2010-05-14 Steven G. Kargl <kargl@gcc.gnu.org>
[official-gcc.git] / gcc / function.c
blob949480ca9d0826232432f2dbe05201b592032759
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
69 /* So we can assign to cfun in this file. */
70 #undef cfun
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
74 #endif
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80 give the same symbol without quotes for an alternative entry point. You
81 must define both, or neither. */
82 #ifndef NAME__MAIN
83 #define NAME__MAIN "__main"
84 #endif
86 /* Round a value to the lowest integer less than it that is a multiple of
87 the required alignment. Avoid using division in case the value is
88 negative. Assume the alignment is a power of two. */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
91 /* Similar, but round to the next highest integer that meets the
92 alignment. */
93 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
95 /* Nonzero if function being compiled doesn't contain any calls
96 (ignoring the prologue and epilogue). This is set prior to
97 local register allocation and is valid for the remaining
98 compiler passes. */
99 int current_function_is_leaf;
101 /* Nonzero if function being compiled doesn't modify the stack pointer
102 (ignoring the prologue and epilogue). This is only valid after
103 pass_stack_ptr_mod has run. */
104 int current_function_sp_is_unchanging;
106 /* Nonzero if the function being compiled is a leaf function which only
107 uses leaf registers. This is valid after reload (specifically after
108 sched2) and is useful only if the port defines LEAF_REGISTERS. */
109 int current_function_uses_only_leaf_regs;
111 /* Nonzero once virtual register instantiation has been done.
112 assign_stack_local uses frame_pointer_rtx when this is nonzero.
113 calls.c:emit_library_call_value_1 uses it to set up
114 post-instantiation libcalls. */
115 int virtuals_instantiated;
117 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
118 static GTY(()) int funcdef_no;
120 /* These variables hold pointers to functions to create and destroy
121 target specific, per-function data structures. */
122 struct machine_function * (*init_machine_status) (void);
124 /* The currently compiled function. */
125 struct function *cfun = 0;
127 /* These hashes record the prologue and epilogue insns. */
128 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
129 htab_t prologue_insn_hash;
130 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
131 htab_t epilogue_insn_hash;
134 htab_t types_used_by_vars_hash = NULL;
135 tree types_used_by_cur_var_decl = NULL;
137 /* Forward declarations. */
139 static struct temp_slot *find_temp_slot_from_address (rtx);
140 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
141 static void pad_below (struct args_size *, enum machine_mode, tree);
142 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
143 static int all_blocks (tree, tree *);
144 static tree *get_block_vector (tree, int *);
145 extern tree debug_find_var_in_block_tree (tree, tree);
146 /* We always define `record_insns' even if it's not used so that we
147 can always export `prologue_epilogue_contains'. */
148 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
149 static bool contains (const_rtx, htab_t);
150 #ifdef HAVE_return
151 static void emit_return_into_block (basic_block);
152 #endif
153 static void prepare_function_start (void);
154 static void do_clobber_return_reg (rtx, void *);
155 static void do_use_return_reg (rtx, void *);
156 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
158 /* Stack of nested functions. */
159 /* Keep track of the cfun stack. */
161 typedef struct function *function_p;
163 DEF_VEC_P(function_p);
164 DEF_VEC_ALLOC_P(function_p,heap);
165 static VEC(function_p,heap) *function_context_stack;
167 /* Save the current context for compilation of a nested function.
168 This is called from language-specific code. */
170 void
171 push_function_context (void)
173 if (cfun == 0)
174 allocate_struct_function (NULL, false);
176 VEC_safe_push (function_p, heap, function_context_stack, cfun);
177 set_cfun (NULL);
180 /* Restore the last saved context, at the end of a nested function.
181 This function is called from language-specific code. */
183 void
184 pop_function_context (void)
186 struct function *p = VEC_pop (function_p, function_context_stack);
187 set_cfun (p);
188 current_function_decl = p->decl;
190 /* Reset variables that have known state during rtx generation. */
191 virtuals_instantiated = 0;
192 generating_concat_p = 1;
195 /* Clear out all parts of the state in F that can safely be discarded
196 after the function has been parsed, but not compiled, to let
197 garbage collection reclaim the memory. */
199 void
200 free_after_parsing (struct function *f)
202 f->language = 0;
205 /* Clear out all parts of the state in F that can safely be discarded
206 after the function has been compiled, to let garbage collection
207 reclaim the memory. */
209 void
210 free_after_compilation (struct function *f)
212 prologue_insn_hash = NULL;
213 epilogue_insn_hash = NULL;
215 if (crtl->emit.regno_pointer_align)
216 free (crtl->emit.regno_pointer_align);
218 memset (crtl, 0, sizeof (struct rtl_data));
219 f->eh = NULL;
220 f->machine = NULL;
221 f->cfg = NULL;
223 regno_reg_rtx = NULL;
224 insn_locators_free ();
227 /* Return size needed for stack frame based on slots so far allocated.
228 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
229 the caller may have to do that. */
231 HOST_WIDE_INT
232 get_frame_size (void)
234 if (FRAME_GROWS_DOWNWARD)
235 return -frame_offset;
236 else
237 return frame_offset;
240 /* Issue an error message and return TRUE if frame OFFSET overflows in
241 the signed target pointer arithmetics for function FUNC. Otherwise
242 return FALSE. */
244 bool
245 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
247 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
249 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
250 /* Leave room for the fixed part of the frame. */
251 - 64 * UNITS_PER_WORD)
253 error_at (DECL_SOURCE_LOCATION (func),
254 "total size of local objects too large");
255 return TRUE;
258 return FALSE;
261 /* Return stack slot alignment in bits for TYPE and MODE. */
263 static unsigned int
264 get_stack_local_alignment (tree type, enum machine_mode mode)
266 unsigned int alignment;
268 if (mode == BLKmode)
269 alignment = BIGGEST_ALIGNMENT;
270 else
271 alignment = GET_MODE_ALIGNMENT (mode);
273 /* Allow the frond-end to (possibly) increase the alignment of this
274 stack slot. */
275 if (! type)
276 type = lang_hooks.types.type_for_mode (mode, 0);
278 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
281 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
282 with machine mode MODE.
284 ALIGN controls the amount of alignment for the address of the slot:
285 0 means according to MODE,
286 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
287 -2 means use BITS_PER_UNIT,
288 positive specifies alignment boundary in bits.
290 If REDUCE_ALIGNMENT_OK is true, it is OK to reduce alignment.
292 We do not round to stack_boundary here. */
295 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
296 int align,
297 bool reduce_alignment_ok ATTRIBUTE_UNUSED)
299 rtx x, addr;
300 int bigend_correction = 0;
301 unsigned int alignment, alignment_in_bits;
302 int frame_off, frame_alignment, frame_phase;
304 if (align == 0)
306 alignment = get_stack_local_alignment (NULL, mode);
307 alignment /= BITS_PER_UNIT;
309 else if (align == -1)
311 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
312 size = CEIL_ROUND (size, alignment);
314 else if (align == -2)
315 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
316 else
317 alignment = align / BITS_PER_UNIT;
319 alignment_in_bits = alignment * BITS_PER_UNIT;
321 if (FRAME_GROWS_DOWNWARD)
322 frame_offset -= size;
324 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
325 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
327 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
328 alignment = alignment_in_bits / BITS_PER_UNIT;
331 if (SUPPORTS_STACK_ALIGNMENT)
333 if (crtl->stack_alignment_estimated < alignment_in_bits)
335 if (!crtl->stack_realign_processed)
336 crtl->stack_alignment_estimated = alignment_in_bits;
337 else
339 /* If stack is realigned and stack alignment value
340 hasn't been finalized, it is OK not to increase
341 stack_alignment_estimated. The bigger alignment
342 requirement is recorded in stack_alignment_needed
343 below. */
344 gcc_assert (!crtl->stack_realign_finalized);
345 if (!crtl->stack_realign_needed)
347 /* It is OK to reduce the alignment as long as the
348 requested size is 0 or the estimated stack
349 alignment >= mode alignment. */
350 gcc_assert (reduce_alignment_ok
351 || size == 0
352 || (crtl->stack_alignment_estimated
353 >= GET_MODE_ALIGNMENT (mode)));
354 alignment_in_bits = crtl->stack_alignment_estimated;
355 alignment = alignment_in_bits / BITS_PER_UNIT;
361 if (crtl->stack_alignment_needed < alignment_in_bits)
362 crtl->stack_alignment_needed = alignment_in_bits;
363 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
364 crtl->max_used_stack_slot_alignment = alignment_in_bits;
366 /* Calculate how many bytes the start of local variables is off from
367 stack alignment. */
368 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
369 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
370 frame_phase = frame_off ? frame_alignment - frame_off : 0;
372 /* Round the frame offset to the specified alignment. The default is
373 to always honor requests to align the stack but a port may choose to
374 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
375 if (STACK_ALIGNMENT_NEEDED
376 || mode != BLKmode
377 || size != 0)
379 /* We must be careful here, since FRAME_OFFSET might be negative and
380 division with a negative dividend isn't as well defined as we might
381 like. So we instead assume that ALIGNMENT is a power of two and
382 use logical operations which are unambiguous. */
383 if (FRAME_GROWS_DOWNWARD)
384 frame_offset
385 = (FLOOR_ROUND (frame_offset - frame_phase,
386 (unsigned HOST_WIDE_INT) alignment)
387 + frame_phase);
388 else
389 frame_offset
390 = (CEIL_ROUND (frame_offset - frame_phase,
391 (unsigned HOST_WIDE_INT) alignment)
392 + frame_phase);
395 /* On a big-endian machine, if we are allocating more space than we will use,
396 use the least significant bytes of those that are allocated. */
397 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
398 bigend_correction = size - GET_MODE_SIZE (mode);
400 /* If we have already instantiated virtual registers, return the actual
401 address relative to the frame pointer. */
402 if (virtuals_instantiated)
403 addr = plus_constant (frame_pointer_rtx,
404 trunc_int_for_mode
405 (frame_offset + bigend_correction
406 + STARTING_FRAME_OFFSET, Pmode));
407 else
408 addr = plus_constant (virtual_stack_vars_rtx,
409 trunc_int_for_mode
410 (frame_offset + bigend_correction,
411 Pmode));
413 if (!FRAME_GROWS_DOWNWARD)
414 frame_offset += size;
416 x = gen_rtx_MEM (mode, addr);
417 set_mem_align (x, alignment_in_bits);
418 MEM_NOTRAP_P (x) = 1;
420 stack_slot_list
421 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
423 if (frame_offset_overflow (frame_offset, current_function_decl))
424 frame_offset = 0;
426 return x;
429 /* Wrap up assign_stack_local_1 with last parameter as false. */
432 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
434 return assign_stack_local_1 (mode, size, align, false);
438 /* In order to evaluate some expressions, such as function calls returning
439 structures in memory, we need to temporarily allocate stack locations.
440 We record each allocated temporary in the following structure.
442 Associated with each temporary slot is a nesting level. When we pop up
443 one level, all temporaries associated with the previous level are freed.
444 Normally, all temporaries are freed after the execution of the statement
445 in which they were created. However, if we are inside a ({...}) grouping,
446 the result may be in a temporary and hence must be preserved. If the
447 result could be in a temporary, we preserve it if we can determine which
448 one it is in. If we cannot determine which temporary may contain the
449 result, all temporaries are preserved. A temporary is preserved by
450 pretending it was allocated at the previous nesting level.
452 Automatic variables are also assigned temporary slots, at the nesting
453 level where they are defined. They are marked a "kept" so that
454 free_temp_slots will not free them. */
456 struct GTY(()) temp_slot {
457 /* Points to next temporary slot. */
458 struct temp_slot *next;
459 /* Points to previous temporary slot. */
460 struct temp_slot *prev;
461 /* The rtx to used to reference the slot. */
462 rtx slot;
463 /* The size, in units, of the slot. */
464 HOST_WIDE_INT size;
465 /* The type of the object in the slot, or zero if it doesn't correspond
466 to a type. We use this to determine whether a slot can be reused.
467 It can be reused if objects of the type of the new slot will always
468 conflict with objects of the type of the old slot. */
469 tree type;
470 /* The alignment (in bits) of the slot. */
471 unsigned int align;
472 /* Nonzero if this temporary is currently in use. */
473 char in_use;
474 /* Nonzero if this temporary has its address taken. */
475 char addr_taken;
476 /* Nesting level at which this slot is being used. */
477 int level;
478 /* Nonzero if this should survive a call to free_temp_slots. */
479 int keep;
480 /* The offset of the slot from the frame_pointer, including extra space
481 for alignment. This info is for combine_temp_slots. */
482 HOST_WIDE_INT base_offset;
483 /* The size of the slot, including extra space for alignment. This
484 info is for combine_temp_slots. */
485 HOST_WIDE_INT full_size;
488 /* A table of addresses that represent a stack slot. The table is a mapping
489 from address RTXen to a temp slot. */
490 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
492 /* Entry for the above hash table. */
493 struct GTY(()) temp_slot_address_entry {
494 hashval_t hash;
495 rtx address;
496 struct temp_slot *temp_slot;
499 /* Removes temporary slot TEMP from LIST. */
501 static void
502 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
504 if (temp->next)
505 temp->next->prev = temp->prev;
506 if (temp->prev)
507 temp->prev->next = temp->next;
508 else
509 *list = temp->next;
511 temp->prev = temp->next = NULL;
514 /* Inserts temporary slot TEMP to LIST. */
516 static void
517 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
519 temp->next = *list;
520 if (*list)
521 (*list)->prev = temp;
522 temp->prev = NULL;
523 *list = temp;
526 /* Returns the list of used temp slots at LEVEL. */
528 static struct temp_slot **
529 temp_slots_at_level (int level)
531 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
532 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
534 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
537 /* Returns the maximal temporary slot level. */
539 static int
540 max_slot_level (void)
542 if (!used_temp_slots)
543 return -1;
545 return VEC_length (temp_slot_p, used_temp_slots) - 1;
548 /* Moves temporary slot TEMP to LEVEL. */
550 static void
551 move_slot_to_level (struct temp_slot *temp, int level)
553 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
554 insert_slot_to_list (temp, temp_slots_at_level (level));
555 temp->level = level;
558 /* Make temporary slot TEMP available. */
560 static void
561 make_slot_available (struct temp_slot *temp)
563 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
564 insert_slot_to_list (temp, &avail_temp_slots);
565 temp->in_use = 0;
566 temp->level = -1;
569 /* Compute the hash value for an address -> temp slot mapping.
570 The value is cached on the mapping entry. */
571 static hashval_t
572 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
574 int do_not_record = 0;
575 return hash_rtx (t->address, GET_MODE (t->address),
576 &do_not_record, NULL, false);
579 /* Return the hash value for an address -> temp slot mapping. */
580 static hashval_t
581 temp_slot_address_hash (const void *p)
583 const struct temp_slot_address_entry *t;
584 t = (const struct temp_slot_address_entry *) p;
585 return t->hash;
588 /* Compare two address -> temp slot mapping entries. */
589 static int
590 temp_slot_address_eq (const void *p1, const void *p2)
592 const struct temp_slot_address_entry *t1, *t2;
593 t1 = (const struct temp_slot_address_entry *) p1;
594 t2 = (const struct temp_slot_address_entry *) p2;
595 return exp_equiv_p (t1->address, t2->address, 0, true);
598 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
599 static void
600 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
602 void **slot;
603 struct temp_slot_address_entry *t = GGC_NEW (struct temp_slot_address_entry);
604 t->address = address;
605 t->temp_slot = temp_slot;
606 t->hash = temp_slot_address_compute_hash (t);
607 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
608 *slot = t;
611 /* Remove an address -> temp slot mapping entry if the temp slot is
612 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
613 static int
614 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
616 const struct temp_slot_address_entry *t;
617 t = (const struct temp_slot_address_entry *) *slot;
618 if (! t->temp_slot->in_use)
619 *slot = NULL;
620 return 1;
623 /* Remove all mappings of addresses to unused temp slots. */
624 static void
625 remove_unused_temp_slot_addresses (void)
627 htab_traverse (temp_slot_address_table,
628 remove_unused_temp_slot_addresses_1,
629 NULL);
632 /* Find the temp slot corresponding to the object at address X. */
634 static struct temp_slot *
635 find_temp_slot_from_address (rtx x)
637 struct temp_slot *p;
638 struct temp_slot_address_entry tmp, *t;
640 /* First try the easy way:
641 See if X exists in the address -> temp slot mapping. */
642 tmp.address = x;
643 tmp.temp_slot = NULL;
644 tmp.hash = temp_slot_address_compute_hash (&tmp);
645 t = (struct temp_slot_address_entry *)
646 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
647 if (t)
648 return t->temp_slot;
650 /* If we have a sum involving a register, see if it points to a temp
651 slot. */
652 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
653 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
654 return p;
655 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
656 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
657 return p;
659 /* Last resort: Address is a virtual stack var address. */
660 if (GET_CODE (x) == PLUS
661 && XEXP (x, 0) == virtual_stack_vars_rtx
662 && CONST_INT_P (XEXP (x, 1)))
664 int i;
665 for (i = max_slot_level (); i >= 0; i--)
666 for (p = *temp_slots_at_level (i); p; p = p->next)
668 if (INTVAL (XEXP (x, 1)) >= p->base_offset
669 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
670 return p;
674 return NULL;
677 /* Allocate a temporary stack slot and record it for possible later
678 reuse.
680 MODE is the machine mode to be given to the returned rtx.
682 SIZE is the size in units of the space required. We do no rounding here
683 since assign_stack_local will do any required rounding.
685 KEEP is 1 if this slot is to be retained after a call to
686 free_temp_slots. Automatic variables for a block are allocated
687 with this flag. KEEP values of 2 or 3 were needed respectively
688 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
689 or for SAVE_EXPRs, but they are now unused.
691 TYPE is the type that will be used for the stack slot. */
694 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
695 int keep, tree type)
697 unsigned int align;
698 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
699 rtx slot;
701 /* If SIZE is -1 it means that somebody tried to allocate a temporary
702 of a variable size. */
703 gcc_assert (size != -1);
705 /* These are now unused. */
706 gcc_assert (keep <= 1);
708 align = get_stack_local_alignment (type, mode);
710 /* Try to find an available, already-allocated temporary of the proper
711 mode which meets the size and alignment requirements. Choose the
712 smallest one with the closest alignment.
714 If assign_stack_temp is called outside of the tree->rtl expansion,
715 we cannot reuse the stack slots (that may still refer to
716 VIRTUAL_STACK_VARS_REGNUM). */
717 if (!virtuals_instantiated)
719 for (p = avail_temp_slots; p; p = p->next)
721 if (p->align >= align && p->size >= size
722 && GET_MODE (p->slot) == mode
723 && objects_must_conflict_p (p->type, type)
724 && (best_p == 0 || best_p->size > p->size
725 || (best_p->size == p->size && best_p->align > p->align)))
727 if (p->align == align && p->size == size)
729 selected = p;
730 cut_slot_from_list (selected, &avail_temp_slots);
731 best_p = 0;
732 break;
734 best_p = p;
739 /* Make our best, if any, the one to use. */
740 if (best_p)
742 selected = best_p;
743 cut_slot_from_list (selected, &avail_temp_slots);
745 /* If there are enough aligned bytes left over, make them into a new
746 temp_slot so that the extra bytes don't get wasted. Do this only
747 for BLKmode slots, so that we can be sure of the alignment. */
748 if (GET_MODE (best_p->slot) == BLKmode)
750 int alignment = best_p->align / BITS_PER_UNIT;
751 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
753 if (best_p->size - rounded_size >= alignment)
755 p = GGC_NEW (struct temp_slot);
756 p->in_use = p->addr_taken = 0;
757 p->size = best_p->size - rounded_size;
758 p->base_offset = best_p->base_offset + rounded_size;
759 p->full_size = best_p->full_size - rounded_size;
760 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
761 p->align = best_p->align;
762 p->type = best_p->type;
763 insert_slot_to_list (p, &avail_temp_slots);
765 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
766 stack_slot_list);
768 best_p->size = rounded_size;
769 best_p->full_size = rounded_size;
774 /* If we still didn't find one, make a new temporary. */
775 if (selected == 0)
777 HOST_WIDE_INT frame_offset_old = frame_offset;
779 p = GGC_NEW (struct temp_slot);
781 /* We are passing an explicit alignment request to assign_stack_local.
