2008-07-06 Kai Tietz <kai.tietz@onevision.com>
[official-gcc.git] / gcc / reload1.c
blobf449ffa9c32836c09d042f15cfe050045d4b918a
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "addresses.h"
39 #include "basic-block.h"
40 #include "reload.h"
41 #include "recog.h"
42 #include "output.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "except.h"
46 #include "tree.h"
47 #include "df.h"
48 #include "target.h"
49 #include "dse.h"
51 /* This file contains the reload pass of the compiler, which is
52 run after register allocation has been done. It checks that
53 each insn is valid (operands required to be in registers really
54 are in registers of the proper class) and fixes up invalid ones
55 by copying values temporarily into registers for the insns
56 that need them.
58 The results of register allocation are described by the vector
59 reg_renumber; the insns still contain pseudo regs, but reg_renumber
60 can be used to find which hard reg, if any, a pseudo reg is in.
62 The technique we always use is to free up a few hard regs that are
63 called ``reload regs'', and for each place where a pseudo reg
64 must be in a hard reg, copy it temporarily into one of the reload regs.
66 Reload regs are allocated locally for every instruction that needs
67 reloads. When there are pseudos which are allocated to a register that
68 has been chosen as a reload reg, such pseudos must be ``spilled''.
69 This means that they go to other hard regs, or to stack slots if no other
70 available hard regs can be found. Spilling can invalidate more
71 insns, requiring additional need for reloads, so we must keep checking
72 until the process stabilizes.
74 For machines with different classes of registers, we must keep track
75 of the register class needed for each reload, and make sure that
76 we allocate enough reload registers of each class.
78 The file reload.c contains the code that checks one insn for
79 validity and reports the reloads that it needs. This file
80 is in charge of scanning the entire rtl code, accumulating the
81 reload needs, spilling, assigning reload registers to use for
82 fixing up each insn, and generating the new insns to copy values
83 into the reload registers. */
85 /* During reload_as_needed, element N contains a REG rtx for the hard reg
86 into which reg N has been reloaded (perhaps for a previous insn). */
87 static rtx *reg_last_reload_reg;
89 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
90 for an output reload that stores into reg N. */
91 static regset_head reg_has_output_reload;
93 /* Indicates which hard regs are reload-registers for an output reload
94 in the current insn. */
95 static HARD_REG_SET reg_is_output_reload;
97 /* Element N is the constant value to which pseudo reg N is equivalent,
98 or zero if pseudo reg N is not equivalent to a constant.
99 find_reloads looks at this in order to replace pseudo reg N
100 with the constant it stands for. */
101 rtx *reg_equiv_constant;
103 /* Element N is an invariant value to which pseudo reg N is equivalent.
104 eliminate_regs_in_insn uses this to replace pseudos in particular
105 contexts. */
106 rtx *reg_equiv_invariant;
108 /* Element N is a memory location to which pseudo reg N is equivalent,
109 prior to any register elimination (such as frame pointer to stack
110 pointer). Depending on whether or not it is a valid address, this value
111 is transferred to either reg_equiv_address or reg_equiv_mem. */
112 rtx *reg_equiv_memory_loc;
114 /* We allocate reg_equiv_memory_loc inside a varray so that the garbage
115 collector can keep track of what is inside. */
116 VEC(rtx,gc) *reg_equiv_memory_loc_vec;
118 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
119 This is used when the address is not valid as a memory address
120 (because its displacement is too big for the machine.) */
121 rtx *reg_equiv_address;
123 /* Element N is the memory slot to which pseudo reg N is equivalent,
124 or zero if pseudo reg N is not equivalent to a memory slot. */
125 rtx *reg_equiv_mem;
127 /* Element N is an EXPR_LIST of REG_EQUIVs containing MEMs with
128 alternate representations of the location of pseudo reg N. */
129 rtx *reg_equiv_alt_mem_list;
131 /* Widest width in which each pseudo reg is referred to (via subreg). */
132 static unsigned int *reg_max_ref_width;
134 /* Element N is the list of insns that initialized reg N from its equivalent
135 constant or memory slot. */
136 rtx *reg_equiv_init;
137 int reg_equiv_init_size;
139 /* Vector to remember old contents of reg_renumber before spilling. */
140 static short *reg_old_renumber;
142 /* During reload_as_needed, element N contains the last pseudo regno reloaded
143 into hard register N. If that pseudo reg occupied more than one register,
144 reg_reloaded_contents points to that pseudo for each spill register in
145 use; all of these must remain set for an inheritance to occur. */
146 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
148 /* During reload_as_needed, element N contains the insn for which
149 hard register N was last used. Its contents are significant only
150 when reg_reloaded_valid is set for this register. */
151 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
153 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
154 static HARD_REG_SET reg_reloaded_valid;
155 /* Indicate if the register was dead at the end of the reload.
156 This is only valid if reg_reloaded_contents is set and valid. */
157 static HARD_REG_SET reg_reloaded_dead;
159 /* Indicate whether the register's current value is one that is not
160 safe to retain across a call, even for registers that are normally
161 call-saved. This is only meaningful for members of reg_reloaded_valid. */
162 static HARD_REG_SET reg_reloaded_call_part_clobbered;
164 /* Number of spill-regs so far; number of valid elements of spill_regs. */
165 static int n_spills;
167 /* In parallel with spill_regs, contains REG rtx's for those regs.
168 Holds the last rtx used for any given reg, or 0 if it has never
169 been used for spilling yet. This rtx is reused, provided it has
170 the proper mode. */
171 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
173 /* In parallel with spill_regs, contains nonzero for a spill reg
174 that was stored after the last time it was used.
175 The precise value is the insn generated to do the store. */
176 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
178 /* This is the register that was stored with spill_reg_store. This is a
179 copy of reload_out / reload_out_reg when the value was stored; if
180 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
181 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
183 /* This table is the inverse mapping of spill_regs:
184 indexed by hard reg number,
185 it contains the position of that reg in spill_regs,
186 or -1 for something that is not in spill_regs.
188 ?!? This is no longer accurate. */
189 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
191 /* This reg set indicates registers that can't be used as spill registers for
192 the currently processed insn. These are the hard registers which are live
193 during the insn, but not allocated to pseudos, as well as fixed
194 registers. */
195 static HARD_REG_SET bad_spill_regs;
197 /* These are the hard registers that can't be used as spill register for any
198 insn. This includes registers used for user variables and registers that
199 we can't eliminate. A register that appears in this set also can't be used
200 to retry register allocation. */
201 static HARD_REG_SET bad_spill_regs_global;
203 /* Describes order of use of registers for reloading
204 of spilled pseudo-registers. `n_spills' is the number of
205 elements that are actually valid; new ones are added at the end.
207 Both spill_regs and spill_reg_order are used on two occasions:
208 once during find_reload_regs, where they keep track of the spill registers
209 for a single insn, but also during reload_as_needed where they show all
210 the registers ever used by reload. For the latter case, the information
211 is calculated during finish_spills. */
212 static short spill_regs[FIRST_PSEUDO_REGISTER];
214 /* This vector of reg sets indicates, for each pseudo, which hard registers
215 may not be used for retrying global allocation because the register was
216 formerly spilled from one of them. If we allowed reallocating a pseudo to
217 a register that it was already allocated to, reload might not
218 terminate. */
219 static HARD_REG_SET *pseudo_previous_regs;
221 /* This vector of reg sets indicates, for each pseudo, which hard
222 registers may not be used for retrying global allocation because they
223 are used as spill registers during one of the insns in which the
224 pseudo is live. */
225 static HARD_REG_SET *pseudo_forbidden_regs;
227 /* All hard regs that have been used as spill registers for any insn are
228 marked in this set. */
229 static HARD_REG_SET used_spill_regs;
231 /* Index of last register assigned as a spill register. We allocate in
232 a round-robin fashion. */
233 static int last_spill_reg;
235 /* Nonzero if indirect addressing is supported on the machine; this means
236 that spilling (REG n) does not require reloading it into a register in
237 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
238 value indicates the level of indirect addressing supported, e.g., two
239 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
240 a hard register. */
241 static char spill_indirect_levels;
243 /* Nonzero if indirect addressing is supported when the innermost MEM is
244 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
245 which these are valid is the same as spill_indirect_levels, above. */
246 char indirect_symref_ok;
248 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
249 char double_reg_address_ok;
251 /* Record the stack slot for each spilled hard register. */
252 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
254 /* Width allocated so far for that stack slot. */
255 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
257 /* Record which pseudos needed to be spilled. */
258 static regset_head spilled_pseudos;
260 /* Used for communication between order_regs_for_reload and count_pseudo.
261 Used to avoid counting one pseudo twice. */
262 static regset_head pseudos_counted;
264 /* First uid used by insns created by reload in this function.
265 Used in find_equiv_reg. */
266 int reload_first_uid;
268 /* Flag set by local-alloc or global-alloc if anything is live in
269 a call-clobbered reg across calls. */
270 int caller_save_needed;
272 /* Set to 1 while reload_as_needed is operating.
273 Required by some machines to handle any generated moves differently. */
274 int reload_in_progress = 0;
276 /* These arrays record the insn_code of insns that may be needed to
277 perform input and output reloads of special objects. They provide a
278 place to pass a scratch register. */
279 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
280 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
282 /* This obstack is used for allocation of rtl during register elimination.
283 The allocated storage can be freed once find_reloads has processed the
284 insn. */
285 static struct obstack reload_obstack;
287 /* Points to the beginning of the reload_obstack. All insn_chain structures
288 are allocated first. */
289 static char *reload_startobj;
291 /* The point after all insn_chain structures. Used to quickly deallocate
292 memory allocated in copy_reloads during calculate_needs_all_insns. */
293 static char *reload_firstobj;
295 /* This points before all local rtl generated by register elimination.
296 Used to quickly free all memory after processing one insn. */
297 static char *reload_insn_firstobj;
299 /* List of insn_chain instructions, one for every insn that reload needs to
300 examine. */
301 struct insn_chain *reload_insn_chain;
303 /* List of all insns needing reloads. */
304 static struct insn_chain *insns_need_reload;
306 /* This structure is used to record information about register eliminations.
307 Each array entry describes one possible way of eliminating a register
308 in favor of another. If there is more than one way of eliminating a
309 particular register, the most preferred should be specified first. */
311 struct elim_table
313 int from; /* Register number to be eliminated. */
314 int to; /* Register number used as replacement. */
315 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
316 int can_eliminate; /* Nonzero if this elimination can be done. */
317 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
318 insns made by reload. */
319 HOST_WIDE_INT offset; /* Current offset between the two regs. */
320 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
321 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
322 rtx from_rtx; /* REG rtx for the register to be eliminated.
323 We cannot simply compare the number since
324 we might then spuriously replace a hard
325 register corresponding to a pseudo
326 assigned to the reg to be eliminated. */
327 rtx to_rtx; /* REG rtx for the replacement. */
330 static struct elim_table *reg_eliminate = 0;
332 /* This is an intermediate structure to initialize the table. It has
333 exactly the members provided by ELIMINABLE_REGS. */
334 static const struct elim_table_1
336 const int from;
337 const int to;
338 } reg_eliminate_1[] =
340 /* If a set of eliminable registers was specified, define the table from it.
341 Otherwise, default to the normal case of the frame pointer being
342 replaced by the stack pointer. */
344 #ifdef ELIMINABLE_REGS
345 ELIMINABLE_REGS;
346 #else
347 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
348 #endif
350 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
352 /* Record the number of pending eliminations that have an offset not equal
353 to their initial offset. If nonzero, we use a new copy of each
354 replacement result in any insns encountered. */
355 int num_not_at_initial_offset;
357 /* Count the number of registers that we may be able to eliminate. */
358 static int num_eliminable;
359 /* And the number of registers that are equivalent to a constant that
360 can be eliminated to frame_pointer / arg_pointer + constant. */
361 static int num_eliminable_invariants;
363 /* For each label, we record the offset of each elimination. If we reach
364 a label by more than one path and an offset differs, we cannot do the
365 elimination. This information is indexed by the difference of the
366 number of the label and the first label number. We can't offset the
367 pointer itself as this can cause problems on machines with segmented
368 memory. The first table is an array of flags that records whether we
369 have yet encountered a label and the second table is an array of arrays,
370 one entry in the latter array for each elimination. */
372 static int first_label_num;
373 static char *offsets_known_at;
374 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
376 /* Number of labels in the current function. */
378 static int num_labels;
380 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
381 static void maybe_fix_stack_asms (void);
382 static void copy_reloads (struct insn_chain *);
383 static void calculate_needs_all_insns (int);
384 static int find_reg (struct insn_chain *, int);
385 static void find_reload_regs (struct insn_chain *);
386 static void select_reload_regs (void);
387 static void delete_caller_save_insns (void);
389 static void spill_failure (rtx, enum reg_class);
390 static void count_spilled_pseudo (int, int, int);
391 static void delete_dead_insn (rtx);
392 static void alter_reg (int, int);
393 static void set_label_offsets (rtx, rtx, int);
394 static void check_eliminable_occurrences (rtx);
395 static void elimination_effects (rtx, enum machine_mode);
396 static int eliminate_regs_in_insn (rtx, int);
397 static void update_eliminable_offsets (void);
398 static void mark_not_eliminable (rtx, const_rtx, void *);
399 static void set_initial_elim_offsets (void);
400 static bool verify_initial_elim_offsets (void);
401 static void set_initial_label_offsets (void);
402 static void set_offsets_for_label (rtx);
403 static void init_elim_table (void);
404 static void update_eliminables (HARD_REG_SET *);
405 static void spill_hard_reg (unsigned int, int);
406 static int finish_spills (int);
407 static void scan_paradoxical_subregs (rtx);
408 static void count_pseudo (int);
409 static void order_regs_for_reload (struct insn_chain *);
410 static void reload_as_needed (int);
411 static void forget_old_reloads_1 (rtx, const_rtx, void *);
412 static void forget_marked_reloads (regset);
413 static int reload_reg_class_lower (const void *, const void *);
414 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
415 enum machine_mode);
416 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
417 enum machine_mode);
418 static int reload_reg_free_p (unsigned int, int, enum reload_type);
419 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
420 rtx, rtx, int, int);
421 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
422 rtx, rtx, int, int);
423 static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
424 static int allocate_reload_reg (struct insn_chain *, int, int);
425 static int conflicts_with_override (rtx);
426 static void failed_reload (rtx, int);
427 static int set_reload_reg (int, int);
428 static void choose_reload_regs_init (struct insn_chain *, rtx *);
429 static void choose_reload_regs (struct insn_chain *);
430 static void merge_assigned_reloads (rtx);
431 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
432 rtx, int);
433 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
434 int);
435 static void do_input_reload (struct insn_chain *, struct reload *, int);
436 static void do_output_reload (struct insn_chain *, struct reload *, int);
437 static void emit_reload_insns (struct insn_chain *);
438 static void delete_output_reload (rtx, int, int, rtx);
439 static void delete_address_reloads (rtx, rtx);
440 static void delete_address_reloads_1 (rtx, rtx, rtx);
441 static rtx inc_for_reload (rtx, rtx, rtx, int);
442 #ifdef AUTO_INC_DEC
443 static void add_auto_inc_notes (rtx, rtx);
444 #endif
445 static void copy_eh_notes (rtx, rtx);
446 static int reloads_conflict (int, int);
447 static rtx gen_reload (rtx, rtx, int, enum reload_type);
448 static rtx emit_insn_if_valid_for_reload (rtx);
450 /* Initialize the reload pass. This is called at the beginning of compilation
451 and may be called again if the target is reinitialized. */
453 void
454 init_reload (void)
456 int i;
458 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
459 Set spill_indirect_levels to the number of levels such addressing is
460 permitted, zero if it is not permitted at all. */
462 rtx tem
463 = gen_rtx_MEM (Pmode,
464 gen_rtx_PLUS (Pmode,
465 gen_rtx_REG (Pmode,
466 LAST_VIRTUAL_REGISTER + 1),
467 GEN_INT (4)));
468 spill_indirect_levels = 0;
470 while (memory_address_p (QImode, tem))
472 spill_indirect_levels++;
473 tem = gen_rtx_MEM (Pmode, tem);
476 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
478 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
479 indirect_symref_ok = memory_address_p (QImode, tem);
481 /* See if reg+reg is a valid (and offsettable) address. */
483 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
485 tem = gen_rtx_PLUS (Pmode,
486 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
487 gen_rtx_REG (Pmode, i));
489 /* This way, we make sure that reg+reg is an offsettable address. */
490 tem = plus_constant (tem, 4);
492 if (memory_address_p (QImode, tem))
494 double_reg_address_ok = 1;
495 break;
499 /* Initialize obstack for our rtl allocation. */
500 gcc_obstack_init (&reload_obstack);
501 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
503 INIT_REG_SET (&spilled_pseudos);
504 INIT_REG_SET (&pseudos_counted);
507 /* List of insn chains that are currently unused. */
508 static struct insn_chain *unused_insn_chains = 0;
510 /* Allocate an empty insn_chain structure. */
511 struct insn_chain *
512 new_insn_chain (void)
514 struct insn_chain *c;
516 if (unused_insn_chains == 0)
518 c = XOBNEW (&reload_obstack, struct insn_chain);
519 INIT_REG_SET (&c->live_throughout);
520 INIT_REG_SET (&c->dead_or_set);
522 else
524 c = unused_insn_chains;
525 unused_insn_chains = c->next;
527 c->is_caller_save_insn = 0;
528 c->need_operand_change = 0;
529 c->need_reload = 0;
530 c->need_elim = 0;
531 return c;
534 /* Small utility function to set all regs in hard reg set TO which are
535 allocated to pseudos in regset FROM. */
537 void
538 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
540 unsigned int regno;
541 reg_set_iterator rsi;
543 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
545 int r = reg_renumber[regno];
547 if (r < 0)
549 /* reload_combine uses the information from
550 DF_LIVE_IN (BASIC_BLOCK), which might still
551 contain registers that have not actually been allocated
552 since they have an equivalence. */
553 gcc_assert (reload_completed);
555 else
556 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
560 /* Replace all pseudos found in LOC with their corresponding
561 equivalences. */
563 static void
564 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
566 rtx x = *loc;
567 enum rtx_code code;
568 const char *fmt;
569 int i, j;
571 if (! x)
572 return;
574 code = GET_CODE (x);
575 if (code == REG)
577 unsigned int regno = REGNO (x);
579 if (regno < FIRST_PSEUDO_REGISTER)
580 return;
582 x = eliminate_regs (x, mem_mode, usage);
583 if (x != *loc)
585 *loc = x;
586 replace_pseudos_in (loc, mem_mode, usage);
587 return;
590 if (reg_equiv_constant[regno])
591 *loc = reg_equiv_constant[regno];
592 else if (reg_equiv_mem[regno])
593 *loc = reg_equiv_mem[regno];
594 else if (reg_equiv_address[regno])
595 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
596 else
598 gcc_assert (!REG_P (regno_reg_rtx[regno])
599 || REGNO (regno_reg_rtx[regno]) != regno);
600 *loc = regno_reg_rtx[regno];
603 return;
605 else if (code == MEM)
607 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
608 return;
611 /* Process each of our operands recursively. */
612 fmt = GET_RTX_FORMAT (code);
613 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
614 if (*fmt == 'e')
615 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
616 else if (*fmt == 'E')
617 for (j = 0; j < XVECLEN (x, i); j++)
618 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
621 /* Determine if the current function has an exception receiver block
622 that reaches the exit block via non-exceptional edges */
624 static bool
625 has_nonexceptional_receiver (void)
627 edge e;
628 edge_iterator ei;
629 basic_block *tos, *worklist, bb;
631 /* If we're not optimizing, then just err on the safe side. */
632 if (!optimize)
633 return true;
635 /* First determine which blocks can reach exit via normal paths. */
636 tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
638 FOR_EACH_BB (bb)
639 bb->flags &= ~BB_REACHABLE;
641 /* Place the exit block on our worklist. */
642 EXIT_BLOCK_PTR->flags |= BB_REACHABLE;
643 *tos++ = EXIT_BLOCK_PTR;
645 /* Iterate: find everything reachable from what we've already seen. */
646 while (tos != worklist)
648 bb = *--tos;
650 FOR_EACH_EDGE (e, ei, bb->preds)
651 if (!(e->flags & EDGE_ABNORMAL))
653 basic_block src = e->src;
655 if (!(src->flags & BB_REACHABLE))
657 src->flags |= BB_REACHABLE;
658 *tos++ = src;
662 free (worklist);
664 /* Now see if there's a reachable block with an exceptional incoming
665 edge. */
666 FOR_EACH_BB (bb)
667 if (bb->flags & BB_REACHABLE)
668 FOR_EACH_EDGE (e, ei, bb->preds)
669 if (e->flags & EDGE_ABNORMAL)
670 return true;
672 /* No exceptional block reached exit unexceptionally. */
673 return false;
677 /* Global variables used by reload and its subroutines. */
679 /* Set during calculate_needs if an insn needs register elimination. */
680 static int something_needs_elimination;
681 /* Set during calculate_needs if an insn needs an operand changed. */
682 static int something_needs_operands_changed;
684 /* Nonzero means we couldn't get enough spill regs. */
685 static int failure;
687 /* Main entry point for the reload pass.
689 FIRST is the first insn of the function being compiled.
691 GLOBAL nonzero means we were called from global_alloc
692 and should attempt to reallocate any pseudoregs that we
693 displace from hard regs we will use for reloads.
694 If GLOBAL is zero, we do not have enough information to do that,
695 so any pseudo reg that is spilled must go to the stack.
697 Return value is nonzero if reload failed
698 and we must not do any more for this function. */
701 reload (rtx first, int global)
703 int i;
704 rtx insn;
705 struct elim_table *ep;
706 basic_block bb;
708 /* Make sure even insns with volatile mem refs are recognizable. */
709 init_recog ();
711 failure = 0;
713 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
715 /* Make sure that the last insn in the chain
716 is not something that needs reloading. */
717 emit_note (NOTE_INSN_DELETED);
719 /* Enable find_equiv_reg to distinguish insns made by reload. */
720 reload_first_uid = get_max_uid ();
722 #ifdef SECONDARY_MEMORY_NEEDED
723 /* Initialize the secondary memory table. */
724 clear_secondary_mem ();
725 #endif
727 /* We don't have a stack slot for any spill reg yet. */
728 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
729 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
731 /* Initialize the save area information for caller-save, in case some
732 are needed. */
733 init_save_areas ();
735 /* Compute which hard registers are now in use
736 as homes for pseudo registers.
737 This is done here rather than (eg) in global_alloc
738 because this point is reached even if not optimizing. */
739 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
740 mark_home_live (i);
742 /* A function that has a nonlocal label that can reach the exit
743 block via non-exceptional paths must save all call-saved
744 registers. */
745 if (cfun->has_nonlocal_label
746 && has_nonexceptional_receiver ())
747 crtl->saves_all_registers = 1;
749 if (crtl->saves_all_registers)
750 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
751 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
752 df_set_regs_ever_live (i, true);
754 /* Find all the pseudo registers that didn't get hard regs
755 but do have known equivalent constants or memory slots.
756 These include parameters (known equivalent to parameter slots)
757 and cse'd or loop-moved constant memory addresses.
759 Record constant equivalents in reg_equiv_constant
760 so they will be substituted by find_reloads.
761 Record memory equivalents in reg_mem_equiv so they can
762 be substituted eventually by altering the REG-rtx's. */
764 reg_equiv_constant = XCNEWVEC (rtx, max_regno);
765 reg_equiv_invariant = XCNEWVEC (rtx, max_regno);
766 reg_equiv_mem = XCNEWVEC (rtx, max_regno);
767 reg_equiv_alt_mem_list = XCNEWVEC (rtx, max_regno);
768 reg_equiv_address = XCNEWVEC (rtx, max_regno);
769 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
770 reg_old_renumber = XCNEWVEC (short, max_regno);
771 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
772 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
773 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
775 CLEAR_HARD_REG_SET (bad_spill_regs_global);
777 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
778 to. Also find all paradoxical subregs and find largest such for
779 each pseudo. */
781 num_eliminable_invariants = 0;
782 for (insn = first; insn; insn = NEXT_INSN (insn))
784 rtx set = single_set (insn);
786 /* We may introduce USEs that we want to remove at the end, so
787 we'll mark them with QImode. Make sure there are no
788 previously-marked insns left by say regmove. */
789 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
790 && GET_MODE (insn) != VOIDmode)
791 PUT_MODE (insn, VOIDmode);
793 if (INSN_P (insn))
794 scan_paradoxical_subregs (PATTERN (insn));
796 if (set != 0 && REG_P (SET_DEST (set)))
798 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
799 rtx x;
801 if (! note)
802 continue;
804 i = REGNO (SET_DEST (set));
805 x = XEXP (note, 0);
807 if (i <= LAST_VIRTUAL_REGISTER)
808 continue;
810 if (! function_invariant_p (x)
811 || ! flag_pic
812 /* A function invariant is often CONSTANT_P but may
813 include a register. We promise to only pass
814 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
815 || (CONSTANT_P (x)
816 && LEGITIMATE_PIC_OPERAND_P (x)))
818 /* It can happen that a REG_EQUIV note contains a MEM
819 that is not a legitimate memory operand. As later
820 stages of reload assume that all addresses found
821 in the reg_equiv_* arrays were originally legitimate,
822 we ignore such REG_EQUIV notes. */
823 if (memory_operand (x, VOIDmode))
825 /* Always unshare the equivalence, so we can
826 substitute into this insn without touching the
827 equivalence. */
828 reg_equiv_memory_loc[i] = copy_rtx (x);
830 else if (function_invariant_p (x))
832 if (GET_CODE (x) == PLUS)
834 /* This is PLUS of frame pointer and a constant,
835 and might be shared. Unshare it. */
836 reg_equiv_invariant[i] = copy_rtx (x);
837 num_eliminable_invariants++;
839 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
841 reg_equiv_invariant[i] = x;
842 num_eliminable_invariants++;
844 else if (LEGITIMATE_CONSTANT_P (x))
845 reg_equiv_constant[i] = x;
846 else
848 reg_equiv_memory_loc[i]
849 = force_const_mem (GET_MODE (SET_DEST (set)), x);
850 if (! reg_equiv_memory_loc[i])
851 reg_equiv_init[i] = NULL_RTX;
854 else
856 reg_equiv_init[i] = NULL_RTX;
857 continue;
860 else
861 reg_equiv_init[i] = NULL_RTX;
865 if (dump_file)
866 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
867 if (reg_equiv_init[i])
869 fprintf (dump_file, "init_insns for %u: ", i);
870 print_inline_rtx (dump_file, reg_equiv_init[i], 20);
871 fprintf (dump_file, "\n");
874 init_elim_table ();
876 first_label_num = get_first_label_num ();
877 num_labels = max_label_num () - first_label_num;
879 /* Allocate the tables used to store offset information at labels. */
880 /* We used to use alloca here, but the size of what it would try to
881 allocate would occasionally cause it to exceed the stack limit and
882 cause a core dump. */
883 offsets_known_at = XNEWVEC (char, num_labels);
884 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
886 /* Alter each pseudo-reg rtx to contain its hard reg number.
887 Assign stack slots to the pseudos that lack hard regs or equivalents.
888 Do not touch virtual registers. */
890 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
891 alter_reg (i, -1);
893 /* If we have some registers we think can be eliminated, scan all insns to
894 see if there is an insn that sets one of these registers to something
895 other than itself plus a constant. If so, the register cannot be
896 eliminated. Doing this scan here eliminates an extra pass through the
897 main reload loop in the most common case where register elimination
898 cannot be done. */
899 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
900 if (INSN_P (insn))
901 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
903 maybe_fix_stack_asms ();
905 insns_need_reload = 0;
906 something_needs_elimination = 0;
908 /* Initialize to -1, which means take the first spill register. */
909 last_spill_reg = -1;
911 /* Spill any hard regs that we know we can't eliminate. */
912 CLEAR_HARD_REG_SET (used_spill_regs);
913 /* There can be multiple ways to eliminate a register;
914 they should be listed adjacently.
915 Elimination for any register fails only if all possible ways fail. */
916 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
918 int from = ep->from;
919 int can_eliminate = 0;
922 can_eliminate |= ep->can_eliminate;
923 ep++;
925 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
926 if (! can_eliminate)
927 spill_hard_reg (from, 1);
930 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
931 if (frame_pointer_needed)
932 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
933 #endif
934 finish_spills (global);
936 /* From now on, we may need to generate moves differently. We may also
937 allow modifications of insns which cause them to not be recognized.
938 Any such modifications will be cleaned up during reload itself. */
939 reload_in_progress = 1;
941 /* This loop scans the entire function each go-round
942 and repeats until one repetition spills no additional hard regs. */
943 for (;;)
945 int something_changed;
946 int did_spill;
947 HOST_WIDE_INT starting_frame_size;
949 starting_frame_size = get_frame_size ();
951 set_initial_elim_offsets ();
952 set_initial_label_offsets ();
954 /* For each pseudo register that has an equivalent location defined,
955 try to eliminate any eliminable registers (such as the frame pointer)
956 assuming initial offsets for the replacement register, which
957 is the normal case.
959 If the resulting location is directly addressable, substitute
960 the MEM we just got directly for the old REG.
962 If it is not addressable but is a constant or the sum of a hard reg
963 and constant, it is probably not addressable because the constant is
964 out of range, in that case record the address; we will generate
965 hairy code to compute the address in a register each time it is
966 needed. Similarly if it is a hard register, but one that is not
967 valid as an address register.
969 If the location is not addressable, but does not have one of the
970 above forms, assign a stack slot. We have to do this to avoid the
971 potential of producing lots of reloads if, e.g., a location involves
972 a pseudo that didn't get a hard register and has an equivalent memory
973 location that also involves a pseudo that didn't get a hard register.
975 Perhaps at some point we will improve reload_when_needed handling
976 so this problem goes away. But that's very hairy. */
978 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
979 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
981 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
983 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
984 XEXP (x, 0)))
985 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
986 else if (CONSTANT_P (XEXP (x, 0))
987 || (REG_P (XEXP (x, 0))
988 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
989 || (GET_CODE (XEXP (x, 0)) == PLUS
990 && REG_P (XEXP (XEXP (x, 0), 0))
991 && (REGNO (XEXP (XEXP (x, 0), 0))
992 < FIRST_PSEUDO_REGISTER)
993 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
994 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
995 else
997 /* Make a new stack slot. Then indicate that something
998 changed so we go back and recompute offsets for
999 eliminable registers because the allocation of memory
1000 below might change some offset. reg_equiv_{mem,address}
1001 will be set up for this pseudo on the next pass around
1002 the loop. */
1003 reg_equiv_memory_loc[i] = 0;
1004 reg_equiv_init[i] = 0;
1005 alter_reg (i, -1);
1009 if (caller_save_needed)
1010 setup_save_areas ();
1012 /* If we allocated another stack slot, redo elimination bookkeeping. */
1013 if (starting_frame_size != get_frame_size ())
1014 continue;
1015 if (starting_frame_size && crtl->stack_alignment_needed)
1017 /* If we have a stack frame, we must align it now. The
1018 stack size may be a part of the offset computation for
1019 register elimination. So if this changes the stack size,
1020 then repeat the elimination bookkeeping. We don't
1021 realign when there is no stack, as that will cause a
1022 stack frame when none is needed should
1023 STARTING_FRAME_OFFSET not be already aligned to
1024 STACK_BOUNDARY. */
1025 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
1026 if (starting_frame_size != get_frame_size ())
1027 continue;
1030 if (caller_save_needed)
1032 save_call_clobbered_regs ();
1033 /* That might have allocated new insn_chain structures. */
1034 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1037 calculate_needs_all_insns (global);
1039 CLEAR_REG_SET (&spilled_pseudos);
1040 did_spill = 0;
1042 something_changed = 0;
1044 /* If we allocated any new memory locations, make another pass
1045 since it might have changed elimination offsets. */
1046 if (starting_frame_size != get_frame_size ())
1047 something_changed = 1;
1049 /* Even if the frame size remained the same, we might still have
1050 changed elimination offsets, e.g. if find_reloads called
1051 force_const_mem requiring the back end to allocate a constant
1052 pool base register that needs to be saved on the stack. */
1053 else if (!verify_initial_elim_offsets ())
1054 something_changed = 1;
1057 HARD_REG_SET to_spill;
1058 CLEAR_HARD_REG_SET (to_spill);
1059 update_eliminables (&to_spill);
1060 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
1062 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1063 if (TEST_HARD_REG_BIT (to_spill, i))
1065 spill_hard_reg (i, 1);
1066 did_spill = 1;
1068 /* Regardless of the state of spills, if we previously had
1069 a register that we thought we could eliminate, but now can
1070 not eliminate, we must run another pass.
