2008-07-06 Kai Tietz <kai.tietz@onevision.com>
[official-gcc.git] / gcc / function.c
blobd8234da38771098f5e4d8963832234d56d84ebef
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "tree-gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
69 /* So we can assign to cfun in this file. */
70 #undef cfun
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
74 #endif
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80 give the same symbol without quotes for an alternative entry point. You
81 must define both, or neither. */
82 #ifndef NAME__MAIN
83 #define NAME__MAIN "__main"
84 #endif
86 /* Round a value to the lowest integer less than it that is a multiple of
87 the required alignment. Avoid using division in case the value is
88 negative. Assume the alignment is a power of two. */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
91 /* Similar, but round to the next highest integer that meets the
92 alignment. */
93 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
95 /* Nonzero if function being compiled doesn't contain any calls
96 (ignoring the prologue and epilogue). This is set prior to
97 local register allocation and is valid for the remaining
98 compiler passes. */
99 int current_function_is_leaf;
101 /* Nonzero if function being compiled doesn't modify the stack pointer
102 (ignoring the prologue and epilogue). This is only valid after
103 pass_stack_ptr_mod has run. */
104 int current_function_sp_is_unchanging;
106 /* Nonzero if the function being compiled is a leaf function which only
107 uses leaf registers. This is valid after reload (specifically after
108 sched2) and is useful only if the port defines LEAF_REGISTERS. */
109 int current_function_uses_only_leaf_regs;
111 /* Nonzero once virtual register instantiation has been done.
112 assign_stack_local uses frame_pointer_rtx when this is nonzero.
113 calls.c:emit_library_call_value_1 uses it to set up
114 post-instantiation libcalls. */
115 int virtuals_instantiated;
117 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
118 static GTY(()) int funcdef_no;
120 /* These variables hold pointers to functions to create and destroy
121 target specific, per-function data structures. */
122 struct machine_function * (*init_machine_status) (void);
124 /* The currently compiled function. */
125 struct function *cfun = 0;
127 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
128 static VEC(int,heap) *prologue;
129 static VEC(int,heap) *epilogue;
131 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
132 in this function. */
133 static VEC(int,heap) *sibcall_epilogue;
135 /* In order to evaluate some expressions, such as function calls returning
136 structures in memory, we need to temporarily allocate stack locations.
137 We record each allocated temporary in the following structure.
139 Associated with each temporary slot is a nesting level. When we pop up
140 one level, all temporaries associated with the previous level are freed.
141 Normally, all temporaries are freed after the execution of the statement
142 in which they were created. However, if we are inside a ({...}) grouping,
143 the result may be in a temporary and hence must be preserved. If the
144 result could be in a temporary, we preserve it if we can determine which
145 one it is in. If we cannot determine which temporary may contain the
146 result, all temporaries are preserved. A temporary is preserved by
147 pretending it was allocated at the previous nesting level.
149 Automatic variables are also assigned temporary slots, at the nesting
150 level where they are defined. They are marked a "kept" so that
151 free_temp_slots will not free them. */
153 struct temp_slot GTY(())
155 /* Points to next temporary slot. */
156 struct temp_slot *next;
157 /* Points to previous temporary slot. */
158 struct temp_slot *prev;
160 /* The rtx to used to reference the slot. */
161 rtx slot;
162 /* The rtx used to represent the address if not the address of the
163 slot above. May be an EXPR_LIST if multiple addresses exist. */
164 rtx address;
165 /* The alignment (in bits) of the slot. */
166 unsigned int align;
167 /* The size, in units, of the slot. */
168 HOST_WIDE_INT size;
169 /* The type of the object in the slot, or zero if it doesn't correspond
170 to a type. We use this to determine whether a slot can be reused.
171 It can be reused if objects of the type of the new slot will always
172 conflict with objects of the type of the old slot. */
173 tree type;
174 /* Nonzero if this temporary is currently in use. */
175 char in_use;
176 /* Nonzero if this temporary has its address taken. */
177 char addr_taken;
178 /* Nesting level at which this slot is being used. */
179 int level;
180 /* Nonzero if this should survive a call to free_temp_slots. */
181 int keep;
182 /* The offset of the slot from the frame_pointer, including extra space
183 for alignment. This info is for combine_temp_slots. */
184 HOST_WIDE_INT base_offset;
185 /* The size of the slot, including extra space for alignment. This
186 info is for combine_temp_slots. */
187 HOST_WIDE_INT full_size;
190 /* Forward declarations. */
192 static struct temp_slot *find_temp_slot_from_address (rtx);
193 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
194 static void pad_below (struct args_size *, enum machine_mode, tree);
195 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
196 static int all_blocks (tree, tree *);
197 static tree *get_block_vector (tree, int *);
198 extern tree debug_find_var_in_block_tree (tree, tree);
199 /* We always define `record_insns' even if it's not used so that we
200 can always export `prologue_epilogue_contains'. */
201 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
202 static int contains (const_rtx, VEC(int,heap) **);
203 #ifdef HAVE_return
204 static void emit_return_into_block (basic_block);
205 #endif
206 static void prepare_function_start (void);
207 static void do_clobber_return_reg (rtx, void *);
208 static void do_use_return_reg (rtx, void *);
209 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
211 /* Pointer to chain of `struct function' for containing functions. */
212 struct function *outer_function_chain;
214 /* Given a function decl for a containing function,
215 return the `struct function' for it. */
217 struct function *
218 find_function_data (tree decl)
220 struct function *p;
222 for (p = outer_function_chain; p; p = p->outer)
223 if (p->decl == decl)
224 return p;
226 gcc_unreachable ();
229 /* Save the current context for compilation of a nested function.
230 This is called from language-specific code. */
232 void
233 push_function_context (void)
235 if (cfun == 0)
236 allocate_struct_function (NULL, false);
238 cfun->outer = outer_function_chain;
239 outer_function_chain = cfun;
240 set_cfun (NULL);
243 /* Restore the last saved context, at the end of a nested function.
244 This function is called from language-specific code. */
246 void
247 pop_function_context (void)
249 struct function *p = outer_function_chain;
251 set_cfun (p);
252 outer_function_chain = p->outer;
253 current_function_decl = p->decl;
255 /* Reset variables that have known state during rtx generation. */
256 virtuals_instantiated = 0;
257 generating_concat_p = 1;
260 /* Clear out all parts of the state in F that can safely be discarded
261 after the function has been parsed, but not compiled, to let
262 garbage collection reclaim the memory. */
264 void
265 free_after_parsing (struct function *f)
267 f->language = 0;
270 /* Clear out all parts of the state in F that can safely be discarded
271 after the function has been compiled, to let garbage collection
272 reclaim the memory. */
274 void
275 free_after_compilation (struct function *f)
277 VEC_free (int, heap, prologue);
278 VEC_free (int, heap, epilogue);
279 VEC_free (int, heap, sibcall_epilogue);
280 if (crtl->emit.regno_pointer_align)
281 free (crtl->emit.regno_pointer_align);
283 memset (crtl, 0, sizeof (struct rtl_data));
284 f->eh = NULL;
285 f->machine = NULL;
286 f->cfg = NULL;
288 regno_reg_rtx = NULL;
291 /* Return size needed for stack frame based on slots so far allocated.
292 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
293 the caller may have to do that. */
295 HOST_WIDE_INT
296 get_frame_size (void)
298 if (FRAME_GROWS_DOWNWARD)
299 return -frame_offset;
300 else
301 return frame_offset;
304 /* Issue an error message and return TRUE if frame OFFSET overflows in
305 the signed target pointer arithmetics for function FUNC. Otherwise
306 return FALSE. */
308 bool
309 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
311 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
313 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
314 /* Leave room for the fixed part of the frame. */
315 - 64 * UNITS_PER_WORD)
317 error ("%Jtotal size of local objects too large", func);
318 return TRUE;
321 return FALSE;
324 /* Return stack slot alignment in bits for TYPE and MODE. */
326 static unsigned int
327 get_stack_local_alignment (tree type, enum machine_mode mode)
329 unsigned int alignment;
331 if (mode == BLKmode)
332 alignment = BIGGEST_ALIGNMENT;
333 else
334 alignment = GET_MODE_ALIGNMENT (mode);
336 /* Allow the frond-end to (possibly) increase the alignment of this
337 stack slot. */
338 if (! type)
339 type = lang_hooks.types.type_for_mode (mode, 0);
341 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
344 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
345 with machine mode MODE.
347 ALIGN controls the amount of alignment for the address of the slot:
348 0 means according to MODE,
349 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
350 -2 means use BITS_PER_UNIT,
351 positive specifies alignment boundary in bits.
353 We do not round to stack_boundary here. */
356 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
358 rtx x, addr;
359 int bigend_correction = 0;
360 unsigned int alignment, alignment_in_bits;
361 int frame_off, frame_alignment, frame_phase;
363 if (align == 0)
365 alignment = get_stack_local_alignment (NULL, mode);
366 alignment /= BITS_PER_UNIT;
368 else if (align == -1)
370 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
371 size = CEIL_ROUND (size, alignment);
373 else if (align == -2)
374 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
375 else
376 alignment = align / BITS_PER_UNIT;
378 if (FRAME_GROWS_DOWNWARD)
379 frame_offset -= size;
381 /* Ignore alignment we can't do with expected alignment of the boundary. */
382 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
383 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
385 alignment_in_bits = alignment * BITS_PER_UNIT;
387 if (crtl->stack_alignment_needed < alignment_in_bits)
388 crtl->stack_alignment_needed = alignment_in_bits;
390 /* Calculate how many bytes the start of local variables is off from
391 stack alignment. */
392 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
393 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
394 frame_phase = frame_off ? frame_alignment - frame_off : 0;
396 /* Round the frame offset to the specified alignment. The default is
397 to always honor requests to align the stack but a port may choose to
398 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
399 if (STACK_ALIGNMENT_NEEDED
400 || mode != BLKmode
401 || size != 0)
403 /* We must be careful here, since FRAME_OFFSET might be negative and
404 division with a negative dividend isn't as well defined as we might
405 like. So we instead assume that ALIGNMENT is a power of two and
406 use logical operations which are unambiguous. */
407 if (FRAME_GROWS_DOWNWARD)
408 frame_offset
409 = (FLOOR_ROUND (frame_offset - frame_phase,
410 (unsigned HOST_WIDE_INT) alignment)
411 + frame_phase);
412 else
413 frame_offset
414 = (CEIL_ROUND (frame_offset - frame_phase,
415 (unsigned HOST_WIDE_INT) alignment)
416 + frame_phase);
419 /* On a big-endian machine, if we are allocating more space than we will use,
420 use the least significant bytes of those that are allocated. */
421 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
422 bigend_correction = size - GET_MODE_SIZE (mode);
424 /* If we have already instantiated virtual registers, return the actual
425 address relative to the frame pointer. */
426 if (virtuals_instantiated)
427 addr = plus_constant (frame_pointer_rtx,
428 trunc_int_for_mode
429 (frame_offset + bigend_correction
430 + STARTING_FRAME_OFFSET, Pmode));
431 else
432 addr = plus_constant (virtual_stack_vars_rtx,
433 trunc_int_for_mode
434 (frame_offset + bigend_correction,
435 Pmode));
437 if (!FRAME_GROWS_DOWNWARD)
438 frame_offset += size;
440 x = gen_rtx_MEM (mode, addr);
441 set_mem_align (x, alignment_in_bits);
442 MEM_NOTRAP_P (x) = 1;
444 stack_slot_list
445 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
447 if (frame_offset_overflow (frame_offset, current_function_decl))
448 frame_offset = 0;
450 return x;
453 /* Removes temporary slot TEMP from LIST. */
455 static void
456 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
458 if (temp->next)
459 temp->next->prev = temp->prev;
460 if (temp->prev)
461 temp->prev->next = temp->next;
462 else
463 *list = temp->next;
465 temp->prev = temp->next = NULL;
468 /* Inserts temporary slot TEMP to LIST. */
470 static void
471 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
473 temp->next = *list;
474 if (*list)
475 (*list)->prev = temp;
476 temp->prev = NULL;
477 *list = temp;
480 /* Returns the list of used temp slots at LEVEL. */
482 static struct temp_slot **
483 temp_slots_at_level (int level)
485 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
486 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
488 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
491 /* Returns the maximal temporary slot level. */
493 static int
494 max_slot_level (void)
496 if (!used_temp_slots)
497 return -1;
499 return VEC_length (temp_slot_p, used_temp_slots) - 1;
502 /* Moves temporary slot TEMP to LEVEL. */
504 static void
505 move_slot_to_level (struct temp_slot *temp, int level)
507 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
508 insert_slot_to_list (temp, temp_slots_at_level (level));
509 temp->level = level;
512 /* Make temporary slot TEMP available. */
514 static void
515 make_slot_available (struct temp_slot *temp)
517 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
518 insert_slot_to_list (temp, &avail_temp_slots);
519 temp->in_use = 0;
520 temp->level = -1;
523 /* Allocate a temporary stack slot and record it for possible later
524 reuse.
526 MODE is the machine mode to be given to the returned rtx.
528 SIZE is the size in units of the space required. We do no rounding here
529 since assign_stack_local will do any required rounding.
531 KEEP is 1 if this slot is to be retained after a call to
532 free_temp_slots. Automatic variables for a block are allocated
533 with this flag. KEEP values of 2 or 3 were needed respectively
534 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
535 or for SAVE_EXPRs, but they are now unused.
537 TYPE is the type that will be used for the stack slot. */
540 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
541 int keep, tree type)
543 unsigned int align;
544 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
545 rtx slot;
547 /* If SIZE is -1 it means that somebody tried to allocate a temporary
548 of a variable size. */
549 gcc_assert (size != -1);
551 /* These are now unused. */
552 gcc_assert (keep <= 1);
554 align = get_stack_local_alignment (type, mode);
556 /* Try to find an available, already-allocated temporary of the proper
557 mode which meets the size and alignment requirements. Choose the
558 smallest one with the closest alignment.
560 If assign_stack_temp is called outside of the tree->rtl expansion,
561 we cannot reuse the stack slots (that may still refer to
562 VIRTUAL_STACK_VARS_REGNUM). */
563 if (!virtuals_instantiated)
565 for (p = avail_temp_slots; p; p = p->next)
567 if (p->align >= align && p->size >= size
568 && GET_MODE (p->slot) == mode
569 && objects_must_conflict_p (p->type, type)
570 && (best_p == 0 || best_p->size > p->size
571 || (best_p->size == p->size && best_p->align > p->align)))
573 if (p->align == align && p->size == size)
575 selected = p;
576 cut_slot_from_list (selected, &avail_temp_slots);
577 best_p = 0;
578 break;
580 best_p = p;
585 /* Make our best, if any, the one to use. */
586 if (best_p)
588 selected = best_p;
589 cut_slot_from_list (selected, &avail_temp_slots);
591 /* If there are enough aligned bytes left over, make them into a new
592 temp_slot so that the extra bytes don't get wasted. Do this only
593 for BLKmode slots, so that we can be sure of the alignment. */
594 if (GET_MODE (best_p->slot) == BLKmode)
596 int alignment = best_p->align / BITS_PER_UNIT;
597 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
599 if (best_p->size - rounded_size >= alignment)
601 p = GGC_NEW (struct temp_slot);
602 p->in_use = p->addr_taken = 0;
603 p->size = best_p->size - rounded_size;
604 p->base_offset = best_p->base_offset + rounded_size;
605 p->full_size = best_p->full_size - rounded_size;
606 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
607 p->align = best_p->align;
608 p->address = 0;
609 p->type = best_p->type;
610 insert_slot_to_list (p, &avail_temp_slots);
612 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
613 stack_slot_list);
615 best_p->size = rounded_size;
616 best_p->full_size = rounded_size;
621 /* If we still didn't find one, make a new temporary. */
622 if (selected == 0)
624 HOST_WIDE_INT frame_offset_old = frame_offset;
626 p = GGC_NEW (struct temp_slot);
628 /* We are passing an explicit alignment request to assign_stack_local.
629 One side effect of that is assign_stack_local will not round SIZE
630 to ensure the frame offset remains suitably aligned.
632 So for requests which depended on the rounding of SIZE, we go ahead
633 and round it now. We also make sure ALIGNMENT is at least
634 BIGGEST_ALIGNMENT. */
635 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
636 p->slot = assign_stack_local (mode,
637 (mode == BLKmode
638 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
639 : size),
640 align);
642 p->align = align;
644 /* The following slot size computation is necessary because we don't
645 know the actual size of the temporary slot until assign_stack_local
646 has performed all the frame alignment and size rounding for the
647 requested temporary. Note that extra space added for alignment
648 can be either above or below this stack slot depending on which
649 way the frame grows. We include the extra space if and only if it
650 is above this slot. */
651 if (FRAME_GROWS_DOWNWARD)
652 p->size = frame_offset_old - frame_offset;
653 else
654 p->size = size;
656 /* Now define the fields used by combine_temp_slots. */
657 if (FRAME_GROWS_DOWNWARD)
659 p->base_offset = frame_offset;
660 p->full_size = frame_offset_old - frame_offset;
662 else
664 p->base_offset = frame_offset_old;
665 p->full_size = frame_offset - frame_offset_old;
667 p->address = 0;
669 selected = p;
672 p = selected;
673 p->in_use = 1;
674 p->addr_taken = 0;
675 p->type = type;
676 p->level = temp_slot_level;
677 p->keep = keep;
679 pp = temp_slots_at_level (p->level);
680 insert_slot_to_list (p, pp);
682 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
683 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
684 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
686 /* If we know the alias set for the memory that will be used, use
687 it. If there's no TYPE, then we don't know anything about the
688 alias set for the memory. */
689 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
690 set_mem_align (slot, align);
692 /* If a type is specified, set the relevant flags. */
693 if (type != 0)
695 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
696 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
697 || TREE_CODE (type) == COMPLEX_TYPE));
699 MEM_NOTRAP_P (slot) = 1;
701 return slot;
704 /* Allocate a temporary stack slot and record it for possible later
705 reuse. First three arguments are same as in preceding function. */
708 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
710 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
713 /* Assign a temporary.
