1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
26 #include "coretypes.h"
33 #include "insn-config.h"
38 #include "langhooks.h"
42 static void store_fixed_bit_field (rtx
, unsigned HOST_WIDE_INT
,
43 unsigned HOST_WIDE_INT
,
44 unsigned HOST_WIDE_INT
, rtx
);
45 static void store_split_bit_field (rtx
, unsigned HOST_WIDE_INT
,
46 unsigned HOST_WIDE_INT
, rtx
);
47 static rtx
extract_fixed_bit_field (enum machine_mode
, rtx
,
48 unsigned HOST_WIDE_INT
,
49 unsigned HOST_WIDE_INT
,
50 unsigned HOST_WIDE_INT
, rtx
, int);
51 static rtx
mask_rtx (enum machine_mode
, int, int, int);
52 static rtx
lshift_value (enum machine_mode
, rtx
, int, int);
53 static rtx
extract_split_bit_field (rtx
, unsigned HOST_WIDE_INT
,
54 unsigned HOST_WIDE_INT
, int);
55 static void do_cmp_and_jump (rtx
, rtx
, enum rtx_code
, enum machine_mode
, rtx
);
56 static rtx
expand_smod_pow2 (enum machine_mode
, rtx
, HOST_WIDE_INT
);
57 static rtx
expand_sdiv_pow2 (enum machine_mode
, rtx
, HOST_WIDE_INT
);
59 /* Test whether a value is zero of a power of two. */
60 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
62 /* Nonzero means divides or modulus operations are relatively cheap for
63 powers of two, so don't use branches; emit the operation instead.
64 Usually, this will mean that the MD file will emit non-branch
67 static bool sdiv_pow2_cheap
[2][NUM_MACHINE_MODES
];
68 static bool smod_pow2_cheap
[2][NUM_MACHINE_MODES
];
70 #ifndef SLOW_UNALIGNED_ACCESS
71 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
74 /* For compilers that support multiple targets with different word sizes,
75 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
76 is the H8/300(H) compiler. */
78 #ifndef MAX_BITS_PER_WORD
79 #define MAX_BITS_PER_WORD BITS_PER_WORD
82 /* Reduce conditional compilation elsewhere. */
85 #define CODE_FOR_insv CODE_FOR_nothing
86 #define gen_insv(a,b,c,d) NULL_RTX
90 #define CODE_FOR_extv CODE_FOR_nothing
91 #define gen_extv(a,b,c,d) NULL_RTX
95 #define CODE_FOR_extzv CODE_FOR_nothing
96 #define gen_extzv(a,b,c,d) NULL_RTX
99 /* Cost of various pieces of RTL. Note that some of these are indexed by
100 shift count and some by mode. */
101 static int zero_cost
[2];
102 static int add_cost
[2][NUM_MACHINE_MODES
];
103 static int neg_cost
[2][NUM_MACHINE_MODES
];
104 static int shift_cost
[2][NUM_MACHINE_MODES
][MAX_BITS_PER_WORD
];
105 static int shiftadd_cost
[2][NUM_MACHINE_MODES
][MAX_BITS_PER_WORD
];
106 static int shiftsub0_cost
[2][NUM_MACHINE_MODES
][MAX_BITS_PER_WORD
];
107 static int shiftsub1_cost
[2][NUM_MACHINE_MODES
][MAX_BITS_PER_WORD
];
108 static int mul_cost
[2][NUM_MACHINE_MODES
];
109 static int sdiv_cost
[2][NUM_MACHINE_MODES
];
110 static int udiv_cost
[2][NUM_MACHINE_MODES
];
111 static int mul_widen_cost
[2][NUM_MACHINE_MODES
];
112 static int mul_highpart_cost
[2][NUM_MACHINE_MODES
];
119 struct rtx_def reg
; rtunion reg_fld
[2];
120 struct rtx_def plus
; rtunion plus_fld1
;
122 struct rtx_def mult
; rtunion mult_fld1
;
123 struct rtx_def sdiv
; rtunion sdiv_fld1
;
124 struct rtx_def udiv
; rtunion udiv_fld1
;
126 struct rtx_def sdiv_32
; rtunion sdiv_32_fld1
;
127 struct rtx_def smod_32
; rtunion smod_32_fld1
;
128 struct rtx_def wide_mult
; rtunion wide_mult_fld1
;
129 struct rtx_def wide_lshr
; rtunion wide_lshr_fld1
;
130 struct rtx_def wide_trunc
;
131 struct rtx_def shift
; rtunion shift_fld1
;
132 struct rtx_def shift_mult
; rtunion shift_mult_fld1
;
133 struct rtx_def shift_add
; rtunion shift_add_fld1
;
134 struct rtx_def shift_sub0
; rtunion shift_sub0_fld1
;
135 struct rtx_def shift_sub1
; rtunion shift_sub1_fld1
;
138 rtx pow2
[MAX_BITS_PER_WORD
];
139 rtx cint
[MAX_BITS_PER_WORD
];
141 enum machine_mode mode
, wider_mode
;
145 for (m
= 1; m
< MAX_BITS_PER_WORD
; m
++)
147 pow2
[m
] = GEN_INT ((HOST_WIDE_INT
) 1 << m
);
148 cint
[m
] = GEN_INT (m
);
150 memset (&all
, 0, sizeof all
);
152 PUT_CODE (&all
.reg
, REG
);
153 /* Avoid using hard regs in ways which may be unsupported. */
154 SET_REGNO (&all
.reg
, LAST_VIRTUAL_REGISTER
+ 1);
156 PUT_CODE (&all
.plus
, PLUS
);
157 XEXP (&all
.plus
, 0) = &all
.reg
;
158 XEXP (&all
.plus
, 1) = &all
.reg
;
160 PUT_CODE (&all
.neg
, NEG
);
161 XEXP (&all
.neg
, 0) = &all
.reg
;
163 PUT_CODE (&all
.mult
, MULT
);
164 XEXP (&all
.mult
, 0) = &all
.reg
;
165 XEXP (&all
.mult
, 1) = &all
.reg
;
167 PUT_CODE (&all
.sdiv
, DIV
);
168 XEXP (&all
.sdiv
, 0) = &all
.reg
;
169 XEXP (&all
.sdiv
, 1) = &all
.reg
;
171 PUT_CODE (&all
.udiv
, UDIV
);
172 XEXP (&all
.udiv
, 0) = &all
.reg
;
173 XEXP (&all
.udiv
, 1) = &all
.reg
;
175 PUT_CODE (&all
.sdiv_32
, DIV
);
176 XEXP (&all
.sdiv_32
, 0) = &all
.reg
;
177 XEXP (&all
.sdiv_32
, 1) = 32 < MAX_BITS_PER_WORD
? cint
[32] : GEN_INT (32);
179 PUT_CODE (&all
.smod_32
, MOD
);
180 XEXP (&all
.smod_32
, 0) = &all
.reg
;
181 XEXP (&all
.smod_32
, 1) = XEXP (&all
.sdiv_32
, 1);
183 PUT_CODE (&all
.zext
, ZERO_EXTEND
);
184 XEXP (&all
.zext
, 0) = &all
.reg
;
186 PUT_CODE (&all
.wide_mult
, MULT
);
187 XEXP (&all
.wide_mult
, 0) = &all
.zext
;
188 XEXP (&all
.wide_mult
, 1) = &all
.zext
;
190 PUT_CODE (&all
.wide_lshr
, LSHIFTRT
);
191 XEXP (&all
.wide_lshr
, 0) = &all
.wide_mult
;
193 PUT_CODE (&all
.wide_trunc
, TRUNCATE
);
194 XEXP (&all
.wide_trunc
, 0) = &all
.wide_lshr
;
196 PUT_CODE (&all
.shift
, ASHIFT
);
197 XEXP (&all
.shift
, 0) = &all
.reg
;
199 PUT_CODE (&all
.shift_mult
, MULT
);
200 XEXP (&all
.shift_mult
, 0) = &all
.reg
;
202 PUT_CODE (&all
.shift_add
, PLUS
);
203 XEXP (&all
.shift_add
, 0) = &all
.shift_mult
;
204 XEXP (&all
.shift_add
, 1) = &all
.reg
;
206 PUT_CODE (&all
.shift_sub0
, MINUS
);
207 XEXP (&all
.shift_sub0
, 0) = &all
.shift_mult
;
208 XEXP (&all
.shift_sub0
, 1) = &all
.reg
;
210 PUT_CODE (&all
.shift_sub1
, MINUS
);
211 XEXP (&all
.shift_sub1
, 0) = &all
.reg
;
212 XEXP (&all
.shift_sub1
, 1) = &all
.shift_mult
;
214 for (speed
= 0; speed
< 2; speed
++)
216 crtl
->maybe_hot_insn_p
= speed
;
217 zero_cost
[speed
] = rtx_cost (const0_rtx
, SET
, speed
);
219 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
221 mode
= GET_MODE_WIDER_MODE (mode
))
223 PUT_MODE (&all
.reg
, mode
);
224 PUT_MODE (&all
.plus
, mode
);
225 PUT_MODE (&all
.neg
, mode
);
226 PUT_MODE (&all
.mult
, mode
);
227 PUT_MODE (&all
.sdiv
, mode
);
228 PUT_MODE (&all
.udiv
, mode
);
229 PUT_MODE (&all
.sdiv_32
, mode
);
230 PUT_MODE (&all
.smod_32
, mode
);
231 PUT_MODE (&all
.wide_trunc
, mode
);
232 PUT_MODE (&all
.shift
, mode
);
233 PUT_MODE (&all
.shift_mult
, mode
);
234 PUT_MODE (&all
.shift_add
, mode
);
235 PUT_MODE (&all
.shift_sub0
, mode
);
236 PUT_MODE (&all
.shift_sub1
, mode
);
238 add_cost
[speed
][mode
] = rtx_cost (&all
.plus
, SET
, speed
);
239 neg_cost
[speed
][mode
] = rtx_cost (&all
.neg
, SET
, speed
);
240 mul_cost
[speed
][mode
] = rtx_cost (&all
.mult
, SET
, speed
);
241 sdiv_cost
[speed
][mode
] = rtx_cost (&all
.sdiv
, SET
, speed
);
242 udiv_cost
[speed
][mode
] = rtx_cost (&all
.udiv
, SET
, speed
);
244 sdiv_pow2_cheap
[speed
][mode
] = (rtx_cost (&all
.sdiv_32
, SET
, speed
)
245 <= 2 * add_cost
[speed
][mode
]);
246 smod_pow2_cheap
[speed
][mode
] = (rtx_cost (&all
.smod_32
, SET
, speed
)
247 <= 4 * add_cost
[speed
][mode
]);
249 wider_mode
= GET_MODE_WIDER_MODE (mode
);
250 if (wider_mode
!= VOIDmode
)
252 PUT_MODE (&all
.zext
, wider_mode
);
253 PUT_MODE (&all
.wide_mult
, wider_mode
);
254 PUT_MODE (&all
.wide_lshr
, wider_mode
);
255 XEXP (&all
.wide_lshr
, 1) = GEN_INT (GET_MODE_BITSIZE (mode
));
257 mul_widen_cost
[speed
][wider_mode
]
258 = rtx_cost (&all
.wide_mult
, SET
, speed
);
259 mul_highpart_cost
[speed
][mode
]
260 = rtx_cost (&all
.wide_trunc
, SET
, speed
);
263 shift_cost
[speed
][mode
][0] = 0;
264 shiftadd_cost
[speed
][mode
][0] = shiftsub0_cost
[speed
][mode
][0]
265 = shiftsub1_cost
[speed
][mode
][0] = add_cost
[speed
][mode
];
267 n
= MIN (MAX_BITS_PER_WORD
, GET_MODE_BITSIZE (mode
));
268 for (m
= 1; m
< n
; m
++)
270 XEXP (&all
.shift
, 1) = cint
[m
];
271 XEXP (&all
.shift_mult
, 1) = pow2
[m
];
273 shift_cost
[speed
][mode
][m
] = rtx_cost (&all
.shift
, SET
, speed
);
274 shiftadd_cost
[speed
][mode
][m
] = rtx_cost (&all
.shift_add
, SET
, speed
);
275 shiftsub0_cost
[speed
][mode
][m
] = rtx_cost (&all
.shift_sub0
, SET
, speed
);
276 shiftsub1_cost
[speed
][mode
][m
] = rtx_cost (&all
.shift_sub1
, SET
, speed
);
280 default_rtl_profile ();
283 /* Return an rtx representing minus the value of X.
284 MODE is the intended mode of the result,
285 useful if X is a CONST_INT. */
288 negate_rtx (enum machine_mode mode
, rtx x
)
290 rtx result
= simplify_unary_operation (NEG
, mode
, x
, mode
);
293 result
= expand_unop (mode
, neg_optab
, x
, NULL_RTX
, 0);
298 /* Report on the availability of insv/extv/extzv and the desired mode
299 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
300 is false; else the mode of the specified operand. If OPNO is -1,
301 all the caller cares about is whether the insn is available. */
303 mode_for_extraction (enum extraction_pattern pattern
, int opno
)
305 const struct insn_data
*data
;
312 data
= &insn_data
[CODE_FOR_insv
];
315 return MAX_MACHINE_MODE
;
320 data
= &insn_data
[CODE_FOR_extv
];
323 return MAX_MACHINE_MODE
;
328 data
= &insn_data
[CODE_FOR_extzv
];
331 return MAX_MACHINE_MODE
;
340 /* Everyone who uses this function used to follow it with
341 if (result == VOIDmode) result = word_mode; */
342 if (data
->operand
[opno
].mode
== VOIDmode
)
344 return data
->operand
[opno
].mode
;
347 /* Return true if X, of mode MODE, matches the predicate for operand
348 OPNO of instruction ICODE. Allow volatile memories, regardless of
349 the ambient volatile_ok setting. */
352 check_predicate_volatile_ok (enum insn_code icode
, int opno
,
353 rtx x
, enum machine_mode mode
)
355 bool save_volatile_ok
, result
;
357 save_volatile_ok
= volatile_ok
;
358 result
= insn_data
[(int) icode
].operand
[opno
].predicate (x
, mode
);
359 volatile_ok
= save_volatile_ok
;
363 /* A subroutine of store_bit_field, with the same arguments. Return true
364 if the operation could be implemented.
366 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
367 no other way of implementing the operation. If FALLBACK_P is false,
368 return false instead. */
371 store_bit_field_1 (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
372 unsigned HOST_WIDE_INT bitnum
, enum machine_mode fieldmode
,
373 rtx value
, bool fallback_p
)
376 = (MEM_P (str_rtx
)) ? BITS_PER_UNIT
: BITS_PER_WORD
;
377 unsigned HOST_WIDE_INT offset
, bitpos
;
382 enum machine_mode op_mode
= mode_for_extraction (EP_insv
, 3);
384 while (GET_CODE (op0
) == SUBREG
)
386 /* The following line once was done only if WORDS_BIG_ENDIAN,
387 but I think that is a mistake. WORDS_BIG_ENDIAN is
388 meaningful at a much higher level; when structures are copied
389 between memory and regs, the higher-numbered regs
390 always get higher addresses. */
391 int inner_mode_size
= GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
)));
392 int outer_mode_size
= GET_MODE_SIZE (GET_MODE (op0
));
396 /* Paradoxical subregs need special handling on big endian machines. */
397 if (SUBREG_BYTE (op0
) == 0 && inner_mode_size
< outer_mode_size
)
399 int difference
= inner_mode_size
- outer_mode_size
;
401 if (WORDS_BIG_ENDIAN
)
402 byte_offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
403 if (BYTES_BIG_ENDIAN
)
404 byte_offset
+= difference
% UNITS_PER_WORD
;
407 byte_offset
= SUBREG_BYTE (op0
);
409 bitnum
+= byte_offset
* BITS_PER_UNIT
;
410 op0
= SUBREG_REG (op0
);
413 /* No action is needed if the target is a register and if the field
414 lies completely outside that register. This can occur if the source
415 code contains an out-of-bounds access to a small array. */
416 if (REG_P (op0
) && bitnum
>= GET_MODE_BITSIZE (GET_MODE (op0
)))
419 /* Use vec_set patterns for inserting parts of vectors whenever
421 if (VECTOR_MODE_P (GET_MODE (op0
))
423 && (optab_handler (vec_set_optab
, GET_MODE (op0
))->insn_code
425 && fieldmode
== GET_MODE_INNER (GET_MODE (op0
))
426 && bitsize
== GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))
427 && !(bitnum
% GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))))
429 enum machine_mode outermode
= GET_MODE (op0
);
430 enum machine_mode innermode
= GET_MODE_INNER (outermode
);
431 int icode
= (int) optab_handler (vec_set_optab
, outermode
)->insn_code
;
432 int pos
= bitnum
/ GET_MODE_BITSIZE (innermode
);
433 rtx rtxpos
= GEN_INT (pos
);
437 enum machine_mode mode0
= insn_data
[icode
].operand
[0].mode
;
438 enum machine_mode mode1
= insn_data
[icode
].operand
[1].mode
;
439 enum machine_mode mode2
= insn_data
[icode
].operand
[2].mode
;
443 if (! (*insn_data
[icode
].operand
[1].predicate
) (src
, mode1
))
444 src
= copy_to_mode_reg (mode1
, src
);
446 if (! (*insn_data
[icode
].operand
[2].predicate
) (rtxpos
, mode2
))
447 rtxpos
= copy_to_mode_reg (mode1
, rtxpos
);
449 /* We could handle this, but we should always be called with a pseudo
450 for our targets and all insns should take them as outputs. */
451 gcc_assert ((*insn_data
[icode
].operand
[0].predicate
) (dest
, mode0
)
452 && (*insn_data
[icode
].operand
[1].predicate
) (src
, mode1
)
453 && (*insn_data
[icode
].operand
[2].predicate
) (rtxpos
, mode2
));
454 pat
= GEN_FCN (icode
) (dest
, src
, rtxpos
);
465 /* If the target is a register, overwriting the entire object, or storing
466 a full-word or multi-word field can be done with just a SUBREG.
