2008-07-06 Kai Tietz <kai.tietz@onevision.com>
[official-gcc.git] / gcc / tree-ssa-dse.c
blob2f7e9238ab15929daacdb6008db0b54ba9e3ef52
1 /* Dead store elimination
2 Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation,
3 Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "basic-block.h"
30 #include "timevar.h"
31 #include "diagnostic.h"
32 #include "tree-flow.h"
33 #include "tree-pass.h"
34 #include "tree-dump.h"
35 #include "domwalk.h"
36 #include "flags.h"
38 /* This file implements dead store elimination.
40 A dead store is a store into a memory location which will later be
41 overwritten by another store without any intervening loads. In this
42 case the earlier store can be deleted.
44 In our SSA + virtual operand world we use immediate uses of virtual
45 operands to detect dead stores. If a store's virtual definition
46 is used precisely once by a later store to the same location which
47 post dominates the first store, then the first store is dead.
49 The single use of the store's virtual definition ensures that
50 there are no intervening aliased loads and the requirement that
51 the second load post dominate the first ensures that if the earlier
52 store executes, then the later stores will execute before the function
53 exits.
55 It may help to think of this as first moving the earlier store to
56 the point immediately before the later store. Again, the single
57 use of the virtual definition and the post-dominance relationship
58 ensure that such movement would be safe. Clearly if there are
59 back to back stores, then the second is redundant.
61 Reviewing section 10.7.2 in Morgan's "Building an Optimizing Compiler"
62 may also help in understanding this code since it discusses the
63 relationship between dead store and redundant load elimination. In
64 fact, they are the same transformation applied to different views of
65 the CFG. */
68 struct dse_global_data
70 /* This is the global bitmap for store statements.
72 Each statement has a unique ID. When we encounter a store statement
73 that we want to record, set the bit corresponding to the statement's
74 unique ID in this bitmap. */
75 bitmap stores;
78 /* We allocate a bitmap-per-block for stores which are encountered
79 during the scan of that block. This allows us to restore the
80 global bitmap of stores when we finish processing a block. */
81 struct dse_block_local_data
83 bitmap stores;
86 /* Basic blocks of the potentially dead store and the following
87 store, for memory_address_same. */
88 struct address_walk_data
90 basic_block store1_bb, store2_bb;
93 static bool gate_dse (void);
94 static unsigned int tree_ssa_dse (void);
95 static void dse_initialize_block_local_data (struct dom_walk_data *,
96 basic_block,
97 bool);
98 static void dse_optimize_stmt (struct dom_walk_data *,
99 basic_block,
100 block_stmt_iterator);
101 static void dse_record_phis (struct dom_walk_data *, basic_block);
102 static void dse_finalize_block (struct dom_walk_data *, basic_block);
103 static void record_voperand_set (bitmap, bitmap *, unsigned int);
105 /* Returns uid of statement STMT. */
107 static unsigned
108 get_stmt_uid (tree stmt)
110 if (TREE_CODE (stmt) == PHI_NODE)
111 return SSA_NAME_VERSION (PHI_RESULT (stmt)) + gimple_stmt_max_uid (cfun);
113 return gimple_stmt_uid (stmt);
116 /* Set bit UID in bitmaps GLOBAL and *LOCAL, creating *LOCAL as needed. */
118 static void
119 record_voperand_set (bitmap global, bitmap *local, unsigned int uid)
121 /* Lazily allocate the bitmap. Note that we do not get a notification
122 when the block local data structures die, so we allocate the local
123 bitmap backed by the GC system. */
124 if (*local == NULL)
125 *local = BITMAP_GGC_ALLOC ();
127 /* Set the bit in the local and global bitmaps. */
128 bitmap_set_bit (*local, uid);
129 bitmap_set_bit (global, uid);
132 /* Initialize block local data structures. */
134 static void
135 dse_initialize_block_local_data (struct dom_walk_data *walk_data,
136 basic_block bb ATTRIBUTE_UNUSED,
137 bool recycled)
139 struct dse_block_local_data *bd
140 = (struct dse_block_local_data *)