714 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
715 and so that should be used in error messages. In either case, we
716 allocate of the given type.
717 KEEP is as for assign_stack_temp.
718 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
719 it is 0 if a register is OK.
720 DONT_PROMOTE is 1 if we should not promote values in register
721 to wider modes. */
724 assign_temp (tree type_or_decl, int keep, int memory_required,
725 int dont_promote ATTRIBUTE_UNUSED)
727 tree type, decl;
728 enum machine_mode mode;
729 #ifdef PROMOTE_MODE
730 int unsignedp;
731 #endif
733 if (DECL_P (type_or_decl))
734 decl = type_or_decl, type = TREE_TYPE (decl);
735 else
736 decl = NULL, type = type_or_decl;
738 mode = TYPE_MODE (type);
739 #ifdef PROMOTE_MODE
740 unsignedp = TYPE_UNSIGNED (type);
741 #endif
743 if (mode == BLKmode || memory_required)
745 HOST_WIDE_INT size = int_size_in_bytes (type);
746 rtx tmp;
748 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
749 problems with allocating the stack space. */
750 if (size == 0)
751 size = 1;
753 /* Unfortunately, we don't yet know how to allocate variable-sized
754 temporaries. However, sometimes we can find a fixed upper limit on
755 the size, so try that instead. */
756 else if (size == -1)
757 size = max_int_size_in_bytes (type);
759 /* The size of the temporary may be too large to fit into an integer. */
760 /* ??? Not sure this should happen except for user silliness, so limit
761 this to things that aren't compiler-generated temporaries. The
762 rest of the time we'll die in assign_stack_temp_for_type. */
763 if (decl && size == -1
764 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
766 error ("size of variable %q+D is too large", decl);
767 size = 1;
770 tmp = assign_stack_temp_for_type (mode, size, keep, type);
771 return tmp;
774 #ifdef PROMOTE_MODE
775 if (! dont_promote)
776 mode = promote_mode (type, mode, &unsignedp, 0);
777 #endif
779 return gen_reg_rtx (mode);
782 /* Combine temporary stack slots which are adjacent on the stack.
784 This allows for better use of already allocated stack space. This is only
785 done for BLKmode slots because we can be sure that we won't have alignment
786 problems in this case. */
788 static void
789 combine_temp_slots (void)
791 struct temp_slot *p, *q, *next, *next_q;
792 int num_slots;
794 /* We can't combine slots, because the information about which slot
795 is in which alias set will be lost. */
796 if (flag_strict_aliasing)
797 return;
799 /* If there are a lot of temp slots, don't do anything unless
800 high levels of optimization. */
801 if (! flag_expensive_optimizations)
802 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
803 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
804 return;
806 for (p = avail_temp_slots; p; p = next)
808 int delete_p = 0;
810 next = p->next;
812 if (GET_MODE (p->slot) != BLKmode)
813 continue;
815 for (q = p->next; q; q = next_q)
817 int delete_q = 0;
819 next_q = q->next;
821 if (GET_MODE (q->slot) != BLKmode)
822 continue;
824 if (p->base_offset + p->full_size == q->base_offset)
826 /* Q comes after P; combine Q into P. */
827 p->size += q->size;
828 p->full_size += q->full_size;
829 delete_q = 1;
831 else if (q->base_offset + q->full_size == p->base_offset)
833 /* P comes after Q; combine P into Q. */
834 q->size += p->size;
835 q->full_size += p->full_size;
836 delete_p = 1;
837 break;
839 if (delete_q)
840 cut_slot_from_list (q, &avail_temp_slots);
843 /* Either delete P or advance past it. */
844 if (delete_p)
845 cut_slot_from_list (p, &avail_temp_slots);
849 /* Find the temp slot corresponding to the object at address X. */
851 static struct temp_slot *
852 find_temp_slot_from_address (rtx x)
854 struct temp_slot *p;
855 rtx next;
856 int i;
858 for (i = max_slot_level (); i >= 0; i--)
859 for (p = *temp_slots_at_level (i); p; p = p->next)
861 if (XEXP (p->slot, 0) == x
862 || p->address == x
863 || (GET_CODE (x) == PLUS
864 && XEXP (x, 0) == virtual_stack_vars_rtx
865 && GET_CODE (XEXP (x, 1)) == CONST_INT
866 && INTVAL (XEXP (x, 1)) >= p->base_offset
867 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
868 return p;
870 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
871 for (next = p->address; next; next = XEXP (next, 1))
872 if (XEXP (next, 0) == x)
873 return p;
876 /* If we have a sum involving a register, see if it points to a temp
877 slot. */
878 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
879 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
880 return p;
881 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
882 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
883 return p;
885 return 0;
888 /* Indicate that NEW is an alternate way of referring to the temp slot
889 that previously was known by OLD. */
891 void
892 update_temp_slot_address (rtx old, rtx new)
894 struct temp_slot *p;
896 if (rtx_equal_p (old, new))
897 return;
899 p = find_temp_slot_from_address (old);
901 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
902 is a register, see if one operand of the PLUS is a temporary
903 location. If so, NEW points into it. Otherwise, if both OLD and
904 NEW are a PLUS and if there is a register in common between them.
905 If so, try a recursive call on those values. */
906 if (p == 0)
908 if (GET_CODE (old) != PLUS)
909 return;
911 if (REG_P (new))
913 update_temp_slot_address (XEXP (old, 0), new);
914 update_temp_slot_address (XEXP (old, 1), new);
915 return;
917 else if (GET_CODE (new) != PLUS)
918 return;
920 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
921 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
922 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
923 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
924 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
925 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
926 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
927 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
929 return;
932 /* Otherwise add an alias for the temp's address. */
933 else if (p->address == 0)
934 p->address = new;
935 else
937 if (GET_CODE (p->address) != EXPR_LIST)
938 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
940 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
944 /* If X could be a reference to a temporary slot, mark the fact that its
945 address was taken. */
947 void
948 mark_temp_addr_taken (rtx x)
950 struct temp_slot *p;
952 if (x == 0)
953 return;
955 /* If X is not in memory or is at a constant address, it cannot be in
956 a temporary slot. */
957 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
958 return;
960 p = find_temp_slot_from_address (XEXP (x, 0));
961 if (p != 0)
962 p->addr_taken = 1;
965 /* If X could be a reference to a temporary slot, mark that slot as
966 belonging to the to one level higher than the current level. If X
967 matched one of our slots, just mark that one. Otherwise, we can't
968 easily predict which it is, so upgrade all of them. Kept slots
969 need not be touched.
971 This is called when an ({...}) construct occurs and a statement
972 returns a value in memory. */
974 void
975 preserve_temp_slots (rtx x)
977 struct temp_slot *p = 0, *next;
979 /* If there is no result, we still might have some objects whose address
980 were taken, so we need to make sure they stay around. */
981 if (x == 0)
983 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
985 next = p->next;
987 if (p->addr_taken)
988 move_slot_to_level (p, temp_slot_level - 1);
991 return;
994 /* If X is a register that is being used as a pointer, see if we have
995 a temporary slot we know it points to. To be consistent with
996 the code below, we really should preserve all non-kept slots
997 if we can't find a match, but that seems to be much too costly. */
998 if (REG_P (x) && REG_POINTER (x))
999 p = find_temp_slot_from_address (x);
1001 /* If X is not in memory or is at a constant address, it cannot be in
1002 a temporary slot, but it can contain something whose address was
1003 taken. */
1004 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1006 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1008 next = p->next;
1010 if (p->addr_taken)
1011 move_slot_to_level (p, temp_slot_level - 1);
1014 return;
1017 /* First see if we can find a match. */
1018 if (p == 0)
1019 p = find_temp_slot_from_address (XEXP (x, 0));
1021 if (p != 0)
1023 /* Move everything at our level whose address was taken to our new
1024 level in case we used its address. */
1025 struct temp_slot *q;
1027 if (p->level == temp_slot_level)
1029 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1031 next = q->next;
1033 if (p != q && q->addr_taken)
1034 move_slot_to_level (q, temp_slot_level - 1);
1037 move_slot_to_level (p, temp_slot_level - 1);
1038 p->addr_taken = 0;
1040 return;
1043 /* Otherwise, preserve all non-kept slots at this level. */
1044 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1046 next = p->next;
1048 if (!p->keep)
1049 move_slot_to_level (p, temp_slot_level - 1);
1053 /* Free all temporaries used so far. This is normally called at the
1054 end of generating code for a statement. */
1056 void
1057 free_temp_slots (void)
1059 struct temp_slot *p, *next;
1061 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1063 next = p->next;
1065 if (!p->keep)
1066 make_slot_available (p);
1069 combine_temp_slots ();
1072 /* Push deeper into the nesting level for stack temporaries. */
1074 void
1075 push_temp_slots (void)
1077 temp_slot_level++;
1080 /* Pop a temporary nesting level. All slots in use in the current level
1081 are freed. */
1083 void
1084 pop_temp_slots (void)
1086 struct temp_slot *p, *next;
1088 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1090 next = p->next;
1091 make_slot_available (p);
1094 combine_temp_slots ();
1096 temp_slot_level--;
1099 /* Initialize temporary slots. */
1101 void
1102 init_temp_slots (void)
1104 /* We have not allocated any temporaries yet. */
1105 avail_temp_slots = 0;
1106 used_temp_slots = 0;
1107 temp_slot_level = 0;
1110 /* These routines are responsible for converting virtual register references
1111 to the actual hard register references once RTL generation is complete.
1113 The following four variables are used for communication between the
1114 routines. They contain the offsets of the virtual registers from their
1115 respective hard registers. */
1117 static int in_arg_offset;
1118 static int var_offset;
1119 static int dynamic_offset;
1120 static int out_arg_offset;
1121 static int cfa_offset;
1123 /* In most machines, the stack pointer register is equivalent to the bottom
1124 of the stack. */
1126 #ifndef STACK_POINTER_OFFSET
1127 #define STACK_POINTER_OFFSET 0
1128 #endif
1130 /* If not defined, pick an appropriate default for the offset of dynamically
1131 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1132 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1134 #ifndef STACK_DYNAMIC_OFFSET
1136 /* The bottom of the stack points to the actual arguments. If
1137 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1138 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1139 stack space for register parameters is not pushed by the caller, but
1140 rather part of the fixed stack areas and hence not included in
1141 `crtl->outgoing_args_size'. Nevertheless, we must allow
1142 for it when allocating stack dynamic objects. */
1144 #if defined(REG_PARM_STACK_SPACE)
1145 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1146 ((ACCUMULATE_OUTGOING_ARGS \
1147 ? (crtl->outgoing_args_size \
1148 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1149 : REG_PARM_STACK_SPACE (FNDECL))) \
1150 : 0) + (STACK_POINTER_OFFSET))
1151 #else
1152 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1153 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1154 + (STACK_POINTER_OFFSET))
1155 #endif
1156 #endif
1159 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1160 is a virtual register, return the equivalent hard register and set the
1161 offset indirectly through the pointer. Otherwise, return 0. */
1163 static rtx
1164 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1166 rtx new;
1167 HOST_WIDE_INT offset;
1169 if (x == virtual_incoming_args_rtx)
1170 new = arg_pointer_rtx, offset = in_arg_offset;
1171 else if (x == virtual_stack_vars_rtx)
1172 new = frame_pointer_rtx, offset = var_offset;
1173 else if (x == virtual_stack_dynamic_rtx)
1174 new = stack_pointer_rtx, offset = dynamic_offset;
1175 else if (x == virtual_outgoing_args_rtx)
1176 new = stack_pointer_rtx, offset = out_arg_offset;
1177 else if (x == virtual_cfa_rtx)
1179 #ifdef FRAME_POINTER_CFA_OFFSET
1180 new = frame_pointer_rtx;
1181 #else
1182 new = arg_pointer_rtx;
1183 #endif
1184 offset = cfa_offset;
1186 else
1187 return NULL_RTX;
1189 *poffset = offset;
1190 return new;
1193 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1194 Instantiate any virtual registers present inside of *LOC. The expression
1195 is simplified, as much as possible, but is not to be considered "valid"
1196 in any sense implied by the target. If any change is made, set CHANGED
1197 to true. */
1199 static int
1200 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1202 HOST_WIDE_INT offset;
1203 bool *changed = (bool *) data;
1204 rtx x, new;
1206 x = *loc;
1207 if (x == 0)
1208 return 0;
1210 switch (GET_CODE (x))
1212 case REG:
1213 new = instantiate_new_reg (x, &offset);
1214 if (new)
1216 *loc = plus_constant (new, offset);
1217 if (changed)
1218 *changed = true;
1220 return -1;
1222 case PLUS:
1223 new = instantiate_new_reg (XEXP (x, 0), &offset);
1224 if (new)
1226 new = plus_constant (new, offset);
1227 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1228 if (changed)
1229 *changed = true;
1230 return -1;
1233 /* FIXME -- from old code */
1234 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1235 we can commute the PLUS and SUBREG because pointers into the
1236 frame are well-behaved. */
1237 break;
1239 default:
1240 break;
1243 return 0;
1246 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1247 matches the predicate for insn CODE operand OPERAND. */
1249 static int
1250 safe_insn_predicate (int code, int operand, rtx x)
1252 const struct insn_operand_data *op_data;
1254 if (code < 0)
1255 return true;
1257 op_data = &insn_data[code].operand[operand];
1258 if (op_data->predicate == NULL)
1259 return true;
1261 return op_data->predicate (x, op_data->mode);
1264 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1265 registers present inside of insn. The result will be a valid insn. */
1267 static void
1268 instantiate_virtual_regs_in_insn (rtx insn)
1270 HOST_WIDE_INT offset;
1271 int insn_code, i;
1272 bool any_change = false;
1273 rtx set, new, x, seq;
1275 /* There are some special cases to be handled first. */
1276 set = single_set (insn);
1277 if (set)
1279 /* We're allowed to assign to a virtual register. This is interpreted
1280 to mean that the underlying register gets assigned the inverse
1281 transformation. This is used, for example, in the handling of
1282 non-local gotos. */
1283 new = instantiate_new_reg (SET_DEST (set), &offset);
1284 if (new)
1286 start_sequence ();
1288 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1289 x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1290 GEN_INT (-offset));
1291 x = force_operand (x, new);
1292 if (x != new)
1293 emit_move_insn (new, x);
1295 seq = get_insns ();
1296 end_sequence ();
1298 emit_insn_before (seq, insn);
1299 delete_insn (insn);
1300 return;
1303 /* Handle a straight copy from a virtual register by generating a
1304 new add insn. The difference between this and falling through
1305 to the generic case is avoiding a new pseudo and eliminating a
1306 move insn in the initial rtl stream. */
1307 new = instantiate_new_reg (SET_SRC (set), &offset);
1308 if (new && offset != 0
1309 && REG_P (SET_DEST (set))
1310 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1312 start_sequence ();
1314 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1315 new, GEN_INT (offset), SET_DEST (set),
1316 1, OPTAB_LIB_WIDEN);
1317 if (x != SET_DEST (set))
1318 emit_move_insn (SET_DEST (set), x);
1320 seq = get_insns ();
1321 end_sequence ();
1323 emit_insn_before (seq, insn);
1324 delete_insn (insn);
1325 return;
1328 extract_insn (insn);
1329 insn_code = INSN_CODE (insn);
1331 /* Handle a plus involving a virtual register by determining if the
1332 operands remain valid if they're modified in place. */
1333 if (GET_CODE (SET_SRC (set)) == PLUS
1334 && recog_data.n_operands >= 3
1335 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1336 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1337 && GET_CODE (recog_data.operand[2]) == CONST_INT
1338 && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1340 offset += INTVAL (recog_data.operand[2]);
1342 /* If the sum is zero, then replace with a plain move. */
1343 if (offset == 0
1344 && REG_P (SET_DEST (set))
1345 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1347 start_sequence ();
1348 emit_move_insn (SET_DEST (set), new);
1349 seq = get_insns ();
1350 end_sequence ();
1352 emit_insn_before (seq, insn);
1353 delete_insn (insn);
1354 return;
1357 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1359 /* Using validate_change and apply_change_group here leaves
1360 recog_data in an invalid state. Since we know exactly what
1361 we want to check, do those two by hand. */
1362 if (safe_insn_predicate (insn_code, 1, new)
1363 && safe_insn_predicate (insn_code, 2, x))
1365 *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1366 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1367 any_change = true;
1369 /* Fall through into the regular operand fixup loop in
1370 order to take care of operands other than 1 and 2. */
1374 else
1376 extract_insn (insn);
1377 insn_code = INSN_CODE (insn);
1380 /* In the general case, we expect virtual registers to appear only in
1381 operands, and then only as either bare registers or inside memories. */
1382 for (i = 0; i < recog_data.n_operands; ++i)
1384 x = recog_data.operand[i];
1385 switch (GET_CODE (x))
1387 case MEM:
1389 rtx addr = XEXP (x, 0);
1390 bool changed = false;
1392 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1393 if (!changed)
1394 continue;
1396 start_sequence ();
1397 x = replace_equiv_address (x, addr);
1398 /* It may happen that the address with the virtual reg
1399 was valid (e.g. based on the virtual stack reg, which might
1400 be acceptable to the predicates with all offsets), whereas
1401 the address now isn't anymore, for instance when the address
1402 is still offsetted, but the base reg isn't virtual-stack-reg
1403 anymore. Below we would do a force_reg on the whole operand,
1404 but this insn might actually only accept memory. Hence,
1405 before doing that last resort, try to reload the address into
1406 a register, so this operand stays a MEM. */
1407 if (!safe_insn_predicate (insn_code, i, x))
1409 addr = force_reg (GET_MODE (addr), addr);
1410 x = replace_equiv_address (x, addr);
1412 seq = get_insns ();
1413 end_sequence ();
1414 if (seq)
1415 emit_insn_before (seq, insn);
1417 break;
1419 case REG:
1420 new = instantiate_new_reg (x, &offset);
1421 if (new == NULL)
1422 continue;
1423 if (offset == 0)
1424 x = new;
1425 else
1427 start_sequence ();
1429 /* Careful, special mode predicates may have stuff in
1430 insn_data[insn_code].operand[i].mode that isn't useful
1431 to us for computing a new value. */
1432 /* ??? Recognize address_operand and/or "p" constraints
1433 to see if (plus new offset) is a valid before we put
1434 this through expand_simple_binop. */
1435 x = expand_simple_binop (GET_MODE (x), PLUS, new,
1436 GEN_INT (offset), NULL_RTX,
1437 1, OPTAB_LIB_WIDEN);
1438 seq = get_insns ();
1439 end_sequence ();
1440 emit_insn_before (seq, insn);
1442 break;
1444 case SUBREG:
1445 new = instantiate_new_reg (SUBREG_REG (x), &offset);
1446 if (new == NULL)
1447 continue;
1448 if (offset != 0)
1450 start_sequence ();
1451 new = expand_simple_binop (GET_MODE (new), PLUS, new,
1452 GEN_INT (offset), NULL_RTX,
1453 1, OPTAB_LIB_WIDEN);
1454 seq = get_insns ();
1455 end_sequence ();
1456 emit_insn_before (seq, insn);
1458 x = simplify_gen_subreg (recog_data.operand_mode[i], new,
1459 GET_MODE (new), SUBREG_BYTE (x));
1460 break;
1462 default:
1463 continue;
1466 /* At this point, X contains the new value for the operand.
