit packing. This is the case where we
975 -- have Is_Packed set (we would never be in this unit otherwise),
976 -- but Is_Bit_Packed_Array is false.
978 -- Note that if the component size is appropriate for bit packing,
979 -- then the circuit for the computation of the subscript properly
980 -- deals with the non-standard enumeration type case by taking the
983 if not Is_Bit_Packed_Array
(Typ
) then
985 -- Here we build a declaration:
987 -- type tttP is array (index1, index2, ...) of component_type
989 -- where index1, index2, are the index types. These are the same
990 -- as the index types of the original array, except for the non-
991 -- standard representation enumeration type case, where we have
994 -- For the unconstrained array case, we use
998 -- For the constrained case, we use
1000 -- Natural range Enum_Type'Pos (Enum_Type'First) ..
1001 -- Enum_Type'Pos (Enum_Type'Last);
1004 Make_Defining_Identifier
(Loc
,
1005 Chars
=> New_External_Name
(Chars
(Typ
), 'P'));
1007 Set_Packed_Array_Type
(Typ
, PAT
);
1010 Indexes
: constant List_Id
:= New_List
;
1012 Indx_Typ
: Entity_Id
;
1013 Enum_Case
: Boolean;
1017 Indx
:= First_Index
(Typ
);
1019 while Present
(Indx
) loop
1020 Indx_Typ
:= Etype
(Indx
);
1022 Enum_Case
:= Is_Enumeration_Type
(Indx_Typ
)
1023 and then Has_Non_Standard_Rep
(Indx_Typ
);
1025 -- Unconstrained case
1027 if not Is_Constrained
(Typ
) then
1029 Indx_Typ
:= Standard_Natural
;
1032 Append_To
(Indexes
, New_Occurrence_Of
(Indx_Typ
, Loc
));
1037 if not Enum_Case
then
1038 Append_To
(Indexes
, New_Occurrence_Of
(Indx_Typ
, Loc
));
1042 Make_Subtype_Indication
(Loc
,
1044 New_Occurrence_Of
(Standard_Natural
, Loc
),
1046 Make_Range_Constraint
(Loc
,
1050 Make_Attribute_Reference
(Loc
,
1052 New_Occurrence_Of
(Indx_Typ
, Loc
),
1053 Attribute_Name
=> Name_Pos
,
1054 Expressions
=> New_List
(
1055 Make_Attribute_Reference
(Loc
,
1057 New_Occurrence_Of
(Indx_Typ
, Loc
),
1058 Attribute_Name
=> Name_First
))),
1061 Make_Attribute_Reference
(Loc
,
1063 New_Occurrence_Of
(Indx_Typ
, Loc
),
1064 Attribute_Name
=> Name_Pos
,
1065 Expressions
=> New_List
(
1066 Make_Attribute_Reference
(Loc
,
1068 New_Occurrence_Of
(Indx_Typ
, Loc
),
1069 Attribute_Name
=> Name_Last
)))))));
1077 if not Is_Constrained
(Typ
) then
1079 Make_Unconstrained_Array_Definition
(Loc
,
1080 Subtype_Marks
=> Indexes
,
1081 Component_Definition
=>
1082 Make_Component_Definition
(Loc
,
1083 Aliased_Present
=> False,
1084 Subtype_Indication
=>
1085 New_Occurrence_Of
(Ctyp
, Loc
)));
1089 Make_Constrained_Array_Definition
(Loc
,
1090 Discrete_Subtype_Definitions
=> Indexes
,
1091 Component_Definition
=>
1092 Make_Component_Definition
(Loc
,
1093 Aliased_Present
=> False,
1094 Subtype_Indication
=>
1095 New_Occurrence_Of
(Ctyp
, Loc
)));
1099 Make_Full_Type_Declaration
(Loc
,
1100 Defining_Identifier
=> PAT
,
1101 Type_Definition
=> Typedef
);
1104 -- Set type as packed array type and install it
1106 Set_Is_Packed_Array_Type
(PAT
);
1110 -- Case of bit-packing required for unconstrained array. We create
1111 -- a subtype that is equivalent to use Packed_Bytes{1,2,4} as needed.
1113 elsif not Is_Constrained
(Typ
) then
1115 Make_Defining_Identifier
(Loc
,
1116 Chars
=> Make_Packed_Array_Type_Name
(Typ
, Csize
));
1118 Set_Packed_Array_Type
(Typ
, PAT
);
1122 Make_Subtype_Declaration
(Loc
,
1123 Defining_Identifier
=> PAT
,
1124 Subtype_Indication
=> New_Occurrence_Of
(PB_Type
, Loc
));
1128 -- Remaining code is for the case of bit-packing for constrained array
1130 -- The name of the packed array subtype is
1134 -- where sss is the component size in bits and ttt is the name of
1135 -- the parent packed type.
1139 Make_Defining_Identifier
(Loc
,
1140 Chars
=> Make_Packed_Array_Type_Name
(Typ
, Csize
));
1142 Set_Packed_Array_Type
(Typ
, PAT
);
1144 -- Build an expression for the length of the array in bits.
1145 -- This is the product of the length of each of the dimensions
1151 Len_Expr
:= Empty
; -- suppress junk warning
1155 Make_Attribute_Reference
(Loc
,
1156 Attribute_Name
=> Name_Length
,
1157 Prefix
=> New_Occurrence_Of
(Typ
, Loc
),
1158 Expressions
=> New_List
(
1159 Make_Integer_Literal
(Loc
, J
)));
1162 Len_Expr
:= Len_Dim
;
1166 Make_Op_Multiply
(Loc
,
1167 Left_Opnd
=> Len_Expr
,
1168 Right_Opnd
=> Len_Dim
);
1172 exit when J
> Number_Dimensions
(Typ
);
1176 -- Temporarily attach the length expression to the tree and analyze
1177 -- and resolve it, so that we can test its value. We assume that the
1178 -- total length fits in type Integer. This expression may involve
1179 -- discriminants, so we treat it as a default/per-object expression.
1181 Set_Parent
(Len_Expr
, Typ
);
1182 Preanalyze_Spec_Expression
(Len_Expr
, Standard_Long_Long_Integer
);
1184 -- Use a modular type if possible. We can do this if we have
1185 -- static bounds, and the length is small enough, and the length
1186 -- is not zero. We exclude the zero length case because the size
1187 -- of things is always at least one, and the zero length object
1188 -- would have an anomalous size.
1190 if Compile_Time_Known_Value
(Len_Expr
) then
1191 Len_Bits
:= Expr_Value
(Len_Expr
) * Csize
;
1193 -- Check for size known to be too large
1196 Uint_2
** (Standard_Integer_Size
- 1) * System_Storage_Unit
1198 if System_Storage_Unit
= 8 then
1200 ("packed array size cannot exceed " &
1201 "Integer''Last bytes", Typ
);
1204 ("packed array size cannot exceed " &
1205 "Integer''Last storage units", Typ
);
1208 -- Reset length to arbitrary not too high value to continue
1210 Len_Expr
:= Make_Integer_Literal
(Loc
, 65535);
1211 Analyze_And_Resolve
(Len_Expr
, Standard_Long_Long_Integer
);
1214 -- We normally consider small enough to mean no larger than the
1215 -- value of System_Max_Binary_Modulus_Power, checking that in the
1216 -- case of values longer than word size, we have long shifts.