141 VEC_last (void_p, walk_data->block_data_stack);
143 /* If we are given a recycled block local data structure, ensure any
144 bitmap associated with the block is cleared. */
145 if (recycled)
147 if (bd->stores)
148 bitmap_clear (bd->stores);
152 /* Helper function for memory_address_same via walk_tree. Returns
153 non-NULL if it finds an SSA_NAME which is part of the address,
154 such that the definition of the SSA_NAME post-dominates the store
155 we want to delete but not the store that we believe makes it
156 redundant. This indicates that the address may change between
157 the two stores. */
159 static tree
160 memory_ssa_name_same (tree *expr_p, int *walk_subtrees ATTRIBUTE_UNUSED,
161 void *data)
163 struct address_walk_data *walk_data = (struct address_walk_data *) data;
164 tree expr = *expr_p;
165 tree def_stmt;
166 basic_block def_bb;
168 if (TREE_CODE (expr) != SSA_NAME)
169 return NULL_TREE;
171 /* If we've found a default definition, then there's no problem. Both
172 stores will post-dominate it. And def_bb will be NULL. */
173 if (SSA_NAME_IS_DEFAULT_DEF (expr))
174 return NULL_TREE;
176 def_stmt = SSA_NAME_DEF_STMT (expr);
177 def_bb = bb_for_stmt (def_stmt);
179 /* DEF_STMT must dominate both stores. So if it is in the same
180 basic block as one, it does not post-dominate that store. */
181 if (walk_data->store1_bb != def_bb
182 && dominated_by_p (CDI_POST_DOMINATORS, walk_data->store1_bb, def_bb))
184 if (walk_data->store2_bb == def_bb
185 || !dominated_by_p (CDI_POST_DOMINATORS, walk_data->store2_bb,
186 def_bb))
187 /* Return non-NULL to stop the walk. */
188 return def_stmt;
191 return NULL_TREE;
194 /* Return TRUE if the destination memory address in STORE1 and STORE2
195 might be modified after STORE1, before control reaches STORE2. */
197 static bool
198 memory_address_same (tree store1, tree store2)
200 struct address_walk_data walk_data;
202 walk_data.store1_bb = bb_for_stmt (store1);
203 walk_data.store2_bb = bb_for_stmt (store2);
205 return (walk_tree (&GIMPLE_STMT_OPERAND (store1, 0), memory_ssa_name_same,
206 &walk_data, NULL)
207 == NULL);
210 /* Return true if there is a stmt that kills the lhs of STMT and is in the
211 virtual def-use chain of STMT without a use in between the kill and STMT.
212 Returns false if no such stmt is found.
213 *FIRST_USE_P is set to the first use of the single virtual def of
214 STMT. *USE_P is set to the vop killed by *USE_STMT. */
216 static bool
217 get_kill_of_stmt_lhs (tree stmt,
218 use_operand_p * first_use_p,
219 use_operand_p * use_p, tree * use_stmt)
221 tree lhs;
223 gcc_assert (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT);
225 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
227 /* We now walk the chain of single uses of the single VDEFs.
228 We succeeded finding a kill if the lhs of the use stmt is
229 equal to the original lhs. We can keep walking to the next
230 use if there are no possible uses of the original lhs in
231 the stmt. */
234 tree use_lhs, use_rhs;
235 def_operand_p def_p;
237 /* The stmt must have a single VDEF. */
238 def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_VDEF);
239 if (def_p == NULL_DEF_OPERAND_P)
240 return false;
242 /* Get the single immediate use of the def. */
243 if (!single_imm_use (DEF_FROM_PTR (def_p), first_use_p, &stmt))
244 return false;
245 first_use_p = use_p;
247 /* If there are possible hidden uses, give up. */
248 if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
249 return false;
250 use_rhs = GIMPLE_STMT_OPERAND (stmt, 1);
251 if (TREE_CODE (use_rhs) == CALL_EXPR
252 || (!is_gimple_min_invariant (use_rhs)
253 && TREE_CODE (use_rhs) != SSA_NAME))
254 return false;
256 /* If the use stmts lhs matches the original lhs we have
257 found the kill, otherwise continue walking. */
258 use_lhs = GIMPLE_STMT_OPERAND (stmt, 0);
259 if (operand_equal_p (use_lhs, lhs, 0))
261 *use_stmt = stmt;
262 return true;
265 while (1);
268 /* A helper of dse_optimize_stmt.
269 Given a GIMPLE_MODIFY_STMT in STMT, check that each VDEF has one
270 use, and that one use is another VDEF clobbering the first one.