1467 Validate the new value vs the insn predicate. Note that
1468 asm insns will have insn_code -1 here. */
1469 if (!safe_insn_predicate (insn_code, i, x))
1471 start_sequence ();
1472 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1473 seq = get_insns ();
1474 end_sequence ();
1475 if (seq)
1476 emit_insn_before (seq, insn);
1479 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1480 any_change = true;
1483 if (any_change)
1485 /* Propagate operand changes into the duplicates. */
1486 for (i = 0; i < recog_data.n_dups; ++i)
1487 *recog_data.dup_loc[i]
1488 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1490 /* Force re-recognition of the instruction for validation. */
1491 INSN_CODE (insn) = -1;
1494 if (asm_noperands (PATTERN (insn)) >= 0)
1496 if (!check_asm_operands (PATTERN (insn)))
1498 error_for_asm (insn, "impossible constraint in %<asm%>");
1499 delete_insn (insn);
1502 else
1504 if (recog_memoized (insn) < 0)
1505 fatal_insn_not_found (insn);
1509 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1510 do any instantiation required. */
1512 void
1513 instantiate_decl_rtl (rtx x)
1515 rtx addr;
1517 if (x == 0)
1518 return;
1520 /* If this is a CONCAT, recurse for the pieces. */
1521 if (GET_CODE (x) == CONCAT)
1523 instantiate_decl_rtl (XEXP (x, 0));
1524 instantiate_decl_rtl (XEXP (x, 1));
1525 return;
1528 /* If this is not a MEM, no need to do anything. Similarly if the
1529 address is a constant or a register that is not a virtual register. */
1530 if (!MEM_P (x))
1531 return;
1533 addr = XEXP (x, 0);
1534 if (CONSTANT_P (addr)
1535 || (REG_P (addr)
1536 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1537 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1538 return;
1540 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1543 /* Helper for instantiate_decls called via walk_tree: Process all decls
1544 in the given DECL_VALUE_EXPR. */
1546 static tree
1547 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1549 tree t = *tp;
1550 if (! EXPR_P (t) && ! GIMPLE_STMT_P (t))
1552 *walk_subtrees = 0;
1553 if (DECL_P (t) && DECL_RTL_SET_P (t))
1554 instantiate_decl_rtl (DECL_RTL (t));
1556 return NULL;
1559 /* Subroutine of instantiate_decls: Process all decls in the given
1560 BLOCK node and all its subblocks. */
1562 static void
1563 instantiate_decls_1 (tree let)
1565 tree t;
1567 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1569 if (DECL_RTL_SET_P (t))
1570 instantiate_decl_rtl (DECL_RTL (t));
1571 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1573 tree v = DECL_VALUE_EXPR (t);
1574 walk_tree (&v, instantiate_expr, NULL, NULL);
1578 /* Process all subblocks. */
1579 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1580 instantiate_decls_1 (t);
1583 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1584 all virtual registers in their DECL_RTL's. */
1586 static void
1587 instantiate_decls (tree fndecl)
1589 tree decl;
1591 /* Process all parameters of the function. */
1592 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1594 instantiate_decl_rtl (DECL_RTL (decl));
1595 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1596 if (DECL_HAS_VALUE_EXPR_P (decl))
1598 tree v = DECL_VALUE_EXPR (decl);
1599 walk_tree (&v, instantiate_expr, NULL, NULL);
1603 /* Now process all variables defined in the function or its subblocks. */
1604 instantiate_decls_1 (DECL_INITIAL (fndecl));
1607 /* Pass through the INSNS of function FNDECL and convert virtual register
1608 references to hard register references. */
1610 static unsigned int
1611 instantiate_virtual_regs (void)
1613 rtx insn;
1615 /* Compute the offsets to use for this function. */
1616 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1617 var_offset = STARTING_FRAME_OFFSET;
1618 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1619 out_arg_offset = STACK_POINTER_OFFSET;
1620 #ifdef FRAME_POINTER_CFA_OFFSET
1621 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1622 #else
1623 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1624 #endif
1626 /* Initialize recognition, indicating that volatile is OK. */
1627 init_recog ();
1629 /* Scan through all the insns, instantiating every virtual register still
1630 present. */
1631 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1632 if (INSN_P (insn))
1634 /* These patterns in the instruction stream can never be recognized.
1635 Fortunately, they shouldn't contain virtual registers either. */
1636 if (GET_CODE (PATTERN (insn)) == USE
1637 || GET_CODE (PATTERN (insn)) == CLOBBER
1638 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1639 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1640 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1641 continue;
1643 instantiate_virtual_regs_in_insn (insn);
1645 if (INSN_DELETED_P (insn))
1646 continue;
1648 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1650 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1651 if (GET_CODE (insn) == CALL_INSN)
1652 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1653 instantiate_virtual_regs_in_rtx, NULL);
1656 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1657 instantiate_decls (current_function_decl);
1659 targetm.instantiate_decls ();
1661 /* Indicate that, from now on, assign_stack_local should use
1662 frame_pointer_rtx. */
1663 virtuals_instantiated = 1;
1664 return 0;
1667 struct rtl_opt_pass pass_instantiate_virtual_regs =
1670 RTL_PASS,
1671 "vregs", /* name */
1672 NULL, /* gate */
1673 instantiate_virtual_regs, /* execute */
1674 NULL, /* sub */
1675 NULL, /* next */
1676 0, /* static_pass_number */
1677 0, /* tv_id */
1678 0, /* properties_required */
1679 0, /* properties_provided */
1680 0, /* properties_destroyed */
1681 0, /* todo_flags_start */
1682 TODO_dump_func /* todo_flags_finish */
1687 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1688 This means a type for which function calls must pass an address to the
1689 function or get an address back from the function.
1690 EXP may be a type node or an expression (whose type is tested). */
1693 aggregate_value_p (const_tree exp, const_tree fntype)
1695 int i, regno, nregs;
1696 rtx reg;
1698 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1700 /* DECL node associated with FNTYPE when relevant, which we might need to
1701 check for by-invisible-reference returns, typically for CALL_EXPR input
1702 EXPressions. */
1703 const_tree fndecl = NULL_TREE;
1705 if (fntype)
1706 switch (TREE_CODE (fntype))
1708 case CALL_EXPR:
1709 fndecl = get_callee_fndecl (fntype);
1710 fntype = fndecl ? TREE_TYPE (fndecl) : 0;
1711 break;
1712 case FUNCTION_DECL:
1713 fndecl = fntype;
1714 fntype = TREE_TYPE (fndecl);
1715 break;
1716 case FUNCTION_TYPE:
1717 case METHOD_TYPE:
1718 break;
1719 case IDENTIFIER_NODE:
1720 fntype = 0;
1721 break;
1722 default:
1723 /* We don't expect other rtl types here. */
1724 gcc_unreachable ();
1727 if (TREE_CODE (type) == VOID_TYPE)
1728 return 0;
1730 /* If the front end has decided that this needs to be passed by
1731 reference, do so. */
1732 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1733 && DECL_BY_REFERENCE (exp))
1734 return 1;
1736 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1737 called function RESULT_DECL, meaning the function returns in memory by
1738 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1739 on the function type, which used to be the way to request such a return
1740 mechanism but might now be causing troubles at gimplification time if
1741 temporaries with the function type need to be created. */
1742 if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1743 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1744 return 1;
1746 if (targetm.calls.return_in_memory (type, fntype))
1747 return 1;
1748 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1749 and thus can't be returned in registers. */
1750 if (TREE_ADDRESSABLE (type))
1751 return 1;
1752 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1753 return 1;
1754 /* Make sure we have suitable call-clobbered regs to return
1755 the value in; if not, we must return it in memory. */
1756 reg = hard_function_value (type, 0, fntype, 0);
1758 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1759 it is OK. */
1760 if (!REG_P (reg))
1761 return 0;
1763 regno = REGNO (reg);
1764 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1765 for (i = 0; i < nregs; i++)
1766 if (! call_used_regs[regno + i])
1767 return 1;
1768 return 0;
1771 /* Return true if we should assign DECL a pseudo register; false if it
1772 should live on the local stack. */
1774 bool
1775 use_register_for_decl (const_tree decl)
1777 if (!targetm.calls.allocate_stack_slots_for_args())
1778 return true;
1780 /* Honor volatile. */
1781 if (TREE_SIDE_EFFECTS (decl))
1782 return false;
1784 /* Honor addressability. */
1785 if (TREE_ADDRESSABLE (decl))
1786 return false;
1788 /* Only register-like things go in registers. */
1789 if (DECL_MODE (decl) == BLKmode)
1790 return false;
1792 /* If -ffloat-store specified, don't put explicit float variables
1793 into registers. */
1794 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1795 propagates values across these stores, and it probably shouldn't. */
1796 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1797 return false;
1799 /* If we're not interested in tracking debugging information for
1800 this decl, then we can certainly put it in a register. */
1801 if (DECL_IGNORED_P (decl))
1802 return true;
1804 return (optimize || DECL_REGISTER (decl));
1807 /* Return true if TYPE should be passed by invisible reference. */
1809 bool
1810 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1811 tree type, bool named_arg)
1813 if (type)
1815 /* If this type contains non-trivial constructors, then it is
1816 forbidden for the middle-end to create any new copies. */
1817 if (TREE_ADDRESSABLE (type))
1818 return true;
1820 /* GCC post 3.4 passes *all* variable sized types by reference. */
1821 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1822 return true;
1825 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1828 /* Return true if TYPE, which is passed by reference, should be callee
1829 copied instead of caller copied. */
1831 bool
1832 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1833 tree type, bool named_arg)
1835 if (type && TREE_ADDRESSABLE (type))
1836 return false;
1837 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1840 /* Structures to communicate between the subroutines of assign_parms.
1841 The first holds data persistent across all parameters, the second
1842 is cleared out for each parameter. */
1844 struct assign_parm_data_all
1846 CUMULATIVE_ARGS args_so_far;
1847 struct args_size stack_args_size;
1848 tree function_result_decl;
1849 tree orig_fnargs;
1850 rtx first_conversion_insn;
1851 rtx last_conversion_insn;
1852 HOST_WIDE_INT pretend_args_size;
1853 HOST_WIDE_INT extra_pretend_bytes;
1854 int reg_parm_stack_space;
1857 struct assign_parm_data_one
1859 tree nominal_type;
1860 tree passed_type;
1861 rtx entry_parm;
1862 rtx stack_parm;
1863 enum machine_mode nominal_mode;
1864 enum machine_mode passed_mode;
1865 enum machine_mode promoted_mode;
1866 struct locate_and_pad_arg_data locate;
1867 int partial;
1868 BOOL_BITFIELD named_arg : 1;
1869 BOOL_BITFIELD passed_pointer : 1;
1870 BOOL_BITFIELD on_stack : 1;
1871 BOOL_BITFIELD loaded_in_reg : 1;
1874 /* A subroutine of assign_parms. Initialize ALL. */
1876 static void
1877 assign_parms_initialize_all (struct assign_parm_data_all *all)
1879 tree fntype;
1881 memset (all, 0, sizeof (*all));
1883 fntype = TREE_TYPE (current_function_decl);
1885 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1886 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1887 #else
1888 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1889 current_function_decl, -1);
1890 #endif
1892 #ifdef REG_PARM_STACK_SPACE
1893 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1894 #endif
1897 /* If ARGS contains entries with complex types, split the entry into two
1898 entries of the component type. Return a new list of substitutions are
1899 needed, else the old list. */
1901 static tree
1902 split_complex_args (tree args)
1904 tree p;
1906 /* Before allocating memory, check for the common case of no complex. */
1907 for (p = args; p; p = TREE_CHAIN (p))
1909 tree type = TREE_TYPE (p);
1910 if (TREE_CODE (type) == COMPLEX_TYPE
1911 && targetm.calls.split_complex_arg (type))
1912 goto found;
1914 return args;
1916 found:
1917 args = copy_list (args);
1919 for (p = args; p; p = TREE_CHAIN (p))
1921 tree type = TREE_TYPE (p);
1922 if (TREE_CODE (type) == COMPLEX_TYPE
1923 && targetm.calls.split_complex_arg (type))
1925 tree decl;
1926 tree subtype = TREE_TYPE (type);
1927 bool addressable = TREE_ADDRESSABLE (p);
1929 /* Rewrite the PARM_DECL's type with its component. */
1930 TREE_TYPE (p) = subtype;
1931 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1932 DECL_MODE (p) = VOIDmode;
1933 DECL_SIZE (p) = NULL;
1934 DECL_SIZE_UNIT (p) = NULL;
1935 /* If this arg must go in memory, put it in a pseudo here.
1936 We can't allow it to go in memory as per normal parms,
1937 because the usual place might not have the imag part
1938 adjacent to the real part. */
1939 DECL_ARTIFICIAL (p) = addressable;
1940 DECL_IGNORED_P (p) = addressable;
1941 TREE_ADDRESSABLE (p) = 0;
1942 layout_decl (p, 0);
1944 /* Build a second synthetic decl. */
1945 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
1946 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
1947 DECL_ARTIFICIAL (decl) = addressable;
1948 DECL_IGNORED_P (decl) = addressable;
1949 layout_decl (decl, 0);
1951 /* Splice it in; skip the new decl. */
1952 TREE_CHAIN (decl) = TREE_CHAIN (p);
1953 TREE_CHAIN (p) = decl;
1954 p = decl;
1958 return args;
1961 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
1962 the hidden struct return argument, and (abi willing) complex args.
1963 Return the new parameter list. */
1965 static tree
1966 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
1968 tree fndecl = current_function_decl;
1969 tree fntype = TREE_TYPE (fndecl);
1970 tree fnargs = DECL_ARGUMENTS (fndecl);
1972 /* If struct value address is treated as the first argument, make it so. */
1973 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
1974 && ! cfun->returns_pcc_struct
1975 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
1977 tree type = build_pointer_type (TREE_TYPE (fntype));
1978 tree decl;
1980 decl = build_decl (PARM_DECL, NULL_TREE, type);
1981 DECL_ARG_TYPE (decl) = type;
1982 DECL_ARTIFICIAL (decl) = 1;
1983 DECL_IGNORED_P (decl) = 1;
1985 TREE_CHAIN (decl) = fnargs;
1986 fnargs = decl;
1987 all->function_result_decl = decl;
1990 all->orig_fnargs = fnargs;
1992 /* If the target wants to split complex arguments into scalars, do so. */
1993 if (targetm.calls.split_complex_arg)
1994 fnargs = split_complex_args (fnargs);
1996 return fnargs;
1999 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2000 data for the parameter. Incorporate ABI specifics such as pass-by-
2001 reference and type promotion. */
2003 static void
2004 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2005 struct assign_parm_data_one *data)
2007 tree nominal_type, passed_type;
2008 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2010 memset (data, 0, sizeof (*data));
2012 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2013 if (!cfun->stdarg)
2014 data->named_arg = 1; /* No variadic parms. */
2015 else if (TREE_CHAIN (parm))
2016 data->named_arg = 1; /* Not the last non-variadic parm. */
2017 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2018 data->named_arg = 1; /* Only variadic ones are unnamed. */
2019 else
2020 data->named_arg = 0; /* Treat as variadic. */
2022 nominal_type = TREE_TYPE (parm);
2023 passed_type = DECL_ARG_TYPE (parm);
2025 /* Look out for errors propagating this far. Also, if the parameter's
2026 type is void then its value doesn't matter. */
2027 if (TREE_TYPE (parm) == error_mark_node
2028 /* This can happen after weird syntax errors
2029 or if an enum type is defined among the parms. */
2030 || TREE_CODE (parm) != PARM_DECL
2031 || passed_type == NULL
2032 || VOID_TYPE_P (nominal_type))
2034 nominal_type = passed_type = void_type_node;
2035 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2036 goto egress;
2039 /* Find mode of arg as it is passed, and mode of arg as it should be
2040 during execution of this function. */
2041 passed_mode = TYPE_MODE (passed_type);
2042 nominal_mode = TYPE_MODE (nominal_type);
2044 /* If the parm is to be passed as a transparent union, use the type of
2045 the first field for the tests below. We have already verified that
2046 the modes are the same. */
2047 if (TREE_CODE (passed_type) == UNION_TYPE
2048 && TYPE_TRANSPARENT_UNION (passed_type))
2049 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2051 /* See if this arg was passed by invisible reference. */
2052 if (pass_by_reference (&all->args_so_far, passed_mode,
2053 passed_type, data->named_arg))
2055 passed_type = nominal_type = build_pointer_type (passed_type);
2056 data->passed_pointer = true;
2057 passed_mode = nominal_mode = Pmode;
2060 /* Find mode as it is passed by the ABI. */
2061 promoted_mode = passed_mode;
2062 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2064 int unsignedp = TYPE_UNSIGNED (passed_type);
2065 promoted_mode = promote_mode (passed_type, promoted_mode,
2066 &unsignedp, 1);
2069 egress:
2070 data->nominal_type = nominal_type;
2071 data->passed_type = passed_type;
2072 data->nominal_mode = nominal_mode;
2073 data->passed_mode = passed_mode;
2074 data->promoted_mode = promoted_mode;
2077 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2079 static void
2080 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2081 struct assign_parm_data_one *data, bool no_rtl)
2083 int varargs_pretend_bytes = 0;
2085 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2086 data->promoted_mode,
2087 data->passed_type,
2088 &varargs_pretend_bytes, no_rtl);
2090 /* If the back-end has requested extra stack space, record how much is
2091 needed. Do not change pretend_args_size otherwise since it may be
2092 nonzero from an earlier partial argument. */
2093 if (varargs_pretend_bytes > 0)
2094 all->pretend_args_size = varargs_pretend_bytes;
2097 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2098 the incoming location of the current parameter. */
2100 static void
2101 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2102 struct assign_parm_data_one *data)
2104 HOST_WIDE_INT pretend_bytes = 0;
2105 rtx entry_parm;
2106 bool in_regs;
2108 if (data->promoted_mode == VOIDmode)
2110 data->entry_parm = data->stack_parm = const0_rtx;
2111 return;
2114 #ifdef FUNCTION_INCOMING_ARG
2115 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2116 data->passed_type, data->named_arg);
2117 #else
2118 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2119 data->passed_type, data->named_arg);
2120 #endif
2122 if (entry_parm == 0)
2123 data->promoted_mode = data->passed_mode;
2125 /* Determine parm's home in the stack, in case it arrives in the stack
2126 or we should pretend it did. Compute the stack position and rtx where
2127 the argument arrives and its size.
