* libgfortran.h (support_fpu_underflow_control,
[official-gcc.git] / gcc / ada / a-cbhase.ads
blob5de5d2832ecf563bcac9d808a89624491b259c56
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT LIBRARY COMPONENTS --
4 -- --
5 -- A D A . C O N T A I N E R S . B O U N D E D _ H A S H E D _ S E T S --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 2004-2013, Free Software Foundation, Inc. --
10 -- --
11 -- This specification is derived from the Ada Reference Manual for use with --
12 -- GNAT. The copyright notice above, and the license provisions that follow --
13 -- apply solely to the contents of the part following the private keyword. --
14 -- --
15 -- GNAT is free software; you can redistribute it and/or modify it under --
16 -- terms of the GNU General Public License as published by the Free Soft- --
17 -- ware Foundation; either version 3, or (at your option) any later ver- --
18 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
19 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
20 -- or FITNESS FOR A PARTICULAR PURPOSE. --
21 -- --
22 -- As a special exception under Section 7 of GPL version 3, you are granted --
23 -- additional permissions described in the GCC Runtime Library Exception, --
24 -- version 3.1, as published by the Free Software Foundation. --
25 -- --
26 -- You should have received a copy of the GNU General Public License and --
27 -- a copy of the GCC Runtime Library Exception along with this program; --
28 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
29 -- <http://www.gnu.org/licenses/>. --
30 -- --
31 -- This unit was originally developed by Matthew J Heaney. --
32 ------------------------------------------------------------------------------
34 with Ada.Iterator_Interfaces;
36 private with Ada.Containers.Hash_Tables;
37 private with Ada.Streams;
38 private with Ada.Finalization; use Ada.Finalization;
40 generic
41 type Element_Type is private;
43 with function Hash (Element : Element_Type) return Hash_Type;
45 with function Equivalent_Elements
46 (Left, Right : Element_Type) return Boolean;
48 with function "=" (Left, Right : Element_Type) return Boolean is <>;
50 package Ada.Containers.Bounded_Hashed_Sets is
51 pragma Pure;
52 pragma Remote_Types;
54 type Set (Capacity : Count_Type; Modulus : Hash_Type) is tagged private
55 with Constant_Indexing => Constant_Reference,
56 Default_Iterator => Iterate,
57 Iterator_Element => Element_Type;
59 pragma Preelaborable_Initialization (Set);
61 type Cursor is private;
62 pragma Preelaborable_Initialization (Cursor);
64 Empty_Set : constant Set;
65 -- Set objects declared without an initialization expression are
66 -- initialized to the value Empty_Set.
68 No_Element : constant Cursor;
69 -- Cursor objects declared without an initialization expression are
70 -- initialized to the value No_Element.
72 function Has_Element (Position : Cursor) return Boolean;
73 -- Equivalent to Position /= No_Element
75 package Set_Iterator_Interfaces is new
76 Ada.Iterator_Interfaces (Cursor, Has_Element);
78 function "=" (Left, Right : Set) return Boolean;
79 -- For each element in Left, set equality attempts to find the equal
80 -- element in Right; if a search fails, then set equality immediately
81 -- returns False. The search works by calling Hash to find the bucket in
82 -- the Right set that corresponds to the Left element. If the bucket is
83 -- non-empty, the search calls the generic formal element equality operator
84 -- to compare the element (in Left) to the element of each node in the
85 -- bucket (in Right); the search terminates when a matching node in the
86 -- bucket is found, or the nodes in the bucket are exhausted. (Note that
87 -- element equality is called here, not Equivalent_Elements. Set equality
88 -- is the only operation in which element equality is used. Compare set
89 -- equality to Equivalent_Sets, which does call Equivalent_Elements.)
91 function Equivalent_Sets (Left, Right : Set) return Boolean;
92 -- Similar to set equality, with the difference that the element in Left is
93 -- compared to the elements in Right using the generic formal
94 -- Equivalent_Elements operation instead of element equality.
96 function To_Set (New_Item : Element_Type) return Set;
97 -- Constructs a singleton set comprising New_Element. To_Set calls Hash to
98 -- determine the bucket for New_Item.
100 function Capacity (Container : Set) return Count_Type;
101 -- Returns the current capacity of the set. Capacity is the maximum length
102 -- before which rehashing in guaranteed not to occur.
104 procedure Reserve_Capacity (Container : in out Set; Capacity : Count_Type);
105 -- If the value of the Capacity actual parameter is less or equal to
106 -- Container.Capacity, then the operation has no effect. Otherwise it
107 -- raises Capacity_Error (as no expansion of capacity is possible for a
108 -- bounded form).