1072 Consider pseudos which have an entry in reg_equiv_* which
1073 reference an eliminable register. We must make another pass
1074 to update reg_equiv_* so that we do not substitute in the
1075 old value from when we thought the elimination could be
1076 performed. */
1077 something_changed = 1;
1081 select_reload_regs ();
1082 if (failure)
1083 goto failed;
1085 if (insns_need_reload != 0 || did_spill)
1086 something_changed |= finish_spills (global);
1088 if (! something_changed)
1089 break;
1091 if (caller_save_needed)
1092 delete_caller_save_insns ();
1094 obstack_free (&reload_obstack, reload_firstobj);
1097 /* If global-alloc was run, notify it of any register eliminations we have
1098 done. */
1099 if (global)
1100 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1101 if (ep->can_eliminate)
1102 mark_elimination (ep->from, ep->to);
1104 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1105 If that insn didn't set the register (i.e., it copied the register to
1106 memory), just delete that insn instead of the equivalencing insn plus
1107 anything now dead. If we call delete_dead_insn on that insn, we may
1108 delete the insn that actually sets the register if the register dies
1109 there and that is incorrect. */
1111 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1113 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1115 rtx list;
1116 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1118 rtx equiv_insn = XEXP (list, 0);
1120 /* If we already deleted the insn or if it may trap, we can't
1121 delete it. The latter case shouldn't happen, but can
1122 if an insn has a variable address, gets a REG_EH_REGION
1123 note added to it, and then gets converted into a load
1124 from a constant address. */
1125 if (NOTE_P (equiv_insn)
1126 || can_throw_internal (equiv_insn))
1128 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1129 delete_dead_insn (equiv_insn);
1130 else
1131 SET_INSN_DELETED (equiv_insn);
1136 /* Use the reload registers where necessary
1137 by generating move instructions to move the must-be-register
1138 values into or out of the reload registers. */
1140 if (insns_need_reload != 0 || something_needs_elimination
1141 || something_needs_operands_changed)
1143 HOST_WIDE_INT old_frame_size = get_frame_size ();
1145 reload_as_needed (global);
1147 gcc_assert (old_frame_size == get_frame_size ());
1149 gcc_assert (verify_initial_elim_offsets ());
1152 /* If we were able to eliminate the frame pointer, show that it is no
1153 longer live at the start of any basic block. If it ls live by
1154 virtue of being in a pseudo, that pseudo will be marked live
1155 and hence the frame pointer will be known to be live via that
1156 pseudo. */
1158 if (! frame_pointer_needed)
1159 FOR_EACH_BB (bb)
1160 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1162 /* Come here (with failure set nonzero) if we can't get enough spill
1163 regs. */
1164 failed:
1166 CLEAR_REG_SET (&spilled_pseudos);
1167 reload_in_progress = 0;
1169 /* Now eliminate all pseudo regs by modifying them into
1170 their equivalent memory references.
1171 The REG-rtx's for the pseudos are modified in place,
1172 so all insns that used to refer to them now refer to memory.
1174 For a reg that has a reg_equiv_address, all those insns
1175 were changed by reloading so that no insns refer to it any longer;
1176 but the DECL_RTL of a variable decl may refer to it,
1177 and if so this causes the debugging info to mention the variable. */
1179 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1181 rtx addr = 0;
1183 if (reg_equiv_mem[i])
1184 addr = XEXP (reg_equiv_mem[i], 0);
1186 if (reg_equiv_address[i])
1187 addr = reg_equiv_address[i];
1189 if (addr)
1191 if (reg_renumber[i] < 0)
1193 rtx reg = regno_reg_rtx[i];
1195 REG_USERVAR_P (reg) = 0;
1196 PUT_CODE (reg, MEM);
1197 XEXP (reg, 0) = addr;
1198 if (reg_equiv_memory_loc[i])
1199 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1200 else
1202 MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
1203 MEM_ATTRS (reg) = 0;
1205 MEM_NOTRAP_P (reg) = 1;
1207 else if (reg_equiv_mem[i])
1208 XEXP (reg_equiv_mem[i], 0) = addr;
1212 /* We must set reload_completed now since the cleanup_subreg_operands call
1213 below will re-recognize each insn and reload may have generated insns
1214 which are only valid during and after reload. */
1215 reload_completed = 1;
1217 /* Make a pass over all the insns and delete all USEs which we inserted
1218 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1219 notes. Delete all CLOBBER insns, except those that refer to the return
1220 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1221 from misarranging variable-array code, and simplify (subreg (reg))
1222 operands. Strip and regenerate REG_INC notes that may have been moved
1223 around. */
1225 for (insn = first; insn; insn = NEXT_INSN (insn))
1226 if (INSN_P (insn))
1228 rtx *pnote;
1230 if (CALL_P (insn))
1231 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1232 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1234 if ((GET_CODE (PATTERN (insn)) == USE
1235 /* We mark with QImode USEs introduced by reload itself. */
1236 && (GET_MODE (insn) == QImode
1237 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1238 || (GET_CODE (PATTERN (insn)) == CLOBBER
1239 && (!MEM_P (XEXP (PATTERN (insn), 0))
1240 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1241 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1242 && XEXP (XEXP (PATTERN (insn), 0), 0)
1243 != stack_pointer_rtx))
1244 && (!REG_P (XEXP (PATTERN (insn), 0))
1245 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1247 delete_insn (insn);
1248 continue;
1251 /* Some CLOBBERs may survive until here and still reference unassigned
1252 pseudos with const equivalent, which may in turn cause ICE in later
1253 passes if the reference remains in place. */
1254 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1255 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1256 VOIDmode, PATTERN (insn));
1258 /* Discard obvious no-ops, even without -O. This optimization
1259 is fast and doesn't interfere with debugging. */
1260 if (NONJUMP_INSN_P (insn)
1261 && GET_CODE (PATTERN (insn)) == SET
1262 && REG_P (SET_SRC (PATTERN (insn)))
1263 && REG_P (SET_DEST (PATTERN (insn)))
1264 && (REGNO (SET_SRC (PATTERN (insn)))
1265 == REGNO (SET_DEST (PATTERN (insn)))))
1267 delete_insn (insn);
1268 continue;
1271 pnote = &REG_NOTES (insn);
1272 while (*pnote != 0)
1274 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1275 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1276 || REG_NOTE_KIND (*pnote) == REG_INC)
1277 *pnote = XEXP (*pnote, 1);
1278 else
1279 pnote = &XEXP (*pnote, 1);
1282 #ifdef AUTO_INC_DEC
1283 add_auto_inc_notes (insn, PATTERN (insn));
1284 #endif
1286 /* Simplify (subreg (reg)) if it appears as an operand. */
1287 cleanup_subreg_operands (insn);
1289 /* Clean up invalid ASMs so that they don't confuse later passes.
1290 See PR 21299. */
1291 if (asm_noperands (PATTERN (insn)) >= 0)
1293 extract_insn (insn);
1294 if (!constrain_operands (1))
1296 error_for_asm (insn,
1297 "%<asm%> operand has impossible constraints");
1298 delete_insn (insn);
1299 continue;
1304 /* If we are doing stack checking, give a warning if this function's
1305 frame size is larger than we expect. */
1306 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1308 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1309 static int verbose_warned = 0;
1311 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1312 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1313 size += UNITS_PER_WORD;
1315 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1317 warning (0, "frame size too large for reliable stack checking");
1318 if (! verbose_warned)
1320 warning (0, "try reducing the number of local variables");
1321 verbose_warned = 1;
1326 /* Indicate that we no longer have known memory locations or constants. */
1327 if (reg_equiv_constant)
1328 free (reg_equiv_constant);
1329 if (reg_equiv_invariant)
1330 free (reg_equiv_invariant);
1331 reg_equiv_constant = 0;
1332 reg_equiv_invariant = 0;
1333 VEC_free (rtx, gc, reg_equiv_memory_loc_vec);
1334 reg_equiv_memory_loc = 0;
1336 if (offsets_known_at)
1337 free (offsets_known_at);
1338 if (offsets_at)
1339 free (offsets_at);
1341 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1342 if (reg_equiv_alt_mem_list[i])
1343 free_EXPR_LIST_list (&reg_equiv_alt_mem_list[i]);
1344 free (reg_equiv_alt_mem_list);
1346 free (reg_equiv_mem);
1347 reg_equiv_init = 0;
1348 free (reg_equiv_address);
1349 free (reg_max_ref_width);
1350 free (reg_old_renumber);
1351 free (pseudo_previous_regs);
1352 free (pseudo_forbidden_regs);
1354 CLEAR_HARD_REG_SET (used_spill_regs);
1355 for (i = 0; i < n_spills; i++)
1356 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1358 /* Free all the insn_chain structures at once. */
1359 obstack_free (&reload_obstack, reload_startobj);
1360 unused_insn_chains = 0;
1361 fixup_abnormal_edges ();
1363 /* Replacing pseudos with their memory equivalents might have
1364 created shared rtx. Subsequent passes would get confused
1365 by this, so unshare everything here. */
1366 unshare_all_rtl_again (first);
1368 #ifdef STACK_BOUNDARY
1369 /* init_emit has set the alignment of the hard frame pointer
1370 to STACK_BOUNDARY. It is very likely no longer valid if
1371 the hard frame pointer was used for register allocation. */
1372 if (!frame_pointer_needed)
1373 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1374 #endif
1376 return failure;
1379 /* Yet another special case. Unfortunately, reg-stack forces people to
1380 write incorrect clobbers in asm statements. These clobbers must not
1381 cause the register to appear in bad_spill_regs, otherwise we'll call
1382 fatal_insn later. We clear the corresponding regnos in the live
1383 register sets to avoid this.
1384 The whole thing is rather sick, I'm afraid. */
1386 static void
1387 maybe_fix_stack_asms (void)
1389 #ifdef STACK_REGS
1390 const char *constraints[MAX_RECOG_OPERANDS];
1391 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1392 struct insn_chain *chain;
1394 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1396 int i, noperands;
1397 HARD_REG_SET clobbered, allowed;
1398 rtx pat;
1400 if (! INSN_P (chain->insn)
1401 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1402 continue;
1403 pat = PATTERN (chain->insn);
1404 if (GET_CODE (pat) != PARALLEL)
1405 continue;
1407 CLEAR_HARD_REG_SET (clobbered);
1408 CLEAR_HARD_REG_SET (allowed);
1410 /* First, make a mask of all stack regs that are clobbered. */
1411 for (i = 0; i < XVECLEN (pat, 0); i++)
1413 rtx t = XVECEXP (pat, 0, i);
1414 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1415 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1418 /* Get the operand values and constraints out of the insn. */
1419 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1420 constraints, operand_mode, NULL);
1422 /* For every operand, see what registers are allowed. */
1423 for (i = 0; i < noperands; i++)
1425 const char *p = constraints[i];
1426 /* For every alternative, we compute the class of registers allowed
1427 for reloading in CLS, and merge its contents into the reg set
1428 ALLOWED. */
1429 int cls = (int) NO_REGS;
1431 for (;;)
1433 char c = *p;
1435 if (c == '\0' || c == ',' || c == '#')
1437 /* End of one alternative - mark the regs in the current
1438 class, and reset the class. */
1439 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1440 cls = NO_REGS;
1441 p++;
1442 if (c == '#')
1443 do {
1444 c = *p++;
1445 } while (c != '\0' && c != ',');
1446 if (c == '\0')
1447 break;
1448 continue;
1451 switch (c)
1453 case '=': case '+': case '*': case '%': case '?': case '!':
1454 case '0': case '1': case '2': case '3': case '4': case '<':
1455 case '>': case 'V': case 'o': case '&': case 'E': case 'F':
1456 case 's': case 'i': case 'n': case 'X': case 'I': case 'J':
1457 case 'K': case 'L': case 'M': case 'N': case 'O': case 'P':
1458 case TARGET_MEM_CONSTRAINT:
1459 break;
1461 case 'p':
1462 cls = (int) reg_class_subunion[cls]
1463 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1464 break;
1466 case 'g':
1467 case 'r':
1468 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1469 break;
1471 default:
1472 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1473 cls = (int) reg_class_subunion[cls]
1474 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1475 else
1476 cls = (int) reg_class_subunion[cls]
1477 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1479 p += CONSTRAINT_LEN (c, p);
1482 /* Those of the registers which are clobbered, but allowed by the
1483 constraints, must be usable as reload registers. So clear them
1484 out of the life information. */
1485 AND_HARD_REG_SET (allowed, clobbered);
1486 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1487 if (TEST_HARD_REG_BIT (allowed, i))
1489 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1490 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1494 #endif
1497 /* Copy the global variables n_reloads and rld into the corresponding elts
1498 of CHAIN. */
1499 static void
1500 copy_reloads (struct insn_chain *chain)
1502 chain->n_reloads = n_reloads;
1503 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1504 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1505 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1508 /* Walk the chain of insns, and determine for each whether it needs reloads
1509 and/or eliminations. Build the corresponding insns_need_reload list, and
1510 set something_needs_elimination as appropriate. */
1511 static void
1512 calculate_needs_all_insns (int global)
1514 struct insn_chain **pprev_reload = &insns_need_reload;
1515 struct insn_chain *chain, *next = 0;
1517 something_needs_elimination = 0;
1519 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1520 for (chain = reload_insn_chain; chain != 0; chain = next)
1522 rtx insn = chain->insn;
1524 next = chain->next;
1526 /* Clear out the shortcuts. */
1527 chain->n_reloads = 0;
1528 chain->need_elim = 0;
1529 chain->need_reload = 0;
1530 chain->need_operand_change = 0;
1532 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1533 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1534 what effects this has on the known offsets at labels. */
1536 if (LABEL_P (insn) || JUMP_P (insn)
1537 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1538 set_label_offsets (insn, insn, 0);
1540 if (INSN_P (insn))
1542 rtx old_body = PATTERN (insn);
1543 int old_code = INSN_CODE (insn);
1544 rtx old_notes = REG_NOTES (insn);
1545 int did_elimination = 0;
1546 int operands_changed = 0;
1547 rtx set = single_set (insn);
1549 /* Skip insns that only set an equivalence. */
1550 if (set && REG_P (SET_DEST (set))
1551 && reg_renumber[REGNO (SET_DEST (set))] < 0
1552 && (reg_equiv_constant[REGNO (SET_DEST (set))]
1553 || (reg_equiv_invariant[REGNO (SET_DEST (set))]))
1554 && reg_equiv_init[REGNO (SET_DEST (set))])
1555 continue;
1557 /* If needed, eliminate any eliminable registers. */
1558 if (num_eliminable || num_eliminable_invariants)
1559 did_elimination = eliminate_regs_in_insn (insn, 0);
1561 /* Analyze the instruction. */
1562 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1563 global, spill_reg_order);
1565 /* If a no-op set needs more than one reload, this is likely
1566 to be something that needs input address reloads. We
1567 can't get rid of this cleanly later, and it is of no use
1568 anyway, so discard it now.
1569 We only do this when expensive_optimizations is enabled,
1570 since this complements reload inheritance / output
1571 reload deletion, and it can make debugging harder. */
1572 if (flag_expensive_optimizations && n_reloads > 1)
1574 rtx set = single_set (insn);
1575 if (set
1576 && SET_SRC (set) == SET_DEST (set)
1577 && REG_P (SET_SRC (set))
1578 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1580 delete_insn (insn);
1581 /* Delete it from the reload chain. */
1582 if (chain->prev)
1583 chain->prev->next = next;
1584 else
1585 reload_insn_chain = next;
1586 if (next)
1587 next->prev = chain->prev;
1588 chain->next = unused_insn_chains;
1589 unused_insn_chains = chain;
1590 continue;
1593 if (num_eliminable)
1594 update_eliminable_offsets ();
1596 /* Remember for later shortcuts which insns had any reloads or
1597 register eliminations. */
1598 chain->need_elim = did_elimination;
1599 chain->need_reload = n_reloads > 0;
1600 chain->need_operand_change = operands_changed;
1602 /* Discard any register replacements done. */
1603 if (did_elimination)
1605 obstack_free (&reload_obstack, reload_insn_firstobj);
1606 PATTERN (insn) = old_body;
1607 INSN_CODE (insn) = old_code;
1608 REG_NOTES (insn) = old_notes;
1609 something_needs_elimination = 1;
1612 something_needs_operands_changed |= operands_changed;
1614 if (n_reloads != 0)
1616 copy_reloads (chain);
1617 *pprev_reload = chain;
1618 pprev_reload = &chain->next_need_reload;
1622 *pprev_reload = 0;
1625 /* Comparison function for qsort to decide which of two reloads
1626 should be handled first. *P1 and *P2 are the reload numbers. */
1628 static int
1629 reload_reg_class_lower (const void *r1p, const void *r2p)
1631 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1632 int t;
1634 /* Consider required reloads before optional ones. */
1635 t = rld[r1].optional - rld[r2].optional;
1636 if (t != 0)
1637 return t;
1639 /* Count all solitary classes before non-solitary ones. */
1640 t = ((reg_class_size[(int) rld[r2].class] == 1)
1641 - (reg_class_size[(int) rld[r1].class] == 1));
1642 if (t != 0)
1643 return t;
1645 /* Aside from solitaires, consider all multi-reg groups first. */
1646 t = rld[r2].nregs - rld[r1].nregs;
1647 if (t != 0)
1648 return t;
1650 /* Consider reloads in order of increasing reg-class number. */
1651 t = (int) rld[r1].class - (int) rld[r2].class;
1652 if (t != 0)
1653 return t;
1655 /* If reloads are equally urgent, sort by reload number,
1656 so that the results of qsort leave nothing to chance. */
1657 return r1 - r2;
1660 /* The cost of spilling each hard reg. */
1661 static int spill_cost[FIRST_PSEUDO_REGISTER];
1663 /* When spilling multiple hard registers, we use SPILL_COST for the first
1664 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1665 only the first hard reg for a multi-reg pseudo. */
1666 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1668 /* Update the spill cost arrays, considering that pseudo REG is live. */
1670 static void
1671 count_pseudo (int reg)
1673 int freq = REG_FREQ (reg);
1674 int r = reg_renumber[reg];
1675 int nregs;
1677 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1678 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1679 return;
1681 SET_REGNO_REG_SET (&pseudos_counted, reg);
1683 gcc_assert (r >= 0);
1685 spill_add_cost[r] += freq;
1687 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1688 while (nregs-- > 0)
1689 spill_cost[r + nregs] += freq;
1692 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1693 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1695 static void
1696 order_regs_for_reload (struct insn_chain *chain)
1698 unsigned i;
1699 HARD_REG_SET used_by_pseudos;
1700 HARD_REG_SET used_by_pseudos2;
1701 reg_set_iterator rsi;
1703 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1705 memset (spill_cost, 0, sizeof spill_cost);
1706 memset (spill_add_cost, 0, sizeof spill_add_cost);
1708 /* Count number of uses of each hard reg by pseudo regs allocated to it
1709 and then order them by decreasing use. First exclude hard registers
1710 that are live in or across this insn. */
1712 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1713 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1714 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1715 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1717 /* Now find out which pseudos are allocated to it, and update
1718 hard_reg_n_uses. */
1719 CLEAR_REG_SET (&pseudos_counted);
1721 EXECUTE_IF_SET_IN_REG_SET
1722 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1724 count_pseudo (i);
1726 EXECUTE_IF_SET_IN_REG_SET
1727 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1729 count_pseudo (i);
1731 CLEAR_REG_SET (&pseudos_counted);
1734 /* Vector of reload-numbers showing the order in which the reloads should
1735 be processed. */
1736 static short reload_order[MAX_RELOADS];
1738 /* This is used to keep track of the spill regs used in one insn. */
1739 static HARD_REG_SET used_spill_regs_local;
1741 /* We decided to spill hard register SPILLED, which has a size of
1742 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1743 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1744 update SPILL_COST/SPILL_ADD_COST. */
1746 static void
1747 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1749 int r = reg_renumber[reg];
1750 int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1752 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1753 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1754 return;
1756 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1758 spill_add_cost[r] -= REG_FREQ (reg);
1759 while (nregs-- > 0)
1760 spill_cost[r + nregs] -= REG_FREQ (reg);
1763 /* Find reload register to use for reload number ORDER. */
1765 static int
1766 find_reg (struct insn_chain *chain, int order)
1768 int rnum = reload_order[order];
1769 struct reload *rl = rld + rnum;
1770 int best_cost = INT_MAX;
1771 int best_reg = -1;
1772 unsigned int i, j;
1773 int k;
1774 HARD_REG_SET not_usable;
1775 HARD_REG_SET used_by_other_reload;
1776 reg_set_iterator rsi;
1778 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1779 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1780 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1782 CLEAR_HARD_REG_SET (used_by_other_reload);
1783 for (k = 0; k < order; k++)
1785 int other = reload_order[k];
1787 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1788 for (j = 0; j < rld[other].nregs; j++)
1789 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1792 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1794 unsigned int regno = i;
1796 if (! TEST_HARD_REG_BIT (not_usable, regno)
1797 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1798 && HARD_REGNO_MODE_OK (regno, rl->mode))
1800 int this_cost = spill_cost[regno];
1801 int ok = 1;
1802 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1804 for (j = 1; j < this_nregs; j++)
1806 this_cost += spill_add_cost[regno + j];
1807 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1808 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1809 ok = 0;
1811 if (! ok)
1812 continue;
1813 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1814 this_cost--;
1815 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1816 this_cost--;
1817 if (this_cost < best_cost
1818 /* Among registers with equal cost, prefer caller-saved ones, or
1819 use REG_ALLOC_ORDER if it is defined. */
1820 || (this_cost == best_cost
1821 #ifdef REG_ALLOC_ORDER
1822 && (inv_reg_alloc_order[regno]
1823 < inv_reg_alloc_order[best_reg])
1824 #else
1825 && call_used_regs[regno]
1826 && ! call_used_regs[best_reg]
1827 #endif
1830 best_reg = regno;
1831 best_cost = this_cost;
1835 if (best_reg == -1)
1836 return 0;
1838 if (dump_file)
1839 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1841 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1842 rl->regno = best_reg;
1844 EXECUTE_IF_SET_IN_REG_SET
1845 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1847 count_spilled_pseudo (best_reg, rl->nregs, j);
1850 EXECUTE_IF_SET_IN_REG_SET
1851 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1853 count_spilled_pseudo (best_reg, rl->nregs, j);
1856 for (i = 0; i < rl->nregs; i++)
1858 gcc_assert (spill_cost[best_reg + i] == 0);
1859 gcc_assert (spill_add_cost[best_reg + i] == 0);
1860 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1862 return 1;
1865 /* Find more reload regs to satisfy the remaining need of an insn, which
1866 is given by CHAIN.
1867 Do it by ascending class number, since otherwise a reg
1868 might be spilled for a big class and might fail to count
1869 for a smaller class even though it belongs to that class. */
1871 static void
1872 find_reload_regs (struct insn_chain *chain)
1874 int i;
1876 /* In order to be certain of getting the registers we need,
1877 we must sort the reloads into order of increasing register class.
1878 Then our grabbing of reload registers will parallel the process
1879 that provided the reload registers. */
1880 for (i = 0; i < chain->n_reloads; i++)
1882 /* Show whether this reload already has a hard reg. */
1883 if (chain->rld[i].reg_rtx)
1885 int regno = REGNO (chain->rld[i].reg_rtx);
1886 chain->rld[i].regno = regno;
1887 chain->rld[i].nregs
1888 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
1890 else
1891 chain->rld[i].regno = -1;
1892 reload_order[i] = i;
1895 n_reloads = chain->n_reloads;
1896 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1898 CLEAR_HARD_REG_SET (used_spill_regs_local);
1900 if (dump_file)
1901 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1903 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1905 /* Compute the order of preference for hard registers to spill. */
1907 order_regs_for_reload (chain);
1909 for (i = 0; i < n_reloads; i++)
1911 int r = reload_order[i];
1913 /* Ignore reloads that got marked inoperative. */
1914 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1915 && ! rld[r].optional
1916 && rld[r].regno == -1)
1917 if (! find_reg (chain, i))
1919 if (dump_file)
1920 fprintf (dump_file, "reload failure for reload %d\n", r);
1921 spill_failure (chain->insn, rld[r].class);
1922 failure = 1;
1923 return;
1927 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1928 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1930 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1933 static void
1934 select_reload_regs (void)
1936 struct insn_chain *chain;
1938 /* Try to satisfy the needs for each insn. */
1939 for (chain = insns_need_reload; chain != 0;
1940 chain = chain->next_need_reload)
1941 find_reload_regs (chain);
1944 /* Delete all insns that were inserted by emit_caller_save_insns during
1945 this iteration. */
1946 static void
1947 delete_caller_save_insns (void)
1949 struct insn_chain *c = reload_insn_chain;
1951 while (c != 0)
1953 while (c != 0 && c->is_caller_save_insn)
1955 struct insn_chain *next = c->next;
1956 rtx insn = c->insn;
1958 if (c == reload_insn_chain)
1959 reload_insn_chain = next;
1960 delete_insn (insn);
1962 if (next)
1963 next->prev = c->prev;
1964 if (c->prev)
1965 c->prev->next = next;
1966 c->next = unused_insn_chains;
1967 unused_insn_chains = c;
1968 c = next;
1970 if (c != 0)
1971 c = c->next;
1975 /* Handle the failure to find a register to spill.
1976 INSN should be one of the insns which needed this particular spill reg. */
1978 static void
1979 spill_failure (rtx insn, enum reg_class class)
1981 if (asm_noperands (PATTERN (insn)) >= 0)
1982 error_for_asm (insn, "can't find a register in class %qs while "
1983 "reloading %<asm%>",
1984 reg_class_names[class]);
1985 else
1987 error ("unable to find a register to spill in class %qs",
1988 reg_class_names[class]);
1990 if (dump_file)
1992 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
1993 debug_reload_to_stream (dump_file);
1995 fatal_insn ("this is the insn:", insn);
1999 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2000 data that is dead in INSN. */
2002 static void
2003 delete_dead_insn (rtx insn)
2005 rtx prev = prev_real_insn (insn);
2006 rtx prev_dest;
2008 /* If the previous insn sets a register that dies in our insn, delete it
2009 too. */
2010 if (prev && GET_CODE (PATTERN (prev)) == SET
2011 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2012 && reg_mentioned_p (prev_dest, PATTERN (insn))
2013 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2014 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2015 delete_dead_insn (prev);
2017 SET_INSN_DELETED (insn);
2020 /* Modify the home of pseudo-reg I.
2021 The new home is present in reg_renumber[I].
2023 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2024 or it may be -1, meaning there is none or it is not relevant.
2025 This is used so that all pseudos spilled from a given hard reg
2026 can share one stack slot. */
2028 static void
2029 alter_reg (int i, int from_reg)
2031 /* When outputting an inline function, this can happen
2032 for a reg that isn't actually used. */
2033 if (regno_reg_rtx[i] == 0)
2034 return;
2036 /* If the reg got changed to a MEM at rtl-generation time,
2037 ignore it. */
2038 if (!REG_P (regno_reg_rtx[i]))
2039 return;
2041 /* Modify the reg-rtx to contain the new hard reg
2042 number or else to contain its pseudo reg number. */
2043 SET_REGNO (regno_reg_rtx[i],
2044 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2046 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2047 allocate a stack slot for it. */
2049 if (reg_renumber[i] < 0
2050 && REG_N_REFS (i) > 0
2051 && reg_equiv_constant[i] == 0
2052 && (reg_equiv_invariant[i] == 0 || reg_equiv_init[i] == 0)
2053 && reg_equiv_memory_loc[i] == 0)
2055 rtx x;
2056 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2057 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2058 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2059 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2060 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2061 int adjust = 0;
2063 /* Each pseudo reg has an inherent size which comes from its own mode,
2064 and a total size which provides room for paradoxical subregs
2065 which refer to the pseudo reg in wider modes.
2067 We can use a slot already allocated if it provides both
2068 enough inherent space and enough total space.
2069 Otherwise, we allocate a new slot, making sure that it has no less
2070 inherent space, and no less total space, then the previous slot. */
2071 if (from_reg == -1)
2073 alias_set_type alias_set = new_alias_set ();
2075 /* No known place to spill from => no slot to reuse. */
2076 x = assign_stack_local (mode, total_size,
2077 min_align > inherent_align
2078 || total_size > inherent_size ? -1 : 0);
2079 if (BYTES_BIG_ENDIAN)
2080 /* Cancel the big-endian correction done in assign_stack_local.
2081 Get the address of the beginning of the slot.
2082 This is so we can do a big-endian correction unconditionally
2083 below. */
2084 adjust = inherent_size - total_size;
2086 /* Nothing can alias this slot except this pseudo. */
2087 set_mem_alias_set (x, alias_set);
2088 dse_record_singleton_alias_set (alias_set, mode);
2091 /* Reuse a stack slot if possible. */
2092 else if (spill_stack_slot[from_reg] != 0
2093 && spill_stack_slot_width[from_reg] >= total_size
2094 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2095 >= inherent_size)
2096 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2097 x = spill_stack_slot[from_reg];
2098 /* Allocate a bigger slot. */
2099 else
2101 /* Compute maximum size needed, both for inherent size
2102 and for total size. */
2103 rtx stack_slot;
2105 if (spill_stack_slot[from_reg])
2107 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2108 > inherent_size)
2109 mode = GET_MODE (spill_stack_slot[from_reg]);
2110 if (spill_stack_slot_width[from_reg] > total_size)
2111 total_size = spill_stack_slot_width[from_reg];
2112 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2113 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2116 /* Make a slot with that size. */
2117 x = assign_stack_local (mode, total_size,
2118 min_align > inherent_align
2119 || total_size > inherent_size ? -1 : 0);
2120 stack_slot = x;
2122 /* All pseudos mapped to this slot can alias each other. */
2123 if (spill_stack_slot[from_reg])
2125 alias_set_type alias_set
2126 = MEM_ALIAS_SET (spill_stack_slot[from_reg]);
2127 set_mem_alias_set (x, alias_set);
2128 dse_invalidate_singleton_alias_set (alias_set);
2130 else
2132 alias_set_type alias_set = new_alias_set ();
2133 set_mem_alias_set (x, alias_set);
2134 dse_record_singleton_alias_set (alias_set, mode);
2137 if (BYTES_BIG_ENDIAN)
2139 /* Cancel the big-endian correction done in assign_stack_local.
2140 Get the address of the beginning of the slot.
2141 This is so we can do a big-endian correction unconditionally
2142 below. */
2143 adjust = GET_MODE_SIZE (mode) - total_size;
2144 if (adjust)
2145 stack_slot
2146 = adjust_address_nv (x, mode_for_size (total_size
2147 * BITS_PER_UNIT,
2148 MODE_INT, 1),
2149 adjust);
2152 spill_stack_slot[from_reg] = stack_slot;
2153 spill_stack_slot_width[from_reg] = total_size;
2156 /* On a big endian machine, the "address" of the slot
2157 is the address of the low part that fits its inherent mode. */
2158 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2159 adjust += (total_size - inherent_size);
2161 /* If we have any adjustment to make, or if the stack slot is the
2162 wrong mode, make a new stack slot. */
2163 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2165 /* If we have a decl for the original register, set it for the
2166 memory. If this is a shared MEM, make a copy. */
2167 if (REG_EXPR (regno_reg_rtx[i])
2168 && DECL_P (REG_EXPR (regno_reg_rtx[i])))
2170 rtx decl = DECL_RTL_IF_SET (REG_EXPR (regno_reg_rtx[i]));
2172 /* We can do this only for the DECLs home pseudo, not for
2173 any copies of it, since otherwise when the stack slot
2174 is reused, nonoverlapping_memrefs_p might think they
2175 cannot overlap. */
2176 if (decl && REG_P (decl) && REGNO (decl) == (unsigned) i)
2178 if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2179 x = copy_rtx (x);
2181 set_mem_attrs_from_reg (x, regno_reg_rtx[i]);
2185 /* Save the stack slot for later. */
2186 reg_equiv_memory_loc[i] = x;
2190 /* Mark the slots in regs_ever_live for the hard regs used by
2191 pseudo-reg number REGNO, accessed in MODE. */
2193 static void
2194 mark_home_live_1 (int regno, enum machine_mode mode)
2196 int i, lim;
2198 i = reg_renumber[regno];
2199 if (i < 0)
2200 return;
2201 lim = end_hard_regno (mode, i);
2202 while (i < lim)
2203 df_set_regs_ever_live(i++, true);
2206 /* Mark the slots in regs_ever_live for the hard regs
2207 used by pseudo-reg number REGNO. */
2209 void
2210 mark_home_live (int regno)
2212 if (reg_renumber[regno] >= 0)
2213 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2216 /* This function handles the tracking of elimination offsets around branches.