1220 (Len_Bits
<= System_Word_Size
1221 or else (Len_Bits
<= System_Max_Binary_Modulus_Power
1222 and then Support_Long_Shifts_On_Target
))
1224 -- We can use the modular type, it has the form:
1226 -- subtype tttPn is btyp
1227 -- range 0 .. 2 ** ((Typ'Length (1)
1228 -- * ... * Typ'Length (n)) * Csize) - 1;
1230 -- The bounds are statically known, and btyp is one of the
1231 -- unsigned types, depending on the length.
1233 if Len_Bits
<= Standard_Short_Short_Integer_Size
then
1234 Btyp
:= RTE
(RE_Short_Short_Unsigned
);
1236 elsif Len_Bits
<= Standard_Short_Integer_Size
then
1237 Btyp
:= RTE
(RE_Short_Unsigned
);
1239 elsif Len_Bits
<= Standard_Integer_Size
then
1240 Btyp
:= RTE
(RE_Unsigned
);
1242 elsif Len_Bits
<= Standard_Long_Integer_Size
then
1243 Btyp
:= RTE
(RE_Long_Unsigned
);
1246 Btyp
:= RTE
(RE_Long_Long_Unsigned
);
1249 Lit
:= Make_Integer_Literal
(Loc
, 2 ** Len_Bits
- 1);
1250 Set_Print_In_Hex
(Lit
);
1253 Make_Subtype_Declaration
(Loc
,
1254 Defining_Identifier
=> PAT
,
1255 Subtype_Indication
=>
1256 Make_Subtype_Indication
(Loc
,
1257 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
1260 Make_Range_Constraint
(Loc
,
1264 Make_Integer_Literal
(Loc
, 0),
1265 High_Bound
=> Lit
))));
1267 if PASize
= Uint_0
then
1273 -- Propagate a given alignment to the modular type. This can
1274 -- cause it to be under-aligned, but that's OK.
1276 if Present
(Alignment_Clause
(Typ
)) then
1277 Set_Alignment
(PAT
, Alignment
(Typ
));
1284 -- Could not use a modular type, for all other cases, we build
1285 -- a packed array subtype:
1288 -- System.Packed_Bytes{1,2,4} (0 .. (Bits + 7) / 8 - 1);
1290 -- Bits is the length of the array in bits
1297 Make_Op_Multiply
(Loc
,
1299 Make_Integer_Literal
(Loc
, Csize
),
1300 Right_Opnd
=> Len_Expr
),
1303 Make_Integer_Literal
(Loc
, 7));
1305 Set_Paren_Count
(Bits_U1
, 1);
1308 Make_Op_Subtract
(Loc
,
1310 Make_Op_Divide
(Loc
,
1311 Left_Opnd
=> Bits_U1
,
1312 Right_Opnd
=> Make_Integer_Literal
(Loc
, 8)),
1313 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1));
1316 Make_Subtype_Declaration
(Loc
,
1317 Defining_Identifier
=> PAT
,
1318 Subtype_Indication
=>
1319 Make_Subtype_Indication
(Loc
,
1320 Subtype_Mark
=> New_Occurrence_Of
(PB_Type
, Loc
),
1322 Make_Index_Or_Discriminant_Constraint
(Loc
,
1323 Constraints
=> New_List
(
1326 Make_Integer_Literal
(Loc
, 0),
1328 Convert_To
(Standard_Integer
, PAT_High
))))));
1332 -- Currently the code in this unit requires that packed arrays
1333 -- represented by non-modular arrays of bytes be on a byte
1334 -- boundary for bit sizes handled by System.Pack_nn units.
1335 -- That's because these units assume the array being accessed
1336 -- starts on a byte boundary.
1338 if Get_Id
(UI_To_Int
(Csize
)) /= RE_Null
then
1339 Set_Must_Be_On_Byte_Boundary
(Typ
);
1342 end Create_Packed_Array_Type
;
1344 -----------------------------------
1345 -- Expand_Bit_Packed_Element_Set --
1346 -----------------------------------
1348 procedure Expand_Bit_Packed_Element_Set
(N
: Node_Id
) is
1349 Loc
: constant Source_Ptr
:= Sloc
(N
);
1350 Lhs
: constant Node_Id
:= Name
(N
);
1352 Ass_OK
: constant Boolean := Assignment_OK
(Lhs
);
1353 -- Used to preserve assignment OK status when assignment is rewritten
1355 Rhs
: Node_Id
:= Expression
(N
);
1356 -- Initially Rhs is the right hand side value, it will be replaced
1357 -- later by an appropriate unchecked conversion for the assignment.
1367 -- The expression for the shift value that is required
1369 Shift_Used
: Boolean := False;
1370 -- Set True if Shift has been used in the generated code at least once,
1371 -- so that it must be duplicated if used again.
1376 Rhs_Val_Known
: Boolean;
1378 -- If the value of the right hand side as an integer constant is
1379 -- known at compile time, Rhs_Val_Known is set True, and Rhs_Val
1380 -- contains the value. Otherwise Rhs_Val_Known is set False, and
1381 -- the Rhs_Val is undefined.
1383 function Get_Shift
return Node_Id
;
1384 -- Function used to get the value of Shift, making sure that it
1385 -- gets duplicated if the function is called more than once.
1391 function Get_Shift
return Node_Id
is
1393 -- If we used the shift value already, then duplicate it. We
1394 -- set a temporary parent in case actions have to be inserted.
1397 Set_Parent
(Shift
, N
);
1398 return Duplicate_Subexpr_No_Checks
(Shift
);
1400 -- If first time, use Shift unchanged, and set flag for first use
1408 -- Start of processing for Expand_Bit_Packed_Element_Set
1411 pragma Assert
(Is_Bit_Packed_Array
(Etype
(Prefix
(Lhs
))));
1413 Obj
:= Relocate_Node
(Prefix
(Lhs
));
1414 Convert_To_Actual_Subtype
(Obj
);
1415 Atyp
:= Etype
(Obj
);
1416 PAT
:= Packed_Array_Type
(Atyp
);
1417 Ctyp
:= Component_Type
(Atyp
);
1418 Csiz
:= UI_To_Int
(Component_Size
(Atyp
));
1420 -- We remove side effects, in case the rhs modifies the lhs, because we
1421 -- are about to transform the rhs into an expression that first READS
1422 -- the lhs, so we can do the necessary shifting and masking. Example:
1423 -- "X(2) := F(...);" where F modifies X(3). Otherwise, the side effect
1426 Remove_Side_Effects
(Rhs
);
1428 -- We convert the right hand side to the proper subtype to ensure
1429 -- that an appropriate range check is made (since the normal range
1430 -- check from assignment will be lost in the transformations). This
1431 -- conversion is analyzed immediately so that subsequent processing
1432 -- can work with an analyzed Rhs (and e.g. look at its Etype)
1434 -- If the right-hand side is a string literal, create a temporary for
1435 -- it, constant-folding is not ready to wrap the bit representation
1436 -- of a string literal.
1438 if Nkind
(Rhs
) = N_String_Literal
then
1443 Make_Object_Declaration
(Loc
,
1444 Defining_Identifier
=> Make_Temporary
(Loc
, 'T', Rhs
),
1445 Object_Definition
=> New_Occurrence_Of
(Ctyp
, Loc
),
1446 Expression
=> New_Copy_Tree
(Rhs
));
1448 Insert_Actions
(N
, New_List
(Decl
));
1449 Rhs
:= New_Occurrence_Of
(Defining_Identifier
(Decl
), Loc
);
1453 Rhs
:= Convert_To
(Ctyp
, Rhs
);
1454 Set_Parent
(Rhs
, N
);
1456 -- If we are building the initialization procedure for a packed array,
1457 -- and Initialize_Scalars is enabled, each component assignment is an
1458 -- out-of-range value by design. Compile this value without checks,
1459 -- because a call to the array init_proc must not raise an exception.