272 Return TRUE if the above conditions are met, otherwise FALSE. */
274 static bool
275 dse_possible_dead_store_p (tree stmt,
276 use_operand_p *first_use_p,
277 use_operand_p *use_p,
278 tree *use_stmt,
279 struct dse_global_data *dse_gd,
280 struct dse_block_local_data *bd)
282 ssa_op_iter op_iter;
283 bool fail = false;
284 def_operand_p var1;
285 vuse_vec_p vv;
286 tree defvar = NULL_TREE, temp;
287 tree prev_defvar = NULL_TREE;
289 /* We want to verify that each virtual definition in STMT has
290 precisely one use and that all the virtual definitions are
291 used by the same single statement. When complete, we
292 want USE_STMT to refer to the one statement which uses
293 all of the virtual definitions from STMT. */
294 *use_stmt = NULL;
295 FOR_EACH_SSA_VDEF_OPERAND (var1, vv, stmt, op_iter)
297 defvar = DEF_FROM_PTR (var1);
299 /* If this virtual def does not have precisely one use, then
300 we will not be able to eliminate STMT. */
301 if (!has_single_use (defvar))
303 fail = true;
304 break;
307 /* Get the one and only immediate use of DEFVAR. */
308 single_imm_use (defvar, use_p, &temp);
309 gcc_assert (*use_p != NULL_USE_OPERAND_P);
310 *first_use_p = *use_p;
312 /* ??? If we hit a PHI_NODE we could skip to the PHI_RESULT uses.
313 Don't bother to do that for now. */
314 if (TREE_CODE (temp) == PHI_NODE)
316 fail = true;
317 break;
320 /* In the case of memory partitions, we may get:
322 # MPT.764_162 = VDEF <MPT.764_161(D)>
323 x = {};
324 # MPT.764_167 = VDEF <MPT.764_162>
325 y = {};
327 So we must make sure we're talking about the same LHS.
329 if (TREE_CODE (temp) == GIMPLE_MODIFY_STMT)
331 tree base1 = get_base_address (GIMPLE_STMT_OPERAND (stmt, 0));
332 tree base2 = get_base_address (GIMPLE_STMT_OPERAND (temp, 0));
334 while (base1 && INDIRECT_REF_P (base1))
335 base1 = TREE_OPERAND (base1, 0);
336 while (base2 && INDIRECT_REF_P (base2))
337 base2 = TREE_OPERAND (base2, 0);
339 if (base1 != base2)
341 fail = true;
342 break;
346 /* If the immediate use of DEF_VAR is not the same as the
347 previously find immediate uses, then we will not be able
348 to eliminate STMT. */
349 if (*use_stmt == NULL)
351 *use_stmt = temp;
352 prev_defvar = defvar;
354 else if (temp != *use_stmt)
356 fail = true;
357 break;
361 if (fail)
363 record_voperand_set (dse_gd->stores, &bd->stores, gimple_stmt_uid (stmt));
364 return false;
367 return true;
371 /* Attempt to eliminate dead stores in the statement referenced by BSI.
373 A dead store is a store into a memory location which will later be
374 overwritten by another store without any intervening loads. In this
375 case the earlier store can be deleted.