2129 There is one complexity here: If this was a parameter that would
2130 have been passed in registers, but wasn't only because it is
2131 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2132 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2133 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2134 as it was the previous time. */
2135 in_regs = entry_parm != 0;
2136 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2137 in_regs = true;
2138 #endif
2139 if (!in_regs && !data->named_arg)
2141 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2143 rtx tem;
2144 #ifdef FUNCTION_INCOMING_ARG
2145 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2146 data->passed_type, true);
2147 #else
2148 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2149 data->passed_type, true);
2150 #endif
2151 in_regs = tem != NULL;
2155 /* If this parameter was passed both in registers and in the stack, use
2156 the copy on the stack. */
2157 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2158 data->passed_type))
2159 entry_parm = 0;
2161 if (entry_parm)
2163 int partial;
2165 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2166 data->promoted_mode,
2167 data->passed_type,
2168 data->named_arg);
2169 data->partial = partial;
2171 /* The caller might already have allocated stack space for the
2172 register parameters. */
2173 if (partial != 0 && all->reg_parm_stack_space == 0)
2175 /* Part of this argument is passed in registers and part
2176 is passed on the stack. Ask the prologue code to extend
2177 the stack part so that we can recreate the full value.
2179 PRETEND_BYTES is the size of the registers we need to store.
2180 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2181 stack space that the prologue should allocate.
2183 Internally, gcc assumes that the argument pointer is aligned
2184 to STACK_BOUNDARY bits. This is used both for alignment
2185 optimizations (see init_emit) and to locate arguments that are
2186 aligned to more than PARM_BOUNDARY bits. We must preserve this
2187 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2188 a stack boundary. */
2190 /* We assume at most one partial arg, and it must be the first
2191 argument on the stack. */
2192 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2194 pretend_bytes = partial;
2195 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2197 /* We want to align relative to the actual stack pointer, so
2198 don't include this in the stack size until later. */
2199 all->extra_pretend_bytes = all->pretend_args_size;
2203 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2204 entry_parm ? data->partial : 0, current_function_decl,
2205 &all->stack_args_size, &data->locate);
2207 /* Adjust offsets to include the pretend args. */
2208 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2209 data->locate.slot_offset.constant += pretend_bytes;
2210 data->locate.offset.constant += pretend_bytes;
2212 data->entry_parm = entry_parm;
2215 /* A subroutine of assign_parms. If there is actually space on the stack
2216 for this parm, count it in stack_args_size and return true. */
2218 static bool
2219 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2220 struct assign_parm_data_one *data)
2222 /* Trivially true if we've no incoming register. */
2223 if (data->entry_parm == NULL)
2225 /* Also true if we're partially in registers and partially not,
2226 since we've arranged to drop the entire argument on the stack. */
2227 else if (data->partial != 0)
2229 /* Also true if the target says that it's passed in both registers
2230 and on the stack. */
2231 else if (GET_CODE (data->entry_parm) == PARALLEL
2232 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2234 /* Also true if the target says that there's stack allocated for
2235 all register parameters. */
2236 else if (all->reg_parm_stack_space > 0)
2238 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2239 else
2240 return false;
2242 all->stack_args_size.constant += data->locate.size.constant;
2243 if (data->locate.size.var)
2244 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2246 return true;
2249 /* A subroutine of assign_parms. Given that this parameter is allocated
2250 stack space by the ABI, find it. */
2252 static void
2253 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2255 rtx offset_rtx, stack_parm;
2256 unsigned int align, boundary;
2258 /* If we're passing this arg using a reg, make its stack home the
2259 aligned stack slot. */
2260 if (data->entry_parm)
2261 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2262 else
2263 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2265 stack_parm = crtl->args.internal_arg_pointer;
2266 if (offset_rtx != const0_rtx)
2267 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2268 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2270 set_mem_attributes (stack_parm, parm, 1);
2272 boundary = data->locate.boundary;
2273 align = BITS_PER_UNIT;
2275 /* If we're padding upward, we know that the alignment of the slot
2276 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2277 intentionally forcing upward padding. Otherwise we have to come
2278 up with a guess at the alignment based on OFFSET_RTX. */
2279 if (data->locate.where_pad != downward || data->entry_parm)
2280 align = boundary;
2281 else if (GET_CODE (offset_rtx) == CONST_INT)
2283 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2284 align = align & -align;
2286 set_mem_align (stack_parm, align);
2288 if (data->entry_parm)
2289 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2291 data->stack_parm = stack_parm;
2294 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2295 always valid and contiguous. */
2297 static void
2298 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2300 rtx entry_parm = data->entry_parm;
2301 rtx stack_parm = data->stack_parm;
2303 /* If this parm was passed part in regs and part in memory, pretend it
2304 arrived entirely in memory by pushing the register-part onto the stack.
2305 In the special case of a DImode or DFmode that is split, we could put
2306 it together in a pseudoreg directly, but for now that's not worth
2307 bothering with. */
2308 if (data->partial != 0)
2310 /* Handle calls that pass values in multiple non-contiguous
2311 locations. The Irix 6 ABI has examples of this. */
2312 if (GET_CODE (entry_parm) == PARALLEL)
2313 emit_group_store (validize_mem (stack_parm), entry_parm,
2314 data->passed_type,
2315 int_size_in_bytes (data->passed_type));
2316 else
2318 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2319 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2320 data->partial / UNITS_PER_WORD);
2323 entry_parm = stack_parm;
2326 /* If we didn't decide this parm came in a register, by default it came
2327 on the stack. */
2328 else if (entry_parm == NULL)
2329 entry_parm = stack_parm;
2331 /* When an argument is passed in multiple locations, we can't make use
2332 of this information, but we can save some copying if the whole argument
2333 is passed in a single register. */
2334 else if (GET_CODE (entry_parm) == PARALLEL
2335 && data->nominal_mode != BLKmode
2336 && data->passed_mode != BLKmode)
2338 size_t i, len = XVECLEN (entry_parm, 0);
2340 for (i = 0; i < len; i++)
2341 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2342 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2343 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2344 == data->passed_mode)
2345 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2347 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2348 break;
2352 data->entry_parm = entry_parm;
2355 /* A subroutine of assign_parms. Reconstitute any values which were
2356 passed in multiple registers and would fit in a single register. */
2358 static void
2359 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2361 rtx entry_parm = data->entry_parm;
2363 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2364 This can be done with register operations rather than on the
2365 stack, even if we will store the reconstituted parameter on the
2366 stack later. */
2367 if (GET_CODE (entry_parm) == PARALLEL
2368 && data->passed_mode != BLKmode)
2370 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2371 emit_group_store (parmreg, entry_parm, NULL_TREE,
2372 GET_MODE_SIZE (GET_MODE (entry_parm)));
2373 entry_parm = parmreg;
2376 data->entry_parm = entry_parm;
2379 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2380 always valid and properly aligned. */
2382 static void
2383 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2385 rtx stack_parm = data->stack_parm;
2387 /* If we can't trust the parm stack slot to be aligned enough for its
2388 ultimate type, don't use that slot after entry. We'll make another
2389 stack slot, if we need one. */
2390 if (stack_parm
2391 && ((STRICT_ALIGNMENT
2392 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2393 || (data->nominal_type
2394 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2395 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2396 stack_parm = NULL;
2398 /* If parm was passed in memory, and we need to convert it on entry,
2399 don't store it back in that same slot. */
2400 else if (data->entry_parm == stack_parm
2401 && data->nominal_mode != BLKmode
2402 && data->nominal_mode != data->passed_mode)
2403 stack_parm = NULL;
2405 /* If stack protection is in effect for this function, don't leave any
2406 pointers in their passed stack slots. */
2407 else if (crtl->stack_protect_guard
2408 && (flag_stack_protect == 2
2409 || data->passed_pointer
2410 || POINTER_TYPE_P (data->nominal_type)))
2411 stack_parm = NULL;
2413 data->stack_parm = stack_parm;
2416 /* A subroutine of assign_parms. Return true if the current parameter
2417 should be stored as a BLKmode in the current frame. */
2419 static bool
2420 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2422 if (data->nominal_mode == BLKmode)
2423 return true;
2425 #ifdef BLOCK_REG_PADDING
2426 /* Only assign_parm_setup_block knows how to deal with register arguments
2427 that are padded at the least significant end. */
2428 if (REG_P (data->entry_parm)
2429 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2430 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2431 == (BYTES_BIG_ENDIAN ? upward : downward)))
2432 return true;
2433 #endif
2435 return false;
2438 /* A subroutine of assign_parms. Arrange for the parameter to be
2439 present and valid in DATA->STACK_RTL. */
2441 static void
2442 assign_parm_setup_block (struct assign_parm_data_all *all,
2443 tree parm, struct assign_parm_data_one *data)
2445 rtx entry_parm = data->entry_parm;
2446 rtx stack_parm = data->stack_parm;
2447 HOST_WIDE_INT size;
2448 HOST_WIDE_INT size_stored;
2450 if (GET_CODE (entry_parm) == PARALLEL)
2451 entry_parm = emit_group_move_into_temps (entry_parm);
2453 size = int_size_in_bytes (data->passed_type);
2454 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2455 if (stack_parm == 0)
2457 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2458 stack_parm = assign_stack_local (BLKmode, size_stored,
2459 DECL_ALIGN (parm));
2460 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2461 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2462 set_mem_attributes (stack_parm, parm, 1);
2465 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2466 calls that pass values in multiple non-contiguous locations. */
2467 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2469 rtx mem;
2471 /* Note that we will be storing an integral number of words.
2472 So we have to be careful to ensure that we allocate an
2473 integral number of words. We do this above when we call
2474 assign_stack_local if space was not allocated in the argument
2475 list. If it was, this will not work if PARM_BOUNDARY is not
2476 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2477 if it becomes a problem. Exception is when BLKmode arrives
2478 with arguments not conforming to word_mode. */
2480 if (data->stack_parm == 0)
2482 else if (GET_CODE (entry_parm) == PARALLEL)
2484 else
2485 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2487 mem = validize_mem (stack_parm);
2489 /* Handle values in multiple non-contiguous locations. */
2490 if (GET_CODE (entry_parm) == PARALLEL)
2492 push_to_sequence2 (all->first_conversion_insn,
2493 all->last_conversion_insn);
2494 emit_group_store (mem, entry_parm, data->passed_type, size);
2495 all->first_conversion_insn = get_insns ();
2496 all->last_conversion_insn = get_last_insn ();
2497 end_sequence ();
2500 else if (size == 0)
2503 /* If SIZE is that of a mode no bigger than a word, just use
2504 that mode's store operation. */
2505 else if (size <= UNITS_PER_WORD)
2507 enum machine_mode mode
2508 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2510 if (mode != BLKmode
2511 #ifdef BLOCK_REG_PADDING
2512 && (size == UNITS_PER_WORD
2513 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2514 != (BYTES_BIG_ENDIAN ? upward : downward)))
2515 #endif
2518 rtx reg;
2520 /* We are really truncating a word_mode value containing
2521 SIZE bytes into a value of mode MODE. If such an
2522 operation requires no actual instructions, we can refer
2523 to the value directly in mode MODE, otherwise we must
2524 start with the register in word_mode and explicitly
2525 convert it. */
2526 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2527 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2528 else
2530 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2531 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2533 emit_move_insn (change_address (mem, mode, 0), reg);
2536 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2537 machine must be aligned to the left before storing
2538 to memory. Note that the previous test doesn't
2539 handle all cases (e.g. SIZE == 3). */
2540 else if (size != UNITS_PER_WORD
2541 #ifdef BLOCK_REG_PADDING
2542 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2543 == downward)
2544 #else
2545 && BYTES_BIG_ENDIAN
2546 #endif
2549 rtx tem, x;
2550 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2551 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2553 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2554 build_int_cst (NULL_TREE, by),
2555 NULL_RTX, 1);
2556 tem = change_address (mem, word_mode, 0);
2557 emit_move_insn (tem, x);
2559 else
2560 move_block_from_reg (REGNO (entry_parm), mem,
2561 size_stored / UNITS_PER_WORD);
2563 else
2564 move_block_from_reg (REGNO (entry_parm), mem,
2565 size_stored / UNITS_PER_WORD);
2567 else if (data->stack_parm == 0)
2569 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2570 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2571 BLOCK_OP_NORMAL);
2572 all->first_conversion_insn = get_insns ();
2573 all->last_conversion_insn = get_last_insn ();
2574 end_sequence ();
2577 data->stack_parm = stack_parm;
2578 SET_DECL_RTL (parm, stack_parm);
2581 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2582 parameter. Get it there. Perform all ABI specified conversions. */
2584 static void
2585 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2586 struct assign_parm_data_one *data)
2588 rtx parmreg;
2589 enum machine_mode promoted_nominal_mode;
2590 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2591 bool did_conversion = false;
2593 /* Store the parm in a pseudoregister during the function, but we may
2594 need to do it in a wider mode. */
2596 /* This is not really promoting for a call. However we need to be
2597 consistent with assign_parm_find_data_types and expand_expr_real_1. */
2598 promoted_nominal_mode
2599 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1);
2601 parmreg = gen_reg_rtx (promoted_nominal_mode);
2603 if (!DECL_ARTIFICIAL (parm))
2604 mark_user_reg (parmreg);
2606 /* If this was an item that we received a pointer to,
2607 set DECL_RTL appropriately. */
2608 if (data->passed_pointer)
2610 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2611 set_mem_attributes (x, parm, 1);
2612 SET_DECL_RTL (parm, x);
2614 else
2615 SET_DECL_RTL (parm, parmreg);
2617 assign_parm_remove_parallels (data);
2619 /* Copy the value into the register. */
2620 if (data->nominal_mode != data->passed_mode
2621 || promoted_nominal_mode != data->promoted_mode)
2623 int save_tree_used;
2625 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2626 mode, by the caller. We now have to convert it to
2627 NOMINAL_MODE, if different. However, PARMREG may be in
2628 a different mode than NOMINAL_MODE if it is being stored
2629 promoted.
2631 If ENTRY_PARM is a hard register, it might be in a register
2632 not valid for operating in its mode (e.g., an odd-numbered
2633 register for a DFmode). In that case, moves are the only
2634 thing valid, so we can't do a convert from there. This
2635 occurs when the calling sequence allow such misaligned
2636 usages.