1462 and then Initialize_Scalars
1464 Analyze_And_Resolve
(Rhs
, Ctyp
, Suppress
=> All_Checks
);
1466 Analyze_And_Resolve
(Rhs
, Ctyp
);
1469 -- For the AAMP target, indexing of certain packed array is passed
1470 -- through to the back end without expansion, because the expansion
1471 -- results in very inefficient code on that target. This allows the
1472 -- GNAAMP back end to generate specialized macros that support more
1473 -- efficient indexing of packed arrays with components having sizes
1474 -- that are small powers of two.
1477 and then (Csiz
= 1 or else Csiz
= 2 or else Csiz
= 4)
1482 -- Case of component size 1,2,4 or any component size for the modular
1483 -- case. These are the cases for which we can inline the code.
1485 if Csiz
= 1 or else Csiz
= 2 or else Csiz
= 4
1486 or else (Present
(PAT
) and then Is_Modular_Integer_Type
(PAT
))
1488 Setup_Inline_Packed_Array_Reference
(Lhs
, Atyp
, Obj
, Cmask
, Shift
);
1490 -- The statement to be generated is:
1492 -- Obj := atyp!((Obj and Mask1) or (shift_left (rhs, Shift)))
1494 -- or in the case of a freestanding Reverse_Storage_Order object,
1496 -- Obj := Swap (atyp!((Swap (Obj) and Mask1)
1497 -- or (shift_left (rhs, Shift))))
1499 -- where Mask1 is obtained by shifting Cmask left Shift bits
1500 -- and then complementing the result.
1502 -- the "and Mask1" is omitted if rhs is constant and all 1 bits
1504 -- the "or ..." is omitted if rhs is constant and all 0 bits
1506 -- rhs is converted to the appropriate type
1508 -- The result is converted back to the array type, since
1509 -- otherwise we lose knowledge of the packed nature.
1511 -- Determine if right side is all 0 bits or all 1 bits
1513 if Compile_Time_Known_Value
(Rhs
) then
1514 Rhs_Val
:= Expr_Rep_Value
(Rhs
);
1515 Rhs_Val_Known
:= True;
1517 -- The following test catches the case of an unchecked conversion of
1518 -- an integer literal. This results from optimizing aggregates of
1521 elsif Nkind
(Rhs
) = N_Unchecked_Type_Conversion
1522 and then Compile_Time_Known_Value
(Expression
(Rhs
))
1524 Rhs_Val
:= Expr_Rep_Value
(Expression
(Rhs
));
1525 Rhs_Val_Known
:= True;
1529 Rhs_Val_Known
:= False;
1532 -- Some special checks for the case where the right hand value is
1533 -- known at compile time. Basically we have to take care of the
1534 -- implicit conversion to the subtype of the component object.
1536 if Rhs_Val_Known
then
1538 -- If we have a biased component type then we must manually do the
1539 -- biasing, since we are taking responsibility in this case for
1540 -- constructing the exact bit pattern to be used.
1542 if Has_Biased_Representation
(Ctyp
) then
1543 Rhs_Val
:= Rhs_Val
- Expr_Rep_Value
(Type_Low_Bound
(Ctyp
));
1546 -- For a negative value, we manually convert the two's complement
1547 -- value to a corresponding unsigned value, so that the proper
1548 -- field width is maintained. If we did not do this, we would
1549 -- get too many leading sign bits later on.
1552 Rhs_Val
:= 2 ** UI_From_Int
(Csiz
) + Rhs_Val
;
1556 -- Now create copies removing side effects. Note that in some complex
1557 -- cases, this may cause the fact that we have already set a packed
1558 -- array type on Obj to get lost. So we save the type of Obj, and
1559 -- make sure it is reset properly.
1561 New_Lhs
:= Duplicate_Subexpr
(Obj
, Name_Req
=> True);
1562 New_Rhs
:= Duplicate_Subexpr_No_Checks
(Obj
);
1564 -- First we deal with the "and"
1566 if not Rhs_Val_Known
or else Rhs_Val
/= Cmask
then
1572 if Compile_Time_Known_Value
(Shift
) then
1574 Make_Integer_Literal
(Loc
,
1575 Modulus
(Etype
(Obj
)) - 1 -
1576 (Cmask
* (2 ** Expr_Value
(Get_Shift
))));
1577 Set_Print_In_Hex
(Mask1
);
1580 Lit
:= Make_Integer_Literal
(Loc
, Cmask
);
1581 Set_Print_In_Hex
(Lit
);
1584 Right_Opnd
=> Make_Shift_Left
(Lit
, Get_Shift
));
1589 Left_Opnd
=> New_Rhs
,
1590 Right_Opnd
=> Mask1
);
1594 -- Then deal with the "or"
1596 if not Rhs_Val_Known
or else Rhs_Val
/= 0 then
1600 procedure Fixup_Rhs
;
1601 -- Adjust Rhs by bias if biased representation for components
1602 -- or remove extraneous high order sign bits if signed.
1604 procedure Fixup_Rhs
is
1605 Etyp
: constant Entity_Id
:= Etype
(Rhs
);
1608 -- For biased case, do the required biasing by simply
1609 -- converting to the biased subtype (the conversion
1610 -- will generate the required bias).
1612 if Has_Biased_Representation
(Ctyp
) then
1613 Rhs
:= Convert_To
(Ctyp
, Rhs
);
1615 -- For a signed integer type that is not biased, generate
1616 -- a conversion to unsigned to strip high order sign bits.
1618 elsif Is_Signed_Integer_Type
(Ctyp
) then
1619 Rhs
:= Unchecked_Convert_To
(RTE
(Bits_Id
(Csiz
)), Rhs
);
1622 -- Set Etype, since it can be referenced before the node is
1623 -- completely analyzed.
1625 Set_Etype
(Rhs
, Etyp
);
1627 -- We now need to do an unchecked conversion of the
1628 -- result to the target type, but it is important that
1629 -- this conversion be a right justified conversion and
1630 -- not a left justified conversion.
1632 Rhs
:= RJ_Unchecked_Convert_To
(Etype
(Obj
), Rhs
);
1637 and then Compile_Time_Known_Value
(Get_Shift
)
1640 Make_Integer_Literal
(Loc
,
1641 Rhs_Val
* (2 ** Expr_Value
(Get_Shift
)));
1642 Set_Print_In_Hex
(Or_Rhs
);
1645 -- We have to convert the right hand side to Etype (Obj).
1646 -- A special case arises if what we have now is a Val
1647 -- attribute reference whose expression type is Etype (Obj).
1648 -- This happens for assignments of fields from the same
1649 -- array. In this case we get the required right hand side
1650 -- by simply removing the inner attribute reference.
1652 if Nkind
(Rhs
) = N_Attribute_Reference
1653 and then Attribute_Name
(Rhs
) = Name_Val
1654 and then Etype
(First
(Expressions
(Rhs
))) = Etype
(Obj
)
1656 Rhs
:= Relocate_Node
(First
(Expressions
(Rhs
)));
1659 -- If the value of the right hand side is a known integer
1660 -- value, then just replace it by an untyped constant,
1661 -- which will be properly retyped when we analyze and
1662 -- resolve the expression.