377 In our SSA + virtual operand world we use immediate uses of virtual
378 operands to detect dead stores. If a store's virtual definition
379 is used precisely once by a later store to the same location which
380 post dominates the first store, then the first store is dead. */
382 static void
383 dse_optimize_stmt (struct dom_walk_data *walk_data,
384 basic_block bb ATTRIBUTE_UNUSED,
385 block_stmt_iterator bsi)
387 struct dse_block_local_data *bd
388 = (struct dse_block_local_data *)
389 VEC_last (void_p, walk_data->block_data_stack);
390 struct dse_global_data *dse_gd
391 = (struct dse_global_data *) walk_data->global_data;
392 tree stmt = bsi_stmt (bsi);
393 stmt_ann_t ann = stmt_ann (stmt);
395 /* If this statement has no virtual defs, then there is nothing
396 to do. */
397 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VDEF))
398 return;
400 /* We know we have virtual definitions. If this is a GIMPLE_MODIFY_STMT
401 that's not also a function call, then record it into our table. */
402 if (get_call_expr_in (stmt))
403 return;
405 if (ann->has_volatile_ops)
406 return;
408 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
410 use_operand_p first_use_p = NULL_USE_OPERAND_P;
411 use_operand_p use_p = NULL;
412 tree use_stmt;
414 if (!dse_possible_dead_store_p (stmt, &first_use_p, &use_p, &use_stmt,
415 dse_gd, bd))
416 return;
418 /* If we have precisely one immediate use at this point, then we may
419 have found redundant store. Make sure that the stores are to
420 the same memory location. This includes checking that any
421 SSA-form variables in the address will have the same values. */
422 if (use_p != NULL_USE_OPERAND_P
423 && bitmap_bit_p (dse_gd->stores, get_stmt_uid (use_stmt))
424 && !operand_equal_p (GIMPLE_STMT_OPERAND (stmt, 0),
425 GIMPLE_STMT_OPERAND (use_stmt, 0), 0)
426 && memory_address_same (stmt, use_stmt))
428 /* If we have precisely one immediate use at this point, but
429 the stores are not to the same memory location then walk the
430 virtual def-use chain to get the stmt which stores to that same
431 memory location. */
432 if (!get_kill_of_stmt_lhs (stmt, &first_use_p, &use_p, &use_stmt))
434 record_voperand_set (dse_gd->stores, &bd->stores, gimple_stmt_uid (stmt));
435 return;
439 /* If we have precisely one immediate use at this point and the
440 stores are to the same memory location or there is a chain of
441 virtual uses from stmt and the stmt which stores to that same
442 memory location, then we may have found redundant store. */
443 if (use_p != NULL_USE_OPERAND_P
444 && bitmap_bit_p (dse_gd->stores, get_stmt_uid (use_stmt))
445 && operand_equal_p (GIMPLE_STMT_OPERAND (stmt, 0),
446 GIMPLE_STMT_OPERAND (use_stmt, 0), 0)
447 && memory_address_same (stmt, use_stmt))
449 ssa_op_iter op_iter;
450 def_operand_p var1;
451 vuse_vec_p vv;
452 tree stmt_lhs;
454 /* If use_stmt is or might be a nop assignment, e.g. for
455 struct { ... } S a, b, *p; ...
456 b = a; b = b;
458 b = a; b = *p; where p might be &b,
460 *p = a; *p = b; where p might be &b,
462 *p = *u; *p = *v; where p might be v, then USE_STMT
463 acts as a use as well as definition, so store in STMT
464 is not dead. */
465 if (LOADED_SYMS (use_stmt)
466 && bitmap_intersect_p (LOADED_SYMS (use_stmt),
467 STORED_SYMS (use_stmt)))
469 record_voperand_set (dse_gd->stores, &bd->stores, ann->uid);
470 return;
473 if (dump_file && (dump_flags & TDF_DETAILS))
475 fprintf (dump_file, " Deleted dead store '");
476 print_generic_expr (dump_file, bsi_stmt (bsi), dump_flags);
477 fprintf (dump_file, "'\n");
480 /* Then we need to fix the operand of the consuming stmt. */
481 stmt_lhs = USE_FROM_PTR (first_use_p);
482 FOR_EACH_SSA_VDEF_OPERAND (var1, vv, stmt, op_iter)
484 tree usevar, temp;
486 single_imm_use (DEF_FROM_PTR (var1), &use_p, &temp);
487 gcc_assert (VUSE_VECT_NUM_ELEM (*vv) == 1);
488 usevar = VUSE_ELEMENT_VAR (*vv, 0);
489 SET_USE (use_p, usevar);
491 /* Make sure we propagate the ABNORMAL bit setting. */
492 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (stmt_lhs))