468 If the target is memory, storing any naturally aligned field can be
469 done with a simple store. For targets that support fast unaligned
470 memory, any naturally sized, unit aligned field can be done directly. */
472 offset
= bitnum
/ unit
;
473 bitpos
= bitnum
% unit
;
474 byte_offset
= (bitnum
% BITS_PER_WORD
) / BITS_PER_UNIT
475 + (offset
* UNITS_PER_WORD
);
478 && bitsize
== GET_MODE_BITSIZE (fieldmode
)
480 ? ((GET_MODE_SIZE (fieldmode
) >= UNITS_PER_WORD
481 || GET_MODE_SIZE (GET_MODE (op0
)) == GET_MODE_SIZE (fieldmode
))
482 && byte_offset
% GET_MODE_SIZE (fieldmode
) == 0)
483 : (! SLOW_UNALIGNED_ACCESS (fieldmode
, MEM_ALIGN (op0
))
484 || (offset
* BITS_PER_UNIT
% bitsize
== 0
485 && MEM_ALIGN (op0
) % GET_MODE_BITSIZE (fieldmode
) == 0))))
488 op0
= adjust_address (op0
, fieldmode
, offset
);
489 else if (GET_MODE (op0
) != fieldmode
)
490 op0
= simplify_gen_subreg (fieldmode
, op0
, GET_MODE (op0
),
492 emit_move_insn (op0
, value
);
496 /* Make sure we are playing with integral modes. Pun with subregs
497 if we aren't. This must come after the entire register case above,
498 since that case is valid for any mode. The following cases are only
499 valid for integral modes. */
501 enum machine_mode imode
= int_mode_for_mode (GET_MODE (op0
));
502 if (imode
!= GET_MODE (op0
))
505 op0
= adjust_address (op0
, imode
, 0);
508 gcc_assert (imode
!= BLKmode
);
509 op0
= gen_lowpart (imode
, op0
);
514 /* We may be accessing data outside the field, which means
515 we can alias adjacent data. */
518 op0
= shallow_copy_rtx (op0
);
519 set_mem_alias_set (op0
, 0);
520 set_mem_expr (op0
, 0);
523 /* If OP0 is a register, BITPOS must count within a word.
524 But as we have it, it counts within whatever size OP0 now has.
525 On a bigendian machine, these are not the same, so convert. */
528 && unit
> GET_MODE_BITSIZE (GET_MODE (op0
)))
529 bitpos
+= unit
- GET_MODE_BITSIZE (GET_MODE (op0
));
531 /* Storing an lsb-aligned field in a register
532 can be done with a movestrict instruction. */
535 && (BYTES_BIG_ENDIAN
? bitpos
+ bitsize
== unit
: bitpos
== 0)
536 && bitsize
== GET_MODE_BITSIZE (fieldmode
)
537 && (optab_handler (movstrict_optab
, fieldmode
)->insn_code
538 != CODE_FOR_nothing
))
540 int icode
= optab_handler (movstrict_optab
, fieldmode
)->insn_code
;
542 rtx start
= get_last_insn ();
545 /* Get appropriate low part of the value being stored. */
546 if (CONST_INT_P (value
) || REG_P (value
))
547 value
= gen_lowpart (fieldmode
, value
);
548 else if (!(GET_CODE (value
) == SYMBOL_REF
549 || GET_CODE (value
) == LABEL_REF
550 || GET_CODE (value
) == CONST
))
551 value
= convert_to_mode (fieldmode
, value
, 0);
553 if (! (*insn_data
[icode
].operand
[1].predicate
) (value
, fieldmode
))
554 value
= copy_to_mode_reg (fieldmode
, value
);
556 if (GET_CODE (op0
) == SUBREG
)
558 /* Else we've got some float mode source being extracted into
559 a different float mode destination -- this combination of
560 subregs results in Severe Tire Damage. */
561 gcc_assert (GET_MODE (SUBREG_REG (op0
)) == fieldmode
562 || GET_MODE_CLASS (fieldmode
) == MODE_INT
563 || GET_MODE_CLASS (fieldmode
) == MODE_PARTIAL_INT
);
564 arg0
= SUBREG_REG (op0
);
567 insn
= (GEN_FCN (icode
)
568 (gen_rtx_SUBREG (fieldmode
, arg0
,
569 (bitnum
% BITS_PER_WORD
) / BITS_PER_UNIT
570 + (offset
* UNITS_PER_WORD
)),
577 delete_insns_since (start
);
580 /* Handle fields bigger than a word. */
582 if (bitsize
> BITS_PER_WORD
)
584 /* Here we transfer the words of the field
585 in the order least significant first.
586 This is because the most significant word is the one which may
588 However, only do that if the value is not BLKmode. */
590 unsigned int backwards
= WORDS_BIG_ENDIAN
&& fieldmode
!= BLKmode
;
591 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
595 /* This is the mode we must force value to, so that there will be enough
596 subwords to extract. Note that fieldmode will often (always?) be
597 VOIDmode, because that is what store_field uses to indicate that this
598 is a bit field, but passing VOIDmode to operand_subword_force
600 fieldmode
= GET_MODE (value
);
601 if (fieldmode
== VOIDmode
)
602 fieldmode
= smallest_mode_for_size (nwords
* BITS_PER_WORD
, MODE_INT
);
604 last
= get_last_insn ();
605 for (i
= 0; i
< nwords
; i
++)
607 /* If I is 0, use the low-order word in both field and target;
608 if I is 1, use the next to lowest word; and so on. */
609 unsigned int wordnum
= (backwards
? nwords
- i
- 1 : i
);
610 unsigned int bit_offset
= (backwards
611 ? MAX ((int) bitsize
- ((int) i
+ 1)
614 : (int) i
* BITS_PER_WORD
);
615 rtx value_word
= operand_subword_force (value
, wordnum
, fieldmode
);
617 if (!store_bit_field_1 (op0
, MIN (BITS_PER_WORD
,
618 bitsize
- i
* BITS_PER_WORD
),
619 bitnum
+ bit_offset
, word_mode
,
620 value_word
, fallback_p
))
622 delete_insns_since (last
);
629 /* From here on we can assume that the field to be stored in is
630 a full-word (whatever type that is), since it is shorter than a word. */
632 /* OFFSET is the number of words or bytes (UNIT says which)
633 from STR_RTX to the first word or byte containing part of the field. */
638 || GET_MODE_SIZE (GET_MODE (op0
)) > UNITS_PER_WORD
)
642 /* Since this is a destination (lvalue), we can't copy
643 it to a pseudo. We can remove a SUBREG that does not
644 change the size of the operand. Such a SUBREG may
645 have been added above. */
646 gcc_assert (GET_CODE (op0
) == SUBREG
647 && (GET_MODE_SIZE (GET_MODE (op0
))
648 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
)))));
649 op0
= SUBREG_REG (op0
);
651 op0
= gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD
, MODE_INT
, 0),
652 op0
, (offset
* UNITS_PER_WORD
));
657 /* If VALUE has a floating-point or complex mode, access it as an
658 integer of the corresponding size. This can occur on a machine
659 with 64 bit registers that uses SFmode for float. It can also
660 occur for unaligned float or complex fields. */
662 if (GET_MODE (value
) != VOIDmode
663 && GET_MODE_CLASS (GET_MODE (value
)) != MODE_INT
664 && GET_MODE_CLASS (GET_MODE (value
)) != MODE_PARTIAL_INT
)
666 value
= gen_reg_rtx (int_mode_for_mode (GET_MODE (value
)));
667 emit_move_insn (gen_lowpart (GET_MODE (orig_value
), value
), orig_value
);
670 /* Now OFFSET is nonzero only if OP0 is memory
671 and is therefore always measured in bytes. */
674 && GET_MODE (value
) != BLKmode
676 && GET_MODE_BITSIZE (op_mode
) >= bitsize
677 && ! ((REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
678 && (bitsize
+ bitpos
> GET_MODE_BITSIZE (op_mode
)))
679 && insn_data
[CODE_FOR_insv
].operand
[1].predicate (GEN_INT (bitsize
),
681 && check_predicate_volatile_ok (CODE_FOR_insv
, 0, op0
, VOIDmode
))
683 int xbitpos
= bitpos
;
686 rtx last
= get_last_insn ();
688 bool copy_back
= false;
690 /* Add OFFSET into OP0's address. */
692 xop0
= adjust_address (xop0
, byte_mode
, offset
);
694 /* If xop0 is a register, we need it in OP_MODE
695 to make it acceptable to the format of insv. */
696 if (GET_CODE (xop0
) == SUBREG
)
697 /* We can't just change the mode, because this might clobber op0,
698 and we will need the original value of op0 if insv fails. */
699 xop0
= gen_rtx_SUBREG (op_mode
, SUBREG_REG (xop0
), SUBREG_BYTE (xop0
));
700 if (REG_P (xop0
) && GET_MODE (xop0
) != op_mode
)
701 xop0
= gen_lowpart_SUBREG (op_mode
, xop0
);
703 /* If the destination is a paradoxical subreg such that we need a
704 truncate to the inner mode, perform the insertion on a temporary and
705 truncate the result to the original destination. Note that we can't
706 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
707 X) 0)) is (reg:N X). */
708 if (GET_CODE (xop0
) == SUBREG
709 && REG_P (SUBREG_REG (xop0
))
710 && (!TRULY_NOOP_TRUNCATION
711 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (xop0
))),
712 GET_MODE_BITSIZE (op_mode
))))
714 rtx tem
= gen_reg_rtx (op_mode
);
715 emit_move_insn (tem
, xop0
);
720 /* On big-endian machines, we count bits from the most significant.
721 If the bit field insn does not, we must invert. */
723 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
724 xbitpos
= unit
- bitsize
- xbitpos
;
726 /* We have been counting XBITPOS within UNIT.
727 Count instead within the size of the register. */
728 if (BITS_BIG_ENDIAN
&& !MEM_P (xop0
))
729 xbitpos
+= GET_MODE_BITSIZE (op_mode
) - unit
;
731 unit
= GET_MODE_BITSIZE (op_mode
);
733 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
735 if (GET_MODE (value
) != op_mode
)
737 if (GET_MODE_BITSIZE (GET_MODE (value
)) >= bitsize
)
739 /* Optimization: Don't bother really extending VALUE
740 if it has all the bits we will actually use. However,
741 if we must narrow it, be sure we do it correctly. */
743 if (GET_MODE_SIZE (GET_MODE (value
)) < GET_MODE_SIZE (op_mode
))
747 tmp
= simplify_subreg (op_mode
, value1
, GET_MODE (value
), 0);
749 tmp
= simplify_gen_subreg (op_mode
,
750 force_reg (GET_MODE (value
),
752 GET_MODE (value
), 0);
756 value1
= gen_lowpart (op_mode
, value1
);
758 else if (CONST_INT_P (value
))
759 value1
= gen_int_mode (INTVAL (value
), op_mode
);
761 /* Parse phase is supposed to make VALUE's data type
762 match that of the component reference, which is a type
763 at least as wide as the field; so VALUE should have
764 a mode that corresponds to that type. */
765 gcc_assert (CONSTANT_P (value
));
768 /* If this machine's insv insists on a register,
769 get VALUE1 into a register. */
770 if (! ((*insn_data
[(int) CODE_FOR_insv
].operand
[3].predicate
)
772 value1
= force_reg (op_mode
, value1
);
774 pat
= gen_insv (xop0
, GEN_INT (bitsize
), GEN_INT (xbitpos
), value1
);
780 convert_move (op0
, xop0
, true);
783 delete_insns_since (last
);
786 /* If OP0 is a memory, try copying it to a register and seeing if a
787 cheap register alternative is available. */
788 if (HAVE_insv
&& MEM_P (op0
))
790 enum machine_mode bestmode
;
792 /* Get the mode to use for inserting into this field. If OP0 is
793 BLKmode, get the smallest mode consistent with the alignment. If
794 OP0 is a non-BLKmode object that is no wider than OP_MODE, use its
795 mode. Otherwise, use the smallest mode containing the field. */
797 if (GET_MODE (op0
) == BLKmode
798 || (op_mode
!= MAX_MACHINE_MODE
799 && GET_MODE_SIZE (GET_MODE (op0
)) > GET_MODE_SIZE (op_mode
)))
800 bestmode
= get_best_mode (bitsize
, bitnum
, MEM_ALIGN (op0
),
801 (op_mode
== MAX_MACHINE_MODE
802 ? VOIDmode
: op_mode
),
803 MEM_VOLATILE_P (op0
));
805 bestmode
= GET_MODE (op0
);
807 if (bestmode
!= VOIDmode
808 && GET_MODE_SIZE (bestmode
) >= GET_MODE_SIZE (fieldmode
)
809 && !(SLOW_UNALIGNED_ACCESS (bestmode
, MEM_ALIGN (op0
))
810 && GET_MODE_BITSIZE (bestmode
) > MEM_ALIGN (op0
)))
812 rtx last
, tempreg
, xop0
;
813 unsigned HOST_WIDE_INT xoffset
, xbitpos
;
815 last
= get_last_insn ();
817 /* Adjust address to point to the containing unit of
818 that mode. Compute the offset as a multiple of this unit,
819 counting in bytes. */
820 unit
= GET_MODE_BITSIZE (bestmode
);
821 xoffset
= (bitnum
/ unit
) * GET_MODE_SIZE (bestmode
);
822 xbitpos
= bitnum
% unit
;
823 xop0
= adjust_address (op0
, bestmode
, xoffset
);
825 /* Fetch that unit, store the bitfield in it, then store
827 tempreg
= copy_to_reg (xop0
);
828 if (store_bit_field_1 (tempreg
, bitsize
, xbitpos
,
829 fieldmode
, orig_value
, false))
831 emit_move_insn (xop0
, tempreg
);
834 delete_insns_since (last
);
841 store_fixed_bit_field (op0
, offset
, bitsize
, bitpos
, value
);
845 /* Generate code to store value from rtx VALUE
846 into a bit-field within structure STR_RTX
847 containing BITSIZE bits starting at bit BITNUM.
848 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
851 store_bit_field (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
852 unsigned HOST_WIDE_INT bitnum
, enum machine_mode fieldmode
,
855 if (!store_bit_field_1 (str_rtx
, bitsize
, bitnum
, fieldmode
, value
, true))
859 /* Use shifts and boolean operations to store VALUE
860 into a bit field of width BITSIZE
861 in a memory location specified by OP0 except offset by OFFSET bytes.
862 (OFFSET must be 0 if OP0 is a register.)
863 The field starts at position BITPOS within the byte.
864 (If OP0 is a register, it may be a full word or a narrower mode,
865 but BITPOS still counts within a full word,
866 which is significant on bigendian machines.) */
869 store_fixed_bit_field (rtx op0
, unsigned HOST_WIDE_INT offset
,
870 unsigned HOST_WIDE_INT bitsize
,
871 unsigned HOST_WIDE_INT bitpos
, rtx value
)
873 enum machine_mode mode
;
874 unsigned int total_bits
= BITS_PER_WORD
;
879 /* There is a case not handled here:
880 a structure with a known alignment of just a halfword
881 and a field split across two aligned halfwords within the structure.
882 Or likewise a structure with a known alignment of just a byte
883 and a field split across two bytes.
884 Such cases are not supposed to be able to occur. */
886 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
888 gcc_assert (!offset
);
889 /* Special treatment for a bit field split across two registers. */
890 if (bitsize
+ bitpos
> BITS_PER_WORD
)
892 store_split_bit_field (op0
, bitsize
, bitpos
, value
);
898 /* Get the proper mode to use for this field. We want a mode that
899 includes the entire field. If such a mode would be larger than
900 a word, we won't be doing the extraction the normal way.
901 We don't want a mode bigger than the destination. */
903 mode
= GET_MODE (op0
);
904 if (GET_MODE_BITSIZE (mode
) == 0
905 || GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (word_mode
))
907 mode
= get_best_mode (bitsize
, bitpos
+ offset
* BITS_PER_UNIT
,
908 MEM_ALIGN (op0
), mode
, MEM_VOLATILE_P (op0
));
910 if (mode
== VOIDmode
)
912 /* The only way this should occur is if the field spans word
914 store_split_bit_field (op0
, bitsize
, bitpos
+ offset
* BITS_PER_UNIT
,
919 total_bits
= GET_MODE_BITSIZE (mode
);
921 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
922 be in the range 0 to total_bits-1, and put any excess bytes in
924 if (bitpos
>= total_bits
)
926 offset
+= (bitpos
/ total_bits
) * (total_bits
/ BITS_PER_UNIT
);
927 bitpos
-= ((bitpos
/ total_bits
) * (total_bits
/ BITS_PER_UNIT
)
931 /* Get ref to an aligned byte, halfword, or word containing the field.
932 Adjust BITPOS to be position within a word,
933 and OFFSET to be the offset of that word.
934 Then alter OP0 to refer to that word. */
935 bitpos
+= (offset
% (total_bits
/ BITS_PER_UNIT
)) * BITS_PER_UNIT
;
936 offset
-= (offset
% (total_bits
/ BITS_PER_UNIT
));
937 op0
= adjust_address (op0
, mode
, offset
);
940 mode
= GET_MODE (op0
);
942 /* Now MODE is either some integral mode for a MEM as OP0,
943 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
944 The bit field is contained entirely within OP0.
945 BITPOS is the starting bit number within OP0.
946 (OP0's mode may actually be narrower than MODE.) */
948 if (BYTES_BIG_ENDIAN
)
949 /* BITPOS is the distance between our msb
950 and that of the containing datum.