1664 elsif Rhs_Val_Known
then
1666 -- Note that Rhs_Val has already been normalized to
1667 -- be an unsigned value with the proper number of bits.
1669 Rhs
:= Make_Integer_Literal
(Loc
, Rhs_Val
);
1671 -- Otherwise we need an unchecked conversion
1677 Or_Rhs
:= Make_Shift_Left
(Rhs
, Get_Shift
);
1680 if Nkind
(New_Rhs
) = N_Op_And
then
1681 Set_Paren_Count
(New_Rhs
, 1);
1682 Set_Etype
(New_Rhs
, Etype
(Left_Opnd
(New_Rhs
)));
1687 Left_Opnd
=> New_Rhs
,
1688 Right_Opnd
=> Or_Rhs
);
1692 -- Now do the rewrite
1695 Make_Assignment_Statement
(Loc
,
1698 Unchecked_Convert_To
(Etype
(New_Lhs
), New_Rhs
)));
1699 Set_Assignment_OK
(Name
(N
), Ass_OK
);
1701 -- All other component sizes for non-modular case
1706 -- Set_nn (Arr'address, Subscr, Bits_nn!(Rhs))
1708 -- where Subscr is the computed linear subscript
1711 Bits_nn
: constant Entity_Id
:= RTE
(Bits_Id
(Csiz
));
1717 if No
(Bits_nn
) then
1719 -- Error, most likely High_Integrity_Mode restriction
1724 -- Acquire proper Set entity. We use the aligned or unaligned
1725 -- case as appropriate.
1727 if Known_Aligned_Enough
(Obj
, Csiz
) then
1728 Set_nn
:= RTE
(Set_Id
(Csiz
));
1730 Set_nn
:= RTE
(SetU_Id
(Csiz
));
1733 -- Now generate the set reference
1735 Obj
:= Relocate_Node
(Prefix
(Lhs
));
1736 Convert_To_Actual_Subtype
(Obj
);
1737 Atyp
:= Etype
(Obj
);
1738 Compute_Linear_Subscript
(Atyp
, Lhs
, Subscr
);
1740 -- Below we must make the assumption that Obj is
1741 -- at least byte aligned, since otherwise its address
1742 -- cannot be taken. The assumption holds since the
1743 -- only arrays that can be misaligned are small packed
1744 -- arrays which are implemented as a modular type, and
1745 -- that is not the case here.
1748 Make_Procedure_Call_Statement
(Loc
,
1749 Name
=> New_Occurrence_Of
(Set_nn
, Loc
),
1750 Parameter_Associations
=> New_List
(
1751 Make_Attribute_Reference
(Loc
,
1753 Attribute_Name
=> Name_Address
),
1755 Unchecked_Convert_To
(Bits_nn
,
1756 Convert_To
(Ctyp
, Rhs
)))));
1761 Analyze
(N
, Suppress
=> All_Checks
);
1762 end Expand_Bit_Packed_Element_Set
;
1764 -------------------------------------
1765 -- Expand_Packed_Address_Reference --
1766 -------------------------------------
1768 procedure Expand_Packed_Address_Reference
(N
: Node_Id
) is
1769 Loc
: constant Source_Ptr
:= Sloc
(N
);
1774 -- We build an expression that has the form
1776 -- outer_object'Address
1777 -- + (linear-subscript * component_size for each array reference
1778 -- + field'Bit_Position for each record field
1780 -- + ...) / Storage_Unit;
1782 Get_Base_And_Bit_Offset
(Prefix
(N
), Base
, Offset
);
1785 Unchecked_Convert_To
(RTE
(RE_Address
),
1788 Unchecked_Convert_To
(RTE
(RE_Integer_Address
),
1789 Make_Attribute_Reference
(Loc
,
1791 Attribute_Name
=> Name_Address
)),
1794 Unchecked_Convert_To
(RTE
(RE_Integer_Address
),
1795 Make_Op_Divide
(Loc
,
1796 Left_Opnd
=> Offset
,
1798 Make_Integer_Literal
(Loc
, System_Storage_Unit
))))));
1800 Analyze_And_Resolve
(N
, RTE
(RE_Address
));
1801 end Expand_Packed_Address_Reference
;
1803 ---------------------------------
1804 -- Expand_Packed_Bit_Reference --
1805 ---------------------------------
1807 procedure Expand_Packed_Bit_Reference
(N
: Node_Id
) is
1808 Loc
: constant Source_Ptr
:= Sloc
(N
);
1813 -- We build an expression that has the form
1815 -- (linear-subscript * component_size for each array reference
1816 -- + field'Bit_Position for each record field
1818 -- + ...) mod Storage_Unit;
1820 Get_Base_And_Bit_Offset
(Prefix
(N
), Base
, Offset
);
1823 Unchecked_Convert_To
(Universal_Integer
,
1825 Left_Opnd
=> Offset
,
1826 Right_Opnd
=> Make_Integer_Literal
(Loc
, System_Storage_Unit
))));
1828 Analyze_And_Resolve
(N
, Universal_Integer
);
1829 end Expand_Packed_Bit_Reference
;
1831 ------------------------------------
1832 -- Expand_Packed_Boolean_Operator --
1833 ------------------------------------
1835 -- This routine expands "a op b" for the packed cases
1837 procedure Expand_Packed_Boolean_Operator
(N
: Node_Id
) is
1838 Loc
: constant Source_Ptr
:= Sloc
(N
);
1839 Typ
: constant Entity_Id
:= Etype
(N
);
1840 L
: constant Node_Id
:= Relocate_Node
(Left_Opnd
(N
));
1841 R
: constant Node_Id
:= Relocate_Node
(Right_Opnd
(N
));
1848 Convert_To_Actual_Subtype
(L
);
1849 Convert_To_Actual_Subtype
(R
);
1851 Ensure_Defined
(Etype
(L
), N
);
1852 Ensure_Defined
(Etype
(R
), N
);
1854 Apply_Length_Check
(R
, Etype
(L
));
1859 -- Deal with silly case of XOR where the subcomponent has a range
1860 -- True .. True where an exception must be raised.
1862 if Nkind
(N
) = N_Op_Xor
then
1863 Silly_Boolean_Array_Xor_Test
(N
, Rtyp
);
1866 -- Now that that silliness is taken care of, get packed array type
1868 Convert_To_PAT_Type
(L
);
1869 Convert_To_PAT_Type
(R
);
1873 -- For the modular case, we expand a op b into
1875 -- rtyp!(pat!(a) op pat!(b))
1877 -- where rtyp is the Etype of the left operand. Note that we do not
1878 -- convert to the base type, since this would be unconstrained, and
1879 -- hence not have a corresponding packed array type set.
1881 -- Note that both operands must be modular for this code to be used
1883 if Is_Modular_Integer_Type
(PAT
)
1885 Is_Modular_Integer_Type
(Etype
(R
))
1891 if Nkind
(N
) = N_Op_And
then
1892 P
:= Make_Op_And
(Loc
, L
, R
);
1894 elsif Nkind
(N
) = N_Op_Or
then
1895 P
:= Make_Op_Or
(Loc
, L
, R
);
1897 else -- Nkind (N) = N_Op_Xor
1898 P
:= Make_Op_Xor
(Loc
, L
, R
);
1901 Rewrite
(N
, Unchecked_Convert_To
(Ltyp
, P
));
1904 -- For the array case, we insert the actions
1908 -- System.Bit_Ops.Bit_And/Or/Xor
1910 -- Ltype'Length * Ltype'Component_Size;
1912 -- Rtype'Length * Rtype'Component_Size
1915 -- where Left and Right are the Packed_Bytes{1,2,4} operands and
1916 -- the second argument and fourth arguments are the lengths of the
1917 -- operands in bits. Then we replace the expression by a reference
1920 -- Note that if we are mixing a modular and array operand, everything
1921 -- works fine, since we ensure that the modular representation has the
1922 -- same physical layout as the array representation (that's what the
1923 -- left justified modular stuff in the big-endian case is about).