2638 In addition, the conversion may involve a call, which could
2639 clobber parameters which haven't been copied to pseudo
2640 registers yet. Therefore, we must first copy the parm to
2641 a pseudo reg here, and save the conversion until after all
2642 parameters have been moved. */
2644 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2646 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2648 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2649 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2651 if (GET_CODE (tempreg) == SUBREG
2652 && GET_MODE (tempreg) == data->nominal_mode
2653 && REG_P (SUBREG_REG (tempreg))
2654 && data->nominal_mode == data->passed_mode
2655 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2656 && GET_MODE_SIZE (GET_MODE (tempreg))
2657 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2659 /* The argument is already sign/zero extended, so note it
2660 into the subreg. */
2661 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2662 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2665 /* TREE_USED gets set erroneously during expand_assignment. */
2666 save_tree_used = TREE_USED (parm);
2667 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2668 TREE_USED (parm) = save_tree_used;
2669 all->first_conversion_insn = get_insns ();
2670 all->last_conversion_insn = get_last_insn ();
2671 end_sequence ();
2673 did_conversion = true;
2675 else
2676 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2678 /* If we were passed a pointer but the actual value can safely live
2679 in a register, put it in one. */
2680 if (data->passed_pointer
2681 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2682 /* If by-reference argument was promoted, demote it. */
2683 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2684 || use_register_for_decl (parm)))
2686 /* We can't use nominal_mode, because it will have been set to
2687 Pmode above. We must use the actual mode of the parm. */
2688 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2689 mark_user_reg (parmreg);
2691 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2693 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2694 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2696 push_to_sequence2 (all->first_conversion_insn,
2697 all->last_conversion_insn);
2698 emit_move_insn (tempreg, DECL_RTL (parm));
2699 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2700 emit_move_insn (parmreg, tempreg);
2701 all->first_conversion_insn = get_insns ();
2702 all->last_conversion_insn = get_last_insn ();
2703 end_sequence ();
2705 did_conversion = true;
2707 else
2708 emit_move_insn (parmreg, DECL_RTL (parm));
2710 SET_DECL_RTL (parm, parmreg);
2712 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2713 now the parm. */
2714 data->stack_parm = NULL;
2717 /* Mark the register as eliminable if we did no conversion and it was
2718 copied from memory at a fixed offset, and the arg pointer was not
2719 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2720 offset formed an invalid address, such memory-equivalences as we
2721 make here would screw up life analysis for it. */
2722 if (data->nominal_mode == data->passed_mode
2723 && !did_conversion
2724 && data->stack_parm != 0
2725 && MEM_P (data->stack_parm)
2726 && data->locate.offset.var == 0
2727 && reg_mentioned_p (virtual_incoming_args_rtx,
2728 XEXP (data->stack_parm, 0)))
2730 rtx linsn = get_last_insn ();
2731 rtx sinsn, set;
2733 /* Mark complex types separately. */
2734 if (GET_CODE (parmreg) == CONCAT)
2736 enum machine_mode submode
2737 = GET_MODE_INNER (GET_MODE (parmreg));
2738 int regnor = REGNO (XEXP (parmreg, 0));
2739 int regnoi = REGNO (XEXP (parmreg, 1));
2740 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2741 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2742 GET_MODE_SIZE (submode));
2744 /* Scan backwards for the set of the real and
2745 imaginary parts. */
2746 for (sinsn = linsn; sinsn != 0;
2747 sinsn = prev_nonnote_insn (sinsn))
2749 set = single_set (sinsn);
2750 if (set == 0)
2751 continue;
2753 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2754 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
2755 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2756 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
2759 else if ((set = single_set (linsn)) != 0
2760 && SET_DEST (set) == parmreg)
2761 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
2764 /* For pointer data type, suggest pointer register. */
2765 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2766 mark_reg_pointer (parmreg,
2767 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2770 /* A subroutine of assign_parms. Allocate stack space to hold the current
2771 parameter. Get it there. Perform all ABI specified conversions. */
2773 static void
2774 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2775 struct assign_parm_data_one *data)
2777 /* Value must be stored in the stack slot STACK_PARM during function
2778 execution. */
2779 bool to_conversion = false;
2781 assign_parm_remove_parallels (data);
2783 if (data->promoted_mode != data->nominal_mode)
2785 /* Conversion is required. */
2786 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2788 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2790 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2791 to_conversion = true;
2793 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2794 TYPE_UNSIGNED (TREE_TYPE (parm)));
2796 if (data->stack_parm)
2797 /* ??? This may need a big-endian conversion on sparc64. */
2798 data->stack_parm
2799 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2802 if (data->entry_parm != data->stack_parm)
2804 rtx src, dest;
2806 if (data->stack_parm == 0)
2808 data->stack_parm
2809 = assign_stack_local (GET_MODE (data->entry_parm),
2810 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2811 TYPE_ALIGN (data->passed_type));
2812 set_mem_attributes (data->stack_parm, parm, 1);
2815 dest = validize_mem (data->stack_parm);
2816 src = validize_mem (data->entry_parm);
2818 if (MEM_P (src))
2820 /* Use a block move to handle potentially misaligned entry_parm. */
2821 if (!to_conversion)
2822 push_to_sequence2 (all->first_conversion_insn,
2823 all->last_conversion_insn);
2824 to_conversion = true;
2826 emit_block_move (dest, src,
2827 GEN_INT (int_size_in_bytes (data->passed_type)),
2828 BLOCK_OP_NORMAL);
2830 else
2831 emit_move_insn (dest, src);
2834 if (to_conversion)
2836 all->first_conversion_insn = get_insns ();
2837 all->last_conversion_insn = get_last_insn ();
2838 end_sequence ();
2841 SET_DECL_RTL (parm, data->stack_parm);
2844 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2845 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2847 static void
2848 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2850 tree parm;
2851 tree orig_fnargs = all->orig_fnargs;
2853 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2855 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2856 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2858 rtx tmp, real, imag;
2859 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2861 real = DECL_RTL (fnargs);
2862 imag = DECL_RTL (TREE_CHAIN (fnargs));
2863 if (inner != GET_MODE (real))
2865 real = gen_lowpart_SUBREG (inner, real);
2866 imag = gen_lowpart_SUBREG (inner, imag);
2869 if (TREE_ADDRESSABLE (parm))
2871 rtx rmem, imem;
2872 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2874 /* split_complex_arg put the real and imag parts in
2875 pseudos. Move them to memory. */
2876 tmp = assign_stack_local (DECL_MODE (parm), size,
2877 TYPE_ALIGN (TREE_TYPE (parm)));
2878 set_mem_attributes (tmp, parm, 1);
2879 rmem = adjust_address_nv (tmp, inner, 0);
2880 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2881 push_to_sequence2 (all->first_conversion_insn,
2882 all->last_conversion_insn);
2883 emit_move_insn (rmem, real);
2884 emit_move_insn (imem, imag);
2885 all->first_conversion_insn = get_insns ();
2886 all->last_conversion_insn = get_last_insn ();
2887 end_sequence ();
2889 else
2890 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2891 SET_DECL_RTL (parm, tmp);
2893 real = DECL_INCOMING_RTL (fnargs);
2894 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2895 if (inner != GET_MODE (real))
2897 real = gen_lowpart_SUBREG (inner, real);
2898 imag = gen_lowpart_SUBREG (inner, imag);
2900 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2901 set_decl_incoming_rtl (parm, tmp, false);
2902 fnargs = TREE_CHAIN (fnargs);
2904 else
2906 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2907 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs), false);
2909 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2910 instead of the copy of decl, i.e. FNARGS. */
2911 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2912 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2915 fnargs = TREE_CHAIN (fnargs);
2919 /* Assign RTL expressions to the function's parameters. This may involve
2920 copying them into registers and using those registers as the DECL_RTL. */
2922 static void
2923 assign_parms (tree fndecl)
2925 struct assign_parm_data_all all;
2926 tree fnargs, parm;
2928 crtl->args.internal_arg_pointer
2929 = targetm.calls.internal_arg_pointer ();
2931 assign_parms_initialize_all (&all);
2932 fnargs = assign_parms_augmented_arg_list (&all);
2934 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
2936 struct assign_parm_data_one data;
2938 /* Extract the type of PARM; adjust it according to ABI. */
2939 assign_parm_find_data_types (&all, parm, &data);
2941 /* Early out for errors and void parameters. */
2942 if (data.passed_mode == VOIDmode)
2944 SET_DECL_RTL (parm, const0_rtx);
2945 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
2946 continue;
2949 if (cfun->stdarg && !TREE_CHAIN (parm))
2950 assign_parms_setup_varargs (&all, &data, false);
2952 /* Find out where the parameter arrives in this function. */
2953 assign_parm_find_entry_rtl (&all, &data);
2955 /* Find out where stack space for this parameter might be. */
2956 if (assign_parm_is_stack_parm (&all, &data))
2958 assign_parm_find_stack_rtl (parm, &data);
2959 assign_parm_adjust_entry_rtl (&data);
2962 /* Record permanently how this parm was passed. */
2963 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
2965 /* Update info on where next arg arrives in registers. */
2966 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
2967 data.passed_type, data.named_arg);
2969 assign_parm_adjust_stack_rtl (&data);
2971 if (assign_parm_setup_block_p (&data))
2972 assign_parm_setup_block (&all, parm, &data);
2973 else if (data.passed_pointer || use_register_for_decl (parm))
2974 assign_parm_setup_reg (&all, parm, &data);
2975 else
2976 assign_parm_setup_stack (&all, parm, &data);
2979 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
2980 assign_parms_unsplit_complex (&all, fnargs);
2982 /* Output all parameter conversion instructions (possibly including calls)
2983 now that all parameters have been copied out of hard registers. */
2984 emit_insn (all.first_conversion_insn);
2986 /* If we are receiving a struct value address as the first argument, set up
2987 the RTL for the function result. As this might require code to convert
2988 the transmitted address to Pmode, we do this here to ensure that possible
2989 preliminary conversions of the address have been emitted already. */
2990 if (all.function_result_decl)
2992 tree result = DECL_RESULT (current_function_decl);
2993 rtx addr = DECL_RTL (all.function_result_decl);
2994 rtx x;
2996 if (DECL_BY_REFERENCE (result))
2997 x = addr;
2998 else
3000 addr = convert_memory_address (Pmode, addr);
3001 x = gen_rtx_MEM (DECL_MODE (result), addr);
3002 set_mem_attributes (x, result, 1);
3004 SET_DECL_RTL (result, x);
3007 /* We have aligned all the args, so add space for the pretend args. */
3008 crtl->args.pretend_args_size = all.pretend_args_size;
3009 all.stack_args_size.constant += all.extra_pretend_bytes;
3010 crtl->args.size = all.stack_args_size.constant;
3012 /* Adjust function incoming argument size for alignment and
3013 minimum length. */
3015 #ifdef REG_PARM_STACK_SPACE
3016 crtl->args.size = MAX (crtl->args.size,
3017 REG_PARM_STACK_SPACE (fndecl));
3018 #endif
3020 crtl->args.size = CEIL_ROUND (crtl->args.size,
3021 PARM_BOUNDARY / BITS_PER_UNIT);
3023 #ifdef ARGS_GROW_DOWNWARD
3024 crtl->args.arg_offset_rtx
3025 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3026 : expand_expr (size_diffop (all.stack_args_size.var,
3027 size_int (-all.stack_args_size.constant)),
3028 NULL_RTX, VOIDmode, 0));
3029 #else
3030 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3031 #endif
3033 /* See how many bytes, if any, of its args a function should try to pop
3034 on return. */
3036 crtl->args.pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3037 crtl->args.size);
3039 /* For stdarg.h function, save info about
3040 regs and stack space used by the named args. */
3042 crtl->args.info = all.args_so_far;
3044 /* Set the rtx used for the function return value. Put this in its
3045 own variable so any optimizers that need this information don't have
3046 to include tree.h. Do this here so it gets done when an inlined
3047 function gets output. */
3049 crtl->return_rtx
3050 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3051 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3053 /* If scalar return value was computed in a pseudo-reg, or was a named
3054 return value that got dumped to the stack, copy that to the hard
3055 return register. */
3056 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3058 tree decl_result = DECL_RESULT (fndecl);
3059 rtx decl_rtl = DECL_RTL (decl_result);
3061 if (REG_P (decl_rtl)
3062 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3063 : DECL_REGISTER (decl_result))
3065 rtx real_decl_rtl;
3067 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3068 fndecl, true);
3069 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3070 /* The delay slot scheduler assumes that crtl->return_rtx
3071 holds the hard register containing the return value, not a
3072 temporary pseudo. */
3073 crtl->return_rtx = real_decl_rtl;
3078 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3079 For all seen types, gimplify their sizes. */
3081 static tree
3082 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3084 tree t = *tp;
3086 *walk_subtrees = 0;
3087 if (TYPE_P (t))
3089 if (POINTER_TYPE_P (t))
3090 *walk_subtrees = 1;
3091 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3092 && !TYPE_SIZES_GIMPLIFIED (t))
3094 gimplify_type_sizes (t, (tree *) data);
3095 *walk_subtrees = 1;
3099 return NULL;
3102 /* Gimplify the parameter list for current_function_decl. This involves
3103 evaluating SAVE_EXPRs of variable sized parameters and generating code
3104 to implement callee-copies reference parameters. Returns a list of
3105 statements to add to the beginning of the function, or NULL if nothing
3106 to do. */
3108 tree
3109 gimplify_parameters (void)
3111 struct assign_parm_data_all all;
3112 tree fnargs, parm, stmts = NULL;
3114 assign_parms_initialize_all (&all);
3115 fnargs = assign_parms_augmented_arg_list (&all);
3117 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3119 struct assign_parm_data_one data;
3121 /* Extract the type of PARM; adjust it according to ABI. */
3122 assign_parm_find_data_types (&all, parm, &data);
3124 /* Early out for errors and void parameters. */
3125 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3126 continue;
3128 /* Update info on where next arg arrives in registers. */
3129 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3130 data.passed_type, data.named_arg);
3132 /* ??? Once upon a time variable_size stuffed parameter list
3133 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3134 turned out to be less than manageable in the gimple world.
3135 Now we have to hunt them down ourselves. */
3136 walk_tree_without_duplicates (&data.passed_type,
3137 gimplify_parm_type, &stmts);
3139 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3141 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3142 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3145 if (data.passed_pointer)
3147 tree type = TREE_TYPE (data.passed_type);
3148 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3149 type, data.named_arg))
3151 tree local, t;
3153 /* For constant sized objects, this is trivial; for
3154 variable-sized objects, we have to play games. */
3155 if (TREE_CONSTANT (DECL_SIZE (parm)))
3157 local = create_tmp_var (type, get_name (parm));
3158 DECL_IGNORED_P (local) = 0;
3160 else
3162 tree ptr_type, addr;
3164 ptr_type = build_pointer_type (type);
3165 addr = create_tmp_var (ptr_type, get_name (parm));
3166 DECL_IGNORED_P (addr) = 0;
3167 local = build_fold_indirect_ref (addr);
3169 t = built_in_decls[BUILT_IN_ALLOCA];
3170 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3171 t = fold_convert (ptr_type, t);
3172 t = build_gimple_modify_stmt (addr, t);
3173 gimplify_and_add (t, &stmts);
3176 t = build_gimple_modify_stmt (local, parm);
3177 gimplify_and_add (t, &stmts);
3179 SET_DECL_VALUE_EXPR (parm, local);
3180 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3185 return stmts;
3188 /* Compute the size and offset from the start of the stacked arguments for a
3189 parm passed in mode PASSED_MODE and with type TYPE.
3191 INITIAL_OFFSET_PTR points to the current offset into the stacked
3192 arguments.
3194 The starting offset and size for this parm are returned in
3195 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3196 nonzero, the offset is that of stack slot, which is returned in
3197 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3198 padding required from the initial offset ptr to the stack slot.
3200 IN_REGS is nonzero if the argument will be passed in registers. It will
3201 never be set if REG_PARM_STACK_SPACE is not defined.
3203 FNDECL is the function in which the argument was defined.
3205 There are two types of rounding that are done. The first, controlled by
3206 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3207 list to be aligned to the specific boundary (in bits). This rounding
3208 affects the initial and starting offsets, but not the argument size.