493 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (usevar) = 1;
496 /* Remove the dead store. */
497 bsi_remove (&bsi, true);
499 /* And release any SSA_NAMEs set in this statement back to the
500 SSA_NAME manager. */
501 release_defs (stmt);
504 record_voperand_set (dse_gd->stores, &bd->stores, gimple_stmt_uid (stmt));
508 /* Record that we have seen the PHIs at the start of BB which correspond
509 to virtual operands. */
510 static void
511 dse_record_phis (struct dom_walk_data *walk_data, basic_block bb)
513 struct dse_block_local_data *bd
514 = (struct dse_block_local_data *)
515 VEC_last (void_p, walk_data->block_data_stack);
516 struct dse_global_data *dse_gd
517 = (struct dse_global_data *) walk_data->global_data;
518 tree phi;
520 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
521 if (!is_gimple_reg (PHI_RESULT (phi)))
522 record_voperand_set (dse_gd->stores,
523 &bd->stores,
524 get_stmt_uid (phi));
527 static void
528 dse_finalize_block (struct dom_walk_data *walk_data,
529 basic_block bb ATTRIBUTE_UNUSED)
531 struct dse_block_local_data *bd
532 = (struct dse_block_local_data *)
533 VEC_last (void_p, walk_data->block_data_stack);
534 struct dse_global_data *dse_gd
535 = (struct dse_global_data *) walk_data->global_data;
536 bitmap stores = dse_gd->stores;
537 unsigned int i;
538 bitmap_iterator bi;
540 /* Unwind the stores noted in this basic block. */
541 if (bd->stores)
542 EXECUTE_IF_SET_IN_BITMAP (bd->stores, 0, i, bi)
544 bitmap_clear_bit (stores, i);
548 /* Main entry point. */
550 static unsigned int
551 tree_ssa_dse (void)
553 struct dom_walk_data walk_data;
554 struct dse_global_data dse_gd;
556 renumber_gimple_stmt_uids ();
558 /* We might consider making this a property of each pass so that it
559 can be [re]computed on an as-needed basis. Particularly since
560 this pass could be seen as an extension of DCE which needs post
561 dominators. */
562 calculate_dominance_info (CDI_POST_DOMINATORS);
564 /* Dead store elimination is fundamentally a walk of the post-dominator
565 tree and a backwards walk of statements within each block. */
566 walk_data.walk_stmts_backward = true;
567 walk_data.dom_direction = CDI_POST_DOMINATORS;
568 walk_data.initialize_block_local_data = dse_initialize_block_local_data;
569 walk_data.before_dom_children_before_stmts = NULL;
570 walk_data.before_dom_children_walk_stmts = dse_optimize_stmt;
571 walk_data.before_dom_children_after_stmts = dse_record_phis;
572 walk_data.after_dom_children_before_stmts = NULL;
573 walk_data.after_dom_children_walk_stmts = NULL;
574 walk_data.after_dom_children_after_stmts = dse_finalize_block;
575 walk_data.interesting_blocks = NULL;
577 walk_data.block_local_data_size = sizeof (struct dse_block_local_data);
579 /* This is the main hash table for the dead store elimination pass. */
580 dse_gd.stores = BITMAP_ALLOC (NULL);
581 walk_data.global_data = &dse_gd;
583 /* Initialize the dominator walker. */
584 init_walk_dominator_tree (&walk_data);
586 /* Recursively walk the dominator tree. */
587 walk_dominator_tree (&walk_data, EXIT_BLOCK_PTR);
589 /* Finalize the dominator walker. */
590 fini_walk_dominator_tree (&walk_data);
592 /* Release the main bitmap. */
593 BITMAP_FREE (dse_gd.stores);
595 /* For now, just wipe the post-dominator information. */
596 free_dominance_info (CDI_POST_DOMINATORS);
597 return 0;
600 static bool
601 gate_dse (void)
603 return flag_tree_dse != 0;
606 struct gimple_opt_pass pass_dse =
609 GIMPLE_PASS,
610 "dse", /* name */
611 gate_dse, /* gate */
612 tree_ssa_dse, /* execute */
613 NULL, /* sub */
614 NULL, /* next */
615 0, /* static_pass_number */
616 TV_TREE_DSE, /* tv_id */
617 PROP_cfg
618 | PROP_ssa
619 | PROP_alias, /* properties_required */
620 0, /* properties_provided */
621 0, /* properties_destroyed */
622 0, /* todo_flags_start */
623 TODO_dump_func
624 | TODO_ggc_collect
625 | TODO_verify_ssa /* todo_flags_finish */
629 /* A very simple dead store pass eliminating write only local variables.