951 Convert it to the distance from the lsb. */
952 bitpos
= total_bits
- bitsize
- bitpos
;
954 /* Now BITPOS is always the distance between our lsb
957 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
958 we must first convert its mode to MODE. */
960 if (CONST_INT_P (value
))
962 HOST_WIDE_INT v
= INTVAL (value
);
964 if (bitsize
< HOST_BITS_PER_WIDE_INT
)
965 v
&= ((HOST_WIDE_INT
) 1 << bitsize
) - 1;
969 else if ((bitsize
< HOST_BITS_PER_WIDE_INT
970 && v
== ((HOST_WIDE_INT
) 1 << bitsize
) - 1)
971 || (bitsize
== HOST_BITS_PER_WIDE_INT
&& v
== -1))
974 value
= lshift_value (mode
, value
, bitpos
, bitsize
);
978 int must_and
= (GET_MODE_BITSIZE (GET_MODE (value
)) != bitsize
979 && bitpos
+ bitsize
!= GET_MODE_BITSIZE (mode
));
981 if (GET_MODE (value
) != mode
)
982 value
= convert_to_mode (mode
, value
, 1);
985 value
= expand_binop (mode
, and_optab
, value
,
986 mask_rtx (mode
, 0, bitsize
, 0),
987 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
989 value
= expand_shift (LSHIFT_EXPR
, mode
, value
,
990 build_int_cst (NULL_TREE
, bitpos
), NULL_RTX
, 1);
993 /* Now clear the chosen bits in OP0,
994 except that if VALUE is -1 we need not bother. */
995 /* We keep the intermediates in registers to allow CSE to combine
996 consecutive bitfield assignments. */
998 temp
= force_reg (mode
, op0
);
1002 temp
= expand_binop (mode
, and_optab
, temp
,
1003 mask_rtx (mode
, bitpos
, bitsize
, 1),
1004 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1005 temp
= force_reg (mode
, temp
);
1008 /* Now logical-or VALUE into OP0, unless it is zero. */
1012 temp
= expand_binop (mode
, ior_optab
, temp
, value
,
1013 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1014 temp
= force_reg (mode
, temp
);
1019 op0
= copy_rtx (op0
);
1020 emit_move_insn (op0
, temp
);
1024 /* Store a bit field that is split across multiple accessible memory objects.
1026 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1027 BITSIZE is the field width; BITPOS the position of its first bit
1029 VALUE is the value to store.
1031 This does not yet handle fields wider than BITS_PER_WORD. */
1034 store_split_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
1035 unsigned HOST_WIDE_INT bitpos
, rtx value
)
1038 unsigned int bitsdone
= 0;
1040 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1042 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1043 unit
= BITS_PER_WORD
;
1045 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
1047 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1048 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1049 that VALUE might be a floating-point constant. */
1050 if (CONSTANT_P (value
) && !CONST_INT_P (value
))
1052 rtx word
= gen_lowpart_common (word_mode
, value
);
1054 if (word
&& (value
!= word
))
1057 value
= gen_lowpart_common (word_mode
,
1058 force_reg (GET_MODE (value
) != VOIDmode
1060 : word_mode
, value
));
1063 while (bitsdone
< bitsize
)
1065 unsigned HOST_WIDE_INT thissize
;
1067 unsigned HOST_WIDE_INT thispos
;
1068 unsigned HOST_WIDE_INT offset
;
1070 offset
= (bitpos
+ bitsdone
) / unit
;
1071 thispos
= (bitpos
+ bitsdone
) % unit
;
1073 /* THISSIZE must not overrun a word boundary. Otherwise,
1074 store_fixed_bit_field will call us again, and we will mutually
1076 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
1077 thissize
= MIN (thissize
, unit
- thispos
);
1079 if (BYTES_BIG_ENDIAN
)
1083 /* We must do an endian conversion exactly the same way as it is
1084 done in extract_bit_field, so that the two calls to
1085 extract_fixed_bit_field will have comparable arguments. */
1086 if (!MEM_P (value
) || GET_MODE (value
) == BLKmode
)
1087 total_bits
= BITS_PER_WORD
;
1089 total_bits
= GET_MODE_BITSIZE (GET_MODE (value
));
1091 /* Fetch successively less significant portions. */
1092 if (CONST_INT_P (value
))
1093 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1094 >> (bitsize
- bitsdone
- thissize
))
1095 & (((HOST_WIDE_INT
) 1 << thissize
) - 1));
1097 /* The args are chosen so that the last part includes the
1098 lsb. Give extract_bit_field the value it needs (with
1099 endianness compensation) to fetch the piece we want. */
1100 part
= extract_fixed_bit_field (word_mode
, value
, 0, thissize
,
1101 total_bits
- bitsize
+ bitsdone
,
1106 /* Fetch successively more significant portions. */
1107 if (CONST_INT_P (value
))
1108 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1110 & (((HOST_WIDE_INT
) 1 << thissize
) - 1));
1112 part
= extract_fixed_bit_field (word_mode
, value
, 0, thissize
,
1113 bitsdone
, NULL_RTX
, 1);
1116 /* If OP0 is a register, then handle OFFSET here.
1118 When handling multiword bitfields, extract_bit_field may pass
1119 down a word_mode SUBREG of a larger REG for a bitfield that actually
1120 crosses a word boundary. Thus, for a SUBREG, we must find
1121 the current word starting from the base register. */
1122 if (GET_CODE (op0
) == SUBREG
)
1124 int word_offset
= (SUBREG_BYTE (op0
) / UNITS_PER_WORD
) + offset
;
1125 word
= operand_subword_force (SUBREG_REG (op0
), word_offset
,
1126 GET_MODE (SUBREG_REG (op0
)));
1129 else if (REG_P (op0
))
1131 word
= operand_subword_force (op0
, offset
, GET_MODE (op0
));
1137 /* OFFSET is in UNITs, and UNIT is in bits.
1138 store_fixed_bit_field wants offset in bytes. */
1139 store_fixed_bit_field (word
, offset
* unit
/ BITS_PER_UNIT
, thissize
,
1141 bitsdone
+= thissize
;
1145 /* A subroutine of extract_bit_field_1 that converts return value X
1146 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1147 to extract_bit_field. */
1150 convert_extracted_bit_field (rtx x
, enum machine_mode mode
,
1151 enum machine_mode tmode
, bool unsignedp
)
1153 if (GET_MODE (x
) == tmode
|| GET_MODE (x
) == mode
)
1156 /* If the x mode is not a scalar integral, first convert to the
1157 integer mode of that size and then access it as a floating-point
1158 value via a SUBREG. */
1159 if (!SCALAR_INT_MODE_P (tmode
))
1161 enum machine_mode smode
;
1163 smode
= mode_for_size (GET_MODE_BITSIZE (tmode
), MODE_INT
, 0);
1164 x
= convert_to_mode (smode
, x
, unsignedp
);
1165 x
= force_reg (smode
, x
);
1166 return gen_lowpart (tmode
, x
);
1169 return convert_to_mode (tmode
, x
, unsignedp
);
1172 /* A subroutine of extract_bit_field, with the same arguments.
1173 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1174 if we can find no other means of implementing the operation.
1175 if FALLBACK_P is false, return NULL instead. */
1178 extract_bit_field_1 (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
1179 unsigned HOST_WIDE_INT bitnum
, int unsignedp
, rtx target
,
1180 enum machine_mode mode
, enum machine_mode tmode
,
1184 = (MEM_P (str_rtx
)) ? BITS_PER_UNIT
: BITS_PER_WORD
;
1185 unsigned HOST_WIDE_INT offset
, bitpos
;
1187 enum machine_mode int_mode
;
1188 enum machine_mode ext_mode
;
1189 enum machine_mode mode1
;
1190 enum insn_code icode
;
1193 if (tmode
== VOIDmode
)
1196 while (GET_CODE (op0
) == SUBREG
)
1198 bitnum
+= SUBREG_BYTE (op0
) * BITS_PER_UNIT
;
1199 op0
= SUBREG_REG (op0
);
1202 /* If we have an out-of-bounds access to a register, just return an
1203 uninitialized register of the required mode. This can occur if the
1204 source code contains an out-of-bounds access to a small array. */
1205 if (REG_P (op0
) && bitnum
>= GET_MODE_BITSIZE (GET_MODE (op0
)))
1206 return gen_reg_rtx (tmode
);
1209 && mode
== GET_MODE (op0
)
1211 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
1213 /* We're trying to extract a full register from itself. */
1217 /* See if we can get a better vector mode before extracting. */
1218 if (VECTOR_MODE_P (GET_MODE (op0
))
1220 && GET_MODE_INNER (GET_MODE (op0
)) != tmode
)
1222 enum machine_mode new_mode
;
1223 int nunits
= GET_MODE_NUNITS (GET_MODE (op0
));
1225 if (GET_MODE_CLASS (tmode
) == MODE_FLOAT
)
1226 new_mode
= MIN_MODE_VECTOR_FLOAT
;
1227 else if (GET_MODE_CLASS (tmode
) == MODE_FRACT
)
1228 new_mode
= MIN_MODE_VECTOR_FRACT
;
1229 else if (GET_MODE_CLASS (tmode
) == MODE_UFRACT
)
1230 new_mode
= MIN_MODE_VECTOR_UFRACT
;
1231 else if (GET_MODE_CLASS (tmode
) == MODE_ACCUM
)
1232 new_mode
= MIN_MODE_VECTOR_ACCUM
;
1233 else if (GET_MODE_CLASS (tmode
) == MODE_UACCUM
)
1234 new_mode
= MIN_MODE_VECTOR_UACCUM
;
1236 new_mode
= MIN_MODE_VECTOR_INT
;
1238 for (; new_mode
!= VOIDmode
; new_mode
= GET_MODE_WIDER_MODE (new_mode
))
1239 if (GET_MODE_NUNITS (new_mode
) == nunits
1240 && GET_MODE_SIZE (new_mode
) == GET_MODE_SIZE (GET_MODE (op0
))
1241 && targetm
.vector_mode_supported_p (new_mode
))
1243 if (new_mode
!= VOIDmode
)
1244 op0
= gen_lowpart (new_mode
, op0
);
1247 /* Use vec_extract patterns for extracting parts of vectors whenever
1249 if (VECTOR_MODE_P (GET_MODE (op0
))
1251 && (optab_handler (vec_extract_optab
, GET_MODE (op0
))->insn_code
1252 != CODE_FOR_nothing
)
1253 && ((bitnum
+ bitsize
- 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))
1254 == bitnum
/ GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))))
1256 enum machine_mode outermode
= GET_MODE (op0
);
1257 enum machine_mode innermode
= GET_MODE_INNER (outermode
);
1258 int icode
= (int) optab_handler (vec_extract_optab
, outermode
)->insn_code
;
1259 unsigned HOST_WIDE_INT pos
= bitnum
/ GET_MODE_BITSIZE (innermode
);
1260 rtx rtxpos
= GEN_INT (pos
);
1262 rtx dest
= NULL
, pat
, seq
;
1263 enum machine_mode mode0
= insn_data
[icode
].operand
[0].mode
;
1264 enum machine_mode mode1
= insn_data
[icode
].operand
[1].mode
;
1265 enum machine_mode mode2
= insn_data
[icode
].operand
[2].mode
;
1267 if (innermode
== tmode
|| innermode
== mode
)
1271 dest
= gen_reg_rtx (innermode
);
1275 if (! (*insn_data
[icode
].operand
[0].predicate
) (dest
, mode0
))
1276 dest
= copy_to_mode_reg (mode0
, dest
);
1278 if (! (*insn_data
[icode
].operand
[1].predicate
) (src
, mode1
))
1279 src
= copy_to_mode_reg (mode1
, src
);
1281 if (! (*insn_data
[icode
].operand
[2].predicate
) (rtxpos
, mode2
))
1282 rtxpos
= copy_to_mode_reg (mode1
, rtxpos
);
1284 /* We could handle this, but we should always be called with a pseudo
1285 for our targets and all insns should take them as outputs. */
1286 gcc_assert ((*insn_data
[icode
].operand
[0].predicate
) (dest
, mode0
)
1287 && (*insn_data
[icode
].operand
[1].predicate
) (src
, mode1
)
1288 && (*insn_data
[icode
].operand
[2].predicate
) (rtxpos
, mode2
));
1290 pat
= GEN_FCN (icode
) (dest
, src
, rtxpos
);
1298 return gen_lowpart (tmode
, dest
);
1303 /* Make sure we are playing with integral modes. Pun with subregs
1306 enum machine_mode imode
= int_mode_for_mode (GET_MODE (op0
));
1307 if (imode
!= GET_MODE (op0
))
1310 op0
= adjust_address (op0
, imode
, 0);
1311 else if (imode
!= BLKmode
)
1313 op0
= gen_lowpart (imode
, op0
);
1315 /* If we got a SUBREG, force it into a register since we
1316 aren't going to be able to do another SUBREG on it. */
1317 if (GET_CODE (op0
) == SUBREG
)
1318 op0
= force_reg (imode
, op0
);
1320 else if (REG_P (op0
))
1323 imode
= smallest_mode_for_size (GET_MODE_BITSIZE (GET_MODE (op0
)),
1325 reg
= gen_reg_rtx (imode
);
1326 subreg
= gen_lowpart_SUBREG (GET_MODE (op0
), reg
);
1327 emit_move_insn (subreg
, op0
);
1329 bitnum
+= SUBREG_BYTE (subreg
) * BITS_PER_UNIT
;
1333 rtx mem
= assign_stack_temp (GET_MODE (op0
),
1334 GET_MODE_SIZE (GET_MODE (op0
)), 0);
1335 emit_move_insn (mem
, op0
);
1336 op0
= adjust_address (mem
, BLKmode
, 0);
1341 /* We may be accessing data outside the field, which means
1342 we can alias adjacent data. */
1345 op0
= shallow_copy_rtx (op0
);
1346 set_mem_alias_set (op0
, 0);
1347 set_mem_expr (op0
, 0);
1350 /* Extraction of a full-word or multi-word value from a structure
1351 in a register or aligned memory can be done with just a SUBREG.
1352 A subword value in the least significant part of a register
1353 can also be extracted with a SUBREG. For this, we need the
1354 byte offset of the value in op0. */
1356 bitpos
= bitnum
% unit
;
1357 offset
= bitnum
/ unit
;
1358 byte_offset
= bitpos
/ BITS_PER_UNIT
+ offset
* UNITS_PER_WORD
;
1360 /* If OP0 is a register, BITPOS must count within a word.
1361 But as we have it, it counts within whatever size OP0 now has.
1362 On a bigendian machine, these are not the same, so convert. */
1363 if (BYTES_BIG_ENDIAN
1365 && unit
> GET_MODE_BITSIZE (GET_MODE (op0
)))
1366 bitpos
+= unit
- GET_MODE_BITSIZE (GET_MODE (op0
));
1368 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1369 If that's wrong, the solution is to test for it and set TARGET to 0
1372 /* Only scalar integer modes can be converted via subregs. There is an
1373 additional problem for FP modes here in that they can have a precision
1374 which is different from the size. mode_for_size uses precision, but
1375 we want a mode based on the size, so we must avoid calling it for FP
1377 mode1
= (SCALAR_INT_MODE_P (tmode
)
1378 ? mode_for_size (bitsize
, GET_MODE_CLASS (tmode
), 0)
1381 if (((bitsize
>= BITS_PER_WORD
&& bitsize
== GET_MODE_BITSIZE (mode
)
1382 && bitpos
% BITS_PER_WORD
== 0)
1383 || (mode1
!= BLKmode
1384 /* ??? The big endian test here is wrong. This is correct
1385 if the value is in a register, and if mode_for_size is not
1386 the same mode as op0. This causes us to get unnecessarily
1387 inefficient code from the Thumb port when -mbig-endian. */
1388 && (BYTES_BIG_ENDIAN
1389 ? bitpos
+ bitsize
== BITS_PER_WORD
1392 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode1
),
1393 GET_MODE_BITSIZE (GET_MODE (op0
)))
1394 && GET_MODE_SIZE (mode1
) != 0
1395 && byte_offset
% GET_MODE_SIZE (mode1
) == 0)
1397 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (op0
))
1398 || (offset
* BITS_PER_UNIT
% bitsize
== 0
1399 && MEM_ALIGN (op0
) % bitsize
== 0)))))
1402 op0
= adjust_address (op0
, mode1
, offset
);
1403 else if (mode1
!= GET_MODE (op0
))
1405 rtx sub
= simplify_gen_subreg (mode1
, op0
, GET_MODE (op0
),
1408 goto no_subreg_mode_swap
;
1412 return convert_to_mode (tmode
, op0
, unsignedp
);
1415 no_subreg_mode_swap
:
1417 /* Handle fields bigger than a word. */
1419 if (bitsize
> BITS_PER_WORD
)
1421 /* Here we transfer the words of the field
1422 in the order least significant first.