110 function Default_Modulus (Capacity : Count_Type) return Hash_Type;
111 -- Returns a modulus value (hash table size) which is optimal for the
112 -- specified capacity (which corresponds to the maximum number of items).
114 function Length (Container : Set) return Count_Type;
115 -- Returns the number of items in the set
117 function Is_Empty (Container : Set) return Boolean;
118 -- Equivalent to Length (Container) = 0
120 procedure Clear (Container : in out Set);
121 -- Removes all of the items from the set
123 function Element (Position : Cursor) return Element_Type;
124 -- Returns the element of the node designated by the cursor
126 procedure Replace_Element
127 (Container : in out Set;
128 Position : Cursor;
129 New_Item : Element_Type);
130 -- If New_Item is equivalent (as determined by calling Equivalent_Elements)
131 -- to the element of the node designated by Position, then New_Element is
132 -- assigned to that element. Otherwise, it calls Hash to determine the
133 -- bucket for New_Item. If the bucket is not empty, then it calls
134 -- Equivalent_Elements for each node in that bucket to determine whether
135 -- New_Item is equivalent to an element in that bucket. If
136 -- Equivalent_Elements returns True then Program_Error is raised (because
137 -- an element may appear only once in the set); otherwise, New_Item is
138 -- assigned to the node designated by Position, and the node is moved to
139 -- its new bucket.
141 procedure Query_Element
142 (Position : Cursor;
143 Process : not null access procedure (Element : Element_Type));
144 -- Calls Process with the element (having only a constant view) of the node
145 -- designated by the cursor.
147 type Constant_Reference_Type
148 (Element : not null access constant Element_Type) is private
149 with Implicit_Dereference => Element;
151 function Constant_Reference
152 (Container : aliased Set;
153 Position : Cursor) return Constant_Reference_Type;
155 procedure Assign (Target : in out Set; Source : Set);
156 -- If Target denotes the same object as Source, then the operation has no
157 -- effect. If the Target capacity is less than the Source length, then
158 -- Assign raises Capacity_Error. Otherwise, Assign clears Target and then
159 -- copies the (active) elements from Source to Target.
161 function Copy
162 (Source : Set;
163 Capacity : Count_Type := 0;
164 Modulus : Hash_Type := 0) return Set;
165 -- Constructs a new set object whose elements correspond to Source. If the
166 -- Capacity parameter is 0, then the capacity of the result is the same as
167 -- the length of Source. If the Capacity parameter is equal or greater than
168 -- the length of Source, then the capacity of the result is the specified
169 -- value. Otherwise, Copy raises Capacity_Error. If the Modulus parameter
170 -- is 0, then the modulus of the result is the value returned by a call to
171 -- Default_Modulus with the capacity parameter determined as above;
172 -- otherwise the modulus of the result is the specified value.
174 procedure Move (Target : in out Set; Source : in out Set);
175 -- Clears Target (if it's not empty), and then moves (not copies) the
176 -- buckets array and nodes from Source to Target.
178 procedure Insert
179 (Container : in out Set;
180 New_Item : Element_Type;
181 Position : out Cursor;
182 Inserted : out Boolean);
183 -- Conditionally inserts New_Item into the set. If New_Item is already in
184 -- the set, then Inserted returns False and Position designates the node
185 -- containing the existing element (which is not modified). If New_Item is
186 -- not already in the set, then Inserted returns True and Position
187 -- designates the newly-inserted node containing New_Item. The search for
188 -- an existing element works as follows. Hash is called to determine
189 -- New_Item's bucket; if the bucket is non-empty, then Equivalent_Elements
190 -- is called to compare New_Item to the element of each node in that
191 -- bucket. If the bucket is empty, or there were no equivalent elements in
192 -- the bucket, the search "fails" and the New_Item is inserted in the set
193 -- (and Inserted returns True); otherwise, the search "succeeds" (and
194 -- Inserted returns False).
196 procedure Insert (Container : in out Set; New_Item : Element_Type);
197 -- Attempts to insert New_Item into the set, performing the usual insertion
198 -- search (which involves calling both Hash and Equivalent_Elements); if
199 -- the search succeeds (New_Item is equivalent to an element already in the
200 -- set, and so was not inserted), then this operation raises
201 -- Constraint_Error. (This version of Insert is similar to Replace, but
202 -- having the opposite exception behavior. It is intended for use when you
203 -- want to assert that the item is not already in the set.)