3210 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3211 optionally rounds the size of the parm to PARM_BOUNDARY. The
3212 initial offset is not affected by this rounding, while the size always
3213 is and the starting offset may be. */
3215 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3216 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3217 callers pass in the total size of args so far as
3218 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3220 void
3221 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3222 int partial, tree fndecl ATTRIBUTE_UNUSED,
3223 struct args_size *initial_offset_ptr,
3224 struct locate_and_pad_arg_data *locate)
3226 tree sizetree;
3227 enum direction where_pad;
3228 unsigned int boundary;
3229 int reg_parm_stack_space = 0;
3230 int part_size_in_regs;
3232 #ifdef REG_PARM_STACK_SPACE
3233 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3235 /* If we have found a stack parm before we reach the end of the
3236 area reserved for registers, skip that area. */
3237 if (! in_regs)
3239 if (reg_parm_stack_space > 0)
3241 if (initial_offset_ptr->var)
3243 initial_offset_ptr->var
3244 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3245 ssize_int (reg_parm_stack_space));
3246 initial_offset_ptr->constant = 0;
3248 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3249 initial_offset_ptr->constant = reg_parm_stack_space;
3252 #endif /* REG_PARM_STACK_SPACE */
3254 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3256 sizetree
3257 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3258 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3259 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3260 locate->where_pad = where_pad;
3261 locate->boundary = boundary;
3263 /* Remember if the outgoing parameter requires extra alignment on the
3264 calling function side. */
3265 if (boundary > PREFERRED_STACK_BOUNDARY)
3266 boundary = PREFERRED_STACK_BOUNDARY;
3267 if (crtl->stack_alignment_needed < boundary)
3268 crtl->stack_alignment_needed = boundary;
3270 #ifdef ARGS_GROW_DOWNWARD
3271 locate->slot_offset.constant = -initial_offset_ptr->constant;
3272 if (initial_offset_ptr->var)
3273 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3274 initial_offset_ptr->var);
3277 tree s2 = sizetree;
3278 if (where_pad != none
3279 && (!host_integerp (sizetree, 1)
3280 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3281 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3282 SUB_PARM_SIZE (locate->slot_offset, s2);
3285 locate->slot_offset.constant += part_size_in_regs;
3287 if (!in_regs
3288 #ifdef REG_PARM_STACK_SPACE
3289 || REG_PARM_STACK_SPACE (fndecl) > 0
3290 #endif
3292 pad_to_arg_alignment (&locate->slot_offset, boundary,
3293 &locate->alignment_pad);
3295 locate->size.constant = (-initial_offset_ptr->constant
3296 - locate->slot_offset.constant);
3297 if (initial_offset_ptr->var)
3298 locate->size.var = size_binop (MINUS_EXPR,
3299 size_binop (MINUS_EXPR,
3300 ssize_int (0),
3301 initial_offset_ptr->var),
3302 locate->slot_offset.var);
3304 /* Pad_below needs the pre-rounded size to know how much to pad
3305 below. */
3306 locate->offset = locate->slot_offset;
3307 if (where_pad == downward)
3308 pad_below (&locate->offset, passed_mode, sizetree);
3310 #else /* !ARGS_GROW_DOWNWARD */
3311 if (!in_regs
3312 #ifdef REG_PARM_STACK_SPACE
3313 || REG_PARM_STACK_SPACE (fndecl) > 0
3314 #endif
3316 pad_to_arg_alignment (initial_offset_ptr, boundary,
3317 &locate->alignment_pad);
3318 locate->slot_offset = *initial_offset_ptr;
3320 #ifdef PUSH_ROUNDING
3321 if (passed_mode != BLKmode)
3322 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3323 #endif
3325 /* Pad_below needs the pre-rounded size to know how much to pad below
3326 so this must be done before rounding up. */
3327 locate->offset = locate->slot_offset;
3328 if (where_pad == downward)
3329 pad_below (&locate->offset, passed_mode, sizetree);
3331 if (where_pad != none
3332 && (!host_integerp (sizetree, 1)
3333 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3334 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3336 ADD_PARM_SIZE (locate->size, sizetree);
3338 locate->size.constant -= part_size_in_regs;
3339 #endif /* ARGS_GROW_DOWNWARD */
3342 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3343 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3345 static void
3346 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3347 struct args_size *alignment_pad)
3349 tree save_var = NULL_TREE;
3350 HOST_WIDE_INT save_constant = 0;
3351 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3352 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3354 #ifdef SPARC_STACK_BOUNDARY_HACK
3355 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3356 the real alignment of %sp. However, when it does this, the
3357 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3358 if (SPARC_STACK_BOUNDARY_HACK)
3359 sp_offset = 0;
3360 #endif
3362 if (boundary > PARM_BOUNDARY)
3364 save_var = offset_ptr->var;
3365 save_constant = offset_ptr->constant;
3368 alignment_pad->var = NULL_TREE;
3369 alignment_pad->constant = 0;
3371 if (boundary > BITS_PER_UNIT)
3373 if (offset_ptr->var)
3375 tree sp_offset_tree = ssize_int (sp_offset);
3376 tree offset = size_binop (PLUS_EXPR,
3377 ARGS_SIZE_TREE (*offset_ptr),
3378 sp_offset_tree);
3379 #ifdef ARGS_GROW_DOWNWARD
3380 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3381 #else
3382 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3383 #endif
3385 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3386 /* ARGS_SIZE_TREE includes constant term. */
3387 offset_ptr->constant = 0;
3388 if (boundary > PARM_BOUNDARY)
3389 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3390 save_var);
3392 else
3394 offset_ptr->constant = -sp_offset +
3395 #ifdef ARGS_GROW_DOWNWARD
3396 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3397 #else
3398 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3399 #endif
3400 if (boundary > PARM_BOUNDARY)
3401 alignment_pad->constant = offset_ptr->constant - save_constant;
3406 static void
3407 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3409 if (passed_mode != BLKmode)
3411 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3412 offset_ptr->constant
3413 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3414 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3415 - GET_MODE_SIZE (passed_mode));
3417 else
3419 if (TREE_CODE (sizetree) != INTEGER_CST
3420 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3422 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3423 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3424 /* Add it in. */
3425 ADD_PARM_SIZE (*offset_ptr, s2);
3426 SUB_PARM_SIZE (*offset_ptr, sizetree);
3432 /* True if register REGNO was alive at a place where `setjmp' was
3433 called and was set more than once or is an argument. Such regs may
3434 be clobbered by `longjmp'. */
3436 static bool
3437 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3439 /* There appear to be cases where some local vars never reach the
3440 backend but have bogus regnos. */
3441 if (regno >= max_reg_num ())
3442 return false;
3444 return ((REG_N_SETS (regno) > 1
3445 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3446 && REGNO_REG_SET_P (setjmp_crosses, regno));
3449 /* Walk the tree of blocks describing the binding levels within a
3450 function and warn about variables the might be killed by setjmp or
3451 vfork. This is done after calling flow_analysis before register
3452 allocation since that will clobber the pseudo-regs to hard
3453 regs. */
3455 static void
3456 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3458 tree decl, sub;
3460 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3462 if (TREE_CODE (decl) == VAR_DECL
3463 && DECL_RTL_SET_P (decl)
3464 && REG_P (DECL_RTL (decl))
3465 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3466 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3467 " %<longjmp%> or %<vfork%>", decl);
3470 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3471 setjmp_vars_warning (setjmp_crosses, sub);
3474 /* Do the appropriate part of setjmp_vars_warning
3475 but for arguments instead of local variables. */
3477 static void
3478 setjmp_args_warning (bitmap setjmp_crosses)
3480 tree decl;
3481 for (decl = DECL_ARGUMENTS (current_function_decl);
3482 decl; decl = TREE_CHAIN (decl))
3483 if (DECL_RTL (decl) != 0
3484 && REG_P (DECL_RTL (decl))
3485 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3486 warning (OPT_Wclobbered,
3487 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3488 decl);
3491 /* Generate warning messages for variables live across setjmp. */
3493 void
3494 generate_setjmp_warnings (void)
3496 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3498 if (n_basic_blocks == NUM_FIXED_BLOCKS
3499 || bitmap_empty_p (setjmp_crosses))
3500 return;
3502 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3503 setjmp_args_warning (setjmp_crosses);
3507 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3508 and create duplicate blocks. */
3509 /* ??? Need an option to either create block fragments or to create
3510 abstract origin duplicates of a source block. It really depends
3511 on what optimization has been performed. */
3513 void
3514 reorder_blocks (void)
3516 tree block = DECL_INITIAL (current_function_decl);
3517 VEC(tree,heap) *block_stack;
3519 if (block == NULL_TREE)
3520 return;
3522 block_stack = VEC_alloc (tree, heap, 10);
3524 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3525 clear_block_marks (block);
3527 /* Prune the old trees away, so that they don't get in the way. */
3528 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3529 BLOCK_CHAIN (block) = NULL_TREE;
3531 /* Recreate the block tree from the note nesting. */
3532 reorder_blocks_1 (get_insns (), block, &block_stack);
3533 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3535 VEC_free (tree, heap, block_stack);
3538 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3540 void
3541 clear_block_marks (tree block)
3543 while (block)
3545 TREE_ASM_WRITTEN (block) = 0;
3546 clear_block_marks (BLOCK_SUBBLOCKS (block));
3547 block = BLOCK_CHAIN (block);
3551 static void
3552 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3554 rtx insn;
3556 for (insn = insns; insn; insn = NEXT_INSN (insn))
3558 if (NOTE_P (insn))
3560 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3562 tree block = NOTE_BLOCK (insn);
3563 tree origin;
3565 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3566 ? BLOCK_FRAGMENT_ORIGIN (block)
3567 : block);
3569 /* If we have seen this block before, that means it now
3570 spans multiple address regions. Create a new fragment. */
3571 if (TREE_ASM_WRITTEN (block))
3573 tree new_block = copy_node (block);
3575 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3576 BLOCK_FRAGMENT_CHAIN (new_block)
3577 = BLOCK_FRAGMENT_CHAIN (origin);
3578 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3580 NOTE_BLOCK (insn) = new_block;
3581 block = new_block;
3584 BLOCK_SUBBLOCKS (block) = 0;
3585 TREE_ASM_WRITTEN (block) = 1;
3586 /* When there's only one block for the entire function,
3587 current_block == block and we mustn't do this, it
3588 will cause infinite recursion. */
3589 if (block != current_block)
3591 if (block != origin)
3592 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3594 BLOCK_SUPERCONTEXT (block) = current_block;
3595 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3596 BLOCK_SUBBLOCKS (current_block) = block;
3597 current_block = origin;
3599 VEC_safe_push (tree, heap, *p_block_stack, block);
3601 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3603 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3604 BLOCK_SUBBLOCKS (current_block)
3605 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3606 current_block = BLOCK_SUPERCONTEXT (current_block);
3612 /* Reverse the order of elements in the chain T of blocks,
3613 and return the new head of the chain (old last element). */
3615 tree
3616 blocks_nreverse (tree t)
3618 tree prev = 0, decl, next;
3619 for (decl = t; decl; decl = next)
3621 next = BLOCK_CHAIN (decl);
3622 BLOCK_CHAIN (decl) = prev;
3623 prev = decl;
3625 return prev;
3628 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3629 non-NULL, list them all into VECTOR, in a depth-first preorder
3630 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3631 blocks. */
3633 static int
3634 all_blocks (tree block, tree *vector)
3636 int n_blocks = 0;
3638 while (block)
3640 TREE_ASM_WRITTEN (block) = 0;
3642 /* Record this block. */
3643 if (vector)
3644 vector[n_blocks] = block;
3646 ++n_blocks;
3648 /* Record the subblocks, and their subblocks... */
3649 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3650 vector ? vector + n_blocks : 0);
3651 block = BLOCK_CHAIN (block);
3654 return n_blocks;
3657 /* Return a vector containing all the blocks rooted at BLOCK. The
3658 number of elements in the vector is stored in N_BLOCKS_P. The
3659 vector is dynamically allocated; it is the caller's responsibility
3660 to call `free' on the pointer returned. */
3662 static tree *
3663 get_block_vector (tree block, int *n_blocks_p)
3665 tree *block_vector;
3667 *n_blocks_p = all_blocks (block, NULL);
3668 block_vector = XNEWVEC (tree, *n_blocks_p);
3669 all_blocks (block, block_vector);
3671 return block_vector;
3674 static GTY(()) int next_block_index = 2;
3676 /* Set BLOCK_NUMBER for all the blocks in FN. */
3678 void
3679 number_blocks (tree fn)
3681 int i;
3682 int n_blocks;
3683 tree *block_vector;
3685 /* For SDB and XCOFF debugging output, we start numbering the blocks
3686 from 1 within each function, rather than keeping a running
3687 count. */
3688 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3689 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3690 next_block_index = 1;
3691 #endif
3693 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3695 /* The top-level BLOCK isn't numbered at all. */
3696 for (i = 1; i < n_blocks; ++i)
3697 /* We number the blocks from two. */
3698 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3700 free (block_vector);
3702 return;
3705 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3707 tree
3708 debug_find_var_in_block_tree (tree var, tree block)
3710 tree t;
3712 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3713 if (t == var)
3714 return block;
3716 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3718 tree ret = debug_find_var_in_block_tree (var, t);
3719 if (ret)
3720 return ret;
3723 return NULL_TREE;
3726 /* Keep track of whether we're in a dummy function context. If we are,
3727 we don't want to invoke the set_current_function hook, because we'll
3728 get into trouble if the hook calls target_reinit () recursively or
3729 when the initial initialization is not yet complete. */
3731 static bool in_dummy_function;
3733 /* Invoke the target hook when setting cfun. */
3735 static void
3736 invoke_set_current_function_hook (tree fndecl)
3738 if (!in_dummy_function)
3739 targetm.set_current_function (fndecl);
3742 /* cfun should never be set directly; use this function. */
3744 void
3745 set_cfun (struct function *new_cfun)
3747 if (cfun != new_cfun)
3749 cfun = new_cfun;
3750 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
3754 /* Keep track of the cfun stack. */
3756 typedef struct function *function_p;
3758 DEF_VEC_P(function_p);
3759 DEF_VEC_ALLOC_P(function_p,heap);
3761 /* Initialized with NOGC, making this poisonous to the garbage collector. */
3763 static VEC(function_p,heap) *cfun_stack;
3765 /* We save the value of in_system_header here when pushing the first
3766 function on the cfun stack, and we restore it from here when
3767 popping the last function. */
3769 static bool saved_in_system_header;
3771 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
3773 void
3774 push_cfun (struct function *new_cfun)
3776 if (cfun == NULL)
3777 saved_in_system_header = in_system_header;
3778 VEC_safe_push (function_p, heap, cfun_stack, cfun);
3779 if (new_cfun)
3780 in_system_header = DECL_IN_SYSTEM_HEADER (new_cfun->decl);
3781 set_cfun (new_cfun);
3784 /* Pop cfun from the stack. */
3786 void
3787 pop_cfun (void)
3789 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
3790 in_system_header = ((new_cfun == NULL) ? saved_in_system_header
3791 : DECL_IN_SYSTEM_HEADER (new_cfun->decl));
3792 set_cfun (new_cfun);
3795 /* Return value of funcdef and increase it. */
3797 get_next_funcdef_no (void)
3799 return funcdef_no++;
3802 /* Allocate a function structure for FNDECL and set its contents
3803 to the defaults. Set cfun to the newly-allocated object.
3804 Some of the helper functions invoked during initialization assume
3805 that cfun has already been set. Therefore, assign the new object
3806 directly into cfun and invoke the back end hook explicitly at the
3807 very end, rather than initializing a temporary and calling set_cfun
3808 on it.
3810 ABSTRACT_P is true if this is a function that will never be seen by
3811 the middle-end. Such functions are front-end concepts (like C++
3812 function templates) that do not correspond directly to functions
3813 placed in object files. */
3815 void
3816 allocate_struct_function (tree fndecl, bool abstract_p)
3818 tree result;
3819 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3821 cfun = GGC_CNEW (struct function);
3823 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3825 init_eh_for_function ();
3827 if (init_machine_status)
3828 cfun->machine = (*init_machine_status) ();
3830 #ifdef OVERRIDE_ABI_FORMAT
3831 OVERRIDE_ABI_FORMAT (fndecl);
3832 #endif
3834 if (fndecl != NULL_TREE)
3836 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3837 cfun->decl = fndecl;
3838 current_function_funcdef_no = get_next_funcdef_no ();
3840 result = DECL_RESULT (fndecl);
3841 if (!abstract_p && aggregate_value_p (result, fndecl))
3843 #ifdef PCC_STATIC_STRUCT_RETURN
3844 cfun->returns_pcc_struct = 1;
3845 #endif
3846 cfun->returns_struct = 1;
3849 cfun->stdarg
3850 = (fntype
3851 && TYPE_ARG_TYPES (fntype) != 0
3852 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3853 != void_type_node));
3855 /* Assume all registers in stdarg functions need to be saved. */
3856 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3857 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3860 invoke_set_current_function_hook (fndecl);
3863 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
3864 instead of just setting it. */
3866 void
3867 push_struct_function (tree fndecl)
3869 if (cfun == NULL)
3870 saved_in_system_header = in_system_header;
3871 VEC_safe_push (function_p, heap, cfun_stack, cfun);
3872 if (fndecl)
3873 in_system_header = DECL_IN_SYSTEM_HEADER (fndecl);
3874 allocate_struct_function (fndecl, false);
3877 /* Reset cfun, and other non-struct-function variables to defaults as
3878 appropriate for emitting rtl at the start of a function. */
3880 static void
3881 prepare_function_start (void)
3883 gcc_assert (!crtl->emit.x_last_insn);
3884 init_emit ();
3885 init_varasm_status ();
3886 init_expr ();
3888 cse_not_expected = ! optimize;
3890 /* Caller save not needed yet. */
3891 caller_save_needed = 0;
3893 /* We haven't done register allocation yet. */
3894 reg_renumber = 0;
3896 /* Indicate that we have not instantiated virtual registers yet. */
3897 virtuals_instantiated = 0;
3899 /* Indicate that we want CONCATs now. */
3900 generating_concat_p = 1;
3902 /* Indicate we have no need of a frame pointer yet. */
3903 frame_pointer_needed = 0;
3906 /* Initialize the rtl expansion mechanism so that we can do simple things
3907 like generate sequences. This is used to provide a context during global
3908 initialization of some passes. You must call expand_dummy_function_end
3909 to exit this context. */
3911 void
3912 init_dummy_function_start (void)
3914 gcc_assert (!in_dummy_function);
3915 in_dummy_function = true;
3916 push_struct_function (NULL_TREE);
3917 prepare_function_start ();
3920 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3921 and initialize static variables for generating RTL for the statements
3922 of the function. */
3924 void
3925 init_function_start (tree subr)
3927 if (subr && DECL_STRUCT_FUNCTION (subr))
3928 set_cfun (DECL_STRUCT_FUNCTION (subr));
3929 else
3930 allocate_struct_function (subr, false);
3931 prepare_function_start ();
3933 /* Warn if this value is an aggregate type,
3934 regardless of which calling convention we are using for it. */
3935 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3936 warning (OPT_Waggregate_return, "function returns an aggregate");
3939 /* Make sure all values used by the optimization passes have sane
3940 defaults. */
3941 unsigned int
3942 init_function_for_compilation (void)
3944 reg_renumber = 0;
3946 /* No prologue/epilogue insns yet. Make sure that these vectors are
3947 empty. */
3948 gcc_assert (VEC_length (int, prologue) == 0);
3949 gcc_assert (VEC_length (int, epilogue) == 0);
3950 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
3951 return 0;
3954 struct rtl_opt_pass pass_init_function =
3957 RTL_PASS,
3958 NULL, /* name */
3959 NULL, /* gate */
3960 init_function_for_compilation, /* execute */
3961 NULL, /* sub */
3962 NULL, /* next */
3963 0, /* static_pass_number */
3964 0, /* tv_id */
3965 0, /* properties_required */
3966 0, /* properties_provided */
3967 0, /* properties_destroyed */
3968 0, /* todo_flags_start */
3969 0 /* todo_flags_finish */
3974 void
3975 expand_main_function (void)
3977 #if (defined(INVOKE__main) \
3978 || (!defined(HAS_INIT_SECTION) \
3979 && !defined(INIT_SECTION_ASM_OP) \
3980 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
3981 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3982 #endif
3985 /* Expand code to initialize the stack_protect_guard. This is invoked at
3986 the beginning of a function to be protected. */
3988 #ifndef HAVE_stack_protect_set
3989 # define HAVE_stack_protect_set 0
3990 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
3991 #endif
3993 void
3994 stack_protect_prologue (void)
3996 tree guard_decl = targetm.stack_protect_guard ();
3997 rtx x, y;
3999 /* Avoid expand_expr here, because we don't want guard_decl pulled
4000 into registers unless absolutely necessary. And we know that
4001 crtl->stack_protect_guard is a local stack slot, so this skips
4002 all the fluff. */
4003 x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
4004 y = validize_mem (DECL_RTL (guard_decl));
4006 /* Allow the target to copy from Y to X without leaking Y into a
4007 register. */
4008 if (HAVE_stack_protect_set)
4010 rtx insn = gen_stack_protect_set (x, y);
4011 if (insn)
4013 emit_insn (insn);
4014 return;
4018 /* Otherwise do a straight move. */
4019 emit_move_insn (x, y);
4022 /* Expand code to verify the stack_protect_guard. This is invoked at
4023 the end of a function to be protected. */
4025 #ifndef HAVE_stack_protect_test
4026 # define HAVE_stack_protect_test 0
4027 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4028 #endif
4030 void
4031 stack_protect_epilogue (void)
4033 tree guard_decl = targetm.stack_protect_guard ();
4034 rtx label = gen_label_rtx ();
4035 rtx x, y, tmp;
4037 /* Avoid expand_expr here, because we don't want guard_decl pulled
4038 into registers unless absolutely necessary. And we know that
4039 crtl->stack_protect_guard is a local stack slot, so this skips
4040 all the fluff. */
4041 x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
4042 y = validize_mem (DECL_RTL (guard_decl));
4044 /* Allow the target to compare Y with X without leaking either into
4045 a register. */
4046 switch (HAVE_stack_protect_test != 0)
4048 case 1:
4049 tmp = gen_stack_protect_test (x, y, label);
4050 if (tmp)
4052 emit_insn (tmp);
4053 break;
4055 /* FALLTHRU */
4057 default:
4058 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4059 break;
4062 /* The noreturn predictor has been moved to the tree level. The rtl-level
4063 predictors estimate this branch about 20%, which isn't enough to get
4064 things moved out of line. Since this is the only extant case of adding
4065 a noreturn function at the rtl level, it doesn't seem worth doing ought
4066 except adding the prediction by hand. */
4067 tmp = get_last_insn ();
4068 if (JUMP_P (tmp))
4069 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4071 expand_expr_stmt (targetm.stack_protect_fail ());
4072 emit_label (label);
4075 /* Start the RTL for a new function, and set variables used for
4076 emitting RTL.
