2010-05-14 Steven G. Kargl <kargl@gcc.gnu.org>
[official-gcc.git] / gcc / reginfo.c
blobbf43d702da55f43073b4c5baa7a8150557a05a9e
1 /* Compute different info about registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 /* This file contains regscan pass of the compiler and passes for
24 dealing with info about modes of pseudo-registers inside
25 subregisters. It also defines some tables of information about the
26 hardware registers, function init_reg_sets to initialize the
27 tables, and other auxiliary functions to deal with info about
28 registers and their classes. */
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "hard-reg-set.h"
35 #include "rtl.h"
36 #include "expr.h"
37 #include "tm_p.h"
38 #include "flags.h"
39 #include "basic-block.h"
40 #include "regs.h"
41 #include "addresses.h"
42 #include "function.h"
43 #include "insn-config.h"
44 #include "recog.h"
45 #include "reload.h"
46 #include "real.h"
47 #include "toplev.h"
48 #include "output.h"
49 #include "ggc.h"
50 #include "timevar.h"
51 #include "hashtab.h"
52 #include "target.h"
53 #include "tree-pass.h"
54 #include "df.h"
55 #include "ira.h"
57 /* Maximum register number used in this function, plus one. */
59 int max_regno;
62 /* Register tables used by many passes. */
64 /* Indexed by hard register number, contains 1 for registers
65 that are fixed use (stack pointer, pc, frame pointer, etc.).
66 These are the registers that cannot be used to allocate
67 a pseudo reg for general use. */
68 char fixed_regs[FIRST_PSEUDO_REGISTER];
70 /* Same info as a HARD_REG_SET. */
71 HARD_REG_SET fixed_reg_set;
73 /* Data for initializing the above. */
74 static const char initial_fixed_regs[] = FIXED_REGISTERS;
76 /* Indexed by hard register number, contains 1 for registers
77 that are fixed use or are clobbered by function calls.
78 These are the registers that cannot be used to allocate
79 a pseudo reg whose life crosses calls unless we are able
80 to save/restore them across the calls. */
81 char call_used_regs[FIRST_PSEUDO_REGISTER];
83 /* Same info as a HARD_REG_SET. */
84 HARD_REG_SET call_used_reg_set;
86 /* Data for initializing the above. */
87 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
89 /* This is much like call_used_regs, except it doesn't have to
90 be a superset of FIXED_REGISTERS. This vector indicates
91 what is really call clobbered, and is used when defining
92 regs_invalidated_by_call. */
93 #ifdef CALL_REALLY_USED_REGISTERS
94 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
95 #endif
97 #ifdef CALL_REALLY_USED_REGISTERS
98 #define CALL_REALLY_USED_REGNO_P(X) call_really_used_regs[X]
99 #else
100 #define CALL_REALLY_USED_REGNO_P(X) call_used_regs[X]
101 #endif
104 /* Contains registers that are fixed use -- i.e. in fixed_reg_set -- or
105 a function value return register or TARGET_STRUCT_VALUE_RTX or
106 STATIC_CHAIN_REGNUM. These are the registers that cannot hold quantities
107 across calls even if we are willing to save and restore them. */
109 HARD_REG_SET call_fixed_reg_set;
111 /* Indexed by hard register number, contains 1 for registers
112 that are being used for global register decls.
113 These must be exempt from ordinary flow analysis
114 and are also considered fixed. */
115 char global_regs[FIRST_PSEUDO_REGISTER];
117 /* Contains 1 for registers that are set or clobbered by calls. */
118 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
119 for someone's bright idea to have call_used_regs strictly include
120 fixed_regs. Which leaves us guessing as to the set of fixed_regs
121 that are actually preserved. We know for sure that those associated
122 with the local stack frame are safe, but scant others. */
123 HARD_REG_SET regs_invalidated_by_call;
125 /* Same information as REGS_INVALIDATED_BY_CALL but in regset form to be used
126 in dataflow more conveniently. */
127 regset regs_invalidated_by_call_regset;
129 /* The bitmap_obstack is used to hold some static variables that
130 should not be reset after each function is compiled. */
131 static bitmap_obstack persistent_obstack;
133 /* Table of register numbers in the order in which to try to use them. */
134 #ifdef REG_ALLOC_ORDER
135 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
137 /* The inverse of reg_alloc_order. */
138 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
139 #endif
141 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
142 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
144 /* The same information, but as an array of unsigned ints. We copy from
145 these unsigned ints to the table above. We do this so the tm.h files
146 do not have to be aware of the wordsize for machines with <= 64 regs.
147 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
148 #define N_REG_INTS \
149 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
151 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
152 = REG_CLASS_CONTENTS;
154 /* For each reg class, number of regs it contains. */
155 unsigned int reg_class_size[N_REG_CLASSES];
157 /* For each reg class, table listing all the classes contained in it. */
158 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
160 /* For each pair of reg classes,
161 a largest reg class contained in their union. */
162 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
164 /* For each pair of reg classes,
165 the smallest reg class containing their union. */
166 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
168 /* Array containing all of the register names. */
169 const char * reg_names[] = REGISTER_NAMES;
171 /* Array containing all of the register class names. */
172 const char * reg_class_names[] = REG_CLASS_NAMES;
174 /* For each hard register, the widest mode object that it can contain.