205 procedure Include (Container : in out Set; New_Item : Element_Type);
206 -- Attempts to insert New_Item into the set. If an element equivalent to
207 -- New_Item is already in the set (the insertion search succeeded, and
208 -- hence New_Item was not inserted), then the value of New_Item is assigned
209 -- to the existing element. (This insertion operation only raises an
210 -- exception if cursor tampering occurs. It is intended for use when you
211 -- want to insert the item in the set, and you don't care whether an
212 -- equivalent element is already present.)
214 procedure Replace (Container : in out Set; New_Item : Element_Type);
215 -- Searches for New_Item in the set; if the search fails (because an
216 -- equivalent element was not in the set), then it raises
217 -- Constraint_Error. Otherwise, the existing element is assigned the value
218 -- New_Item. (This is similar to Insert, but with the opposite exception
219 -- behavior. It is intended for use when you want to assert that the item
220 -- is already in the set.)
222 procedure Exclude (Container : in out Set; Item : Element_Type);
223 -- Searches for Item in the set, and if found, removes its node from the
224 -- set and then deallocates it. The search works as follows. The operation
225 -- calls Hash to determine the item's bucket; if the bucket is not empty,
226 -- it calls Equivalent_Elements to compare Item to the element of each node
227 -- in the bucket. (This is the deletion analog of Include. It is intended
228 -- for use when you want to remove the item from the set, but don't care
229 -- whether the item is already in the set.)
231 procedure Delete (Container : in out Set; Item : Element_Type);
232 -- Searches for Item in the set (which involves calling both Hash and
233 -- Equivalent_Elements). If the search fails, then the operation raises
234 -- Constraint_Error. Otherwise it removes the node from the set and then
235 -- deallocates it. (This is the deletion analog of non-conditional
236 -- Insert. It is intended for use when you want to assert that the item is
237 -- already in the set.)
239 procedure Delete (Container : in out Set; Position : in out Cursor);
240 -- Removes the node designated by Position from the set, and then
241 -- deallocates the node. The operation calls Hash to determine the bucket,
242 -- and then compares Position to each node in the bucket until there's a
243 -- match (it does not call Equivalent_Elements).
245 procedure Union (Target : in out Set; Source : Set);
246 -- Iterates over the Source set, and conditionally inserts each element
247 -- into Target.
249 function Union (Left, Right : Set) return Set;
250 -- The operation first copies the Left set to the result, and then iterates
251 -- over the Right set to conditionally insert each element into the result.
253 function "or" (Left, Right : Set) return Set renames Union;
255 procedure Intersection (Target : in out Set; Source : Set);
256 -- Iterates over the Target set (calling First and Next), calling Find to
257 -- determine whether the element is in Source. If an equivalent element is
258 -- not found in Source, the element is deleted from Target.
260 function Intersection (Left, Right : Set) return Set;
261 -- Iterates over the Left set, calling Find to determine whether the
262 -- element is in Right. If an equivalent element is found, it is inserted
263 -- into the result set.
265 function "and" (Left, Right : Set) return Set renames Intersection;
267 procedure Difference (Target : in out Set; Source : Set);
268 -- Iterates over the Source (calling First and Next), calling Find to
269 -- determine whether the element is in Target. If an equivalent element is
270 -- found, it is deleted from Target.
272 function Difference (Left, Right : Set) return Set;
273 -- Iterates over the Left set, calling Find to determine whether the
274 -- element is in the Right set. If an equivalent element is not found, the
275 -- element is inserted into the result set.
277 function "-" (Left, Right : Set) return Set renames Difference;
279 procedure Symmetric_Difference (Target : in out Set; Source : Set);
280 -- The operation iterates over the Source set, searching for the element
281 -- in Target (calling Hash and Equivalent_Elements). If an equivalent
282 -- element is found, it is removed from Target; otherwise it is inserted
283 -- into Target.
285 function Symmetric_Difference (Left, Right : Set) return Set;
286 -- The operation first iterates over the Left set. It calls Find to
287 -- determine whether the element is in the Right set. If no equivalent
288 -- element is found, the element from Left is inserted into the result. The
289 -- operation then iterates over the Right set, to determine whether the
290 -- element is in the Left set. If no equivalent element is found, the Right
291 -- element is inserted into the result.
293 function "xor" (Left, Right : Set) return Set
294 renames Symmetric_Difference;
296 function Overlap (Left, Right : Set) return Boolean;
297 -- Iterates over the Left set (calling First and Next), calling Find to
298 -- determine whether the element is in the Right set. If an equivalent
299 -- element is found, the operation immediately returns True. The operation
300 -- returns False if the iteration over Left terminates without finding any
301 -- equivalent element in Right.