2218 X is a piece of RTL being scanned.
2220 INSN is the insn that it came from, if any.
2222 INITIAL_P is nonzero if we are to set the offset to be the initial
2223 offset and zero if we are setting the offset of the label to be the
2224 current offset. */
2226 static void
2227 set_label_offsets (rtx x, rtx insn, int initial_p)
2229 enum rtx_code code = GET_CODE (x);
2230 rtx tem;
2231 unsigned int i;
2232 struct elim_table *p;
2234 switch (code)
2236 case LABEL_REF:
2237 if (LABEL_REF_NONLOCAL_P (x))
2238 return;
2240 x = XEXP (x, 0);
2242 /* ... fall through ... */
2244 case CODE_LABEL:
2245 /* If we know nothing about this label, set the desired offsets. Note
2246 that this sets the offset at a label to be the offset before a label
2247 if we don't know anything about the label. This is not correct for
2248 the label after a BARRIER, but is the best guess we can make. If
2249 we guessed wrong, we will suppress an elimination that might have
2250 been possible had we been able to guess correctly. */
2252 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2254 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2255 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2256 = (initial_p ? reg_eliminate[i].initial_offset
2257 : reg_eliminate[i].offset);
2258 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2261 /* Otherwise, if this is the definition of a label and it is
2262 preceded by a BARRIER, set our offsets to the known offset of
2263 that label. */
2265 else if (x == insn
2266 && (tem = prev_nonnote_insn (insn)) != 0
2267 && BARRIER_P (tem))
2268 set_offsets_for_label (insn);
2269 else
2270 /* If neither of the above cases is true, compare each offset
2271 with those previously recorded and suppress any eliminations
2272 where the offsets disagree. */
2274 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2275 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2276 != (initial_p ? reg_eliminate[i].initial_offset
2277 : reg_eliminate[i].offset))
2278 reg_eliminate[i].can_eliminate = 0;
2280 return;
2282 case JUMP_INSN:
2283 set_label_offsets (PATTERN (insn), insn, initial_p);
2285 /* ... fall through ... */
2287 case INSN:
2288 case CALL_INSN:
2289 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2290 to indirectly and hence must have all eliminations at their
2291 initial offsets. */
2292 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2293 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2294 set_label_offsets (XEXP (tem, 0), insn, 1);
2295 return;
2297 case PARALLEL:
2298 case ADDR_VEC:
2299 case ADDR_DIFF_VEC:
2300 /* Each of the labels in the parallel or address vector must be
2301 at their initial offsets. We want the first field for PARALLEL
2302 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2304 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2305 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2306 insn, initial_p);
2307 return;
2309 case SET:
2310 /* We only care about setting PC. If the source is not RETURN,
2311 IF_THEN_ELSE, or a label, disable any eliminations not at
2312 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2313 isn't one of those possibilities. For branches to a label,
2314 call ourselves recursively.
2316 Note that this can disable elimination unnecessarily when we have
2317 a non-local goto since it will look like a non-constant jump to
2318 someplace in the current function. This isn't a significant
2319 problem since such jumps will normally be when all elimination
2320 pairs are back to their initial offsets. */
2322 if (SET_DEST (x) != pc_rtx)
2323 return;
2325 switch (GET_CODE (SET_SRC (x)))
2327 case PC:
2328 case RETURN:
2329 return;
2331 case LABEL_REF:
2332 set_label_offsets (SET_SRC (x), insn, initial_p);
2333 return;
2335 case IF_THEN_ELSE:
2336 tem = XEXP (SET_SRC (x), 1);
2337 if (GET_CODE (tem) == LABEL_REF)
2338 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2339 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2340 break;
2342 tem = XEXP (SET_SRC (x), 2);
2343 if (GET_CODE (tem) == LABEL_REF)
2344 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2345 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2346 break;
2347 return;
2349 default:
2350 break;
2353 /* If we reach here, all eliminations must be at their initial
2354 offset because we are doing a jump to a variable address. */
2355 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2356 if (p->offset != p->initial_offset)
2357 p->can_eliminate = 0;
2358 break;
2360 default:
2361 break;
2365 /* Scan X and replace any eliminable registers (such as fp) with a
2366 replacement (such as sp), plus an offset.
2368 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2369 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2370 MEM, we are allowed to replace a sum of a register and the constant zero
2371 with the register, which we cannot do outside a MEM. In addition, we need
2372 to record the fact that a register is referenced outside a MEM.
2374 If INSN is an insn, it is the insn containing X. If we replace a REG
2375 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2376 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2377 the REG is being modified.
2379 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2380 That's used when we eliminate in expressions stored in notes.
2381 This means, do not set ref_outside_mem even if the reference
2382 is outside of MEMs.
2384 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2385 replacements done assuming all offsets are at their initial values. If
2386 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2387 encounter, return the actual location so that find_reloads will do
2388 the proper thing. */
2390 static rtx
2391 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2392 bool may_use_invariant)
2394 enum rtx_code code = GET_CODE (x);
2395 struct elim_table *ep;
2396 int regno;
2397 rtx new;
2398 int i, j;
2399 const char *fmt;
2400 int copied = 0;
2402 if (! current_function_decl)
2403 return x;
2405 switch (code)
2407 case CONST_INT:
2408 case CONST_DOUBLE:
2409 case CONST_FIXED:
2410 case CONST_VECTOR:
2411 case CONST:
2412 case SYMBOL_REF:
2413 case CODE_LABEL:
2414 case PC:
2415 case CC0:
2416 case ASM_INPUT:
2417 case ADDR_VEC:
2418 case ADDR_DIFF_VEC:
2419 case RETURN:
2420 return x;
2422 case REG:
2423 regno = REGNO (x);
2425 /* First handle the case where we encounter a bare register that
2426 is eliminable. Replace it with a PLUS. */
2427 if (regno < FIRST_PSEUDO_REGISTER)
2429 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2430 ep++)
2431 if (ep->from_rtx == x && ep->can_eliminate)
2432 return plus_constant (ep->to_rtx, ep->previous_offset);
2435 else if (reg_renumber && reg_renumber[regno] < 0
2436 && reg_equiv_invariant && reg_equiv_invariant[regno])
2438 if (may_use_invariant)
2439 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant[regno]),
2440 mem_mode, insn, true);
2441 /* There exists at least one use of REGNO that cannot be
2442 eliminated. Prevent the defining insn from being deleted. */
2443 reg_equiv_init[regno] = NULL_RTX;
2444 alter_reg (regno, -1);
2446 return x;
2448 /* You might think handling MINUS in a manner similar to PLUS is a
2449 good idea. It is not. It has been tried multiple times and every
2450 time the change has had to have been reverted.
2452 Other parts of reload know a PLUS is special (gen_reload for example)
2453 and require special code to handle code a reloaded PLUS operand.
2455 Also consider backends where the flags register is clobbered by a
2456 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2457 lea instruction comes to mind). If we try to reload a MINUS, we
2458 may kill the flags register that was holding a useful value.
2460 So, please before trying to handle MINUS, consider reload as a
2461 whole instead of this little section as well as the backend issues. */
2462 case PLUS:
2463 /* If this is the sum of an eliminable register and a constant, rework
2464 the sum. */
2465 if (REG_P (XEXP (x, 0))
2466 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2467 && CONSTANT_P (XEXP (x, 1)))
2469 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2470 ep++)
2471 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2473 /* The only time we want to replace a PLUS with a REG (this
2474 occurs when the constant operand of the PLUS is the negative
2475 of the offset) is when we are inside a MEM. We won't want
2476 to do so at other times because that would change the
2477 structure of the insn in a way that reload can't handle.
2478 We special-case the commonest situation in
2479 eliminate_regs_in_insn, so just replace a PLUS with a
2480 PLUS here, unless inside a MEM. */
2481 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2482 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2483 return ep->to_rtx;
2484 else
2485 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2486 plus_constant (XEXP (x, 1),
2487 ep->previous_offset));
2490 /* If the register is not eliminable, we are done since the other
2491 operand is a constant. */
2492 return x;
2495 /* If this is part of an address, we want to bring any constant to the
2496 outermost PLUS. We will do this by doing register replacement in
2497 our operands and seeing if a constant shows up in one of them.
2499 Note that there is no risk of modifying the structure of the insn,
2500 since we only get called for its operands, thus we are either
2501 modifying the address inside a MEM, or something like an address
2502 operand of a load-address insn. */
2505 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2506 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2508 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2510 /* If one side is a PLUS and the other side is a pseudo that
2511 didn't get a hard register but has a reg_equiv_constant,
2512 we must replace the constant here since it may no longer
2513 be in the position of any operand. */
2514 if (GET_CODE (new0) == PLUS && REG_P (new1)
2515 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2516 && reg_renumber[REGNO (new1)] < 0
2517 && reg_equiv_constant != 0
2518 && reg_equiv_constant[REGNO (new1)] != 0)
2519 new1 = reg_equiv_constant[REGNO (new1)];
2520 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2521 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2522 && reg_renumber[REGNO (new0)] < 0
2523 && reg_equiv_constant[REGNO (new0)] != 0)
2524 new0 = reg_equiv_constant[REGNO (new0)];
2526 new = form_sum (new0, new1);
2528 /* As above, if we are not inside a MEM we do not want to
2529 turn a PLUS into something else. We might try to do so here
2530 for an addition of 0 if we aren't optimizing. */
2531 if (! mem_mode && GET_CODE (new) != PLUS)
2532 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2533 else
2534 return new;
2537 return x;
2539 case MULT:
2540 /* If this is the product of an eliminable register and a
2541 constant, apply the distribute law and move the constant out
2542 so that we have (plus (mult ..) ..). This is needed in order
2543 to keep load-address insns valid. This case is pathological.
2544 We ignore the possibility of overflow here. */
2545 if (REG_P (XEXP (x, 0))
2546 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2547 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2548 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2549 ep++)
2550 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2552 if (! mem_mode
2553 /* Refs inside notes don't count for this purpose. */
2554 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2555 || GET_CODE (insn) == INSN_LIST)))
2556 ep->ref_outside_mem = 1;
2558 return
2559 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2560 ep->previous_offset * INTVAL (XEXP (x, 1)));
2563 /* ... fall through ... */
2565 case CALL:
2566 case COMPARE:
2567 /* See comments before PLUS about handling MINUS. */
2568 case MINUS:
2569 case DIV: case UDIV:
2570 case MOD: case UMOD:
2571 case AND: case IOR: case XOR:
2572 case ROTATERT: case ROTATE:
2573 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2574 case NE: case EQ:
2575 case GE: case GT: case GEU: case GTU:
2576 case LE: case LT: case LEU: case LTU:
2578 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2579 rtx new1 = XEXP (x, 1)
2580 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false) : 0;
2582 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2583 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2585 return x;
2587 case EXPR_LIST:
2588 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2589 if (XEXP (x, 0))
2591 new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2592 if (new != XEXP (x, 0))
2594 /* If this is a REG_DEAD note, it is not valid anymore.
2595 Using the eliminated version could result in creating a
2596 REG_DEAD note for the stack or frame pointer. */
2597 if (GET_MODE (x) == REG_DEAD)
2598 return (XEXP (x, 1)
2599 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true)
2600 : NULL_RTX);
2602 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2606 /* ... fall through ... */
2608 case INSN_LIST:
2609 /* Now do eliminations in the rest of the chain. If this was
2610 an EXPR_LIST, this might result in allocating more memory than is
2611 strictly needed, but it simplifies the code. */
2612 if (XEXP (x, 1))
2614 new = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2615 if (new != XEXP (x, 1))
2616 return
2617 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2619 return x;
2621 case PRE_INC:
2622 case POST_INC:
2623 case PRE_DEC:
2624 case POST_DEC:
2625 /* We do not support elimination of a register that is modified.
2626 elimination_effects has already make sure that this does not
2627 happen. */
2628 return x;
2630 case PRE_MODIFY:
2631 case POST_MODIFY:
2632 /* We do not support elimination of a register that is modified.
2633 elimination_effects has already make sure that this does not
2634 happen. The only remaining case we need to consider here is
2635 that the increment value may be an eliminable register. */
2636 if (GET_CODE (XEXP (x, 1)) == PLUS
2637 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2639 rtx new = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2640 insn, true);
2642 if (new != XEXP (XEXP (x, 1), 1))
2643 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2644 gen_rtx_PLUS (GET_MODE (x),
2645 XEXP (x, 0), new));
2647 return x;
2649 case STRICT_LOW_PART:
2650 case NEG: case NOT:
2651 case SIGN_EXTEND: case ZERO_EXTEND:
2652 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2653 case FLOAT: case FIX:
2654 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2655 case ABS:
2656 case SQRT:
2657 case FFS:
2658 case CLZ:
2659 case CTZ:
2660 case POPCOUNT:
2661 case PARITY:
2662 case BSWAP:
2663 new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2664 if (new != XEXP (x, 0))
2665 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2666 return x;
2668 case SUBREG:
2669 /* Similar to above processing, but preserve SUBREG_BYTE.
2670 Convert (subreg (mem)) to (mem) if not paradoxical.
2671 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2672 pseudo didn't get a hard reg, we must replace this with the
2673 eliminated version of the memory location because push_reload
2674 may do the replacement in certain circumstances. */
2675 if (REG_P (SUBREG_REG (x))
2676 && (GET_MODE_SIZE (GET_MODE (x))
2677 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2678 && reg_equiv_memory_loc != 0
2679 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2681 new = SUBREG_REG (x);
2683 else
2684 new = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false);
2686 if (new != SUBREG_REG (x))
2688 int x_size = GET_MODE_SIZE (GET_MODE (x));
2689 int new_size = GET_MODE_SIZE (GET_MODE (new));
2691 if (MEM_P (new)
2692 && ((x_size < new_size
2693 #ifdef WORD_REGISTER_OPERATIONS
2694 /* On these machines, combine can create rtl of the form
2695 (set (subreg:m1 (reg:m2 R) 0) ...)
2696 where m1 < m2, and expects something interesting to
2697 happen to the entire word. Moreover, it will use the
2698 (reg:m2 R) later, expecting all bits to be preserved.
2699 So if the number of words is the same, preserve the
2700 subreg so that push_reload can see it. */
2701 && ! ((x_size - 1) / UNITS_PER_WORD
2702 == (new_size -1 ) / UNITS_PER_WORD)
2703 #endif
2705 || x_size == new_size)
2707 return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
2708 else
2709 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2712 return x;
2714 case MEM:
2715 /* Our only special processing is to pass the mode of the MEM to our
2716 recursive call and copy the flags. While we are here, handle this
2717 case more efficiently. */
2718 return
2719 replace_equiv_address_nv (x,
2720 eliminate_regs_1 (XEXP (x, 0), GET_MODE (x),
2721 insn, true));
2723 case USE:
2724 /* Handle insn_list USE that a call to a pure function may generate. */
2725 new = eliminate_regs_1 (XEXP (x, 0), 0, insn, false);
2726 if (new != XEXP (x, 0))
2727 return gen_rtx_USE (GET_MODE (x), new);
2728 return x;
2730 case CLOBBER:
2731 case ASM_OPERANDS:
2732 case SET:
2733 gcc_unreachable ();
2735 default:
2736 break;
2739 /* Process each of our operands recursively. If any have changed, make a
2740 copy of the rtx. */
2741 fmt = GET_RTX_FORMAT (code);
2742 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2744 if (*fmt == 'e')
2746 new = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false);
2747 if (new != XEXP (x, i) && ! copied)
2749 x = shallow_copy_rtx (x);
2750 copied = 1;
2752 XEXP (x, i) = new;
2754 else if (*fmt == 'E')
2756 int copied_vec = 0;
2757 for (j = 0; j < XVECLEN (x, i); j++)
2759 new = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false);
2760 if (new != XVECEXP (x, i, j) && ! copied_vec)
2762 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2763 XVEC (x, i)->elem);
2764 if (! copied)
2766 x = shallow_copy_rtx (x);
2767 copied = 1;
2769 XVEC (x, i) = new_v;
2770 copied_vec = 1;
2772 XVECEXP (x, i, j) = new;
2777 return x;
2781 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2783 return eliminate_regs_1 (x, mem_mode, insn, false);
2786 /* Scan rtx X for modifications of elimination target registers. Update
2787 the table of eliminables to reflect the changed state. MEM_MODE is
2788 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2790 static void
2791 elimination_effects (rtx x, enum machine_mode mem_mode)
2793 enum rtx_code code = GET_CODE (x);
2794 struct elim_table *ep;
2795 int regno;
2796 int i, j;
2797 const char *fmt;
2799 switch (code)
2801 case CONST_INT:
2802 case CONST_DOUBLE:
2803 case CONST_FIXED:
2804 case CONST_VECTOR:
2805 case CONST:
2806 case SYMBOL_REF:
2807 case CODE_LABEL:
2808 case PC:
2809 case CC0:
2810 case ASM_INPUT:
2811 case ADDR_VEC:
2812 case ADDR_DIFF_VEC:
2813 case RETURN:
2814 return;
2816 case REG:
2817 regno = REGNO (x);
2819 /* First handle the case where we encounter a bare register that
2820 is eliminable. Replace it with a PLUS. */
2821 if (regno < FIRST_PSEUDO_REGISTER)
2823 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2824 ep++)
2825 if (ep->from_rtx == x && ep->can_eliminate)
2827 if (! mem_mode)
2828 ep->ref_outside_mem = 1;
2829 return;
2833 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2834 && reg_equiv_constant[regno]
2835 && ! function_invariant_p (reg_equiv_constant[regno]))
2836 elimination_effects (reg_equiv_constant[regno], mem_mode);
2837 return;
2839 case PRE_INC:
2840 case POST_INC:
2841 case PRE_DEC:
2842 case POST_DEC:
2843 case POST_MODIFY:
2844 case PRE_MODIFY:
2845 /* If we modify the source of an elimination rule, disable it. */
2846 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2847 if (ep->from_rtx == XEXP (x, 0))
2848 ep->can_eliminate = 0;
2850 /* If we modify the target of an elimination rule by adding a constant,
2851 update its offset. If we modify the target in any other way, we'll
2852 have to disable the rule as well. */
2853 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2854 if (ep->to_rtx == XEXP (x, 0))
2856 int size = GET_MODE_SIZE (mem_mode);
2858 /* If more bytes than MEM_MODE are pushed, account for them. */
2859 #ifdef PUSH_ROUNDING
2860 if (ep->to_rtx == stack_pointer_rtx)
2861 size = PUSH_ROUNDING (size);
2862 #endif
2863 if (code == PRE_DEC || code == POST_DEC)
2864 ep->offset += size;
2865 else if (code == PRE_INC || code == POST_INC)
2866 ep->offset -= size;
2867 else if (code == PRE_MODIFY || code == POST_MODIFY)
2869 if (GET_CODE (XEXP (x, 1)) == PLUS
2870 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2871 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
2872 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2873 else
2874 ep->can_eliminate = 0;
2878 /* These two aren't unary operators. */
2879 if (code == POST_MODIFY || code == PRE_MODIFY)
2880 break;
2882 /* Fall through to generic unary operation case. */
2883 case STRICT_LOW_PART:
2884 case NEG: case NOT:
2885 case SIGN_EXTEND: case ZERO_EXTEND:
2886 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2887 case FLOAT: case FIX:
2888 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2889 case ABS:
2890 case SQRT:
2891 case FFS:
2892 case CLZ:
2893 case CTZ:
2894 case POPCOUNT:
2895 case PARITY:
2896 case BSWAP:
2897 elimination_effects (XEXP (x, 0), mem_mode);
2898 return;
2900 case SUBREG:
2901 if (REG_P (SUBREG_REG (x))
2902 && (GET_MODE_SIZE (GET_MODE (x))
2903 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2904 && reg_equiv_memory_loc != 0
2905 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2906 return;
2908 elimination_effects (SUBREG_REG (x), mem_mode);
2909 return;
2911 case USE:
2912 /* If using a register that is the source of an eliminate we still
2913 think can be performed, note it cannot be performed since we don't
2914 know how this register is used. */
2915 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2916 if (ep->from_rtx == XEXP (x, 0))
2917 ep->can_eliminate = 0;
2919 elimination_effects (XEXP (x, 0), mem_mode);
2920 return;
2922 case CLOBBER:
2923 /* If clobbering a register that is the replacement register for an
2924 elimination we still think can be performed, note that it cannot
2925 be performed. Otherwise, we need not be concerned about it. */
2926 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2927 if (ep->to_rtx == XEXP (x, 0))
2928 ep->can_eliminate = 0;
2930 elimination_effects (XEXP (x, 0), mem_mode);
2931 return;
2933 case SET:
2934 /* Check for setting a register that we know about. */
2935 if (REG_P (SET_DEST (x)))
2937 /* See if this is setting the replacement register for an
2938 elimination.
2940 If DEST is the hard frame pointer, we do nothing because we
2941 assume that all assignments to the frame pointer are for
2942 non-local gotos and are being done at a time when they are valid
2943 and do not disturb anything else. Some machines want to
2944 eliminate a fake argument pointer (or even a fake frame pointer)
2945 with either the real frame or the stack pointer. Assignments to
2946 the hard frame pointer must not prevent this elimination. */
2948 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2949 ep++)
2950 if (ep->to_rtx == SET_DEST (x)
2951 && SET_DEST (x) != hard_frame_pointer_rtx)
2953 /* If it is being incremented, adjust the offset. Otherwise,
2954 this elimination can't be done. */
2955 rtx src = SET_SRC (x);
2957 if (GET_CODE (src) == PLUS
2958 && XEXP (src, 0) == SET_DEST (x)
2959 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2960 ep->offset -= INTVAL (XEXP (src, 1));
2961 else
2962 ep->can_eliminate = 0;
2966 elimination_effects (SET_DEST (x), 0);
2967 elimination_effects (SET_SRC (x), 0);
2968 return;
2970 case MEM:
2971 /* Our only special processing is to pass the mode of the MEM to our
2972 recursive call. */
2973 elimination_effects (XEXP (x, 0), GET_MODE (x));
2974 return;
2976 default:
2977 break;
2980 fmt = GET_RTX_FORMAT (code);
2981 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2983 if (*fmt == 'e')
2984 elimination_effects (XEXP (x, i), mem_mode);
2985 else if (*fmt == 'E')
2986 for (j = 0; j < XVECLEN (x, i); j++)
2987 elimination_effects (XVECEXP (x, i, j), mem_mode);
2991 /* Descend through rtx X and verify that no references to eliminable registers
2992 remain. If any do remain, mark the involved register as not
2993 eliminable. */
2995 static void
2996 check_eliminable_occurrences (rtx x)
2998 const char *fmt;
2999 int i;
3000 enum rtx_code code;
3002 if (x == 0)
3003 return;
3005 code = GET_CODE (x);
3007 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3009 struct elim_table *ep;
3011 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3012 if (ep->from_rtx == x)
3013 ep->can_eliminate = 0;
3014 return;
3017 fmt = GET_RTX_FORMAT (code);
3018 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3020 if (*fmt == 'e')
3021 check_eliminable_occurrences (XEXP (x, i));
3022 else if (*fmt == 'E')
3024 int j;
3025 for (j = 0; j < XVECLEN (x, i); j++)
3026 check_eliminable_occurrences (XVECEXP (x, i, j));
3031 /* Scan INSN and eliminate all eliminable registers in it.
3033 If REPLACE is nonzero, do the replacement destructively. Also
3034 delete the insn as dead it if it is setting an eliminable register.
3036 If REPLACE is zero, do all our allocations in reload_obstack.
3038 If no eliminations were done and this insn doesn't require any elimination
3039 processing (these are not identical conditions: it might be updating sp,
3040 but not referencing fp; this needs to be seen during reload_as_needed so
3041 that the offset between fp and sp can be taken into consideration), zero
3042 is returned. Otherwise, 1 is returned. */
3044 static int
3045 eliminate_regs_in_insn (rtx insn, int replace)
3047 int icode = recog_memoized (insn);
3048 rtx old_body = PATTERN (insn);
3049 int insn_is_asm = asm_noperands (old_body) >= 0;
3050 rtx old_set = single_set (insn);
3051 rtx new_body;
3052 int val = 0;
3053 int i;
3054 rtx substed_operand[MAX_RECOG_OPERANDS];
3055 rtx orig_operand[MAX_RECOG_OPERANDS];
3056 struct elim_table *ep;
3057 rtx plus_src, plus_cst_src;
3059 if (! insn_is_asm && icode < 0)
3061 gcc_assert (GET_CODE (PATTERN (insn)) == USE
3062 || GET_CODE (PATTERN (insn)) == CLOBBER
3063 || GET_CODE (PATTERN (insn)) == ADDR_VEC
3064 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3065 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3066 return 0;
3069 if (old_set != 0 && REG_P (SET_DEST (old_set))
3070 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3072 /* Check for setting an eliminable register. */
3073 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3074 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3076 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3077 /* If this is setting the frame pointer register to the
3078 hardware frame pointer register and this is an elimination
3079 that will be done (tested above), this insn is really
3080 adjusting the frame pointer downward to compensate for
3081 the adjustment done before a nonlocal goto. */
3082 if (ep->from == FRAME_POINTER_REGNUM
3083 && ep->to == HARD_FRAME_POINTER_REGNUM)
3085 rtx base = SET_SRC (old_set);
3086 rtx base_insn = insn;
3087 HOST_WIDE_INT offset = 0;
3089 while (base != ep->to_rtx)
3091 rtx prev_insn, prev_set;
3093 if (GET_CODE (base) == PLUS
3094 && GET_CODE (XEXP (base, 1)) == CONST_INT)
3096 offset += INTVAL (XEXP (base, 1));
3097 base = XEXP (base, 0);
3099 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3100 && (prev_set = single_set (prev_insn)) != 0
3101 && rtx_equal_p (SET_DEST (prev_set), base))
3103 base = SET_SRC (prev_set);
3104 base_insn = prev_insn;
3106 else
3107 break;
3110 if (base == ep->to_rtx)
3112 rtx src
3113 = plus_constant (ep->to_rtx, offset - ep->offset);
3115 new_body = old_body;
3116 if (! replace)
3118 new_body = copy_insn (old_body);
3119 if (REG_NOTES (insn))
3120 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3122 PATTERN (insn) = new_body;
3123 old_set = single_set (insn);
3125 /* First see if this insn remains valid when we
3126 make the change. If not, keep the INSN_CODE
3127 the same and let reload fit it up. */
3128 validate_change (insn, &SET_SRC (old_set), src, 1);
3129 validate_change (insn, &SET_DEST (old_set),
3130 ep->to_rtx, 1);
3131 if (! apply_change_group ())
3133 SET_SRC (old_set) = src;
3134 SET_DEST (old_set) = ep->to_rtx;
3137 val = 1;
3138 goto done;
3141 #endif
3143 /* In this case this insn isn't serving a useful purpose. We
3144 will delete it in reload_as_needed once we know that this
3145 elimination is, in fact, being done.
3147 If REPLACE isn't set, we can't delete this insn, but needn't
3148 process it since it won't be used unless something changes. */
3149 if (replace)
3151 delete_dead_insn (insn);
3152 return 1;
3154 val = 1;
3155 goto done;
3159 /* We allow one special case which happens to work on all machines we
3160 currently support: a single set with the source or a REG_EQUAL
3161 note being a PLUS of an eliminable register and a constant. */
3162 plus_src = plus_cst_src = 0;
3163 if (old_set && REG_P (SET_DEST (old_set)))
3165 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3166 plus_src = SET_SRC (old_set);
3167 /* First see if the source is of the form (plus (...) CST). */
3168 if (plus_src
3169 && GET_CODE (XEXP (plus_src, 1)) == CONST_INT)
3170 plus_cst_src = plus_src;
3171 else if (REG_P (SET_SRC (old_set))
3172 || plus_src)
3174 /* Otherwise, see if we have a REG_EQUAL note of the form
3175 (plus (...) CST). */
3176 rtx links;
3177 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3179 if ((REG_NOTE_KIND (links) == REG_EQUAL
3180 || REG_NOTE_KIND (links) == REG_EQUIV)
3181 && GET_CODE (XEXP (links, 0)) == PLUS
3182 && GET_CODE (XEXP (XEXP (links, 0), 1)) == CONST_INT)
3184 plus_cst_src = XEXP (links, 0);
3185 break;
3190 /* Check that the first operand of the PLUS is a hard reg or
3191 the lowpart subreg of one. */
3192 if (plus_cst_src)
3194 rtx reg = XEXP (plus_cst_src, 0);
3195 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3196 reg = SUBREG_REG (reg);
3198 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3199 plus_cst_src = 0;
3202 if (plus_cst_src)
3204 rtx reg = XEXP (plus_cst_src, 0);
3205 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3207 if (GET_CODE (reg) == SUBREG)
3208 reg = SUBREG_REG (reg);
3210 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3211 if (ep->from_rtx == reg && ep->can_eliminate)
3213 rtx to_rtx = ep->to_rtx;
3214 offset += ep->offset;
3215 offset = trunc_int_for_mode (offset, GET_MODE (reg));
3217 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3218 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3219 to_rtx);
3220 /* If we have a nonzero offset, and the source is already
3221 a simple REG, the following transformation would
3222 increase the cost of the insn by replacing a simple REG
3223 with (plus (reg sp) CST). So try only when we already
3224 had a PLUS before. */
3225 if (offset == 0 || plus_src)
3227 rtx new_src = plus_constant (to_rtx, offset);
3229 new_body = old_body;
3230 if (! replace)
3232 new_body = copy_insn (old_body);
3233 if (REG_NOTES (insn))
3234 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3236 PATTERN (insn) = new_body;
3237 old_set = single_set (insn);
3239 /* First see if this insn remains valid when we make the
3240 change. If not, try to replace the whole pattern with
3241 a simple set (this may help if the original insn was a
3242 PARALLEL that was only recognized as single_set due to
3243 REG_UNUSED notes). If this isn't valid either, keep
3244 the INSN_CODE the same and let reload fix it up. */
3245 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3247 rtx new_pat = gen_rtx_SET (VOIDmode,
3248 SET_DEST (old_set), new_src);
3250 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3251 SET_SRC (old_set) = new_src;
3254 else
3255 break;
3257 val = 1;
3258 /* This can't have an effect on elimination offsets, so skip right
3259 to the end. */
3260 goto done;
3264 /* Determine the effects of this insn on elimination offsets. */
3265 elimination_effects (old_body, 0);
3267 /* Eliminate all eliminable registers occurring in operands that
3268 can be handled by reload. */
3269 extract_insn (insn);
3270 for (i = 0; i < recog_data.n_operands; i++)
3272 orig_operand[i] = recog_data.operand[i];
3273 substed_operand[i] = recog_data.operand[i];
3275 /* For an asm statement, every operand is eliminable. */
3276 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3278 bool is_set_src, in_plus;
3280 /* Check for setting a register that we know about. */
3281 if (recog_data.operand_type[i] != OP_IN
3282 && REG_P (orig_operand[i]))
3284 /* If we are assigning to a register that can be eliminated, it
3285 must be as part of a PARALLEL, since the code above handles
3286 single SETs. We must indicate that we can no longer
3287 eliminate this reg. */
3288 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3289 ep++)
3290 if (ep->from_rtx == orig_operand[i])
3291 ep->can_eliminate = 0;
3294 /* Companion to the above plus substitution, we can allow
3295 invariants as the source of a plain move. */
3296 is_set_src = false;
3297 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3298 is_set_src = true;
3299 in_plus = false;
3300 if (plus_src
3301 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3302 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3303 in_plus = true;
3305 substed_operand[i]
3306 = eliminate_regs_1 (recog_data.operand[i], 0,
3307 replace ? insn : NULL_RTX,
3308 is_set_src || in_plus);
3309 if (substed_operand[i] != orig_operand[i])
3310 val = 1;
3311 /* Terminate the search in check_eliminable_occurrences at
3312 this point. */
3313 *recog_data.operand_loc[i] = 0;
3315 /* If an output operand changed from a REG to a MEM and INSN is an
3316 insn, write a CLOBBER insn. */
3317 if (recog_data.operand_type[i] != OP_IN
3318 && REG_P (orig_operand[i])
3319 && MEM_P (substed_operand[i])
3320 && replace)
3321 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3325 for (i = 0; i < recog_data.n_dups; i++)
3326 *recog_data.dup_loc[i]
3327 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3329 /* If any eliminable remain, they aren't eliminable anymore. */
3330 check_eliminable_occurrences (old_body);
3332 /* Substitute the operands; the new values are in the substed_operand
3333 array. */
3334 for (i = 0; i < recog_data.n_operands; i++)
3335 *recog_data.operand_loc[i] = substed_operand[i];
3336 for (i = 0; i < recog_data.n_dups; i++)
3337 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3339 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3340 re-recognize the insn. We do this in case we had a simple addition
3341 but now can do this as a load-address. This saves an insn in this
3342 common case.