175 This will be a MODE_INT mode if the register can hold integers. Otherwise
176 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
177 register. */
178 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
180 /* 1 if there is a register of given mode. */
181 bool have_regs_of_mode [MAX_MACHINE_MODE];
183 /* 1 if class does contain register of given mode. */
184 char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
186 /* Maximum cost of moving from a register in one class to a register in
187 another class. Based on REGISTER_MOVE_COST. */
188 move_table *move_cost[MAX_MACHINE_MODE];
190 /* Similar, but here we don't have to move if the first index is a subset
191 of the second so in that case the cost is zero. */
192 move_table *may_move_in_cost[MAX_MACHINE_MODE];
194 /* Similar, but here we don't have to move if the first index is a superset
195 of the second so in that case the cost is zero. */
196 move_table *may_move_out_cost[MAX_MACHINE_MODE];
198 /* Keep track of the last mode we initialized move costs for. */
199 static int last_mode_for_init_move_cost;
201 /* Sample MEM values for use by memory_move_secondary_cost. */
202 static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
204 /* No more global register variables may be declared; true once
205 reginfo has been initialized. */
206 static int no_global_reg_vars = 0;
208 /* Specify number of hard registers given machine mode occupy. */
209 unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
211 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
212 correspond to the hard registers, if any, set in that map. This
213 could be done far more efficiently by having all sorts of special-cases
214 with moving single words, but probably isn't worth the trouble. */
215 void
216 reg_set_to_hard_reg_set (HARD_REG_SET *to, const_bitmap from)
218 unsigned i;
219 bitmap_iterator bi;
221 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
223 if (i >= FIRST_PSEUDO_REGISTER)
224 return;
225 SET_HARD_REG_BIT (*to, i);
229 /* Function called only once to initialize the above data on reg usage.
230 Once this is done, various switches may override. */
231 void
232 init_reg_sets (void)
234 int i, j;
236 /* First copy the register information from the initial int form into
237 the regsets. */
239 for (i = 0; i < N_REG_CLASSES; i++)
241 CLEAR_HARD_REG_SET (reg_class_contents[i]);
243 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
244 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
245 if (int_reg_class_contents[i][j / 32]
246 & ((unsigned) 1 << (j % 32)))
247 SET_HARD_REG_BIT (reg_class_contents[i], j);
250 /* Sanity check: make sure the target macros FIXED_REGISTERS and
251 CALL_USED_REGISTERS had the right number of initializers. */
252 gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
253 gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
255 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
256 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
257 memset (global_regs, 0, sizeof global_regs);
260 /* Initialize may_move_cost and friends for mode M. */
261 void
262 init_move_cost (enum machine_mode m)
264 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
265 bool all_match = true;
266 unsigned int i, j;
268 gcc_assert (have_regs_of_mode[m]);
269 for (i = 0; i < N_REG_CLASSES; i++)
270 if (contains_reg_of_mode[i][m])
271 for (j = 0; j < N_REG_CLASSES; j++)
273 int cost;
274 if (!contains_reg_of_mode[j][m])
275 cost = 65535;
276 else
278 cost = REGISTER_MOVE_COST (m, (enum reg_class) i,
279 (enum reg_class) j);
280 gcc_assert (cost < 65535);
282 all_match &= (last_move_cost[i][j] == cost);
283 last_move_cost[i][j] = cost;
285 if (all_match && last_mode_for_init_move_cost != -1)
287 move_cost[m] = move_cost[last_mode_for_init_move_cost];
288 may_move_in_cost[m] = may_move_in_cost[last_mode_for_init_move_cost];
289 may_move_out_cost[m] = may_move_out_cost[last_mode_for_init_move_cost];
290 return;
292 last_mode_for_init_move_cost = m;
293 move_cost[m] = (move_table *)xmalloc (sizeof (move_table)
294 * N_REG_CLASSES);
295 may_move_in_cost[m] = (move_table *)xmalloc (sizeof (move_table)
296 * N_REG_CLASSES);
297 may_move_out_cost[m] = (move_table *)xmalloc (sizeof (move_table)
298 * N_REG_CLASSES);
299 for (i = 0; i < N_REG_CLASSES; i++)
300 if (contains_reg_of_mode[i][m])
301 for (j = 0; j < N_REG_CLASSES; j++)
303 int cost;
304 enum reg_class *p1, *p2;
306 if (last_move_cost[i][j] == 65535)
308 move_cost[m][i][j] = 65535;
309 may_move_in_cost[m][i][j] = 65535;
310 may_move_out_cost[m][i][j] = 65535;
312 else
314 cost = last_move_cost[i][j];
316 for (p2 = &reg_class_subclasses[j][0];
317 *p2 != LIM_REG_CLASSES; p2++)
318 if (*p2 != i && contains_reg_of_mode[*p2][m])
319 cost = MAX (cost, move_cost[m][i][*p2]);