303 function Is_Subset (Subset : Set; Of_Set : Set) return Boolean;
304 -- Iterates over Subset (calling First and Next), calling Find to determine
305 -- whether the element is in Of_Set. If no equivalent element is found in
306 -- Of_Set, the operation immediately returns False. The operation returns
307 -- True if the iteration over Subset terminates without finding an element
308 -- not in Of_Set (that is, every element in Subset is equivalent to an
309 -- element in Of_Set).
311 function First (Container : Set) return Cursor;
312 -- Returns a cursor that designates the first non-empty bucket, by
313 -- searching from the beginning of the buckets array.
315 function Next (Position : Cursor) return Cursor;
316 -- Returns a cursor that designates the node that follows the current one
317 -- designated by Position. If Position designates the last node in its
318 -- bucket, the operation calls Hash to compute the index of this bucket,
319 -- and searches the buckets array for the first non-empty bucket, starting
320 -- from that index; otherwise, it simply follows the link to the next node
321 -- in the same bucket.
323 procedure Next (Position : in out Cursor);
324 -- Equivalent to Position := Next (Position)
326 function Find
327 (Container : Set;
328 Item : Element_Type) return Cursor;
329 -- Searches for Item in the set. Find calls Hash to determine the item's
330 -- bucket; if the bucket is not empty, it calls Equivalent_Elements to
331 -- compare Item to each element in the bucket. If the search succeeds, Find
332 -- returns a cursor designating the node containing the equivalent element;
333 -- otherwise, it returns No_Element.
335 function Contains (Container : Set; Item : Element_Type) return Boolean;
336 -- Equivalent to Find (Container, Item) /= No_Element
338 function Equivalent_Elements (Left, Right : Cursor) return Boolean;
339 -- Returns the result of calling Equivalent_Elements with the elements of
340 -- the nodes designated by cursors Left and Right.
342 function Equivalent_Elements
343 (Left : Cursor;
344 Right : Element_Type) return Boolean;
345 -- Returns the result of calling Equivalent_Elements with element of the
346 -- node designated by Left and element Right.
348 function Equivalent_Elements
349 (Left : Element_Type;
350 Right : Cursor) return Boolean;
351 -- Returns the result of calling Equivalent_Elements with element Left and
352 -- the element of the node designated by Right.
354 procedure Iterate
355 (Container : Set;
356 Process : not null access procedure (Position : Cursor));
357 -- Calls Process for each node in the set
359 function Iterate
360 (Container : Set)
361 return Set_Iterator_Interfaces.Forward_Iterator'Class;
363 generic
364 type Key_Type (<>) is private;
366 with function Key (Element : Element_Type) return Key_Type;
368 with function Hash (Key : Key_Type) return Hash_Type;
370 with function Equivalent_Keys (Left, Right : Key_Type) return Boolean;
372 package Generic_Keys is
374 function Key (Position : Cursor) return Key_Type;
375 -- Applies generic formal operation Key to the element of the node
376 -- designated by Position.
378 function Element (Container : Set; Key : Key_Type) return Element_Type;
379 -- Searches (as per the key-based Find) for the node containing Key, and
380 -- returns the associated element.
382 procedure Replace
383 (Container : in out Set;
384 Key : Key_Type;
385 New_Item : Element_Type);
386 -- Searches (as per the key-based Find) for the node containing Key, and
387 -- then replaces the element of that node (as per the element-based
388 -- Replace_Element).
390 procedure Exclude (Container : in out Set; Key : Key_Type);
391 -- Searches for Key in the set, and if found, removes its node from the
392 -- set and then deallocates it. The search works by first calling Hash
393 -- (on Key) to determine the bucket; if the bucket is not empty, it
394 -- calls Equivalent_Keys to compare parameter Key to the value of
395 -- generic formal operation Key applied to element of each node in the
396 -- bucket.
398 procedure Delete (Container : in out Set; Key : Key_Type);
399 -- Deletes the node containing Key as per Exclude, with the difference
400 -- that Constraint_Error is raised if Key is not found.
402 function Find (Container : Set; Key : Key_Type) return Cursor;
403 -- Searches for the node containing Key, and returns a cursor
404 -- designating the node. The search works by first calling Hash (on Key)
405 -- to determine the bucket. If the bucket is not empty, the search
406 -- compares Key to the element of each node in the bucket, and returns
407 -- the matching node. The comparison itself works by applying the
408 -- generic formal Key operation to the element of the node, and then
409 -- calling generic formal operation Equivalent_Keys.