1423 This is because the most significant word is the one which may
1424 be less than full. */
1426 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
1429 if (target
== 0 || !REG_P (target
))
1430 target
= gen_reg_rtx (mode
);
1432 /* Indicate for flow that the entire target reg is being set. */
1433 emit_clobber (target
);
1435 for (i
= 0; i
< nwords
; i
++)
1437 /* If I is 0, use the low-order word in both field and target;
1438 if I is 1, use the next to lowest word; and so on. */
1439 /* Word number in TARGET to use. */
1440 unsigned int wordnum
1442 ? GET_MODE_SIZE (GET_MODE (target
)) / UNITS_PER_WORD
- i
- 1
1444 /* Offset from start of field in OP0. */
1445 unsigned int bit_offset
= (WORDS_BIG_ENDIAN
1446 ? MAX (0, ((int) bitsize
- ((int) i
+ 1)
1447 * (int) BITS_PER_WORD
))
1448 : (int) i
* BITS_PER_WORD
);
1449 rtx target_part
= operand_subword (target
, wordnum
, 1, VOIDmode
);
1451 = extract_bit_field (op0
, MIN (BITS_PER_WORD
,
1452 bitsize
- i
* BITS_PER_WORD
),
1453 bitnum
+ bit_offset
, 1, target_part
, mode
,
1456 gcc_assert (target_part
);
1458 if (result_part
!= target_part
)
1459 emit_move_insn (target_part
, result_part
);
1464 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1465 need to be zero'd out. */
1466 if (GET_MODE_SIZE (GET_MODE (target
)) > nwords
* UNITS_PER_WORD
)
1468 unsigned int i
, total_words
;
1470 total_words
= GET_MODE_SIZE (GET_MODE (target
)) / UNITS_PER_WORD
;
1471 for (i
= nwords
; i
< total_words
; i
++)
1473 (operand_subword (target
,
1474 WORDS_BIG_ENDIAN
? total_words
- i
- 1 : i
,
1481 /* Signed bit field: sign-extend with two arithmetic shifts. */
1482 target
= expand_shift (LSHIFT_EXPR
, mode
, target
,
1483 build_int_cst (NULL_TREE
,
1484 GET_MODE_BITSIZE (mode
) - bitsize
),
1486 return expand_shift (RSHIFT_EXPR
, mode
, target
,
1487 build_int_cst (NULL_TREE
,
1488 GET_MODE_BITSIZE (mode
) - bitsize
),
1492 /* From here on we know the desired field is smaller than a word. */
1494 /* Check if there is a correspondingly-sized integer field, so we can
1495 safely extract it as one size of integer, if necessary; then
1496 truncate or extend to the size that is wanted; then use SUBREGs or
1497 convert_to_mode to get one of the modes we really wanted. */
1499 int_mode
= int_mode_for_mode (tmode
);
1500 if (int_mode
== BLKmode
)
1501 int_mode
= int_mode_for_mode (mode
);
1502 /* Should probably push op0 out to memory and then do a load. */
1503 gcc_assert (int_mode
!= BLKmode
);
1505 /* OFFSET is the number of words or bytes (UNIT says which)
1506 from STR_RTX to the first word or byte containing part of the field. */
1510 || GET_MODE_SIZE (GET_MODE (op0
)) > UNITS_PER_WORD
)
1513 op0
= copy_to_reg (op0
);
1514 op0
= gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD
, MODE_INT
, 0),
1515 op0
, (offset
* UNITS_PER_WORD
));
1520 /* Now OFFSET is nonzero only for memory operands. */
1521 ext_mode
= mode_for_extraction (unsignedp
? EP_extzv
: EP_extv
, 0);
1522 icode
= unsignedp
? CODE_FOR_extzv
: CODE_FOR_extv
;
1523 if (ext_mode
!= MAX_MACHINE_MODE
1525 && GET_MODE_BITSIZE (ext_mode
) >= bitsize
1526 /* If op0 is a register, we need it in EXT_MODE to make it
1527 acceptable to the format of ext(z)v. */
1528 && !(GET_CODE (op0
) == SUBREG
&& GET_MODE (op0
) != ext_mode
)
1529 && !((REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1530 && (bitsize
+ bitpos
> GET_MODE_BITSIZE (ext_mode
)))
1531 && check_predicate_volatile_ok (icode
, 1, op0
, GET_MODE (op0
)))
1533 unsigned HOST_WIDE_INT xbitpos
= bitpos
, xoffset
= offset
;
1534 rtx bitsize_rtx
, bitpos_rtx
;
1535 rtx last
= get_last_insn ();
1537 rtx xtarget
= target
;
1538 rtx xspec_target
= target
;
1539 rtx xspec_target_subreg
= 0;
1542 /* If op0 is a register, we need it in EXT_MODE to make it
1543 acceptable to the format of ext(z)v. */
1544 if (REG_P (xop0
) && GET_MODE (xop0
) != ext_mode
)
1545 xop0
= gen_lowpart_SUBREG (ext_mode
, xop0
);
1547 /* Get ref to first byte containing part of the field. */
1548 xop0
= adjust_address (xop0
, byte_mode
, xoffset
);
1550 /* On big-endian machines, we count bits from the most significant.
1551 If the bit field insn does not, we must invert. */
1552 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
1553 xbitpos
= unit
- bitsize
- xbitpos
;
1555 /* Now convert from counting within UNIT to counting in EXT_MODE. */
1556 if (BITS_BIG_ENDIAN
&& !MEM_P (xop0
))
1557 xbitpos
+= GET_MODE_BITSIZE (ext_mode
) - unit
;
1559 unit
= GET_MODE_BITSIZE (ext_mode
);
1562 xtarget
= xspec_target
= gen_reg_rtx (tmode
);
1564 if (GET_MODE (xtarget
) != ext_mode
)
1566 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1567 between the mode of the extraction (word_mode) and the target
1568 mode. Instead, create a temporary and use convert_move to set
1571 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (xtarget
)),
1572 GET_MODE_BITSIZE (ext_mode
)))
1574 xtarget
= gen_lowpart (ext_mode
, xtarget
);
1575 if (GET_MODE_SIZE (ext_mode
)
1576 > GET_MODE_SIZE (GET_MODE (xspec_target
)))
1577 xspec_target_subreg
= xtarget
;
1580 xtarget
= gen_reg_rtx (ext_mode
);
1583 /* If this machine's ext(z)v insists on a register target,
1584 make sure we have one. */
1585 if (!insn_data
[(int) icode
].operand
[0].predicate (xtarget
, ext_mode
))
1586 xtarget
= gen_reg_rtx (ext_mode
);
1588 bitsize_rtx
= GEN_INT (bitsize
);
1589 bitpos_rtx
= GEN_INT (xbitpos
);
1592 ? gen_extzv (xtarget
, xop0
, bitsize_rtx
, bitpos_rtx
)
1593 : gen_extv (xtarget
, xop0
, bitsize_rtx
, bitpos_rtx
));
1597 if (xtarget
== xspec_target
)
1599 if (xtarget
== xspec_target_subreg
)
1600 return xspec_target
;
1601 return convert_extracted_bit_field (xtarget
, mode
, tmode
, unsignedp
);
1603 delete_insns_since (last
);
1606 /* If OP0 is a memory, try copying it to a register and seeing if a
1607 cheap register alternative is available. */
1608 if (ext_mode
!= MAX_MACHINE_MODE
&& MEM_P (op0
))
1610 enum machine_mode bestmode
;
1612 /* Get the mode to use for inserting into this field. If
1613 OP0 is BLKmode, get the smallest mode consistent with the
1614 alignment. If OP0 is a non-BLKmode object that is no
1615 wider than EXT_MODE, use its mode. Otherwise, use the
1616 smallest mode containing the field. */
1618 if (GET_MODE (op0
) == BLKmode
1619 || (ext_mode
!= MAX_MACHINE_MODE
1620 && GET_MODE_SIZE (GET_MODE (op0
)) > GET_MODE_SIZE (ext_mode
)))
1621 bestmode
= get_best_mode (bitsize
, bitnum
, MEM_ALIGN (op0
),
1622 (ext_mode
== MAX_MACHINE_MODE
1623 ? VOIDmode
: ext_mode
),
1624 MEM_VOLATILE_P (op0
));
1626 bestmode
= GET_MODE (op0
);
1628 if (bestmode
!= VOIDmode
1629 && !(SLOW_UNALIGNED_ACCESS (bestmode
, MEM_ALIGN (op0
))
1630 && GET_MODE_BITSIZE (bestmode
) > MEM_ALIGN (op0
)))
1632 unsigned HOST_WIDE_INT xoffset
, xbitpos
;
1634 /* Compute the offset as a multiple of this unit,
1635 counting in bytes. */
1636 unit
= GET_MODE_BITSIZE (bestmode
);
1637 xoffset
= (bitnum
/ unit
) * GET_MODE_SIZE (bestmode
);
1638 xbitpos
= bitnum
% unit
;
1640 /* Make sure the register is big enough for the whole field. */
1641 if (xoffset
* BITS_PER_UNIT
+ unit
1642 >= offset
* BITS_PER_UNIT
+ bitsize
)
1644 rtx last
, result
, xop0
;
1646 last
= get_last_insn ();
1648 /* Fetch it to a register in that size. */
1649 xop0
= adjust_address (op0
, bestmode
, xoffset
);
1650 xop0
= force_reg (bestmode
, xop0
);
1651 result
= extract_bit_field_1 (xop0
, bitsize
, xbitpos
,
1653 mode
, tmode
, false);
1657 delete_insns_since (last
);
1665 target
= extract_fixed_bit_field (int_mode
, op0
, offset
, bitsize
,
1666 bitpos
, target
, unsignedp
);
1667 return convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1670 /* Generate code to extract a byte-field from STR_RTX
1671 containing BITSIZE bits, starting at BITNUM,
1672 and put it in TARGET if possible (if TARGET is nonzero).
1673 Regardless of TARGET, we return the rtx for where the value is placed.
1675 STR_RTX is the structure containing the byte (a REG or MEM).
1676 UNSIGNEDP is nonzero if this is an unsigned bit field.
1677 MODE is the natural mode of the field value once extracted.
1678 TMODE is the mode the caller would like the value to have;
1679 but the value may be returned with type MODE instead.
1681 If a TARGET is specified and we can store in it at no extra cost,
1682 we do so, and return TARGET.
1683 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1684 if they are equally easy. */
1687 extract_bit_field (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
1688 unsigned HOST_WIDE_INT bitnum
, int unsignedp
, rtx target
,
1689 enum machine_mode mode
, enum machine_mode tmode
)
1691 return extract_bit_field_1 (str_rtx
, bitsize
, bitnum
, unsignedp
,
1692 target
, mode
, tmode
, true);
1695 /* Extract a bit field using shifts and boolean operations
1696 Returns an rtx to represent the value.
1697 OP0 addresses a register (word) or memory (byte).
1698 BITPOS says which bit within the word or byte the bit field starts in.
1699 OFFSET says how many bytes farther the bit field starts;
1700 it is 0 if OP0 is a register.
1701 BITSIZE says how many bits long the bit field is.
1702 (If OP0 is a register, it may be narrower than a full word,
1703 but BITPOS still counts within a full word,
1704 which is significant on bigendian machines.)
1706 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1707 If TARGET is nonzero, attempts to store the value there
1708 and return TARGET, but this is not guaranteed.
1709 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1712 extract_fixed_bit_field (enum machine_mode tmode
, rtx op0
,
1713 unsigned HOST_WIDE_INT offset
,
1714 unsigned HOST_WIDE_INT bitsize
,
1715 unsigned HOST_WIDE_INT bitpos
, rtx target
,
1718 unsigned int total_bits
= BITS_PER_WORD
;
1719 enum machine_mode mode
;
1721 if (GET_CODE (op0
) == SUBREG
|| REG_P (op0
))
1723 /* Special treatment for a bit field split across two registers. */
1724 if (bitsize
+ bitpos
> BITS_PER_WORD
)
1725 return extract_split_bit_field (op0
, bitsize
, bitpos
, unsignedp
);
1729 /* Get the proper mode to use for this field. We want a mode that
1730 includes the entire field. If such a mode would be larger than
1731 a word, we won't be doing the extraction the normal way. */
1733 mode
= get_best_mode (bitsize
, bitpos
+ offset
* BITS_PER_UNIT
,
1734 MEM_ALIGN (op0
), word_mode
, MEM_VOLATILE_P (op0
));
1736 if (mode
== VOIDmode
)
1737 /* The only way this should occur is if the field spans word
1739 return extract_split_bit_field (op0
, bitsize
,
1740 bitpos
+ offset
* BITS_PER_UNIT
,
1743 total_bits
= GET_MODE_BITSIZE (mode
);
1745 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1746 be in the range 0 to total_bits-1, and put any excess bytes in
1748 if (bitpos
>= total_bits
)
1750 offset
+= (bitpos
/ total_bits
) * (total_bits
/ BITS_PER_UNIT
);
1751 bitpos
-= ((bitpos
/ total_bits
) * (total_bits
/ BITS_PER_UNIT
)
1755 /* Get ref to an aligned byte, halfword, or word containing the field.
1756 Adjust BITPOS to be position within a word,
1757 and OFFSET to be the offset of that word.
1758 Then alter OP0 to refer to that word. */
1759 bitpos
+= (offset
% (total_bits
/ BITS_PER_UNIT
)) * BITS_PER_UNIT
;
1760 offset
-= (offset
% (total_bits
/ BITS_PER_UNIT
));
1761 op0
= adjust_address (op0
, mode
, offset
);
1764 mode
= GET_MODE (op0
);
1766 if (BYTES_BIG_ENDIAN
)
1767 /* BITPOS is the distance between our msb and that of OP0.
1768 Convert it to the distance from the lsb. */
1769 bitpos
= total_bits
- bitsize
- bitpos
;
1771 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1772 We have reduced the big-endian case to the little-endian case. */
1778 /* If the field does not already start at the lsb,
1779 shift it so it does. */
1780 tree amount
= build_int_cst (NULL_TREE
, bitpos
);
1781 /* Maybe propagate the target for the shift. */
1782 /* But not if we will return it--could confuse integrate.c. */
1783 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
1784 if (tmode
!= mode
) subtarget
= 0;
1785 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
, amount
, subtarget
, 1);
1787 /* Convert the value to the desired mode. */
1789 op0
= convert_to_mode (tmode
, op0
, 1);
1791 /* Unless the msb of the field used to be the msb when we shifted,
1792 mask out the upper bits. */
1794 if (GET_MODE_BITSIZE (mode
) != bitpos
+ bitsize
)
1795 return expand_binop (GET_MODE (op0
), and_optab
, op0
,
1796 mask_rtx (GET_MODE (op0
), 0, bitsize
, 0),
1797 target
, 1, OPTAB_LIB_WIDEN
);
1801 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1802 then arithmetic-shift its lsb to the lsb of the word. */
1803 op0
= force_reg (mode
, op0
);
1807 /* Find the narrowest integer mode that contains the field. */
1809 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1810 mode
= GET_MODE_WIDER_MODE (mode
))
1811 if (GET_MODE_BITSIZE (mode
) >= bitsize
+ bitpos
)
1813 op0
= convert_to_mode (mode
, op0
, 0);
1817 if (GET_MODE_BITSIZE (mode
) != (bitsize
+ bitpos
))
1820 = build_int_cst (NULL_TREE
,
1821 GET_MODE_BITSIZE (mode
) - (bitsize
+ bitpos
));
1822 /* Maybe propagate the target for the shift. */
1823 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
1824 op0
= expand_shift (LSHIFT_EXPR
, mode
, op0
, amount
, subtarget
, 1);
1827 return expand_shift (RSHIFT_EXPR
, mode
, op0
,
1828 build_int_cst (NULL_TREE
,
1829 GET_MODE_BITSIZE (mode
) - bitsize
),
1833 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1834 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1835 complement of that if COMPLEMENT. The mask is truncated if
1836 necessary to the width of mode MODE. The mask is zero-extended if
1837 BITSIZE+BITPOS is too small for MODE. */
1840 mask_rtx (enum machine_mode mode
, int bitpos
, int bitsize
, int complement
)
1844 mask
= double_int_mask (bitsize
);
1845 mask
= double_int_lshift (mask
, bitpos
, HOST_BITS_PER_DOUBLE_INT
, false);
1848 mask
= double_int_not (mask
);
1850 return immed_double_int_const (mask
, mode
);
1853 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1854 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1857 lshift_value (enum machine_mode mode
, rtx value
, int bitpos
, int bitsize
)
1861 val
= double_int_zext (uhwi_to_double_int (INTVAL (value
)), bitsize
);
1862 val
= double_int_lshift (val
, bitpos
, HOST_BITS_PER_DOUBLE_INT
, false);
1864 return immed_double_int_const (val
, mode
);
1867 /* Extract a bit field that is split across two words
1868 and return an RTX for the result.
1870 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1871 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1872 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1875 extract_split_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
1876 unsigned HOST_WIDE_INT bitpos
, int unsignedp
)
1879 unsigned int bitsdone
= 0;
1880 rtx result
= NULL_RTX
;
1883 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1885 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1886 unit
= BITS_PER_WORD
;
1888 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
1890 while (bitsdone
< bitsize
)
1892 unsigned HOST_WIDE_INT thissize
;
1894 unsigned HOST_WIDE_INT thispos
;
1895 unsigned HOST_WIDE_INT offset
;
1897 offset
= (bitpos
+ bitsdone
) / unit
;
1898 thispos
= (bitpos
+ bitsdone
) % unit
;
1900 /* THISSIZE must not overrun a word boundary. Otherwise,
1901 extract_fixed_bit_field will call us again, and we will mutually
1903 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
1904 thissize
= MIN (thissize
, unit
- thispos
);
1906 /* If OP0 is a register, then handle OFFSET here.
1908 When handling multiword bitfields, extract_bit_field may pass
1909 down a word_mode SUBREG of a larger REG for a bitfield that actually
1910 crosses a word boundary. Thus, for a SUBREG, we must find
1911 the current word starting from the base register. */
1912 if (GET_CODE (op0
) == SUBREG
)
1914 int word_offset
= (SUBREG_BYTE (op0
) / UNITS_PER_WORD
) + offset
;
1915 word
= operand_subword_force (SUBREG_REG (op0
), word_offset
,
1916 GET_MODE (SUBREG_REG (op0
)));
1919 else if (REG_P (op0
))
1921 word
= operand_subword_force (op0
, offset
, GET_MODE (op0
));
1927 /* Extract the parts in bit-counting order,
1928 whose meaning is determined by BYTES_PER_UNIT.