321 for (p1 = &reg_class_subclasses[i][0];
322 *p1 != LIM_REG_CLASSES; p1++)
323 if (*p1 != j && contains_reg_of_mode[*p1][m])
324 cost = MAX (cost, move_cost[m][*p1][j]);
326 gcc_assert (cost <= 65535);
327 move_cost[m][i][j] = cost;
329 if (reg_class_subset_p ((enum reg_class) i, (enum reg_class) j))
330 may_move_in_cost[m][i][j] = 0;
331 else
332 may_move_in_cost[m][i][j] = cost;
334 if (reg_class_subset_p ((enum reg_class) j, (enum reg_class) i))
335 may_move_out_cost[m][i][j] = 0;
336 else
337 may_move_out_cost[m][i][j] = cost;
340 else
341 for (j = 0; j < N_REG_CLASSES; j++)
343 move_cost[m][i][j] = 65535;
344 may_move_in_cost[m][i][j] = 65535;
345 may_move_out_cost[m][i][j] = 65535;
349 /* We need to save copies of some of the register information which
350 can be munged by command-line switches so we can restore it during
351 subsequent back-end reinitialization. */
352 static char saved_fixed_regs[FIRST_PSEUDO_REGISTER];
353 static char saved_call_used_regs[FIRST_PSEUDO_REGISTER];
354 #ifdef CALL_REALLY_USED_REGISTERS
355 static char saved_call_really_used_regs[FIRST_PSEUDO_REGISTER];
356 #endif
357 static const char *saved_reg_names[FIRST_PSEUDO_REGISTER];
359 /* Save the register information. */
360 void
361 save_register_info (void)
363 /* Sanity check: make sure the target macros FIXED_REGISTERS and
364 CALL_USED_REGISTERS had the right number of initializers. */
365 gcc_assert (sizeof fixed_regs == sizeof saved_fixed_regs);
366 gcc_assert (sizeof call_used_regs == sizeof saved_call_used_regs);
367 memcpy (saved_fixed_regs, fixed_regs, sizeof fixed_regs);
368 memcpy (saved_call_used_regs, call_used_regs, sizeof call_used_regs);
370 /* Likewise for call_really_used_regs. */
371 #ifdef CALL_REALLY_USED_REGISTERS
372 gcc_assert (sizeof call_really_used_regs
373 == sizeof saved_call_really_used_regs);
374 memcpy (saved_call_really_used_regs, call_really_used_regs,
375 sizeof call_really_used_regs);
376 #endif
378 /* And similarly for reg_names. */
379 gcc_assert (sizeof reg_names == sizeof saved_reg_names);
380 memcpy (saved_reg_names, reg_names, sizeof reg_names);
383 /* Restore the register information. */
384 static void
385 restore_register_info (void)
387 memcpy (fixed_regs, saved_fixed_regs, sizeof fixed_regs);
388 memcpy (call_used_regs, saved_call_used_regs, sizeof call_used_regs);
390 #ifdef CALL_REALLY_USED_REGISTERS
391 memcpy (call_really_used_regs, saved_call_really_used_regs,
392 sizeof call_really_used_regs);
393 #endif
395 memcpy (reg_names, saved_reg_names, sizeof reg_names);
398 /* After switches have been processed, which perhaps alter
399 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
400 static void
401 init_reg_sets_1 (void)
403 unsigned int i, j;
404 unsigned int /* enum machine_mode */ m;
406 restore_register_info ();
408 #ifdef REG_ALLOC_ORDER
409 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
410 inv_reg_alloc_order[reg_alloc_order[i]] = i;
411 #endif
413 /* This macro allows the fixed or call-used registers
414 and the register classes to depend on target flags. */
416 #ifdef CONDITIONAL_REGISTER_USAGE
417 CONDITIONAL_REGISTER_USAGE;
418 #endif
420 /* Compute number of hard regs in each class. */
422 memset (reg_class_size, 0, sizeof reg_class_size);
423 for (i = 0; i < N_REG_CLASSES; i++)
424 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
425 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
426 reg_class_size[i]++;
428 /* Initialize the table of subunions.
429 reg_class_subunion[I][J] gets the largest-numbered reg-class
430 that is contained in the union of classes I and J. */
432 memset (reg_class_subunion, 0, sizeof reg_class_subunion);
433 for (i = 0; i < N_REG_CLASSES; i++)
435 for (j = 0; j < N_REG_CLASSES; j++)
437 HARD_REG_SET c;
438 int k;
440 COPY_HARD_REG_SET (c, reg_class_contents[i]);
441 IOR_HARD_REG_SET (c, reg_class_contents[j]);
442 for (k = 0; k < N_REG_CLASSES; k++)
443 if (hard_reg_set_subset_p (reg_class_contents[k], c)
444 && !hard_reg_set_subset_p (reg_class_contents[k],
445 reg_class_contents
446 [(int) reg_class_subunion[i][j]]))
447 reg_class_subunion[i][j] = (enum reg_class) k;
451 /* Initialize the table of superunions.
452 reg_class_superunion[I][J] gets the smallest-numbered reg-class
453 containing the union of classes I and J. */
455 memset (reg_class_superunion, 0, sizeof reg_class_superunion);
456 for (i = 0; i < N_REG_CLASSES; i++)
458 for (j = 0; j < N_REG_CLASSES; j++)
460 HARD_REG_SET c;
461 int k;
463 COPY_HARD_REG_SET (c, reg_class_contents[i]);
464 IOR_HARD_REG_SET (c, reg_class_contents[j]);
465 for (k = 0; k < N_REG_CLASSES; k++)
466 if (hard_reg_set_subset_p (c, reg_class_contents[k]))
467 break;
469 reg_class_superunion[i][j] = (enum reg_class) k;
473 /* Initialize the tables of subclasses and superclasses of each reg class.