630 The pass does not require alias information and thus can be run before
631 inlining to quickly eliminate artifacts of some common C++ constructs. */
633 static unsigned int
634 execute_simple_dse (void)
636 block_stmt_iterator bsi;
637 basic_block bb;
638 bitmap variables_loaded = BITMAP_ALLOC (NULL);
639 unsigned int todo = 0;
641 /* Collect into VARIABLES LOADED all variables that are read in function
642 body. */
643 FOR_EACH_BB (bb)
644 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
645 if (LOADED_SYMS (bsi_stmt (bsi)))
646 bitmap_ior_into (variables_loaded,
647 LOADED_SYMS (bsi_stmt (bsi)));
649 /* Look for statements writing into the write only variables.
650 And try to remove them. */
652 FOR_EACH_BB (bb)
653 for (bsi = bsi_start (bb); !bsi_end_p (bsi);)
655 tree stmt = bsi_stmt (bsi), op;
656 bool removed = false;
657 ssa_op_iter iter;
659 if (STORED_SYMS (stmt) && TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
660 && TREE_CODE (stmt) != RETURN_EXPR
661 && !bitmap_intersect_p (STORED_SYMS (stmt), variables_loaded))
663 unsigned int i;
664 bitmap_iterator bi;
665 bool dead = true;
669 /* See if STMT only stores to write-only variables and
670 verify that there are no volatile operands. tree-ssa-operands
671 sets has_volatile_ops flag for all statements involving
672 reads and writes when aliases are not built to prevent passes
673 from removing them as dead. The flag thus has no use for us
674 and we need to look into all operands. */
676 EXECUTE_IF_SET_IN_BITMAP (STORED_SYMS (stmt), 0, i, bi)
678 tree var = referenced_var_lookup (i);
679 if (TREE_ADDRESSABLE (var)
680 || is_global_var (var)
681 || TREE_THIS_VOLATILE (var))
682 dead = false;
685 if (dead && LOADED_SYMS (stmt))
686 EXECUTE_IF_SET_IN_BITMAP (LOADED_SYMS (stmt), 0, i, bi)
687 if (TREE_THIS_VOLATILE (referenced_var_lookup (i)))
688 dead = false;
690 if (dead)
691 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_ALL_OPERANDS)
692 if (TREE_THIS_VOLATILE (op))
693 dead = false;
695 /* Look for possible occurrence var = indirect_ref (...) where
696 indirect_ref itself is volatile. */
698 if (dead && TREE_THIS_VOLATILE (GIMPLE_STMT_OPERAND (stmt, 1)))
699 dead = false;
701 if (dead)
703 tree call = get_call_expr_in (stmt);
705 /* When LHS of var = call (); is dead, simplify it into
706 call (); saving one operand. */
707 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
708 && call
709 && TREE_SIDE_EFFECTS (call))
711 if (dump_file && (dump_flags & TDF_DETAILS))
713 fprintf (dump_file, "Deleted LHS of call: ");
714 print_generic_stmt (dump_file, stmt, TDF_SLIM);
715 fprintf (dump_file, "\n");
717 push_stmt_changes (bsi_stmt_ptr (bsi));
718 TREE_BLOCK (call) = TREE_BLOCK (stmt);
719 bsi_replace (&bsi, call, false);
720 maybe_clean_or_replace_eh_stmt (stmt, call);
721 mark_symbols_for_renaming (call);
722 pop_stmt_changes (bsi_stmt_ptr (bsi));
724 else
726 if (dump_file && (dump_flags & TDF_DETAILS))
728 fprintf (dump_file, " Deleted dead store '");
729 print_generic_expr (dump_file, stmt, dump_flags);
730 fprintf (dump_file, "'\n");
732 removed = true;
733 bsi_remove (&bsi, true);
734 todo |= TODO_cleanup_cfg;
736 todo |= TODO_remove_unused_locals | TODO_ggc_collect;
739 if (!removed)
740 bsi_next (&bsi);
742 BITMAP_FREE (variables_loaded);
743 return todo;
746 struct gimple_opt_pass pass_simple_dse =
749 GIMPLE_PASS,
750 "sdse", /* name */
751 NULL, /* gate */
752 execute_simple_dse, /* execute */
753 NULL, /* sub */
754 NULL, /* next */
755 0, /* static_pass_number */
756 0, /* tv_id */
757 PROP_ssa, /* properties_required */
758 0, /* properties_provided */
759 0, /* properties_destroyed */
760 0, /* todo_flags_start */
761 TODO_dump_func /* todo_flags_finish */