1929 OFFSET is in UNITs, and UNIT is in bits.
1930 extract_fixed_bit_field wants offset in bytes. */
1931 part
= extract_fixed_bit_field (word_mode
, word
,
1932 offset
* unit
/ BITS_PER_UNIT
,
1933 thissize
, thispos
, 0, 1);
1934 bitsdone
+= thissize
;
1936 /* Shift this part into place for the result. */
1937 if (BYTES_BIG_ENDIAN
)
1939 if (bitsize
!= bitsdone
)
1940 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
1941 build_int_cst (NULL_TREE
, bitsize
- bitsdone
),
1946 if (bitsdone
!= thissize
)
1947 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
1948 build_int_cst (NULL_TREE
,
1949 bitsdone
- thissize
), 0, 1);
1955 /* Combine the parts with bitwise or. This works
1956 because we extracted each part as an unsigned bit field. */
1957 result
= expand_binop (word_mode
, ior_optab
, part
, result
, NULL_RTX
, 1,
1963 /* Unsigned bit field: we are done. */
1966 /* Signed bit field: sign-extend with two arithmetic shifts. */
1967 result
= expand_shift (LSHIFT_EXPR
, word_mode
, result
,
1968 build_int_cst (NULL_TREE
, BITS_PER_WORD
- bitsize
),
1970 return expand_shift (RSHIFT_EXPR
, word_mode
, result
,
1971 build_int_cst (NULL_TREE
, BITS_PER_WORD
- bitsize
),
1975 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
1976 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
1977 MODE, fill the upper bits with zeros. Fail if the layout of either
1978 mode is unknown (as for CC modes) or if the extraction would involve
1979 unprofitable mode punning. Return the value on success, otherwise
1982 This is different from gen_lowpart* in these respects:
1984 - the returned value must always be considered an rvalue
1986 - when MODE is wider than SRC_MODE, the extraction involves
1989 - when MODE is smaller than SRC_MODE, the extraction involves
1990 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
1992 In other words, this routine performs a computation, whereas the
1993 gen_lowpart* routines are conceptually lvalue or rvalue subreg
1997 extract_low_bits (enum machine_mode mode
, enum machine_mode src_mode
, rtx src
)
1999 enum machine_mode int_mode
, src_int_mode
;
2001 if (mode
== src_mode
)
2004 if (CONSTANT_P (src
))
2006 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2007 fails, it will happily create (subreg (symbol_ref)) or similar
2009 unsigned int byte
= subreg_lowpart_offset (mode
, src_mode
);
2010 rtx ret
= simplify_subreg (mode
, src
, src_mode
, byte
);
2014 if (GET_MODE (src
) == VOIDmode
2015 || !validate_subreg (mode
, src_mode
, src
, byte
))
2018 src
= force_reg (GET_MODE (src
), src
);
2019 return gen_rtx_SUBREG (mode
, src
, byte
);
2022 if (GET_MODE_CLASS (mode
) == MODE_CC
|| GET_MODE_CLASS (src_mode
) == MODE_CC
)
2025 if (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (src_mode
)
2026 && MODES_TIEABLE_P (mode
, src_mode
))
2028 rtx x
= gen_lowpart_common (mode
, src
);
2033 src_int_mode
= int_mode_for_mode (src_mode
);
2034 int_mode
= int_mode_for_mode (mode
);
2035 if (src_int_mode
== BLKmode
|| int_mode
== BLKmode
)
2038 if (!MODES_TIEABLE_P (src_int_mode
, src_mode
))
2040 if (!MODES_TIEABLE_P (int_mode
, mode
))
2043 src
= gen_lowpart (src_int_mode
, src
);
2044 src
= convert_modes (int_mode
, src_int_mode
, src
, true);
2045 src
= gen_lowpart (mode
, src
);
2049 /* Add INC into TARGET. */
2052 expand_inc (rtx target
, rtx inc
)
2054 rtx value
= expand_binop (GET_MODE (target
), add_optab
,
2056 target
, 0, OPTAB_LIB_WIDEN
);
2057 if (value
!= target
)
2058 emit_move_insn (target
, value
);
2061 /* Subtract DEC from TARGET. */
2064 expand_dec (rtx target
, rtx dec
)
2066 rtx value
= expand_binop (GET_MODE (target
), sub_optab
,
2068 target
, 0, OPTAB_LIB_WIDEN
);
2069 if (value
!= target
)
2070 emit_move_insn (target
, value
);
2073 /* Output a shift instruction for expression code CODE,
2074 with SHIFTED being the rtx for the value to shift,
2075 and AMOUNT the tree for the amount to shift by.
2076 Store the result in the rtx TARGET, if that is convenient.
2077 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2078 Return the rtx for where the value is. */
2081 expand_shift (enum tree_code code
, enum machine_mode mode
, rtx shifted
,
2082 tree amount
, rtx target
, int unsignedp
)
2085 int left
= (code
== LSHIFT_EXPR
|| code
== LROTATE_EXPR
);
2086 int rotate
= (code
== LROTATE_EXPR
|| code
== RROTATE_EXPR
);
2087 optab lshift_optab
= ashl_optab
;
2088 optab rshift_arith_optab
= ashr_optab
;
2089 optab rshift_uns_optab
= lshr_optab
;
2090 optab lrotate_optab
= rotl_optab
;
2091 optab rrotate_optab
= rotr_optab
;
2092 enum machine_mode op1_mode
;
2094 bool speed
= optimize_insn_for_speed_p ();
2096 op1
= expand_normal (amount
);
2097 op1_mode
= GET_MODE (op1
);
2099 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2100 shift amount is a vector, use the vector/vector shift patterns. */
2101 if (VECTOR_MODE_P (mode
) && VECTOR_MODE_P (op1_mode
))
2103 lshift_optab
= vashl_optab
;
2104 rshift_arith_optab
= vashr_optab
;
2105 rshift_uns_optab
= vlshr_optab
;
2106 lrotate_optab
= vrotl_optab
;
2107 rrotate_optab
= vrotr_optab
;
2110 /* Previously detected shift-counts computed by NEGATE_EXPR
2111 and shifted in the other direction; but that does not work
2114 if (SHIFT_COUNT_TRUNCATED
)
2116 if (CONST_INT_P (op1
)
2117 && ((unsigned HOST_WIDE_INT
) INTVAL (op1
) >=
2118 (unsigned HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)))
2119 op1
= GEN_INT ((unsigned HOST_WIDE_INT
) INTVAL (op1
)
2120 % GET_MODE_BITSIZE (mode
));
2121 else if (GET_CODE (op1
) == SUBREG
2122 && subreg_lowpart_p (op1
)
2123 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (op1
))))
2124 op1
= SUBREG_REG (op1
);
2127 if (op1
== const0_rtx
)
2130 /* Check whether its cheaper to implement a left shift by a constant
2131 bit count by a sequence of additions. */
2132 if (code
== LSHIFT_EXPR
2133 && CONST_INT_P (op1
)
2135 && INTVAL (op1
) < GET_MODE_BITSIZE (mode
)
2136 && INTVAL (op1
) < MAX_BITS_PER_WORD
2137 && shift_cost
[speed
][mode
][INTVAL (op1
)] > INTVAL (op1
) * add_cost
[speed
][mode
]
2138 && shift_cost
[speed
][mode
][INTVAL (op1
)] != MAX_COST
)
2141 for (i
= 0; i
< INTVAL (op1
); i
++)
2143 temp
= force_reg (mode
, shifted
);
2144 shifted
= expand_binop (mode
, add_optab
, temp
, temp
, NULL_RTX
,
2145 unsignedp
, OPTAB_LIB_WIDEN
);
2150 for (attempt
= 0; temp
== 0 && attempt
< 3; attempt
++)
2152 enum optab_methods methods
;
2155 methods
= OPTAB_DIRECT
;
2156 else if (attempt
== 1)
2157 methods
= OPTAB_WIDEN
;
2159 methods
= OPTAB_LIB_WIDEN
;
2163 /* Widening does not work for rotation. */
2164 if (methods
== OPTAB_WIDEN
)
2166 else if (methods
== OPTAB_LIB_WIDEN
)
2168 /* If we have been unable to open-code this by a rotation,
2169 do it as the IOR of two shifts. I.e., to rotate A
2170 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2171 where C is the bitsize of A.
2173 It is theoretically possible that the target machine might
2174 not be able to perform either shift and hence we would
2175 be making two libcalls rather than just the one for the
2176 shift (similarly if IOR could not be done). We will allow
2177 this extremely unlikely lossage to avoid complicating the
2180 rtx subtarget
= target
== shifted
? 0 : target
;
2181 tree new_amount
, other_amount
;
2183 tree type
= TREE_TYPE (amount
);
2184 if (GET_MODE (op1
) != TYPE_MODE (type
)
2185 && GET_MODE (op1
) != VOIDmode
)
2186 op1
= convert_to_mode (TYPE_MODE (type
), op1
, 1);
2187 new_amount
= make_tree (type
, op1
);
2189 = fold_build2 (MINUS_EXPR
, type
,
2190 build_int_cst (type
, GET_MODE_BITSIZE (mode
)),
2193 shifted
= force_reg (mode
, shifted
);
2195 temp
= expand_shift (left
? LSHIFT_EXPR
: RSHIFT_EXPR
,
2196 mode
, shifted
, new_amount
, 0, 1);
2197 temp1
= expand_shift (left
? RSHIFT_EXPR
: LSHIFT_EXPR
,
2198 mode
, shifted
, other_amount
, subtarget
, 1);
2199 return expand_binop (mode
, ior_optab
, temp
, temp1
, target
,
2200 unsignedp
, methods
);
2203 temp
= expand_binop (mode
,
2204 left
? lrotate_optab
: rrotate_optab
,
2205 shifted
, op1
, target
, unsignedp
, methods
);
2208 temp
= expand_binop (mode
,
2209 left
? lshift_optab
: rshift_uns_optab
,
2210 shifted
, op1
, target
, unsignedp
, methods
);
2212 /* Do arithmetic shifts.
2213 Also, if we are going to widen the operand, we can just as well
2214 use an arithmetic right-shift instead of a logical one. */
2215 if (temp
== 0 && ! rotate
2216 && (! unsignedp
|| (! left
&& methods
== OPTAB_WIDEN
)))
2218 enum optab_methods methods1
= methods
;
2220 /* If trying to widen a log shift to an arithmetic shift,
2221 don't accept an arithmetic shift of the same size. */
2223 methods1
= OPTAB_MUST_WIDEN
;
2225 /* Arithmetic shift */
2227 temp
= expand_binop (mode
,
2228 left
? lshift_optab
: rshift_arith_optab
,
2229 shifted
, op1
, target
, unsignedp
, methods1
);
2232 /* We used to try extzv here for logical right shifts, but that was
2233 only useful for one machine, the VAX, and caused poor code
2234 generation there for lshrdi3, so the code was deleted and a
2235 define_expand for lshrsi3 was added to vax.md. */
2255 /* This structure holds the "cost" of a multiply sequence. The
2256 "cost" field holds the total rtx_cost of every operator in the
2257 synthetic multiplication sequence, hence cost(a op b) is defined
2258 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2259 The "latency" field holds the minimum possible latency of the
2260 synthetic multiply, on a hypothetical infinitely parallel CPU.
2261 This is the critical path, or the maximum height, of the expression
2262 tree which is the sum of rtx_costs on the most expensive path from
2263 any leaf to the root. Hence latency(a op b) is defined as zero for
2264 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2267 short cost
; /* Total rtx_cost of the multiplication sequence. */
2268 short latency
; /* The latency of the multiplication sequence. */
2271 /* This macro is used to compare a pointer to a mult_cost against an
2272 single integer "rtx_cost" value. This is equivalent to the macro
2273 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2274 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2275 || ((X)->cost == (Y) && (X)->latency < (Y)))
2277 /* This macro is used to compare two pointers to mult_costs against
2278 each other. The macro returns true if X is cheaper than Y.
2279 Currently, the cheaper of two mult_costs is the one with the
2280 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2281 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2282 || ((X)->cost == (Y)->cost \
2283 && (X)->latency < (Y)->latency))
2285 /* This structure records a sequence of operations.
2286 `ops' is the number of operations recorded.
2287 `cost' is their total cost.
2288 The operations are stored in `op' and the corresponding
2289 logarithms of the integer coefficients in `log'.
2291 These are the operations:
2292 alg_zero total := 0;
2293 alg_m total := multiplicand;
2294 alg_shift total := total * coeff
2295 alg_add_t_m2 total := total + multiplicand * coeff;
2296 alg_sub_t_m2 total := total - multiplicand * coeff;
2297 alg_add_factor total := total * coeff + total;
2298 alg_sub_factor total := total * coeff - total;
2299 alg_add_t2_m total := total * coeff + multiplicand;
2300 alg_sub_t2_m total := total * coeff - multiplicand;
2302 The first operand must be either alg_zero or alg_m. */
2306 struct mult_cost cost
;
2308 /* The size of the OP and LOG fields are not directly related to the
2309 word size, but the worst-case algorithms will be if we have few
2310 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2311 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2312 in total wordsize operations. */
2313 enum alg_code op
[MAX_BITS_PER_WORD
];
2314 char log
[MAX_BITS_PER_WORD
];
2317 /* The entry for our multiplication cache/hash table. */
2318 struct alg_hash_entry
{
2319 /* The number we are multiplying by. */
2320 unsigned HOST_WIDE_INT t
;
2322 /* The mode in which we are multiplying something by T. */
2323 enum machine_mode mode
;
2325 /* The best multiplication algorithm for t. */
2328 /* The cost of multiplication if ALG_CODE is not alg_impossible.
2329 Otherwise, the cost within which multiplication by T is
2331 struct mult_cost cost
;
2333 /* OPtimized for speed? */
2337 /* The number of cache/hash entries. */
2338 #if HOST_BITS_PER_WIDE_INT == 64
2339 #define NUM_ALG_HASH_ENTRIES 1031
2341 #define NUM_ALG_HASH_ENTRIES 307
2344 /* Each entry of ALG_HASH caches alg_code for some integer. This is
2345 actually a hash table. If we have a collision, that the older
2346 entry is kicked out. */
2347 static struct alg_hash_entry alg_hash
[NUM_ALG_HASH_ENTRIES
];
2349 /* Indicates the type of fixup needed after a constant multiplication.
2350 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2351 the result should be negated, and ADD_VARIANT means that the
2352 multiplicand should be added to the result. */
2353 enum mult_variant
{basic_variant
, negate_variant
, add_variant
};
2355 static void synth_mult (struct algorithm
*, unsigned HOST_WIDE_INT
,
2356 const struct mult_cost
*, enum machine_mode mode
);
2357 static bool choose_mult_variant (enum machine_mode
, HOST_WIDE_INT
,
2358 struct algorithm
*, enum mult_variant
*, int);
2359 static rtx
expand_mult_const (enum machine_mode
, rtx
, HOST_WIDE_INT
, rtx
,
2360 const struct algorithm
*, enum mult_variant
);
2361 static unsigned HOST_WIDE_INT
choose_multiplier (unsigned HOST_WIDE_INT
, int,
2362 int, rtx
*, int *, int *);
2363 static unsigned HOST_WIDE_INT
invert_mod2n (unsigned HOST_WIDE_INT
, int);
2364 static rtx
extract_high_half (enum machine_mode
, rtx
);
2365 static rtx
expand_mult_highpart (enum machine_mode
, rtx
, rtx
, rtx
, int, int);
2366 static rtx
expand_mult_highpart_optab (enum machine_mode
, rtx
, rtx
, rtx
,
2368 /* Compute and return the best algorithm for multiplying by T.
2369 The algorithm must cost less than cost_limit
2370 If retval.cost >= COST_LIMIT, no algorithm was found and all
2371 other field of the returned struct are undefined.