474 First clear the whole table, then add the elements as they are found. */
476 for (i = 0; i < N_REG_CLASSES; i++)
478 for (j = 0; j < N_REG_CLASSES; j++)
479 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
482 for (i = 0; i < N_REG_CLASSES; i++)
484 if (i == (int) NO_REGS)
485 continue;
487 for (j = i + 1; j < N_REG_CLASSES; j++)
488 if (hard_reg_set_subset_p (reg_class_contents[i],
489 reg_class_contents[j]))
491 /* Reg class I is a subclass of J.
492 Add J to the table of superclasses of I. */
493 enum reg_class *p;
495 /* Add I to the table of superclasses of J. */
496 p = &reg_class_subclasses[j][0];
497 while (*p != LIM_REG_CLASSES) p++;
498 *p = (enum reg_class) i;
502 /* Initialize "constant" tables. */
504 CLEAR_HARD_REG_SET (fixed_reg_set);
505 CLEAR_HARD_REG_SET (call_used_reg_set);
506 CLEAR_HARD_REG_SET (call_fixed_reg_set);
507 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
508 if (!regs_invalidated_by_call_regset)
510 bitmap_obstack_initialize (&persistent_obstack);
511 regs_invalidated_by_call_regset = ALLOC_REG_SET (&persistent_obstack);
513 else
514 CLEAR_REG_SET (regs_invalidated_by_call_regset);
516 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
518 /* call_used_regs must include fixed_regs. */
519 gcc_assert (!fixed_regs[i] || call_used_regs[i]);
520 #ifdef CALL_REALLY_USED_REGISTERS
521 /* call_used_regs must include call_really_used_regs. */
522 gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
523 #endif
525 if (fixed_regs[i])
526 SET_HARD_REG_BIT (fixed_reg_set, i);
528 if (call_used_regs[i])
529 SET_HARD_REG_BIT (call_used_reg_set, i);
531 /* There are a couple of fixed registers that we know are safe to
532 exclude from being clobbered by calls:
534 The frame pointer is always preserved across calls. The arg pointer
535 is if it is fixed. The stack pointer usually is, unless
536 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
537 If we are generating PIC code, the PIC offset table register is
538 preserved across calls, though the target can override that. */
540 if (i == STACK_POINTER_REGNUM)
542 else if (global_regs[i])
544 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
545 SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
547 else if (i == FRAME_POINTER_REGNUM)
549 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
550 else if (i == HARD_FRAME_POINTER_REGNUM)
552 #endif
553 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
554 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
556 #endif
557 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
558 else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
560 #endif
561 else if (CALL_REALLY_USED_REGNO_P (i))
563 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
564 SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
568 COPY_HARD_REG_SET(call_fixed_reg_set, fixed_reg_set);
570 /* Preserve global registers if called more than once. */
571 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
573 if (global_regs[i])
575 fixed_regs[i] = call_used_regs[i] = 1;
576 SET_HARD_REG_BIT (fixed_reg_set, i);
577 SET_HARD_REG_BIT (call_used_reg_set, i);
578 SET_HARD_REG_BIT (call_fixed_reg_set, i);
582 memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
583 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
584 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
586 HARD_REG_SET ok_regs;
587 CLEAR_HARD_REG_SET (ok_regs);
588 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
589 if (!fixed_regs [j] && HARD_REGNO_MODE_OK (j, (enum machine_mode) m))
590 SET_HARD_REG_BIT (ok_regs, j);
592 for (i = 0; i < N_REG_CLASSES; i++)
593 if (((unsigned) CLASS_MAX_NREGS ((enum reg_class) i,
594 (enum machine_mode) m)
595 <= reg_class_size[i])
596 && hard_reg_set_intersect_p (ok_regs, reg_class_contents[i]))
598 contains_reg_of_mode [i][m] = 1;
599 have_regs_of_mode [m] = 1;
603 /* Reset move_cost and friends, making sure we only free shared
604 table entries once. */
605 for (i = 0; i < MAX_MACHINE_MODE; i++)
606 if (move_cost[i])
608 for (j = 0; j < i && move_cost[i] != move_cost[j]; j++)
610 if (i == j)
612 free (move_cost[i]);
613 free (may_move_in_cost[i]);
614 free (may_move_out_cost[i]);
617 memset (move_cost, 0, sizeof move_cost);
618 memset (may_move_in_cost, 0, sizeof may_move_in_cost);
619 memset (may_move_out_cost, 0, sizeof may_move_out_cost);
620 last_mode_for_init_move_cost = -1;
623 /* Compute the table of register modes.
624 These values are used to record death information for individual registers
625 (as opposed to a multi-register mode).
626 This function might be invoked more than once, if the target has support
627 for changing register usage conventions on a per-function basis.
629 void
630 init_reg_modes_target (void)
632 int i, j;
634 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
635 for (j = 0; j < MAX_MACHINE_MODE; j++)
636 hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
638 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
640 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
642 /* If we couldn't find a valid mode, just use the previous mode.
643 ??? One situation in which we need to do this is on the mips where
644 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
645 to use DF mode for the even registers and VOIDmode for the odd
646 (for the cpu models where the odd ones are inaccessible). */
647 if (reg_raw_mode[i] == VOIDmode)
648 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
652 /* Finish initializing the register sets and initialize the register modes.
653 This function might be invoked more than once, if the target has support
654 for changing register usage conventions on a per-function basis.