782 One side effect of that is assign_stack_local will not round SIZE
783 to ensure the frame offset remains suitably aligned.
785 So for requests which depended on the rounding of SIZE, we go ahead
786 and round it now. We also make sure ALIGNMENT is at least
787 BIGGEST_ALIGNMENT. */
788 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
789 p->slot = assign_stack_local (mode,
790 (mode == BLKmode
791 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
792 : size),
793 align);
795 p->align = align;
797 /* The following slot size computation is necessary because we don't
798 know the actual size of the temporary slot until assign_stack_local
799 has performed all the frame alignment and size rounding for the
800 requested temporary. Note that extra space added for alignment
801 can be either above or below this stack slot depending on which
802 way the frame grows. We include the extra space if and only if it
803 is above this slot. */
804 if (FRAME_GROWS_DOWNWARD)
805 p->size = frame_offset_old - frame_offset;
806 else
807 p->size = size;
809 /* Now define the fields used by combine_temp_slots. */
810 if (FRAME_GROWS_DOWNWARD)
812 p->base_offset = frame_offset;
813 p->full_size = frame_offset_old - frame_offset;
815 else
817 p->base_offset = frame_offset_old;
818 p->full_size = frame_offset - frame_offset_old;
821 selected = p;
824 p = selected;
825 p->in_use = 1;
826 p->addr_taken = 0;
827 p->type = type;
828 p->level = temp_slot_level;
829 p->keep = keep;
831 pp = temp_slots_at_level (p->level);
832 insert_slot_to_list (p, pp);
833 insert_temp_slot_address (XEXP (p->slot, 0), p);
835 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
836 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
837 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
839 /* If we know the alias set for the memory that will be used, use
840 it. If there's no TYPE, then we don't know anything about the
841 alias set for the memory. */
842 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
843 set_mem_align (slot, align);
845 /* If a type is specified, set the relevant flags. */
846 if (type != 0)
848 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
849 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
850 || TREE_CODE (type) == COMPLEX_TYPE));
852 MEM_NOTRAP_P (slot) = 1;
854 return slot;
857 /* Allocate a temporary stack slot and record it for possible later
858 reuse. First three arguments are same as in preceding function. */
861 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
863 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
866 /* Assign a temporary.
867 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
868 and so that should be used in error messages. In either case, we
869 allocate of the given type.
870 KEEP is as for assign_stack_temp.
871 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
872 it is 0 if a register is OK.
873 DONT_PROMOTE is 1 if we should not promote values in register
874 to wider modes. */
877 assign_temp (tree type_or_decl, int keep, int memory_required,
878 int dont_promote ATTRIBUTE_UNUSED)
880 tree type, decl;
881 enum machine_mode mode;
882 #ifdef PROMOTE_MODE
883 int unsignedp;
884 #endif
886 if (DECL_P (type_or_decl))
887 decl = type_or_decl, type = TREE_TYPE (decl);
888 else
889 decl = NULL, type = type_or_decl;
891 mode = TYPE_MODE (type);
892 #ifdef PROMOTE_MODE
893 unsignedp = TYPE_UNSIGNED (type);
894 #endif
896 if (mode == BLKmode || memory_required)
898 HOST_WIDE_INT size = int_size_in_bytes (type);
899 rtx tmp;
901 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
902 problems with allocating the stack space. */
903 if (size == 0)
904 size = 1;
906 /* Unfortunately, we don't yet know how to allocate variable-sized
907 temporaries. However, sometimes we can find a fixed upper limit on
908 the size, so try that instead. */
909 else if (size == -1)
910 size = max_int_size_in_bytes (type);
912 /* The size of the temporary may be too large to fit into an integer. */
913 /* ??? Not sure this should happen except for user silliness, so limit
914 this to things that aren't compiler-generated temporaries. The
915 rest of the time we'll die in assign_stack_temp_for_type. */
916 if (decl && size == -1
917 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
919 error ("size of variable %q+D is too large", decl);
920 size = 1;
923 tmp = assign_stack_temp_for_type (mode, size, keep, type);
924 return tmp;
927 #ifdef PROMOTE_MODE
928 if (! dont_promote)
929 mode = promote_mode (type, mode, &unsignedp);
930 #endif
932 return gen_reg_rtx (mode);
935 /* Combine temporary stack slots which are adjacent on the stack.
937 This allows for better use of already allocated stack space. This is only
938 done for BLKmode slots because we can be sure that we won't have alignment
939 problems in this case. */
941 static void
942 combine_temp_slots (void)
944 struct temp_slot *p, *q, *next, *next_q;
945 int num_slots;
947 /* We can't combine slots, because the information about which slot
948 is in which alias set will be lost. */
949 if (flag_strict_aliasing)
950 return;
952 /* If there are a lot of temp slots, don't do anything unless
953 high levels of optimization. */
954 if (! flag_expensive_optimizations)
955 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
956 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
957 return;
959 for (p = avail_temp_slots; p; p = next)
961 int delete_p = 0;
963 next = p->next;
965 if (GET_MODE (p->slot) != BLKmode)
966 continue;
968 for (q = p->next; q; q = next_q)
970 int delete_q = 0;
972 next_q = q->next;
974 if (GET_MODE (q->slot) != BLKmode)
975 continue;
977 if (p->base_offset + p->full_size == q->base_offset)
979 /* Q comes after P; combine Q into P. */
980 p->size += q->size;
981 p->full_size += q->full_size;
982 delete_q = 1;
984 else if (q->base_offset + q->full_size == p->base_offset)
986 /* P comes after Q; combine P into Q. */
987 q->size += p->size;
988 q->full_size += p->full_size;
989 delete_p = 1;
990 break;
992 if (delete_q)
993 cut_slot_from_list (q, &avail_temp_slots);
996 /* Either delete P or advance past it. */
997 if (delete_p)
998 cut_slot_from_list (p, &avail_temp_slots);
1002 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1003 slot that previously was known by OLD_RTX. */
1005 void
1006 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1008 struct temp_slot *p;
1010 if (rtx_equal_p (old_rtx, new_rtx))
1011 return;
1013 p = find_temp_slot_from_address (old_rtx);
1015 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1016 NEW_RTX is a register, see if one operand of the PLUS is a
1017 temporary location. If so, NEW_RTX points into it. Otherwise,
1018 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1019 in common between them. If so, try a recursive call on those
1020 values. */
1021 if (p == 0)
1023 if (GET_CODE (old_rtx) != PLUS)
1024 return;
1026 if (REG_P (new_rtx))
1028 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1029 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1030 return;
1032 else if (GET_CODE (new_rtx) != PLUS)
1033 return;
1035 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1036 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1037 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1038 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1039 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1040 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1041 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1042 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1044 return;
1047 /* Otherwise add an alias for the temp's address. */
1048 insert_temp_slot_address (new_rtx, p);
1051 /* If X could be a reference to a temporary slot, mark the fact that its
1052 address was taken. */
1054 void
1055 mark_temp_addr_taken (rtx x)
1057 struct temp_slot *p;
1059 if (x == 0)
1060 return;
1062 /* If X is not in memory or is at a constant address, it cannot be in
1063 a temporary slot. */
1064 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1065 return;
1067 p = find_temp_slot_from_address (XEXP (x, 0));
1068 if (p != 0)
1069 p->addr_taken = 1;
1072 /* If X could be a reference to a temporary slot, mark that slot as
1073 belonging to the to one level higher than the current level. If X
1074 matched one of our slots, just mark that one. Otherwise, we can't
1075 easily predict which it is, so upgrade all of them. Kept slots
1076 need not be touched.
1078 This is called when an ({...}) construct occurs and a statement
1079 returns a value in memory. */
1081 void
1082 preserve_temp_slots (rtx x)
1084 struct temp_slot *p = 0, *next;
1086 /* If there is no result, we still might have some objects whose address
1087 were taken, so we need to make sure they stay around. */
1088 if (x == 0)
1090 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1092 next = p->next;
1094 if (p->addr_taken)
1095 move_slot_to_level (p, temp_slot_level - 1);
1098 return;
1101 /* If X is a register that is being used as a pointer, see if we have
1102 a temporary slot we know it points to. To be consistent with
1103 the code below, we really should preserve all non-kept slots
1104 if we can't find a match, but that seems to be much too costly. */
1105 if (REG_P (x) && REG_POINTER (x))
1106 p = find_temp_slot_from_address (x);
1108 /* If X is not in memory or is at a constant address, it cannot be in
1109 a temporary slot, but it can contain something whose address was
1110 taken. */
1111 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1113 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1115 next = p->next;
1117 if (p->addr_taken)
1118 move_slot_to_level (p, temp_slot_level - 1);
1121 return;
1124 /* First see if we can find a match. */
1125 if (p == 0)
1126 p = find_temp_slot_from_address (XEXP (x, 0));
1128 if (p != 0)
1130 /* Move everything at our level whose address was taken to our new
1131 level in case we used its address. */
1132 struct temp_slot *q;
1134 if (p->level == temp_slot_level)
1136 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1138 next = q->next;
1140 if (p != q && q->addr_taken)
1141 move_slot_to_level (q, temp_slot_level - 1);
1144 move_slot_to_level (p, temp_slot_level - 1);
1145 p->addr_taken = 0;
1147 return;
1150 /* Otherwise, preserve all non-kept slots at this level. */
1151 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1153 next = p->next;
1155 if (!p->keep)
1156 move_slot_to_level (p, temp_slot_level - 1);
1160 /* Free all temporaries used so far. This is normally called at the
1161 end of generating code for a statement. */
1163 void
1164 free_temp_slots (void)
1166 struct temp_slot *p, *next;
1167 bool some_available = false;
1169 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1171 next = p->next;
1173 if (!p->keep)
1175 make_slot_available (p);
1176 some_available = true;
1180 if (some_available)
1182 remove_unused_temp_slot_addresses ();
1183 combine_temp_slots ();
1187 /* Push deeper into the nesting level for stack temporaries. */
1189 void
1190 push_temp_slots (void)
1192 temp_slot_level++;
1195 /* Pop a temporary nesting level. All slots in use in the current level
1196 are freed. */
1198 void
1199 pop_temp_slots (void)
1201 struct temp_slot *p, *next;
1202 bool some_available = false;
1204 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1206 next = p->next;
1207 make_slot_available (p);
1208 some_available = true;
1211 if (some_available)
1213 remove_unused_temp_slot_addresses ();
1214 combine_temp_slots ();
1217 temp_slot_level--;
1220 /* Initialize temporary slots. */
1222 void
1223 init_temp_slots (void)
1225 /* We have not allocated any temporaries yet. */
1226 avail_temp_slots = 0;
1227 used_temp_slots = 0;
1228 temp_slot_level = 0;
1230 /* Set up the table to map addresses to temp slots. */
1231 if (! temp_slot_address_table)
1232 temp_slot_address_table = htab_create_ggc (32,
1233 temp_slot_address_hash,
1234 temp_slot_address_eq,
1235 NULL);
1236 else
1237 htab_empty (temp_slot_address_table);
1240 /* These routines are responsible for converting virtual register references
1241 to the actual hard register references once RTL generation is complete.
1243 The following four variables are used for communication between the
1244 routines. They contain the offsets of the virtual registers from their
1245 respective hard registers. */
1247 static int in_arg_offset;
1248 static int var_offset;
1249 static int dynamic_offset;
1250 static int out_arg_offset;
1251 static int cfa_offset;
1253 /* In most machines, the stack pointer register is equivalent to the bottom
1254 of the stack. */
1256 #ifndef STACK_POINTER_OFFSET
1257 #define STACK_POINTER_OFFSET 0
1258 #endif
1260 /* If not defined, pick an appropriate default for the offset of dynamically
1261 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1262 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1264 #ifndef STACK_DYNAMIC_OFFSET
1266 /* The bottom of the stack points to the actual arguments. If
1267 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1268 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1269 stack space for register parameters is not pushed by the caller, but
1270 rather part of the fixed stack areas and hence not included in
1271 `crtl->outgoing_args_size'. Nevertheless, we must allow
1272 for it when allocating stack dynamic objects. */
1274 #if defined(REG_PARM_STACK_SPACE)
1275 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1276 ((ACCUMULATE_OUTGOING_ARGS \
1277 ? (crtl->outgoing_args_size \
1278 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1279 : REG_PARM_STACK_SPACE (FNDECL))) \
1280 : 0) + (STACK_POINTER_OFFSET))
1281 #else
1282 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1283 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1284 + (STACK_POINTER_OFFSET))
1285 #endif
1286 #endif
1289 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1290 is a virtual register, return the equivalent hard register and set the
1291 offset indirectly through the pointer. Otherwise, return 0. */
1293 static rtx
1294 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1296 rtx new_rtx;
1297 HOST_WIDE_INT offset;
1299 if (x == virtual_incoming_args_rtx)
1301 if (stack_realign_drap)
1303 /* Replace virtual_incoming_args_rtx with internal arg
1304 pointer if DRAP is used to realign stack. */
1305 new_rtx = crtl->args.internal_arg_pointer;
1306 offset = 0;
1308 else
1309 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1311 else if (x == virtual_stack_vars_rtx)
1312 new_rtx = frame_pointer_rtx, offset = var_offset;
1313 else if (x == virtual_stack_dynamic_rtx)
1314 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1315 else if (x == virtual_outgoing_args_rtx)
1316 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1317 else if (x == virtual_cfa_rtx)
1319 #ifdef FRAME_POINTER_CFA_OFFSET
1320 new_rtx = frame_pointer_rtx;
1321 #else
1322 new_rtx = arg_pointer_rtx;
1323 #endif
1324 offset = cfa_offset;
1326 else
1327 return NULL_RTX;
1329 *poffset = offset;
1330 return new_rtx;
1333 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1334 Instantiate any virtual registers present inside of *LOC. The expression
1335 is simplified, as much as possible, but is not to be considered "valid"
1336 in any sense implied by the target. If any change is made, set CHANGED
1337 to true. */
1339 static int
1340 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1342 HOST_WIDE_INT offset;
1343 bool *changed = (bool *) data;
1344 rtx x, new_rtx;
1346 x = *loc;
1347 if (x == 0)
1348 return 0;
1350 switch (GET_CODE (x))
1352 case REG:
1353 new_rtx = instantiate_new_reg (x, &offset);
1354 if (new_rtx)
1356 *loc = plus_constant (new_rtx, offset);
1357 if (changed)
1358 *changed = true;
1360 return -1;
1362 case PLUS:
1363 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1364 if (new_rtx)
1366 new_rtx = plus_constant (new_rtx, offset);
1367 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1368 if (changed)
1369 *changed = true;
1370 return -1;
1373 /* FIXME -- from old code */
1374 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1375 we can commute the PLUS and SUBREG because pointers into the
1376 frame are well-behaved. */
1377 break;
1379 default:
1380 break;
1383 return 0;
1386 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1387 matches the predicate for insn CODE operand OPERAND. */
1389 static int
1390 safe_insn_predicate (int code, int operand, rtx x)
1392 const struct insn_operand_data *op_data;
1394 if (code < 0)
1395 return true;
1397 op_data = &insn_data[code].operand[operand];
1398 if (op_data->predicate == NULL)
1399 return true;
1401 return op_data->predicate (x, op_data->mode);
1404 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1405 registers present inside of insn. The result will be a valid insn. */
1407 static void
1408 instantiate_virtual_regs_in_insn (rtx insn)
1410 HOST_WIDE_INT offset;
1411 int insn_code, i;
1412 bool any_change = false;
1413 rtx set, new_rtx, x, seq;
1415 /* There are some special cases to be handled first. */
1416 set = single_set (insn);
1417 if (set)
1419 /* We're allowed to assign to a virtual register. This is interpreted
1420 to mean that the underlying register gets assigned the inverse
1421 transformation. This is used, for example, in the handling of
1422 non-local gotos. */
1423 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1424 if (new_rtx)
1426 start_sequence ();
1428 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1429 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1430 GEN_INT (-offset));
1431 x = force_operand (x, new_rtx);
1432 if (x != new_rtx)
1433 emit_move_insn (new_rtx, x);
1435 seq = get_insns ();
1436 end_sequence ();
1438 emit_insn_before (seq, insn);
1439 delete_insn (insn);
1440 return;
1443 /* Handle a straight copy from a virtual register by generating a
1444 new add insn. The difference between this and falling through
1445 to the generic case is avoiding a new pseudo and eliminating a
1446 move insn in the initial rtl stream. */
1447 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1448 if (new_rtx && offset != 0
1449 && REG_P (SET_DEST (set))
1450 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1452 start_sequence ();
1454 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1455 new_rtx, GEN_INT (offset), SET_DEST (set),
1456 1, OPTAB_LIB_WIDEN);
1457 if (x != SET_DEST (set))
1458 emit_move_insn (SET_DEST (set), x);
1460 seq = get_insns ();
1461 end_sequence ();
1463 emit_insn_before (seq, insn);
1464 delete_insn (insn);
1465 return;
1468 extract_insn (insn);
1469 insn_code = INSN_CODE (insn);
1471 /* Handle a plus involving a virtual register by determining if the
1472 operands remain valid if they're modified in place. */
1473 if (GET_CODE (SET_SRC (set)) == PLUS
1474 && recog_data.n_operands >= 3
1475 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1476 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1477 && CONST_INT_P (recog_data.operand[2])
1478 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1480 offset += INTVAL (recog_data.operand[2]);
1482 /* If the sum is zero, then replace with a plain move. */
1483 if (offset == 0
1484 && REG_P (SET_DEST (set))
1485 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1487 start_sequence ();
1488 emit_move_insn (SET_DEST (set), new_rtx);
1489 seq = get_insns ();
1490 end_sequence ();
1492 emit_insn_before (seq, insn);
1493 delete_insn (insn);
1494 return;
1497 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1499 /* Using validate_change and apply_change_group here leaves
1500 recog_data in an invalid state. Since we know exactly what
1501 we want to check, do those two by hand. */
1502 if (safe_insn_predicate (insn_code, 1, new_rtx)
1503 && safe_insn_predicate (insn_code, 2, x))
1505 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1506 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1507 any_change = true;
1509 /* Fall through into the regular operand fixup loop in
1510 order to take care of operands other than 1 and 2. */
1514 else
1516 extract_insn (insn);
1517 insn_code = INSN_CODE (insn);
1520 /* In the general case, we expect virtual registers to appear only in
1521 operands, and then only as either bare registers or inside memories. */
1522 for (i = 0; i < recog_data.n_operands; ++i)
1524 x = recog_data.operand[i];
1525 switch (GET_CODE (x))
1527 case MEM:
1529 rtx addr = XEXP (x, 0);
1530 bool changed = false;
1532 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1533 if (!changed)
1534 continue;
1536 start_sequence ();
1537 x = replace_equiv_address (x, addr);
1538 /* It may happen that the address with the virtual reg
1539 was valid (e.g. based on the virtual stack reg, which might
1540 be acceptable to the predicates with all offsets), whereas
1541 the address now isn't anymore, for instance when the address
1542 is still offsetted, but the base reg isn't virtual-stack-reg
1543 anymore. Below we would do a force_reg on the whole operand,
1544 but this insn might actually only accept memory. Hence,
1545 before doing that last resort, try to reload the address into
1546 a register, so this operand stays a MEM. */
1547 if (!safe_insn_predicate (insn_code, i, x))
1549 addr = force_reg (GET_MODE (addr), addr);
1550 x = replace_equiv_address (x, addr);
1552 seq = get_insns ();
1553 end_sequence ();
1554 if (seq)
1555 emit_insn_before (seq, insn);
1557 break;
1559 case REG:
1560 new_rtx = instantiate_new_reg (x, &offset);
1561 if (new_rtx == NULL)
1562 continue;
1563 if (offset == 0)
1564 x = new_rtx;
1565 else
1567 start_sequence ();
1569 /* Careful, special mode predicates may have stuff in
1570 insn_data[insn_code].operand[i].mode that isn't useful
1571 to us for computing a new value. */
1572 /* ??? Recognize address_operand and/or "p" constraints
1573 to see if (plus new offset) is a valid before we put
1574 this through expand_simple_binop. */
1575 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1576 GEN_INT (offset), NULL_RTX,
1577 1, OPTAB_LIB_WIDEN);
1578 seq = get_insns ();
1579 end_sequence ();
1580 emit_insn_before (seq, insn);
1582 break;
1584 case SUBREG:
1585 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1586 if (new_rtx == NULL)
1587 continue;
1588 if (offset != 0)
1590 start_sequence ();
1591 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1592 GEN_INT (offset), NULL_RTX,
1593 1, OPTAB_LIB_WIDEN);
1594 seq = get_insns ();
1595 end_sequence ();
1596 emit_insn_before (seq, insn);
1598 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1599 GET_MODE (new_rtx), SUBREG_BYTE (x));
1600 gcc_assert (x);
1601 break;
1603 default:
1604 continue;
1607 /* At this point, X contains the new value for the operand.