2372 MODE is the machine mode of the multiplication. */
2375 synth_mult (struct algorithm
*alg_out
, unsigned HOST_WIDE_INT t
,
2376 const struct mult_cost
*cost_limit
, enum machine_mode mode
)
2379 struct algorithm
*alg_in
, *best_alg
;
2380 struct mult_cost best_cost
;
2381 struct mult_cost new_limit
;
2382 int op_cost
, op_latency
;
2383 unsigned HOST_WIDE_INT orig_t
= t
;
2384 unsigned HOST_WIDE_INT q
;
2385 int maxm
= MIN (BITS_PER_WORD
, GET_MODE_BITSIZE (mode
));
2387 bool cache_hit
= false;
2388 enum alg_code cache_alg
= alg_zero
;
2389 bool speed
= optimize_insn_for_speed_p ();
2391 /* Indicate that no algorithm is yet found. If no algorithm
2392 is found, this value will be returned and indicate failure. */
2393 alg_out
->cost
.cost
= cost_limit
->cost
+ 1;
2394 alg_out
->cost
.latency
= cost_limit
->latency
+ 1;
2396 if (cost_limit
->cost
< 0
2397 || (cost_limit
->cost
== 0 && cost_limit
->latency
<= 0))
2400 /* Restrict the bits of "t" to the multiplication's mode. */
2401 t
&= GET_MODE_MASK (mode
);
2403 /* t == 1 can be done in zero cost. */
2407 alg_out
->cost
.cost
= 0;
2408 alg_out
->cost
.latency
= 0;
2409 alg_out
->op
[0] = alg_m
;
2413 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2417 if (MULT_COST_LESS (cost_limit
, zero_cost
[speed
]))
2422 alg_out
->cost
.cost
= zero_cost
[speed
];
2423 alg_out
->cost
.latency
= zero_cost
[speed
];
2424 alg_out
->op
[0] = alg_zero
;
2429 /* We'll be needing a couple extra algorithm structures now. */
2431 alg_in
= XALLOCA (struct algorithm
);
2432 best_alg
= XALLOCA (struct algorithm
);
2433 best_cost
= *cost_limit
;
2435 /* Compute the hash index. */
2436 hash_index
= (t
^ (unsigned int) mode
^ (speed
* 256)) % NUM_ALG_HASH_ENTRIES
;
2438 /* See if we already know what to do for T. */
2439 if (alg_hash
[hash_index
].t
== t
2440 && alg_hash
[hash_index
].mode
== mode
2441 && alg_hash
[hash_index
].mode
== mode
2442 && alg_hash
[hash_index
].speed
== speed
2443 && alg_hash
[hash_index
].alg
!= alg_unknown
)
2445 cache_alg
= alg_hash
[hash_index
].alg
;
2447 if (cache_alg
== alg_impossible
)
2449 /* The cache tells us that it's impossible to synthesize
2450 multiplication by T within alg_hash[hash_index].cost. */
2451 if (!CHEAPER_MULT_COST (&alg_hash
[hash_index
].cost
, cost_limit
))
2452 /* COST_LIMIT is at least as restrictive as the one
2453 recorded in the hash table, in which case we have no
2454 hope of synthesizing a multiplication. Just
2458 /* If we get here, COST_LIMIT is less restrictive than the
2459 one recorded in the hash table, so we may be able to
2460 synthesize a multiplication. Proceed as if we didn't
2461 have the cache entry. */
2465 if (CHEAPER_MULT_COST (cost_limit
, &alg_hash
[hash_index
].cost
))
2466 /* The cached algorithm shows that this multiplication
2467 requires more cost than COST_LIMIT. Just return. This
2468 way, we don't clobber this cache entry with
2469 alg_impossible but retain useful information. */
2481 goto do_alg_addsub_t_m2
;
2483 case alg_add_factor
:
2484 case alg_sub_factor
:
2485 goto do_alg_addsub_factor
;
2488 goto do_alg_add_t2_m
;
2491 goto do_alg_sub_t2_m
;
2499 /* If we have a group of zero bits at the low-order part of T, try
2500 multiplying by the remaining bits and then doing a shift. */
2505 m
= floor_log2 (t
& -t
); /* m = number of low zero bits */
2509 /* The function expand_shift will choose between a shift and
2510 a sequence of additions, so the observed cost is given as
2511 MIN (m * add_cost[speed][mode], shift_cost[speed][mode][m]). */
2512 op_cost
= m
* add_cost
[speed
][mode
];
2513 if (shift_cost
[speed
][mode
][m
] < op_cost
)
2514 op_cost
= shift_cost
[speed
][mode
][m
];
2515 new_limit
.cost
= best_cost
.cost
- op_cost
;
2516 new_limit
.latency
= best_cost
.latency
- op_cost
;
2517 synth_mult (alg_in
, q
, &new_limit
, mode
);
2519 alg_in
->cost
.cost
+= op_cost
;
2520 alg_in
->cost
.latency
+= op_cost
;
2521 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2523 struct algorithm
*x
;
2524 best_cost
= alg_in
->cost
;
2525 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2526 best_alg
->log
[best_alg
->ops
] = m
;
2527 best_alg
->op
[best_alg
->ops
] = alg_shift
;
2530 /* See if treating ORIG_T as a signed number yields a better
2531 sequence. Try this sequence only for a negative ORIG_T
2532 as it would be useless for a non-negative ORIG_T. */
2533 if ((HOST_WIDE_INT
) orig_t
< 0)
2535 /* Shift ORIG_T as follows because a right shift of a
2536 negative-valued signed type is implementation
2538 q
= ~(~orig_t
>> m
);
2539 /* The function expand_shift will choose between a shift
2540 and a sequence of additions, so the observed cost is
2541 given as MIN (m * add_cost[speed][mode],
2542 shift_cost[speed][mode][m]). */
2543 op_cost
= m
* add_cost
[speed
][mode
];
2544 if (shift_cost
[speed
][mode
][m
] < op_cost
)
2545 op_cost
= shift_cost
[speed
][mode
][m
];
2546 new_limit
.cost
= best_cost
.cost
- op_cost
;
2547 new_limit
.latency
= best_cost
.latency
- op_cost
;
2548 synth_mult (alg_in
, q
, &new_limit
, mode
);
2550 alg_in
->cost
.cost
+= op_cost
;
2551 alg_in
->cost
.latency
+= op_cost
;
2552 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2554 struct algorithm
*x
;
2555 best_cost
= alg_in
->cost
;
2556 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2557 best_alg
->log
[best_alg
->ops
] = m
;
2558 best_alg
->op
[best_alg
->ops
] = alg_shift
;
2566 /* If we have an odd number, add or subtract one. */
2569 unsigned HOST_WIDE_INT w
;
2572 for (w
= 1; (w
& t
) != 0; w
<<= 1)
2574 /* If T was -1, then W will be zero after the loop. This is another
2575 case where T ends with ...111. Handling this with (T + 1) and
2576 subtract 1 produces slightly better code and results in algorithm
2577 selection much faster than treating it like the ...0111 case
2581 /* Reject the case where t is 3.
2582 Thus we prefer addition in that case. */
2585 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2587 op_cost
= add_cost
[speed
][mode
];
2588 new_limit
.cost
= best_cost
.cost
- op_cost
;
2589 new_limit
.latency
= best_cost
.latency
- op_cost
;
2590 synth_mult (alg_in
, t
+ 1, &new_limit
, mode
);
2592 alg_in
->cost
.cost
+= op_cost
;
2593 alg_in
->cost
.latency
+= op_cost
;
2594 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2596 struct algorithm
*x
;
2597 best_cost
= alg_in
->cost
;
2598 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2599 best_alg
->log
[best_alg
->ops
] = 0;
2600 best_alg
->op
[best_alg
->ops
] = alg_sub_t_m2
;
2605 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2607 op_cost
= add_cost
[speed
][mode
];
2608 new_limit
.cost
= best_cost
.cost
- op_cost
;
2609 new_limit
.latency
= best_cost
.latency
- op_cost
;
2610 synth_mult (alg_in
, t
- 1, &new_limit
, mode
);
2612 alg_in
->cost
.cost
+= op_cost
;
2613 alg_in
->cost
.latency
+= op_cost
;
2614 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2616 struct algorithm
*x
;
2617 best_cost
= alg_in
->cost
;
2618 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2619 best_alg
->log
[best_alg
->ops
] = 0;
2620 best_alg
->op
[best_alg
->ops
] = alg_add_t_m2
;
2624 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2625 quickly with a - a * n for some appropriate constant n. */
2626 m
= exact_log2 (-orig_t
+ 1);
2627 if (m
>= 0 && m
< maxm
)
2629 op_cost
= shiftsub1_cost
[speed
][mode
][m
];
2630 new_limit
.cost
= best_cost
.cost
- op_cost
;
2631 new_limit
.latency
= best_cost
.latency
- op_cost
;
2632 synth_mult (alg_in
, (unsigned HOST_WIDE_INT
) (-orig_t
+ 1) >> m
, &new_limit
, mode
);
2634 alg_in
->cost
.cost
+= op_cost
;
2635 alg_in
->cost
.latency
+= op_cost
;
2636 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2638 struct algorithm
*x
;
2639 best_cost
= alg_in
->cost
;
2640 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2641 best_alg
->log
[best_alg
->ops
] = m
;
2642 best_alg
->op
[best_alg
->ops
] = alg_sub_t_m2
;
2650 /* Look for factors of t of the form
2651 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2652 If we find such a factor, we can multiply by t using an algorithm that
2653 multiplies by q, shift the result by m and add/subtract it to itself.
2655 We search for large factors first and loop down, even if large factors
2656 are less probable than small; if we find a large factor we will find a
2657 good sequence quickly, and therefore be able to prune (by decreasing
2658 COST_LIMIT) the search. */
2660 do_alg_addsub_factor
:
2661 for (m
= floor_log2 (t
- 1); m
>= 2; m
--)
2663 unsigned HOST_WIDE_INT d
;
2665 d
= ((unsigned HOST_WIDE_INT
) 1 << m
) + 1;
2666 if (t
% d
== 0 && t
> d
&& m
< maxm
2667 && (!cache_hit
|| cache_alg
== alg_add_factor
))
2669 /* If the target has a cheap shift-and-add instruction use
2670 that in preference to a shift insn followed by an add insn.
2671 Assume that the shift-and-add is "atomic" with a latency
2672 equal to its cost, otherwise assume that on superscalar
2673 hardware the shift may be executed concurrently with the
2674 earlier steps in the algorithm. */
2675 op_cost
= add_cost
[speed
][mode
] + shift_cost
[speed
][mode
][m
];
2676 if (shiftadd_cost
[speed
][mode
][m
] < op_cost
)
2678 op_cost
= shiftadd_cost
[speed
][mode
][m
];
2679 op_latency
= op_cost
;
2682 op_latency
= add_cost
[speed
][mode
];
2684 new_limit
.cost
= best_cost
.cost
- op_cost
;
2685 new_limit
.latency
= best_cost
.latency
- op_latency
;
2686 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
2688 alg_in
->cost
.cost
+= op_cost
;
2689 alg_in
->cost
.latency
+= op_latency
;
2690 if (alg_in
->cost
.latency
< op_cost
)
2691 alg_in
->cost
.latency
= op_cost
;
2692 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2694 struct algorithm
*x
;
2695 best_cost
= alg_in
->cost
;
2696 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2697 best_alg
->log
[best_alg
->ops
] = m
;
2698 best_alg
->op
[best_alg
->ops
] = alg_add_factor
;
2700 /* Other factors will have been taken care of in the recursion. */
2704 d
= ((unsigned HOST_WIDE_INT
) 1 << m
) - 1;
2705 if (t
% d
== 0 && t
> d
&& m
< maxm
2706 && (!cache_hit
|| cache_alg
== alg_sub_factor
))
2708 /* If the target has a cheap shift-and-subtract insn use
2709 that in preference to a shift insn followed by a sub insn.
2710 Assume that the shift-and-sub is "atomic" with a latency
2711 equal to it's cost, otherwise assume that on superscalar
2712 hardware the shift may be executed concurrently with the
2713 earlier steps in the algorithm. */
2714 op_cost
= add_cost
[speed
][mode
] + shift_cost
[speed
][mode
][m
];
2715 if (shiftsub0_cost
[speed
][mode
][m
] < op_cost
)
2717 op_cost
= shiftsub0_cost
[speed
][mode
][m
];
2718 op_latency
= op_cost
;
2721 op_latency
= add_cost
[speed
][mode
];
2723 new_limit
.cost
= best_cost
.cost
- op_cost
;
2724 new_limit
.latency
= best_cost
.latency
- op_latency
;
2725 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
2727 alg_in
->cost
.cost
+= op_cost
;
2728 alg_in
->cost
.latency
+= op_latency
;
2729 if (alg_in
->cost
.latency
< op_cost
)
2730 alg_in
->cost
.latency
= op_cost
;
2731 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2733 struct algorithm
*x
;
2734 best_cost
= alg_in
->cost
;
2735 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2736 best_alg
->log
[best_alg
->ops
] = m
;
2737 best_alg
->op
[best_alg
->ops
] = alg_sub_factor
;
2745 /* Try shift-and-add (load effective address) instructions,
2746 i.e. do a*3, a*5, a*9. */
2753 if (m
>= 0 && m
< maxm
)
2755 op_cost
= shiftadd_cost
[speed
][mode
][m
];
2756 new_limit
.cost
= best_cost
.cost
- op_cost
;
2757 new_limit
.latency
= best_cost
.latency
- op_cost
;
2758 synth_mult (alg_in
, (t
- 1) >> m
, &new_limit
, mode
);
2760 alg_in
->cost
.cost
+= op_cost
;
2761 alg_in
->cost
.latency
+= op_cost
;
2762 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2764 struct algorithm
*x
;
2765 best_cost
= alg_in
->cost
;
2766 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2767 best_alg
->log
[best_alg
->ops
] = m
;
2768 best_alg
->op
[best_alg
->ops
] = alg_add_t2_m
;
2778 if (m
>= 0 && m
< maxm
)
2780 op_cost
= shiftsub0_cost
[speed
][mode
][m
];
2781 new_limit
.cost
= best_cost
.cost
- op_cost
;
2782 new_limit
.latency
= best_cost
.latency
- op_cost
;
2783 synth_mult (alg_in
, (t
+ 1) >> m
, &new_limit
, mode
);
2785 alg_in
->cost
.cost
+= op_cost
;
2786 alg_in
->cost
.latency
+= op_cost
;
2787 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2789 struct algorithm
*x
;
2790 best_cost
= alg_in
->cost
;
2791 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2792 best_alg
->log
[best_alg
->ops
] = m
;
2793 best_alg
->op
[best_alg
->ops
] = alg_sub_t2_m
;
2801 /* If best_cost has not decreased, we have not found any algorithm. */
2802 if (!CHEAPER_MULT_COST (&best_cost
, cost_limit
))
2804 /* We failed to find an algorithm. Record alg_impossible for
2805 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2806 we are asked to find an algorithm for T within the same or
2807 lower COST_LIMIT, we can immediately return to the
2809 alg_hash
[hash_index
].t
= t
;
2810 alg_hash
[hash_index
].mode
= mode
;
2811 alg_hash
[hash_index
].speed
= speed
;
2812 alg_hash
[hash_index
].alg
= alg_impossible
;
2813 alg_hash
[hash_index
].cost
= *cost_limit
;
2817 /* Cache the result. */
2820 alg_hash
[hash_index
].t
= t
;
2821 alg_hash
[hash_index
].mode
= mode
;
2822 alg_hash
[hash_index
].speed
= speed
;
2823 alg_hash
[hash_index
].alg
= best_alg
->op
[best_alg
->ops
];
2824 alg_hash
[hash_index
].cost
.cost
= best_cost
.cost
;
2825 alg_hash
[hash_index
].cost
.latency
= best_cost
.latency
;
2828 /* If we are getting a too long sequence for `struct algorithm'
2829 to record, make this search fail. */
2830 if (best_alg
->ops
== MAX_BITS_PER_WORD
)
2833 /* Copy the algorithm from temporary space to the space at alg_out.
2834 We avoid using structure assignment because the majority of
2835 best_alg is normally undefined, and this is a critical function. */
2836 alg_out
->ops
= best_alg
->ops
+ 1;
2837 alg_out
->cost
= best_cost
;
2838 memcpy (alg_out
->op
, best_alg
->op
,
2839 alg_out
->ops
* sizeof *alg_out
->op
);
2840 memcpy (alg_out
->log
, best_alg
->log
,
2841 alg_out
->ops
* sizeof *alg_out
->log
);
2844 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2845 Try three variations:
2847 - a shift/add sequence based on VAL itself
2848 - a shift/add sequence based on -VAL, followed by a negation
2849 - a shift/add sequence based on VAL - 1, followed by an addition.
2851 Return true if the cheapest of these cost less than MULT_COST,
2852 describing the algorithm in *ALG and final fixup in *VARIANT. */
2855 choose_mult_variant (enum machine_mode mode
, HOST_WIDE_INT val
,
2856 struct algorithm
*alg
, enum mult_variant
*variant
,
2859 struct algorithm alg2
;
2860 struct mult_cost limit
;
2862 bool speed
= optimize_insn_for_speed_p ();
2864 /* Fail quickly for impossible bounds. */
2868 /* Ensure that mult_cost provides a reasonable upper bound.
2869 Any constant multiplication can be performed with less
2870 than 2 * bits additions. */
2871 op_cost
= 2 * GET_MODE_BITSIZE (mode
) * add_cost
[speed
][mode
];
2872 if (mult_cost
> op_cost
)
2873 mult_cost
= op_cost
;
2875 *variant
= basic_variant
;
2876 limit
.cost
= mult_cost
;
2877 limit
.latency
= mult_cost
;
2878 synth_mult (alg
, val
, &limit
, mode
);
2880 /* This works only if the inverted value actually fits in an
2882 if (HOST_BITS_PER_INT
>= GET_MODE_BITSIZE (mode
))
2884 op_cost
= neg_cost
[speed
][mode
];
2885 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
2887 limit
.cost
= alg
->cost
.cost
- op_cost
;
2888 limit
.latency
= alg
->cost
.latency
- op_cost
;
2892 limit
.cost
= mult_cost
- op_cost
;
2893 limit
.latency
= mult_cost
- op_cost
;
2896 synth_mult (&alg2
, -val
, &limit
, mode
);
2897 alg2
.cost
.cost
+= op_cost
;
2898 alg2
.cost
.latency
+= op_cost
;
2899 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
2900 *alg
= alg2
, *variant
= negate_variant
;
2903 /* This proves very useful for division-by-constant. */
2904 op_cost
= add_cost
[speed
][mode
];
2905 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
2907 limit
.cost
= alg
->cost
.cost
- op_cost
;
2908 limit
.latency
= alg
->cost
.latency
- op_cost
;
2912 limit
.cost
= mult_cost
- op_cost
;
2913 limit
.latency
= mult_cost
- op_cost
;
2916 synth_mult (&alg2
, val
- 1, &limit
, mode
);
2917 alg2
.cost
.cost
+= op_cost
;
2918 alg2
.cost
.latency
+= op_cost
;
2919 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
2920 *alg
= alg2
, *variant
= add_variant
;
2922 return MULT_COST_LESS (&alg
->cost
, mult_cost
);
2925 /* A subroutine of expand_mult, used for constant multiplications.