656 void
657 init_regs (void)
659 /* This finishes what was started by init_reg_sets, but couldn't be done
660 until after register usage was specified. */
661 init_reg_sets_1 ();
664 /* The same as previous function plus initializing IRA. */
665 void
666 reinit_regs (void)
668 init_regs ();
669 /* caller_save needs to be re-initialized. */
670 caller_save_initialized_p = false;
671 ira_init ();
674 /* Initialize some fake stack-frame MEM references for use in
675 memory_move_secondary_cost. */
676 void
677 init_fake_stack_mems (void)
679 int i;
681 for (i = 0; i < MAX_MACHINE_MODE; i++)
682 top_of_stack[i] = gen_rtx_MEM ((enum machine_mode) i, stack_pointer_rtx);
686 /* Compute extra cost of moving registers to/from memory due to reloads.
687 Only needed if secondary reloads are required for memory moves. */
689 memory_move_secondary_cost (enum machine_mode mode, enum reg_class rclass,
690 int in)
692 enum reg_class altclass;
693 int partial_cost = 0;
694 /* We need a memory reference to feed to SECONDARY... macros. */
695 /* mem may be unused even if the SECONDARY_ macros are defined. */
696 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
698 altclass = secondary_reload_class (in ? 1 : 0, rclass, mode, mem);
700 if (altclass == NO_REGS)
701 return 0;
703 if (in)
704 partial_cost = REGISTER_MOVE_COST (mode, altclass, rclass);
705 else
706 partial_cost = REGISTER_MOVE_COST (mode, rclass, altclass);
708 if (rclass == altclass)
709 /* This isn't simply a copy-to-temporary situation. Can't guess
710 what it is, so MEMORY_MOVE_COST really ought not to be calling
711 here in that case.
713 I'm tempted to put in an assert here, but returning this will
714 probably only give poor estimates, which is what we would've
715 had before this code anyways. */
716 return partial_cost;
718 /* Check if the secondary reload register will also need a
719 secondary reload. */
720 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
723 /* Return a machine mode that is legitimate for hard reg REGNO and large
724 enough to save nregs. If we can't find one, return VOIDmode.
725 If CALL_SAVED is true, only consider modes that are call saved. */
726 enum machine_mode
727 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
728 unsigned int nregs, bool call_saved)
730 unsigned int /* enum machine_mode */ m;
731 enum machine_mode found_mode = VOIDmode, mode;
733 /* We first look for the largest integer mode that can be validly
734 held in REGNO. If none, we look for the largest floating-point mode.
735 If we still didn't find a valid mode, try CCmode. */
737 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
738 mode != VOIDmode;
739 mode = GET_MODE_WIDER_MODE (mode))
740 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
741 && HARD_REGNO_MODE_OK (regno, mode)
742 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
743 found_mode = mode;
745 if (found_mode != VOIDmode)
746 return found_mode;
748 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
749 mode != VOIDmode;
750 mode = GET_MODE_WIDER_MODE (mode))
751 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
752 && HARD_REGNO_MODE_OK (regno, mode)
753 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
754 found_mode = mode;
756 if (found_mode != VOIDmode)
757 return found_mode;
759 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
760 mode != VOIDmode;
761 mode = GET_MODE_WIDER_MODE (mode))
762 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
763 && HARD_REGNO_MODE_OK (regno, mode)
764 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
765 found_mode = mode;
767 if (found_mode != VOIDmode)
768 return found_mode;
770 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
771 mode != VOIDmode;
772 mode = GET_MODE_WIDER_MODE (mode))
773 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
774 && HARD_REGNO_MODE_OK (regno, mode)
775 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
776 found_mode = mode;
778 if (found_mode != VOIDmode)
779 return found_mode;
781 /* Iterate over all of the CCmodes. */
782 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
784 mode = (enum machine_mode) m;
785 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
786 && HARD_REGNO_MODE_OK (regno, mode)
787 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
788 return mode;
791 /* We can't find a mode valid for this register. */
792 return VOIDmode;
795 /* Specify the usage characteristics of the register named NAME.