1927 Result_Ent
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
1931 if Nkind
(N
) = N_Op_And
then
1934 elsif Nkind
(N
) = N_Op_Or
then
1937 else -- Nkind (N) = N_Op_Xor
1941 Insert_Actions
(N
, New_List
(
1943 Make_Object_Declaration
(Loc
,
1944 Defining_Identifier
=> Result_Ent
,
1945 Object_Definition
=> New_Occurrence_Of
(Ltyp
, Loc
)),
1947 Make_Procedure_Call_Statement
(Loc
,
1948 Name
=> New_Occurrence_Of
(RTE
(E_Id
), Loc
),
1949 Parameter_Associations
=> New_List
(
1951 Make_Byte_Aligned_Attribute_Reference
(Loc
,
1953 Attribute_Name
=> Name_Address
),
1955 Make_Op_Multiply
(Loc
,
1957 Make_Attribute_Reference
(Loc
,
1960 (Etype
(First_Index
(Ltyp
)), Loc
),
1961 Attribute_Name
=> Name_Range_Length
),
1964 Make_Integer_Literal
(Loc
, Component_Size
(Ltyp
))),
1966 Make_Byte_Aligned_Attribute_Reference
(Loc
,
1968 Attribute_Name
=> Name_Address
),
1970 Make_Op_Multiply
(Loc
,
1972 Make_Attribute_Reference
(Loc
,
1975 (Etype
(First_Index
(Rtyp
)), Loc
),
1976 Attribute_Name
=> Name_Range_Length
),
1979 Make_Integer_Literal
(Loc
, Component_Size
(Rtyp
))),
1981 Make_Byte_Aligned_Attribute_Reference
(Loc
,
1982 Prefix
=> New_Occurrence_Of
(Result_Ent
, Loc
),
1983 Attribute_Name
=> Name_Address
)))));
1986 New_Occurrence_Of
(Result_Ent
, Loc
));
1990 Analyze_And_Resolve
(N
, Typ
, Suppress
=> All_Checks
);
1991 end Expand_Packed_Boolean_Operator
;
1993 -------------------------------------
1994 -- Expand_Packed_Element_Reference --
1995 -------------------------------------
1997 procedure Expand_Packed_Element_Reference
(N
: Node_Id
) is
1998 Loc
: constant Source_Ptr
:= Sloc
(N
);
2010 -- If the node is an actual in a call, the prefix has not been fully
2011 -- expanded, to account for the additional expansion for in-out actuals
2012 -- (see expand_actuals for details). If the prefix itself is a packed
2013 -- reference as well, we have to recurse to complete the transformation
2016 if Nkind
(Prefix
(N
)) = N_Indexed_Component
2017 and then not Analyzed
(Prefix
(N
))
2018 and then Is_Bit_Packed_Array
(Etype
(Prefix
(Prefix
(N
))))
2020 Expand_Packed_Element_Reference
(Prefix
(N
));
2023 -- If not bit packed, we have the enumeration case, which is easily
2024 -- dealt with (just adjust the subscripts of the indexed component)
2026 -- Note: this leaves the result as an indexed component, which is
2027 -- still a variable, so can be used in the assignment case, as is
2028 -- required in the enumeration case.
2030 if not Is_Bit_Packed_Array
(Etype
(Prefix
(N
))) then
2031 Setup_Enumeration_Packed_Array_Reference
(N
);
2035 -- Remaining processing is for the bit-packed case
2037 Obj
:= Relocate_Node
(Prefix
(N
));
2038 Convert_To_Actual_Subtype
(Obj
);
2039 Atyp
:= Etype
(Obj
);
2040 PAT
:= Packed_Array_Type
(Atyp
);
2041 Ctyp
:= Component_Type
(Atyp
);
2042 Csiz
:= UI_To_Int
(Component_Size
(Atyp
));
2044 -- For the AAMP target, indexing of certain packed array is passed
2045 -- through to the back end without expansion, because the expansion
2046 -- results in very inefficient code on that target. This allows the
2047 -- GNAAMP back end to generate specialized macros that support more
2048 -- efficient indexing of packed arrays with components having sizes
2049 -- that are small powers of two.
2052 and then (Csiz
= 1 or else Csiz
= 2 or else Csiz
= 4)
2057 -- Case of component size 1,2,4 or any component size for the modular
2058 -- case. These are the cases for which we can inline the code.
2060 if Csiz
= 1 or else Csiz
= 2 or else Csiz
= 4
2061 or else (Present
(PAT
) and then Is_Modular_Integer_Type
(PAT
))
2063 Setup_Inline_Packed_Array_Reference
(N
, Atyp
, Obj
, Cmask
, Shift
);
2064 Lit
:= Make_Integer_Literal
(Loc
, Cmask
);
2065 Set_Print_In_Hex
(Lit
);
2067 -- We generate a shift right to position the field, followed by a
2068 -- masking operation to extract the bit field, and we finally do an
2069 -- unchecked conversion to convert the result to the required target.
2071 -- Note that the unchecked conversion automatically deals with the
2072 -- bias if we are dealing with a biased representation. What will
2073 -- happen is that we temporarily generate the biased representation,
2074 -- but almost immediately that will be converted to the original
2075 -- unbiased component type, and the bias will disappear.
2079 Left_Opnd
=> Make_Shift_Right
(Obj
, Shift
),
2081 Set_Etype
(Arg
, Ctyp
);
2083 -- Component extraction is performed on a native endianness scalar
2084 -- value: if Atyp has reverse storage order, then it has been byte
2085 -- swapped, and if the component being extracted is itself of a
2086 -- composite type with reverse storage order, then we need to swap
2087 -- it back to its expected endianness after extraction.
2089 if Reverse_Storage_Order
(Atyp
)
2090 and then (Is_Record_Type
(Ctyp
) or else Is_Array_Type
(Ctyp
))
2091 and then Reverse_Storage_Order
(Ctyp
)
2093 Arg
:= Revert_Storage_Order
(Arg
);
2096 -- We needed to analyze this before we do the unchecked convert
2097 -- below, but we need it temporarily attached to the tree for
2098 -- this analysis (hence the temporary Set_Parent call).
2100 Set_Parent
(Arg
, Parent
(N
));
2101 Analyze_And_Resolve
(Arg
);
2103 Rewrite
(N
, RJ_Unchecked_Convert_To
(Ctyp
, Arg
));
2105 -- All other component sizes for non-modular case
2110 -- Component_Type!(Get_nn (Arr'address, Subscr))
2112 -- where Subscr is the computed linear subscript
2119 -- Acquire proper Get entity. We use the aligned or unaligned
2120 -- case as appropriate.
2122 if Known_Aligned_Enough
(Obj
, Csiz
) then
2123 Get_nn
:= RTE
(Get_Id
(Csiz
));
2125 Get_nn
:= RTE
(GetU_Id
(Csiz
));
2128 -- Now generate the get reference
2130 Compute_Linear_Subscript
(Atyp
, N
, Subscr
);
2132 -- Below we make the assumption that Obj is at least byte
2133 -- aligned, since otherwise its address cannot be taken.