2926 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2927 convenient. Use the shift/add sequence described by ALG and apply
2928 the final fixup specified by VARIANT. */
2931 expand_mult_const (enum machine_mode mode
, rtx op0
, HOST_WIDE_INT val
,
2932 rtx target
, const struct algorithm
*alg
,
2933 enum mult_variant variant
)
2935 HOST_WIDE_INT val_so_far
;
2936 rtx insn
, accum
, tem
;
2938 enum machine_mode nmode
;
2940 /* Avoid referencing memory over and over and invalid sharing
2942 op0
= force_reg (mode
, op0
);
2944 /* ACCUM starts out either as OP0 or as a zero, depending on
2945 the first operation. */
2947 if (alg
->op
[0] == alg_zero
)
2949 accum
= copy_to_mode_reg (mode
, const0_rtx
);
2952 else if (alg
->op
[0] == alg_m
)
2954 accum
= copy_to_mode_reg (mode
, op0
);
2960 for (opno
= 1; opno
< alg
->ops
; opno
++)
2962 int log
= alg
->log
[opno
];
2963 rtx shift_subtarget
= optimize
? 0 : accum
;
2965 = (opno
== alg
->ops
- 1 && target
!= 0 && variant
!= add_variant
2968 rtx accum_target
= optimize
? 0 : accum
;
2970 switch (alg
->op
[opno
])
2973 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
2974 build_int_cst (NULL_TREE
, log
),
2980 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
,
2981 build_int_cst (NULL_TREE
, log
),
2983 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
2984 add_target
? add_target
: accum_target
);
2985 val_so_far
+= (HOST_WIDE_INT
) 1 << log
;
2989 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
,
2990 build_int_cst (NULL_TREE
, log
),
2992 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, tem
),
2993 add_target
? add_target
: accum_target
);
2994 val_so_far
-= (HOST_WIDE_INT
) 1 << log
;
2998 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
2999 build_int_cst (NULL_TREE
, log
),
3002 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
),
3003 add_target
? add_target
: accum_target
);
3004 val_so_far
= (val_so_far
<< log
) + 1;
3008 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
3009 build_int_cst (NULL_TREE
, log
),
3010 shift_subtarget
, 0);
3011 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, op0
),
3012 add_target
? add_target
: accum_target
);
3013 val_so_far
= (val_so_far
<< log
) - 1;
3016 case alg_add_factor
:
3017 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
3018 build_int_cst (NULL_TREE
, log
),
3020 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
3021 add_target
? add_target
: accum_target
);
3022 val_so_far
+= val_so_far
<< log
;
3025 case alg_sub_factor
:
3026 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
3027 build_int_cst (NULL_TREE
, log
),
3029 accum
= force_operand (gen_rtx_MINUS (mode
, tem
, accum
),
3031 ? add_target
: (optimize
? 0 : tem
)));
3032 val_so_far
= (val_so_far
<< log
) - val_so_far
;
3039 /* Write a REG_EQUAL note on the last insn so that we can cse
3040 multiplication sequences. Note that if ACCUM is a SUBREG,
3041 we've set the inner register and must properly indicate
3044 tem
= op0
, nmode
= mode
;
3045 if (GET_CODE (accum
) == SUBREG
)
3047 nmode
= GET_MODE (SUBREG_REG (accum
));
3048 tem
= gen_lowpart (nmode
, op0
);
3051 insn
= get_last_insn ();
3052 set_unique_reg_note (insn
, REG_EQUAL
,
3053 gen_rtx_MULT (nmode
, tem
,
3054 GEN_INT (val_so_far
)));
3057 if (variant
== negate_variant
)
3059 val_so_far
= -val_so_far
;
3060 accum
= expand_unop (mode
, neg_optab
, accum
, target
, 0);
3062 else if (variant
== add_variant
)
3064 val_so_far
= val_so_far
+ 1;
3065 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
), target
);
3068 /* Compare only the bits of val and val_so_far that are significant
3069 in the result mode, to avoid sign-/zero-extension confusion. */
3070 val
&= GET_MODE_MASK (mode
);
3071 val_so_far
&= GET_MODE_MASK (mode
);
3072 gcc_assert (val
== val_so_far
);
3077 /* Perform a multiplication and return an rtx for the result.
3078 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3079 TARGET is a suggestion for where to store the result (an rtx).
3081 We check specially for a constant integer as OP1.
3082 If you want this check for OP0 as well, then before calling
3083 you should swap the two operands if OP0 would be constant. */
3086 expand_mult (enum machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3089 enum mult_variant variant
;
3090 struct algorithm algorithm
;
3092 bool speed
= optimize_insn_for_speed_p ();
3094 /* Handling const0_rtx here allows us to use zero as a rogue value for
3096 if (op1
== const0_rtx
)
3098 if (op1
== const1_rtx
)
3100 if (op1
== constm1_rtx
)
3101 return expand_unop (mode
,
3102 GET_MODE_CLASS (mode
) == MODE_INT
3103 && !unsignedp
&& flag_trapv
3104 ? negv_optab
: neg_optab
,
3107 /* These are the operations that are potentially turned into a sequence
3108 of shifts and additions. */
3109 if (SCALAR_INT_MODE_P (mode
)
3110 && (unsignedp
|| !flag_trapv
))
3112 HOST_WIDE_INT coeff
= 0;
3113 rtx fake_reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
3115 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3116 less than or equal in size to `unsigned int' this doesn't matter.
3117 If the mode is larger than `unsigned int', then synth_mult works
3118 only if the constant value exactly fits in an `unsigned int' without
3119 any truncation. This means that multiplying by negative values does
3120 not work; results are off by 2^32 on a 32 bit machine. */
3122 if (CONST_INT_P (op1
))
3124 /* Attempt to handle multiplication of DImode values by negative
3125 coefficients, by performing the multiplication by a positive
3126 multiplier and then inverting the result. */
3127 if (INTVAL (op1
) < 0
3128 && GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
)
3130 /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
3131 result is interpreted as an unsigned coefficient.
3132 Exclude cost of op0 from max_cost to match the cost
3133 calculation of the synth_mult. */
3134 max_cost
= rtx_cost (gen_rtx_MULT (mode
, fake_reg
, op1
), SET
, speed
)
3135 - neg_cost
[speed
][mode
];
3137 && choose_mult_variant (mode
, -INTVAL (op1
), &algorithm
,
3138 &variant
, max_cost
))
3140 rtx temp
= expand_mult_const (mode
, op0
, -INTVAL (op1
),
3141 NULL_RTX
, &algorithm
,
3143 return expand_unop (mode
, neg_optab
, temp
, target
, 0);
3146 else coeff
= INTVAL (op1
);
3148 else if (GET_CODE (op1
) == CONST_DOUBLE
)
3150 /* If we are multiplying in DImode, it may still be a win
3151 to try to work with shifts and adds. */
3152 if (CONST_DOUBLE_HIGH (op1
) == 0
3153 && CONST_DOUBLE_LOW (op1
) > 0)
3154 coeff
= CONST_DOUBLE_LOW (op1
);
3155 else if (CONST_DOUBLE_LOW (op1
) == 0
3156 && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1
)))
3158 int shift
= floor_log2 (CONST_DOUBLE_HIGH (op1
))
3159 + HOST_BITS_PER_WIDE_INT
;
3160 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3161 build_int_cst (NULL_TREE
, shift
),
3166 /* We used to test optimize here, on the grounds that it's better to
3167 produce a smaller program when -O is not used. But this causes
3168 such a terrible slowdown sometimes that it seems better to always
3172 /* Special case powers of two. */
3173 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
))
3174 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3175 build_int_cst (NULL_TREE
, floor_log2 (coeff
)),
3178 /* Exclude cost of op0 from max_cost to match the cost
3179 calculation of the synth_mult. */
3180 max_cost
= rtx_cost (gen_rtx_MULT (mode
, fake_reg
, op1
), SET
, speed
);
3181 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
,
3183 return expand_mult_const (mode
, op0
, coeff
, target
,
3184 &algorithm
, variant
);
3188 if (GET_CODE (op0
) == CONST_DOUBLE
)
3195 /* Expand x*2.0 as x+x. */
3196 if (GET_CODE (op1
) == CONST_DOUBLE
3197 && SCALAR_FLOAT_MODE_P (mode
))
3200 REAL_VALUE_FROM_CONST_DOUBLE (d
, op1
);
3202 if (REAL_VALUES_EQUAL (d
, dconst2
))
3204 op0
= force_reg (GET_MODE (op0
), op0
);
3205 return expand_binop (mode
, add_optab
, op0
, op0
,
3206 target
, unsignedp
, OPTAB_LIB_WIDEN
);
3210 /* This used to use umul_optab if unsigned, but for non-widening multiply
3211 there is no difference between signed and unsigned. */
3212 op0
= expand_binop (mode
,
3214 && flag_trapv
&& (GET_MODE_CLASS(mode
) == MODE_INT
)
3215 ? smulv_optab
: smul_optab
,
3216 op0
, op1
, target
, unsignedp
, OPTAB_LIB_WIDEN
);
3221 /* Perform a widening multiplication and return an rtx for the result.
3222 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3223 TARGET is a suggestion for where to store the result (an rtx).
3224 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3225 or smul_widen_optab.
3227 We check specially for a constant integer as OP1, comparing the
3228 cost of a widening multiply against the cost of a sequence of shifts
3232 expand_widening_mult (enum machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3233 int unsignedp
, optab this_optab
)
3235 bool speed
= optimize_insn_for_speed_p ();
3237 if (CONST_INT_P (op1
)
3238 && (INTVAL (op1
) >= 0
3239 || GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
))
3241 HOST_WIDE_INT coeff
= INTVAL (op1
);
3243 enum mult_variant variant
;
3244 struct algorithm algorithm
;
3246 /* Special case powers of two. */
3247 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
))
3249 op0
= convert_to_mode (mode
, op0
, this_optab
== umul_widen_optab
);
3250 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3251 build_int_cst (NULL_TREE
, floor_log2 (coeff
)),
3255 /* Exclude cost of op0 from max_cost to match the cost
3256 calculation of the synth_mult. */
3257 max_cost
= mul_widen_cost
[speed
][mode
];
3258 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
,
3261 op0
= convert_to_mode (mode
, op0
, this_optab
== umul_widen_optab
);
3262 return expand_mult_const (mode
, op0
, coeff
, target
,
3263 &algorithm
, variant
);
3266 return expand_binop (mode
, this_optab
, op0
, op1
, target
,
3267 unsignedp
, OPTAB_LIB_WIDEN
);
3270 /* Return the smallest n such that 2**n >= X. */
3273 ceil_log2 (unsigned HOST_WIDE_INT x
)
3275 return floor_log2 (x
- 1) + 1;
3278 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3279 replace division by D, and put the least significant N bits of the result
3280 in *MULTIPLIER_PTR and return the most significant bit.
3282 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3283 needed precision is in PRECISION (should be <= N).
3285 PRECISION should be as small as possible so this function can choose
3286 multiplier more freely.
3288 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3289 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3291 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3292 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3295 unsigned HOST_WIDE_INT
3296 choose_multiplier (unsigned HOST_WIDE_INT d
, int n
, int precision
,
3297 rtx
*multiplier_ptr
, int *post_shift_ptr
, int *lgup_ptr
)
3299 HOST_WIDE_INT mhigh_hi
, mlow_hi
;
3300 unsigned HOST_WIDE_INT mhigh_lo
, mlow_lo
;
3301 int lgup
, post_shift
;
3303 unsigned HOST_WIDE_INT nl
, dummy1
;
3304 HOST_WIDE_INT nh
, dummy2
;
3306 /* lgup = ceil(log2(divisor)); */
3307 lgup
= ceil_log2 (d
);
3309 gcc_assert (lgup
<= n
);
3312 pow2
= n
+ lgup
- precision
;
3314 /* We could handle this with some effort, but this case is much
3315 better handled directly with a scc insn, so rely on caller using
3317 gcc_assert (pow
!= 2 * HOST_BITS_PER_WIDE_INT
);
3319 /* mlow = 2^(N + lgup)/d */
3320 if (pow
>= HOST_BITS_PER_WIDE_INT
)
3322 nh
= (HOST_WIDE_INT
) 1 << (pow
- HOST_BITS_PER_WIDE_INT
);
3328 nl
= (unsigned HOST_WIDE_INT
) 1 << pow
;
3330 div_and_round_double (TRUNC_DIV_EXPR
, 1, nl
, nh
, d
, (HOST_WIDE_INT
) 0,
3331 &mlow_lo
, &mlow_hi
, &dummy1
, &dummy2
);
3333 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3334 if (pow2
>= HOST_BITS_PER_WIDE_INT
)
3335 nh
|= (HOST_WIDE_INT
) 1 << (pow2
- HOST_BITS_PER_WIDE_INT
);
3337 nl
|= (unsigned HOST_WIDE_INT
) 1 << pow2
;
3338 div_and_round_double (TRUNC_DIV_EXPR
, 1, nl
, nh
, d
, (HOST_WIDE_INT
) 0,
3339 &mhigh_lo
, &mhigh_hi
, &dummy1
, &dummy2
);
3341 gcc_assert (!mhigh_hi
|| nh
- d
< d
);
3342 gcc_assert (mhigh_hi
<= 1 && mlow_hi
<= 1);
3343 /* Assert that mlow < mhigh. */
3344 gcc_assert (mlow_hi
< mhigh_hi
3345 || (mlow_hi
== mhigh_hi
&& mlow_lo
< mhigh_lo
));
3347 /* If precision == N, then mlow, mhigh exceed 2^N
3348 (but they do not exceed 2^(N+1)). */
3350 /* Reduce to lowest terms. */
3351 for (post_shift
= lgup
; post_shift
> 0; post_shift
--)
3353 unsigned HOST_WIDE_INT ml_lo
= (mlow_hi
<< (HOST_BITS_PER_WIDE_INT
- 1)) | (mlow_lo
>> 1);
3354 unsigned HOST_WIDE_INT mh_lo
= (mhigh_hi
<< (HOST_BITS_PER_WIDE_INT
- 1)) | (mhigh_lo
>> 1);
3364 *post_shift_ptr
= post_shift
;
3366 if (n
< HOST_BITS_PER_WIDE_INT
)
3368 unsigned HOST_WIDE_INT mask
= ((unsigned HOST_WIDE_INT
) 1 << n
) - 1;
3369 *multiplier_ptr
= GEN_INT (mhigh_lo
& mask
);
3370 return mhigh_lo
>= mask
;
3374 *multiplier_ptr
= GEN_INT (mhigh_lo
);
3379 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3380 congruent to 1 (mod 2**N). */
3382 static unsigned HOST_WIDE_INT
3383 invert_mod2n (unsigned HOST_WIDE_INT x
, int n
)
3385 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3387 /* The algorithm notes that the choice y = x satisfies
3388 x*y == 1 mod 2^3, since x is assumed odd.
3389 Each iteration doubles the number of bits of significance in y. */
3391 unsigned HOST_WIDE_INT mask
;
3392 unsigned HOST_WIDE_INT y
= x
;
3395 mask
= (n
== HOST_BITS_PER_WIDE_INT
3396 ? ~(unsigned HOST_WIDE_INT
) 0
3397 : ((unsigned HOST_WIDE_INT
) 1 << n
) - 1);
3401 y
= y
* (2 - x
*y
) & mask
; /* Modulo 2^N */
3407 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3408 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3409 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3410 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3413 The result is put in TARGET if that is convenient.
3415 MODE is the mode of operation. */
3418 expand_mult_highpart_adjust (enum machine_mode mode
, rtx adj_operand
, rtx op0
,
3419 rtx op1
, rtx target
, int unsignedp
)
3422 enum rtx_code adj_code
= unsignedp
? PLUS
: MINUS
;
3424 tem
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
3425 build_int_cst (NULL_TREE
, GET_MODE_BITSIZE (mode
) - 1),
3427 tem
= expand_and (mode
, tem
, op1
, NULL_RTX
);
3429 = force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3432 tem
= expand_shift (RSHIFT_EXPR
, mode
, op1
,
3433 build_int_cst (NULL_TREE
, GET_MODE_BITSIZE (mode
) - 1),
3435 tem
= expand_and (mode
, tem
, op0
, NULL_RTX
);
3436 target
= force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3442 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3445 extract_high_half (enum machine_mode mode
, rtx op
)
3447 enum machine_mode wider_mode
;
3449 if (mode
== word_mode
)
3450 return gen_highpart (mode
, op
);
3452 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3454 wider_mode
= GET_MODE_WIDER_MODE (mode
);
3455 op
= expand_shift (RSHIFT_EXPR
, wider_mode
, op
,
3456 build_int_cst (NULL_TREE
, GET_MODE_BITSIZE (mode
)), 0, 1);
3457 return convert_modes (mode
, wider_mode
, op
, 0);
3460 /* Like expand_mult_highpart, but only consider using a multiplication
3461 optab. OP1 is an rtx for the constant operand. */
3464 expand_mult_highpart_optab (enum machine_mode mode
, rtx op0
, rtx op1
,
3465 rtx target
, int unsignedp
, int max_cost
)
3467 rtx narrow_op1
= gen_int_mode (INTVAL (op1
), mode
);
3468 enum machine_mode wider_mode
;
3472 bool speed
= optimize_insn_for_speed_p ();
3474 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3476 wider_mode
= GET_MODE_WIDER_MODE (mode
);
3477 size
= GET_MODE_BITSIZE (mode
);
3479 /* Firstly, try using a multiplication insn that only generates the needed
3480 high part of the product, and in the sign flavor of unsignedp. */
3481 if (mul_highpart_cost
[speed
][mode
] < max_cost
)
3483 moptab
= unsignedp
? umul_highpart_optab
: smul_highpart_optab
;
3484 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3485 unsignedp
, OPTAB_DIRECT
);
3490 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3491 Need to adjust the result after the multiplication. */
3492 if (size
- 1 < BITS_PER_WORD
3493 && (mul_highpart_cost
[speed
][mode
] + 2 * shift_cost
[speed
][mode
][size
-1]
3494 + 4 * add_cost
[speed
][mode
] < max_cost
))
3496 moptab
= unsignedp
? smul_highpart_optab
: umul_highpart_optab
;
3497 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3498 unsignedp
, OPTAB_DIRECT
);
3500 /* We used the wrong signedness. Adjust the result. */
3501 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3505 /* Try widening multiplication. */
3506 moptab
= unsignedp
? umul_widen_optab
: smul_widen_optab
;
3507 if (optab_handler (moptab
, wider_mode
)->insn_code
!= CODE_FOR_nothing
3508 && mul_widen_cost
[speed
][wider_mode
] < max_cost
)
3510 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
, 0,
3511 unsignedp
, OPTAB_WIDEN
);
3513 return extract_high_half (mode
, tem
);
3516 /* Try widening the mode and perform a non-widening multiplication. */
3517 if (optab_handler (smul_optab
, wider_mode
)->insn_code
!= CODE_FOR_nothing
3518 && size
- 1 < BITS_PER_WORD
3519 && mul_cost
[speed
][wider_mode
] + shift_cost
[speed
][mode
][size
-1] < max_cost
)
3521 rtx insns
, wop0
, wop1
;
3523 /* We need to widen the operands, for example to ensure the
3524 constant multiplier is correctly sign or zero extended.