796 It should be a fixed register if FIXED and a
797 call-used register if CALL_USED. */
798 void
799 fix_register (const char *name, int fixed, int call_used)
801 int i;
803 /* Decode the name and update the primary form of
804 the register info. */
806 if ((i = decode_reg_name (name)) >= 0)
808 if ((i == STACK_POINTER_REGNUM
809 #ifdef HARD_FRAME_POINTER_REGNUM
810 || i == HARD_FRAME_POINTER_REGNUM
811 #else
812 || i == FRAME_POINTER_REGNUM
813 #endif
815 && (fixed == 0 || call_used == 0))
817 static const char * const what_option[2][2] = {
818 { "call-saved", "call-used" },
819 { "no-such-option", "fixed" }};
821 error ("can't use '%s' as a %s register", name,
822 what_option[fixed][call_used]);
824 else
826 fixed_regs[i] = fixed;
827 call_used_regs[i] = call_used;
828 #ifdef CALL_REALLY_USED_REGISTERS
829 if (fixed == 0)
830 call_really_used_regs[i] = call_used;
831 #endif
834 else
836 warning (0, "unknown register name: %s", name);
840 /* Mark register number I as global. */
841 void
842 globalize_reg (int i)
844 if (fixed_regs[i] == 0 && no_global_reg_vars)
845 error ("global register variable follows a function definition");
847 if (global_regs[i])
849 warning (0, "register used for two global register variables");
850 return;
853 if (call_used_regs[i] && ! fixed_regs[i])
854 warning (0, "call-clobbered register used for global register variable");
856 global_regs[i] = 1;
858 /* If we're globalizing the frame pointer, we need to set the
859 appropriate regs_invalidated_by_call bit, even if it's already
860 set in fixed_regs. */
861 if (i != STACK_POINTER_REGNUM)
863 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
864 SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
867 /* If already fixed, nothing else to do. */
868 if (fixed_regs[i])
869 return;
871 fixed_regs[i] = call_used_regs[i] = 1;
872 #ifdef CALL_REALLY_USED_REGISTERS
873 call_really_used_regs[i] = 1;
874 #endif
876 SET_HARD_REG_BIT (fixed_reg_set, i);
877 SET_HARD_REG_BIT (call_used_reg_set, i);
878 SET_HARD_REG_BIT (call_fixed_reg_set, i);
880 reinit_regs ();
884 /* Structure used to record preferences of given pseudo. */
885 struct reg_pref
887 /* (enum reg_class) prefclass is the preferred class. May be
888 NO_REGS if no class is better than memory. */
889 char prefclass;
891 /* altclass is a register class that we should use for allocating
892 pseudo if no register in the preferred class is available.
893 If no register in this class is available, memory is preferred.
895 It might appear to be more general to have a bitmask of classes here,
896 but since it is recommended that there be a class corresponding to the
897 union of most major pair of classes, that generality is not required. */
898 char altclass;
900 /* coverclass is a register class that IRA uses for allocating
901 the pseudo. */
902 char coverclass;
905 /* Record preferences of each pseudo. This is available after RA is
906 run. */
907 static struct reg_pref *reg_pref;
909 /* Current size of reg_info. */
910 static int reg_info_size;
912 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
913 This function is sometimes called before the info has been computed.
914 When that happens, just return GENERAL_REGS, which is innocuous. */
915 enum reg_class
916 reg_preferred_class (int regno)
918 if (reg_pref == 0)
919 return GENERAL_REGS;
921 return (enum reg_class) reg_pref[regno].prefclass;
924 enum reg_class
925 reg_alternate_class (int regno)
927 if (reg_pref == 0)
928 return ALL_REGS;
930 return (enum reg_class) reg_pref[regno].altclass;
933 /* Return the reg_class which is used by IRA for its allocation. */
934 enum reg_class
935 reg_cover_class (int regno)
937 if (reg_pref == 0)
938 return NO_REGS;
940 return (enum reg_class) reg_pref[regno].coverclass;
945 /* Allocate space for reg info. */
946 static void
947 allocate_reg_info (void)
949 reg_info_size = max_reg_num ();
950 gcc_assert (! reg_pref && ! reg_renumber);
951 reg_renumber = XNEWVEC (short, reg_info_size);
952 reg_pref = XCNEWVEC (struct reg_pref, reg_info_size);
953 memset (reg_renumber, -1, reg_info_size * sizeof (short));
957 /* Resize reg info. The new elements will be uninitialized. Return
958 TRUE if new elements (for new pseudos) were added. */
959 bool
960 resize_reg_info (void)
962 int old;
964 if (reg_pref == NULL)
966 allocate_reg_info ();
967 return true;
969 if (reg_info_size == max_reg_num ())
970 return false;
971 old = reg_info_size;
972 reg_info_size = max_reg_num ();
973 gcc_assert (reg_pref && reg_renumber);
974 reg_renumber = XRESIZEVEC (short, reg_renumber, reg_info_size);
975 reg_pref = XRESIZEVEC (struct reg_pref, reg_pref, reg_info_size);
976 memset (reg_pref + old, -1,
977 (reg_info_size - old) * sizeof (struct reg_pref));
978 memset (reg_renumber + old, -1, (reg_info_size - old) * sizeof (short));
979 return true;
983 /* Free up the space allocated by allocate_reg_info. */
984 void
985 free_reg_info (void)
987 if (reg_pref)
989 free (reg_pref);
990 reg_pref = NULL;
993 if (reg_renumber)
995 free (reg_renumber);
996 reg_renumber = NULL;
1000 /* Initialize some global data for this pass. */
1001 static unsigned int
1002 reginfo_init (void)
1004 if (df)
1005 df_compute_regs_ever_live (true);
1007 /* This prevents dump_flow_info from losing if called
1008 before reginfo is run. */
1009 reg_pref = NULL;
1010 /* No more global register variables may be declared. */
1011 no_global_reg_vars = 1;
1012 return 1;
1015 struct rtl_opt_pass pass_reginfo_init =
1018 RTL_PASS,
1019 "reginfo", /* name */
1020 NULL, /* gate */
1021 reginfo_init, /* execute */
1022 NULL, /* sub */
1023 NULL, /* next */
1024 0, /* static_pass_number */
1025 TV_NONE, /* tv_id */
1026 0, /* properties_required */
1027 0, /* properties_provided */
1028 0, /* properties_destroyed */
1029 0, /* todo_flags_start */
1030 0 /* todo_flags_finish */
1036 /* Set up preferred, alternate, and cover classes for REGNO as
1037 PREFCLASS, ALTCLASS, and COVERCLASS. */
1038 void
1039 setup_reg_classes (int regno,
1040 enum reg_class prefclass, enum reg_class altclass,
1041 enum reg_class coverclass)
1043 if (reg_pref == NULL)
1044 return;
1045 gcc_assert (reg_info_size == max_reg_num ());
1046 reg_pref[regno].prefclass = prefclass;
1047 reg_pref[regno].altclass = altclass;
1048 reg_pref[regno].coverclass = coverclass;
1052 /* This is the `regscan' pass of the compiler, run just before cse and
1053 again just before loop. It finds the first and last use of each
1054 pseudo-register. */
1056 static void reg_scan_mark_refs (rtx, rtx);
1058 void
1059 reg_scan (rtx f, unsigned int nregs ATTRIBUTE_UNUSED)
1061 rtx insn;
1063 timevar_push (TV_REG_SCAN);
1065 for (insn = f; insn; insn = NEXT_INSN (insn))
1066 if (INSN_P (insn))
1068 reg_scan_mark_refs (PATTERN (insn), insn);
1069 if (REG_NOTES (insn))
1070 reg_scan_mark_refs (REG_NOTES (insn), insn);
1073 timevar_pop (TV_REG_SCAN);
1077 /* X is the expression to scan. INSN is the insn it appears in.