1608 Validate the new value vs the insn predicate. Note that
1609 asm insns will have insn_code -1 here. */
1610 if (!safe_insn_predicate (insn_code, i, x))
1612 start_sequence ();
1613 if (REG_P (x))
1615 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1616 x = copy_to_reg (x);
1618 else
1619 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1620 seq = get_insns ();
1621 end_sequence ();
1622 if (seq)
1623 emit_insn_before (seq, insn);
1626 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1627 any_change = true;
1630 if (any_change)
1632 /* Propagate operand changes into the duplicates. */
1633 for (i = 0; i < recog_data.n_dups; ++i)
1634 *recog_data.dup_loc[i]
1635 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1637 /* Force re-recognition of the instruction for validation. */
1638 INSN_CODE (insn) = -1;
1641 if (asm_noperands (PATTERN (insn)) >= 0)
1643 if (!check_asm_operands (PATTERN (insn)))
1645 error_for_asm (insn, "impossible constraint in %<asm%>");
1646 delete_insn (insn);
1649 else
1651 if (recog_memoized (insn) < 0)
1652 fatal_insn_not_found (insn);
1656 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1657 do any instantiation required. */
1659 void
1660 instantiate_decl_rtl (rtx x)
1662 rtx addr;
1664 if (x == 0)
1665 return;
1667 /* If this is a CONCAT, recurse for the pieces. */
1668 if (GET_CODE (x) == CONCAT)
1670 instantiate_decl_rtl (XEXP (x, 0));
1671 instantiate_decl_rtl (XEXP (x, 1));
1672 return;
1675 /* If this is not a MEM, no need to do anything. Similarly if the
1676 address is a constant or a register that is not a virtual register. */
1677 if (!MEM_P (x))
1678 return;
1680 addr = XEXP (x, 0);
1681 if (CONSTANT_P (addr)
1682 || (REG_P (addr)
1683 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1684 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1685 return;
1687 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1690 /* Helper for instantiate_decls called via walk_tree: Process all decls
1691 in the given DECL_VALUE_EXPR. */
1693 static tree
1694 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1696 tree t = *tp;
1697 if (! EXPR_P (t))
1699 *walk_subtrees = 0;
1700 if (DECL_P (t) && DECL_RTL_SET_P (t))
1701 instantiate_decl_rtl (DECL_RTL (t));
1703 return NULL;
1706 /* Subroutine of instantiate_decls: Process all decls in the given
1707 BLOCK node and all its subblocks. */
1709 static void
1710 instantiate_decls_1 (tree let)
1712 tree t;
1714 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1716 if (DECL_RTL_SET_P (t))
1717 instantiate_decl_rtl (DECL_RTL (t));
1718 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1720 tree v = DECL_VALUE_EXPR (t);
1721 walk_tree (&v, instantiate_expr, NULL, NULL);
1725 /* Process all subblocks. */
1726 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1727 instantiate_decls_1 (t);
1730 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1731 all virtual registers in their DECL_RTL's. */
1733 static void
1734 instantiate_decls (tree fndecl)
1736 tree decl, t, next;
1738 /* Process all parameters of the function. */
1739 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1741 instantiate_decl_rtl (DECL_RTL (decl));
1742 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1743 if (DECL_HAS_VALUE_EXPR_P (decl))
1745 tree v = DECL_VALUE_EXPR (decl);
1746 walk_tree (&v, instantiate_expr, NULL, NULL);
1750 /* Now process all variables defined in the function or its subblocks. */
1751 instantiate_decls_1 (DECL_INITIAL (fndecl));
1753 t = cfun->local_decls;
1754 cfun->local_decls = NULL_TREE;
1755 for (; t; t = next)
1757 next = TREE_CHAIN (t);
1758 decl = TREE_VALUE (t);
1759 if (DECL_RTL_SET_P (decl))
1760 instantiate_decl_rtl (DECL_RTL (decl));
1761 ggc_free (t);
1765 /* Pass through the INSNS of function FNDECL and convert virtual register
1766 references to hard register references. */
1768 static unsigned int
1769 instantiate_virtual_regs (void)
1771 rtx insn;
1773 /* Compute the offsets to use for this function. */
1774 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1775 var_offset = STARTING_FRAME_OFFSET;
1776 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1777 out_arg_offset = STACK_POINTER_OFFSET;
1778 #ifdef FRAME_POINTER_CFA_OFFSET
1779 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1780 #else
1781 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1782 #endif
1784 /* Initialize recognition, indicating that volatile is OK. */
1785 init_recog ();
1787 /* Scan through all the insns, instantiating every virtual register still
1788 present. */
1789 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1790 if (INSN_P (insn))
1792 /* These patterns in the instruction stream can never be recognized.
1793 Fortunately, they shouldn't contain virtual registers either. */
1794 if (GET_CODE (PATTERN (insn)) == USE
1795 || GET_CODE (PATTERN (insn)) == CLOBBER
1796 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1797 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1798 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1799 continue;
1800 else if (DEBUG_INSN_P (insn))
1801 for_each_rtx (&INSN_VAR_LOCATION (insn),
1802 instantiate_virtual_regs_in_rtx, NULL);
1803 else
1804 instantiate_virtual_regs_in_insn (insn);
1806 if (INSN_DELETED_P (insn))
1807 continue;
1809 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1811 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1812 if (CALL_P (insn))
1813 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1814 instantiate_virtual_regs_in_rtx, NULL);
1817 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1818 instantiate_decls (current_function_decl);
1820 targetm.instantiate_decls ();
1822 /* Indicate that, from now on, assign_stack_local should use
1823 frame_pointer_rtx. */
1824 virtuals_instantiated = 1;
1825 return 0;
1828 struct rtl_opt_pass pass_instantiate_virtual_regs =
1831 RTL_PASS,
1832 "vregs", /* name */
1833 NULL, /* gate */
1834 instantiate_virtual_regs, /* execute */
1835 NULL, /* sub */
1836 NULL, /* next */
1837 0, /* static_pass_number */
1838 TV_NONE, /* tv_id */
1839 0, /* properties_required */
1840 0, /* properties_provided */
1841 0, /* properties_destroyed */
1842 0, /* todo_flags_start */
1843 TODO_dump_func /* todo_flags_finish */
1848 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1849 This means a type for which function calls must pass an address to the
1850 function or get an address back from the function.
1851 EXP may be a type node or an expression (whose type is tested). */
1854 aggregate_value_p (const_tree exp, const_tree fntype)
1856 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1857 int i, regno, nregs;
1858 rtx reg;
1860 if (fntype)
1861 switch (TREE_CODE (fntype))
1863 case CALL_EXPR:
1865 tree fndecl = get_callee_fndecl (fntype);
1866 fntype = (fndecl
1867 ? TREE_TYPE (fndecl)
1868 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1870 break;
1871 case FUNCTION_DECL:
1872 fntype = TREE_TYPE (fntype);
1873 break;
1874 case FUNCTION_TYPE:
1875 case METHOD_TYPE:
1876 break;
1877 case IDENTIFIER_NODE:
1878 fntype = NULL_TREE;
1879 break;
1880 default:
1881 /* We don't expect other tree types here. */
1882 gcc_unreachable ();
1885 if (VOID_TYPE_P (type))
1886 return 0;
1888 /* If a record should be passed the same as its first (and only) member
1889 don't pass it as an aggregate. */
1890 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
1891 return aggregate_value_p (first_field (type), fntype);
1893 /* If the front end has decided that this needs to be passed by
1894 reference, do so. */
1895 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1896 && DECL_BY_REFERENCE (exp))
1897 return 1;
1899 /* Function types that are TREE_ADDRESSABLE force return in memory. */
1900 if (fntype && TREE_ADDRESSABLE (fntype))
1901 return 1;
1903 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1904 and thus can't be returned in registers. */
1905 if (TREE_ADDRESSABLE (type))
1906 return 1;
1908 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1909 return 1;
1911 if (targetm.calls.return_in_memory (type, fntype))
1912 return 1;
1914 /* Make sure we have suitable call-clobbered regs to return
1915 the value in; if not, we must return it in memory. */
1916 reg = hard_function_value (type, 0, fntype, 0);
1918 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1919 it is OK. */
1920 if (!REG_P (reg))
1921 return 0;
1923 regno = REGNO (reg);
1924 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1925 for (i = 0; i < nregs; i++)
1926 if (! call_used_regs[regno + i])
1927 return 1;
1929 return 0;
1932 /* Return true if we should assign DECL a pseudo register; false if it
1933 should live on the local stack. */
1935 bool
1936 use_register_for_decl (const_tree decl)
1938 if (!targetm.calls.allocate_stack_slots_for_args())
1939 return true;
1941 /* Honor volatile. */
1942 if (TREE_SIDE_EFFECTS (decl))
1943 return false;
1945 /* Honor addressability. */
1946 if (TREE_ADDRESSABLE (decl))
1947 return false;
1949 /* Only register-like things go in registers. */
1950 if (DECL_MODE (decl) == BLKmode)
1951 return false;
1953 /* If -ffloat-store specified, don't put explicit float variables
1954 into registers. */
1955 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1956 propagates values across these stores, and it probably shouldn't. */
1957 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1958 return false;
1960 /* If we're not interested in tracking debugging information for
1961 this decl, then we can certainly put it in a register. */
1962 if (DECL_IGNORED_P (decl))
1963 return true;
1965 if (optimize)
1966 return true;
1968 if (!DECL_REGISTER (decl))
1969 return false;
1971 switch (TREE_CODE (TREE_TYPE (decl)))
1973 case RECORD_TYPE:
1974 case UNION_TYPE:
1975 case QUAL_UNION_TYPE:
1976 /* When not optimizing, disregard register keyword for variables with
1977 types containing methods, otherwise the methods won't be callable
1978 from the debugger. */
1979 if (TYPE_METHODS (TREE_TYPE (decl)))
1980 return false;
1981 break;
1982 default:
1983 break;
1986 return true;
1989 /* Return true if TYPE should be passed by invisible reference. */
1991 bool
1992 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1993 tree type, bool named_arg)
1995 if (type)
1997 /* If this type contains non-trivial constructors, then it is
1998 forbidden for the middle-end to create any new copies. */
1999 if (TREE_ADDRESSABLE (type))
2000 return true;
2002 /* GCC post 3.4 passes *all* variable sized types by reference. */
2003 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2004 return true;
2006 /* If a record type should be passed the same as its first (and only)
2007 member, use the type and mode of that member. */
2008 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2010 type = TREE_TYPE (first_field (type));
2011 mode = TYPE_MODE (type);
2015 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
2018 /* Return true if TYPE, which is passed by reference, should be callee
2019 copied instead of caller copied. */
2021 bool
2022 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2023 tree type, bool named_arg)
2025 if (type && TREE_ADDRESSABLE (type))
2026 return false;
2027 return targetm.calls.callee_copies (ca, mode, type, named_arg);
2030 /* Structures to communicate between the subroutines of assign_parms.
2031 The first holds data persistent across all parameters, the second
2032 is cleared out for each parameter. */
2034 struct assign_parm_data_all
2036 CUMULATIVE_ARGS args_so_far;
2037 struct args_size stack_args_size;
2038 tree function_result_decl;
2039 tree orig_fnargs;
2040 rtx first_conversion_insn;
2041 rtx last_conversion_insn;
2042 HOST_WIDE_INT pretend_args_size;
2043 HOST_WIDE_INT extra_pretend_bytes;
2044 int reg_parm_stack_space;
2047 struct assign_parm_data_one
2049 tree nominal_type;
2050 tree passed_type;
2051 rtx entry_parm;
2052 rtx stack_parm;
2053 enum machine_mode nominal_mode;
2054 enum machine_mode passed_mode;
2055 enum machine_mode promoted_mode;
2056 struct locate_and_pad_arg_data locate;
2057 int partial;
2058 BOOL_BITFIELD named_arg : 1;
2059 BOOL_BITFIELD passed_pointer : 1;
2060 BOOL_BITFIELD on_stack : 1;
2061 BOOL_BITFIELD loaded_in_reg : 1;
2064 /* A subroutine of assign_parms. Initialize ALL. */
2066 static void
2067 assign_parms_initialize_all (struct assign_parm_data_all *all)
2069 tree fntype ATTRIBUTE_UNUSED;
2071 memset (all, 0, sizeof (*all));
2073 fntype = TREE_TYPE (current_function_decl);
2075 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2076 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2077 #else
2078 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2079 current_function_decl, -1);
2080 #endif
2082 #ifdef REG_PARM_STACK_SPACE
2083 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2084 #endif
2087 /* If ARGS contains entries with complex types, split the entry into two
2088 entries of the component type. Return a new list of substitutions are
2089 needed, else the old list. */
2091 static void
2092 split_complex_args (VEC(tree, heap) **args)
2094 unsigned i;
2095 tree p;
2097 for (i = 0; VEC_iterate (tree, *args, i, p); ++i)
2099 tree type = TREE_TYPE (p);
2100 if (TREE_CODE (type) == COMPLEX_TYPE
2101 && targetm.calls.split_complex_arg (type))
2103 tree decl;
2104 tree subtype = TREE_TYPE (type);
2105 bool addressable = TREE_ADDRESSABLE (p);
2107 /* Rewrite the PARM_DECL's type with its component. */
2108 p = copy_node (p);
2109 TREE_TYPE (p) = subtype;
2110 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2111 DECL_MODE (p) = VOIDmode;
2112 DECL_SIZE (p) = NULL;
2113 DECL_SIZE_UNIT (p) = NULL;
2114 /* If this arg must go in memory, put it in a pseudo here.
2115 We can't allow it to go in memory as per normal parms,
2116 because the usual place might not have the imag part
2117 adjacent to the real part. */
2118 DECL_ARTIFICIAL (p) = addressable;
2119 DECL_IGNORED_P (p) = addressable;
2120 TREE_ADDRESSABLE (p) = 0;
2121 layout_decl (p, 0);
2122 VEC_replace (tree, *args, i, p);
2124 /* Build a second synthetic decl. */
2125 decl = build_decl (EXPR_LOCATION (p),
2126 PARM_DECL, NULL_TREE, subtype);
2127 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2128 DECL_ARTIFICIAL (decl) = addressable;
2129 DECL_IGNORED_P (decl) = addressable;
2130 layout_decl (decl, 0);
2131 VEC_safe_insert (tree, heap, *args, ++i, decl);
2136 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2137 the hidden struct return argument, and (abi willing) complex args.
2138 Return the new parameter list. */
2140 static VEC(tree, heap) *
2141 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2143 tree fndecl = current_function_decl;
2144 tree fntype = TREE_TYPE (fndecl);
2145 VEC(tree, heap) *fnargs = NULL;
2146 tree arg;
2148 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = TREE_CHAIN (arg))
2149 VEC_safe_push (tree, heap, fnargs, arg);
2151 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2153 /* If struct value address is treated as the first argument, make it so. */
2154 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2155 && ! cfun->returns_pcc_struct
2156 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2158 tree type = build_pointer_type (TREE_TYPE (fntype));
2159 tree decl;
2161 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2162 PARM_DECL, NULL_TREE, type);
2163 DECL_ARG_TYPE (decl) = type;
2164 DECL_ARTIFICIAL (decl) = 1;
2165 DECL_IGNORED_P (decl) = 1;
2167 TREE_CHAIN (decl) = all->orig_fnargs;
2168 all->orig_fnargs = decl;
2169 VEC_safe_insert (tree, heap, fnargs, 0, decl);
2171 all->function_result_decl = decl;
2174 /* If the target wants to split complex arguments into scalars, do so. */
2175 if (targetm.calls.split_complex_arg)
2176 split_complex_args (&fnargs);
2178 return fnargs;
2181 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2182 data for the parameter. Incorporate ABI specifics such as pass-by-
2183 reference and type promotion. */
2185 static void
2186 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2187 struct assign_parm_data_one *data)
2189 tree nominal_type, passed_type;
2190 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2191 int unsignedp;
2193 memset (data, 0, sizeof (*data));
2195 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2196 if (!cfun->stdarg)
2197 data->named_arg = 1; /* No variadic parms. */
2198 else if (TREE_CHAIN (parm))
2199 data->named_arg = 1; /* Not the last non-variadic parm. */
2200 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2201 data->named_arg = 1; /* Only variadic ones are unnamed. */
2202 else
2203 data->named_arg = 0; /* Treat as variadic. */
2205 nominal_type = TREE_TYPE (parm);
2206 passed_type = DECL_ARG_TYPE (parm);
2208 /* Look out for errors propagating this far. Also, if the parameter's
2209 type is void then its value doesn't matter. */
2210 if (TREE_TYPE (parm) == error_mark_node
2211 /* This can happen after weird syntax errors
2212 or if an enum type is defined among the parms. */
2213 || TREE_CODE (parm) != PARM_DECL
2214 || passed_type == NULL
2215 || VOID_TYPE_P (nominal_type))
2217 nominal_type = passed_type = void_type_node;
2218 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2219 goto egress;
2222 /* Find mode of arg as it is passed, and mode of arg as it should be
2223 during execution of this function. */
2224 passed_mode = TYPE_MODE (passed_type);
2225 nominal_mode = TYPE_MODE (nominal_type);
2227 /* If the parm is to be passed as a transparent union or record, use the
2228 type of the first field for the tests below. We have already verified
2229 that the modes are the same. */
2230 if ((TREE_CODE (passed_type) == UNION_TYPE
2231 || TREE_CODE (passed_type) == RECORD_TYPE)
2232 && TYPE_TRANSPARENT_AGGR (passed_type))
2233 passed_type = TREE_TYPE (first_field (passed_type));
2235 /* See if this arg was passed by invisible reference. */
2236 if (pass_by_reference (&all->args_so_far, passed_mode,
2237 passed_type, data->named_arg))
2239 passed_type = nominal_type = build_pointer_type (passed_type);
2240 data->passed_pointer = true;
2241 passed_mode = nominal_mode = Pmode;
2244 /* Find mode as it is passed by the ABI. */
2245 unsignedp = TYPE_UNSIGNED (passed_type);
2246 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2247 TREE_TYPE (current_function_decl), 0);
2249 egress:
2250 data->nominal_type = nominal_type;
2251 data->passed_type = passed_type;
2252 data->nominal_mode = nominal_mode;
2253 data->passed_mode = passed_mode;
2254 data->promoted_mode = promoted_mode;
2257 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2259 static void
2260 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2261 struct assign_parm_data_one *data, bool no_rtl)
2263 int varargs_pretend_bytes = 0;
2265 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2266 data->promoted_mode,
2267 data->passed_type,
2268 &varargs_pretend_bytes, no_rtl);
2270 /* If the back-end has requested extra stack space, record how much is
2271 needed. Do not change pretend_args_size otherwise since it may be
2272 nonzero from an earlier partial argument. */
2273 if (varargs_pretend_bytes > 0)
2274 all->pretend_args_size = varargs_pretend_bytes;
2277 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2278 the incoming location of the current parameter. */
2280 static void
2281 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2282 struct assign_parm_data_one *data)
2284 HOST_WIDE_INT pretend_bytes = 0;
2285 rtx entry_parm;
2286 bool in_regs;
2288 if (data->promoted_mode == VOIDmode)
2290 data->entry_parm = data->stack_parm = const0_rtx;
2291 return;
2294 #ifdef FUNCTION_INCOMING_ARG
2295 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2296 data->passed_type, data->named_arg);
2297 #else
2298 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2299 data->passed_type, data->named_arg);
2300 #endif
2302 if (entry_parm == 0)
2303 data->promoted_mode = data->passed_mode;
2305 /* Determine parm's home in the stack, in case it arrives in the stack
2306 or we should pretend it did. Compute the stack position and rtx where
2307 the argument arrives and its size.