3343 If re-recognition fails, the old insn code number will still be used,
3344 and some register operands may have changed into PLUS expressions.
3345 These will be handled by find_reloads by loading them into a register
3346 again. */
3348 if (val)
3350 /* If we aren't replacing things permanently and we changed something,
3351 make another copy to ensure that all the RTL is new. Otherwise
3352 things can go wrong if find_reload swaps commutative operands
3353 and one is inside RTL that has been copied while the other is not. */
3354 new_body = old_body;
3355 if (! replace)
3357 new_body = copy_insn (old_body);
3358 if (REG_NOTES (insn))
3359 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3361 PATTERN (insn) = new_body;
3363 /* If we had a move insn but now we don't, rerecognize it. This will
3364 cause spurious re-recognition if the old move had a PARALLEL since
3365 the new one still will, but we can't call single_set without
3366 having put NEW_BODY into the insn and the re-recognition won't
3367 hurt in this rare case. */
3368 /* ??? Why this huge if statement - why don't we just rerecognize the
3369 thing always? */
3370 if (! insn_is_asm
3371 && old_set != 0
3372 && ((REG_P (SET_SRC (old_set))
3373 && (GET_CODE (new_body) != SET
3374 || !REG_P (SET_SRC (new_body))))
3375 /* If this was a load from or store to memory, compare
3376 the MEM in recog_data.operand to the one in the insn.
3377 If they are not equal, then rerecognize the insn. */
3378 || (old_set != 0
3379 && ((MEM_P (SET_SRC (old_set))
3380 && SET_SRC (old_set) != recog_data.operand[1])
3381 || (MEM_P (SET_DEST (old_set))
3382 && SET_DEST (old_set) != recog_data.operand[0])))
3383 /* If this was an add insn before, rerecognize. */
3384 || GET_CODE (SET_SRC (old_set)) == PLUS))
3386 int new_icode = recog (PATTERN (insn), insn, 0);
3387 if (new_icode >= 0)
3388 INSN_CODE (insn) = new_icode;
3392 /* Restore the old body. If there were any changes to it, we made a copy
3393 of it while the changes were still in place, so we'll correctly return
3394 a modified insn below. */
3395 if (! replace)
3397 /* Restore the old body. */
3398 for (i = 0; i < recog_data.n_operands; i++)
3399 *recog_data.operand_loc[i] = orig_operand[i];
3400 for (i = 0; i < recog_data.n_dups; i++)
3401 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3404 /* Update all elimination pairs to reflect the status after the current
3405 insn. The changes we make were determined by the earlier call to
3406 elimination_effects.
3408 We also detect cases where register elimination cannot be done,
3409 namely, if a register would be both changed and referenced outside a MEM
3410 in the resulting insn since such an insn is often undefined and, even if
3411 not, we cannot know what meaning will be given to it. Note that it is
3412 valid to have a register used in an address in an insn that changes it
3413 (presumably with a pre- or post-increment or decrement).
3415 If anything changes, return nonzero. */
3417 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3419 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3420 ep->can_eliminate = 0;
3422 ep->ref_outside_mem = 0;
3424 if (ep->previous_offset != ep->offset)
3425 val = 1;
3428 done:
3429 /* If we changed something, perform elimination in REG_NOTES. This is
3430 needed even when REPLACE is zero because a REG_DEAD note might refer
3431 to a register that we eliminate and could cause a different number
3432 of spill registers to be needed in the final reload pass than in
3433 the pre-passes. */
3434 if (val && REG_NOTES (insn) != 0)
3435 REG_NOTES (insn)
3436 = eliminate_regs_1 (REG_NOTES (insn), 0, REG_NOTES (insn), true);
3438 return val;
3441 /* Loop through all elimination pairs.
3442 Recalculate the number not at initial offset.
3444 Compute the maximum offset (minimum offset if the stack does not
3445 grow downward) for each elimination pair. */
3447 static void
3448 update_eliminable_offsets (void)
3450 struct elim_table *ep;
3452 num_not_at_initial_offset = 0;
3453 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3455 ep->previous_offset = ep->offset;
3456 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3457 num_not_at_initial_offset++;
3461 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3462 replacement we currently believe is valid, mark it as not eliminable if X
3463 modifies DEST in any way other than by adding a constant integer to it.
3465 If DEST is the frame pointer, we do nothing because we assume that
3466 all assignments to the hard frame pointer are nonlocal gotos and are being
3467 done at a time when they are valid and do not disturb anything else.
3468 Some machines want to eliminate a fake argument pointer with either the
3469 frame or stack pointer. Assignments to the hard frame pointer must not
3470 prevent this elimination.
3472 Called via note_stores from reload before starting its passes to scan
3473 the insns of the function. */
3475 static void
3476 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3478 unsigned int i;
3480 /* A SUBREG of a hard register here is just changing its mode. We should
3481 not see a SUBREG of an eliminable hard register, but check just in
3482 case. */
3483 if (GET_CODE (dest) == SUBREG)
3484 dest = SUBREG_REG (dest);
3486 if (dest == hard_frame_pointer_rtx)
3487 return;
3489 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3490 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3491 && (GET_CODE (x) != SET
3492 || GET_CODE (SET_SRC (x)) != PLUS
3493 || XEXP (SET_SRC (x), 0) != dest
3494 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3496 reg_eliminate[i].can_eliminate_previous
3497 = reg_eliminate[i].can_eliminate = 0;
3498 num_eliminable--;
3502 /* Verify that the initial elimination offsets did not change since the
3503 last call to set_initial_elim_offsets. This is used to catch cases
3504 where something illegal happened during reload_as_needed that could
3505 cause incorrect code to be generated if we did not check for it. */
3507 static bool
3508 verify_initial_elim_offsets (void)
3510 HOST_WIDE_INT t;
3512 if (!num_eliminable)
3513 return true;
3515 #ifdef ELIMINABLE_REGS
3517 struct elim_table *ep;
3519 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3521 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3522 if (t != ep->initial_offset)
3523 return false;
3526 #else
3527 INITIAL_FRAME_POINTER_OFFSET (t);
3528 if (t != reg_eliminate[0].initial_offset)
3529 return false;
3530 #endif
3532 return true;
3535 /* Reset all offsets on eliminable registers to their initial values. */
3537 static void
3538 set_initial_elim_offsets (void)
3540 struct elim_table *ep = reg_eliminate;
3542 #ifdef ELIMINABLE_REGS
3543 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3545 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3546 ep->previous_offset = ep->offset = ep->initial_offset;
3548 #else
3549 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3550 ep->previous_offset = ep->offset = ep->initial_offset;
3551 #endif
3553 num_not_at_initial_offset = 0;
3556 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3558 static void
3559 set_initial_eh_label_offset (rtx label)
3561 set_label_offsets (label, NULL_RTX, 1);
3564 /* Initialize the known label offsets.
3565 Set a known offset for each forced label to be at the initial offset
3566 of each elimination. We do this because we assume that all
3567 computed jumps occur from a location where each elimination is
3568 at its initial offset.
3569 For all other labels, show that we don't know the offsets. */
3571 static void
3572 set_initial_label_offsets (void)
3574 rtx x;
3575 memset (offsets_known_at, 0, num_labels);
3577 for (x = forced_labels; x; x = XEXP (x, 1))
3578 if (XEXP (x, 0))
3579 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3581 for_each_eh_label (set_initial_eh_label_offset);
3584 /* Set all elimination offsets to the known values for the code label given
3585 by INSN. */
3587 static void
3588 set_offsets_for_label (rtx insn)
3590 unsigned int i;
3591 int label_nr = CODE_LABEL_NUMBER (insn);
3592 struct elim_table *ep;
3594 num_not_at_initial_offset = 0;
3595 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3597 ep->offset = ep->previous_offset
3598 = offsets_at[label_nr - first_label_num][i];
3599 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3600 num_not_at_initial_offset++;
3604 /* See if anything that happened changes which eliminations are valid.
3605 For example, on the SPARC, whether or not the frame pointer can
3606 be eliminated can depend on what registers have been used. We need
3607 not check some conditions again (such as flag_omit_frame_pointer)
3608 since they can't have changed. */
3610 static void
3611 update_eliminables (HARD_REG_SET *pset)
3613 int previous_frame_pointer_needed = frame_pointer_needed;
3614 struct elim_table *ep;
3616 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3617 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3618 #ifdef ELIMINABLE_REGS
3619 || ! CAN_ELIMINATE (ep->from, ep->to)
3620 #endif
3622 ep->can_eliminate = 0;
3624 /* Look for the case where we have discovered that we can't replace
3625 register A with register B and that means that we will now be
3626 trying to replace register A with register C. This means we can
3627 no longer replace register C with register B and we need to disable
3628 such an elimination, if it exists. This occurs often with A == ap,
3629 B == sp, and C == fp. */
3631 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3633 struct elim_table *op;
3634 int new_to = -1;
3636 if (! ep->can_eliminate && ep->can_eliminate_previous)
3638 /* Find the current elimination for ep->from, if there is a
3639 new one. */
3640 for (op = reg_eliminate;
3641 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3642 if (op->from == ep->from && op->can_eliminate)
3644 new_to = op->to;
3645 break;
3648 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3649 disable it. */
3650 for (op = reg_eliminate;
3651 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3652 if (op->from == new_to && op->to == ep->to)
3653 op->can_eliminate = 0;
3657 /* See if any registers that we thought we could eliminate the previous
3658 time are no longer eliminable. If so, something has changed and we
3659 must spill the register. Also, recompute the number of eliminable
3660 registers and see if the frame pointer is needed; it is if there is
3661 no elimination of the frame pointer that we can perform. */
3663 frame_pointer_needed = 1;
3664 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3666 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3667 && ep->to != HARD_FRAME_POINTER_REGNUM)
3668 frame_pointer_needed = 0;
3670 if (! ep->can_eliminate && ep->can_eliminate_previous)
3672 ep->can_eliminate_previous = 0;
3673 SET_HARD_REG_BIT (*pset, ep->from);
3674 num_eliminable--;
3678 /* If we didn't need a frame pointer last time, but we do now, spill
3679 the hard frame pointer. */
3680 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3681 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3684 /* Return true if X is used as the target register of an elimination. */
3686 bool
3687 elimination_target_reg_p (rtx x)
3689 struct elim_table *ep;
3691 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3692 if (ep->to_rtx == x && ep->can_eliminate)
3693 return true;
3695 return false;
3698 /* Initialize the table of registers to eliminate.
3699 Pre-condition: global flag frame_pointer_needed has been set before
3700 calling this function. */
3702 static void
3703 init_elim_table (void)
3705 struct elim_table *ep;
3706 #ifdef ELIMINABLE_REGS
3707 const struct elim_table_1 *ep1;
3708 #endif
3710 if (!reg_eliminate)
3711 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
3713 num_eliminable = 0;
3715 #ifdef ELIMINABLE_REGS
3716 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3717 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3719 ep->from = ep1->from;
3720 ep->to = ep1->to;
3721 ep->can_eliminate = ep->can_eliminate_previous
3722 = (CAN_ELIMINATE (ep->from, ep->to)
3723 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3725 #else
3726 reg_eliminate[0].from = reg_eliminate_1[0].from;
3727 reg_eliminate[0].to = reg_eliminate_1[0].to;
3728 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3729 = ! frame_pointer_needed;
3730 #endif
3732 /* Count the number of eliminable registers and build the FROM and TO
3733 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
3734 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3735 We depend on this. */
3736 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3738 num_eliminable += ep->can_eliminate;
3739 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3740 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3744 /* Kick all pseudos out of hard register REGNO.
3746 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3747 because we found we can't eliminate some register. In the case, no pseudos
3748 are allowed to be in the register, even if they are only in a block that
3749 doesn't require spill registers, unlike the case when we are spilling this
3750 hard reg to produce another spill register.
3752 Return nonzero if any pseudos needed to be kicked out. */
3754 static void
3755 spill_hard_reg (unsigned int regno, int cant_eliminate)
3757 int i;
3759 if (cant_eliminate)
3761 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3762 df_set_regs_ever_live (regno, true);
3765 /* Spill every pseudo reg that was allocated to this reg
3766 or to something that overlaps this reg. */
3768 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3769 if (reg_renumber[i] >= 0
3770 && (unsigned int) reg_renumber[i] <= regno
3771 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
3772 SET_REGNO_REG_SET (&spilled_pseudos, i);
3775 /* After find_reload_regs has been run for all insn that need reloads,
3776 and/or spill_hard_regs was called, this function is used to actually
3777 spill pseudo registers and try to reallocate them. It also sets up the
3778 spill_regs array for use by choose_reload_regs. */
3780 static int
3781 finish_spills (int global)
3783 struct insn_chain *chain;
3784 int something_changed = 0;
3785 unsigned i;
3786 reg_set_iterator rsi;
3788 /* Build the spill_regs array for the function. */
3789 /* If there are some registers still to eliminate and one of the spill regs
3790 wasn't ever used before, additional stack space may have to be
3791 allocated to store this register. Thus, we may have changed the offset
3792 between the stack and frame pointers, so mark that something has changed.
3794 One might think that we need only set VAL to 1 if this is a call-used
3795 register. However, the set of registers that must be saved by the
3796 prologue is not identical to the call-used set. For example, the
3797 register used by the call insn for the return PC is a call-used register,
3798 but must be saved by the prologue. */
3800 n_spills = 0;
3801 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3802 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3804 spill_reg_order[i] = n_spills;
3805 spill_regs[n_spills++] = i;
3806 if (num_eliminable && ! df_regs_ever_live_p (i))
3807 something_changed = 1;
3808 df_set_regs_ever_live (i, true);
3810 else
3811 spill_reg_order[i] = -1;
3813 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
3815 /* Record the current hard register the pseudo is allocated to in
3816 pseudo_previous_regs so we avoid reallocating it to the same
3817 hard reg in a later pass. */
3818 gcc_assert (reg_renumber[i] >= 0);
3820 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3821 /* Mark it as no longer having a hard register home. */
3822 reg_renumber[i] = -1;
3823 /* We will need to scan everything again. */
3824 something_changed = 1;
3827 /* Retry global register allocation if possible. */
3828 if (global)
3830 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3831 /* For every insn that needs reloads, set the registers used as spill
3832 regs in pseudo_forbidden_regs for every pseudo live across the
3833 insn. */
3834 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3836 EXECUTE_IF_SET_IN_REG_SET
3837 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
3839 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3840 chain->used_spill_regs);
3842 EXECUTE_IF_SET_IN_REG_SET
3843 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
3845 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3846 chain->used_spill_regs);
3850 /* Retry allocating the spilled pseudos. For each reg, merge the
3851 various reg sets that indicate which hard regs can't be used,
3852 and call retry_global_alloc.
3853 We change spill_pseudos here to only contain pseudos that did not
3854 get a new hard register. */
3855 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
3856 if (reg_old_renumber[i] != reg_renumber[i])
3858 HARD_REG_SET forbidden;
3859 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3860 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3861 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3862 retry_global_alloc (i, forbidden);
3863 if (reg_renumber[i] >= 0)
3864 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3868 /* Fix up the register information in the insn chain.
3869 This involves deleting those of the spilled pseudos which did not get
3870 a new hard register home from the live_{before,after} sets. */
3871 for (chain = reload_insn_chain; chain; chain = chain->next)
3873 HARD_REG_SET used_by_pseudos;
3874 HARD_REG_SET used_by_pseudos2;
3876 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3877 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3879 /* Mark any unallocated hard regs as available for spills. That
3880 makes inheritance work somewhat better. */
3881 if (chain->need_reload)
3883 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3884 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3885 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3887 /* Save the old value for the sanity test below. */
3888 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3890 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3891 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3892 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3893 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3895 /* Make sure we only enlarge the set. */
3896 gcc_assert (hard_reg_set_subset_p (used_by_pseudos2,
3897 chain->used_spill_regs));
3901 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3902 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
3904 int regno = reg_renumber[i];
3905 if (reg_old_renumber[i] == regno)
3906 continue;
3908 alter_reg (i, reg_old_renumber[i]);
3909 reg_old_renumber[i] = regno;
3910 if (dump_file)
3912 if (regno == -1)
3913 fprintf (dump_file, " Register %d now on stack.\n\n", i);
3914 else
3915 fprintf (dump_file, " Register %d now in %d.\n\n",
3916 i, reg_renumber[i]);
3920 return something_changed;
3923 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
3925 static void
3926 scan_paradoxical_subregs (rtx x)
3928 int i;
3929 const char *fmt;
3930 enum rtx_code code = GET_CODE (x);
3932 switch (code)
3934 case REG:
3935 case CONST_INT:
3936 case CONST:
3937 case SYMBOL_REF:
3938 case LABEL_REF:
3939 case CONST_DOUBLE:
3940 case CONST_FIXED:
3941 case CONST_VECTOR: /* shouldn't happen, but just in case. */
3942 case CC0:
3943 case PC:
3944 case USE:
3945 case CLOBBER:
3946 return;
3948 case SUBREG:
3949 if (REG_P (SUBREG_REG (x))
3950 && (GET_MODE_SIZE (GET_MODE (x))
3951 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
3953 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3954 = GET_MODE_SIZE (GET_MODE (x));
3955 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
3957 return;
3959 default:
3960 break;
3963 fmt = GET_RTX_FORMAT (code);
3964 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3966 if (fmt[i] == 'e')
3967 scan_paradoxical_subregs (XEXP (x, i));
3968 else if (fmt[i] == 'E')
3970 int j;
3971 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3972 scan_paradoxical_subregs (XVECEXP (x, i, j));
3977 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
3978 examine all of the reload insns between PREV and NEXT exclusive, and
3979 annotate all that may trap. */
3981 static void
3982 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
3984 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3985 unsigned int trap_count;
3986 rtx i;
3988 if (note == NULL)
3989 return;
3991 if (may_trap_p (PATTERN (insn)))
3992 trap_count = 1;
3993 else
3995 remove_note (insn, note);
3996 trap_count = 0;
3999 for (i = NEXT_INSN (prev); i != next; i = NEXT_INSN (i))
4000 if (INSN_P (i) && i != insn && may_trap_p (PATTERN (i)))
4002 trap_count++;
4003 add_reg_note (i, REG_EH_REGION, XEXP (note, 0));
4007 /* Reload pseudo-registers into hard regs around each insn as needed.
4008 Additional register load insns are output before the insn that needs it
4009 and perhaps store insns after insns that modify the reloaded pseudo reg.
4011 reg_last_reload_reg and reg_reloaded_contents keep track of
4012 which registers are already available in reload registers.
4013 We update these for the reloads that we perform,
4014 as the insns are scanned. */
4016 static void
4017 reload_as_needed (int live_known)
4019 struct insn_chain *chain;
4020 #if defined (AUTO_INC_DEC)
4021 int i;
4022 #endif
4023 rtx x;
4025 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4026 memset (spill_reg_store, 0, sizeof spill_reg_store);
4027 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4028 INIT_REG_SET (&reg_has_output_reload);
4029 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4030 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4032 set_initial_elim_offsets ();
4034 for (chain = reload_insn_chain; chain; chain = chain->next)
4036 rtx prev = 0;
4037 rtx insn = chain->insn;
4038 rtx old_next = NEXT_INSN (insn);
4040 /* If we pass a label, copy the offsets from the label information
4041 into the current offsets of each elimination. */
4042 if (LABEL_P (insn))
4043 set_offsets_for_label (insn);
4045 else if (INSN_P (insn))
4047 regset_head regs_to_forget;
4048 INIT_REG_SET (&regs_to_forget);
4049 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4051 /* If this is a USE and CLOBBER of a MEM, ensure that any
4052 references to eliminable registers have been removed. */
4054 if ((GET_CODE (PATTERN (insn)) == USE
4055 || GET_CODE (PATTERN (insn)) == CLOBBER)
4056 && MEM_P (XEXP (PATTERN (insn), 0)))
4057 XEXP (XEXP (PATTERN (insn), 0), 0)
4058 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4059 GET_MODE (XEXP (PATTERN (insn), 0)),
4060 NULL_RTX);
4062 /* If we need to do register elimination processing, do so.
4063 This might delete the insn, in which case we are done. */
4064 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4066 eliminate_regs_in_insn (insn, 1);
4067 if (NOTE_P (insn))
4069 update_eliminable_offsets ();
4070 CLEAR_REG_SET (&regs_to_forget);
4071 continue;
4075 /* If need_elim is nonzero but need_reload is zero, one might think
4076 that we could simply set n_reloads to 0. However, find_reloads
4077 could have done some manipulation of the insn (such as swapping
4078 commutative operands), and these manipulations are lost during
4079 the first pass for every insn that needs register elimination.
4080 So the actions of find_reloads must be redone here. */
4082 if (! chain->need_elim && ! chain->need_reload
4083 && ! chain->need_operand_change)
4084 n_reloads = 0;
4085 /* First find the pseudo regs that must be reloaded for this insn.
4086 This info is returned in the tables reload_... (see reload.h).
4087 Also modify the body of INSN by substituting RELOAD
4088 rtx's for those pseudo regs. */
4089 else
4091 CLEAR_REG_SET (&reg_has_output_reload);
4092 CLEAR_HARD_REG_SET (reg_is_output_reload);
4094 find_reloads (insn, 1, spill_indirect_levels, live_known,
4095 spill_reg_order);
4098 if (n_reloads > 0)
4100 rtx next = NEXT_INSN (insn);
4101 rtx p;
4103 prev = PREV_INSN (insn);
4105 /* Now compute which reload regs to reload them into. Perhaps
4106 reusing reload regs from previous insns, or else output
4107 load insns to reload them. Maybe output store insns too.
4108 Record the choices of reload reg in reload_reg_rtx. */
4109 choose_reload_regs (chain);
4111 /* Merge any reloads that we didn't combine for fear of
4112 increasing the number of spill registers needed but now
4113 discover can be safely merged. */
4114 if (SMALL_REGISTER_CLASSES)
4115 merge_assigned_reloads (insn);
4117 /* Generate the insns to reload operands into or out of
4118 their reload regs. */
4119 emit_reload_insns (chain);
4121 /* Substitute the chosen reload regs from reload_reg_rtx
4122 into the insn's body (or perhaps into the bodies of other
4123 load and store insn that we just made for reloading
4124 and that we moved the structure into). */
4125 subst_reloads (insn);
4127 /* Adjust the exception region notes for loads and stores. */
4128 if (flag_non_call_exceptions && !CALL_P (insn))
4129 fixup_eh_region_note (insn, prev, next);
4131 /* If this was an ASM, make sure that all the reload insns
4132 we have generated are valid. If not, give an error
4133 and delete them. */
4134 if (asm_noperands (PATTERN (insn)) >= 0)
4135 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4136 if (p != insn && INSN_P (p)
4137 && GET_CODE (PATTERN (p)) != USE
4138 && (recog_memoized (p) < 0
4139 || (extract_insn (p), ! constrain_operands (1))))
4141 error_for_asm (insn,
4142 "%<asm%> operand requires "
4143 "impossible reload");
4144 delete_insn (p);
4148 if (num_eliminable && chain->need_elim)
4149 update_eliminable_offsets ();
4151 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4152 is no longer validly lying around to save a future reload.
4153 Note that this does not detect pseudos that were reloaded
4154 for this insn in order to be stored in
4155 (obeying register constraints). That is correct; such reload
4156 registers ARE still valid. */
4157 forget_marked_reloads (&regs_to_forget);
4158 CLEAR_REG_SET (&regs_to_forget);
4160 /* There may have been CLOBBER insns placed after INSN. So scan
4161 between INSN and NEXT and use them to forget old reloads. */
4162 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4163 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4164 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4166 #ifdef AUTO_INC_DEC
4167 /* Likewise for regs altered by auto-increment in this insn.
4168 REG_INC notes have been changed by reloading:
4169 find_reloads_address_1 records substitutions for them,
4170 which have been performed by subst_reloads above. */
4171 for (i = n_reloads - 1; i >= 0; i--)
4173 rtx in_reg = rld[i].in_reg;
4174 if (in_reg)
4176 enum rtx_code code = GET_CODE (in_reg);
4177 /* PRE_INC / PRE_DEC will have the reload register ending up
4178 with the same value as the stack slot, but that doesn't
4179 hold true for POST_INC / POST_DEC. Either we have to
4180 convert the memory access to a true POST_INC / POST_DEC,
4181 or we can't use the reload register for inheritance. */
4182 if ((code == POST_INC || code == POST_DEC)
4183 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4184 REGNO (rld[i].reg_rtx))
4185 /* Make sure it is the inc/dec pseudo, and not
4186 some other (e.g. output operand) pseudo. */
4187 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4188 == REGNO (XEXP (in_reg, 0))))
4191 rtx reload_reg = rld[i].reg_rtx;
4192 enum machine_mode mode = GET_MODE (reload_reg);
4193 int n = 0;
4194 rtx p;
4196 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4198 /* We really want to ignore REG_INC notes here, so
4199 use PATTERN (p) as argument to reg_set_p . */
4200 if (reg_set_p (reload_reg, PATTERN (p)))
4201 break;
4202 n = count_occurrences (PATTERN (p), reload_reg, 0);
4203 if (! n)
4204 continue;
4205 if (n == 1)
4207 n = validate_replace_rtx (reload_reg,
4208 gen_rtx_fmt_e (code,
4209 mode,
4210 reload_reg),
4213 /* We must also verify that the constraints
4214 are met after the replacement. */
4215 extract_insn (p);
4216 if (n)
4217 n = constrain_operands (1);
4218 else
4219 break;
4221 /* If the constraints were not met, then
4222 undo the replacement. */
4223 if (!n)
4225 validate_replace_rtx (gen_rtx_fmt_e (code,
4226 mode,
4227 reload_reg),
4228 reload_reg, p);
4229 break;
4233 break;
4235 if (n == 1)
4237 add_reg_note (p, REG_INC, reload_reg);
4238 /* Mark this as having an output reload so that the
4239 REG_INC processing code below won't invalidate
4240 the reload for inheritance. */
4241 SET_HARD_REG_BIT (reg_is_output_reload,
4242 REGNO (reload_reg));
4243 SET_REGNO_REG_SET (&reg_has_output_reload,
4244 REGNO (XEXP (in_reg, 0)));
4246 else
4247 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4248 NULL);
4250 else if ((code == PRE_INC || code == PRE_DEC)
4251 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4252 REGNO (rld[i].reg_rtx))
4253 /* Make sure it is the inc/dec pseudo, and not
4254 some other (e.g. output operand) pseudo. */
4255 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4256 == REGNO (XEXP (in_reg, 0))))
4258 SET_HARD_REG_BIT (reg_is_output_reload,
4259 REGNO (rld[i].reg_rtx));
4260 SET_REGNO_REG_SET (&reg_has_output_reload,
4261 REGNO (XEXP (in_reg, 0)));
4265 /* If a pseudo that got a hard register is auto-incremented,
4266 we must purge records of copying it into pseudos without
4267 hard registers. */
4268 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4269 if (REG_NOTE_KIND (x) == REG_INC)
4271 /* See if this pseudo reg was reloaded in this insn.
4272 If so, its last-reload info is still valid
4273 because it is based on this insn's reload. */
4274 for (i = 0; i < n_reloads; i++)
4275 if (rld[i].out == XEXP (x, 0))
4276 break;
4278 if (i == n_reloads)
4279 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4281 #endif
4283 /* A reload reg's contents are unknown after a label. */
4284 if (LABEL_P (insn))
4285 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4287 /* Don't assume a reload reg is still good after a call insn
4288 if it is a call-used reg, or if it contains a value that will
4289 be partially clobbered by the call. */
4290 else if (CALL_P (insn))
4292 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4293 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4297 /* Clean up. */
4298 free (reg_last_reload_reg);
4299 CLEAR_REG_SET (&reg_has_output_reload);
4302 /* Discard all record of any value reloaded from X,
4303 or reloaded in X from someplace else;
4304 unless X is an output reload reg of the current insn.
4306 X may be a hard reg (the reload reg)
4307 or it may be a pseudo reg that was reloaded from.
4309 When DATA is non-NULL just mark the registers in regset
4310 to be forgotten later. */
4312 static void
4313 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4314 void *data)
4316 unsigned int regno;
4317 unsigned int nr;
4318 regset regs = (regset) data;
4320 /* note_stores does give us subregs of hard regs,
4321 subreg_regno_offset requires a hard reg. */
4322 while (GET_CODE (x) == SUBREG)
4324 /* We ignore the subreg offset when calculating the regno,
4325 because we are using the entire underlying hard register
4326 below. */
4327 x = SUBREG_REG (x);
4330 if (!REG_P (x))
4331 return;
4333 regno = REGNO (x);
4335 if (regno >= FIRST_PSEUDO_REGISTER)
4336 nr = 1;
4337 else
4339 unsigned int i;
4341 nr = hard_regno_nregs[regno][GET_MODE (x)];
4342 /* Storing into a spilled-reg invalidates its contents.
4343 This can happen if a block-local pseudo is allocated to that reg
4344 and it wasn't spilled because this block's total need is 0.