2134 -- The assumption holds since the only arrays that can be
2135 -- misaligned are small packed arrays which are implemented
2136 -- as a modular type, and that is not the case here.
2139 Unchecked_Convert_To
(Ctyp
,
2140 Make_Function_Call
(Loc
,
2141 Name
=> New_Occurrence_Of
(Get_nn
, Loc
),
2142 Parameter_Associations
=> New_List
(
2143 Make_Attribute_Reference
(Loc
,
2145 Attribute_Name
=> Name_Address
),
2150 Analyze_And_Resolve
(N
, Ctyp
, Suppress
=> All_Checks
);
2152 end Expand_Packed_Element_Reference
;
2154 ----------------------
2155 -- Expand_Packed_Eq --
2156 ----------------------
2158 -- Handles expansion of "=" on packed array types
2160 procedure Expand_Packed_Eq
(N
: Node_Id
) is
2161 Loc
: constant Source_Ptr
:= Sloc
(N
);
2162 L
: constant Node_Id
:= Relocate_Node
(Left_Opnd
(N
));
2163 R
: constant Node_Id
:= Relocate_Node
(Right_Opnd
(N
));
2173 Convert_To_Actual_Subtype
(L
);
2174 Convert_To_Actual_Subtype
(R
);
2175 Ltyp
:= Underlying_Type
(Etype
(L
));
2176 Rtyp
:= Underlying_Type
(Etype
(R
));
2178 Convert_To_PAT_Type
(L
);
2179 Convert_To_PAT_Type
(R
);
2183 Make_Op_Multiply
(Loc
,
2185 Make_Attribute_Reference
(Loc
,
2186 Prefix
=> New_Occurrence_Of
(Ltyp
, Loc
),
2187 Attribute_Name
=> Name_Length
),
2189 Make_Integer_Literal
(Loc
, Component_Size
(Ltyp
)));
2192 Make_Op_Multiply
(Loc
,
2194 Make_Attribute_Reference
(Loc
,
2195 Prefix
=> New_Occurrence_Of
(Rtyp
, Loc
),
2196 Attribute_Name
=> Name_Length
),
2198 Make_Integer_Literal
(Loc
, Component_Size
(Rtyp
)));
2200 -- For the modular case, we transform the comparison to:
2202 -- Ltyp'Length = Rtyp'Length and then PAT!(L) = PAT!(R)
2204 -- where PAT is the packed array type. This works fine, since in the
2205 -- modular case we guarantee that the unused bits are always zeroes.
2206 -- We do have to compare the lengths because we could be comparing
2207 -- two different subtypes of the same base type.
2209 if Is_Modular_Integer_Type
(PAT
) then
2214 Left_Opnd
=> LLexpr
,
2215 Right_Opnd
=> RLexpr
),
2222 -- For the non-modular case, we call a runtime routine
2224 -- System.Bit_Ops.Bit_Eq
2225 -- (L'Address, L_Length, R'Address, R_Length)
2227 -- where PAT is the packed array type, and the lengths are the lengths
2228 -- in bits of the original packed arrays. This routine takes care of
2229 -- not comparing the unused bits in the last byte.
2233 Make_Function_Call
(Loc
,
2234 Name
=> New_Occurrence_Of
(RTE
(RE_Bit_Eq
), Loc
),
2235 Parameter_Associations
=> New_List
(
2236 Make_Byte_Aligned_Attribute_Reference
(Loc
,
2238 Attribute_Name
=> Name_Address
),
2242 Make_Byte_Aligned_Attribute_Reference
(Loc
,
2244 Attribute_Name
=> Name_Address
),
2249 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
2250 end Expand_Packed_Eq
;
2252 -----------------------
2253 -- Expand_Packed_Not --
2254 -----------------------
2256 -- Handles expansion of "not" on packed array types
2258 procedure Expand_Packed_Not
(N
: Node_Id
) is
2259 Loc
: constant Source_Ptr
:= Sloc
(N
);
2260 Typ
: constant Entity_Id
:= Etype
(N
);
2261 Opnd
: constant Node_Id
:= Relocate_Node
(Right_Opnd
(N
));
2268 Convert_To_Actual_Subtype
(Opnd
);
2269 Rtyp
:= Etype
(Opnd
);
2271 -- Deal with silly False..False and True..True subtype case
2273 Silly_Boolean_Array_Not_Test
(N
, Rtyp
);
2275 -- Now that the silliness is taken care of, get packed array type
2277 Convert_To_PAT_Type
(Opnd
);
2278 PAT
:= Etype
(Opnd
);
2280 -- For the case where the packed array type is a modular type, "not A"
2281 -- expands simply into:
2283 -- Rtyp!(PAT!(A) xor Mask)
2285 -- where PAT is the packed array type, Mask is a mask of all 1 bits of
2286 -- length equal to the size of this packed type, and Rtyp is the actual
2287 -- actual subtype of the operand.
2289 Lit
:= Make_Integer_Literal
(Loc
, 2 ** RM_Size
(PAT
) - 1);
2290 Set_Print_In_Hex
(Lit
);
2292 if not Is_Array_Type
(PAT
) then
2294 Unchecked_Convert_To
(Rtyp
,
2297 Right_Opnd
=> Lit
)));
2299 -- For the array case, we insert the actions
2303 -- System.Bit_Ops.Bit_Not
2305 -- Typ'Length * Typ'Component_Size,
2308 -- where Opnd is the Packed_Bytes{1,2,4} operand and the second argument
2309 -- is the length of the operand in bits. We then replace the expression
2310 -- with a reference to Result.