4077 SUBR is the FUNCTION_DECL node.
4078 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4079 the function's parameters, which must be run at any return statement. */
4081 void
4082 expand_function_start (tree subr)
4084 /* Make sure volatile mem refs aren't considered
4085 valid operands of arithmetic insns. */
4086 init_recog_no_volatile ();
4088 crtl->profile
4089 = (profile_flag
4090 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4092 crtl->limit_stack
4093 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4095 /* Make the label for return statements to jump to. Do not special
4096 case machines with special return instructions -- they will be
4097 handled later during jump, ifcvt, or epilogue creation. */
4098 return_label = gen_label_rtx ();
4100 /* Initialize rtx used to return the value. */
4101 /* Do this before assign_parms so that we copy the struct value address
4102 before any library calls that assign parms might generate. */
4104 /* Decide whether to return the value in memory or in a register. */
4105 if (aggregate_value_p (DECL_RESULT (subr), subr))
4107 /* Returning something that won't go in a register. */
4108 rtx value_address = 0;
4110 #ifdef PCC_STATIC_STRUCT_RETURN
4111 if (cfun->returns_pcc_struct)
4113 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4114 value_address = assemble_static_space (size);
4116 else
4117 #endif
4119 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4120 /* Expect to be passed the address of a place to store the value.
4121 If it is passed as an argument, assign_parms will take care of
4122 it. */
4123 if (sv)
4125 value_address = gen_reg_rtx (Pmode);
4126 emit_move_insn (value_address, sv);
4129 if (value_address)
4131 rtx x = value_address;
4132 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4134 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4135 set_mem_attributes (x, DECL_RESULT (subr), 1);
4137 SET_DECL_RTL (DECL_RESULT (subr), x);
4140 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4141 /* If return mode is void, this decl rtl should not be used. */
4142 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4143 else
4145 /* Compute the return values into a pseudo reg, which we will copy
4146 into the true return register after the cleanups are done. */
4147 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4148 if (TYPE_MODE (return_type) != BLKmode
4149 && targetm.calls.return_in_msb (return_type))
4150 /* expand_function_end will insert the appropriate padding in
4151 this case. Use the return value's natural (unpadded) mode
4152 within the function proper. */
4153 SET_DECL_RTL (DECL_RESULT (subr),
4154 gen_reg_rtx (TYPE_MODE (return_type)));
4155 else
4157 /* In order to figure out what mode to use for the pseudo, we
4158 figure out what the mode of the eventual return register will
4159 actually be, and use that. */
4160 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4162 /* Structures that are returned in registers are not
4163 aggregate_value_p, so we may see a PARALLEL or a REG. */
4164 if (REG_P (hard_reg))
4165 SET_DECL_RTL (DECL_RESULT (subr),
4166 gen_reg_rtx (GET_MODE (hard_reg)));
4167 else
4169 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4170 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4174 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4175 result to the real return register(s). */
4176 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4179 /* Initialize rtx for parameters and local variables.
4180 In some cases this requires emitting insns. */
4181 assign_parms (subr);
4183 /* If function gets a static chain arg, store it. */
4184 if (cfun->static_chain_decl)
4186 tree parm = cfun->static_chain_decl;
4187 rtx local = gen_reg_rtx (Pmode);
4189 set_decl_incoming_rtl (parm, static_chain_incoming_rtx, false);
4190 SET_DECL_RTL (parm, local);
4191 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4193 emit_move_insn (local, static_chain_incoming_rtx);
4196 /* If the function receives a non-local goto, then store the
4197 bits we need to restore the frame pointer. */
4198 if (cfun->nonlocal_goto_save_area)
4200 tree t_save;
4201 rtx r_save;
4203 /* ??? We need to do this save early. Unfortunately here is
4204 before the frame variable gets declared. Help out... */
4205 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4206 if (!DECL_RTL_SET_P (var))
4207 expand_decl (var);
4209 t_save = build4 (ARRAY_REF, ptr_type_node,
4210 cfun->nonlocal_goto_save_area,
4211 integer_zero_node, NULL_TREE, NULL_TREE);
4212 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4213 r_save = convert_memory_address (Pmode, r_save);
4215 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4216 update_nonlocal_goto_save_area ();
4219 /* The following was moved from init_function_start.
4220 The move is supposed to make sdb output more accurate. */
4221 /* Indicate the beginning of the function body,
4222 as opposed to parm setup. */
4223 emit_note (NOTE_INSN_FUNCTION_BEG);
4225 gcc_assert (NOTE_P (get_last_insn ()));
4227 parm_birth_insn = get_last_insn ();
4229 if (crtl->profile)
4231 #ifdef PROFILE_HOOK
4232 PROFILE_HOOK (current_function_funcdef_no);
4233 #endif
4236 /* After the display initializations is where the stack checking
4237 probe should go. */
4238 if(flag_stack_check)
4239 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4241 /* Make sure there is a line number after the function entry setup code. */
4242 force_next_line_note ();
4245 /* Undo the effects of init_dummy_function_start. */
4246 void
4247 expand_dummy_function_end (void)
4249 gcc_assert (in_dummy_function);
4251 /* End any sequences that failed to be closed due to syntax errors. */
4252 while (in_sequence_p ())
4253 end_sequence ();
4255 /* Outside function body, can't compute type's actual size
4256 until next function's body starts. */
4258 free_after_parsing (cfun);
4259 free_after_compilation (cfun);
4260 pop_cfun ();
4261 in_dummy_function = false;
4264 /* Call DOIT for each hard register used as a return value from
4265 the current function. */
4267 void
4268 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4270 rtx outgoing = crtl->return_rtx;
4272 if (! outgoing)
4273 return;
4275 if (REG_P (outgoing))
4276 (*doit) (outgoing, arg);
4277 else if (GET_CODE (outgoing) == PARALLEL)
4279 int i;
4281 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4283 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4285 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4286 (*doit) (x, arg);
4291 static void
4292 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4294 emit_clobber (reg);
4297 void
4298 clobber_return_register (void)
4300 diddle_return_value (do_clobber_return_reg, NULL);
4302 /* In case we do use pseudo to return value, clobber it too. */
4303 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4305 tree decl_result = DECL_RESULT (current_function_decl);
4306 rtx decl_rtl = DECL_RTL (decl_result);
4307 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4309 do_clobber_return_reg (decl_rtl, NULL);
4314 static void
4315 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4317 emit_use (reg);
4320 static void
4321 use_return_register (void)
4323 diddle_return_value (do_use_return_reg, NULL);
4326 /* Possibly warn about unused parameters. */
4327 void
4328 do_warn_unused_parameter (tree fn)
4330 tree decl;
4332 for (decl = DECL_ARGUMENTS (fn);
4333 decl; decl = TREE_CHAIN (decl))
4334 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4335 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4336 && !TREE_NO_WARNING (decl))
4337 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4340 static GTY(()) rtx initial_trampoline;
4342 /* Generate RTL for the end of the current function. */
4344 void
4345 expand_function_end (void)
4347 rtx clobber_after;
4349 /* If arg_pointer_save_area was referenced only from a nested
4350 function, we will not have initialized it yet. Do that now. */
4351 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4352 get_arg_pointer_save_area ();
4354 /* If we are doing stack checking and this function makes calls,
4355 do a stack probe at the start of the function to ensure we have enough
4356 space for another stack frame. */
4357 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4359 rtx insn, seq;
4361 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4362 if (CALL_P (insn))
4364 start_sequence ();
4365 probe_stack_range (STACK_CHECK_PROTECT,
4366 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4367 seq = get_insns ();
4368 end_sequence ();
4369 emit_insn_before (seq, stack_check_probe_note);
4370 break;
4374 /* End any sequences that failed to be closed due to syntax errors. */
4375 while (in_sequence_p ())
4376 end_sequence ();
4378 clear_pending_stack_adjust ();
4379 do_pending_stack_adjust ();
4381 /* Output a linenumber for the end of the function.
4382 SDB depends on this. */
4383 force_next_line_note ();
4384 set_curr_insn_source_location (input_location);
4386 /* Before the return label (if any), clobber the return
4387 registers so that they are not propagated live to the rest of
4388 the function. This can only happen with functions that drop
4389 through; if there had been a return statement, there would
4390 have either been a return rtx, or a jump to the return label.
4392 We delay actual code generation after the current_function_value_rtx
4393 is computed. */
4394 clobber_after = get_last_insn ();
4396 /* Output the label for the actual return from the function. */
4397 emit_label (return_label);
4399 if (USING_SJLJ_EXCEPTIONS)
4401 /* Let except.c know where it should emit the call to unregister
4402 the function context for sjlj exceptions. */
4403 if (flag_exceptions)
4404 sjlj_emit_function_exit_after (get_last_insn ());
4406 else
4408 /* We want to ensure that instructions that may trap are not
4409 moved into the epilogue by scheduling, because we don't
4410 always emit unwind information for the epilogue. */
4411 if (flag_non_call_exceptions)
4412 emit_insn (gen_blockage ());
4415 /* If this is an implementation of throw, do what's necessary to
4416 communicate between __builtin_eh_return and the epilogue. */
4417 expand_eh_return ();
4419 /* If scalar return value was computed in a pseudo-reg, or was a named
4420 return value that got dumped to the stack, copy that to the hard
4421 return register. */
4422 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4424 tree decl_result = DECL_RESULT (current_function_decl);
4425 rtx decl_rtl = DECL_RTL (decl_result);
4427 if (REG_P (decl_rtl)
4428 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4429 : DECL_REGISTER (decl_result))
4431 rtx real_decl_rtl = crtl->return_rtx;
4433 /* This should be set in assign_parms. */
4434 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4436 /* If this is a BLKmode structure being returned in registers,
4437 then use the mode computed in expand_return. Note that if
4438 decl_rtl is memory, then its mode may have been changed,
4439 but that crtl->return_rtx has not. */
4440 if (GET_MODE (real_decl_rtl) == BLKmode)
4441 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4443 /* If a non-BLKmode return value should be padded at the least
4444 significant end of the register, shift it left by the appropriate
4445 amount. BLKmode results are handled using the group load/store
4446 machinery. */
4447 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4448 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4450 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4451 REGNO (real_decl_rtl)),
4452 decl_rtl);
4453 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4455 /* If a named return value dumped decl_return to memory, then
4456 we may need to re-do the PROMOTE_MODE signed/unsigned
4457 extension. */
4458 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4460 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4462 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4463 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4464 &unsignedp, 1);
4466 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4468 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4470 /* If expand_function_start has created a PARALLEL for decl_rtl,
4471 move the result to the real return registers. Otherwise, do
4472 a group load from decl_rtl for a named return. */
4473 if (GET_CODE (decl_rtl) == PARALLEL)
4474 emit_group_move (real_decl_rtl, decl_rtl);
4475 else
4476 emit_group_load (real_decl_rtl, decl_rtl,
4477 TREE_TYPE (decl_result),
4478 int_size_in_bytes (TREE_TYPE (decl_result)));
4480 /* In the case of complex integer modes smaller than a word, we'll
4481 need to generate some non-trivial bitfield insertions. Do that
4482 on a pseudo and not the hard register. */
4483 else if (GET_CODE (decl_rtl) == CONCAT
4484 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4485 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4487 int old_generating_concat_p;
4488 rtx tmp;
4490 old_generating_concat_p = generating_concat_p;
4491 generating_concat_p = 0;
4492 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4493 generating_concat_p = old_generating_concat_p;
4495 emit_move_insn (tmp, decl_rtl);
4496 emit_move_insn (real_decl_rtl, tmp);
4498 else
4499 emit_move_insn (real_decl_rtl, decl_rtl);
4503 /* If returning a structure, arrange to return the address of the value
4504 in a place where debuggers expect to find it.
4506 If returning a structure PCC style,
4507 the caller also depends on this value.
4508 And cfun->returns_pcc_struct is not necessarily set. */
4509 if (cfun->returns_struct
4510 || cfun->returns_pcc_struct)
4512 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4513 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4514 rtx outgoing;
4516 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4517 type = TREE_TYPE (type);
4518 else
4519 value_address = XEXP (value_address, 0);
4521 outgoing = targetm.calls.function_value (build_pointer_type (type),
4522 current_function_decl, true);
4524 /* Mark this as a function return value so integrate will delete the
4525 assignment and USE below when inlining this function. */
4526 REG_FUNCTION_VALUE_P (outgoing) = 1;
4528 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4529 value_address = convert_memory_address (GET_MODE (outgoing),
4530 value_address);
4532 emit_move_insn (outgoing, value_address);
4534 /* Show return register used to hold result (in this case the address
4535 of the result. */
4536 crtl->return_rtx = outgoing;
4539 /* Emit the actual code to clobber return register. */
4541 rtx seq;
4543 start_sequence ();
4544 clobber_return_register ();
4545 expand_naked_return ();
4546 seq = get_insns ();
4547 end_sequence ();
4549 emit_insn_after (seq, clobber_after);
4552 /* Output the label for the naked return from the function. */
4553 emit_label (naked_return_label);
4555 /* @@@ This is a kludge. We want to ensure that instructions that
4556 may trap are not moved into the epilogue by scheduling, because
4557 we don't always emit unwind information for the epilogue. */
4558 if (! USING_SJLJ_EXCEPTIONS && flag_non_call_exceptions)
4559 emit_insn (gen_blockage ());
4561 /* If stack protection is enabled for this function, check the guard. */
4562 if (crtl->stack_protect_guard)
4563 stack_protect_epilogue ();
4565 /* If we had calls to alloca, and this machine needs
4566 an accurate stack pointer to exit the function,
4567 insert some code to save and restore the stack pointer. */
4568 if (! EXIT_IGNORE_STACK
4569 && cfun->calls_alloca)
4571 rtx tem = 0;
4573 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4574 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4577 /* ??? This should no longer be necessary since stupid is no longer with
4578 us, but there are some parts of the compiler (eg reload_combine, and
4579 sh mach_dep_reorg) that still try and compute their own lifetime info
4580 instead of using the general framework. */
4581 use_return_register ();
4585 get_arg_pointer_save_area (void)
4587 rtx ret = arg_pointer_save_area;
4589 if (! ret)
4591 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4592 arg_pointer_save_area = ret;
4595 if (! crtl->arg_pointer_save_area_init)
4597 rtx seq;
4599 /* Save the arg pointer at the beginning of the function. The
4600 generated stack slot may not be a valid memory address, so we
4601 have to check it and fix it if necessary. */
4602 start_sequence ();
4603 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4604 seq = get_insns ();
4605 end_sequence ();
4607 push_topmost_sequence ();
4608 emit_insn_after (seq, entry_of_function ());
4609 pop_topmost_sequence ();
4612 return ret;
4615 /* Extend a vector that records the INSN_UIDs of INSNS
4616 (a list of one or more insns). */
4618 static void
4619 record_insns (rtx insns, VEC(int,heap) **vecp)
4621 rtx tmp;
4623 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4624 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4627 /* Set the locator of the insn chain starting at INSN to LOC. */
4628 static void
4629 set_insn_locators (rtx insn, int loc)
4631 while (insn != NULL_RTX)
4633 if (INSN_P (insn))
4634 INSN_LOCATOR (insn) = loc;
4635 insn = NEXT_INSN (insn);
4639 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4640 be running after reorg, SEQUENCE rtl is possible. */
4642 static int
4643 contains (const_rtx insn, VEC(int,heap) **vec)
4645 int i, j;
4647 if (NONJUMP_INSN_P (insn)
4648 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4650 int count = 0;
4651 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4652 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4653 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4654 == VEC_index (int, *vec, j))
4655 count++;
4656 return count;
4658 else
4660 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4661 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4662 return 1;
4664 return 0;
4668 prologue_epilogue_contains (const_rtx insn)
4670 if (contains (insn, &prologue))
4671 return 1;
4672 if (contains (insn, &epilogue))
4673 return 1;
4674 return 0;
4678 sibcall_epilogue_contains (const_rtx insn)
4680 if (sibcall_epilogue)
4681 return contains (insn, &sibcall_epilogue);
4682 return 0;
4685 #ifdef HAVE_return
4686 /* Insert gen_return at the end of block BB. This also means updating
4687 block_for_insn appropriately. */
4689 static void
4690 emit_return_into_block (basic_block bb)
4692 emit_jump_insn_after (gen_return (), BB_END (bb));
4694 #endif /* HAVE_return */
4696 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
4697 this into place with notes indicating where the prologue ends and where
4698 the epilogue begins. Update the basic block information when possible. */
4700 static void
4701 thread_prologue_and_epilogue_insns (void)
4703 int inserted = 0;
4704 edge e;
4705 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
4706 rtx seq;
4707 #endif
4708 #if defined (HAVE_epilogue) || defined(HAVE_return)
4709 rtx epilogue_end = NULL_RTX;
4710 #endif
4711 edge_iterator ei;
4713 #ifdef HAVE_prologue
4714 if (HAVE_prologue)
4716 start_sequence ();
4717 seq = gen_prologue ();
4718 emit_insn (seq);
4720 /* Insert an explicit USE for the frame pointer
4721 if the profiling is on and the frame pointer is required. */
4722 if (crtl->profile && frame_pointer_needed)
4723 emit_use (hard_frame_pointer_rtx);
4725 /* Retain a map of the prologue insns. */
4726 record_insns (seq, &prologue);
4727 emit_note (NOTE_INSN_PROLOGUE_END);
4729 #ifndef PROFILE_BEFORE_PROLOGUE
4730 /* Ensure that instructions are not moved into the prologue when
4731 profiling is on. The call to the profiling routine can be
4732 emitted within the live range of a call-clobbered register. */
4733 if (crtl->profile)
4734 emit_insn (gen_blockage ());
4735 #endif
4737 seq = get_insns ();
4738 end_sequence ();
4739 set_insn_locators (seq, prologue_locator);
4741 /* Can't deal with multiple successors of the entry block
4742 at the moment. Function should always have at least one
4743 entry point. */
4744 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
4746 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
4747 inserted = 1;
4749 #endif
4751 /* If the exit block has no non-fake predecessors, we don't need
4752 an epilogue. */
4753 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4754 if ((e->flags & EDGE_FAKE) == 0)
4755 break;
4756 if (e == NULL)
4757 goto epilogue_done;
4759 #ifdef HAVE_return
4760 if (optimize && HAVE_return)
4762 /* If we're allowed to generate a simple return instruction,
4763 then by definition we don't need a full epilogue. Examine
4764 the block that falls through to EXIT. If it does not
4765 contain any code, examine its predecessors and try to
4766 emit (conditional) return instructions. */
4768 basic_block last;
4769 rtx label;
4771 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4772 if (e->flags & EDGE_FALLTHRU)
4773 break;
4774 if (e == NULL)
4775 goto epilogue_done;
4776 last = e->src;
4778 /* Verify that there are no active instructions in the last block. */
4779 label = BB_END (last);
4780 while (label && !LABEL_P (label))
4782 if (active_insn_p (label))
4783 break;
4784 label = PREV_INSN (label);
4787 if (BB_HEAD (last) == label && LABEL_P (label))
4789 edge_iterator ei2;
4791 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
4793 basic_block bb = e->src;
4794 rtx jump;
4796 if (bb == ENTRY_BLOCK_PTR)
4798 ei_next (&ei2);
4799 continue;
4802 jump = BB_END (bb);
4803 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
4805 ei_next (&ei2);
4806 continue;
4809 /* If we have an unconditional jump, we can replace that
4810 with a simple return instruction. */
4811 if (simplejump_p (jump))
4813 emit_return_into_block (bb);
4814 delete_insn (jump);
4817 /* If we have a conditional jump, we can try to replace
4818 that with a conditional return instruction. */
4819 else if (condjump_p (jump))
4821 if (! redirect_jump (jump, 0, 0))
4823 ei_next (&ei2);
4824 continue;
4827 /* If this block has only one successor, it both jumps
4828 and falls through to the fallthru block, so we can't
4829 delete the edge. */
4830 if (single_succ_p (bb))
4832 ei_next (&ei2);
4833 continue;
4836 else
4838 ei_next (&ei2);
4839 continue;
4842 /* Fix up the CFG for the successful change we just made. */
4843 redirect_edge_succ (e, EXIT_BLOCK_PTR);
4846 /* Emit a return insn for the exit fallthru block. Whether
4847 this is still reachable will be determined later. */
4849 emit_barrier_after (BB_END (last));
4850 emit_return_into_block (last);
4851 epilogue_end = BB_END (last);
4852 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
4853 goto epilogue_done;
4856 #endif
4857 /* Find the edge that falls through to EXIT. Other edges may exist
4858 due to RETURN instructions, but those don't need epilogues.