2309 There is one complexity here: If this was a parameter that would
2310 have been passed in registers, but wasn't only because it is
2311 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2312 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2313 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2314 as it was the previous time. */
2315 in_regs = entry_parm != 0;
2316 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2317 in_regs = true;
2318 #endif
2319 if (!in_regs && !data->named_arg)
2321 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2323 rtx tem;
2324 #ifdef FUNCTION_INCOMING_ARG
2325 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2326 data->passed_type, true);
2327 #else
2328 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2329 data->passed_type, true);
2330 #endif
2331 in_regs = tem != NULL;
2335 /* If this parameter was passed both in registers and in the stack, use
2336 the copy on the stack. */
2337 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2338 data->passed_type))
2339 entry_parm = 0;
2341 if (entry_parm)
2343 int partial;
2345 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2346 data->promoted_mode,
2347 data->passed_type,
2348 data->named_arg);
2349 data->partial = partial;
2351 /* The caller might already have allocated stack space for the
2352 register parameters. */
2353 if (partial != 0 && all->reg_parm_stack_space == 0)
2355 /* Part of this argument is passed in registers and part
2356 is passed on the stack. Ask the prologue code to extend
2357 the stack part so that we can recreate the full value.
2359 PRETEND_BYTES is the size of the registers we need to store.
2360 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2361 stack space that the prologue should allocate.
2363 Internally, gcc assumes that the argument pointer is aligned
2364 to STACK_BOUNDARY bits. This is used both for alignment
2365 optimizations (see init_emit) and to locate arguments that are
2366 aligned to more than PARM_BOUNDARY bits. We must preserve this
2367 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2368 a stack boundary. */
2370 /* We assume at most one partial arg, and it must be the first
2371 argument on the stack. */
2372 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2374 pretend_bytes = partial;
2375 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2377 /* We want to align relative to the actual stack pointer, so
2378 don't include this in the stack size until later. */
2379 all->extra_pretend_bytes = all->pretend_args_size;
2383 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2384 entry_parm ? data->partial : 0, current_function_decl,
2385 &all->stack_args_size, &data->locate);
2387 /* Update parm_stack_boundary if this parameter is passed in the
2388 stack. */
2389 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2390 crtl->parm_stack_boundary = data->locate.boundary;
2392 /* Adjust offsets to include the pretend args. */
2393 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2394 data->locate.slot_offset.constant += pretend_bytes;
2395 data->locate.offset.constant += pretend_bytes;
2397 data->entry_parm = entry_parm;
2400 /* A subroutine of assign_parms. If there is actually space on the stack
2401 for this parm, count it in stack_args_size and return true. */
2403 static bool
2404 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2405 struct assign_parm_data_one *data)
2407 /* Trivially true if we've no incoming register. */
2408 if (data->entry_parm == NULL)
2410 /* Also true if we're partially in registers and partially not,
2411 since we've arranged to drop the entire argument on the stack. */
2412 else if (data->partial != 0)
2414 /* Also true if the target says that it's passed in both registers
2415 and on the stack. */
2416 else if (GET_CODE (data->entry_parm) == PARALLEL
2417 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2419 /* Also true if the target says that there's stack allocated for
2420 all register parameters. */
2421 else if (all->reg_parm_stack_space > 0)
2423 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2424 else
2425 return false;
2427 all->stack_args_size.constant += data->locate.size.constant;
2428 if (data->locate.size.var)
2429 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2431 return true;
2434 /* A subroutine of assign_parms. Given that this parameter is allocated
2435 stack space by the ABI, find it. */
2437 static void
2438 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2440 rtx offset_rtx, stack_parm;
2441 unsigned int align, boundary;
2443 /* If we're passing this arg using a reg, make its stack home the
2444 aligned stack slot. */
2445 if (data->entry_parm)
2446 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2447 else
2448 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2450 stack_parm = crtl->args.internal_arg_pointer;
2451 if (offset_rtx != const0_rtx)
2452 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2453 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2455 if (!data->passed_pointer)
2457 set_mem_attributes (stack_parm, parm, 1);
2458 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2459 while promoted mode's size is needed. */
2460 if (data->promoted_mode != BLKmode
2461 && data->promoted_mode != DECL_MODE (parm))
2463 set_mem_size (stack_parm,
2464 GEN_INT (GET_MODE_SIZE (data->promoted_mode)));
2465 if (MEM_EXPR (stack_parm) && MEM_OFFSET (stack_parm))
2467 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2468 data->promoted_mode);
2469 if (offset)
2470 set_mem_offset (stack_parm,
2471 plus_constant (MEM_OFFSET (stack_parm),
2472 -offset));
2477 boundary = data->locate.boundary;
2478 align = BITS_PER_UNIT;
2480 /* If we're padding upward, we know that the alignment of the slot
2481 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2482 intentionally forcing upward padding. Otherwise we have to come
2483 up with a guess at the alignment based on OFFSET_RTX. */
2484 if (data->locate.where_pad != downward || data->entry_parm)
2485 align = boundary;
2486 else if (CONST_INT_P (offset_rtx))
2488 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2489 align = align & -align;
2491 set_mem_align (stack_parm, align);
2493 if (data->entry_parm)
2494 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2496 data->stack_parm = stack_parm;
2499 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2500 always valid and contiguous. */
2502 static void
2503 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2505 rtx entry_parm = data->entry_parm;
2506 rtx stack_parm = data->stack_parm;
2508 /* If this parm was passed part in regs and part in memory, pretend it
2509 arrived entirely in memory by pushing the register-part onto the stack.
2510 In the special case of a DImode or DFmode that is split, we could put
2511 it together in a pseudoreg directly, but for now that's not worth
2512 bothering with. */
2513 if (data->partial != 0)
2515 /* Handle calls that pass values in multiple non-contiguous
2516 locations. The Irix 6 ABI has examples of this. */
2517 if (GET_CODE (entry_parm) == PARALLEL)
2518 emit_group_store (validize_mem (stack_parm), entry_parm,
2519 data->passed_type,
2520 int_size_in_bytes (data->passed_type));
2521 else
2523 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2524 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2525 data->partial / UNITS_PER_WORD);
2528 entry_parm = stack_parm;
2531 /* If we didn't decide this parm came in a register, by default it came
2532 on the stack. */
2533 else if (entry_parm == NULL)
2534 entry_parm = stack_parm;
2536 /* When an argument is passed in multiple locations, we can't make use
2537 of this information, but we can save some copying if the whole argument
2538 is passed in a single register. */
2539 else if (GET_CODE (entry_parm) == PARALLEL
2540 && data->nominal_mode != BLKmode
2541 && data->passed_mode != BLKmode)
2543 size_t i, len = XVECLEN (entry_parm, 0);
2545 for (i = 0; i < len; i++)
2546 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2547 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2548 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2549 == data->passed_mode)
2550 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2552 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2553 break;
2557 data->entry_parm = entry_parm;
2560 /* A subroutine of assign_parms. Reconstitute any values which were
2561 passed in multiple registers and would fit in a single register. */
2563 static void
2564 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2566 rtx entry_parm = data->entry_parm;
2568 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2569 This can be done with register operations rather than on the
2570 stack, even if we will store the reconstituted parameter on the
2571 stack later. */
2572 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2574 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2575 emit_group_store (parmreg, entry_parm, data->passed_type,
2576 GET_MODE_SIZE (GET_MODE (entry_parm)));
2577 entry_parm = parmreg;
2580 data->entry_parm = entry_parm;
2583 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2584 always valid and properly aligned. */
2586 static void
2587 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2589 rtx stack_parm = data->stack_parm;
2591 /* If we can't trust the parm stack slot to be aligned enough for its
2592 ultimate type, don't use that slot after entry. We'll make another
2593 stack slot, if we need one. */
2594 if (stack_parm
2595 && ((STRICT_ALIGNMENT
2596 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2597 || (data->nominal_type
2598 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2599 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2600 stack_parm = NULL;
2602 /* If parm was passed in memory, and we need to convert it on entry,
2603 don't store it back in that same slot. */
2604 else if (data->entry_parm == stack_parm
2605 && data->nominal_mode != BLKmode
2606 && data->nominal_mode != data->passed_mode)
2607 stack_parm = NULL;
2609 /* If stack protection is in effect for this function, don't leave any
2610 pointers in their passed stack slots. */
2611 else if (crtl->stack_protect_guard
2612 && (flag_stack_protect == 2
2613 || data->passed_pointer
2614 || POINTER_TYPE_P (data->nominal_type)))
2615 stack_parm = NULL;
2617 data->stack_parm = stack_parm;
2620 /* A subroutine of assign_parms. Return true if the current parameter
2621 should be stored as a BLKmode in the current frame. */
2623 static bool
2624 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2626 if (data->nominal_mode == BLKmode)
2627 return true;
2628 if (GET_MODE (data->entry_parm) == BLKmode)
2629 return true;
2631 #ifdef BLOCK_REG_PADDING
2632 /* Only assign_parm_setup_block knows how to deal with register arguments
2633 that are padded at the least significant end. */
2634 if (REG_P (data->entry_parm)
2635 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2636 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2637 == (BYTES_BIG_ENDIAN ? upward : downward)))
2638 return true;
2639 #endif
2641 return false;
2644 /* A subroutine of assign_parms. Arrange for the parameter to be
2645 present and valid in DATA->STACK_RTL. */
2647 static void
2648 assign_parm_setup_block (struct assign_parm_data_all *all,
2649 tree parm, struct assign_parm_data_one *data)
2651 rtx entry_parm = data->entry_parm;
2652 rtx stack_parm = data->stack_parm;
2653 HOST_WIDE_INT size;
2654 HOST_WIDE_INT size_stored;
2656 if (GET_CODE (entry_parm) == PARALLEL)
2657 entry_parm = emit_group_move_into_temps (entry_parm);
2659 size = int_size_in_bytes (data->passed_type);
2660 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2661 if (stack_parm == 0)
2663 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2664 stack_parm = assign_stack_local (BLKmode, size_stored,
2665 DECL_ALIGN (parm));
2666 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2667 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2668 set_mem_attributes (stack_parm, parm, 1);
2671 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2672 calls that pass values in multiple non-contiguous locations. */
2673 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2675 rtx mem;
2677 /* Note that we will be storing an integral number of words.
2678 So we have to be careful to ensure that we allocate an
2679 integral number of words. We do this above when we call
2680 assign_stack_local if space was not allocated in the argument
2681 list. If it was, this will not work if PARM_BOUNDARY is not
2682 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2683 if it becomes a problem. Exception is when BLKmode arrives
2684 with arguments not conforming to word_mode. */
2686 if (data->stack_parm == 0)
2688 else if (GET_CODE (entry_parm) == PARALLEL)
2690 else
2691 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2693 mem = validize_mem (stack_parm);
2695 /* Handle values in multiple non-contiguous locations. */
2696 if (GET_CODE (entry_parm) == PARALLEL)
2698 push_to_sequence2 (all->first_conversion_insn,
2699 all->last_conversion_insn);
2700 emit_group_store (mem, entry_parm, data->passed_type, size);
2701 all->first_conversion_insn = get_insns ();
2702 all->last_conversion_insn = get_last_insn ();
2703 end_sequence ();
2706 else if (size == 0)
2709 /* If SIZE is that of a mode no bigger than a word, just use
2710 that mode's store operation. */
2711 else if (size <= UNITS_PER_WORD)
2713 enum machine_mode mode
2714 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2716 if (mode != BLKmode
2717 #ifdef BLOCK_REG_PADDING
2718 && (size == UNITS_PER_WORD
2719 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2720 != (BYTES_BIG_ENDIAN ? upward : downward)))
2721 #endif
2724 rtx reg;
2726 /* We are really truncating a word_mode value containing
2727 SIZE bytes into a value of mode MODE. If such an
2728 operation requires no actual instructions, we can refer
2729 to the value directly in mode MODE, otherwise we must
2730 start with the register in word_mode and explicitly
2731 convert it. */
2732 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2733 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2734 else
2736 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2737 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2739 emit_move_insn (change_address (mem, mode, 0), reg);
2742 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2743 machine must be aligned to the left before storing
2744 to memory. Note that the previous test doesn't
2745 handle all cases (e.g. SIZE == 3). */
2746 else if (size != UNITS_PER_WORD
2747 #ifdef BLOCK_REG_PADDING
2748 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2749 == downward)
2750 #else
2751 && BYTES_BIG_ENDIAN
2752 #endif
2755 rtx tem, x;
2756 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2757 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2759 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2760 build_int_cst (NULL_TREE, by),
2761 NULL_RTX, 1);
2762 tem = change_address (mem, word_mode, 0);
2763 emit_move_insn (tem, x);
2765 else
2766 move_block_from_reg (REGNO (entry_parm), mem,
2767 size_stored / UNITS_PER_WORD);
2769 else
2770 move_block_from_reg (REGNO (entry_parm), mem,
2771 size_stored / UNITS_PER_WORD);
2773 else if (data->stack_parm == 0)
2775 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2776 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2777 BLOCK_OP_NORMAL);
2778 all->first_conversion_insn = get_insns ();
2779 all->last_conversion_insn = get_last_insn ();
2780 end_sequence ();
2783 data->stack_parm = stack_parm;
2784 SET_DECL_RTL (parm, stack_parm);
2787 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2788 parameter. Get it there. Perform all ABI specified conversions. */
2790 static void
2791 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2792 struct assign_parm_data_one *data)
2794 rtx parmreg;
2795 enum machine_mode promoted_nominal_mode;
2796 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2797 bool did_conversion = false;
2799 /* Store the parm in a pseudoregister during the function, but we may
2800 need to do it in a wider mode. Using 2 here makes the result
2801 consistent with promote_decl_mode and thus expand_expr_real_1. */
2802 promoted_nominal_mode
2803 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2804 TREE_TYPE (current_function_decl), 2);
2806 parmreg = gen_reg_rtx (promoted_nominal_mode);
2808 if (!DECL_ARTIFICIAL (parm))
2809 mark_user_reg (parmreg);
2811 /* If this was an item that we received a pointer to,
2812 set DECL_RTL appropriately. */
2813 if (data->passed_pointer)
2815 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2816 set_mem_attributes (x, parm, 1);
2817 SET_DECL_RTL (parm, x);
2819 else
2820 SET_DECL_RTL (parm, parmreg);
2822 assign_parm_remove_parallels (data);
2824 /* Copy the value into the register, thus bridging between
2825 assign_parm_find_data_types and expand_expr_real_1. */
2826 if (data->nominal_mode != data->passed_mode
2827 || promoted_nominal_mode != data->promoted_mode)
2829 int save_tree_used;
2831 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2832 mode, by the caller. We now have to convert it to
2833 NOMINAL_MODE, if different. However, PARMREG may be in
2834 a different mode than NOMINAL_MODE if it is being stored
2835 promoted.
2837 If ENTRY_PARM is a hard register, it might be in a register
2838 not valid for operating in its mode (e.g., an odd-numbered
2839 register for a DFmode). In that case, moves are the only
2840 thing valid, so we can't do a convert from there. This
2841 occurs when the calling sequence allow such misaligned
2842 usages.