1078 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
1079 We should only record information for REGs with numbers
1080 greater than or equal to MIN_REGNO. */
1081 static void
1082 reg_scan_mark_refs (rtx x, rtx insn)
1084 enum rtx_code code;
1085 rtx dest;
1086 rtx note;
1088 if (!x)
1089 return;
1090 code = GET_CODE (x);
1091 switch (code)
1093 case CONST:
1094 case CONST_INT:
1095 case CONST_DOUBLE:
1096 case CONST_FIXED:
1097 case CONST_VECTOR:
1098 case CC0:
1099 case PC:
1100 case SYMBOL_REF:
1101 case LABEL_REF:
1102 case ADDR_VEC:
1103 case ADDR_DIFF_VEC:
1104 case REG:
1105 return;
1107 case EXPR_LIST:
1108 if (XEXP (x, 0))
1109 reg_scan_mark_refs (XEXP (x, 0), insn);
1110 if (XEXP (x, 1))
1111 reg_scan_mark_refs (XEXP (x, 1), insn);
1112 break;
1114 case INSN_LIST:
1115 if (XEXP (x, 1))
1116 reg_scan_mark_refs (XEXP (x, 1), insn);
1117 break;
1119 case CLOBBER:
1120 if (MEM_P (XEXP (x, 0)))
1121 reg_scan_mark_refs (XEXP (XEXP (x, 0), 0), insn);
1122 break;
1124 case SET:
1125 /* Count a set of the destination if it is a register. */
1126 for (dest = SET_DEST (x);
1127 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
1128 || GET_CODE (dest) == ZERO_EXTEND;
1129 dest = XEXP (dest, 0))
1132 /* If this is setting a pseudo from another pseudo or the sum of a
1133 pseudo and a constant integer and the other pseudo is known to be
1134 a pointer, set the destination to be a pointer as well.
1136 Likewise if it is setting the destination from an address or from a
1137 value equivalent to an address or to the sum of an address and
1138 something else.
1140 But don't do any of this if the pseudo corresponds to a user
1141 variable since it should have already been set as a pointer based
1142 on the type. */
1144 if (REG_P (SET_DEST (x))
1145 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
1146 /* If the destination pseudo is set more than once, then other
1147 sets might not be to a pointer value (consider access to a
1148 union in two threads of control in the presence of global
1149 optimizations). So only set REG_POINTER on the destination
1150 pseudo if this is the only set of that pseudo. */
1151 && DF_REG_DEF_COUNT (REGNO (SET_DEST (x))) == 1
1152 && ! REG_USERVAR_P (SET_DEST (x))
1153 && ! REG_POINTER (SET_DEST (x))
1154 && ((REG_P (SET_SRC (x))
1155 && REG_POINTER (SET_SRC (x)))
1156 || ((GET_CODE (SET_SRC (x)) == PLUS
1157 || GET_CODE (SET_SRC (x)) == LO_SUM)
1158 && CONST_INT_P (XEXP (SET_SRC (x), 1))
1159 && REG_P (XEXP (SET_SRC (x), 0))
1160 && REG_POINTER (XEXP (SET_SRC (x), 0)))
1161 || GET_CODE (SET_SRC (x)) == CONST
1162 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
1163 || GET_CODE (SET_SRC (x)) == LABEL_REF
1164 || (GET_CODE (SET_SRC (x)) == HIGH
1165 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
1166 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
1167 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
1168 || ((GET_CODE (SET_SRC (x)) == PLUS
1169 || GET_CODE (SET_SRC (x)) == LO_SUM)
1170 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
1171 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
1172 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
1173 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
1174 && (GET_CODE (XEXP (note, 0)) == CONST
1175 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
1176 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
1177 REG_POINTER (SET_DEST (x)) = 1;
1179 /* If this is setting a register from a register or from a simple
1180 conversion of a register, propagate REG_EXPR. */
1181 if (REG_P (dest) && !REG_ATTRS (dest))
1183 rtx src = SET_SRC (x);
1185 while (GET_CODE (src) == SIGN_EXTEND
1186 || GET_CODE (src) == ZERO_EXTEND
1187 || GET_CODE (src) == TRUNCATE
1188 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
1189 src = XEXP (src, 0);
1191 set_reg_attrs_from_value (dest, src);
1194 /* ... fall through ... */
1196 default:
1198 const char *fmt = GET_RTX_FORMAT (code);
1199 int i;
1200 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1202 if (fmt[i] == 'e')
1203 reg_scan_mark_refs (XEXP (x, i), insn);