4345 Then some insn might have an optional reload and use this reg. */
4346 if (!regs)
4347 for (i = 0; i < nr; i++)
4348 /* But don't do this if the reg actually serves as an output
4349 reload reg in the current instruction. */
4350 if (n_reloads == 0
4351 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4353 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4354 spill_reg_store[regno + i] = 0;
4358 if (regs)
4359 while (nr-- > 0)
4360 SET_REGNO_REG_SET (regs, regno + nr);
4361 else
4363 /* Since value of X has changed,
4364 forget any value previously copied from it. */
4366 while (nr-- > 0)
4367 /* But don't forget a copy if this is the output reload
4368 that establishes the copy's validity. */
4369 if (n_reloads == 0
4370 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4371 reg_last_reload_reg[regno + nr] = 0;
4375 /* Forget the reloads marked in regset by previous function. */
4376 static void
4377 forget_marked_reloads (regset regs)
4379 unsigned int reg;
4380 reg_set_iterator rsi;
4381 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4383 if (reg < FIRST_PSEUDO_REGISTER
4384 /* But don't do this if the reg actually serves as an output
4385 reload reg in the current instruction. */
4386 && (n_reloads == 0
4387 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4389 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4390 spill_reg_store[reg] = 0;
4392 if (n_reloads == 0
4393 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4394 reg_last_reload_reg[reg] = 0;
4398 /* The following HARD_REG_SETs indicate when each hard register is
4399 used for a reload of various parts of the current insn. */
4401 /* If reg is unavailable for all reloads. */
4402 static HARD_REG_SET reload_reg_unavailable;
4403 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4404 static HARD_REG_SET reload_reg_used;
4405 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4406 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4407 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4408 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4409 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4410 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4411 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4412 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4413 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4414 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4415 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4416 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4417 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4418 static HARD_REG_SET reload_reg_used_in_op_addr;
4419 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4420 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4421 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4422 static HARD_REG_SET reload_reg_used_in_insn;
4423 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4424 static HARD_REG_SET reload_reg_used_in_other_addr;
4426 /* If reg is in use as a reload reg for any sort of reload. */
4427 static HARD_REG_SET reload_reg_used_at_all;
4429 /* If reg is use as an inherited reload. We just mark the first register
4430 in the group. */
4431 static HARD_REG_SET reload_reg_used_for_inherit;
4433 /* Records which hard regs are used in any way, either as explicit use or
4434 by being allocated to a pseudo during any point of the current insn. */
4435 static HARD_REG_SET reg_used_in_insn;
4437 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4438 TYPE. MODE is used to indicate how many consecutive regs are
4439 actually used. */
4441 static void
4442 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4443 enum machine_mode mode)
4445 unsigned int nregs = hard_regno_nregs[regno][mode];
4446 unsigned int i;
4448 for (i = regno; i < nregs + regno; i++)
4450 switch (type)
4452 case RELOAD_OTHER:
4453 SET_HARD_REG_BIT (reload_reg_used, i);
4454 break;
4456 case RELOAD_FOR_INPUT_ADDRESS:
4457 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4458 break;
4460 case RELOAD_FOR_INPADDR_ADDRESS:
4461 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4462 break;
4464 case RELOAD_FOR_OUTPUT_ADDRESS:
4465 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4466 break;
4468 case RELOAD_FOR_OUTADDR_ADDRESS:
4469 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4470 break;
4472 case RELOAD_FOR_OPERAND_ADDRESS:
4473 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4474 break;
4476 case RELOAD_FOR_OPADDR_ADDR:
4477 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4478 break;
4480 case RELOAD_FOR_OTHER_ADDRESS:
4481 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4482 break;
4484 case RELOAD_FOR_INPUT:
4485 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4486 break;
4488 case RELOAD_FOR_OUTPUT:
4489 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4490 break;
4492 case RELOAD_FOR_INSN:
4493 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4494 break;
4497 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4501 /* Similarly, but show REGNO is no longer in use for a reload. */
4503 static void
4504 clear_reload_reg_in_use (unsigned int regno, int opnum,
4505 enum reload_type type, enum machine_mode mode)
4507 unsigned int nregs = hard_regno_nregs[regno][mode];
4508 unsigned int start_regno, end_regno, r;
4509 int i;
4510 /* A complication is that for some reload types, inheritance might
4511 allow multiple reloads of the same types to share a reload register.
4512 We set check_opnum if we have to check only reloads with the same
4513 operand number, and check_any if we have to check all reloads. */
4514 int check_opnum = 0;
4515 int check_any = 0;
4516 HARD_REG_SET *used_in_set;
4518 switch (type)
4520 case RELOAD_OTHER:
4521 used_in_set = &reload_reg_used;
4522 break;
4524 case RELOAD_FOR_INPUT_ADDRESS:
4525 used_in_set = &reload_reg_used_in_input_addr[opnum];
4526 break;
4528 case RELOAD_FOR_INPADDR_ADDRESS:
4529 check_opnum = 1;
4530 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4531 break;
4533 case RELOAD_FOR_OUTPUT_ADDRESS:
4534 used_in_set = &reload_reg_used_in_output_addr[opnum];
4535 break;
4537 case RELOAD_FOR_OUTADDR_ADDRESS:
4538 check_opnum = 1;
4539 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4540 break;
4542 case RELOAD_FOR_OPERAND_ADDRESS:
4543 used_in_set = &reload_reg_used_in_op_addr;
4544 break;
4546 case RELOAD_FOR_OPADDR_ADDR:
4547 check_any = 1;
4548 used_in_set = &reload_reg_used_in_op_addr_reload;
4549 break;
4551 case RELOAD_FOR_OTHER_ADDRESS:
4552 used_in_set = &reload_reg_used_in_other_addr;
4553 check_any = 1;
4554 break;
4556 case RELOAD_FOR_INPUT:
4557 used_in_set = &reload_reg_used_in_input[opnum];
4558 break;
4560 case RELOAD_FOR_OUTPUT:
4561 used_in_set = &reload_reg_used_in_output[opnum];
4562 break;
4564 case RELOAD_FOR_INSN:
4565 used_in_set = &reload_reg_used_in_insn;
4566 break;
4567 default:
4568 gcc_unreachable ();
4570 /* We resolve conflicts with remaining reloads of the same type by
4571 excluding the intervals of reload registers by them from the
4572 interval of freed reload registers. Since we only keep track of
4573 one set of interval bounds, we might have to exclude somewhat
4574 more than what would be necessary if we used a HARD_REG_SET here.
4575 But this should only happen very infrequently, so there should
4576 be no reason to worry about it. */
4578 start_regno = regno;
4579 end_regno = regno + nregs;
4580 if (check_opnum || check_any)
4582 for (i = n_reloads - 1; i >= 0; i--)
4584 if (rld[i].when_needed == type
4585 && (check_any || rld[i].opnum == opnum)
4586 && rld[i].reg_rtx)
4588 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4589 unsigned int conflict_end
4590 = end_hard_regno (rld[i].mode, conflict_start);
4592 /* If there is an overlap with the first to-be-freed register,
4593 adjust the interval start. */
4594 if (conflict_start <= start_regno && conflict_end > start_regno)
4595 start_regno = conflict_end;
4596 /* Otherwise, if there is a conflict with one of the other
4597 to-be-freed registers, adjust the interval end. */
4598 if (conflict_start > start_regno && conflict_start < end_regno)
4599 end_regno = conflict_start;
4604 for (r = start_regno; r < end_regno; r++)
4605 CLEAR_HARD_REG_BIT (*used_in_set, r);
4608 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4609 specified by OPNUM and TYPE. */
4611 static int
4612 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
4614 int i;
4616 /* In use for a RELOAD_OTHER means it's not available for anything. */
4617 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4618 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4619 return 0;
4621 switch (type)
4623 case RELOAD_OTHER:
4624 /* In use for anything means we can't use it for RELOAD_OTHER. */
4625 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4626 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4627 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4628 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4629 return 0;
4631 for (i = 0; i < reload_n_operands; i++)
4632 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4633 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4634 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4635 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4636 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4637 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4638 return 0;
4640 return 1;
4642 case RELOAD_FOR_INPUT:
4643 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4644 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4645 return 0;
4647 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4648 return 0;
4650 /* If it is used for some other input, can't use it. */
4651 for (i = 0; i < reload_n_operands; i++)
4652 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4653 return 0;
4655 /* If it is used in a later operand's address, can't use it. */
4656 for (i = opnum + 1; i < reload_n_operands; i++)
4657 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4658 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4659 return 0;
4661 return 1;
4663 case RELOAD_FOR_INPUT_ADDRESS:
4664 /* Can't use a register if it is used for an input address for this
4665 operand or used as an input in an earlier one. */
4666 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4667 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4668 return 0;
4670 for (i = 0; i < opnum; i++)
4671 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4672 return 0;
4674 return 1;
4676 case RELOAD_FOR_INPADDR_ADDRESS:
4677 /* Can't use a register if it is used for an input address
4678 for this operand or used as an input in an earlier
4679 one. */
4680 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4681 return 0;
4683 for (i = 0; i < opnum; i++)
4684 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4685 return 0;
4687 return 1;
4689 case RELOAD_FOR_OUTPUT_ADDRESS:
4690 /* Can't use a register if it is used for an output address for this
4691 operand or used as an output in this or a later operand. Note
4692 that multiple output operands are emitted in reverse order, so
4693 the conflicting ones are those with lower indices. */
4694 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4695 return 0;
4697 for (i = 0; i <= opnum; i++)
4698 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4699 return 0;
4701 return 1;
4703 case RELOAD_FOR_OUTADDR_ADDRESS:
4704 /* Can't use a register if it is used for an output address
4705 for this operand or used as an output in this or a
4706 later operand. Note that multiple output operands are
4707 emitted in reverse order, so the conflicting ones are
4708 those with lower indices. */
4709 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4710 return 0;
4712 for (i = 0; i <= opnum; i++)
4713 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4714 return 0;
4716 return 1;
4718 case RELOAD_FOR_OPERAND_ADDRESS:
4719 for (i = 0; i < reload_n_operands; i++)
4720 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4721 return 0;
4723 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4724 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4726 case RELOAD_FOR_OPADDR_ADDR:
4727 for (i = 0; i < reload_n_operands; i++)
4728 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4729 return 0;
4731 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4733 case RELOAD_FOR_OUTPUT:
4734 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4735 outputs, or an operand address for this or an earlier output.
4736 Note that multiple output operands are emitted in reverse order,
4737 so the conflicting ones are those with higher indices. */
4738 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4739 return 0;
4741 for (i = 0; i < reload_n_operands; i++)
4742 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4743 return 0;
4745 for (i = opnum; i < reload_n_operands; i++)
4746 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4747 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4748 return 0;
4750 return 1;
4752 case RELOAD_FOR_INSN:
4753 for (i = 0; i < reload_n_operands; i++)
4754 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4755 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4756 return 0;
4758 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4759 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4761 case RELOAD_FOR_OTHER_ADDRESS:
4762 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4764 default:
4765 gcc_unreachable ();
4769 /* Return 1 if the value in reload reg REGNO, as used by a reload
4770 needed for the part of the insn specified by OPNUM and TYPE,
4771 is still available in REGNO at the end of the insn.
4773 We can assume that the reload reg was already tested for availability
4774 at the time it is needed, and we should not check this again,
4775 in case the reg has already been marked in use. */
4777 static int
4778 reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
4780 int i;
4782 switch (type)
4784 case RELOAD_OTHER:
4785 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4786 its value must reach the end. */
4787 return 1;
4789 /* If this use is for part of the insn,
4790 its value reaches if no subsequent part uses the same register.
4791 Just like the above function, don't try to do this with lots
4792 of fallthroughs. */
4794 case RELOAD_FOR_OTHER_ADDRESS:
4795 /* Here we check for everything else, since these don't conflict
4796 with anything else and everything comes later. */
4798 for (i = 0; i < reload_n_operands; i++)
4799 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4800 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4801 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4802 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4803 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4804 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4805 return 0;
4807 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4808 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4809 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4810 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4812 case RELOAD_FOR_INPUT_ADDRESS:
4813 case RELOAD_FOR_INPADDR_ADDRESS:
4814 /* Similar, except that we check only for this and subsequent inputs
4815 and the address of only subsequent inputs and we do not need
4816 to check for RELOAD_OTHER objects since they are known not to
4817 conflict. */
4819 for (i = opnum; i < reload_n_operands; i++)
4820 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4821 return 0;
4823 for (i = opnum + 1; i < reload_n_operands; i++)
4824 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4825 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4826 return 0;
4828 for (i = 0; i < reload_n_operands; i++)
4829 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4830 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4831 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4832 return 0;
4834 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4835 return 0;
4837 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4838 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4839 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4841 case RELOAD_FOR_INPUT:
4842 /* Similar to input address, except we start at the next operand for
4843 both input and input address and we do not check for
4844 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4845 would conflict. */
4847 for (i = opnum + 1; i < reload_n_operands; i++)
4848 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4849 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4850 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4851 return 0;
4853 /* ... fall through ... */
4855 case RELOAD_FOR_OPERAND_ADDRESS:
4856 /* Check outputs and their addresses. */
4858 for (i = 0; i < reload_n_operands; i++)
4859 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4860 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4861 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4862 return 0;
4864 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4866 case RELOAD_FOR_OPADDR_ADDR:
4867 for (i = 0; i < reload_n_operands; i++)
4868 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4869 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4870 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4871 return 0;
4873 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4874 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4875 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4877 case RELOAD_FOR_INSN:
4878 /* These conflict with other outputs with RELOAD_OTHER. So
4879 we need only check for output addresses. */
4881 opnum = reload_n_operands;
4883 /* ... fall through ... */
4885 case RELOAD_FOR_OUTPUT:
4886 case RELOAD_FOR_OUTPUT_ADDRESS:
4887 case RELOAD_FOR_OUTADDR_ADDRESS:
4888 /* We already know these can't conflict with a later output. So the
4889 only thing to check are later output addresses.
4890 Note that multiple output operands are emitted in reverse order,
4891 so the conflicting ones are those with lower indices. */
4892 for (i = 0; i < opnum; i++)
4893 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4894 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4895 return 0;
4897 return 1;
4899 default:
4900 gcc_unreachable ();
4904 /* Like reload_reg_reaches_end_p, but check that the condition holds for
4905 every register in the range [REGNO, REGNO + NREGS). */
4907 static bool
4908 reload_regs_reach_end_p (unsigned int regno, int nregs,
4909 int opnum, enum reload_type type)
4911 int i;
4913 for (i = 0; i < nregs; i++)
4914 if (!reload_reg_reaches_end_p (regno + i, opnum, type))
4915 return false;
4916 return true;
4920 /* Returns whether R1 and R2 are uniquely chained: the value of one
4921 is used by the other, and that value is not used by any other
4922 reload for this insn. This is used to partially undo the decision
4923 made in find_reloads when in the case of multiple
4924 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
4925 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
4926 reloads. This code tries to avoid the conflict created by that
4927 change. It might be cleaner to explicitly keep track of which
4928 RELOAD_FOR_OPADDR_ADDR reload is associated with which
4929 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
4930 this after the fact. */
4931 static bool
4932 reloads_unique_chain_p (int r1, int r2)
4934 int i;
4936 /* We only check input reloads. */
4937 if (! rld[r1].in || ! rld[r2].in)
4938 return false;
4940 /* Avoid anything with output reloads. */
4941 if (rld[r1].out || rld[r2].out)
4942 return false;
4944 /* "chained" means one reload is a component of the other reload,
4945 not the same as the other reload. */
4946 if (rld[r1].opnum != rld[r2].opnum
4947 || rtx_equal_p (rld[r1].in, rld[r2].in)
4948 || rld[r1].optional || rld[r2].optional
4949 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
4950 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
4951 return false;
4953 for (i = 0; i < n_reloads; i ++)
4954 /* Look for input reloads that aren't our two */
4955 if (i != r1 && i != r2 && rld[i].in)
4957 /* If our reload is mentioned at all, it isn't a simple chain. */
4958 if (reg_mentioned_p (rld[r1].in, rld[i].in))
4959 return false;
4961 return true;
4964 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4965 Return 0 otherwise.
4967 This function uses the same algorithm as reload_reg_free_p above. */
4969 static int
4970 reloads_conflict (int r1, int r2)
4972 enum reload_type r1_type = rld[r1].when_needed;
4973 enum reload_type r2_type = rld[r2].when_needed;
4974 int r1_opnum = rld[r1].opnum;
4975 int r2_opnum = rld[r2].opnum;
4977 /* RELOAD_OTHER conflicts with everything. */
4978 if (r2_type == RELOAD_OTHER)
4979 return 1;
4981 /* Otherwise, check conflicts differently for each type. */
4983 switch (r1_type)
4985 case RELOAD_FOR_INPUT:
4986 return (r2_type == RELOAD_FOR_INSN
4987 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4988 || r2_type == RELOAD_FOR_OPADDR_ADDR
4989 || r2_type == RELOAD_FOR_INPUT
4990 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4991 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4992 && r2_opnum > r1_opnum));
4994 case RELOAD_FOR_INPUT_ADDRESS:
4995 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4996 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4998 case RELOAD_FOR_INPADDR_ADDRESS:
4999 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5000 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5002 case RELOAD_FOR_OUTPUT_ADDRESS:
5003 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5004 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5006 case RELOAD_FOR_OUTADDR_ADDRESS:
5007 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5008 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5010 case RELOAD_FOR_OPERAND_ADDRESS:
5011 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5012 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5013 && !reloads_unique_chain_p (r1, r2)));
5015 case RELOAD_FOR_OPADDR_ADDR:
5016 return (r2_type == RELOAD_FOR_INPUT
5017 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5019 case RELOAD_FOR_OUTPUT:
5020 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5021 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5022 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5023 && r2_opnum >= r1_opnum));
5025 case RELOAD_FOR_INSN:
5026 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5027 || r2_type == RELOAD_FOR_INSN
5028 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5030 case RELOAD_FOR_OTHER_ADDRESS:
5031 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5033 case RELOAD_OTHER:
5034 return 1;
5036 default:
5037 gcc_unreachable ();
5041 /* Indexed by reload number, 1 if incoming value
5042 inherited from previous insns. */
5043 static char reload_inherited[MAX_RELOADS];
5045 /* For an inherited reload, this is the insn the reload was inherited from,
5046 if we know it. Otherwise, this is 0. */
5047 static rtx reload_inheritance_insn[MAX_RELOADS];
5049 /* If nonzero, this is a place to get the value of the reload,
5050 rather than using reload_in. */
5051 static rtx reload_override_in[MAX_RELOADS];
5053 /* For each reload, the hard register number of the register used,
5054 or -1 if we did not need a register for this reload. */
5055 static int reload_spill_index[MAX_RELOADS];
5057 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5058 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5060 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5061 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5063 /* Subroutine of free_for_value_p, used to check a single register.
5064 START_REGNO is the starting regno of the full reload register
5065 (possibly comprising multiple hard registers) that we are considering. */
5067 static int
5068 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5069 enum reload_type type, rtx value, rtx out,
5070 int reloadnum, int ignore_address_reloads)
5072 int time1;
5073 /* Set if we see an input reload that must not share its reload register
5074 with any new earlyclobber, but might otherwise share the reload
5075 register with an output or input-output reload. */
5076 int check_earlyclobber = 0;
5077 int i;
5078 int copy = 0;
5080 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5081 return 0;
5083 if (out == const0_rtx)
5085 copy = 1;
5086 out = NULL_RTX;
5089 /* We use some pseudo 'time' value to check if the lifetimes of the
5090 new register use would overlap with the one of a previous reload
5091 that is not read-only or uses a different value.
5092 The 'time' used doesn't have to be linear in any shape or form, just
5093 monotonic.
5094 Some reload types use different 'buckets' for each operand.
5095 So there are MAX_RECOG_OPERANDS different time values for each
5096 such reload type.
5097 We compute TIME1 as the time when the register for the prospective
5098 new reload ceases to be live, and TIME2 for each existing
5099 reload as the time when that the reload register of that reload
5100 becomes live.
5101 Where there is little to be gained by exact lifetime calculations,
5102 we just make conservative assumptions, i.e. a longer lifetime;
5103 this is done in the 'default:' cases. */
5104 switch (type)
5106 case RELOAD_FOR_OTHER_ADDRESS:
5107 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5108 time1 = copy ? 0 : 1;
5109 break;
5110 case RELOAD_OTHER:
5111 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5112 break;
5113 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5114 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5115 respectively, to the time values for these, we get distinct time
5116 values. To get distinct time values for each operand, we have to
5117 multiply opnum by at least three. We round that up to four because
5118 multiply by four is often cheaper. */
5119 case RELOAD_FOR_INPADDR_ADDRESS:
5120 time1 = opnum * 4 + 2;
5121 break;
5122 case RELOAD_FOR_INPUT_ADDRESS:
5123 time1 = opnum * 4 + 3;
5124 break;
5125 case RELOAD_FOR_INPUT:
5126 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5127 executes (inclusive). */
5128 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5129 break;
5130 case RELOAD_FOR_OPADDR_ADDR:
5131 /* opnum * 4 + 4
5132 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5133 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5134 break;
5135 case RELOAD_FOR_OPERAND_ADDRESS:
5136 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5137 is executed. */
5138 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5139 break;
5140 case RELOAD_FOR_OUTADDR_ADDRESS:
5141 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5142 break;
5143 case RELOAD_FOR_OUTPUT_ADDRESS:
5144 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5145 break;
5146 default:
5147 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5150 for (i = 0; i < n_reloads; i++)
5152 rtx reg = rld[i].reg_rtx;
5153 if (reg && REG_P (reg)
5154 && ((unsigned) regno - true_regnum (reg)
5155 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5156 && i != reloadnum)
5158 rtx other_input = rld[i].in;
5160 /* If the other reload loads the same input value, that
5161 will not cause a conflict only if it's loading it into
5162 the same register. */
5163 if (true_regnum (reg) != start_regno)
5164 other_input = NULL_RTX;
5165 if (! other_input || ! rtx_equal_p (other_input, value)
5166 || rld[i].out || out)
5168 int time2;
5169 switch (rld[i].when_needed)
5171 case RELOAD_FOR_OTHER_ADDRESS:
5172 time2 = 0;
5173 break;
5174 case RELOAD_FOR_INPADDR_ADDRESS:
5175 /* find_reloads makes sure that a
5176 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5177 by at most one - the first -
5178 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5179 address reload is inherited, the address address reload
5180 goes away, so we can ignore this conflict. */
5181 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5182 && ignore_address_reloads
5183 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5184 Then the address address is still needed to store
5185 back the new address. */
5186 && ! rld[reloadnum].out)
5187 continue;
5188 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5189 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5190 reloads go away. */
5191 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5192 && ignore_address_reloads
5193 /* Unless we are reloading an auto_inc expression. */
5194 && ! rld[reloadnum].out)
5195 continue;
5196 time2 = rld[i].opnum * 4 + 2;
5197 break;
5198 case RELOAD_FOR_INPUT_ADDRESS:
5199 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5200 && ignore_address_reloads
5201 && ! rld[reloadnum].out)
5202 continue;
5203 time2 = rld[i].opnum * 4 + 3;
5204 break;
5205 case RELOAD_FOR_INPUT:
5206 time2 = rld[i].opnum * 4 + 4;
5207 check_earlyclobber = 1;
5208 break;
5209 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5210 == MAX_RECOG_OPERAND * 4 */
5211 case RELOAD_FOR_OPADDR_ADDR:
5212 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5213 && ignore_address_reloads
5214 && ! rld[reloadnum].out)
5215 continue;
5216 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5217 break;
5218 case RELOAD_FOR_OPERAND_ADDRESS:
5219 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5220 check_earlyclobber = 1;
5221 break;
5222 case RELOAD_FOR_INSN:
5223 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5224 break;
5225 case RELOAD_FOR_OUTPUT:
5226 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5227 instruction is executed. */
5228 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5229 break;
5230 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5231 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5232 value. */
5233 case RELOAD_FOR_OUTADDR_ADDRESS:
5234 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5235 && ignore_address_reloads
5236 && ! rld[reloadnum].out)
5237 continue;
5238 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5239 break;
5240 case RELOAD_FOR_OUTPUT_ADDRESS:
5241 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5242 break;
5243 case RELOAD_OTHER:
5244 /* If there is no conflict in the input part, handle this
5245 like an output reload. */
5246 if (! rld[i].in || rtx_equal_p (other_input, value))
5248 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5249 /* Earlyclobbered outputs must conflict with inputs. */
5250 if (earlyclobber_operand_p (rld[i].out))
5251 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5253 break;
5255 time2 = 1;
5256 /* RELOAD_OTHER might be live beyond instruction execution,
5257 but this is not obvious when we set time2 = 1. So check
5258 here if there might be a problem with the new reload
5259 clobbering the register used by the RELOAD_OTHER. */
5260 if (out)
5261 return 0;
5262 break;
5263 default:
5264 return 0;
5266 if ((time1 >= time2
5267 && (! rld[i].in || rld[i].out
5268 || ! rtx_equal_p (other_input, value)))
5269 || (out && rld[reloadnum].out_reg
5270 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5271 return 0;
5276 /* Earlyclobbered outputs must conflict with inputs. */
5277 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5278 return 0;
5280 return 1;
5283 /* Return 1 if the value in reload reg REGNO, as used by a reload
5284 needed for the part of the insn specified by OPNUM and TYPE,
5285 may be used to load VALUE into it.
5287 MODE is the mode in which the register is used, this is needed to
5288 determine how many hard regs to test.
5290 Other read-only reloads with the same value do not conflict
5291 unless OUT is nonzero and these other reloads have to live while
5292 output reloads live.
5293 If OUT is CONST0_RTX, this is a special case: it means that the
5294 test should not be for using register REGNO as reload register, but
5295 for copying from register REGNO into the reload register.
5297 RELOADNUM is the number of the reload we want to load this value for;
5298 a reload does not conflict with itself.
5300 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5301 reloads that load an address for the very reload we are considering.
5303 The caller has to make sure that there is no conflict with the return
5304 register. */
5306 static int
5307 free_for_value_p (int regno, enum machine_mode mode, int opnum,
5308 enum reload_type type, rtx value, rtx out, int reloadnum,
5309 int ignore_address_reloads)
5311 int nregs = hard_regno_nregs[regno][mode];
5312 while (nregs-- > 0)
5313 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5314 value, out, reloadnum,
5315 ignore_address_reloads))
5316 return 0;
5317 return 1;
5320 /* Return nonzero if the rtx X is invariant over the current function. */
5321 /* ??? Actually, the places where we use this expect exactly what is
5322 tested here, and not everything that is function invariant. In
5323 particular, the frame pointer and arg pointer are special cased;
5324 pic_offset_table_rtx is not, and we must not spill these things to
5325 memory. */
5328 function_invariant_p (const_rtx x)
5330 if (CONSTANT_P (x))
5331 return 1;
5332 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
5333 return 1;
5334 if (GET_CODE (x) == PLUS
5335 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
5336 && CONSTANT_P (XEXP (x, 1)))
5337 return 1;
5338 return 0;
5341 /* Determine whether the reload reg X overlaps any rtx'es used for
5342 overriding inheritance. Return nonzero if so. */
5344 static int
5345 conflicts_with_override (rtx x)
5347 int i;
5348 for (i = 0; i < n_reloads; i++)
5349 if (reload_override_in[i]
5350 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5351 return 1;
5352 return 0;
5355 /* Give an error message saying we failed to find a reload for INSN,
5356 and clear out reload R. */
5357 static void
5358 failed_reload (rtx insn, int r)
5360 if (asm_noperands (PATTERN (insn)) < 0)
5361 /* It's the compiler's fault. */
5362 fatal_insn ("could not find a spill register", insn);
5364 /* It's the user's fault; the operand's mode and constraint
5365 don't match. Disable this reload so we don't crash in final. */
5366 error_for_asm (insn,
5367 "%<asm%> operand constraint incompatible with operand size");
5368 rld[r].in = 0;
5369 rld[r].out = 0;
5370 rld[r].reg_rtx = 0;
5371 rld[r].optional = 1;
5372 rld[r].secondary_p = 1;
5375 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5376 for reload R. If it's valid, get an rtx for it. Return nonzero if
5377 successful. */
5378 static int
5379 set_reload_reg (int i, int r)
5381 int regno;
5382 rtx reg = spill_reg_rtx[i];
5384 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5385 spill_reg_rtx[i] = reg
5386 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5388 regno = true_regnum (reg);
5390 /* Detect when the reload reg can't hold the reload mode.
5391 This used to be one `if', but Sequent compiler can't handle that. */
5392 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5394 enum machine_mode test_mode = VOIDmode;
5395 if (rld[r].in)
5396 test_mode = GET_MODE (rld[r].in);
5397 /* If rld[r].in has VOIDmode, it means we will load it
5398 in whatever mode the reload reg has: to wit, rld[r].mode.
5399 We have already tested that for validity. */
5400 /* Aside from that, we need to test that the expressions
5401 to reload from or into have modes which are valid for this
5402 reload register. Otherwise the reload insns would be invalid. */
5403 if (! (rld[r].in != 0 && test_mode != VOIDmode
5404 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5405 if (! (rld[r].out != 0
5406 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5408 /* The reg is OK. */
5409 last_spill_reg = i;
5411 /* Mark as in use for this insn the reload regs we use
5412 for this. */
5413 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5414 rld[r].when_needed, rld[r].mode);
5416 rld[r].reg_rtx = reg;
5417 reload_spill_index[r] = spill_regs[i];
5418 return 1;
5421 return 0;
5424 /* Find a spill register to use as a reload register for reload R.
5425 LAST_RELOAD is nonzero if this is the last reload for the insn being
5426 processed.
5428 Set rld[R].reg_rtx to the register allocated.
5430 We return 1 if successful, or 0 if we couldn't find a spill reg and
5431 we didn't change anything. */
5433 static int
5434 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
5435 int last_reload)
5437 int i, pass, count;
5439 /* If we put this reload ahead, thinking it is a group,
5440 then insist on finding a group. Otherwise we can grab a
5441 reg that some other reload needs.
5442 (That can happen when we have a 68000 DATA_OR_FP_REG
5443 which is a group of data regs or one fp reg.)
5444 We need not be so restrictive if there are no more reloads
5445 for this insn.
5447 ??? Really it would be nicer to have smarter handling
5448 for that kind of reg class, where a problem like this is normal.
5449 Perhaps those classes should be avoided for reloading
5450 by use of more alternatives. */
5452 int force_group = rld[r].nregs > 1 && ! last_reload;
5454 /* If we want a single register and haven't yet found one,
5455 take any reg in the right class and not in use.
5456 If we want a consecutive group, here is where we look for it.
5458 We use two passes so we can first look for reload regs to
5459 reuse, which are already in use for other reloads in this insn,
5460 and only then use additional registers.
5461 I think that maximizing reuse is needed to make sure we don't
5462 run out of reload regs. Suppose we have three reloads, and
5463 reloads A and B can share regs. These need two regs.
5464 Suppose A and B are given different regs.
5465 That leaves none for C. */
5466 for (pass = 0; pass < 2; pass++)
5468 /* I is the index in spill_regs.
5469 We advance it round-robin between insns to use all spill regs
5470 equally, so that inherited reloads have a chance
5471 of leapfrogging each other. */
5473 i = last_spill_reg;
5475 for (count = 0; count < n_spills; count++)
5477 int class = (int) rld[r].class;
5478 int regnum;
5480 i++;
5481 if (i >= n_spills)
5482 i -= n_spills;
5483 regnum = spill_regs[i];
5485 if ((reload_reg_free_p (regnum, rld[r].opnum,
5486 rld[r].when_needed)
5487 || (rld[r].in
5488 /* We check reload_reg_used to make sure we
5489 don't clobber the return register. */
5490 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5491 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5492 rld[r].when_needed, rld[r].in,
5493 rld[r].out, r, 1)))
5494 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5495 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5496 /* Look first for regs to share, then for unshared. But
5497 don't share regs used for inherited reloads; they are
5498 the ones we want to preserve. */
5499 && (pass
5500 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5501 regnum)
5502 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5503 regnum))))
5505 int nr = hard_regno_nregs[regnum][rld[r].mode];
5506 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5507 (on 68000) got us two FP regs. If NR is 1,
5508 we would reject both of them. */
5509 if (force_group)
5510 nr = rld[r].nregs;
5511 /* If we need only one reg, we have already won. */
5512 if (nr == 1)
5514 /* But reject a single reg if we demand a group. */
5515 if (force_group)
5516 continue;
5517 break;
5519 /* Otherwise check that as many consecutive regs as we need
5520 are available here. */
5521 while (nr > 1)
5523 int regno = regnum + nr - 1;
5524 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5525 && spill_reg_order[regno] >= 0
5526 && reload_reg_free_p (regno, rld[r].opnum,
5527 rld[r].when_needed)))
5528 break;
5529 nr--;
5531 if (nr == 1)
5532 break;
5536 /* If we found something on pass 1, omit pass 2. */
5537 if (count < n_spills)
5538 break;
5541 /* We should have found a spill register by now. */
5542 if (count >= n_spills)
5543 return 0;
5545 /* I is the index in SPILL_REG_RTX of the reload register we are to
5546 allocate. Get an rtx for it and find its register number. */
5548 return set_reload_reg (i, r);
5551 /* Initialize all the tables needed to allocate reload registers.