2844 In addition, the conversion may involve a call, which could
2845 clobber parameters which haven't been copied to pseudo
2846 registers yet. Therefore, we must first copy the parm to
2847 a pseudo reg here, and save the conversion until after all
2848 parameters have been moved. */
2850 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2852 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2854 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2855 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2857 if (GET_CODE (tempreg) == SUBREG
2858 && GET_MODE (tempreg) == data->nominal_mode
2859 && REG_P (SUBREG_REG (tempreg))
2860 && data->nominal_mode == data->passed_mode
2861 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2862 && GET_MODE_SIZE (GET_MODE (tempreg))
2863 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2865 /* The argument is already sign/zero extended, so note it
2866 into the subreg. */
2867 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2868 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2871 /* TREE_USED gets set erroneously during expand_assignment. */
2872 save_tree_used = TREE_USED (parm);
2873 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2874 TREE_USED (parm) = save_tree_used;
2875 all->first_conversion_insn = get_insns ();
2876 all->last_conversion_insn = get_last_insn ();
2877 end_sequence ();
2879 did_conversion = true;
2881 else
2882 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2884 /* If we were passed a pointer but the actual value can safely live
2885 in a register, put it in one. */
2886 if (data->passed_pointer
2887 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2888 /* If by-reference argument was promoted, demote it. */
2889 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2890 || use_register_for_decl (parm)))
2892 /* We can't use nominal_mode, because it will have been set to
2893 Pmode above. We must use the actual mode of the parm. */
2894 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2895 mark_user_reg (parmreg);
2897 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2899 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2900 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2902 push_to_sequence2 (all->first_conversion_insn,
2903 all->last_conversion_insn);
2904 emit_move_insn (tempreg, DECL_RTL (parm));
2905 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2906 emit_move_insn (parmreg, tempreg);
2907 all->first_conversion_insn = get_insns ();
2908 all->last_conversion_insn = get_last_insn ();
2909 end_sequence ();
2911 did_conversion = true;
2913 else
2914 emit_move_insn (parmreg, DECL_RTL (parm));
2916 SET_DECL_RTL (parm, parmreg);
2918 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2919 now the parm. */
2920 data->stack_parm = NULL;
2923 /* Mark the register as eliminable if we did no conversion and it was
2924 copied from memory at a fixed offset, and the arg pointer was not
2925 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2926 offset formed an invalid address, such memory-equivalences as we
2927 make here would screw up life analysis for it. */
2928 if (data->nominal_mode == data->passed_mode
2929 && !did_conversion
2930 && data->stack_parm != 0
2931 && MEM_P (data->stack_parm)
2932 && data->locate.offset.var == 0
2933 && reg_mentioned_p (virtual_incoming_args_rtx,
2934 XEXP (data->stack_parm, 0)))
2936 rtx linsn = get_last_insn ();
2937 rtx sinsn, set;
2939 /* Mark complex types separately. */
2940 if (GET_CODE (parmreg) == CONCAT)
2942 enum machine_mode submode
2943 = GET_MODE_INNER (GET_MODE (parmreg));
2944 int regnor = REGNO (XEXP (parmreg, 0));
2945 int regnoi = REGNO (XEXP (parmreg, 1));
2946 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2947 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2948 GET_MODE_SIZE (submode));
2950 /* Scan backwards for the set of the real and
2951 imaginary parts. */
2952 for (sinsn = linsn; sinsn != 0;
2953 sinsn = prev_nonnote_insn (sinsn))
2955 set = single_set (sinsn);
2956 if (set == 0)
2957 continue;
2959 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2960 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
2961 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2962 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
2965 else if ((set = single_set (linsn)) != 0
2966 && SET_DEST (set) == parmreg)
2967 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
2970 /* For pointer data type, suggest pointer register. */
2971 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2972 mark_reg_pointer (parmreg,
2973 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2976 /* A subroutine of assign_parms. Allocate stack space to hold the current
2977 parameter. Get it there. Perform all ABI specified conversions. */
2979 static void
2980 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2981 struct assign_parm_data_one *data)
2983 /* Value must be stored in the stack slot STACK_PARM during function
2984 execution. */
2985 bool to_conversion = false;
2987 assign_parm_remove_parallels (data);
2989 if (data->promoted_mode != data->nominal_mode)
2991 /* Conversion is required. */
2992 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2994 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2996 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2997 to_conversion = true;
2999 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3000 TYPE_UNSIGNED (TREE_TYPE (parm)));
3002 if (data->stack_parm)
3004 int offset = subreg_lowpart_offset (data->nominal_mode,
3005 GET_MODE (data->stack_parm));
3006 /* ??? This may need a big-endian conversion on sparc64. */
3007 data->stack_parm
3008 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3009 if (offset && MEM_OFFSET (data->stack_parm))
3010 set_mem_offset (data->stack_parm,
3011 plus_constant (MEM_OFFSET (data->stack_parm),
3012 offset));
3016 if (data->entry_parm != data->stack_parm)
3018 rtx src, dest;
3020 if (data->stack_parm == 0)
3022 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3023 GET_MODE (data->entry_parm),
3024 TYPE_ALIGN (data->passed_type));
3025 data->stack_parm
3026 = assign_stack_local (GET_MODE (data->entry_parm),
3027 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3028 align);
3029 set_mem_attributes (data->stack_parm, parm, 1);
3032 dest = validize_mem (data->stack_parm);
3033 src = validize_mem (data->entry_parm);
3035 if (MEM_P (src))
3037 /* Use a block move to handle potentially misaligned entry_parm. */
3038 if (!to_conversion)
3039 push_to_sequence2 (all->first_conversion_insn,
3040 all->last_conversion_insn);
3041 to_conversion = true;
3043 emit_block_move (dest, src,
3044 GEN_INT (int_size_in_bytes (data->passed_type)),
3045 BLOCK_OP_NORMAL);
3047 else
3048 emit_move_insn (dest, src);
3051 if (to_conversion)
3053 all->first_conversion_insn = get_insns ();
3054 all->last_conversion_insn = get_last_insn ();
3055 end_sequence ();
3058 SET_DECL_RTL (parm, data->stack_parm);
3061 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3062 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3064 static void
3065 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3066 VEC(tree, heap) *fnargs)
3068 tree parm;
3069 tree orig_fnargs = all->orig_fnargs;
3070 unsigned i = 0;
3072 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3074 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3075 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3077 rtx tmp, real, imag;
3078 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3080 real = DECL_RTL (VEC_index (tree, fnargs, i));
3081 imag = DECL_RTL (VEC_index (tree, fnargs, i + 1));
3082 if (inner != GET_MODE (real))
3084 real = gen_lowpart_SUBREG (inner, real);
3085 imag = gen_lowpart_SUBREG (inner, imag);
3088 if (TREE_ADDRESSABLE (parm))
3090 rtx rmem, imem;
3091 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3092 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3093 DECL_MODE (parm),
3094 TYPE_ALIGN (TREE_TYPE (parm)));
3096 /* split_complex_arg put the real and imag parts in
3097 pseudos. Move them to memory. */
3098 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3099 set_mem_attributes (tmp, parm, 1);
3100 rmem = adjust_address_nv (tmp, inner, 0);
3101 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3102 push_to_sequence2 (all->first_conversion_insn,
3103 all->last_conversion_insn);
3104 emit_move_insn (rmem, real);
3105 emit_move_insn (imem, imag);
3106 all->first_conversion_insn = get_insns ();
3107 all->last_conversion_insn = get_last_insn ();
3108 end_sequence ();
3110 else
3111 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3112 SET_DECL_RTL (parm, tmp);
3114 real = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i));
3115 imag = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i + 1));
3116 if (inner != GET_MODE (real))
3118 real = gen_lowpart_SUBREG (inner, real);
3119 imag = gen_lowpart_SUBREG (inner, imag);
3121 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3122 set_decl_incoming_rtl (parm, tmp, false);
3123 i++;
3128 /* Assign RTL expressions to the function's parameters. This may involve
3129 copying them into registers and using those registers as the DECL_RTL. */
3131 static void
3132 assign_parms (tree fndecl)
3134 struct assign_parm_data_all all;
3135 tree parm;
3136 VEC(tree, heap) *fnargs;
3137 unsigned i;
3139 crtl->args.internal_arg_pointer
3140 = targetm.calls.internal_arg_pointer ();
3142 assign_parms_initialize_all (&all);
3143 fnargs = assign_parms_augmented_arg_list (&all);
3145 for (i = 0; VEC_iterate (tree, fnargs, i, parm); ++i)
3147 struct assign_parm_data_one data;
3149 /* Extract the type of PARM; adjust it according to ABI. */
3150 assign_parm_find_data_types (&all, parm, &data);
3152 /* Early out for errors and void parameters. */
3153 if (data.passed_mode == VOIDmode)
3155 SET_DECL_RTL (parm, const0_rtx);
3156 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3157 continue;
3160 /* Estimate stack alignment from parameter alignment. */
3161 if (SUPPORTS_STACK_ALIGNMENT)
3163 unsigned int align = FUNCTION_ARG_BOUNDARY (data.promoted_mode,
3164 data.passed_type);
3165 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3166 align);
3167 if (TYPE_ALIGN (data.nominal_type) > align)
3168 align = MINIMUM_ALIGNMENT (data.nominal_type,
3169 TYPE_MODE (data.nominal_type),
3170 TYPE_ALIGN (data.nominal_type));
3171 if (crtl->stack_alignment_estimated < align)
3173 gcc_assert (!crtl->stack_realign_processed);
3174 crtl->stack_alignment_estimated = align;
3178 if (cfun->stdarg && !TREE_CHAIN (parm))
3179 assign_parms_setup_varargs (&all, &data, false);
3181 /* Find out where the parameter arrives in this function. */
3182 assign_parm_find_entry_rtl (&all, &data);
3184 /* Find out where stack space for this parameter might be. */
3185 if (assign_parm_is_stack_parm (&all, &data))
3187 assign_parm_find_stack_rtl (parm, &data);
3188 assign_parm_adjust_entry_rtl (&data);
3191 /* Record permanently how this parm was passed. */
3192 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
3194 /* Update info on where next arg arrives in registers. */
3195 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3196 data.passed_type, data.named_arg);
3198 assign_parm_adjust_stack_rtl (&data);
3200 if (assign_parm_setup_block_p (&data))
3201 assign_parm_setup_block (&all, parm, &data);
3202 else if (data.passed_pointer || use_register_for_decl (parm))
3203 assign_parm_setup_reg (&all, parm, &data);
3204 else
3205 assign_parm_setup_stack (&all, parm, &data);
3208 if (targetm.calls.split_complex_arg)
3209 assign_parms_unsplit_complex (&all, fnargs);
3211 VEC_free (tree, heap, fnargs);
3213 /* Output all parameter conversion instructions (possibly including calls)
3214 now that all parameters have been copied out of hard registers. */
3215 emit_insn (all.first_conversion_insn);
3217 /* Estimate reload stack alignment from scalar return mode. */
3218 if (SUPPORTS_STACK_ALIGNMENT)
3220 if (DECL_RESULT (fndecl))
3222 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3223 enum machine_mode mode = TYPE_MODE (type);
3225 if (mode != BLKmode
3226 && mode != VOIDmode
3227 && !AGGREGATE_TYPE_P (type))
3229 unsigned int align = GET_MODE_ALIGNMENT (mode);
3230 if (crtl->stack_alignment_estimated < align)
3232 gcc_assert (!crtl->stack_realign_processed);
3233 crtl->stack_alignment_estimated = align;
3239 /* If we are receiving a struct value address as the first argument, set up
3240 the RTL for the function result. As this might require code to convert
3241 the transmitted address to Pmode, we do this here to ensure that possible
3242 preliminary conversions of the address have been emitted already. */
3243 if (all.function_result_decl)
3245 tree result = DECL_RESULT (current_function_decl);
3246 rtx addr = DECL_RTL (all.function_result_decl);
3247 rtx x;
3249 if (DECL_BY_REFERENCE (result))
3250 x = addr;
3251 else
3253 addr = convert_memory_address (Pmode, addr);
3254 x = gen_rtx_MEM (DECL_MODE (result), addr);
3255 set_mem_attributes (x, result, 1);
3257 SET_DECL_RTL (result, x);
3260 /* We have aligned all the args, so add space for the pretend args. */
3261 crtl->args.pretend_args_size = all.pretend_args_size;
3262 all.stack_args_size.constant += all.extra_pretend_bytes;
3263 crtl->args.size = all.stack_args_size.constant;
3265 /* Adjust function incoming argument size for alignment and
3266 minimum length. */
3268 #ifdef REG_PARM_STACK_SPACE
3269 crtl->args.size = MAX (crtl->args.size,
3270 REG_PARM_STACK_SPACE (fndecl));
3271 #endif
3273 crtl->args.size = CEIL_ROUND (crtl->args.size,
3274 PARM_BOUNDARY / BITS_PER_UNIT);
3276 #ifdef ARGS_GROW_DOWNWARD
3277 crtl->args.arg_offset_rtx
3278 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3279 : expand_expr (size_diffop (all.stack_args_size.var,
3280 size_int (-all.stack_args_size.constant)),
3281 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3282 #else
3283 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3284 #endif
3286 /* See how many bytes, if any, of its args a function should try to pop
3287 on return. */
3289 crtl->args.pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3290 crtl->args.size);
3292 /* For stdarg.h function, save info about
3293 regs and stack space used by the named args. */
3295 crtl->args.info = all.args_so_far;
3297 /* Set the rtx used for the function return value. Put this in its
3298 own variable so any optimizers that need this information don't have
3299 to include tree.h. Do this here so it gets done when an inlined
3300 function gets output. */
3302 crtl->return_rtx
3303 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3304 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3306 /* If scalar return value was computed in a pseudo-reg, or was a named
3307 return value that got dumped to the stack, copy that to the hard
3308 return register. */
3309 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3311 tree decl_result = DECL_RESULT (fndecl);
3312 rtx decl_rtl = DECL_RTL (decl_result);
3314 if (REG_P (decl_rtl)
3315 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3316 : DECL_REGISTER (decl_result))
3318 rtx real_decl_rtl;
3320 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3321 fndecl, true);
3322 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3323 /* The delay slot scheduler assumes that crtl->return_rtx
3324 holds the hard register containing the return value, not a
3325 temporary pseudo. */
3326 crtl->return_rtx = real_decl_rtl;
3331 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3332 For all seen types, gimplify their sizes. */
3334 static tree
3335 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3337 tree t = *tp;
3339 *walk_subtrees = 0;
3340 if (TYPE_P (t))
3342 if (POINTER_TYPE_P (t))
3343 *walk_subtrees = 1;
3344 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3345 && !TYPE_SIZES_GIMPLIFIED (t))
3347 gimplify_type_sizes (t, (gimple_seq *) data);
3348 *walk_subtrees = 1;
3352 return NULL;
3355 /* Gimplify the parameter list for current_function_decl. This involves
3356 evaluating SAVE_EXPRs of variable sized parameters and generating code
3357 to implement callee-copies reference parameters. Returns a sequence of
3358 statements to add to the beginning of the function. */
3360 gimple_seq
3361 gimplify_parameters (void)
3363 struct assign_parm_data_all all;
3364 tree parm;
3365 gimple_seq stmts = NULL;
3366 VEC(tree, heap) *fnargs;
3367 unsigned i;
3369 assign_parms_initialize_all (&all);
3370 fnargs = assign_parms_augmented_arg_list (&all);
3372 for (i = 0; VEC_iterate (tree, fnargs, i, parm); ++i)
3374 struct assign_parm_data_one data;
3376 /* Extract the type of PARM; adjust it according to ABI. */
3377 assign_parm_find_data_types (&all, parm, &data);
3379 /* Early out for errors and void parameters. */
3380 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3381 continue;
3383 /* Update info on where next arg arrives in registers. */
3384 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3385 data.passed_type, data.named_arg);
3387 /* ??? Once upon a time variable_size stuffed parameter list
3388 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3389 turned out to be less than manageable in the gimple world.
3390 Now we have to hunt them down ourselves. */
3391 walk_tree_without_duplicates (&data.passed_type,
3392 gimplify_parm_type, &stmts);
3394 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3396 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3397 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3400 if (data.passed_pointer)
3402 tree type = TREE_TYPE (data.passed_type);
3403 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3404 type, data.named_arg))
3406 tree local, t;
3408 /* For constant-sized objects, this is trivial; for
3409 variable-sized objects, we have to play games. */
3410 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3411 && !(flag_stack_check == GENERIC_STACK_CHECK
3412 && compare_tree_int (DECL_SIZE_UNIT (parm),
3413 STACK_CHECK_MAX_VAR_SIZE) > 0))
3415 local = create_tmp_var (type, get_name (parm));
3416 DECL_IGNORED_P (local) = 0;
3417 /* If PARM was addressable, move that flag over
3418 to the local copy, as its address will be taken,
3419 not the PARMs. */
3420 if (TREE_ADDRESSABLE (parm))
3422 TREE_ADDRESSABLE (parm) = 0;
3423 TREE_ADDRESSABLE (local) = 1;
3426 else
3428 tree ptr_type, addr;
3430 ptr_type = build_pointer_type (type);
3431 addr = create_tmp_var (ptr_type, get_name (parm));
3432 DECL_IGNORED_P (addr) = 0;
3433 local = build_fold_indirect_ref (addr);
3435 t = built_in_decls[BUILT_IN_ALLOCA];
3436 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3437 t = fold_convert (ptr_type, t);
3438 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3439 gimplify_and_add (t, &stmts);
3442 gimplify_assign (local, parm, &stmts);
3444 SET_DECL_VALUE_EXPR (parm, local);
3445 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3450 VEC_free (tree, heap, fnargs);
3452 return stmts;
3455 /* Compute the size and offset from the start of the stacked arguments for a
3456 parm passed in mode PASSED_MODE and with type TYPE.
3458 INITIAL_OFFSET_PTR points to the current offset into the stacked
3459 arguments.
3461 The starting offset and size for this parm are returned in
3462 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3463 nonzero, the offset is that of stack slot, which is returned in
3464 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3465 padding required from the initial offset ptr to the stack slot.
3467 IN_REGS is nonzero if the argument will be passed in registers. It will
3468 never be set if REG_PARM_STACK_SPACE is not defined.
3470 FNDECL is the function in which the argument was defined.
3472 There are two types of rounding that are done. The first, controlled by
3473 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3474 list to be aligned to the specific boundary (in bits). This rounding
3475 affects the initial and starting offsets, but not the argument size.