4859 There really shouldn't be a mixture -- either all should have
4860 been converted or none, however... */
4862 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4863 if (e->flags & EDGE_FALLTHRU)
4864 break;
4865 if (e == NULL)
4866 goto epilogue_done;
4868 #ifdef HAVE_epilogue
4869 if (HAVE_epilogue)
4871 start_sequence ();
4872 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
4873 seq = gen_epilogue ();
4874 emit_jump_insn (seq);
4876 /* Retain a map of the epilogue insns. */
4877 record_insns (seq, &epilogue);
4878 set_insn_locators (seq, epilogue_locator);
4880 seq = get_insns ();
4881 end_sequence ();
4883 insert_insn_on_edge (seq, e);
4884 inserted = 1;
4886 else
4887 #endif
4889 basic_block cur_bb;
4891 if (! next_active_insn (BB_END (e->src)))
4892 goto epilogue_done;
4893 /* We have a fall-through edge to the exit block, the source is not
4894 at the end of the function, and there will be an assembler epilogue
4895 at the end of the function.
4896 We can't use force_nonfallthru here, because that would try to
4897 use return. Inserting a jump 'by hand' is extremely messy, so
4898 we take advantage of cfg_layout_finalize using
4899 fixup_fallthru_exit_predecessor. */
4900 cfg_layout_initialize (0);
4901 FOR_EACH_BB (cur_bb)
4902 if (cur_bb->index >= NUM_FIXED_BLOCKS
4903 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
4904 cur_bb->aux = cur_bb->next_bb;
4905 cfg_layout_finalize ();
4907 epilogue_done:
4909 if (inserted)
4911 commit_edge_insertions ();
4913 /* The epilogue insns we inserted may cause the exit edge to no longer
4914 be fallthru. */
4915 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4917 if (((e->flags & EDGE_FALLTHRU) != 0)
4918 && returnjump_p (BB_END (e->src)))
4919 e->flags &= ~EDGE_FALLTHRU;
4923 #ifdef HAVE_sibcall_epilogue
4924 /* Emit sibling epilogues before any sibling call sites. */
4925 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
4927 basic_block bb = e->src;
4928 rtx insn = BB_END (bb);
4930 if (!CALL_P (insn)
4931 || ! SIBLING_CALL_P (insn))
4933 ei_next (&ei);
4934 continue;
4937 start_sequence ();
4938 emit_insn (gen_sibcall_epilogue ());
4939 seq = get_insns ();
4940 end_sequence ();
4942 /* Retain a map of the epilogue insns. Used in life analysis to
4943 avoid getting rid of sibcall epilogue insns. Do this before we
4944 actually emit the sequence. */
4945 record_insns (seq, &sibcall_epilogue);
4946 set_insn_locators (seq, epilogue_locator);
4948 emit_insn_before (seq, insn);
4949 ei_next (&ei);
4951 #endif
4953 #ifdef HAVE_epilogue
4954 if (epilogue_end)
4956 rtx insn, next;
4958 /* Similarly, move any line notes that appear after the epilogue.
4959 There is no need, however, to be quite so anal about the existence
4960 of such a note. Also possibly move
4961 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
4962 info generation. */
4963 for (insn = epilogue_end; insn; insn = next)
4965 next = NEXT_INSN (insn);
4966 if (NOTE_P (insn)
4967 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
4968 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
4971 #endif
4973 /* Threading the prologue and epilogue changes the artificial refs
4974 in the entry and exit blocks. */
4975 epilogue_completed = 1;
4976 df_update_entry_exit_and_calls ();
4979 /* Reposition the prologue-end and epilogue-begin notes after instruction
4980 scheduling and delayed branch scheduling. */
4982 void
4983 reposition_prologue_and_epilogue_notes (void)
4985 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
4986 rtx insn, last, note;
4987 int len;
4989 if ((len = VEC_length (int, prologue)) > 0)
4991 last = 0, note = 0;
4993 /* Scan from the beginning until we reach the last prologue insn.
4994 We apparently can't depend on basic_block_{head,end} after
4995 reorg has run. */
4996 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4998 if (NOTE_P (insn))
5000 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5001 note = insn;
5003 else if (contains (insn, &prologue))
5005 last = insn;
5006 if (--len == 0)
5007 break;
5011 if (last)
5013 /* Find the prologue-end note if we haven't already, and
5014 move it to just after the last prologue insn. */
5015 if (note == 0)
5017 for (note = last; (note = NEXT_INSN (note));)
5018 if (NOTE_P (note)
5019 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5020 break;
5023 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5024 if (LABEL_P (last))
5025 last = NEXT_INSN (last);
5026 reorder_insns (note, note, last);
5030 if ((len = VEC_length (int, epilogue)) > 0)
5032 last = 0, note = 0;
5034 /* Scan from the end until we reach the first epilogue insn.
5035 We apparently can't depend on basic_block_{head,end} after
5036 reorg has run. */
5037 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5039 if (NOTE_P (insn))
5041 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5042 note = insn;
5044 else if (contains (insn, &epilogue))
5046 last = insn;
5047 if (--len == 0)
5048 break;
5052 if (last)
5054 /* Find the epilogue-begin note if we haven't already, and
5055 move it to just before the first epilogue insn. */
5056 if (note == 0)
5058 for (note = insn; (note = PREV_INSN (note));)
5059 if (NOTE_P (note)
5060 && NOTE_KIND (note) == NOTE_INSN_EPILOGUE_BEG)
5061 break;
5064 if (PREV_INSN (last) != note)
5065 reorder_insns (note, note, PREV_INSN (last));
5068 #endif /* HAVE_prologue or HAVE_epilogue */
5071 /* Returns the name of the current function. */
5072 const char *
5073 current_function_name (void)
5075 return lang_hooks.decl_printable_name (cfun->decl, 2);
5078 /* Returns the raw (mangled) name of the current function. */
5079 const char *
5080 current_function_assembler_name (void)
5082 return IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (cfun->decl));
5086 static unsigned int
5087 rest_of_handle_check_leaf_regs (void)
5089 #ifdef LEAF_REGISTERS
5090 current_function_uses_only_leaf_regs
5091 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5092 #endif
5093 return 0;
5096 /* Insert a TYPE into the used types hash table of CFUN. */
5097 static void
5098 used_types_insert_helper (tree type, struct function *func)
5100 if (type != NULL && func != NULL)
5102 void **slot;
5104 if (func->used_types_hash == NULL)
5105 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5106 htab_eq_pointer, NULL);
5107 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5108 if (*slot == NULL)
5109 *slot = type;
5113 /* Given a type, insert it into the used hash table in cfun. */
5114 void
5115 used_types_insert (tree t)
5117 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5118 t = TREE_TYPE (t);
5119 t = TYPE_MAIN_VARIANT (t);
5120 if (debug_info_level > DINFO_LEVEL_NONE)
5121 used_types_insert_helper (t, cfun);
5124 struct rtl_opt_pass pass_leaf_regs =
5127 RTL_PASS,
5128 NULL, /* name */
5129 NULL, /* gate */
5130 rest_of_handle_check_leaf_regs, /* execute */
5131 NULL, /* sub */
5132 NULL, /* next */
5133 0, /* static_pass_number */
5134 0, /* tv_id */
5135 0, /* properties_required */
5136 0, /* properties_provided */
5137 0, /* properties_destroyed */
5138 0, /* todo_flags_start */
5139 0 /* todo_flags_finish */
5143 static unsigned int
5144 rest_of_handle_thread_prologue_and_epilogue (void)
5146 if (optimize)
5147 cleanup_cfg (CLEANUP_EXPENSIVE);
5148 /* On some machines, the prologue and epilogue code, or parts thereof,
5149 can be represented as RTL. Doing so lets us schedule insns between
5150 it and the rest of the code and also allows delayed branch
5151 scheduling to operate in the epilogue. */
5153 thread_prologue_and_epilogue_insns ();
5154 return 0;
5157 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5160 RTL_PASS,
5161 "pro_and_epilogue", /* name */
5162 NULL, /* gate */
5163 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5164 NULL, /* sub */
5165 NULL, /* next */
5166 0, /* static_pass_number */
5167 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5168 0, /* properties_required */
5169 0, /* properties_provided */
5170 0, /* properties_destroyed */
5171 TODO_verify_flow, /* todo_flags_start */
5172 TODO_dump_func |
5173 TODO_df_verify |
5174 TODO_df_finish | TODO_verify_rtl_sharing |
5175 TODO_ggc_collect /* todo_flags_finish */
5180 /* This mini-pass fixes fall-out from SSA in asm statements that have
5181 in-out constraints. Say you start with
5183 orig = inout;
5184 asm ("": "+mr" (inout));
5185 use (orig);
5187 which is transformed very early to use explicit output and match operands:
5189 orig = inout;
5190 asm ("": "=mr" (inout) : "0" (inout));
5191 use (orig);
5193 Or, after SSA and copyprop,
5195 asm ("": "=mr" (inout_2) : "0" (inout_1));
5196 use (inout_1);
5198 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5199 they represent two separate values, so they will get different pseudo
5200 registers during expansion. Then, since the two operands need to match
5201 per the constraints, but use different pseudo registers, reload can
5202 only register a reload for these operands. But reloads can only be
5203 satisfied by hardregs, not by memory, so we need a register for this
5204 reload, just because we are presented with non-matching operands.
5205 So, even though we allow memory for this operand, no memory can be
5206 used for it, just because the two operands don't match. This can
5207 cause reload failures on register-starved targets.
5209 So it's a symptom of reload not being able to use memory for reloads
5210 or, alternatively it's also a symptom of both operands not coming into
5211 reload as matching (in which case the pseudo could go to memory just
5212 fine, as the alternative allows it, and no reload would be necessary).
5213 We fix the latter problem here, by transforming
5215 asm ("": "=mr" (inout_2) : "0" (inout_1));
5217 back to
5219 inout_2 = inout_1;
5220 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5222 static void
5223 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5225 int i;
5226 bool changed = false;
5227 rtx op = SET_SRC (p_sets[0]);
5228 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5229 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5230 bool *output_matched = XALLOCAVEC (bool, noutputs);
5232 memset (output_matched, 0, noutputs * sizeof (bool));
5233 for (i = 0; i < ninputs; i++)
5235 rtx input, output, insns;
5236 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5237 char *end;
5238 int match, j;
5240 match = strtoul (constraint, &end, 10);
5241 if (end == constraint)
5242 continue;
5244 gcc_assert (match < noutputs);
5245 output = SET_DEST (p_sets[match]);
5246 input = RTVEC_ELT (inputs, i);
5247 /* Only do the transformation for pseudos. */
5248 if (! REG_P (output)
5249 || rtx_equal_p (output, input)
5250 || (GET_MODE (input) != VOIDmode
5251 && GET_MODE (input) != GET_MODE (output)))
5252 continue;
5254 /* We can't do anything if the output is also used as input,
5255 as we're going to overwrite it. */
5256 for (j = 0; j < ninputs; j++)
5257 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5258 break;
5259 if (j != ninputs)
5260 continue;
5262 /* Avoid changing the same input several times. For
5263 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
5264 only change in once (to out1), rather than changing it
5265 first to out1 and afterwards to out2. */
5266 if (i > 0)
5268 for (j = 0; j < noutputs; j++)
5269 if (output_matched[j] && input == SET_DEST (p_sets[j]))
5270 break;
5271 if (j != noutputs)
5272 continue;
5274 output_matched[match] = true;
5276 start_sequence ();
5277 emit_move_insn (output, input);
5278 insns = get_insns ();
5279 end_sequence ();
5280 emit_insn_before (insns, insn);
5282 /* Now replace all mentions of the input with output. We can't
5283 just replace the occurrence in inputs[i], as the register might
5284 also be used in some other input (or even in an address of an
5285 output), which would mean possibly increasing the number of
5286 inputs by one (namely 'output' in addition), which might pose
5287 a too complicated problem for reload to solve. E.g. this situation:
5289 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5291 Here 'input' is used in two occurrences as input (once for the
5292 input operand, once for the address in the second output operand).
5293 If we would replace only the occurrence of the input operand (to
5294 make the matching) we would be left with this:
5296 output = input
5297 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5299 Now we suddenly have two different input values (containing the same
5300 value, but different pseudos) where we formerly had only one.
5301 With more complicated asms this might lead to reload failures
5302 which wouldn't have happen without this pass. So, iterate over
5303 all operands and replace all occurrences of the register used. */
5304 for (j = 0; j < noutputs; j++)
5305 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5306 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5307 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5308 input, output);
5309 for (j = 0; j < ninputs; j++)
5310 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5311 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5312 input, output);
5314 changed = true;
5317 if (changed)
5318 df_insn_rescan (insn);
5321 static unsigned
5322 rest_of_match_asm_constraints (void)
5324 basic_block bb;
5325 rtx insn, pat, *p_sets;
5326 int noutputs;
5328 if (!crtl->has_asm_statement)
5329 return 0;
5331 df_set_flags (DF_DEFER_INSN_RESCAN);
5332 FOR_EACH_BB (bb)
5334 FOR_BB_INSNS (bb, insn)
5336 if (!INSN_P (insn))
5337 continue;
5339 pat = PATTERN (insn);
5340 if (GET_CODE (pat) == PARALLEL)
5341 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5342 else if (GET_CODE (pat) == SET)
5343 p_sets = &PATTERN (insn), noutputs = 1;
5344 else
5345 continue;
5347 if (GET_CODE (*p_sets) == SET
5348 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5349 match_asm_constraints_1 (insn, p_sets, noutputs);
5353 return TODO_df_finish;
5356 struct rtl_opt_pass pass_match_asm_constraints =
5359 RTL_PASS,
5360 "asmcons", /* name */
5361 NULL, /* gate */
5362 rest_of_match_asm_constraints, /* execute */
5363 NULL, /* sub */
5364 NULL, /* next */
5365 0, /* static_pass_number */
5366 0, /* tv_id */
5367 0, /* properties_required */
5368 0, /* properties_provided */
5369 0, /* properties_destroyed */
5370 0, /* todo_flags_start */
5371 TODO_dump_func /* todo_flags_finish */
5376 #include "gt-function.h"