5552 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5553 is the array we use to restore the reg_rtx field for every reload. */
5555 static void
5556 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
5558 int i;
5560 for (i = 0; i < n_reloads; i++)
5561 rld[i].reg_rtx = save_reload_reg_rtx[i];
5563 memset (reload_inherited, 0, MAX_RELOADS);
5564 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5565 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5567 CLEAR_HARD_REG_SET (reload_reg_used);
5568 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5569 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5570 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5571 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5572 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5574 CLEAR_HARD_REG_SET (reg_used_in_insn);
5576 HARD_REG_SET tmp;
5577 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5578 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5579 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5580 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5581 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5582 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5585 for (i = 0; i < reload_n_operands; i++)
5587 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5588 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5589 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5590 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5591 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5592 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5595 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5597 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5599 for (i = 0; i < n_reloads; i++)
5600 /* If we have already decided to use a certain register,
5601 don't use it in another way. */
5602 if (rld[i].reg_rtx)
5603 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5604 rld[i].when_needed, rld[i].mode);
5607 /* Assign hard reg targets for the pseudo-registers we must reload
5608 into hard regs for this insn.
5609 Also output the instructions to copy them in and out of the hard regs.
5611 For machines with register classes, we are responsible for
5612 finding a reload reg in the proper class. */
5614 static void
5615 choose_reload_regs (struct insn_chain *chain)
5617 rtx insn = chain->insn;
5618 int i, j;
5619 unsigned int max_group_size = 1;
5620 enum reg_class group_class = NO_REGS;
5621 int pass, win, inheritance;
5623 rtx save_reload_reg_rtx[MAX_RELOADS];
5625 /* In order to be certain of getting the registers we need,
5626 we must sort the reloads into order of increasing register class.
5627 Then our grabbing of reload registers will parallel the process
5628 that provided the reload registers.
5630 Also note whether any of the reloads wants a consecutive group of regs.
5631 If so, record the maximum size of the group desired and what
5632 register class contains all the groups needed by this insn. */
5634 for (j = 0; j < n_reloads; j++)
5636 reload_order[j] = j;
5637 if (rld[j].reg_rtx != NULL_RTX)
5639 gcc_assert (REG_P (rld[j].reg_rtx)
5640 && HARD_REGISTER_P (rld[j].reg_rtx));
5641 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
5643 else
5644 reload_spill_index[j] = -1;
5646 if (rld[j].nregs > 1)
5648 max_group_size = MAX (rld[j].nregs, max_group_size);
5649 group_class
5650 = reg_class_superunion[(int) rld[j].class][(int) group_class];
5653 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5656 if (n_reloads > 1)
5657 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5659 /* If -O, try first with inheritance, then turning it off.
5660 If not -O, don't do inheritance.
5661 Using inheritance when not optimizing leads to paradoxes
5662 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5663 because one side of the comparison might be inherited. */
5664 win = 0;
5665 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5667 choose_reload_regs_init (chain, save_reload_reg_rtx);
5669 /* Process the reloads in order of preference just found.
5670 Beyond this point, subregs can be found in reload_reg_rtx.
5672 This used to look for an existing reloaded home for all of the
5673 reloads, and only then perform any new reloads. But that could lose
5674 if the reloads were done out of reg-class order because a later
5675 reload with a looser constraint might have an old home in a register
5676 needed by an earlier reload with a tighter constraint.
5678 To solve this, we make two passes over the reloads, in the order
5679 described above. In the first pass we try to inherit a reload
5680 from a previous insn. If there is a later reload that needs a
5681 class that is a proper subset of the class being processed, we must
5682 also allocate a spill register during the first pass.
5684 Then make a second pass over the reloads to allocate any reloads
5685 that haven't been given registers yet. */
5687 for (j = 0; j < n_reloads; j++)
5689 int r = reload_order[j];
5690 rtx search_equiv = NULL_RTX;
5692 /* Ignore reloads that got marked inoperative. */
5693 if (rld[r].out == 0 && rld[r].in == 0
5694 && ! rld[r].secondary_p)
5695 continue;
5697 /* If find_reloads chose to use reload_in or reload_out as a reload
5698 register, we don't need to chose one. Otherwise, try even if it
5699 found one since we might save an insn if we find the value lying
5700 around.
5701 Try also when reload_in is a pseudo without a hard reg. */
5702 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5703 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5704 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5705 && !MEM_P (rld[r].in)
5706 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5707 continue;
5709 #if 0 /* No longer needed for correct operation.
5710 It might give better code, or might not; worth an experiment? */
5711 /* If this is an optional reload, we can't inherit from earlier insns
5712 until we are sure that any non-optional reloads have been allocated.
5713 The following code takes advantage of the fact that optional reloads
5714 are at the end of reload_order. */
5715 if (rld[r].optional != 0)
5716 for (i = 0; i < j; i++)
5717 if ((rld[reload_order[i]].out != 0
5718 || rld[reload_order[i]].in != 0
5719 || rld[reload_order[i]].secondary_p)
5720 && ! rld[reload_order[i]].optional
5721 && rld[reload_order[i]].reg_rtx == 0)
5722 allocate_reload_reg (chain, reload_order[i], 0);
5723 #endif
5725 /* First see if this pseudo is already available as reloaded
5726 for a previous insn. We cannot try to inherit for reloads
5727 that are smaller than the maximum number of registers needed
5728 for groups unless the register we would allocate cannot be used
5729 for the groups.
5731 We could check here to see if this is a secondary reload for
5732 an object that is already in a register of the desired class.
5733 This would avoid the need for the secondary reload register.
5734 But this is complex because we can't easily determine what
5735 objects might want to be loaded via this reload. So let a
5736 register be allocated here. In `emit_reload_insns' we suppress
5737 one of the loads in the case described above. */
5739 if (inheritance)
5741 int byte = 0;
5742 int regno = -1;
5743 enum machine_mode mode = VOIDmode;
5745 if (rld[r].in == 0)
5747 else if (REG_P (rld[r].in))
5749 regno = REGNO (rld[r].in);
5750 mode = GET_MODE (rld[r].in);
5752 else if (REG_P (rld[r].in_reg))
5754 regno = REGNO (rld[r].in_reg);
5755 mode = GET_MODE (rld[r].in_reg);
5757 else if (GET_CODE (rld[r].in_reg) == SUBREG
5758 && REG_P (SUBREG_REG (rld[r].in_reg)))
5760 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5761 if (regno < FIRST_PSEUDO_REGISTER)
5762 regno = subreg_regno (rld[r].in_reg);
5763 else
5764 byte = SUBREG_BYTE (rld[r].in_reg);
5765 mode = GET_MODE (rld[r].in_reg);
5767 #ifdef AUTO_INC_DEC
5768 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
5769 && REG_P (XEXP (rld[r].in_reg, 0)))
5771 regno = REGNO (XEXP (rld[r].in_reg, 0));
5772 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5773 rld[r].out = rld[r].in;
5775 #endif
5776 #if 0
5777 /* This won't work, since REGNO can be a pseudo reg number.
5778 Also, it takes much more hair to keep track of all the things
5779 that can invalidate an inherited reload of part of a pseudoreg. */
5780 else if (GET_CODE (rld[r].in) == SUBREG
5781 && REG_P (SUBREG_REG (rld[r].in)))
5782 regno = subreg_regno (rld[r].in);
5783 #endif
5785 if (regno >= 0
5786 && reg_last_reload_reg[regno] != 0
5787 #ifdef CANNOT_CHANGE_MODE_CLASS
5788 /* Verify that the register it's in can be used in
5789 mode MODE. */
5790 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
5791 GET_MODE (reg_last_reload_reg[regno]),
5792 mode)
5793 #endif
5796 enum reg_class class = rld[r].class, last_class;
5797 rtx last_reg = reg_last_reload_reg[regno];
5798 enum machine_mode need_mode;
5800 i = REGNO (last_reg);
5801 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5802 last_class = REGNO_REG_CLASS (i);
5804 if (byte == 0)
5805 need_mode = mode;
5806 else
5807 need_mode
5808 = smallest_mode_for_size (GET_MODE_BITSIZE (mode)
5809 + byte * BITS_PER_UNIT,
5810 GET_MODE_CLASS (mode));
5812 if ((GET_MODE_SIZE (GET_MODE (last_reg))
5813 >= GET_MODE_SIZE (need_mode))
5814 && reg_reloaded_contents[i] == regno
5815 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5816 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5817 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5818 /* Even if we can't use this register as a reload
5819 register, we might use it for reload_override_in,
5820 if copying it to the desired class is cheap
5821 enough. */
5822 || ((REGISTER_MOVE_COST (mode, last_class, class)
5823 < MEMORY_MOVE_COST (mode, class, 1))
5824 && (secondary_reload_class (1, class, mode,
5825 last_reg)
5826 == NO_REGS)
5827 #ifdef SECONDARY_MEMORY_NEEDED
5828 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5829 mode)
5830 #endif
5833 && (rld[r].nregs == max_group_size
5834 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5836 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5837 rld[r].when_needed, rld[r].in,
5838 const0_rtx, r, 1))
5840 /* If a group is needed, verify that all the subsequent
5841 registers still have their values intact. */
5842 int nr = hard_regno_nregs[i][rld[r].mode];
5843 int k;
5845 for (k = 1; k < nr; k++)
5846 if (reg_reloaded_contents[i + k] != regno
5847 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5848 break;
5850 if (k == nr)
5852 int i1;
5853 int bad_for_class;
5855 last_reg = (GET_MODE (last_reg) == mode
5856 ? last_reg : gen_rtx_REG (mode, i));
5858 bad_for_class = 0;
5859 for (k = 0; k < nr; k++)
5860 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5861 i+k);
5863 /* We found a register that contains the
5864 value we need. If this register is the
5865 same as an `earlyclobber' operand of the
5866 current insn, just mark it as a place to
5867 reload from since we can't use it as the
5868 reload register itself. */
5870 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5871 if (reg_overlap_mentioned_for_reload_p
5872 (reg_last_reload_reg[regno],
5873 reload_earlyclobbers[i1]))
5874 break;
5876 if (i1 != n_earlyclobbers
5877 || ! (free_for_value_p (i, rld[r].mode,
5878 rld[r].opnum,
5879 rld[r].when_needed, rld[r].in,
5880 rld[r].out, r, 1))
5881 /* Don't use it if we'd clobber a pseudo reg. */
5882 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5883 && rld[r].out
5884 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5885 /* Don't clobber the frame pointer. */
5886 || (i == HARD_FRAME_POINTER_REGNUM
5887 && frame_pointer_needed
5888 && rld[r].out)
5889 /* Don't really use the inherited spill reg
5890 if we need it wider than we've got it. */
5891 || (GET_MODE_SIZE (rld[r].mode)
5892 > GET_MODE_SIZE (mode))
5893 || bad_for_class
5895 /* If find_reloads chose reload_out as reload
5896 register, stay with it - that leaves the
5897 inherited register for subsequent reloads. */
5898 || (rld[r].out && rld[r].reg_rtx
5899 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5901 if (! rld[r].optional)
5903 reload_override_in[r] = last_reg;
5904 reload_inheritance_insn[r]
5905 = reg_reloaded_insn[i];
5908 else
5910 int k;
5911 /* We can use this as a reload reg. */
5912 /* Mark the register as in use for this part of
5913 the insn. */
5914 mark_reload_reg_in_use (i,
5915 rld[r].opnum,
5916 rld[r].when_needed,
5917 rld[r].mode);
5918 rld[r].reg_rtx = last_reg;
5919 reload_inherited[r] = 1;
5920 reload_inheritance_insn[r]
5921 = reg_reloaded_insn[i];
5922 reload_spill_index[r] = i;
5923 for (k = 0; k < nr; k++)
5924 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5925 i + k);
5932 /* Here's another way to see if the value is already lying around. */
5933 if (inheritance
5934 && rld[r].in != 0
5935 && ! reload_inherited[r]
5936 && rld[r].out == 0
5937 && (CONSTANT_P (rld[r].in)
5938 || GET_CODE (rld[r].in) == PLUS
5939 || REG_P (rld[r].in)
5940 || MEM_P (rld[r].in))
5941 && (rld[r].nregs == max_group_size
5942 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5943 search_equiv = rld[r].in;
5944 /* If this is an output reload from a simple move insn, look
5945 if an equivalence for the input is available. */
5946 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5948 rtx set = single_set (insn);
5950 if (set
5951 && rtx_equal_p (rld[r].out, SET_DEST (set))
5952 && CONSTANT_P (SET_SRC (set)))
5953 search_equiv = SET_SRC (set);
5956 if (search_equiv)
5958 rtx equiv
5959 = find_equiv_reg (search_equiv, insn, rld[r].class,
5960 -1, NULL, 0, rld[r].mode);
5961 int regno = 0;
5963 if (equiv != 0)
5965 if (REG_P (equiv))
5966 regno = REGNO (equiv);
5967 else
5969 /* This must be a SUBREG of a hard register.
5970 Make a new REG since this might be used in an
5971 address and not all machines support SUBREGs
5972 there. */
5973 gcc_assert (GET_CODE (equiv) == SUBREG);
5974 regno = subreg_regno (equiv);
5975 equiv = gen_rtx_REG (rld[r].mode, regno);
5976 /* If we choose EQUIV as the reload register, but the
5977 loop below decides to cancel the inheritance, we'll
5978 end up reloading EQUIV in rld[r].mode, not the mode
5979 it had originally. That isn't safe when EQUIV isn't
5980 available as a spill register since its value might
5981 still be live at this point. */
5982 for (i = regno; i < regno + (int) rld[r].nregs; i++)
5983 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
5984 equiv = 0;
5988 /* If we found a spill reg, reject it unless it is free
5989 and of the desired class. */
5990 if (equiv != 0)
5992 int regs_used = 0;
5993 int bad_for_class = 0;
5994 int max_regno = regno + rld[r].nregs;
5996 for (i = regno; i < max_regno; i++)
5998 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6000 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
6004 if ((regs_used
6005 && ! free_for_value_p (regno, rld[r].mode,
6006 rld[r].opnum, rld[r].when_needed,
6007 rld[r].in, rld[r].out, r, 1))
6008 || bad_for_class)
6009 equiv = 0;
6012 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6013 equiv = 0;
6015 /* We found a register that contains the value we need.
6016 If this register is the same as an `earlyclobber' operand
6017 of the current insn, just mark it as a place to reload from
6018 since we can't use it as the reload register itself. */
6020 if (equiv != 0)
6021 for (i = 0; i < n_earlyclobbers; i++)
6022 if (reg_overlap_mentioned_for_reload_p (equiv,
6023 reload_earlyclobbers[i]))
6025 if (! rld[r].optional)
6026 reload_override_in[r] = equiv;
6027 equiv = 0;
6028 break;
6031 /* If the equiv register we have found is explicitly clobbered
6032 in the current insn, it depends on the reload type if we
6033 can use it, use it for reload_override_in, or not at all.
6034 In particular, we then can't use EQUIV for a
6035 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6037 if (equiv != 0)
6039 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6040 switch (rld[r].when_needed)
6042 case RELOAD_FOR_OTHER_ADDRESS:
6043 case RELOAD_FOR_INPADDR_ADDRESS:
6044 case RELOAD_FOR_INPUT_ADDRESS:
6045 case RELOAD_FOR_OPADDR_ADDR:
6046 break;
6047 case RELOAD_OTHER:
6048 case RELOAD_FOR_INPUT:
6049 case RELOAD_FOR_OPERAND_ADDRESS:
6050 if (! rld[r].optional)
6051 reload_override_in[r] = equiv;
6052 /* Fall through. */
6053 default:
6054 equiv = 0;
6055 break;
6057 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6058 switch (rld[r].when_needed)
6060 case RELOAD_FOR_OTHER_ADDRESS:
6061 case RELOAD_FOR_INPADDR_ADDRESS:
6062 case RELOAD_FOR_INPUT_ADDRESS:
6063 case RELOAD_FOR_OPADDR_ADDR:
6064 case RELOAD_FOR_OPERAND_ADDRESS:
6065 case RELOAD_FOR_INPUT:
6066 break;
6067 case RELOAD_OTHER:
6068 if (! rld[r].optional)
6069 reload_override_in[r] = equiv;
6070 /* Fall through. */
6071 default:
6072 equiv = 0;
6073 break;
6077 /* If we found an equivalent reg, say no code need be generated
6078 to load it, and use it as our reload reg. */
6079 if (equiv != 0
6080 && (regno != HARD_FRAME_POINTER_REGNUM
6081 || !frame_pointer_needed))
6083 int nr = hard_regno_nregs[regno][rld[r].mode];
6084 int k;
6085 rld[r].reg_rtx = equiv;
6086 reload_inherited[r] = 1;
6088 /* If reg_reloaded_valid is not set for this register,
6089 there might be a stale spill_reg_store lying around.
6090 We must clear it, since otherwise emit_reload_insns
6091 might delete the store. */
6092 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6093 spill_reg_store[regno] = NULL_RTX;
6094 /* If any of the hard registers in EQUIV are spill
6095 registers, mark them as in use for this insn. */
6096 for (k = 0; k < nr; k++)
6098 i = spill_reg_order[regno + k];
6099 if (i >= 0)
6101 mark_reload_reg_in_use (regno, rld[r].opnum,
6102 rld[r].when_needed,
6103 rld[r].mode);
6104 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6105 regno + k);
6111 /* If we found a register to use already, or if this is an optional
6112 reload, we are done. */
6113 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6114 continue;
6116 #if 0
6117 /* No longer needed for correct operation. Might or might
6118 not give better code on the average. Want to experiment? */
6120 /* See if there is a later reload that has a class different from our
6121 class that intersects our class or that requires less register
6122 than our reload. If so, we must allocate a register to this
6123 reload now, since that reload might inherit a previous reload
6124 and take the only available register in our class. Don't do this
6125 for optional reloads since they will force all previous reloads
6126 to be allocated. Also don't do this for reloads that have been
6127 turned off. */
6129 for (i = j + 1; i < n_reloads; i++)
6131 int s = reload_order[i];
6133 if ((rld[s].in == 0 && rld[s].out == 0
6134 && ! rld[s].secondary_p)
6135 || rld[s].optional)
6136 continue;
6138 if ((rld[s].class != rld[r].class
6139 && reg_classes_intersect_p (rld[r].class,
6140 rld[s].class))
6141 || rld[s].nregs < rld[r].nregs)
6142 break;
6145 if (i == n_reloads)
6146 continue;
6148 allocate_reload_reg (chain, r, j == n_reloads - 1);
6149 #endif
6152 /* Now allocate reload registers for anything non-optional that
6153 didn't get one yet. */
6154 for (j = 0; j < n_reloads; j++)
6156 int r = reload_order[j];
6158 /* Ignore reloads that got marked inoperative. */
6159 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6160 continue;
6162 /* Skip reloads that already have a register allocated or are
6163 optional. */
6164 if (rld[r].reg_rtx != 0 || rld[r].optional)
6165 continue;
6167 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6168 break;
6171 /* If that loop got all the way, we have won. */
6172 if (j == n_reloads)
6174 win = 1;
6175 break;
6178 /* Loop around and try without any inheritance. */
6181 if (! win)
6183 /* First undo everything done by the failed attempt
6184 to allocate with inheritance. */
6185 choose_reload_regs_init (chain, save_reload_reg_rtx);
6187 /* Some sanity tests to verify that the reloads found in the first
6188 pass are identical to the ones we have now. */
6189 gcc_assert (chain->n_reloads == n_reloads);
6191 for (i = 0; i < n_reloads; i++)
6193 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6194 continue;
6195 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6196 for (j = 0; j < n_spills; j++)
6197 if (spill_regs[j] == chain->rld[i].regno)
6198 if (! set_reload_reg (j, i))
6199 failed_reload (chain->insn, i);
6203 /* If we thought we could inherit a reload, because it seemed that
6204 nothing else wanted the same reload register earlier in the insn,
6205 verify that assumption, now that all reloads have been assigned.
6206 Likewise for reloads where reload_override_in has been set. */
6208 /* If doing expensive optimizations, do one preliminary pass that doesn't
6209 cancel any inheritance, but removes reloads that have been needed only
6210 for reloads that we know can be inherited. */
6211 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6213 for (j = 0; j < n_reloads; j++)
6215 int r = reload_order[j];
6216 rtx check_reg;
6217 if (reload_inherited[r] && rld[r].reg_rtx)
6218 check_reg = rld[r].reg_rtx;
6219 else if (reload_override_in[r]
6220 && (REG_P (reload_override_in[r])
6221 || GET_CODE (reload_override_in[r]) == SUBREG))
6222 check_reg = reload_override_in[r];
6223 else
6224 continue;
6225 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6226 rld[r].opnum, rld[r].when_needed, rld[r].in,
6227 (reload_inherited[r]
6228 ? rld[r].out : const0_rtx),
6229 r, 1))
6231 if (pass)
6232 continue;
6233 reload_inherited[r] = 0;
6234 reload_override_in[r] = 0;
6236 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6237 reload_override_in, then we do not need its related
6238 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6239 likewise for other reload types.
6240 We handle this by removing a reload when its only replacement
6241 is mentioned in reload_in of the reload we are going to inherit.
6242 A special case are auto_inc expressions; even if the input is
6243 inherited, we still need the address for the output. We can
6244 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6245 If we succeeded removing some reload and we are doing a preliminary
6246 pass just to remove such reloads, make another pass, since the
6247 removal of one reload might allow us to inherit another one. */
6248 else if (rld[r].in
6249 && rld[r].out != rld[r].in
6250 && remove_address_replacements (rld[r].in) && pass)
6251 pass = 2;
6255 /* Now that reload_override_in is known valid,
6256 actually override reload_in. */
6257 for (j = 0; j < n_reloads; j++)
6258 if (reload_override_in[j])
6259 rld[j].in = reload_override_in[j];
6261 /* If this reload won't be done because it has been canceled or is
6262 optional and not inherited, clear reload_reg_rtx so other
6263 routines (such as subst_reloads) don't get confused. */
6264 for (j = 0; j < n_reloads; j++)
6265 if (rld[j].reg_rtx != 0
6266 && ((rld[j].optional && ! reload_inherited[j])
6267 || (rld[j].in == 0 && rld[j].out == 0
6268 && ! rld[j].secondary_p)))
6270 int regno = true_regnum (rld[j].reg_rtx);
6272 if (spill_reg_order[regno] >= 0)
6273 clear_reload_reg_in_use (regno, rld[j].opnum,
6274 rld[j].when_needed, rld[j].mode);
6275 rld[j].reg_rtx = 0;
6276 reload_spill_index[j] = -1;
6279 /* Record which pseudos and which spill regs have output reloads. */
6280 for (j = 0; j < n_reloads; j++)
6282 int r = reload_order[j];
6284 i = reload_spill_index[r];
6286 /* I is nonneg if this reload uses a register.
6287 If rld[r].reg_rtx is 0, this is an optional reload
6288 that we opted to ignore. */
6289 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
6290 && rld[r].reg_rtx != 0)
6292 int nregno = REGNO (rld[r].out_reg);
6293 int nr = 1;
6295 if (nregno < FIRST_PSEUDO_REGISTER)
6296 nr = hard_regno_nregs[nregno][rld[r].mode];
6298 while (--nr >= 0)
6299 SET_REGNO_REG_SET (&reg_has_output_reload,
6300 nregno + nr);
6302 if (i >= 0)
6304 nr = hard_regno_nregs[i][rld[r].mode];
6305 while (--nr >= 0)
6306 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
6309 gcc_assert (rld[r].when_needed == RELOAD_OTHER
6310 || rld[r].when_needed == RELOAD_FOR_OUTPUT
6311 || rld[r].when_needed == RELOAD_FOR_INSN);
6316 /* Deallocate the reload register for reload R. This is called from
6317 remove_address_replacements. */
6319 void
6320 deallocate_reload_reg (int r)
6322 int regno;
6324 if (! rld[r].reg_rtx)
6325 return;
6326 regno = true_regnum (rld[r].reg_rtx);
6327 rld[r].reg_rtx = 0;
6328 if (spill_reg_order[regno] >= 0)
6329 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
6330 rld[r].mode);
6331 reload_spill_index[r] = -1;
6334 /* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
6335 reloads of the same item for fear that we might not have enough reload
6336 registers. However, normally they will get the same reload register
6337 and hence actually need not be loaded twice.
6339 Here we check for the most common case of this phenomenon: when we have
6340 a number of reloads for the same object, each of which were allocated
6341 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
6342 reload, and is not modified in the insn itself. If we find such,
6343 merge all the reloads and set the resulting reload to RELOAD_OTHER.
6344 This will not increase the number of spill registers needed and will
6345 prevent redundant code. */
6347 static void
6348 merge_assigned_reloads (rtx insn)
6350 int i, j;
6352 /* Scan all the reloads looking for ones that only load values and
6353 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6354 assigned and not modified by INSN. */
6356 for (i = 0; i < n_reloads; i++)
6358 int conflicting_input = 0;
6359 int max_input_address_opnum = -1;
6360 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6362 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6363 || rld[i].out != 0 || rld[i].reg_rtx == 0
6364 || reg_set_p (rld[i].reg_rtx, insn))
6365 continue;
6367 /* Look at all other reloads. Ensure that the only use of this
6368 reload_reg_rtx is in a reload that just loads the same value
6369 as we do. Note that any secondary reloads must be of the identical
6370 class since the values, modes, and result registers are the
6371 same, so we need not do anything with any secondary reloads. */
6373 for (j = 0; j < n_reloads; j++)
6375 if (i == j || rld[j].reg_rtx == 0
6376 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6377 rld[i].reg_rtx))
6378 continue;
6380 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6381 && rld[j].opnum > max_input_address_opnum)
6382 max_input_address_opnum = rld[j].opnum;
6384 /* If the reload regs aren't exactly the same (e.g, different modes)
6385 or if the values are different, we can't merge this reload.
6386 But if it is an input reload, we might still merge
6387 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6389 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6390 || rld[j].out != 0 || rld[j].in == 0
6391 || ! rtx_equal_p (rld[i].in, rld[j].in))
6393 if (rld[j].when_needed != RELOAD_FOR_INPUT
6394 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6395 || rld[i].opnum > rld[j].opnum)
6396 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6397 break;
6398 conflicting_input = 1;
6399 if (min_conflicting_input_opnum > rld[j].opnum)
6400 min_conflicting_input_opnum = rld[j].opnum;
6404 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6405 we, in fact, found any matching reloads. */
6407 if (j == n_reloads
6408 && max_input_address_opnum <= min_conflicting_input_opnum)
6410 gcc_assert (rld[i].when_needed != RELOAD_FOR_OUTPUT);
6412 for (j = 0; j < n_reloads; j++)
6413 if (i != j && rld[j].reg_rtx != 0
6414 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6415 && (! conflicting_input
6416 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6417 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6419 rld[i].when_needed = RELOAD_OTHER;
6420 rld[j].in = 0;
6421 reload_spill_index[j] = -1;
6422 transfer_replacements (i, j);
6425 /* If this is now RELOAD_OTHER, look for any reloads that
6426 load parts of this operand and set them to
6427 RELOAD_FOR_OTHER_ADDRESS if they were for inputs,
6428 RELOAD_OTHER for outputs. Note that this test is
6429 equivalent to looking for reloads for this operand
6430 number.
6432 We must take special care with RELOAD_FOR_OUTPUT_ADDRESS;
6433 it may share registers with a RELOAD_FOR_INPUT, so we can
6434 not change it to RELOAD_FOR_OTHER_ADDRESS. We should
6435 never need to, since we do not modify RELOAD_FOR_OUTPUT.
6437 It is possible that the RELOAD_FOR_OPERAND_ADDRESS
6438 instruction is assigned the same register as the earlier
6439 RELOAD_FOR_OTHER_ADDRESS instruction. Merging these two
6440 instructions will cause the RELOAD_FOR_OTHER_ADDRESS
6441 instruction to be deleted later on. */
6443 if (rld[i].when_needed == RELOAD_OTHER)
6444 for (j = 0; j < n_reloads; j++)
6445 if (rld[j].in != 0
6446 && rld[j].when_needed != RELOAD_OTHER
6447 && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6448 && rld[j].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
6449 && rld[j].when_needed != RELOAD_FOR_OPERAND_ADDRESS
6450 && (! conflicting_input
6451 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6452 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6453 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6454 rld[i].in))
6456 int k;
6458 rld[j].when_needed
6459 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6460 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6461 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6463 /* Check to see if we accidentally converted two
6464 reloads that use the same reload register with
6465 different inputs to the same type. If so, the
6466 resulting code won't work. */
6467 if (rld[j].reg_rtx)
6468 for (k = 0; k < j; k++)
6469 gcc_assert (rld[k].in == 0 || rld[k].reg_rtx == 0
6470 || rld[k].when_needed != rld[j].when_needed
6471 || !rtx_equal_p (rld[k].reg_rtx,
6472 rld[j].reg_rtx)
6473 || rtx_equal_p (rld[k].in,
6474 rld[j].in));
6480 /* These arrays are filled by emit_reload_insns and its subroutines. */
6481 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6482 static rtx other_input_address_reload_insns = 0;
6483 static rtx other_input_reload_insns = 0;
6484 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6485 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6486 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6487 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6488 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6489 static rtx operand_reload_insns = 0;
6490 static rtx other_operand_reload_insns = 0;
6491 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6493 /* Values to be put in spill_reg_store are put here first. */
6494 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6495 static HARD_REG_SET reg_reloaded_died;
6497 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
6498 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
6499 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
6500 adjusted register, and return true. Otherwise, return false. */
6501 static bool
6502 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
6503 enum reg_class new_class,
6504 enum machine_mode new_mode)
6507 rtx reg;
6509 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
6511 unsigned regno = REGNO (reg);
6513 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
6514 continue;
6515 if (GET_MODE (reg) != new_mode)
6517 if (!HARD_REGNO_MODE_OK (regno, new_mode))
6518 continue;
6519 if (hard_regno_nregs[regno][new_mode]
6520 > hard_regno_nregs[regno][GET_MODE (reg)])
6521 continue;
6522 reg = reload_adjust_reg_for_mode (reg, new_mode);
6524 *reload_reg = reg;
6525 return true;
6527 return false;
6530 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
6531 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
6532 nonzero, if that is suitable. On success, change *RELOAD_REG to the
6533 adjusted register, and return true. Otherwise, return false. */
6534 static bool
6535 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
6536 enum insn_code icode)
6539 enum reg_class new_class = scratch_reload_class (icode);
6540 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
6542 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
6543 new_class, new_mode);
6546 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6547 has the number J. OLD contains the value to be used as input. */
6549 static void
6550 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
6551 rtx old, int j)
6553 rtx insn = chain->insn;
6554 rtx reloadreg;
6555 rtx oldequiv_reg = 0;
6556 rtx oldequiv = 0;
6557 int special = 0;
6558 enum machine_mode mode;
6559 rtx *where;
6561 /* delete_output_reload is only invoked properly if old contains
6562 the original pseudo register. Since this is replaced with a
6563 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6564 find the pseudo in RELOAD_IN_REG. */
6565 if (reload_override_in[j]
6566 && REG_P (rl->in_reg))
6568 oldequiv = old;
6569 old = rl->in_reg;
6571 if (oldequiv == 0)
6572 oldequiv = old;
6573 else if (REG_P (oldequiv))
6574 oldequiv_reg = oldequiv;
6575 else if (GET_CODE (oldequiv) == SUBREG)
6576 oldequiv_reg = SUBREG_REG (oldequiv);
6578 reloadreg = reload_reg_rtx_for_input[j];
6579 mode = GET_MODE (reloadreg);
6581 /* If we are reloading from a register that was recently stored in
6582 with an output-reload, see if we can prove there was
6583 actually no need to store the old value in it. */
6585 if (optimize && REG_P (oldequiv)
6586 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6587 && spill_reg_store[REGNO (oldequiv)]
6588 && REG_P (old)
6589 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6590 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6591 rl->out_reg)))
6592 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
6594 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
6595 OLDEQUIV. */
6597 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6598 oldequiv = SUBREG_REG (oldequiv);
6599 if (GET_MODE (oldequiv) != VOIDmode
6600 && mode != GET_MODE (oldequiv))
6601 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6603 /* Switch to the right place to emit the reload insns. */
6604 switch (rl->when_needed)
6606 case RELOAD_OTHER:
6607 where = &other_input_reload_insns;
6608 break;
6609 case RELOAD_FOR_INPUT:
6610 where = &input_reload_insns[rl->opnum];
6611 break;
6612 case RELOAD_FOR_INPUT_ADDRESS:
6613 where = &input_address_reload_insns[rl->opnum];
6614 break;
6615 case RELOAD_FOR_INPADDR_ADDRESS:
6616 where = &inpaddr_address_reload_insns[rl->opnum];
6617 break;
6618 case RELOAD_FOR_OUTPUT_ADDRESS:
6619 where = &output_address_reload_insns[rl->opnum];
6620 break;
6621 case RELOAD_FOR_OUTADDR_ADDRESS:
6622 where = &outaddr_address_reload_insns[rl->opnum];
6623 break;
6624 case RELOAD_FOR_OPERAND_ADDRESS:
6625 where = &operand_reload_insns;
6626 break;
6627 case RELOAD_FOR_OPADDR_ADDR:
6628 where = &other_operand_reload_insns;
6629 break;
6630 case RELOAD_FOR_OTHER_ADDRESS:
6631 where = &other_input_address_reload_insns;
6632 break;
6633 default:
6634 gcc_unreachable ();
6637 push_to_sequence (*where);
6639 /* Auto-increment addresses must be reloaded in a special way. */
6640 if (rl->out && ! rl->out_reg)
6642 /* We are not going to bother supporting the case where a
6643 incremented register can't be copied directly from
6644 OLDEQUIV since this seems highly unlikely. */
6645 gcc_assert (rl->secondary_in_reload < 0);
6647 if (reload_inherited[j])
6648 oldequiv = reloadreg;
6650 old = XEXP (rl->in_reg, 0);
6652 if (optimize && REG_P (oldequiv)
6653 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6654 && spill_reg_store[REGNO (oldequiv)]
6655 && REG_P (old)
6656 && (dead_or_set_p (insn,
6657 spill_reg_stored_to[REGNO (oldequiv)])
6658 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6659 old)))
6660 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
6662 /* Prevent normal processing of this reload. */
6663 special = 1;
6664 /* Output a special code sequence for this case. */
6665 new_spill_reg_store[REGNO (reloadreg)]
6666 = inc_for_reload (reloadreg, oldequiv, rl->out,
6667 rl->inc);
6670 /* If we are reloading a pseudo-register that was set by the previous
6671 insn, see if we can get rid of that pseudo-register entirely
6672 by redirecting the previous insn into our reload register. */
6674 else if (optimize && REG_P (old)
6675 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6676 && dead_or_set_p (insn, old)
6677 /* This is unsafe if some other reload
6678 uses the same reg first. */
6679 && ! conflicts_with_override (reloadreg)
6680 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6681 rl->when_needed, old, rl->out, j, 0))
6683 rtx temp = PREV_INSN (insn);
6684 while (temp && NOTE_P (temp))
6685 temp = PREV_INSN (temp);
6686 if (temp
6687 && NONJUMP_INSN_P (temp)
6688 && GET_CODE (PATTERN (temp)) == SET
6689 && SET_DEST (PATTERN (temp)) == old
6690 /* Make sure we can access insn_operand_constraint. */
6691 && asm_noperands (PATTERN (temp)) < 0
6692 /* This is unsafe if operand occurs more than once in current
6693 insn. Perhaps some occurrences aren't reloaded. */
6694 && count_occurrences (PATTERN (insn), old, 0) == 1)
6696 rtx old = SET_DEST (PATTERN (temp));
6697 /* Store into the reload register instead of the pseudo. */
6698 SET_DEST (PATTERN (temp)) = reloadreg;
6700 /* Verify that resulting insn is valid. */
6701 extract_insn (temp);
6702 if (constrain_operands (1))
6704 /* If the previous insn is an output reload, the source is
6705 a reload register, and its spill_reg_store entry will
6706 contain the previous destination. This is now
6707 invalid. */
6708 if (REG_P (SET_SRC (PATTERN (temp)))
6709 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6711 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6712 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6715 /* If these are the only uses of the pseudo reg,
6716 pretend for GDB it lives in the reload reg we used. */
6717 if (REG_N_DEATHS (REGNO (old)) == 1
6718 && REG_N_SETS (REGNO (old)) == 1)
6720 reg_renumber[REGNO (old)] = REGNO (reloadreg);
6721 alter_reg (REGNO (old), -1);
6723 special = 1;
6725 else
6727 SET_DEST (PATTERN (temp)) = old;
6732 /* We can't do that, so output an insn to load RELOADREG. */
6734 /* If we have a secondary reload, pick up the secondary register
6735 and icode, if any. If OLDEQUIV and OLD are different or
6736 if this is an in-out reload, recompute whether or not we
6737 still need a secondary register and what the icode should
6738 be. If we still need a secondary register and the class or
6739 icode is different, go back to reloading from OLD if using
6740 OLDEQUIV means that we got the wrong type of register. We
6741 cannot have different class or icode due to an in-out reload
6742 because we don't make such reloads when both the input and
6743 output need secondary reload registers. */
6745 if (! special && rl->secondary_in_reload >= 0)
6747 rtx second_reload_reg = 0;
6748 rtx third_reload_reg = 0;
6749 int secondary_reload = rl->secondary_in_reload;
6750 rtx real_oldequiv = oldequiv;
6751 rtx real_old = old;
6752 rtx tmp;
6753 enum insn_code icode;
6754 enum insn_code tertiary_icode = CODE_FOR_nothing;
6756 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6757 and similarly for OLD.