3477 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3478 optionally rounds the size of the parm to PARM_BOUNDARY. The
3479 initial offset is not affected by this rounding, while the size always
3480 is and the starting offset may be. */
3482 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3483 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3484 callers pass in the total size of args so far as
3485 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3487 void
3488 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3489 int partial, tree fndecl ATTRIBUTE_UNUSED,
3490 struct args_size *initial_offset_ptr,
3491 struct locate_and_pad_arg_data *locate)
3493 tree sizetree;
3494 enum direction where_pad;
3495 unsigned int boundary;
3496 int reg_parm_stack_space = 0;
3497 int part_size_in_regs;
3499 #ifdef REG_PARM_STACK_SPACE
3500 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3502 /* If we have found a stack parm before we reach the end of the
3503 area reserved for registers, skip that area. */
3504 if (! in_regs)
3506 if (reg_parm_stack_space > 0)
3508 if (initial_offset_ptr->var)
3510 initial_offset_ptr->var
3511 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3512 ssize_int (reg_parm_stack_space));
3513 initial_offset_ptr->constant = 0;
3515 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3516 initial_offset_ptr->constant = reg_parm_stack_space;
3519 #endif /* REG_PARM_STACK_SPACE */
3521 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3523 sizetree
3524 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3525 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3526 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3527 locate->where_pad = where_pad;
3529 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3530 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3531 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3533 locate->boundary = boundary;
3535 if (SUPPORTS_STACK_ALIGNMENT)
3537 /* stack_alignment_estimated can't change after stack has been
3538 realigned. */
3539 if (crtl->stack_alignment_estimated < boundary)
3541 if (!crtl->stack_realign_processed)
3542 crtl->stack_alignment_estimated = boundary;
3543 else
3545 /* If stack is realigned and stack alignment value
3546 hasn't been finalized, it is OK not to increase
3547 stack_alignment_estimated. The bigger alignment
3548 requirement is recorded in stack_alignment_needed
3549 below. */
3550 gcc_assert (!crtl->stack_realign_finalized
3551 && crtl->stack_realign_needed);
3556 /* Remember if the outgoing parameter requires extra alignment on the
3557 calling function side. */
3558 if (crtl->stack_alignment_needed < boundary)
3559 crtl->stack_alignment_needed = boundary;
3560 if (crtl->preferred_stack_boundary < boundary)
3561 crtl->preferred_stack_boundary = boundary;
3563 #ifdef ARGS_GROW_DOWNWARD
3564 locate->slot_offset.constant = -initial_offset_ptr->constant;
3565 if (initial_offset_ptr->var)
3566 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3567 initial_offset_ptr->var);
3570 tree s2 = sizetree;
3571 if (where_pad != none
3572 && (!host_integerp (sizetree, 1)
3573 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3574 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3575 SUB_PARM_SIZE (locate->slot_offset, s2);
3578 locate->slot_offset.constant += part_size_in_regs;
3580 if (!in_regs
3581 #ifdef REG_PARM_STACK_SPACE
3582 || REG_PARM_STACK_SPACE (fndecl) > 0
3583 #endif
3585 pad_to_arg_alignment (&locate->slot_offset, boundary,
3586 &locate->alignment_pad);
3588 locate->size.constant = (-initial_offset_ptr->constant
3589 - locate->slot_offset.constant);
3590 if (initial_offset_ptr->var)
3591 locate->size.var = size_binop (MINUS_EXPR,
3592 size_binop (MINUS_EXPR,
3593 ssize_int (0),
3594 initial_offset_ptr->var),
3595 locate->slot_offset.var);
3597 /* Pad_below needs the pre-rounded size to know how much to pad
3598 below. */
3599 locate->offset = locate->slot_offset;
3600 if (where_pad == downward)
3601 pad_below (&locate->offset, passed_mode, sizetree);
3603 #else /* !ARGS_GROW_DOWNWARD */
3604 if (!in_regs
3605 #ifdef REG_PARM_STACK_SPACE
3606 || REG_PARM_STACK_SPACE (fndecl) > 0
3607 #endif
3609 pad_to_arg_alignment (initial_offset_ptr, boundary,
3610 &locate->alignment_pad);
3611 locate->slot_offset = *initial_offset_ptr;
3613 #ifdef PUSH_ROUNDING
3614 if (passed_mode != BLKmode)
3615 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3616 #endif
3618 /* Pad_below needs the pre-rounded size to know how much to pad below
3619 so this must be done before rounding up. */
3620 locate->offset = locate->slot_offset;
3621 if (where_pad == downward)
3622 pad_below (&locate->offset, passed_mode, sizetree);
3624 if (where_pad != none
3625 && (!host_integerp (sizetree, 1)
3626 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3627 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3629 ADD_PARM_SIZE (locate->size, sizetree);
3631 locate->size.constant -= part_size_in_regs;
3632 #endif /* ARGS_GROW_DOWNWARD */
3634 #ifdef FUNCTION_ARG_OFFSET
3635 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3636 #endif
3639 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3640 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3642 static void
3643 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3644 struct args_size *alignment_pad)
3646 tree save_var = NULL_TREE;
3647 HOST_WIDE_INT save_constant = 0;
3648 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3649 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3651 #ifdef SPARC_STACK_BOUNDARY_HACK
3652 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3653 the real alignment of %sp. However, when it does this, the
3654 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3655 if (SPARC_STACK_BOUNDARY_HACK)
3656 sp_offset = 0;
3657 #endif
3659 if (boundary > PARM_BOUNDARY)
3661 save_var = offset_ptr->var;
3662 save_constant = offset_ptr->constant;
3665 alignment_pad->var = NULL_TREE;
3666 alignment_pad->constant = 0;
3668 if (boundary > BITS_PER_UNIT)
3670 if (offset_ptr->var)
3672 tree sp_offset_tree = ssize_int (sp_offset);
3673 tree offset = size_binop (PLUS_EXPR,
3674 ARGS_SIZE_TREE (*offset_ptr),
3675 sp_offset_tree);
3676 #ifdef ARGS_GROW_DOWNWARD
3677 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3678 #else
3679 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3680 #endif
3682 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3683 /* ARGS_SIZE_TREE includes constant term. */
3684 offset_ptr->constant = 0;
3685 if (boundary > PARM_BOUNDARY)
3686 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3687 save_var);
3689 else
3691 offset_ptr->constant = -sp_offset +
3692 #ifdef ARGS_GROW_DOWNWARD
3693 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3694 #else
3695 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3696 #endif
3697 if (boundary > PARM_BOUNDARY)
3698 alignment_pad->constant = offset_ptr->constant - save_constant;
3703 static void
3704 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3706 if (passed_mode != BLKmode)
3708 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3709 offset_ptr->constant
3710 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3711 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3712 - GET_MODE_SIZE (passed_mode));
3714 else
3716 if (TREE_CODE (sizetree) != INTEGER_CST
3717 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3719 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3720 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3721 /* Add it in. */
3722 ADD_PARM_SIZE (*offset_ptr, s2);
3723 SUB_PARM_SIZE (*offset_ptr, sizetree);
3729 /* True if register REGNO was alive at a place where `setjmp' was
3730 called and was set more than once or is an argument. Such regs may
3731 be clobbered by `longjmp'. */
3733 static bool
3734 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3736 /* There appear to be cases where some local vars never reach the
3737 backend but have bogus regnos. */
3738 if (regno >= max_reg_num ())
3739 return false;
3741 return ((REG_N_SETS (regno) > 1
3742 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3743 && REGNO_REG_SET_P (setjmp_crosses, regno));
3746 /* Walk the tree of blocks describing the binding levels within a
3747 function and warn about variables the might be killed by setjmp or
3748 vfork. This is done after calling flow_analysis before register
3749 allocation since that will clobber the pseudo-regs to hard
3750 regs. */
3752 static void
3753 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3755 tree decl, sub;
3757 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3759 if (TREE_CODE (decl) == VAR_DECL
3760 && DECL_RTL_SET_P (decl)
3761 && REG_P (DECL_RTL (decl))
3762 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3763 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3764 " %<longjmp%> or %<vfork%>", decl);
3767 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3768 setjmp_vars_warning (setjmp_crosses, sub);
3771 /* Do the appropriate part of setjmp_vars_warning
3772 but for arguments instead of local variables. */
3774 static void
3775 setjmp_args_warning (bitmap setjmp_crosses)
3777 tree decl;
3778 for (decl = DECL_ARGUMENTS (current_function_decl);
3779 decl; decl = TREE_CHAIN (decl))
3780 if (DECL_RTL (decl) != 0
3781 && REG_P (DECL_RTL (decl))
3782 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3783 warning (OPT_Wclobbered,
3784 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3785 decl);
3788 /* Generate warning messages for variables live across setjmp. */
3790 void
3791 generate_setjmp_warnings (void)
3793 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3795 if (n_basic_blocks == NUM_FIXED_BLOCKS
3796 || bitmap_empty_p (setjmp_crosses))
3797 return;
3799 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3800 setjmp_args_warning (setjmp_crosses);
3804 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3805 and create duplicate blocks. */
3806 /* ??? Need an option to either create block fragments or to create
3807 abstract origin duplicates of a source block. It really depends
3808 on what optimization has been performed. */
3810 void
3811 reorder_blocks (void)
3813 tree block = DECL_INITIAL (current_function_decl);
3814 VEC(tree,heap) *block_stack;
3816 if (block == NULL_TREE)
3817 return;
3819 block_stack = VEC_alloc (tree, heap, 10);
3821 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3822 clear_block_marks (block);
3824 /* Prune the old trees away, so that they don't get in the way. */
3825 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3826 BLOCK_CHAIN (block) = NULL_TREE;
3828 /* Recreate the block tree from the note nesting. */
3829 reorder_blocks_1 (get_insns (), block, &block_stack);
3830 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3832 VEC_free (tree, heap, block_stack);
3835 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3837 void
3838 clear_block_marks (tree block)
3840 while (block)
3842 TREE_ASM_WRITTEN (block) = 0;
3843 clear_block_marks (BLOCK_SUBBLOCKS (block));
3844 block = BLOCK_CHAIN (block);
3848 static void
3849 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3851 rtx insn;
3853 for (insn = insns; insn; insn = NEXT_INSN (insn))
3855 if (NOTE_P (insn))
3857 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3859 tree block = NOTE_BLOCK (insn);
3860 tree origin;
3862 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3863 ? BLOCK_FRAGMENT_ORIGIN (block)
3864 : block);
3866 /* If we have seen this block before, that means it now
3867 spans multiple address regions. Create a new fragment. */
3868 if (TREE_ASM_WRITTEN (block))
3870 tree new_block = copy_node (block);
3872 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3873 BLOCK_FRAGMENT_CHAIN (new_block)
3874 = BLOCK_FRAGMENT_CHAIN (origin);
3875 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3877 NOTE_BLOCK (insn) = new_block;
3878 block = new_block;
3881 BLOCK_SUBBLOCKS (block) = 0;
3882 TREE_ASM_WRITTEN (block) = 1;
3883 /* When there's only one block for the entire function,
3884 current_block == block and we mustn't do this, it
3885 will cause infinite recursion. */
3886 if (block != current_block)
3888 if (block != origin)
3889 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3891 BLOCK_SUPERCONTEXT (block) = current_block;
3892 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3893 BLOCK_SUBBLOCKS (current_block) = block;
3894 current_block = origin;
3896 VEC_safe_push (tree, heap, *p_block_stack, block);
3898 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3900 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3901 BLOCK_SUBBLOCKS (current_block)
3902 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3903 current_block = BLOCK_SUPERCONTEXT (current_block);
3909 /* Reverse the order of elements in the chain T of blocks,
3910 and return the new head of the chain (old last element). */
3912 tree
3913 blocks_nreverse (tree t)
3915 tree prev = 0, decl, next;
3916 for (decl = t; decl; decl = next)
3918 next = BLOCK_CHAIN (decl);
3919 BLOCK_CHAIN (decl) = prev;
3920 prev = decl;
3922 return prev;
3925 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3926 non-NULL, list them all into VECTOR, in a depth-first preorder
3927 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3928 blocks. */
3930 static int
3931 all_blocks (tree block, tree *vector)
3933 int n_blocks = 0;
3935 while (block)
3937 TREE_ASM_WRITTEN (block) = 0;
3939 /* Record this block. */
3940 if (vector)
3941 vector[n_blocks] = block;
3943 ++n_blocks;
3945 /* Record the subblocks, and their subblocks... */
3946 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3947 vector ? vector + n_blocks : 0);
3948 block = BLOCK_CHAIN (block);
3951 return n_blocks;
3954 /* Return a vector containing all the blocks rooted at BLOCK. The
3955 number of elements in the vector is stored in N_BLOCKS_P. The
3956 vector is dynamically allocated; it is the caller's responsibility
3957 to call `free' on the pointer returned. */
3959 static tree *
3960 get_block_vector (tree block, int *n_blocks_p)
3962 tree *block_vector;
3964 *n_blocks_p = all_blocks (block, NULL);
3965 block_vector = XNEWVEC (tree, *n_blocks_p);
3966 all_blocks (block, block_vector);
3968 return block_vector;
3971 static GTY(()) int next_block_index = 2;
3973 /* Set BLOCK_NUMBER for all the blocks in FN. */
3975 void
3976 number_blocks (tree fn)
3978 int i;
3979 int n_blocks;
3980 tree *block_vector;
3982 /* For SDB and XCOFF debugging output, we start numbering the blocks
3983 from 1 within each function, rather than keeping a running
3984 count. */
3985 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3986 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3987 next_block_index = 1;
3988 #endif
3990 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3992 /* The top-level BLOCK isn't numbered at all. */
3993 for (i = 1; i < n_blocks; ++i)
3994 /* We number the blocks from two. */
3995 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3997 free (block_vector);
3999 return;
4002 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4004 tree
4005 debug_find_var_in_block_tree (tree var, tree block)
4007 tree t;
4009 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4010 if (t == var)
4011 return block;
4013 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4015 tree ret = debug_find_var_in_block_tree (var, t);
4016 if (ret)
4017 return ret;
4020 return NULL_TREE;
4023 /* Keep track of whether we're in a dummy function context. If we are,
4024 we don't want to invoke the set_current_function hook, because we'll
4025 get into trouble if the hook calls target_reinit () recursively or
4026 when the initial initialization is not yet complete. */
4028 static bool in_dummy_function;
4030 /* Invoke the target hook when setting cfun. Update the optimization options
4031 if the function uses different options than the default. */
4033 static void
4034 invoke_set_current_function_hook (tree fndecl)
4036 if (!in_dummy_function)
4038 tree opts = ((fndecl)
4039 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4040 : optimization_default_node);
4042 if (!opts)
4043 opts = optimization_default_node;
4045 /* Change optimization options if needed. */
4046 if (optimization_current_node != opts)
4048 optimization_current_node = opts;
4049 cl_optimization_restore (TREE_OPTIMIZATION (opts));
4052 targetm.set_current_function (fndecl);
4056 /* cfun should never be set directly; use this function. */
4058 void
4059 set_cfun (struct function *new_cfun)
4061 if (cfun != new_cfun)
4063 cfun = new_cfun;
4064 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4068 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4070 static VEC(function_p,heap) *cfun_stack;
4072 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
4074 void
4075 push_cfun (struct function *new_cfun)
4077 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4078 set_cfun (new_cfun);
4081 /* Pop cfun from the stack. */
4083 void
4084 pop_cfun (void)
4086 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4087 set_cfun (new_cfun);
4090 /* Return value of funcdef and increase it. */
4092 get_next_funcdef_no (void)
4094 return funcdef_no++;
4097 /* Allocate a function structure for FNDECL and set its contents
4098 to the defaults. Set cfun to the newly-allocated object.
4099 Some of the helper functions invoked during initialization assume
4100 that cfun has already been set. Therefore, assign the new object
4101 directly into cfun and invoke the back end hook explicitly at the
4102 very end, rather than initializing a temporary and calling set_cfun
4103 on it.
4105 ABSTRACT_P is true if this is a function that will never be seen by
4106 the middle-end. Such functions are front-end concepts (like C++
4107 function templates) that do not correspond directly to functions
4108 placed in object files. */
4110 void
4111 allocate_struct_function (tree fndecl, bool abstract_p)
4113 tree result;
4114 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4116 cfun = GGC_CNEW (struct function);
4118 init_eh_for_function ();
4120 if (init_machine_status)
4121 cfun->machine = (*init_machine_status) ();
4123 #ifdef OVERRIDE_ABI_FORMAT
4124 OVERRIDE_ABI_FORMAT (fndecl);
4125 #endif
4127 invoke_set_current_function_hook (fndecl);
4129 if (fndecl != NULL_TREE)
4131 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4132 cfun->decl = fndecl;
4133 current_function_funcdef_no = get_next_funcdef_no ();
4135 result = DECL_RESULT (fndecl);
4136 if (!abstract_p && aggregate_value_p (result, fndecl))
4138 #ifdef PCC_STATIC_STRUCT_RETURN
4139 cfun->returns_pcc_struct = 1;
4140 #endif
4141 cfun->returns_struct = 1;
4144 cfun->stdarg
4145 = (fntype
4146 && TYPE_ARG_TYPES (fntype) != 0
4147 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4148 != void_type_node));
4150 /* Assume all registers in stdarg functions need to be saved. */
4151 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4152 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4156 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4157 instead of just setting it. */
4159 void
4160 push_struct_function (tree fndecl)
4162 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4163 allocate_struct_function (fndecl, false);
4166 /* Reset cfun, and other non-struct-function variables to defaults as
4167 appropriate for emitting rtl at the start of a function. */
4169 static void
4170 prepare_function_start (void)
4172 gcc_assert (!crtl->emit.x_last_insn);
4173 init_temp_slots ();
4174 init_emit ();
4175 init_varasm_status ();
4176 init_expr ();
4177 default_rtl_profile ();
4179 cse_not_expected = ! optimize;
4181 /* Caller save not needed yet. */
4182 caller_save_needed = 0;
4184 /* We haven't done register allocation yet. */
4185 reg_renumber = 0;
4187 /* Indicate that we have not instantiated virtual registers yet. */
4188 virtuals_instantiated = 0;
4190 /* Indicate that we want CONCATs now. */
4191 generating_concat_p = 1;
4193 /* Indicate we have no need of a frame pointer yet. */
4194 frame_pointer_needed = 0;
4197 /* Initialize the rtl expansion mechanism so that we can do simple things
4198 like generate sequences. This is used to provide a context during global
4199 initialization of some passes. You must call expand_dummy_function_end
4200 to exit this context. */
4202 void
4203 init_dummy_function_start (void)
4205 gcc_assert (!in_dummy_function);
4206 in_dummy_function = true;
4207 push_struct_function (NULL_TREE);
4208 prepare_function_start ();
4211 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4212 and initialize static variables for generating RTL for the statements
4213 of the function. */
4215 void
4216 init_function_start (tree subr)
4218 if (subr && DECL_STRUCT_FUNCTION (subr))
4219 set_cfun (DECL_STRUCT_FUNCTION (subr));
4220 else
4221 allocate_struct_function (subr, false);
4222 prepare_function_start ();
4224 /* Warn if this value is an aggregate type,
4225 regardless of which calling convention we are using for it. */
4226 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4227 warning (OPT_Waggregate_return, "function returns an aggregate");
4230 /* Make sure all values used by the optimization passes have sane defaults. */
4231 unsigned int
4232 init_function_for_compilation (void)
4234 reg_renumber = 0;
4235 return 0;
4238 struct rtl_opt_pass pass_init_function =
4241 RTL_PASS,
4242 "*init_function", /* name */
4243 NULL, /* gate */
4244 init_function_for_compilation, /* execute */
4245 NULL, /* sub */
4246 NULL, /* next */
4247 0, /* static_pass_number */
4248 TV_NONE, /* tv_id */
4249 0, /* properties_required */
4250 0, /* properties_provided */
4251 0, /* properties_destroyed */
4252 0, /* todo_flags_start */
4253 0 /* todo_flags_finish */
4258 void
4259 expand_main_function (void)
4261 #if (defined(INVOKE__main) \
4262 || (!defined(HAS_INIT_SECTION) \
4263 && !defined(INIT_SECTION_ASM_OP) \
4264 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4265 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4266 #endif
4269 /* Expand code to initialize the stack_protect_guard. This is invoked at
4270 the beginning of a function to be protected. */
4272 #ifndef HAVE_stack_protect_set
4273 # define HAVE_stack_protect_set 0
4274 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4275 #endif
4277 void
4278 stack_protect_prologue (void)
4280 tree guard_decl = targetm.stack_protect_guard ();
4281 rtx x, y;
4283 x = expand_normal (crtl->stack_protect_guard);
4284 y = expand_normal (guard_decl);
4286 /* Allow the target to copy from Y to X without leaking Y into a
4287 register. */
4288 if (HAVE_stack_protect_set)
4290 rtx insn = gen_stack_protect_set (x, y);
4291 if (insn)
4293 emit_insn (insn);
4294 return;
4298 /* Otherwise do a straight move. */
4299 emit_move_insn (x, y);
4302 /* Expand code to verify the stack_protect_guard. This is invoked at
4303 the end of a function to be protected. */
4305 #ifndef HAVE_stack_protect_test
4306 # define HAVE_stack_protect_test 0
4307 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4308 #endif
4310 void
4311 stack_protect_epilogue (void)
4313 tree guard_decl = targetm.stack_protect_guard ();
4314 rtx label = gen_label_rtx ();
4315 rtx x, y, tmp;
4317 x = expand_normal (crtl->stack_protect_guard);
4318 y = expand_normal (guard_decl);
4320 /* Allow the target to compare Y with X without leaking either into
4321 a register. */
4322 switch (HAVE_stack_protect_test != 0)
4324 case 1:
4325 tmp = gen_stack_protect_test (x, y, label);
4326 if (tmp)
4328 emit_insn (tmp);
4329 break;
4331 /* FALLTHRU */
4333 default:
4334 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4335 break;
4338 /* The noreturn predictor has been moved to the tree level. The rtl-level
4339 predictors estimate this branch about 20%, which isn't enough to get
4340 things moved out of line. Since this is the only extant case of adding
4341 a noreturn function at the rtl level, it doesn't seem worth doing ought
4342 except adding the prediction by hand. */
4343 tmp = get_last_insn ();
4344 if (JUMP_P (tmp))
4345 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4347 expand_expr_stmt (targetm.stack_protect_fail ());
4348 emit_label (label);
4351 /* Start the RTL for a new function, and set variables used for
4352 emitting RTL.