2314 Result_Ent
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
2317 Insert_Actions
(N
, New_List
(
2318 Make_Object_Declaration
(Loc
,
2319 Defining_Identifier
=> Result_Ent
,
2320 Object_Definition
=> New_Occurrence_Of
(Rtyp
, Loc
)),
2322 Make_Procedure_Call_Statement
(Loc
,
2323 Name
=> New_Occurrence_Of
(RTE
(RE_Bit_Not
), Loc
),
2324 Parameter_Associations
=> New_List
(
2325 Make_Byte_Aligned_Attribute_Reference
(Loc
,
2327 Attribute_Name
=> Name_Address
),
2329 Make_Op_Multiply
(Loc
,
2331 Make_Attribute_Reference
(Loc
,
2334 (Etype
(First_Index
(Rtyp
)), Loc
),
2335 Attribute_Name
=> Name_Range_Length
),
2338 Make_Integer_Literal
(Loc
, Component_Size
(Rtyp
))),
2340 Make_Byte_Aligned_Attribute_Reference
(Loc
,
2341 Prefix
=> New_Occurrence_Of
(Result_Ent
, Loc
),
2342 Attribute_Name
=> Name_Address
)))));
2344 Rewrite
(N
, New_Occurrence_Of
(Result_Ent
, Loc
));
2348 Analyze_And_Resolve
(N
, Typ
, Suppress
=> All_Checks
);
2349 end Expand_Packed_Not
;
2351 -----------------------------
2352 -- Get_Base_And_Bit_Offset --
2353 -----------------------------
2355 procedure Get_Base_And_Bit_Offset
2358 Offset
: out Node_Id
)
2369 -- We build up an expression serially that has the form
2371 -- linear-subscript * component_size for each array reference
2372 -- + field'Bit_Position for each record field
2378 if Nkind
(Base
) = N_Indexed_Component
then
2379 Convert_To_Actual_Subtype
(Prefix
(Base
));
2380 Atyp
:= Etype
(Prefix
(Base
));
2381 Compute_Linear_Subscript
(Atyp
, Base
, Subscr
);
2384 Make_Op_Multiply
(Loc
,
2385 Left_Opnd
=> Subscr
,
2387 Make_Attribute_Reference
(Loc
,
2388 Prefix
=> New_Occurrence_Of
(Atyp
, Loc
),
2389 Attribute_Name
=> Name_Component_Size
));
2391 elsif Nkind
(Base
) = N_Selected_Component
then
2393 Make_Attribute_Reference
(Loc
,
2394 Prefix
=> Selector_Name
(Base
),
2395 Attribute_Name
=> Name_Bit_Position
);
2407 Left_Opnd
=> Offset
,
2408 Right_Opnd
=> Term
);
2411 Base
:= Prefix
(Base
);
2413 end Get_Base_And_Bit_Offset
;
2415 -------------------------------------
2416 -- Involves_Packed_Array_Reference --
2417 -------------------------------------
2419 function Involves_Packed_Array_Reference
(N
: Node_Id
) return Boolean is
2421 if Nkind
(N
) = N_Indexed_Component
2422 and then Is_Bit_Packed_Array
(Etype
(Prefix
(N
)))
2426 elsif Nkind
(N
) = N_Selected_Component
then
2427 return Involves_Packed_Array_Reference
(Prefix
(N
));
2432 end Involves_Packed_Array_Reference
;
2434 --------------------------
2435 -- Known_Aligned_Enough --
2436 --------------------------
2438 function Known_Aligned_Enough
(Obj
: Node_Id
; Csiz
: Nat
) return Boolean is
2439 Typ
: constant Entity_Id
:= Etype
(Obj
);
2441 function In_Partially_Packed_Record
(Comp
: Entity_Id
) return Boolean;
2442 -- If the component is in a record that contains previous packed
2443 -- components, consider it unaligned because the back-end might
2444 -- choose to pack the rest of the record. Lead to less efficient code,
2445 -- but safer vis-a-vis of back-end choices.
2447 --------------------------------
2448 -- In_Partially_Packed_Record --
2449 --------------------------------
2451 function In_Partially_Packed_Record
(Comp
: Entity_Id
) return Boolean is
2452 Rec_Type
: constant Entity_Id
:= Scope
(Comp
);
2453 Prev_Comp
: Entity_Id
;
2456 Prev_Comp
:= First_Entity
(Rec_Type
);
2457 while Present
(Prev_Comp
) loop
2458 if Is_Packed
(Etype
(Prev_Comp
)) then
2461 elsif Prev_Comp
= Comp
then
2465 Next_Entity
(Prev_Comp
);
2469 end In_Partially_Packed_Record
;
2471 -- Start of processing for Known_Aligned_Enough
2474 -- Odd bit sizes don't need alignment anyway
2476 if Csiz
mod 2 = 1 then
2479 -- If we have a specified alignment, see if it is sufficient, if not
2480 -- then we can't possibly be aligned enough in any case.
2482 elsif Known_Alignment
(Etype
(Obj
)) then
2483 -- Alignment required is 4 if size is a multiple of 4, and
2484 -- 2 otherwise (e.g. 12 bits requires 4, 10 bits requires 2)
2486 if Alignment
(Etype
(Obj
)) < 4 - (Csiz
mod 4) then
2491 -- OK, alignment should be sufficient, if object is aligned
2493 -- If object is strictly aligned, then it is definitely aligned
2495 if Strict_Alignment
(Typ
) then
2498 -- Case of subscripted array reference
2500 elsif Nkind
(Obj
) = N_Indexed_Component
then
2502 -- If we have a pointer to an array, then this is definitely
2503 -- aligned, because pointers always point to aligned versions.
2505 if Is_Access_Type
(Etype
(Prefix
(Obj
))) then
2508 -- Otherwise, go look at the prefix
2511 return Known_Aligned_Enough
(Prefix
(Obj
), Csiz
);
2514 -- Case of record field
2516 elsif Nkind
(Obj
) = N_Selected_Component
then
2518 -- What is significant here is whether the record type is packed
2520 if Is_Record_Type
(Etype
(Prefix
(Obj
)))
2521 and then Is_Packed
(Etype
(Prefix
(Obj
)))
2525 -- Or the component has a component clause which might cause
2526 -- the component to become unaligned (we can't tell if the
2527 -- backend is doing alignment computations).
2529 elsif Present
(Component_Clause
(Entity
(Selector_Name
(Obj
)))) then
2532 elsif In_Partially_Packed_Record
(Entity
(Selector_Name
(Obj
))) then
2535 -- In all other cases, go look at prefix
2538 return Known_Aligned_Enough
(Prefix
(Obj
), Csiz
);
2541 elsif Nkind
(Obj
) = N_Type_Conversion
then
2542 return Known_Aligned_Enough
(Expression
(Obj
), Csiz
);
2544 -- For a formal parameter, it is safer to assume that it is not
2545 -- aligned, because the formal may be unconstrained while the actual
2546 -- is constrained. In this situation, a small constrained packed
2547 -- array, represented in modular form, may be unaligned.
2549 elsif Is_Entity_Name
(Obj
) then
2550 return not Is_Formal
(Entity
(Obj
));
2553 -- If none of the above, must be aligned
2556 end Known_Aligned_Enough
;
2558 ---------------------
2559 -- Make_Shift_Left --
2560 ---------------------
2562 function Make_Shift_Left
(N
: Node_Id
; S
: Node_Id
) return Node_Id
is
2566 if Compile_Time_Known_Value
(S
) and then Expr_Value
(S
) = 0 then
2570 Make_Op_Shift_Left
(Sloc
(N
),
2573 Set_Shift_Count_OK
(Nod
, True);
2576 end Make_Shift_Left
;
2578 ----------------------
2579 -- Make_Shift_Right --
2580 ----------------------
2582 function Make_Shift_Right
(N
: Node_Id
; S
: Node_Id
) return Node_Id
is
2586 if Compile_Time_Known_Value
(S
) and then Expr_Value
(S
) = 0 then
2590 Make_Op_Shift_Right
(Sloc
(N
),
2593 Set_Shift_Count_OK
(Nod
, True);
2596 end Make_Shift_Right
;
2598 -----------------------------
2599 -- RJ_Unchecked_Convert_To --
2600 -----------------------------
2602 function RJ_Unchecked_Convert_To
2604 Expr
: Node_Id
) return Node_Id
2606 Source_Typ
: constant Entity_Id
:= Etype
(Expr
);
2607 Target_Typ
: constant Entity_Id
:= Typ
;
2609 Src
: Node_Id
:= Expr
;
2615 Source_Siz
:= UI_To_Int
(RM_Size
(Source_Typ
));
2616 Target_Siz
:= UI_To_Int
(RM_Size
(Target_Typ
));
2618 -- For a little-endian target type stored byte-swapped on a
2619 -- big-endian machine, do not mask to Target_Siz bits.
2622 and then (Is_Record_Type
(Target_Typ
)
2624 Is_Array_Type
(Target_Typ
))
2625 and then Reverse_Storage_Order
(Target_Typ
)
2627 Source_Siz
:= Target_Siz
;
2630 -- First step, if the source type is not a discrete type, then we first
2631 -- convert to a modular type of the source length, since otherwise, on
2632 -- a big-endian machine, we get left-justification. We do it for little-
2633 -- endian machines as well, because there might be junk bits that are
2634 -- not cleared if the type is not numeric.