1204 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
1206 int j;
1207 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1208 reg_scan_mark_refs (XVECEXP (x, i, j), insn);
1216 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
1217 is also in C2. */
1219 reg_class_subset_p (enum reg_class c1, enum reg_class c2)
1221 return (c1 == c2
1222 || c2 == ALL_REGS
1223 || hard_reg_set_subset_p (reg_class_contents[(int) c1],
1224 reg_class_contents[(int) c2]));
1227 /* Return nonzero if there is a register that is in both C1 and C2. */
1229 reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
1231 return (c1 == c2
1232 || c1 == ALL_REGS
1233 || c2 == ALL_REGS
1234 || hard_reg_set_intersect_p (reg_class_contents[(int) c1],
1235 reg_class_contents[(int) c2]));
1240 /* Passes for keeping and updating info about modes of registers
1241 inside subregisters. */
1243 #ifdef CANNOT_CHANGE_MODE_CLASS
1245 struct subregs_of_mode_node
1247 unsigned int block;
1248 unsigned char modes[MAX_MACHINE_MODE];
1251 static htab_t subregs_of_mode;
1253 static hashval_t
1254 som_hash (const void *x)
1256 const struct subregs_of_mode_node *const a =
1257 (const struct subregs_of_mode_node *) x;
1258 return a->block;
1261 static int
1262 som_eq (const void *x, const void *y)
1264 const struct subregs_of_mode_node *const a =
1265 (const struct subregs_of_mode_node *) x;
1266 const struct subregs_of_mode_node *const b =
1267 (const struct subregs_of_mode_node *) y;
1268 return a->block == b->block;
1271 static void
1272 record_subregs_of_mode (rtx subreg)
1274 struct subregs_of_mode_node dummy, *node;
1275 enum machine_mode mode;
1276 unsigned int regno;
1277 void **slot;
1279 if (!REG_P (SUBREG_REG (subreg)))
1280 return;
1282 regno = REGNO (SUBREG_REG (subreg));
1283 mode = GET_MODE (subreg);
1285 if (regno < FIRST_PSEUDO_REGISTER)
1286 return;
1288 dummy.block = regno & -8;
1289 slot = htab_find_slot_with_hash (subregs_of_mode, &dummy,
1290 dummy.block, INSERT);
1291 node = (struct subregs_of_mode_node *) *slot;
1292 if (node == NULL)
1294 node = XCNEW (struct subregs_of_mode_node);
1295 node->block = regno & -8;
1296 *slot = node;
1299 node->modes[mode] |= 1 << (regno & 7);
1302 /* Call record_subregs_of_mode for all the subregs in X. */
1303 static void
1304 find_subregs_of_mode (rtx x)
1306 enum rtx_code code = GET_CODE (x);
1307 const char * const fmt = GET_RTX_FORMAT (code);
1308 int i;
1310 if (code == SUBREG)
1311 record_subregs_of_mode (x);
1313 /* Time for some deep diving. */
1314 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1316 if (fmt[i] == 'e')
1317 find_subregs_of_mode (XEXP (x, i));
1318 else if (fmt[i] == 'E')
1320 int j;
1321 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1322 find_subregs_of_mode (XVECEXP (x, i, j));
1327 void
1328 init_subregs_of_mode (void)
1330 basic_block bb;
1331 rtx insn;
1333 if (subregs_of_mode)
1334 htab_empty (subregs_of_mode);
1335 else
1336 subregs_of_mode = htab_create (100, som_hash, som_eq, free);
1338 FOR_EACH_BB (bb)
1339 FOR_BB_INSNS (bb, insn)
1340 if (INSN_P (insn))
1341 find_subregs_of_mode (PATTERN (insn));
1344 /* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
1345 mode. */
1346 bool
1347 invalid_mode_change_p (unsigned int regno,
1348 enum reg_class rclass ATTRIBUTE_UNUSED,
1349 enum machine_mode from)
1351 struct subregs_of_mode_node dummy, *node;
1352 unsigned int to;
1353 unsigned char mask;
1355 gcc_assert (subregs_of_mode);
1356 dummy.block = regno & -8;
1357 node = (struct subregs_of_mode_node *)
1358 htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
1359 if (node == NULL)
1360 return false;
1362 mask = 1 << (regno & 7);
1363 for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
1364 if (node->modes[to] & mask)
1365 if (CANNOT_CHANGE_MODE_CLASS (from, (enum machine_mode) to, rclass))
1366 return true;
1368 return false;
1371 void
1372 finish_subregs_of_mode (void)
1374 htab_delete (subregs_of_mode);
1375 subregs_of_mode = 0;
1377 #else
1378 void
1379 init_subregs_of_mode (void)
1382 void
1383 finish_subregs_of_mode (void)
1387 #endif /* CANNOT_CHANGE_MODE_CLASS */
1389 #include "gt-reginfo.h"