4353 SUBR is the FUNCTION_DECL node.
4354 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4355 the function's parameters, which must be run at any return statement. */
4357 void
4358 expand_function_start (tree subr)
4360 /* Make sure volatile mem refs aren't considered
4361 valid operands of arithmetic insns. */
4362 init_recog_no_volatile ();
4364 crtl->profile
4365 = (profile_flag
4366 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4368 crtl->limit_stack
4369 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4371 /* Make the label for return statements to jump to. Do not special
4372 case machines with special return instructions -- they will be
4373 handled later during jump, ifcvt, or epilogue creation. */
4374 return_label = gen_label_rtx ();
4376 /* Initialize rtx used to return the value. */
4377 /* Do this before assign_parms so that we copy the struct value address
4378 before any library calls that assign parms might generate. */
4380 /* Decide whether to return the value in memory or in a register. */
4381 if (aggregate_value_p (DECL_RESULT (subr), subr))
4383 /* Returning something that won't go in a register. */
4384 rtx value_address = 0;
4386 #ifdef PCC_STATIC_STRUCT_RETURN
4387 if (cfun->returns_pcc_struct)
4389 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4390 value_address = assemble_static_space (size);
4392 else
4393 #endif
4395 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4396 /* Expect to be passed the address of a place to store the value.
4397 If it is passed as an argument, assign_parms will take care of
4398 it. */
4399 if (sv)
4401 value_address = gen_reg_rtx (Pmode);
4402 emit_move_insn (value_address, sv);
4405 if (value_address)
4407 rtx x = value_address;
4408 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4410 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4411 set_mem_attributes (x, DECL_RESULT (subr), 1);
4413 SET_DECL_RTL (DECL_RESULT (subr), x);
4416 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4417 /* If return mode is void, this decl rtl should not be used. */
4418 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4419 else
4421 /* Compute the return values into a pseudo reg, which we will copy
4422 into the true return register after the cleanups are done. */
4423 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4424 if (TYPE_MODE (return_type) != BLKmode
4425 && targetm.calls.return_in_msb (return_type))
4426 /* expand_function_end will insert the appropriate padding in
4427 this case. Use the return value's natural (unpadded) mode
4428 within the function proper. */
4429 SET_DECL_RTL (DECL_RESULT (subr),
4430 gen_reg_rtx (TYPE_MODE (return_type)));
4431 else
4433 /* In order to figure out what mode to use for the pseudo, we
4434 figure out what the mode of the eventual return register will
4435 actually be, and use that. */
4436 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4438 /* Structures that are returned in registers are not
4439 aggregate_value_p, so we may see a PARALLEL or a REG. */
4440 if (REG_P (hard_reg))
4441 SET_DECL_RTL (DECL_RESULT (subr),
4442 gen_reg_rtx (GET_MODE (hard_reg)));
4443 else
4445 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4446 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4450 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4451 result to the real return register(s). */
4452 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4455 /* Initialize rtx for parameters and local variables.
4456 In some cases this requires emitting insns. */
4457 assign_parms (subr);
4459 /* If function gets a static chain arg, store it. */
4460 if (cfun->static_chain_decl)
4462 tree parm = cfun->static_chain_decl;
4463 rtx local, chain, insn;
4465 local = gen_reg_rtx (Pmode);
4466 chain = targetm.calls.static_chain (current_function_decl, true);
4468 set_decl_incoming_rtl (parm, chain, false);
4469 SET_DECL_RTL (parm, local);
4470 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4472 insn = emit_move_insn (local, chain);
4474 /* Mark the register as eliminable, similar to parameters. */
4475 if (MEM_P (chain)
4476 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4477 set_unique_reg_note (insn, REG_EQUIV, chain);
4480 /* If the function receives a non-local goto, then store the
4481 bits we need to restore the frame pointer. */
4482 if (cfun->nonlocal_goto_save_area)
4484 tree t_save;
4485 rtx r_save;
4487 /* ??? We need to do this save early. Unfortunately here is
4488 before the frame variable gets declared. Help out... */
4489 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4490 if (!DECL_RTL_SET_P (var))
4491 expand_decl (var);
4493 t_save = build4 (ARRAY_REF, ptr_type_node,
4494 cfun->nonlocal_goto_save_area,
4495 integer_zero_node, NULL_TREE, NULL_TREE);
4496 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4497 r_save = convert_memory_address (Pmode, r_save);
4499 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4500 update_nonlocal_goto_save_area ();
4503 /* The following was moved from init_function_start.
4504 The move is supposed to make sdb output more accurate. */
4505 /* Indicate the beginning of the function body,
4506 as opposed to parm setup. */
4507 emit_note (NOTE_INSN_FUNCTION_BEG);
4509 gcc_assert (NOTE_P (get_last_insn ()));
4511 parm_birth_insn = get_last_insn ();
4513 if (crtl->profile)
4515 #ifdef PROFILE_HOOK
4516 PROFILE_HOOK (current_function_funcdef_no);
4517 #endif
4520 /* After the display initializations is where the stack checking
4521 probe should go. */
4522 if(flag_stack_check)
4523 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4525 /* Make sure there is a line number after the function entry setup code. */
4526 force_next_line_note ();
4529 /* Undo the effects of init_dummy_function_start. */
4530 void
4531 expand_dummy_function_end (void)
4533 gcc_assert (in_dummy_function);
4535 /* End any sequences that failed to be closed due to syntax errors. */
4536 while (in_sequence_p ())
4537 end_sequence ();
4539 /* Outside function body, can't compute type's actual size
4540 until next function's body starts. */
4542 free_after_parsing (cfun);
4543 free_after_compilation (cfun);
4544 pop_cfun ();
4545 in_dummy_function = false;
4548 /* Call DOIT for each hard register used as a return value from
4549 the current function. */
4551 void
4552 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4554 rtx outgoing = crtl->return_rtx;
4556 if (! outgoing)
4557 return;
4559 if (REG_P (outgoing))
4560 (*doit) (outgoing, arg);
4561 else if (GET_CODE (outgoing) == PARALLEL)
4563 int i;
4565 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4567 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4569 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4570 (*doit) (x, arg);
4575 static void
4576 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4578 emit_clobber (reg);
4581 void
4582 clobber_return_register (void)
4584 diddle_return_value (do_clobber_return_reg, NULL);
4586 /* In case we do use pseudo to return value, clobber it too. */
4587 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4589 tree decl_result = DECL_RESULT (current_function_decl);
4590 rtx decl_rtl = DECL_RTL (decl_result);
4591 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4593 do_clobber_return_reg (decl_rtl, NULL);
4598 static void
4599 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4601 emit_use (reg);
4604 static void
4605 use_return_register (void)
4607 diddle_return_value (do_use_return_reg, NULL);
4610 /* Possibly warn about unused parameters. */
4611 void
4612 do_warn_unused_parameter (tree fn)
4614 tree decl;
4616 for (decl = DECL_ARGUMENTS (fn);
4617 decl; decl = TREE_CHAIN (decl))
4618 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4619 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4620 && !TREE_NO_WARNING (decl))
4621 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4624 static GTY(()) rtx initial_trampoline;
4626 /* Generate RTL for the end of the current function. */
4628 void
4629 expand_function_end (void)
4631 rtx clobber_after;
4633 /* If arg_pointer_save_area was referenced only from a nested
4634 function, we will not have initialized it yet. Do that now. */
4635 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4636 get_arg_pointer_save_area ();
4638 /* If we are doing generic stack checking and this function makes calls,
4639 do a stack probe at the start of the function to ensure we have enough
4640 space for another stack frame. */
4641 if (flag_stack_check == GENERIC_STACK_CHECK)
4643 rtx insn, seq;
4645 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4646 if (CALL_P (insn))
4648 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
4649 start_sequence ();
4650 if (STACK_CHECK_MOVING_SP)
4651 anti_adjust_stack_and_probe (max_frame_size, true);
4652 else
4653 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
4654 seq = get_insns ();
4655 end_sequence ();
4656 emit_insn_before (seq, stack_check_probe_note);
4657 break;
4661 /* End any sequences that failed to be closed due to syntax errors. */
4662 while (in_sequence_p ())
4663 end_sequence ();
4665 clear_pending_stack_adjust ();
4666 do_pending_stack_adjust ();
4668 /* Output a linenumber for the end of the function.
4669 SDB depends on this. */
4670 force_next_line_note ();
4671 set_curr_insn_source_location (input_location);
4673 /* Before the return label (if any), clobber the return
4674 registers so that they are not propagated live to the rest of
4675 the function. This can only happen with functions that drop
4676 through; if there had been a return statement, there would
4677 have either been a return rtx, or a jump to the return label.
4679 We delay actual code generation after the current_function_value_rtx
4680 is computed. */
4681 clobber_after = get_last_insn ();
4683 /* Output the label for the actual return from the function. */
4684 emit_label (return_label);
4686 if (USING_SJLJ_EXCEPTIONS)
4688 /* Let except.c know where it should emit the call to unregister
4689 the function context for sjlj exceptions. */
4690 if (flag_exceptions)
4691 sjlj_emit_function_exit_after (get_last_insn ());
4693 else
4695 /* We want to ensure that instructions that may trap are not
4696 moved into the epilogue by scheduling, because we don't
4697 always emit unwind information for the epilogue. */
4698 if (flag_non_call_exceptions)
4699 emit_insn (gen_blockage ());
4702 /* If this is an implementation of throw, do what's necessary to
4703 communicate between __builtin_eh_return and the epilogue. */
4704 expand_eh_return ();
4706 /* If scalar return value was computed in a pseudo-reg, or was a named
4707 return value that got dumped to the stack, copy that to the hard
4708 return register. */
4709 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4711 tree decl_result = DECL_RESULT (current_function_decl);
4712 rtx decl_rtl = DECL_RTL (decl_result);
4714 if (REG_P (decl_rtl)
4715 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4716 : DECL_REGISTER (decl_result))
4718 rtx real_decl_rtl = crtl->return_rtx;
4720 /* This should be set in assign_parms. */
4721 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4723 /* If this is a BLKmode structure being returned in registers,
4724 then use the mode computed in expand_return. Note that if
4725 decl_rtl is memory, then its mode may have been changed,
4726 but that crtl->return_rtx has not. */
4727 if (GET_MODE (real_decl_rtl) == BLKmode)
4728 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4730 /* If a non-BLKmode return value should be padded at the least
4731 significant end of the register, shift it left by the appropriate
4732 amount. BLKmode results are handled using the group load/store
4733 machinery. */
4734 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4735 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4737 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4738 REGNO (real_decl_rtl)),
4739 decl_rtl);
4740 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4742 /* If a named return value dumped decl_return to memory, then
4743 we may need to re-do the PROMOTE_MODE signed/unsigned
4744 extension. */
4745 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4747 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4748 promote_function_mode (TREE_TYPE (decl_result),
4749 GET_MODE (decl_rtl), &unsignedp,
4750 TREE_TYPE (current_function_decl), 1);
4752 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4754 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4756 /* If expand_function_start has created a PARALLEL for decl_rtl,
4757 move the result to the real return registers. Otherwise, do
4758 a group load from decl_rtl for a named return. */
4759 if (GET_CODE (decl_rtl) == PARALLEL)
4760 emit_group_move (real_decl_rtl, decl_rtl);
4761 else
4762 emit_group_load (real_decl_rtl, decl_rtl,
4763 TREE_TYPE (decl_result),
4764 int_size_in_bytes (TREE_TYPE (decl_result)));
4766 /* In the case of complex integer modes smaller than a word, we'll
4767 need to generate some non-trivial bitfield insertions. Do that
4768 on a pseudo and not the hard register. */
4769 else if (GET_CODE (decl_rtl) == CONCAT
4770 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4771 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4773 int old_generating_concat_p;
4774 rtx tmp;
4776 old_generating_concat_p = generating_concat_p;
4777 generating_concat_p = 0;
4778 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4779 generating_concat_p = old_generating_concat_p;
4781 emit_move_insn (tmp, decl_rtl);
4782 emit_move_insn (real_decl_rtl, tmp);
4784 else
4785 emit_move_insn (real_decl_rtl, decl_rtl);
4789 /* If returning a structure, arrange to return the address of the value
4790 in a place where debuggers expect to find it.
4792 If returning a structure PCC style,
4793 the caller also depends on this value.
4794 And cfun->returns_pcc_struct is not necessarily set. */
4795 if (cfun->returns_struct
4796 || cfun->returns_pcc_struct)
4798 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4799 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4800 rtx outgoing;
4802 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4803 type = TREE_TYPE (type);
4804 else
4805 value_address = XEXP (value_address, 0);
4807 outgoing = targetm.calls.function_value (build_pointer_type (type),
4808 current_function_decl, true);
4810 /* Mark this as a function return value so integrate will delete the
4811 assignment and USE below when inlining this function. */
4812 REG_FUNCTION_VALUE_P (outgoing) = 1;
4814 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4815 value_address = convert_memory_address (GET_MODE (outgoing),
4816 value_address);
4818 emit_move_insn (outgoing, value_address);
4820 /* Show return register used to hold result (in this case the address
4821 of the result. */
4822 crtl->return_rtx = outgoing;
4825 /* Emit the actual code to clobber return register. */
4827 rtx seq;
4829 start_sequence ();
4830 clobber_return_register ();
4831 seq = get_insns ();
4832 end_sequence ();
4834 emit_insn_after (seq, clobber_after);
4837 /* Output the label for the naked return from the function. */
4838 if (naked_return_label)
4839 emit_label (naked_return_label);
4841 /* @@@ This is a kludge. We want to ensure that instructions that
4842 may trap are not moved into the epilogue by scheduling, because
4843 we don't always emit unwind information for the epilogue. */
4844 if (! USING_SJLJ_EXCEPTIONS && flag_non_call_exceptions)
4845 emit_insn (gen_blockage ());
4847 /* If stack protection is enabled for this function, check the guard. */
4848 if (crtl->stack_protect_guard)
4849 stack_protect_epilogue ();
4851 /* If we had calls to alloca, and this machine needs
4852 an accurate stack pointer to exit the function,
4853 insert some code to save and restore the stack pointer. */
4854 if (! EXIT_IGNORE_STACK
4855 && cfun->calls_alloca)
4857 rtx tem = 0;
4859 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4860 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4863 /* ??? This should no longer be necessary since stupid is no longer with
4864 us, but there are some parts of the compiler (eg reload_combine, and
4865 sh mach_dep_reorg) that still try and compute their own lifetime info
4866 instead of using the general framework. */
4867 use_return_register ();
4871 get_arg_pointer_save_area (void)
4873 rtx ret = arg_pointer_save_area;
4875 if (! ret)
4877 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4878 arg_pointer_save_area = ret;
4881 if (! crtl->arg_pointer_save_area_init)
4883 rtx seq;
4885 /* Save the arg pointer at the beginning of the function. The
4886 generated stack slot may not be a valid memory address, so we
4887 have to check it and fix it if necessary. */
4888 start_sequence ();
4889 emit_move_insn (validize_mem (ret),
4890 crtl->args.internal_arg_pointer);
4891 seq = get_insns ();
4892 end_sequence ();
4894 push_topmost_sequence ();
4895 emit_insn_after (seq, entry_of_function ());
4896 pop_topmost_sequence ();
4899 return ret;
4902 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
4903 for the first time. */
4905 static void
4906 record_insns (rtx insns, rtx end, htab_t *hashp)
4908 rtx tmp;
4909 htab_t hash = *hashp;
4911 if (hash == NULL)
4912 *hashp = hash
4913 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
4915 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
4917 void **slot = htab_find_slot (hash, tmp, INSERT);
4918 gcc_assert (*slot == NULL);
4919 *slot = tmp;
4923 /* INSN has been duplicated as COPY, as part of duping a basic block.
4924 If INSN is an epilogue insn, then record COPY as epilogue as well. */
4926 void
4927 maybe_copy_epilogue_insn (rtx insn, rtx copy)
4929 void **slot;
4931 if (epilogue_insn_hash == NULL
4932 || htab_find (epilogue_insn_hash, insn) == NULL)
4933 return;
4935 slot = htab_find_slot (epilogue_insn_hash, copy, INSERT);
4936 gcc_assert (*slot == NULL);
4937 *slot = copy;
4940 /* Set the locator of the insn chain starting at INSN to LOC. */
4941 static void
4942 set_insn_locators (rtx insn, int loc)
4944 while (insn != NULL_RTX)
4946 if (INSN_P (insn))
4947 INSN_LOCATOR (insn) = loc;
4948 insn = NEXT_INSN (insn);
4952 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
4953 we can be running after reorg, SEQUENCE rtl is possible. */
4955 static bool
4956 contains (const_rtx insn, htab_t hash)
4958 if (hash == NULL)
4959 return false;
4961 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4963 int i;
4964 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4965 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
4966 return true;
4967 return false;
4970 return htab_find (hash, insn) != NULL;
4974 prologue_epilogue_contains (const_rtx insn)
4976 if (contains (insn, prologue_insn_hash))
4977 return 1;
4978 if (contains (insn, epilogue_insn_hash))
4979 return 1;
4980 return 0;
4983 #ifdef HAVE_return
4984 /* Insert gen_return at the end of block BB. This also means updating
4985 block_for_insn appropriately. */
4987 static void
4988 emit_return_into_block (basic_block bb)
4990 emit_jump_insn_after (gen_return (), BB_END (bb));
4992 #endif /* HAVE_return */
4994 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
4995 this into place with notes indicating where the prologue ends and where
4996 the epilogue begins. Update the basic block information when possible. */
4998 static void
4999 thread_prologue_and_epilogue_insns (void)
5001 int inserted = 0;
5002 edge e;
5003 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5004 rtx seq;
5005 #endif
5006 #if defined (HAVE_epilogue) || defined(HAVE_return)
5007 rtx epilogue_end = NULL_RTX;
5008 #endif
5009 edge_iterator ei;
5011 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5012 #ifdef HAVE_prologue
5013 if (HAVE_prologue)
5015 start_sequence ();
5016 seq = gen_prologue ();
5017 emit_insn (seq);
5019 /* Insert an explicit USE for the frame pointer
5020 if the profiling is on and the frame pointer is required. */
5021 if (crtl->profile && frame_pointer_needed)
5022 emit_use (hard_frame_pointer_rtx);
5024 /* Retain a map of the prologue insns. */
5025 record_insns (seq, NULL, &prologue_insn_hash);
5026 emit_note (NOTE_INSN_PROLOGUE_END);
5028 #ifndef PROFILE_BEFORE_PROLOGUE
5029 /* Ensure that instructions are not moved into the prologue when
5030 profiling is on. The call to the profiling routine can be
5031 emitted within the live range of a call-clobbered register. */
5032 if (crtl->profile)
5033 emit_insn (gen_blockage ());
5034 #endif
5036 seq = get_insns ();
5037 end_sequence ();
5038 set_insn_locators (seq, prologue_locator);
5040 /* Can't deal with multiple successors of the entry block
5041 at the moment. Function should always have at least one
5042 entry point. */
5043 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5045 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5046 inserted = 1;
5048 #endif
5050 /* If the exit block has no non-fake predecessors, we don't need
5051 an epilogue. */
5052 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5053 if ((e->flags & EDGE_FAKE) == 0)
5054 break;
5055 if (e == NULL)
5056 goto epilogue_done;
5058 rtl_profile_for_bb (EXIT_BLOCK_PTR);
5059 #ifdef HAVE_return
5060 if (optimize && HAVE_return)
5062 /* If we're allowed to generate a simple return instruction,
5063 then by definition we don't need a full epilogue. Examine
5064 the block that falls through to EXIT. If it does not
5065 contain any code, examine its predecessors and try to
5066 emit (conditional) return instructions. */
5068 basic_block last;
5069 rtx label;
5071 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5072 if (e->flags & EDGE_FALLTHRU)
5073 break;
5074 if (e == NULL)
5075 goto epilogue_done;
5076 last = e->src;
5078 /* Verify that there are no active instructions in the last block. */
5079 label = BB_END (last);
5080 while (label && !LABEL_P (label))
5082 if (active_insn_p (label))
5083 break;
5084 label = PREV_INSN (label);
5087 if (BB_HEAD (last) == label && LABEL_P (label))
5089 edge_iterator ei2;
5091 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5093 basic_block bb = e->src;
5094 rtx jump;
5096 if (bb == ENTRY_BLOCK_PTR)
5098 ei_next (&ei2);
5099 continue;
5102 jump = BB_END (bb);
5103 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5105 ei_next (&ei2);
5106 continue;
5109 /* If we have an unconditional jump, we can replace that
5110 with a simple return instruction. */
5111 if (simplejump_p (jump))
5113 emit_return_into_block (bb);
5114 delete_insn (jump);
5117 /* If we have a conditional jump, we can try to replace
5118 that with a conditional return instruction. */
5119 else if (condjump_p (jump))
5121 if (! redirect_jump (jump, 0, 0))
5123 ei_next (&ei2);
5124 continue;
5127 /* If this block has only one successor, it both jumps
5128 and falls through to the fallthru block, so we can't
5129 delete the edge. */
5130 if (single_succ_p (bb))
5132 ei_next (&ei2);
5133 continue;
5136 else
5138 ei_next (&ei2);
5139 continue;
5142 /* Fix up the CFG for the successful change we just made. */
5143 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5146 /* Emit a return insn for the exit fallthru block. Whether
5147 this is still reachable will be determined later. */
5149 emit_barrier_after (BB_END (last));
5150 emit_return_into_block (last);
5151 epilogue_end = BB_END (last);
5152 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5153 goto epilogue_done;
5156 #endif
5158 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5159 this marker for the splits of EH_RETURN patterns, and nothing else
5160 uses the flag in the meantime. */
5161 epilogue_completed = 1;
5163 #ifdef HAVE_eh_return
5164 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5165 some targets, these get split to a special version of the epilogue
5166 code. In order to be able to properly annotate these with unwind
5167 info, try to split them now. If we get a valid split, drop an
5168 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5169 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5171 rtx prev, last, trial;
5173 if (e->flags & EDGE_FALLTHRU)
5174 continue;
5175 last = BB_END (e->src);
5176 if (!eh_returnjump_p (last))
5177 continue;
5179 prev = PREV_INSN (last);
5180 trial = try_split (PATTERN (last), last, 1);
5181 if (trial == last)
5182 continue;
5184 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5185 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5187 #endif
5189 /* Find the edge that falls through to EXIT. Other edges may exist
5190 due to RETURN instructions, but those don't need epilogues.