411 function Contains (Container : Set; Key : Key_Type) return Boolean;
412 -- Equivalent to Find (Container, Key) /= No_Element
414 procedure Update_Element_Preserving_Key
415 (Container : in out Set;
416 Position : Cursor;
417 Process : not null access
418 procedure (Element : in out Element_Type));
419 -- Calls Process with the element of the node designated by Position,
420 -- but with the restriction that the key-value of the element is not
421 -- modified. The operation first makes a copy of the value returned by
422 -- applying generic formal operation Key on the element of the node, and
423 -- then calls Process with the element. The operation verifies that the
424 -- key-part has not been modified by calling generic formal operation
425 -- Equivalent_Keys to compare the saved key-value to the value returned
426 -- by applying generic formal operation Key to the post-Process value of
427 -- element. If the key values compare equal then the operation
428 -- completes. Otherwise, the node is removed from the map and
429 -- Program_Error is raised.
431 type Reference_Type (Element : not null access Element_Type) is private
432 with Implicit_Dereference => Element;
434 function Reference_Preserving_Key
435 (Container : aliased in out Set;
436 Position : Cursor) return Reference_Type;
438 function Constant_Reference
439 (Container : aliased Set;
440 Key : Key_Type) return Constant_Reference_Type;
442 function Reference_Preserving_Key
443 (Container : aliased in out Set;
444 Key : Key_Type) return Reference_Type;
446 private
447 type Reference_Type (Element : not null access Element_Type)
448 is null record;
450 use Ada.Streams;
452 procedure Read
453 (Stream : not null access Root_Stream_Type'Class;
454 Item : out Reference_Type);
456 for Reference_Type'Read use Read;
458 procedure Write
459 (Stream : not null access Root_Stream_Type'Class;
460 Item : Reference_Type);
462 for Reference_Type'Write use Write;
464 end Generic_Keys;
466 private
467 pragma Inline (Next);
469 type Node_Type is record
470 Element : aliased Element_Type;
471 Next : Count_Type;
472 end record;
474 package HT_Types is
475 new Hash_Tables.Generic_Bounded_Hash_Table_Types (Node_Type);
477 type Set (Capacity : Count_Type; Modulus : Hash_Type) is
478 new HT_Types.Hash_Table_Type (Capacity, Modulus) with null record;
480 use HT_Types;
481 use Ada.Streams;
483 procedure Write
484 (Stream : not null access Root_Stream_Type'Class;
485 Container : Set);
487 for Set'Write use Write;
489 procedure Read
490 (Stream : not null access Root_Stream_Type'Class;
491 Container : out Set);
493 for Set'Read use Read;
495 type Set_Access is access all Set;
496 for Set_Access'Storage_Size use 0;
498 -- Note: If a Cursor object has no explicit initialization expression,
499 -- it must default initialize to the same value as constant No_Element.
500 -- The Node component of type Cursor has scalar type Count_Type, so it
501 -- requires an explicit initialization expression of its own declaration,
502 -- in order for objects of record type Cursor to properly initialize.
504 type Cursor is record
505 Container : Set_Access;
506 Node : Count_Type := 0;
507 end record;
509 procedure Write
510 (Stream : not null access Root_Stream_Type'Class;
511 Item : Cursor);
513 for Cursor'Write use Write;
515 procedure Read
516 (Stream : not null access Root_Stream_Type'Class;
517 Item : out Cursor);
519 for Cursor'Read use Read;
521 type Constant_Reference_Type
522 (Element : not null access constant Element_Type) is null record;
524 procedure Read
525 (Stream : not null access Root_Stream_Type'Class;
526 Item : out Constant_Reference_Type);
528 for Constant_Reference_Type'Read use Read;
530 procedure Write
531 (Stream : not null access Root_Stream_Type'Class;
532 Item : Constant_Reference_Type);
534 for Constant_Reference_Type'Write use Write;
536 Empty_Set : constant Set :=
537 (Hash_Table_Type with Capacity => 0, Modulus => 0);
539 No_Element : constant Cursor := (Container => null, Node => 0);
541 type Iterator is new Limited_Controlled and
542 Set_Iterator_Interfaces.Forward_Iterator with
543 record
544 Container : Set_Access;
545 end record;
547 overriding procedure Finalize (Object : in out Iterator);
549 overriding function First (Object : Iterator) return Cursor;
551 overriding function Next
552 (Object : Iterator;
553 Position : Cursor) return Cursor;
555 end Ada.Containers.Bounded_Hashed_Sets;