6758 See comments in get_secondary_reload in reload.c. */
6759 /* If it is a pseudo that cannot be replaced with its
6760 equivalent MEM, we must fall back to reload_in, which
6761 will have all the necessary substitutions registered.
6762 Likewise for a pseudo that can't be replaced with its
6763 equivalent constant.
6765 Take extra care for subregs of such pseudos. Note that
6766 we cannot use reg_equiv_mem in this case because it is
6767 not in the right mode. */
6769 tmp = oldequiv;
6770 if (GET_CODE (tmp) == SUBREG)
6771 tmp = SUBREG_REG (tmp);
6772 if (REG_P (tmp)
6773 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6774 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6775 || reg_equiv_constant[REGNO (tmp)] != 0))
6777 if (! reg_equiv_mem[REGNO (tmp)]
6778 || num_not_at_initial_offset
6779 || GET_CODE (oldequiv) == SUBREG)
6780 real_oldequiv = rl->in;
6781 else
6782 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6785 tmp = old;
6786 if (GET_CODE (tmp) == SUBREG)
6787 tmp = SUBREG_REG (tmp);
6788 if (REG_P (tmp)
6789 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6790 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6791 || reg_equiv_constant[REGNO (tmp)] != 0))
6793 if (! reg_equiv_mem[REGNO (tmp)]
6794 || num_not_at_initial_offset
6795 || GET_CODE (old) == SUBREG)
6796 real_old = rl->in;
6797 else
6798 real_old = reg_equiv_mem[REGNO (tmp)];
6801 second_reload_reg = rld[secondary_reload].reg_rtx;
6802 if (rld[secondary_reload].secondary_in_reload >= 0)
6804 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
6806 third_reload_reg = rld[tertiary_reload].reg_rtx;
6807 tertiary_icode = rld[secondary_reload].secondary_in_icode;
6808 /* We'd have to add more code for quartary reloads. */
6809 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
6811 icode = rl->secondary_in_icode;
6813 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6814 || (rl->in != 0 && rl->out != 0))
6816 secondary_reload_info sri, sri2;
6817 enum reg_class new_class, new_t_class;
6819 sri.icode = CODE_FOR_nothing;
6820 sri.prev_sri = NULL;
6821 new_class = targetm.secondary_reload (1, real_oldequiv, rl->class,
6822 mode, &sri);
6824 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
6825 second_reload_reg = 0;
6826 else if (new_class == NO_REGS)
6828 if (reload_adjust_reg_for_icode (&second_reload_reg,
6829 third_reload_reg, sri.icode))
6830 icode = sri.icode, third_reload_reg = 0;
6831 else
6832 oldequiv = old, real_oldequiv = real_old;
6834 else if (sri.icode != CODE_FOR_nothing)
6835 /* We currently lack a way to express this in reloads. */
6836 gcc_unreachable ();
6837 else
6839 sri2.icode = CODE_FOR_nothing;
6840 sri2.prev_sri = &sri;
6841 new_t_class = targetm.secondary_reload (1, real_oldequiv,
6842 new_class, mode, &sri);
6843 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
6845 if (reload_adjust_reg_for_temp (&second_reload_reg,
6846 third_reload_reg,
6847 new_class, mode))
6848 third_reload_reg = 0, tertiary_icode = sri2.icode;
6849 else
6850 oldequiv = old, real_oldequiv = real_old;
6852 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
6854 rtx intermediate = second_reload_reg;
6856 if (reload_adjust_reg_for_temp (&intermediate, NULL,
6857 new_class, mode)
6858 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
6859 sri2.icode))
6861 second_reload_reg = intermediate;
6862 tertiary_icode = sri2.icode;
6864 else
6865 oldequiv = old, real_oldequiv = real_old;
6867 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
6869 rtx intermediate = second_reload_reg;
6871 if (reload_adjust_reg_for_temp (&intermediate, NULL,
6872 new_class, mode)
6873 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
6874 new_t_class, mode))
6876 second_reload_reg = intermediate;
6877 tertiary_icode = sri2.icode;
6879 else
6880 oldequiv = old, real_oldequiv = real_old;
6882 else
6883 /* This could be handled more intelligently too. */
6884 oldequiv = old, real_oldequiv = real_old;
6888 /* If we still need a secondary reload register, check
6889 to see if it is being used as a scratch or intermediate
6890 register and generate code appropriately. If we need
6891 a scratch register, use REAL_OLDEQUIV since the form of
6892 the insn may depend on the actual address if it is
6893 a MEM. */
6895 if (second_reload_reg)
6897 if (icode != CODE_FOR_nothing)
6899 /* We'd have to add extra code to handle this case. */
6900 gcc_assert (!third_reload_reg);
6902 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6903 second_reload_reg));
6904 special = 1;
6906 else
6908 /* See if we need a scratch register to load the
6909 intermediate register (a tertiary reload). */
6910 if (tertiary_icode != CODE_FOR_nothing)
6912 emit_insn ((GEN_FCN (tertiary_icode)
6913 (second_reload_reg, real_oldequiv,
6914 third_reload_reg)));
6916 else if (third_reload_reg)
6918 gen_reload (third_reload_reg, real_oldequiv,
6919 rl->opnum,
6920 rl->when_needed);
6921 gen_reload (second_reload_reg, third_reload_reg,
6922 rl->opnum,
6923 rl->when_needed);
6925 else
6926 gen_reload (second_reload_reg, real_oldequiv,
6927 rl->opnum,
6928 rl->when_needed);
6930 oldequiv = second_reload_reg;
6935 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6937 rtx real_oldequiv = oldequiv;
6939 if ((REG_P (oldequiv)
6940 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6941 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6942 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6943 || (GET_CODE (oldequiv) == SUBREG
6944 && REG_P (SUBREG_REG (oldequiv))
6945 && (REGNO (SUBREG_REG (oldequiv))
6946 >= FIRST_PSEUDO_REGISTER)
6947 && ((reg_equiv_memory_loc
6948 [REGNO (SUBREG_REG (oldequiv))] != 0)
6949 || (reg_equiv_constant
6950 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6951 || (CONSTANT_P (oldequiv)
6952 && (PREFERRED_RELOAD_CLASS (oldequiv,
6953 REGNO_REG_CLASS (REGNO (reloadreg)))
6954 == NO_REGS)))
6955 real_oldequiv = rl->in;
6956 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6957 rl->when_needed);
6960 if (flag_non_call_exceptions)
6961 copy_eh_notes (insn, get_insns ());
6963 /* End this sequence. */
6964 *where = get_insns ();
6965 end_sequence ();
6967 /* Update reload_override_in so that delete_address_reloads_1
6968 can see the actual register usage. */
6969 if (oldequiv_reg)
6970 reload_override_in[j] = oldequiv;
6973 /* Generate insns to for the output reload RL, which is for the insn described
6974 by CHAIN and has the number J. */
6975 static void
6976 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
6977 int j)
6979 rtx reloadreg;
6980 rtx insn = chain->insn;
6981 int special = 0;
6982 rtx old = rl->out;
6983 enum machine_mode mode;
6984 rtx p;
6985 rtx rl_reg_rtx;
6987 if (rl->when_needed == RELOAD_OTHER)
6988 start_sequence ();
6989 else
6990 push_to_sequence (output_reload_insns[rl->opnum]);
6992 rl_reg_rtx = reload_reg_rtx_for_output[j];
6993 mode = GET_MODE (rl_reg_rtx);
6995 reloadreg = rl_reg_rtx;
6997 /* If we need two reload regs, set RELOADREG to the intermediate
6998 one, since it will be stored into OLD. We might need a secondary
6999 register only for an input reload, so check again here. */
7001 if (rl->secondary_out_reload >= 0)
7003 rtx real_old = old;
7004 int secondary_reload = rl->secondary_out_reload;
7005 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7007 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7008 && reg_equiv_mem[REGNO (old)] != 0)
7009 real_old = reg_equiv_mem[REGNO (old)];
7011 if (secondary_reload_class (0, rl->class, mode, real_old) != NO_REGS)
7013 rtx second_reloadreg = reloadreg;
7014 reloadreg = rld[secondary_reload].reg_rtx;
7016 /* See if RELOADREG is to be used as a scratch register
7017 or as an intermediate register. */
7018 if (rl->secondary_out_icode != CODE_FOR_nothing)
7020 /* We'd have to add extra code to handle this case. */
7021 gcc_assert (tertiary_reload < 0);
7023 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7024 (real_old, second_reloadreg, reloadreg)));
7025 special = 1;
7027 else
7029 /* See if we need both a scratch and intermediate reload
7030 register. */
7032 enum insn_code tertiary_icode
7033 = rld[secondary_reload].secondary_out_icode;
7035 /* We'd have to add more code for quartary reloads. */
7036 gcc_assert (tertiary_reload < 0
7037 || rld[tertiary_reload].secondary_out_reload < 0);
7039 if (GET_MODE (reloadreg) != mode)
7040 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7042 if (tertiary_icode != CODE_FOR_nothing)
7044 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7045 rtx tem;
7047 /* Copy primary reload reg to secondary reload reg.
7048 (Note that these have been swapped above, then
7049 secondary reload reg to OLD using our insn.) */
7051 /* If REAL_OLD is a paradoxical SUBREG, remove it
7052 and try to put the opposite SUBREG on
7053 RELOADREG. */
7054 if (GET_CODE (real_old) == SUBREG
7055 && (GET_MODE_SIZE (GET_MODE (real_old))
7056 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
7057 && 0 != (tem = gen_lowpart_common
7058 (GET_MODE (SUBREG_REG (real_old)),
7059 reloadreg)))
7060 real_old = SUBREG_REG (real_old), reloadreg = tem;
7062 gen_reload (reloadreg, second_reloadreg,
7063 rl->opnum, rl->when_needed);
7064 emit_insn ((GEN_FCN (tertiary_icode)
7065 (real_old, reloadreg, third_reloadreg)));
7066 special = 1;
7069 else
7071 /* Copy between the reload regs here and then to
7072 OUT later. */
7074 gen_reload (reloadreg, second_reloadreg,
7075 rl->opnum, rl->when_needed);
7076 if (tertiary_reload >= 0)
7078 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7080 gen_reload (third_reloadreg, reloadreg,
7081 rl->opnum, rl->when_needed);
7082 reloadreg = third_reloadreg;
7089 /* Output the last reload insn. */
7090 if (! special)
7092 rtx set;
7094 /* Don't output the last reload if OLD is not the dest of
7095 INSN and is in the src and is clobbered by INSN. */
7096 if (! flag_expensive_optimizations
7097 || !REG_P (old)
7098 || !(set = single_set (insn))
7099 || rtx_equal_p (old, SET_DEST (set))
7100 || !reg_mentioned_p (old, SET_SRC (set))
7101 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7102 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7103 gen_reload (old, reloadreg, rl->opnum,
7104 rl->when_needed);
7107 /* Look at all insns we emitted, just to be safe. */
7108 for (p = get_insns (); p; p = NEXT_INSN (p))
7109 if (INSN_P (p))
7111 rtx pat = PATTERN (p);
7113 /* If this output reload doesn't come from a spill reg,
7114 clear any memory of reloaded copies of the pseudo reg.
7115 If this output reload comes from a spill reg,
7116 reg_has_output_reload will make this do nothing. */
7117 note_stores (pat, forget_old_reloads_1, NULL);
7119 if (reg_mentioned_p (rl_reg_rtx, pat))
7121 rtx set = single_set (insn);
7122 if (reload_spill_index[j] < 0
7123 && set
7124 && SET_SRC (set) == rl_reg_rtx)
7126 int src = REGNO (SET_SRC (set));
7128 reload_spill_index[j] = src;
7129 SET_HARD_REG_BIT (reg_is_output_reload, src);
7130 if (find_regno_note (insn, REG_DEAD, src))
7131 SET_HARD_REG_BIT (reg_reloaded_died, src);
7133 if (HARD_REGISTER_P (rl_reg_rtx))
7135 int s = rl->secondary_out_reload;
7136 set = single_set (p);
7137 /* If this reload copies only to the secondary reload
7138 register, the secondary reload does the actual
7139 store. */
7140 if (s >= 0 && set == NULL_RTX)
7141 /* We can't tell what function the secondary reload
7142 has and where the actual store to the pseudo is
7143 made; leave new_spill_reg_store alone. */
7145 else if (s >= 0
7146 && SET_SRC (set) == rl_reg_rtx
7147 && SET_DEST (set) == rld[s].reg_rtx)
7149 /* Usually the next instruction will be the
7150 secondary reload insn; if we can confirm
7151 that it is, setting new_spill_reg_store to
7152 that insn will allow an extra optimization. */
7153 rtx s_reg = rld[s].reg_rtx;
7154 rtx next = NEXT_INSN (p);
7155 rld[s].out = rl->out;
7156 rld[s].out_reg = rl->out_reg;
7157 set = single_set (next);
7158 if (set && SET_SRC (set) == s_reg
7159 && ! new_spill_reg_store[REGNO (s_reg)])
7161 SET_HARD_REG_BIT (reg_is_output_reload,
7162 REGNO (s_reg));
7163 new_spill_reg_store[REGNO (s_reg)] = next;
7166 else
7167 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7172 if (rl->when_needed == RELOAD_OTHER)
7174 emit_insn (other_output_reload_insns[rl->opnum]);
7175 other_output_reload_insns[rl->opnum] = get_insns ();
7177 else
7178 output_reload_insns[rl->opnum] = get_insns ();
7180 if (flag_non_call_exceptions)
7181 copy_eh_notes (insn, get_insns ());
7183 end_sequence ();
7186 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7187 and has the number J. */
7188 static void
7189 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7191 rtx insn = chain->insn;
7192 rtx old = (rl->in && MEM_P (rl->in)
7193 ? rl->in_reg : rl->in);
7194 rtx reg_rtx = rl->reg_rtx;
7196 if (old && reg_rtx)
7198 enum machine_mode mode;
7200 /* Determine the mode to reload in.
7201 This is very tricky because we have three to choose from.
7202 There is the mode the insn operand wants (rl->inmode).
7203 There is the mode of the reload register RELOADREG.
7204 There is the intrinsic mode of the operand, which we could find
7205 by stripping some SUBREGs.
7206 It turns out that RELOADREG's mode is irrelevant:
7207 we can change that arbitrarily.
7209 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7210 then the reload reg may not support QImode moves, so use SImode.
7211 If foo is in memory due to spilling a pseudo reg, this is safe,
7212 because the QImode value is in the least significant part of a
7213 slot big enough for a SImode. If foo is some other sort of
7214 memory reference, then it is impossible to reload this case,
7215 so previous passes had better make sure this never happens.
7217 Then consider a one-word union which has SImode and one of its
7218 members is a float, being fetched as (SUBREG:SF union:SI).
7219 We must fetch that as SFmode because we could be loading into
7220 a float-only register. In this case OLD's mode is correct.
7222 Consider an immediate integer: it has VOIDmode. Here we need
7223 to get a mode from something else.
7225 In some cases, there is a fourth mode, the operand's
7226 containing mode. If the insn specifies a containing mode for
7227 this operand, it overrides all others.
7229 I am not sure whether the algorithm here is always right,
7230 but it does the right things in those cases. */
7232 mode = GET_MODE (old);
7233 if (mode == VOIDmode)
7234 mode = rl->inmode;
7236 /* We cannot use gen_lowpart_common since it can do the wrong thing
7237 when REG_RTX has a multi-word mode. Note that REG_RTX must
7238 always be a REG here. */
7239 if (GET_MODE (reg_rtx) != mode)
7240 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7242 reload_reg_rtx_for_input[j] = reg_rtx;
7244 if (old != 0
7245 /* AUTO_INC reloads need to be handled even if inherited. We got an
7246 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7247 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7248 && ! rtx_equal_p (reg_rtx, old)
7249 && reg_rtx != 0)
7250 emit_input_reload_insns (chain, rld + j, old, j);
7252 /* When inheriting a wider reload, we have a MEM in rl->in,
7253 e.g. inheriting a SImode output reload for
7254 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7255 if (optimize && reload_inherited[j] && rl->in
7256 && MEM_P (rl->in)
7257 && MEM_P (rl->in_reg)
7258 && reload_spill_index[j] >= 0
7259 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7260 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7262 /* If we are reloading a register that was recently stored in with an
7263 output-reload, see if we can prove there was
7264 actually no need to store the old value in it. */
7266 if (optimize
7267 && (reload_inherited[j] || reload_override_in[j])
7268 && reg_rtx
7269 && REG_P (reg_rtx)
7270 && spill_reg_store[REGNO (reg_rtx)] != 0
7271 #if 0
7272 /* There doesn't seem to be any reason to restrict this to pseudos
7273 and doing so loses in the case where we are copying from a
7274 register of the wrong class. */
7275 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7276 #endif
7277 /* The insn might have already some references to stackslots
7278 replaced by MEMs, while reload_out_reg still names the
7279 original pseudo. */
7280 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7281 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7282 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7285 /* Do output reloading for reload RL, which is for the insn described by
7286 CHAIN and has the number J.
7287 ??? At some point we need to support handling output reloads of
7288 JUMP_INSNs or insns that set cc0. */
7289 static void
7290 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7292 rtx note, old;
7293 rtx insn = chain->insn;
7294 /* If this is an output reload that stores something that is
7295 not loaded in this same reload, see if we can eliminate a previous
7296 store. */
7297 rtx pseudo = rl->out_reg;
7298 rtx reg_rtx = rl->reg_rtx;
7300 if (rl->out && reg_rtx)
7302 enum machine_mode mode;
7304 /* Determine the mode to reload in.
7305 See comments above (for input reloading). */
7306 mode = GET_MODE (rl->out);
7307 if (mode == VOIDmode)
7309 /* VOIDmode should never happen for an output. */
7310 if (asm_noperands (PATTERN (insn)) < 0)
7311 /* It's the compiler's fault. */
7312 fatal_insn ("VOIDmode on an output", insn);
7313 error_for_asm (insn, "output operand is constant in %<asm%>");
7314 /* Prevent crash--use something we know is valid. */
7315 mode = word_mode;
7316 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7318 if (GET_MODE (reg_rtx) != mode)
7319 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7321 reload_reg_rtx_for_output[j] = reg_rtx;
7323 if (pseudo
7324 && optimize
7325 && REG_P (pseudo)
7326 && ! rtx_equal_p (rl->in_reg, pseudo)
7327 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7328 && reg_last_reload_reg[REGNO (pseudo)])
7330 int pseudo_no = REGNO (pseudo);
7331 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7333 /* We don't need to test full validity of last_regno for
7334 inherit here; we only want to know if the store actually
7335 matches the pseudo. */
7336 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7337 && reg_reloaded_contents[last_regno] == pseudo_no
7338 && spill_reg_store[last_regno]
7339 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7340 delete_output_reload (insn, j, last_regno, reg_rtx);
7343 old = rl->out_reg;
7344 if (old == 0
7345 || reg_rtx == 0
7346 || rtx_equal_p (old, reg_rtx))
7347 return;
7349 /* An output operand that dies right away does need a reload,
7350 but need not be copied from it. Show the new location in the
7351 REG_UNUSED note. */
7352 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7353 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7355 XEXP (note, 0) = reg_rtx;
7356 return;
7358 /* Likewise for a SUBREG of an operand that dies. */
7359 else if (GET_CODE (old) == SUBREG
7360 && REG_P (SUBREG_REG (old))
7361 && 0 != (note = find_reg_note (insn, REG_UNUSED,
7362 SUBREG_REG (old))))
7364 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
7365 return;
7367 else if (GET_CODE (old) == SCRATCH)
7368 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7369 but we don't want to make an output reload. */
7370 return;
7372 /* If is a JUMP_INSN, we can't support output reloads yet. */
7373 gcc_assert (NONJUMP_INSN_P (insn));
7375 emit_output_reload_insns (chain, rld + j, j);
7378 /* A reload copies values of MODE from register SRC to register DEST.
7379 Return true if it can be treated for inheritance purposes like a
7380 group of reloads, each one reloading a single hard register. The
7381 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
7382 occupy the same number of hard registers. */
7384 static bool
7385 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
7386 int src ATTRIBUTE_UNUSED,
7387 enum machine_mode mode ATTRIBUTE_UNUSED)
7389 #ifdef CANNOT_CHANGE_MODE_CLASS
7390 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
7391 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
7392 #else
7393 return true;
7394 #endif
7397 /* Output insns to reload values in and out of the chosen reload regs. */
7399 static void
7400 emit_reload_insns (struct insn_chain *chain)
7402 rtx insn = chain->insn;
7404 int j;
7406 CLEAR_HARD_REG_SET (reg_reloaded_died);
7408 for (j = 0; j < reload_n_operands; j++)
7409 input_reload_insns[j] = input_address_reload_insns[j]
7410 = inpaddr_address_reload_insns[j]
7411 = output_reload_insns[j] = output_address_reload_insns[j]
7412 = outaddr_address_reload_insns[j]
7413 = other_output_reload_insns[j] = 0;
7414 other_input_address_reload_insns = 0;
7415 other_input_reload_insns = 0;
7416 operand_reload_insns = 0;
7417 other_operand_reload_insns = 0;
7419 /* Dump reloads into the dump file. */
7420 if (dump_file)
7422 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7423 debug_reload_to_stream (dump_file);
7426 /* Now output the instructions to copy the data into and out of the
7427 reload registers. Do these in the order that the reloads were reported,
7428 since reloads of base and index registers precede reloads of operands
7429 and the operands may need the base and index registers reloaded. */
7431 for (j = 0; j < n_reloads; j++)
7433 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
7435 unsigned int i;
7437 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
7438 new_spill_reg_store[i] = 0;
7441 do_input_reload (chain, rld + j, j);
7442 do_output_reload (chain, rld + j, j);
7445 /* Now write all the insns we made for reloads in the order expected by
7446 the allocation functions. Prior to the insn being reloaded, we write
7447 the following reloads:
7449 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7451 RELOAD_OTHER reloads.
7453 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7454 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7455 RELOAD_FOR_INPUT reload for the operand.
7457 RELOAD_FOR_OPADDR_ADDRS reloads.
7459 RELOAD_FOR_OPERAND_ADDRESS reloads.
7461 After the insn being reloaded, we write the following:
7463 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7464 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7465 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7466 reloads for the operand. The RELOAD_OTHER output reloads are
7467 output in descending order by reload number. */
7469 emit_insn_before (other_input_address_reload_insns, insn);
7470 emit_insn_before (other_input_reload_insns, insn);
7472 for (j = 0; j < reload_n_operands; j++)
7474 emit_insn_before (inpaddr_address_reload_insns[j], insn);
7475 emit_insn_before (input_address_reload_insns[j], insn);
7476 emit_insn_before (input_reload_insns[j], insn);
7479 emit_insn_before (other_operand_reload_insns, insn);
7480 emit_insn_before (operand_reload_insns, insn);
7482 for (j = 0; j < reload_n_operands; j++)
7484 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
7485 x = emit_insn_after (output_address_reload_insns[j], x);
7486 x = emit_insn_after (output_reload_insns[j], x);
7487 emit_insn_after (other_output_reload_insns[j], x);
7490 /* For all the spill regs newly reloaded in this instruction,
7491 record what they were reloaded from, so subsequent instructions
7492 can inherit the reloads.
7494 Update spill_reg_store for the reloads of this insn.
7495 Copy the elements that were updated in the loop above. */
7497 for (j = 0; j < n_reloads; j++)
7499 int r = reload_order[j];
7500 int i = reload_spill_index[r];
7502 /* If this is a non-inherited input reload from a pseudo, we must
7503 clear any memory of a previous store to the same pseudo. Only do
7504 something if there will not be an output reload for the pseudo
7505 being reloaded. */
7506 if (rld[r].in_reg != 0
7507 && ! (reload_inherited[r] || reload_override_in[r]))
7509 rtx reg = rld[r].in_reg;
7511 if (GET_CODE (reg) == SUBREG)
7512 reg = SUBREG_REG (reg);
7514 if (REG_P (reg)
7515 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7516 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
7518 int nregno = REGNO (reg);
7520 if (reg_last_reload_reg[nregno])
7522 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7524 if (reg_reloaded_contents[last_regno] == nregno)
7525 spill_reg_store[last_regno] = 0;
7530 /* I is nonneg if this reload used a register.
7531 If rld[r].reg_rtx is 0, this is an optional reload
7532 that we opted to ignore. */
7534 if (i >= 0 && rld[r].reg_rtx != 0)
7536 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
7537 int k;
7539 /* For a multi register reload, we need to check if all or part
7540 of the value lives to the end. */
7541 for (k = 0; k < nr; k++)
7542 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7543 rld[r].when_needed))
7544 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7546 /* Maybe the spill reg contains a copy of reload_out. */
7547 if (rld[r].out != 0
7548 && (REG_P (rld[r].out)
7549 #ifdef AUTO_INC_DEC
7550 || ! rld[r].out_reg
7551 #endif
7552 || REG_P (rld[r].out_reg)))
7554 rtx reg;
7555 enum machine_mode mode;
7556 int regno, nregs;
7558 reg = reload_reg_rtx_for_output[r];
7559 mode = GET_MODE (reg);
7560 regno = REGNO (reg);
7561 nregs = hard_regno_nregs[regno][mode];
7562 if (reload_regs_reach_end_p (regno, nregs, rld[r].opnum,
7563 rld[r].when_needed))
7565 rtx out = (REG_P (rld[r].out)
7566 ? rld[r].out
7567 : rld[r].out_reg
7568 ? rld[r].out_reg
7569 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7570 int out_regno = REGNO (out);
7571 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
7572 : hard_regno_nregs[out_regno][mode]);
7573 bool piecemeal;
7575 spill_reg_store[regno] = new_spill_reg_store[regno];
7576 spill_reg_stored_to[regno] = out;
7577 reg_last_reload_reg[out_regno] = reg;
7579 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
7580 && nregs == out_nregs
7581 && inherit_piecemeal_p (out_regno, regno, mode));
7583 /* If OUT_REGNO is a hard register, it may occupy more than
7584 one register. If it does, say what is in the
7585 rest of the registers assuming that both registers
7586 agree on how many words the object takes. If not,
7587 invalidate the subsequent registers. */
7589 if (HARD_REGISTER_NUM_P (out_regno))
7590 for (k = 1; k < out_nregs; k++)
7591 reg_last_reload_reg[out_regno + k]
7592 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
7594 /* Now do the inverse operation. */
7595 for (k = 0; k < nregs; k++)
7597 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
7598 reg_reloaded_contents[regno + k]
7599 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
7600 ? out_regno
7601 : out_regno + k);
7602 reg_reloaded_insn[regno + k] = insn;
7603 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
7604 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
7605 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7606 regno + k);
7607 else
7608 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7609 regno + k);
7613 /* Maybe the spill reg contains a copy of reload_in. Only do
7614 something if there will not be an output reload for
7615 the register being reloaded. */
7616 else if (rld[r].out_reg == 0
7617 && rld[r].in != 0
7618 && ((REG_P (rld[r].in)
7619 && !HARD_REGISTER_P (rld[r].in)
7620 && !REGNO_REG_SET_P (&reg_has_output_reload,
7621 REGNO (rld[r].in)))
7622 || (REG_P (rld[r].in_reg)
7623 && !REGNO_REG_SET_P (&reg_has_output_reload,
7624 REGNO (rld[r].in_reg))))
7625 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
7627 rtx reg;
7628 enum machine_mode mode;
7629 int regno, nregs;
7631 reg = reload_reg_rtx_for_input[r];
7632 mode = GET_MODE (reg);
7633 regno = REGNO (reg);
7634 nregs = hard_regno_nregs[regno][mode];
7635 if (reload_regs_reach_end_p (regno, nregs, rld[r].opnum,
7636 rld[r].when_needed))
7638 int in_regno;
7639 int in_nregs;
7640 rtx in;
7641 bool piecemeal;
7643 if (REG_P (rld[r].in)
7644 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7645 in = rld[r].in;
7646 else if (REG_P (rld[r].in_reg))
7647 in = rld[r].in_reg;
7648 else
7649 in = XEXP (rld[r].in_reg, 0);
7650 in_regno = REGNO (in);
7652 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
7653 : hard_regno_nregs[in_regno][mode]);
7655 reg_last_reload_reg[in_regno] = reg;
7657 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
7658 && nregs == in_nregs
7659 && inherit_piecemeal_p (regno, in_regno, mode));
7661 if (HARD_REGISTER_NUM_P (in_regno))
7662 for (k = 1; k < in_nregs; k++)
7663 reg_last_reload_reg[in_regno + k]
7664 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
7666 /* Unless we inherited this reload, show we haven't
7667 recently done a store.