5191 There really shouldn't be a mixture -- either all should have
5192 been converted or none, however... */
5194 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5195 if (e->flags & EDGE_FALLTHRU)
5196 break;
5197 if (e == NULL)
5198 goto epilogue_done;
5200 #ifdef HAVE_epilogue
5201 if (HAVE_epilogue)
5203 start_sequence ();
5204 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5205 seq = gen_epilogue ();
5206 emit_jump_insn (seq);
5208 /* Retain a map of the epilogue insns. */
5209 record_insns (seq, NULL, &epilogue_insn_hash);
5210 set_insn_locators (seq, epilogue_locator);
5212 seq = get_insns ();
5213 end_sequence ();
5215 insert_insn_on_edge (seq, e);
5216 inserted = 1;
5218 else
5219 #endif
5221 basic_block cur_bb;
5223 if (! next_active_insn (BB_END (e->src)))
5224 goto epilogue_done;
5225 /* We have a fall-through edge to the exit block, the source is not
5226 at the end of the function, and there will be an assembler epilogue
5227 at the end of the function.
5228 We can't use force_nonfallthru here, because that would try to
5229 use return. Inserting a jump 'by hand' is extremely messy, so
5230 we take advantage of cfg_layout_finalize using
5231 fixup_fallthru_exit_predecessor. */
5232 cfg_layout_initialize (0);
5233 FOR_EACH_BB (cur_bb)
5234 if (cur_bb->index >= NUM_FIXED_BLOCKS
5235 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5236 cur_bb->aux = cur_bb->next_bb;
5237 cfg_layout_finalize ();
5239 epilogue_done:
5240 default_rtl_profile ();
5242 if (inserted)
5244 commit_edge_insertions ();
5246 /* The epilogue insns we inserted may cause the exit edge to no longer
5247 be fallthru. */
5248 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5250 if (((e->flags & EDGE_FALLTHRU) != 0)
5251 && returnjump_p (BB_END (e->src)))
5252 e->flags &= ~EDGE_FALLTHRU;
5256 #ifdef HAVE_sibcall_epilogue
5257 /* Emit sibling epilogues before any sibling call sites. */
5258 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5260 basic_block bb = e->src;
5261 rtx insn = BB_END (bb);
5263 if (!CALL_P (insn)
5264 || ! SIBLING_CALL_P (insn))
5266 ei_next (&ei);
5267 continue;
5270 start_sequence ();
5271 emit_note (NOTE_INSN_EPILOGUE_BEG);
5272 emit_insn (gen_sibcall_epilogue ());
5273 seq = get_insns ();
5274 end_sequence ();
5276 /* Retain a map of the epilogue insns. Used in life analysis to
5277 avoid getting rid of sibcall epilogue insns. Do this before we
5278 actually emit the sequence. */
5279 record_insns (seq, NULL, &epilogue_insn_hash);
5280 set_insn_locators (seq, epilogue_locator);
5282 emit_insn_before (seq, insn);
5283 ei_next (&ei);
5285 #endif
5287 #ifdef HAVE_epilogue
5288 if (epilogue_end)
5290 rtx insn, next;
5292 /* Similarly, move any line notes that appear after the epilogue.
5293 There is no need, however, to be quite so anal about the existence
5294 of such a note. Also possibly move
5295 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5296 info generation. */
5297 for (insn = epilogue_end; insn; insn = next)
5299 next = NEXT_INSN (insn);
5300 if (NOTE_P (insn)
5301 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5302 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5305 #endif
5307 /* Threading the prologue and epilogue changes the artificial refs
5308 in the entry and exit blocks. */
5309 epilogue_completed = 1;
5310 df_update_entry_exit_and_calls ();
5313 /* Reposition the prologue-end and epilogue-begin notes after
5314 instruction scheduling. */
5316 void
5317 reposition_prologue_and_epilogue_notes (void)
5319 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5320 || defined (HAVE_sibcall_epilogue)
5321 /* Since the hash table is created on demand, the fact that it is
5322 non-null is a signal that it is non-empty. */
5323 if (prologue_insn_hash != NULL)
5325 size_t len = htab_elements (prologue_insn_hash);
5326 rtx insn, last = NULL, note = NULL;
5328 /* Scan from the beginning until we reach the last prologue insn. */
5329 /* ??? While we do have the CFG intact, there are two problems:
5330 (1) The prologue can contain loops (typically probing the stack),
5331 which means that the end of the prologue isn't in the first bb.
5332 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5333 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5335 if (NOTE_P (insn))
5337 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5338 note = insn;
5340 else if (contains (insn, prologue_insn_hash))
5342 last = insn;
5343 if (--len == 0)
5344 break;
5348 if (last)
5350 if (note == NULL)
5352 /* Scan forward looking for the PROLOGUE_END note. It should
5353 be right at the beginning of the block, possibly with other
5354 insn notes that got moved there. */
5355 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
5357 if (NOTE_P (note)
5358 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5359 break;
5363 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5364 if (LABEL_P (last))
5365 last = NEXT_INSN (last);
5366 reorder_insns (note, note, last);
5370 if (epilogue_insn_hash != NULL)
5372 edge_iterator ei;
5373 edge e;
5375 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5377 rtx insn, first = NULL, note = NULL;
5378 basic_block bb = e->src;
5380 /* Scan from the beginning until we reach the first epilogue insn. */
5381 FOR_BB_INSNS (bb, insn)
5383 if (NOTE_P (insn))
5385 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5387 note = insn;
5388 if (first != NULL)
5389 break;
5392 else if (first == NULL && contains (insn, epilogue_insn_hash))
5394 first = insn;
5395 if (note != NULL)
5396 break;
5400 if (note)
5402 /* If the function has a single basic block, and no real
5403 epilogue insns (e.g. sibcall with no cleanup), the
5404 epilogue note can get scheduled before the prologue
5405 note. If we have frame related prologue insns, having
5406 them scanned during the epilogue will result in a crash.
5407 In this case re-order the epilogue note to just before
5408 the last insn in the block. */
5409 if (first == NULL)
5410 first = BB_END (bb);
5412 if (PREV_INSN (first) != note)
5413 reorder_insns (note, note, PREV_INSN (first));
5417 #endif /* HAVE_prologue or HAVE_epilogue */
5420 /* Returns the name of the current function. */
5421 const char *
5422 current_function_name (void)
5424 if (cfun == NULL)
5425 return "<none>";
5426 return lang_hooks.decl_printable_name (cfun->decl, 2);
5430 static unsigned int
5431 rest_of_handle_check_leaf_regs (void)
5433 #ifdef LEAF_REGISTERS
5434 current_function_uses_only_leaf_regs
5435 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5436 #endif
5437 return 0;
5440 /* Insert a TYPE into the used types hash table of CFUN. */
5442 static void
5443 used_types_insert_helper (tree type, struct function *func)
5445 if (type != NULL && func != NULL)
5447 void **slot;
5449 if (func->used_types_hash == NULL)
5450 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5451 htab_eq_pointer, NULL);
5452 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5453 if (*slot == NULL)
5454 *slot = type;
5458 /* Given a type, insert it into the used hash table in cfun. */
5459 void
5460 used_types_insert (tree t)
5462 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5463 if (TYPE_NAME (t))
5464 break;
5465 else
5466 t = TREE_TYPE (t);
5467 if (TYPE_NAME (t) == NULL_TREE
5468 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
5469 t = TYPE_MAIN_VARIANT (t);
5470 if (debug_info_level > DINFO_LEVEL_NONE)
5472 if (cfun)
5473 used_types_insert_helper (t, cfun);
5474 else
5475 /* So this might be a type referenced by a global variable.
5476 Record that type so that we can later decide to emit its debug
5477 information. */
5478 types_used_by_cur_var_decl =
5479 tree_cons (t, NULL, types_used_by_cur_var_decl);
5484 /* Helper to Hash a struct types_used_by_vars_entry. */
5486 static hashval_t
5487 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
5489 gcc_assert (entry && entry->var_decl && entry->type);
5491 return iterative_hash_object (entry->type,
5492 iterative_hash_object (entry->var_decl, 0));
5495 /* Hash function of the types_used_by_vars_entry hash table. */
5497 hashval_t
5498 types_used_by_vars_do_hash (const void *x)
5500 const struct types_used_by_vars_entry *entry =
5501 (const struct types_used_by_vars_entry *) x;
5503 return hash_types_used_by_vars_entry (entry);
5506 /*Equality function of the types_used_by_vars_entry hash table. */
5509 types_used_by_vars_eq (const void *x1, const void *x2)
5511 const struct types_used_by_vars_entry *e1 =
5512 (const struct types_used_by_vars_entry *) x1;
5513 const struct types_used_by_vars_entry *e2 =
5514 (const struct types_used_by_vars_entry *)x2;
5516 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
5519 /* Inserts an entry into the types_used_by_vars_hash hash table. */
5521 void
5522 types_used_by_var_decl_insert (tree type, tree var_decl)
5524 if (type != NULL && var_decl != NULL)
5526 void **slot;
5527 struct types_used_by_vars_entry e;
5528 e.var_decl = var_decl;
5529 e.type = type;
5530 if (types_used_by_vars_hash == NULL)
5531 types_used_by_vars_hash =
5532 htab_create_ggc (37, types_used_by_vars_do_hash,
5533 types_used_by_vars_eq, NULL);
5534 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
5535 hash_types_used_by_vars_entry (&e), INSERT);
5536 if (*slot == NULL)
5538 struct types_used_by_vars_entry *entry;
5539 entry = (struct types_used_by_vars_entry*) ggc_alloc
5540 (sizeof (struct types_used_by_vars_entry));
5541 entry->type = type;
5542 entry->var_decl = var_decl;
5543 *slot = entry;
5548 struct rtl_opt_pass pass_leaf_regs =
5551 RTL_PASS,
5552 "*leaf_regs", /* name */
5553 NULL, /* gate */
5554 rest_of_handle_check_leaf_regs, /* execute */
5555 NULL, /* sub */
5556 NULL, /* next */
5557 0, /* static_pass_number */
5558 TV_NONE, /* tv_id */
5559 0, /* properties_required */
5560 0, /* properties_provided */
5561 0, /* properties_destroyed */
5562 0, /* todo_flags_start */
5563 0 /* todo_flags_finish */
5567 static unsigned int
5568 rest_of_handle_thread_prologue_and_epilogue (void)
5570 if (optimize)
5571 cleanup_cfg (CLEANUP_EXPENSIVE);
5572 /* On some machines, the prologue and epilogue code, or parts thereof,
5573 can be represented as RTL. Doing so lets us schedule insns between
5574 it and the rest of the code and also allows delayed branch
5575 scheduling to operate in the epilogue. */
5577 thread_prologue_and_epilogue_insns ();
5578 return 0;
5581 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5584 RTL_PASS,
5585 "pro_and_epilogue", /* name */
5586 NULL, /* gate */
5587 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5588 NULL, /* sub */
5589 NULL, /* next */
5590 0, /* static_pass_number */
5591 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5592 0, /* properties_required */
5593 0, /* properties_provided */
5594 0, /* properties_destroyed */
5595 TODO_verify_flow, /* todo_flags_start */
5596 TODO_dump_func |
5597 TODO_df_verify |
5598 TODO_df_finish | TODO_verify_rtl_sharing |
5599 TODO_ggc_collect /* todo_flags_finish */
5604 /* This mini-pass fixes fall-out from SSA in asm statements that have
5605 in-out constraints. Say you start with
5607 orig = inout;
5608 asm ("": "+mr" (inout));
5609 use (orig);
5611 which is transformed very early to use explicit output and match operands:
5613 orig = inout;
5614 asm ("": "=mr" (inout) : "0" (inout));
5615 use (orig);
5617 Or, after SSA and copyprop,
5619 asm ("": "=mr" (inout_2) : "0" (inout_1));
5620 use (inout_1);
5622 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5623 they represent two separate values, so they will get different pseudo
5624 registers during expansion. Then, since the two operands need to match
5625 per the constraints, but use different pseudo registers, reload can
5626 only register a reload for these operands. But reloads can only be
5627 satisfied by hardregs, not by memory, so we need a register for this
5628 reload, just because we are presented with non-matching operands.
5629 So, even though we allow memory for this operand, no memory can be
5630 used for it, just because the two operands don't match. This can
5631 cause reload failures on register-starved targets.
5633 So it's a symptom of reload not being able to use memory for reloads
5634 or, alternatively it's also a symptom of both operands not coming into
5635 reload as matching (in which case the pseudo could go to memory just
5636 fine, as the alternative allows it, and no reload would be necessary).
5637 We fix the latter problem here, by transforming
5639 asm ("": "=mr" (inout_2) : "0" (inout_1));
5641 back to
5643 inout_2 = inout_1;
5644 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5646 static void
5647 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5649 int i;
5650 bool changed = false;
5651 rtx op = SET_SRC (p_sets[0]);
5652 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5653 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5654 bool *output_matched = XALLOCAVEC (bool, noutputs);
5656 memset (output_matched, 0, noutputs * sizeof (bool));
5657 for (i = 0; i < ninputs; i++)
5659 rtx input, output, insns;
5660 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5661 char *end;
5662 int match, j;
5664 if (*constraint == '%')
5665 constraint++;
5667 match = strtoul (constraint, &end, 10);
5668 if (end == constraint)
5669 continue;
5671 gcc_assert (match < noutputs);
5672 output = SET_DEST (p_sets[match]);
5673 input = RTVEC_ELT (inputs, i);
5674 /* Only do the transformation for pseudos. */
5675 if (! REG_P (output)
5676 || rtx_equal_p (output, input)
5677 || (GET_MODE (input) != VOIDmode
5678 && GET_MODE (input) != GET_MODE (output)))
5679 continue;
5681 /* We can't do anything if the output is also used as input,
5682 as we're going to overwrite it. */
5683 for (j = 0; j < ninputs; j++)
5684 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5685 break;
5686 if (j != ninputs)
5687 continue;
5689 /* Avoid changing the same input several times. For
5690 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
5691 only change in once (to out1), rather than changing it
5692 first to out1 and afterwards to out2. */
5693 if (i > 0)
5695 for (j = 0; j < noutputs; j++)
5696 if (output_matched[j] && input == SET_DEST (p_sets[j]))
5697 break;
5698 if (j != noutputs)
5699 continue;
5701 output_matched[match] = true;
5703 start_sequence ();
5704 emit_move_insn (output, input);
5705 insns = get_insns ();
5706 end_sequence ();
5707 emit_insn_before (insns, insn);
5709 /* Now replace all mentions of the input with output. We can't
5710 just replace the occurrence in inputs[i], as the register might
5711 also be used in some other input (or even in an address of an
5712 output), which would mean possibly increasing the number of
5713 inputs by one (namely 'output' in addition), which might pose
5714 a too complicated problem for reload to solve. E.g. this situation:
5716 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5718 Here 'input' is used in two occurrences as input (once for the
5719 input operand, once for the address in the second output operand).
5720 If we would replace only the occurrence of the input operand (to
5721 make the matching) we would be left with this:
5723 output = input
5724 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5726 Now we suddenly have two different input values (containing the same
5727 value, but different pseudos) where we formerly had only one.
5728 With more complicated asms this might lead to reload failures
5729 which wouldn't have happen without this pass. So, iterate over
5730 all operands and replace all occurrences of the register used. */
5731 for (j = 0; j < noutputs; j++)
5732 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5733 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5734 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5735 input, output);
5736 for (j = 0; j < ninputs; j++)
5737 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5738 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5739 input, output);
5741 changed = true;
5744 if (changed)
5745 df_insn_rescan (insn);
5748 static unsigned
5749 rest_of_match_asm_constraints (void)
5751 basic_block bb;
5752 rtx insn, pat, *p_sets;
5753 int noutputs;
5755 if (!crtl->has_asm_statement)
5756 return 0;
5758 df_set_flags (DF_DEFER_INSN_RESCAN);
5759 FOR_EACH_BB (bb)
5761 FOR_BB_INSNS (bb, insn)
5763 if (!INSN_P (insn))
5764 continue;
5766 pat = PATTERN (insn);
5767 if (GET_CODE (pat) == PARALLEL)
5768 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5769 else if (GET_CODE (pat) == SET)
5770 p_sets = &PATTERN (insn), noutputs = 1;
5771 else
5772 continue;
5774 if (GET_CODE (*p_sets) == SET
5775 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5776 match_asm_constraints_1 (insn, p_sets, noutputs);
5780 return TODO_df_finish;
5783 struct rtl_opt_pass pass_match_asm_constraints =
5786 RTL_PASS,
5787 "asmcons", /* name */
5788 NULL, /* gate */
5789 rest_of_match_asm_constraints, /* execute */
5790 NULL, /* sub */
5791 NULL, /* next */
5792 0, /* static_pass_number */
5793 TV_NONE, /* tv_id */
5794 0, /* properties_required */
5795 0, /* properties_provided */
5796 0, /* properties_destroyed */
5797 0, /* todo_flags_start */
5798 TODO_dump_func /* todo_flags_finish */
5803 #include "gt-function.h"