2636 if Source_Siz
/= Target_Siz
2637 and then not Is_Discrete_Type
(Source_Typ
)
2639 Src
:= Unchecked_Convert_To
(RTE
(Bits_Id
(Source_Siz
)), Src
);
2642 -- In the big endian case, if the lengths of the two types differ, then
2643 -- we must worry about possible left justification in the conversion,
2644 -- and avoiding that is what this is all about.
2646 if Bytes_Big_Endian
and then Source_Siz
/= Target_Siz
then
2648 -- Next step. If the target is not a discrete type, then we first
2649 -- convert to a modular type of the target length, since otherwise,
2650 -- on a big-endian machine, we get left-justification.
2652 if not Is_Discrete_Type
(Target_Typ
) then
2653 Src
:= Unchecked_Convert_To
(RTE
(Bits_Id
(Target_Siz
)), Src
);
2657 -- And now we can do the final conversion to the target type
2659 return Unchecked_Convert_To
(Target_Typ
, Src
);
2660 end RJ_Unchecked_Convert_To
;
2662 ----------------------------------------------
2663 -- Setup_Enumeration_Packed_Array_Reference --
2664 ----------------------------------------------
2666 -- All we have to do here is to find the subscripts that correspond to the
2667 -- index positions that have non-standard enumeration types and insert a
2668 -- Pos attribute to get the proper subscript value.
2670 -- Finally the prefix must be uncheck-converted to the corresponding packed
2673 -- Note that the component type is unchanged, so we do not need to fiddle
2674 -- with the types (Gigi always automatically takes the packed array type if
2675 -- it is set, as it will be in this case).
2677 procedure Setup_Enumeration_Packed_Array_Reference
(N
: Node_Id
) is
2678 Pfx
: constant Node_Id
:= Prefix
(N
);
2679 Typ
: constant Entity_Id
:= Etype
(N
);
2680 Exprs
: constant List_Id
:= Expressions
(N
);
2684 -- If the array is unconstrained, then we replace the array reference
2685 -- with its actual subtype. This actual subtype will have a packed array
2686 -- type with appropriate bounds.
2688 if not Is_Constrained
(Packed_Array_Type
(Etype
(Pfx
))) then
2689 Convert_To_Actual_Subtype
(Pfx
);
2692 Expr
:= First
(Exprs
);
2693 while Present
(Expr
) loop
2695 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
2696 Expr_Typ
: constant Entity_Id
:= Etype
(Expr
);
2699 if Is_Enumeration_Type
(Expr_Typ
)
2700 and then Has_Non_Standard_Rep
(Expr_Typ
)
2703 Make_Attribute_Reference
(Loc
,
2704 Prefix
=> New_Occurrence_Of
(Expr_Typ
, Loc
),
2705 Attribute_Name
=> Name_Pos
,
2706 Expressions
=> New_List
(Relocate_Node
(Expr
))));
2707 Analyze_And_Resolve
(Expr
, Standard_Natural
);
2715 Make_Indexed_Component
(Sloc
(N
),
2717 Unchecked_Convert_To
(Packed_Array_Type
(Etype
(Pfx
)), Pfx
),
2718 Expressions
=> Exprs
));
2720 Analyze_And_Resolve
(N
, Typ
);
2721 end Setup_Enumeration_Packed_Array_Reference
;
2723 -----------------------------------------
2724 -- Setup_Inline_Packed_Array_Reference --
2725 -----------------------------------------
2727 procedure Setup_Inline_Packed_Array_Reference
2730 Obj
: in out Node_Id
;
2732 Shift
: out Node_Id
)
2734 Loc
: constant Source_Ptr
:= Sloc
(N
);
2741 Csiz
:= Component_Size
(Atyp
);
2743 Convert_To_PAT_Type
(Obj
);
2746 Cmask
:= 2 ** Csiz
- 1;
2748 if Is_Array_Type
(PAT
) then
2749 Otyp
:= Component_Type
(PAT
);
2750 Osiz
:= Component_Size
(PAT
);
2755 -- In the case where the PAT is a modular type, we want the actual
2756 -- size in bits of the modular value we use. This is neither the
2757 -- Object_Size nor the Value_Size, either of which may have been
2758 -- reset to strange values, but rather the minimum size. Note that
2759 -- since this is a modular type with full range, the issue of
2760 -- biased representation does not arise.
2762 Osiz
:= UI_From_Int
(Minimum_Size
(Otyp
));
2765 Compute_Linear_Subscript
(Atyp
, N
, Shift
);
2767 -- If the component size is not 1, then the subscript must be multiplied
2768 -- by the component size to get the shift count.
2772 Make_Op_Multiply
(Loc
,
2773 Left_Opnd
=> Make_Integer_Literal
(Loc
, Csiz
),
2774 Right_Opnd
=> Shift
);
2777 -- If we have the array case, then this shift count must be broken down
2778 -- into a byte subscript, and a shift within the byte.
2780 if Is_Array_Type
(PAT
) then
2783 New_Shift
: Node_Id
;
2786 -- We must analyze shift, since we will duplicate it
2788 Set_Parent
(Shift
, N
);
2790 (Shift
, Standard_Integer
, Suppress
=> All_Checks
);
2792 -- The shift count within the word is
2797 Left_Opnd
=> Duplicate_Subexpr
(Shift
),
2798 Right_Opnd
=> Make_Integer_Literal
(Loc
, Osiz
));
2800 -- The subscript to be used on the PAT array is
2804 Make_Indexed_Component
(Loc
,
2806 Expressions
=> New_List
(
2807 Make_Op_Divide
(Loc
,
2808 Left_Opnd
=> Duplicate_Subexpr
(Shift
),
2809 Right_Opnd
=> Make_Integer_Literal
(Loc
, Osiz
))));
2814 -- For the modular integer case, the object to be manipulated is the
2815 -- entire array, so Obj is unchanged. Note that we will reset its type
2816 -- to PAT before returning to the caller.
2822 -- The one remaining step is to modify the shift count for the
2823 -- big-endian case. Consider the following example in a byte:
2825 -- xxxxxxxx bits of byte
2826 -- vvvvvvvv bits of value
2827 -- 33221100 little-endian numbering
2828 -- 00112233 big-endian numbering
2830 -- Here we have the case of 2-bit fields
2832 -- For the little-endian case, we already have the proper shift count
2833 -- set, e.g. for element 2, the shift count is 2*2 = 4.
2835 -- For the big endian case, we have to adjust the shift count, computing
2836 -- it as (N - F) - Shift, where N is the number of bits in an element of
2837 -- the array used to implement the packed array, F is the number of bits
2838 -- in a source array element, and Shift is the count so far computed.
2840 -- We also have to adjust if the storage order is reversed
2842 if Bytes_Big_Endian
xor Reverse_Storage_Order
(Base_Type
(Atyp
)) then
2844 Make_Op_Subtract
(Loc
,
2845 Left_Opnd
=> Make_Integer_Literal
(Loc
, Osiz
- Csiz
),
2846 Right_Opnd
=> Shift
);
2849 Set_Parent
(Shift
, N
);
2850 Set_Parent
(Obj
, N
);
2851 Analyze_And_Resolve
(Obj
, Otyp
, Suppress
=> All_Checks
);
2852 Analyze_And_Resolve
(Shift
, Standard_Integer
, Suppress
=> All_Checks
);
2854 -- Make sure final type of object is the appropriate packed type
2856 Set_Etype
(Obj
, Otyp
);
2858 end Setup_Inline_Packed_Array_Reference
;