7668 Previous stores of inherited auto_inc expressions
7669 also have to be discarded. */
7670 if (! reload_inherited[r]
7671 || (rld[r].out && ! rld[r].out_reg))
7672 spill_reg_store[regno] = 0;
7674 for (k = 0; k < nregs; k++)
7676 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
7677 reg_reloaded_contents[regno + k]
7678 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
7679 ? in_regno
7680 : in_regno + k);
7681 reg_reloaded_insn[regno + k] = insn;
7682 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
7683 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
7684 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7685 regno + k);
7686 else
7687 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7688 regno + k);
7694 /* The following if-statement was #if 0'd in 1.34 (or before...).
7695 It's reenabled in 1.35 because supposedly nothing else
7696 deals with this problem. */
7698 /* If a register gets output-reloaded from a non-spill register,
7699 that invalidates any previous reloaded copy of it.
7700 But forget_old_reloads_1 won't get to see it, because
7701 it thinks only about the original insn. So invalidate it here.
7702 Also do the same thing for RELOAD_OTHER constraints where the
7703 output is discarded. */
7704 if (i < 0
7705 && ((rld[r].out != 0
7706 && (REG_P (rld[r].out)
7707 || (MEM_P (rld[r].out)
7708 && REG_P (rld[r].out_reg))))
7709 || (rld[r].out == 0 && rld[r].out_reg
7710 && REG_P (rld[r].out_reg))))
7712 rtx out = ((rld[r].out && REG_P (rld[r].out))
7713 ? rld[r].out : rld[r].out_reg);
7714 int out_regno = REGNO (out);
7715 enum machine_mode mode = GET_MODE (out);
7717 /* REG_RTX is now set or clobbered by the main instruction.
7718 As the comment above explains, forget_old_reloads_1 only
7719 sees the original instruction, and there is no guarantee
7720 that the original instruction also clobbered REG_RTX.
7721 For example, if find_reloads sees that the input side of
7722 a matched operand pair dies in this instruction, it may
7723 use the input register as the reload register.
7725 Calling forget_old_reloads_1 is a waste of effort if
7726 REG_RTX is also the output register.
7728 If we know that REG_RTX holds the value of a pseudo
7729 register, the code after the call will record that fact. */
7730 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
7731 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
7733 if (!HARD_REGISTER_NUM_P (out_regno))
7735 rtx src_reg, store_insn = NULL_RTX;
7737 reg_last_reload_reg[out_regno] = 0;
7739 /* If we can find a hard register that is stored, record
7740 the storing insn so that we may delete this insn with
7741 delete_output_reload. */
7742 src_reg = reload_reg_rtx_for_output[r];
7744 /* If this is an optional reload, try to find the source reg
7745 from an input reload. */
7746 if (! src_reg)
7748 rtx set = single_set (insn);
7749 if (set && SET_DEST (set) == rld[r].out)
7751 int k;
7753 src_reg = SET_SRC (set);
7754 store_insn = insn;
7755 for (k = 0; k < n_reloads; k++)
7757 if (rld[k].in == src_reg)
7759 src_reg = reload_reg_rtx_for_input[k];
7760 break;
7765 else
7766 store_insn = new_spill_reg_store[REGNO (src_reg)];
7767 if (src_reg && REG_P (src_reg)
7768 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7770 int src_regno, src_nregs, k;
7771 rtx note;
7773 gcc_assert (GET_MODE (src_reg) == mode);
7774 src_regno = REGNO (src_reg);
7775 src_nregs = hard_regno_nregs[src_regno][mode];
7776 /* The place where to find a death note varies with
7777 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7778 necessarily checked exactly in the code that moves
7779 notes, so just check both locations. */
7780 note = find_regno_note (insn, REG_DEAD, src_regno);
7781 if (! note && store_insn)
7782 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7783 for (k = 0; k < src_nregs; k++)
7785 spill_reg_store[src_regno + k] = store_insn;
7786 spill_reg_stored_to[src_regno + k] = out;
7787 reg_reloaded_contents[src_regno + k] = out_regno;
7788 reg_reloaded_insn[src_regno + k] = store_insn;
7789 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
7790 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
7791 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
7792 mode))
7793 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7794 src_regno + k);
7795 else
7796 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7797 src_regno + k);
7798 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
7799 if (note)
7800 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7801 else
7802 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7804 reg_last_reload_reg[out_regno] = src_reg;
7805 /* We have to set reg_has_output_reload here, or else
7806 forget_old_reloads_1 will clear reg_last_reload_reg
7807 right away. */
7808 SET_REGNO_REG_SET (&reg_has_output_reload,
7809 out_regno);
7812 else
7814 int k, out_nregs = hard_regno_nregs[out_regno][mode];
7816 for (k = 0; k < out_nregs; k++)
7817 reg_last_reload_reg[out_regno + k] = 0;
7821 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7824 /* Go through the motions to emit INSN and test if it is strictly valid.
7825 Return the emitted insn if valid, else return NULL. */
7827 static rtx
7828 emit_insn_if_valid_for_reload (rtx insn)
7830 rtx last = get_last_insn ();
7831 int code;
7833 insn = emit_insn (insn);
7834 code = recog_memoized (insn);
7836 if (code >= 0)
7838 extract_insn (insn);
7839 /* We want constrain operands to treat this insn strictly in its
7840 validity determination, i.e., the way it would after reload has
7841 completed. */
7842 if (constrain_operands (1))
7843 return insn;
7846 delete_insns_since (last);
7847 return NULL;
7850 /* Emit code to perform a reload from IN (which may be a reload register) to
7851 OUT (which may also be a reload register). IN or OUT is from operand
7852 OPNUM with reload type TYPE.
7854 Returns first insn emitted. */
7856 static rtx
7857 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
7859 rtx last = get_last_insn ();
7860 rtx tem;
7862 /* If IN is a paradoxical SUBREG, remove it and try to put the
7863 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7864 if (GET_CODE (in) == SUBREG
7865 && (GET_MODE_SIZE (GET_MODE (in))
7866 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7867 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7868 in = SUBREG_REG (in), out = tem;
7869 else if (GET_CODE (out) == SUBREG
7870 && (GET_MODE_SIZE (GET_MODE (out))
7871 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7872 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7873 out = SUBREG_REG (out), in = tem;
7875 /* How to do this reload can get quite tricky. Normally, we are being
7876 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7877 register that didn't get a hard register. In that case we can just
7878 call emit_move_insn.
7880 We can also be asked to reload a PLUS that adds a register or a MEM to
7881 another register, constant or MEM. This can occur during frame pointer
7882 elimination and while reloading addresses. This case is handled by
7883 trying to emit a single insn to perform the add. If it is not valid,
7884 we use a two insn sequence.
7886 Or we can be asked to reload an unary operand that was a fragment of
7887 an addressing mode, into a register. If it isn't recognized as-is,
7888 we try making the unop operand and the reload-register the same:
7889 (set reg:X (unop:X expr:Y))
7890 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
7892 Finally, we could be called to handle an 'o' constraint by putting
7893 an address into a register. In that case, we first try to do this
7894 with a named pattern of "reload_load_address". If no such pattern
7895 exists, we just emit a SET insn and hope for the best (it will normally
7896 be valid on machines that use 'o').
7898 This entire process is made complex because reload will never
7899 process the insns we generate here and so we must ensure that
7900 they will fit their constraints and also by the fact that parts of
7901 IN might be being reloaded separately and replaced with spill registers.
7902 Because of this, we are, in some sense, just guessing the right approach
7903 here. The one listed above seems to work.
7905 ??? At some point, this whole thing needs to be rethought. */
7907 if (GET_CODE (in) == PLUS
7908 && (REG_P (XEXP (in, 0))
7909 || GET_CODE (XEXP (in, 0)) == SUBREG
7910 || MEM_P (XEXP (in, 0)))
7911 && (REG_P (XEXP (in, 1))
7912 || GET_CODE (XEXP (in, 1)) == SUBREG
7913 || CONSTANT_P (XEXP (in, 1))
7914 || MEM_P (XEXP (in, 1))))
7916 /* We need to compute the sum of a register or a MEM and another
7917 register, constant, or MEM, and put it into the reload
7918 register. The best possible way of doing this is if the machine
7919 has a three-operand ADD insn that accepts the required operands.
7921 The simplest approach is to try to generate such an insn and see if it
7922 is recognized and matches its constraints. If so, it can be used.
7924 It might be better not to actually emit the insn unless it is valid,
7925 but we need to pass the insn as an operand to `recog' and
7926 `extract_insn' and it is simpler to emit and then delete the insn if
7927 not valid than to dummy things up. */
7929 rtx op0, op1, tem, insn;
7930 int code;
7932 op0 = find_replacement (&XEXP (in, 0));
7933 op1 = find_replacement (&XEXP (in, 1));
7935 /* Since constraint checking is strict, commutativity won't be
7936 checked, so we need to do that here to avoid spurious failure
7937 if the add instruction is two-address and the second operand
7938 of the add is the same as the reload reg, which is frequently
7939 the case. If the insn would be A = B + A, rearrange it so
7940 it will be A = A + B as constrain_operands expects. */
7942 if (REG_P (XEXP (in, 1))
7943 && REGNO (out) == REGNO (XEXP (in, 1)))
7944 tem = op0, op0 = op1, op1 = tem;
7946 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7947 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7949 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
7950 if (insn)
7951 return insn;
7953 /* If that failed, we must use a conservative two-insn sequence.
7955 Use a move to copy one operand into the reload register. Prefer
7956 to reload a constant, MEM or pseudo since the move patterns can
7957 handle an arbitrary operand. If OP1 is not a constant, MEM or
7958 pseudo and OP1 is not a valid operand for an add instruction, then
7959 reload OP1.
7961 After reloading one of the operands into the reload register, add
7962 the reload register to the output register.
7964 If there is another way to do this for a specific machine, a
7965 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7966 we emit below. */
7968 code = (int) optab_handler (add_optab, GET_MODE (out))->insn_code;
7970 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
7971 || (REG_P (op1)
7972 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7973 || (code != CODE_FOR_nothing
7974 && ! ((*insn_data[code].operand[2].predicate)
7975 (op1, insn_data[code].operand[2].mode))))
7976 tem = op0, op0 = op1, op1 = tem;
7978 gen_reload (out, op0, opnum, type);
7980 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7981 This fixes a problem on the 32K where the stack pointer cannot
7982 be used as an operand of an add insn. */
7984 if (rtx_equal_p (op0, op1))
7985 op1 = out;
7987 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
7988 if (insn)
7990 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7991 set_unique_reg_note (insn, REG_EQUIV, in);
7992 return insn;
7995 /* If that failed, copy the address register to the reload register.
7996 Then add the constant to the reload register. */
7998 gcc_assert (!reg_overlap_mentioned_p (out, op0));
7999 gen_reload (out, op1, opnum, type);
8000 insn = emit_insn (gen_add2_insn (out, op0));
8001 set_unique_reg_note (insn, REG_EQUIV, in);
8004 #ifdef SECONDARY_MEMORY_NEEDED
8005 /* If we need a memory location to do the move, do it that way. */
8006 else if ((REG_P (in) || GET_CODE (in) == SUBREG)
8007 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
8008 && (REG_P (out) || GET_CODE (out) == SUBREG)
8009 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
8010 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
8011 REGNO_REG_CLASS (reg_or_subregno (out)),
8012 GET_MODE (out)))
8014 /* Get the memory to use and rewrite both registers to its mode. */
8015 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8017 if (GET_MODE (loc) != GET_MODE (out))
8018 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
8020 if (GET_MODE (loc) != GET_MODE (in))
8021 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
8023 gen_reload (loc, in, opnum, type);
8024 gen_reload (out, loc, opnum, type);
8026 #endif
8027 else if (REG_P (out) && UNARY_P (in))
8029 rtx insn;
8030 rtx op1;
8031 rtx out_moded;
8032 rtx set;
8034 op1 = find_replacement (&XEXP (in, 0));
8035 if (op1 != XEXP (in, 0))
8036 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8038 /* First, try a plain SET. */
8039 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8040 if (set)
8041 return set;
8043 /* If that failed, move the inner operand to the reload
8044 register, and try the same unop with the inner expression
8045 replaced with the reload register. */
8047 if (GET_MODE (op1) != GET_MODE (out))
8048 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8049 else
8050 out_moded = out;
8052 gen_reload (out_moded, op1, opnum, type);
8054 insn
8055 = gen_rtx_SET (VOIDmode, out,
8056 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8057 out_moded));
8058 insn = emit_insn_if_valid_for_reload (insn);
8059 if (insn)
8061 set_unique_reg_note (insn, REG_EQUIV, in);
8062 return insn;
8065 fatal_insn ("Failure trying to reload:", set);
8067 /* If IN is a simple operand, use gen_move_insn. */
8068 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8070 tem = emit_insn (gen_move_insn (out, in));
8071 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8072 mark_jump_label (in, tem, 0);
8075 #ifdef HAVE_reload_load_address
8076 else if (HAVE_reload_load_address)
8077 emit_insn (gen_reload_load_address (out, in));
8078 #endif
8080 /* Otherwise, just write (set OUT IN) and hope for the best. */
8081 else
8082 emit_insn (gen_rtx_SET (VOIDmode, out, in));
8084 /* Return the first insn emitted.
8085 We can not just return get_last_insn, because there may have
8086 been multiple instructions emitted. Also note that gen_move_insn may
8087 emit more than one insn itself, so we can not assume that there is one
8088 insn emitted per emit_insn_before call. */
8090 return last ? NEXT_INSN (last) : get_insns ();
8093 /* Delete a previously made output-reload whose result we now believe
8094 is not needed. First we double-check.
8096 INSN is the insn now being processed.
8097 LAST_RELOAD_REG is the hard register number for which we want to delete
8098 the last output reload.
8099 J is the reload-number that originally used REG. The caller has made
8100 certain that reload J doesn't use REG any longer for input.
8101 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8103 static void
8104 delete_output_reload (rtx insn, int j, int last_reload_reg, rtx new_reload_reg)
8106 rtx output_reload_insn = spill_reg_store[last_reload_reg];
8107 rtx reg = spill_reg_stored_to[last_reload_reg];
8108 int k;
8109 int n_occurrences;
8110 int n_inherited = 0;
8111 rtx i1;
8112 rtx substed;
8114 /* It is possible that this reload has been only used to set another reload
8115 we eliminated earlier and thus deleted this instruction too. */
8116 if (INSN_DELETED_P (output_reload_insn))
8117 return;
8119 /* Get the raw pseudo-register referred to. */
8121 while (GET_CODE (reg) == SUBREG)
8122 reg = SUBREG_REG (reg);
8123 substed = reg_equiv_memory_loc[REGNO (reg)];
8125 /* This is unsafe if the operand occurs more often in the current
8126 insn than it is inherited. */
8127 for (k = n_reloads - 1; k >= 0; k--)
8129 rtx reg2 = rld[k].in;
8130 if (! reg2)
8131 continue;
8132 if (MEM_P (reg2) || reload_override_in[k])
8133 reg2 = rld[k].in_reg;
8134 #ifdef AUTO_INC_DEC
8135 if (rld[k].out && ! rld[k].out_reg)
8136 reg2 = XEXP (rld[k].in_reg, 0);
8137 #endif
8138 while (GET_CODE (reg2) == SUBREG)
8139 reg2 = SUBREG_REG (reg2);
8140 if (rtx_equal_p (reg2, reg))
8142 if (reload_inherited[k] || reload_override_in[k] || k == j)
8143 n_inherited++;
8144 else
8145 return;
8148 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8149 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8150 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8151 reg, 0);
8152 if (substed)
8153 n_occurrences += count_occurrences (PATTERN (insn),
8154 eliminate_regs (substed, 0,
8155 NULL_RTX), 0);
8156 for (i1 = reg_equiv_alt_mem_list [REGNO (reg)]; i1; i1 = XEXP (i1, 1))
8158 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8159 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8161 if (n_occurrences > n_inherited)
8162 return;
8164 /* If the pseudo-reg we are reloading is no longer referenced
8165 anywhere between the store into it and here,
8166 and we're within the same basic block, then the value can only
8167 pass through the reload reg and end up here.
8168 Otherwise, give up--return. */
8169 for (i1 = NEXT_INSN (output_reload_insn);
8170 i1 != insn; i1 = NEXT_INSN (i1))
8172 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8173 return;
8174 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8175 && reg_mentioned_p (reg, PATTERN (i1)))
8177 /* If this is USE in front of INSN, we only have to check that
8178 there are no more references than accounted for by inheritance. */
8179 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8181 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8182 i1 = NEXT_INSN (i1);
8184 if (n_occurrences <= n_inherited && i1 == insn)
8185 break;
8186 return;
8190 /* We will be deleting the insn. Remove the spill reg information. */
8191 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8193 spill_reg_store[last_reload_reg + k] = 0;
8194 spill_reg_stored_to[last_reload_reg + k] = 0;
8197 /* The caller has already checked that REG dies or is set in INSN.
8198 It has also checked that we are optimizing, and thus some
8199 inaccuracies in the debugging information are acceptable.
8200 So we could just delete output_reload_insn. But in some cases
8201 we can improve the debugging information without sacrificing
8202 optimization - maybe even improving the code: See if the pseudo
8203 reg has been completely replaced with reload regs. If so, delete
8204 the store insn and forget we had a stack slot for the pseudo. */
8205 if (rld[j].out != rld[j].in
8206 && REG_N_DEATHS (REGNO (reg)) == 1
8207 && REG_N_SETS (REGNO (reg)) == 1
8208 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8209 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8211 rtx i2;
8213 /* We know that it was used only between here and the beginning of
8214 the current basic block. (We also know that the last use before
8215 INSN was the output reload we are thinking of deleting, but never
8216 mind that.) Search that range; see if any ref remains. */
8217 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8219 rtx set = single_set (i2);
8221 /* Uses which just store in the pseudo don't count,
8222 since if they are the only uses, they are dead. */
8223 if (set != 0 && SET_DEST (set) == reg)
8224 continue;
8225 if (LABEL_P (i2)
8226 || JUMP_P (i2))
8227 break;
8228 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8229 && reg_mentioned_p (reg, PATTERN (i2)))
8231 /* Some other ref remains; just delete the output reload we
8232 know to be dead. */
8233 delete_address_reloads (output_reload_insn, insn);
8234 delete_insn (output_reload_insn);
8235 return;
8239 /* Delete the now-dead stores into this pseudo. Note that this
8240 loop also takes care of deleting output_reload_insn. */
8241 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8243 rtx set = single_set (i2);
8245 if (set != 0 && SET_DEST (set) == reg)
8247 delete_address_reloads (i2, insn);
8248 delete_insn (i2);
8250 if (LABEL_P (i2)
8251 || JUMP_P (i2))
8252 break;
8255 /* For the debugging info, say the pseudo lives in this reload reg. */
8256 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8257 alter_reg (REGNO (reg), -1);
8259 else
8261 delete_address_reloads (output_reload_insn, insn);
8262 delete_insn (output_reload_insn);
8266 /* We are going to delete DEAD_INSN. Recursively delete loads of
8267 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8268 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8269 static void
8270 delete_address_reloads (rtx dead_insn, rtx current_insn)
8272 rtx set = single_set (dead_insn);
8273 rtx set2, dst, prev, next;
8274 if (set)
8276 rtx dst = SET_DEST (set);
8277 if (MEM_P (dst))
8278 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8280 /* If we deleted the store from a reloaded post_{in,de}c expression,
8281 we can delete the matching adds. */
8282 prev = PREV_INSN (dead_insn);
8283 next = NEXT_INSN (dead_insn);
8284 if (! prev || ! next)
8285 return;
8286 set = single_set (next);
8287 set2 = single_set (prev);
8288 if (! set || ! set2
8289 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8290 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
8291 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
8292 return;
8293 dst = SET_DEST (set);
8294 if (! rtx_equal_p (dst, SET_DEST (set2))
8295 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8296 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8297 || (INTVAL (XEXP (SET_SRC (set), 1))
8298 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8299 return;
8300 delete_related_insns (prev);
8301 delete_related_insns (next);
8304 /* Subfunction of delete_address_reloads: process registers found in X. */
8305 static void
8306 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
8308 rtx prev, set, dst, i2;
8309 int i, j;
8310 enum rtx_code code = GET_CODE (x);
8312 if (code != REG)
8314 const char *fmt = GET_RTX_FORMAT (code);
8315 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8317 if (fmt[i] == 'e')
8318 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8319 else if (fmt[i] == 'E')
8321 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8322 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8323 current_insn);
8326 return;
8329 if (spill_reg_order[REGNO (x)] < 0)
8330 return;
8332 /* Scan backwards for the insn that sets x. This might be a way back due
8333 to inheritance. */
8334 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8336 code = GET_CODE (prev);
8337 if (code == CODE_LABEL || code == JUMP_INSN)
8338 return;
8339 if (!INSN_P (prev))
8340 continue;
8341 if (reg_set_p (x, PATTERN (prev)))
8342 break;
8343 if (reg_referenced_p (x, PATTERN (prev)))
8344 return;
8346 if (! prev || INSN_UID (prev) < reload_first_uid)
8347 return;
8348 /* Check that PREV only sets the reload register. */
8349 set = single_set (prev);
8350 if (! set)
8351 return;
8352 dst = SET_DEST (set);
8353 if (!REG_P (dst)
8354 || ! rtx_equal_p (dst, x))
8355 return;
8356 if (! reg_set_p (dst, PATTERN (dead_insn)))
8358 /* Check if DST was used in a later insn -
8359 it might have been inherited. */
8360 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8362 if (LABEL_P (i2))
8363 break;
8364 if (! INSN_P (i2))
8365 continue;
8366 if (reg_referenced_p (dst, PATTERN (i2)))
8368 /* If there is a reference to the register in the current insn,
8369 it might be loaded in a non-inherited reload. If no other
8370 reload uses it, that means the register is set before
8371 referenced. */
8372 if (i2 == current_insn)
8374 for (j = n_reloads - 1; j >= 0; j--)
8375 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8376 || reload_override_in[j] == dst)
8377 return;
8378 for (j = n_reloads - 1; j >= 0; j--)
8379 if (rld[j].in && rld[j].reg_rtx == dst)
8380 break;
8381 if (j >= 0)
8382 break;
8384 return;
8386 if (JUMP_P (i2))
8387 break;
8388 /* If DST is still live at CURRENT_INSN, check if it is used for
8389 any reload. Note that even if CURRENT_INSN sets DST, we still
8390 have to check the reloads. */
8391 if (i2 == current_insn)
8393 for (j = n_reloads - 1; j >= 0; j--)
8394 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8395 || reload_override_in[j] == dst)
8396 return;
8397 /* ??? We can't finish the loop here, because dst might be
8398 allocated to a pseudo in this block if no reload in this
8399 block needs any of the classes containing DST - see
8400 spill_hard_reg. There is no easy way to tell this, so we
8401 have to scan till the end of the basic block. */
8403 if (reg_set_p (dst, PATTERN (i2)))
8404 break;
8407 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
8408 reg_reloaded_contents[REGNO (dst)] = -1;
8409 delete_insn (prev);
8412 /* Output reload-insns to reload VALUE into RELOADREG.
8413 VALUE is an autoincrement or autodecrement RTX whose operand
8414 is a register or memory location;
8415 so reloading involves incrementing that location.
8416 IN is either identical to VALUE, or some cheaper place to reload from.
8418 INC_AMOUNT is the number to increment or decrement by (always positive).
8419 This cannot be deduced from VALUE.
8421 Return the instruction that stores into RELOADREG. */
8423 static rtx
8424 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
8426 /* REG or MEM to be copied and incremented. */
8427 rtx incloc = find_replacement (&XEXP (value, 0));
8428 /* Nonzero if increment after copying. */
8429 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
8430 || GET_CODE (value) == POST_MODIFY);
8431 rtx last;
8432 rtx inc;
8433 rtx add_insn;
8434 int code;
8435 rtx store;
8436 rtx real_in = in == value ? incloc : in;
8438 /* No hard register is equivalent to this register after
8439 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
8440 we could inc/dec that register as well (maybe even using it for
8441 the source), but I'm not sure it's worth worrying about. */
8442 if (REG_P (incloc))
8443 reg_last_reload_reg[REGNO (incloc)] = 0;
8445 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
8447 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
8448 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
8450 else
8452 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
8453 inc_amount = -inc_amount;
8455 inc = GEN_INT (inc_amount);
8458 /* If this is post-increment, first copy the location to the reload reg. */
8459 if (post && real_in != reloadreg)
8460 emit_insn (gen_move_insn (reloadreg, real_in));
8462 if (in == value)
8464 /* See if we can directly increment INCLOC. Use a method similar to
8465 that in gen_reload. */
8467 last = get_last_insn ();
8468 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
8469 gen_rtx_PLUS (GET_MODE (incloc),
8470 incloc, inc)));
8472 code = recog_memoized (add_insn);
8473 if (code >= 0)
8475 extract_insn (add_insn);
8476 if (constrain_operands (1))
8478 /* If this is a pre-increment and we have incremented the value
8479 where it lives, copy the incremented value to RELOADREG to
8480 be used as an address. */
8482 if (! post)
8483 emit_insn (gen_move_insn (reloadreg, incloc));
8485 return add_insn;
8488 delete_insns_since (last);
8491 /* If couldn't do the increment directly, must increment in RELOADREG.
8492 The way we do this depends on whether this is pre- or post-increment.
8493 For pre-increment, copy INCLOC to the reload register, increment it
8494 there, then save back. */
8496 if (! post)
8498 if (in != reloadreg)
8499 emit_insn (gen_move_insn (reloadreg, real_in));
8500 emit_insn (gen_add2_insn (reloadreg, inc));
8501 store = emit_insn (gen_move_insn (incloc, reloadreg));
8503 else
8505 /* Postincrement.
8506 Because this might be a jump insn or a compare, and because RELOADREG
8507 may not be available after the insn in an input reload, we must do
8508 the incrementation before the insn being reloaded for.
8510 We have already copied IN to RELOADREG. Increment the copy in
8511 RELOADREG, save that back, then decrement RELOADREG so it has
8512 the original value. */
8514 emit_insn (gen_add2_insn (reloadreg, inc));
8515 store = emit_insn (gen_move_insn (incloc, reloadreg));
8516 if (GET_CODE (inc) == CONST_INT)
8517 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL (inc))));
8518 else
8519 emit_insn (gen_sub2_insn (reloadreg, inc));
8522 return store;
8525 #ifdef AUTO_INC_DEC
8526 static void
8527 add_auto_inc_notes (rtx insn, rtx x)
8529 enum rtx_code code = GET_CODE (x);
8530 const char *fmt;
8531 int i, j;
8533 if (code == MEM && auto_inc_p (XEXP (x, 0)))
8535 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
8536 return;
8539 /* Scan all the operand sub-expressions. */
8540 fmt = GET_RTX_FORMAT (code);
8541 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8543 if (fmt[i] == 'e')
8544 add_auto_inc_notes (insn, XEXP (x, i));
8545 else if (fmt[i] == 'E')
8546 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8547 add_auto_inc_notes (insn, XVECEXP (x, i, j));
8550 #endif
8552 /* Copy EH notes from an insn to its reloads. */
8553 static void
8554 copy_eh_notes (rtx insn, rtx x)
8556 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
8557 if (eh_note)
8559 for (; x != 0; x = NEXT_INSN (x))
8561 if (may_trap_p (PATTERN (x)))
8562 add_reg_note (x, REG_EH_REGION, XEXP (eh_note, 0));
8567 /* This is used by reload pass, that does emit some instructions after
8568 abnormal calls moving basic block end, but in fact it wants to emit
8569 them on the edge. Looks for abnormal call edges, find backward the
8570 proper call and fix the damage.
8572 Similar handle instructions throwing exceptions internally. */
8573 void
8574 fixup_abnormal_edges (void)
8576 bool inserted = false;
8577 basic_block bb;
8579 FOR_EACH_BB (bb)
8581 edge e;
8582 edge_iterator ei;
8584 /* Look for cases we are interested in - calls or instructions causing
8585 exceptions. */
8586 FOR_EACH_EDGE (e, ei, bb->succs)
8588 if (e->flags & EDGE_ABNORMAL_CALL)
8589 break;
8590 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
8591 == (EDGE_ABNORMAL | EDGE_EH))
8592 break;
8594 if (e && !CALL_P (BB_END (bb))
8595 && !can_throw_internal (BB_END (bb)))
8597 rtx insn;
8599 /* Get past the new insns generated. Allow notes, as the insns
8600 may be already deleted. */
8601 insn = BB_END (bb);
8602 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
8603 && !can_throw_internal (insn)
8604 && insn != BB_HEAD (bb))
8605 insn = PREV_INSN (insn);
8607 if (CALL_P (insn) || can_throw_internal (insn))
8609 rtx stop, next;
8611 stop = NEXT_INSN (BB_END (bb));
8612 BB_END (bb) = insn;
8613 insn = NEXT_INSN (insn);
8615 FOR_EACH_EDGE (e, ei, bb->succs)
8616 if (e->flags & EDGE_FALLTHRU)
8617 break;
8619 while (insn && insn != stop)
8621 next = NEXT_INSN (insn);
8622 if (INSN_P (insn))
8624 delete_insn (insn);
8626 /* Sometimes there's still the return value USE.
8627 If it's placed after a trapping call (i.e. that
8628 call is the last insn anyway), we have no fallthru
8629 edge. Simply delete this use and don't try to insert
8630 on the non-existent edge. */
8631 if (GET_CODE (PATTERN (insn)) != USE)
8633 /* We're not deleting it, we're moving it. */
8634 INSN_DELETED_P (insn) = 0;
8635 PREV_INSN (insn) = NULL_RTX;
8636 NEXT_INSN (insn) = NULL_RTX;
8638 insert_insn_on_edge (insn, e);
8639 inserted = true;
8642 else if (!BARRIER_P (insn))
8643 set_block_for_insn (insn, NULL);
8644 insn = next;
8648 /* It may be that we don't find any such trapping insn. In this
8649 case we discovered quite late that the insn that had been
8650 marked as can_throw_internal in fact couldn't trap at all.
8651 So we should in fact delete the EH edges out of the block. */
8652 else
8653 purge_dead_edges (bb);
8657 /* We've possibly turned single trapping insn into multiple ones. */
8658 if (flag_non_call_exceptions)
8660 sbitmap blocks;
8661 blocks = sbitmap_alloc (last_basic_block);
8662 sbitmap_ones (blocks);
8663 find_many_sub_basic_blocks (blocks);
8664 sbitmap_free (blocks);
8667 if (inserted)
8668 commit_edge_insertions ();
8670 #ifdef ENABLE_CHECKING
8671 /* Verify that we didn't turn one trapping insn into many, and that
8672 we found and corrected all of the problems wrt fixups on the
8673 fallthru edge. */
8674 verify_flow_info ();
8675 #endif