3525 Use a sequence to clean-up any instructions emitted by
3526 the conversions if things don't work out. */
3528 wop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
3529 wop1
= convert_modes (wider_mode
, mode
, op1
, unsignedp
);
3530 tem
= expand_binop (wider_mode
, smul_optab
, wop0
, wop1
, 0,
3531 unsignedp
, OPTAB_WIDEN
);
3532 insns
= get_insns ();
3538 return extract_high_half (mode
, tem
);
3542 /* Try widening multiplication of opposite signedness, and adjust. */
3543 moptab
= unsignedp
? smul_widen_optab
: umul_widen_optab
;
3544 if (optab_handler (moptab
, wider_mode
)->insn_code
!= CODE_FOR_nothing
3545 && size
- 1 < BITS_PER_WORD
3546 && (mul_widen_cost
[speed
][wider_mode
] + 2 * shift_cost
[speed
][mode
][size
-1]
3547 + 4 * add_cost
[speed
][mode
] < max_cost
))
3549 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
,
3550 NULL_RTX
, ! unsignedp
, OPTAB_WIDEN
);
3553 tem
= extract_high_half (mode
, tem
);
3554 /* We used the wrong signedness. Adjust the result. */
3555 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3563 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3564 putting the high half of the result in TARGET if that is convenient,
3565 and return where the result is. If the operation can not be performed,
3568 MODE is the mode of operation and result.
3570 UNSIGNEDP nonzero means unsigned multiply.
3572 MAX_COST is the total allowed cost for the expanded RTL. */
3575 expand_mult_highpart (enum machine_mode mode
, rtx op0
, rtx op1
,
3576 rtx target
, int unsignedp
, int max_cost
)
3578 enum machine_mode wider_mode
= GET_MODE_WIDER_MODE (mode
);
3579 unsigned HOST_WIDE_INT cnst1
;
3581 bool sign_adjust
= false;
3582 enum mult_variant variant
;
3583 struct algorithm alg
;
3585 bool speed
= optimize_insn_for_speed_p ();
3587 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3588 /* We can't support modes wider than HOST_BITS_PER_INT. */
3589 gcc_assert (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
);
3591 cnst1
= INTVAL (op1
) & GET_MODE_MASK (mode
);
3593 /* We can't optimize modes wider than BITS_PER_WORD.
3594 ??? We might be able to perform double-word arithmetic if
3595 mode == word_mode, however all the cost calculations in
3596 synth_mult etc. assume single-word operations. */
3597 if (GET_MODE_BITSIZE (wider_mode
) > BITS_PER_WORD
)
3598 return expand_mult_highpart_optab (mode
, op0
, op1
, target
,
3599 unsignedp
, max_cost
);
3601 extra_cost
= shift_cost
[speed
][mode
][GET_MODE_BITSIZE (mode
) - 1];
3603 /* Check whether we try to multiply by a negative constant. */
3604 if (!unsignedp
&& ((cnst1
>> (GET_MODE_BITSIZE (mode
) - 1)) & 1))
3607 extra_cost
+= add_cost
[speed
][mode
];
3610 /* See whether shift/add multiplication is cheap enough. */
3611 if (choose_mult_variant (wider_mode
, cnst1
, &alg
, &variant
,
3612 max_cost
- extra_cost
))
3614 /* See whether the specialized multiplication optabs are
3615 cheaper than the shift/add version. */
3616 tem
= expand_mult_highpart_optab (mode
, op0
, op1
, target
, unsignedp
,
3617 alg
.cost
.cost
+ extra_cost
);
3621 tem
= convert_to_mode (wider_mode
, op0
, unsignedp
);
3622 tem
= expand_mult_const (wider_mode
, tem
, cnst1
, 0, &alg
, variant
);
3623 tem
= extract_high_half (mode
, tem
);
3625 /* Adjust result for signedness. */
3627 tem
= force_operand (gen_rtx_MINUS (mode
, tem
, op0
), tem
);
3631 return expand_mult_highpart_optab (mode
, op0
, op1
, target
,
3632 unsignedp
, max_cost
);
3636 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3639 expand_smod_pow2 (enum machine_mode mode
, rtx op0
, HOST_WIDE_INT d
)
3641 unsigned HOST_WIDE_INT masklow
, maskhigh
;
3642 rtx result
, temp
, shift
, label
;
3645 logd
= floor_log2 (d
);
3646 result
= gen_reg_rtx (mode
);
3648 /* Avoid conditional branches when they're expensive. */
3649 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3650 && optimize_insn_for_speed_p ())
3652 rtx signmask
= emit_store_flag (result
, LT
, op0
, const0_rtx
,
3656 signmask
= force_reg (mode
, signmask
);
3657 masklow
= ((HOST_WIDE_INT
) 1 << logd
) - 1;
3658 shift
= GEN_INT (GET_MODE_BITSIZE (mode
) - logd
);
3660 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3661 which instruction sequence to use. If logical right shifts
3662 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3663 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3665 temp
= gen_rtx_LSHIFTRT (mode
, result
, shift
);
3666 if (optab_handler (lshr_optab
, mode
)->insn_code
== CODE_FOR_nothing
3667 || rtx_cost (temp
, SET
, optimize_insn_for_speed_p ()) > COSTS_N_INSNS (2))
3669 temp
= expand_binop (mode
, xor_optab
, op0
, signmask
,
3670 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3671 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3672 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3673 temp
= expand_binop (mode
, and_optab
, temp
, GEN_INT (masklow
),
3674 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3675 temp
= expand_binop (mode
, xor_optab
, temp
, signmask
,
3676 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3677 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3678 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3682 signmask
= expand_binop (mode
, lshr_optab
, signmask
, shift
,
3683 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3684 signmask
= force_reg (mode
, signmask
);
3686 temp
= expand_binop (mode
, add_optab
, op0
, signmask
,
3687 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3688 temp
= expand_binop (mode
, and_optab
, temp
, GEN_INT (masklow
),
3689 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3690 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3691 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3697 /* Mask contains the mode's signbit and the significant bits of the
3698 modulus. By including the signbit in the operation, many targets
3699 can avoid an explicit compare operation in the following comparison
3702 masklow
= ((HOST_WIDE_INT
) 1 << logd
) - 1;
3703 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3705 masklow
|= (HOST_WIDE_INT
) -1 << (GET_MODE_BITSIZE (mode
) - 1);
3709 maskhigh
= (HOST_WIDE_INT
) -1
3710 << (GET_MODE_BITSIZE (mode
) - HOST_BITS_PER_WIDE_INT
- 1);
3712 temp
= expand_binop (mode
, and_optab
, op0
,
3713 immed_double_const (masklow
, maskhigh
, mode
),
3714 result
, 1, OPTAB_LIB_WIDEN
);
3716 emit_move_insn (result
, temp
);
3718 label
= gen_label_rtx ();
3719 do_cmp_and_jump (result
, const0_rtx
, GE
, mode
, label
);
3721 temp
= expand_binop (mode
, sub_optab
, result
, const1_rtx
, result
,
3722 0, OPTAB_LIB_WIDEN
);
3723 masklow
= (HOST_WIDE_INT
) -1 << logd
;
3725 temp
= expand_binop (mode
, ior_optab
, temp
,
3726 immed_double_const (masklow
, maskhigh
, mode
),
3727 result
, 1, OPTAB_LIB_WIDEN
);
3728 temp
= expand_binop (mode
, add_optab
, temp
, const1_rtx
, result
,
3729 0, OPTAB_LIB_WIDEN
);
3731 emit_move_insn (result
, temp
);
3736 /* Expand signed division of OP0 by a power of two D in mode MODE.
3737 This routine is only called for positive values of D. */
3740 expand_sdiv_pow2 (enum machine_mode mode
, rtx op0
, HOST_WIDE_INT d
)
3746 logd
= floor_log2 (d
);
3747 shift
= build_int_cst (NULL_TREE
, logd
);
3750 && BRANCH_COST (optimize_insn_for_speed_p (),
3753 temp
= gen_reg_rtx (mode
);
3754 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, 1);
3755 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
3756 0, OPTAB_LIB_WIDEN
);
3757 return expand_shift (RSHIFT_EXPR
, mode
, temp
, shift
, NULL_RTX
, 0);
3760 #ifdef HAVE_conditional_move
3761 if (BRANCH_COST (optimize_insn_for_speed_p (), false)
3766 /* ??? emit_conditional_move forces a stack adjustment via
3767 compare_from_rtx so, if the sequence is discarded, it will
3768 be lost. Do it now instead. */
3769 do_pending_stack_adjust ();
3772 temp2
= copy_to_mode_reg (mode
, op0
);
3773 temp
= expand_binop (mode
, add_optab
, temp2
, GEN_INT (d
-1),
3774 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
3775 temp
= force_reg (mode
, temp
);
3777 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3778 temp2
= emit_conditional_move (temp2
, LT
, temp2
, const0_rtx
,
3779 mode
, temp
, temp2
, mode
, 0);
3782 rtx seq
= get_insns ();
3785 return expand_shift (RSHIFT_EXPR
, mode
, temp2
, shift
, NULL_RTX
, 0);
3791 if (BRANCH_COST (optimize_insn_for_speed_p (),
3794 int ushift
= GET_MODE_BITSIZE (mode
) - logd
;
3796 temp
= gen_reg_rtx (mode
);
3797 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, -1);
3798 if (shift_cost
[optimize_insn_for_speed_p ()][mode
][ushift
] > COSTS_N_INSNS (1))
3799 temp
= expand_binop (mode
, and_optab
, temp
, GEN_INT (d
- 1),
3800 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
3802 temp
= expand_shift (RSHIFT_EXPR
, mode
, temp
,
3803 build_int_cst (NULL_TREE
, ushift
),
3805 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
3806 0, OPTAB_LIB_WIDEN
);
3807 return expand_shift (RSHIFT_EXPR
, mode
, temp
, shift
, NULL_RTX
, 0);
3810 label
= gen_label_rtx ();
3811 temp
= copy_to_mode_reg (mode
, op0
);
3812 do_cmp_and_jump (temp
, const0_rtx
, GE
, mode
, label
);
3813 expand_inc (temp
, GEN_INT (d
- 1));
3815 return expand_shift (RSHIFT_EXPR
, mode
, temp
, shift
, NULL_RTX
, 0);
3818 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3819 if that is convenient, and returning where the result is.
3820 You may request either the quotient or the remainder as the result;
3821 specify REM_FLAG nonzero to get the remainder.
3823 CODE is the expression code for which kind of division this is;
3824 it controls how rounding is done. MODE is the machine mode to use.
3825 UNSIGNEDP nonzero means do unsigned division. */
3827 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3828 and then correct it by or'ing in missing high bits
3829 if result of ANDI is nonzero.
3830 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3831 This could optimize to a bfexts instruction.
3832 But C doesn't use these operations, so their optimizations are
3834 /* ??? For modulo, we don't actually need the highpart of the first product,
3835 the low part will do nicely. And for small divisors, the second multiply
3836 can also be a low-part only multiply or even be completely left out.
3837 E.g. to calculate the remainder of a division by 3 with a 32 bit
3838 multiply, multiply with 0x55555556 and extract the upper two bits;
3839 the result is exact for inputs up to 0x1fffffff.
3840 The input range can be reduced by using cross-sum rules.
3841 For odd divisors >= 3, the following table gives right shift counts
3842 so that if a number is shifted by an integer multiple of the given
3843 amount, the remainder stays the same:
3844 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3845 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3846 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3847 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3848 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3850 Cross-sum rules for even numbers can be derived by leaving as many bits
3851 to the right alone as the divisor has zeros to the right.
3852 E.g. if x is an unsigned 32 bit number:
3853 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3857 expand_divmod (int rem_flag
, enum tree_code code
, enum machine_mode mode
,
3858 rtx op0
, rtx op1
, rtx target
, int unsignedp
)
3860 enum machine_mode compute_mode
;
3862 rtx quotient
= 0, remainder
= 0;
3866 optab optab1
, optab2
;
3867 int op1_is_constant
, op1_is_pow2
= 0;
3868 int max_cost
, extra_cost
;
3869 static HOST_WIDE_INT last_div_const
= 0;
3870 static HOST_WIDE_INT ext_op1
;
3871 bool speed
= optimize_insn_for_speed_p ();
3873 op1_is_constant
= CONST_INT_P (op1
);
3874 if (op1_is_constant
)
3876 ext_op1
= INTVAL (op1
);
3878 ext_op1
&= GET_MODE_MASK (mode
);
3879 op1_is_pow2
= ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1
)
3880 || (! unsignedp
&& EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1
))));
3884 This is the structure of expand_divmod:
3886 First comes code to fix up the operands so we can perform the operations
3887 correctly and efficiently.
3889 Second comes a switch statement with code specific for each rounding mode.
3890 For some special operands this code emits all RTL for the desired
3891 operation, for other cases, it generates only a quotient and stores it in
3892 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3893 to indicate that it has not done anything.
3895 Last comes code that finishes the operation. If QUOTIENT is set and
3896 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3897 QUOTIENT is not set, it is computed using trunc rounding.
3899 We try to generate special code for division and remainder when OP1 is a
3900 constant. If |OP1| = 2**n we can use shifts and some other fast
3901 operations. For other values of OP1, we compute a carefully selected
3902 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3905 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3906 half of the product. Different strategies for generating the product are
3907 implemented in expand_mult_highpart.
3909 If what we actually want is the remainder, we generate that by another
3910 by-constant multiplication and a subtraction. */
3912 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3913 code below will malfunction if we are, so check here and handle
3914 the special case if so. */
3915 if (op1
== const1_rtx
)
3916 return rem_flag
? const0_rtx
: op0
;
3918 /* When dividing by -1, we could get an overflow.
3919 negv_optab can handle overflows. */
3920 if (! unsignedp
&& op1
== constm1_rtx
)
3924 return expand_unop (mode
, flag_trapv
&& GET_MODE_CLASS(mode
) == MODE_INT
3925 ? negv_optab
: neg_optab
, op0
, target
, 0);
3929 /* Don't use the function value register as a target
3930 since we have to read it as well as write it,
3931 and function-inlining gets confused by this. */
3932 && ((REG_P (target
) && REG_FUNCTION_VALUE_P (target
))
3933 /* Don't clobber an operand while doing a multi-step calculation. */
3934 || ((rem_flag
|| op1_is_constant
)
3935 && (reg_mentioned_p (target
, op0
)
3936 || (MEM_P (op0
) && MEM_P (target
))))
3937 || reg_mentioned_p (target
, op1
)
3938 || (MEM_P (op1
) && MEM_P (target
))))
3941 /* Get the mode in which to perform this computation. Normally it will
3942 be MODE, but sometimes we can't do the desired operation in MODE.
3943 If so, pick a wider mode in which we can do the operation. Convert
3944 to that mode at the start to avoid repeated conversions.
3946 First see what operations we need. These depend on the expression
3947 we are evaluating. (We assume that divxx3 insns exist under the
3948 same conditions that modxx3 insns and that these insns don't normally
3949 fail. If these assumptions are not correct, we may generate less
3950 efficient code in some cases.)
3952 Then see if we find a mode in which we can open-code that operation
3953 (either a division, modulus, or shift). Finally, check for the smallest
3954 mode for which we can do the operation with a library call. */
3956 /* We might want to refine this now that we have division-by-constant
3957 optimization. Since expand_mult_highpart tries so many variants, it is
3958 not straightforward to generalize this. Maybe we should make an array
3959 of possible modes in init_expmed? Save this for GCC 2.7. */
3961 optab1
= ((op1_is_pow2
&& op1
!= const0_rtx
)
3962 ? (unsignedp
? lshr_optab
: ashr_optab
)
3963 : (unsignedp
? udiv_optab
: sdiv_optab
));
3964 optab2
= ((op1_is_pow2
&& op1
!= const0_rtx
)
3966 : (unsignedp
? udivmod_optab
: sdivmod_optab
));
3968 for (compute_mode
= mode
; compute_mode
!= VOIDmode
;
3969 compute_mode
= GET_MODE_WIDER_MODE (compute_mode
))
3970 if (optab_handler (optab1
, compute_mode
)->insn_code
!= CODE_FOR_nothing
3971 || optab_handler (optab2
, compute_mode
)->insn_code
!= CODE_FOR_nothing
)
3974 if (compute_mode
== VOIDmode
)
3975 for (compute_mode
= mode
; compute_mode
!= VOIDmode
;
3976 compute_mode
= GET_MODE_WIDER_MODE (compute_mode
))
3977 if (optab_libfunc (optab1
, compute_mode
)
3978 || optab_libfunc (optab2
, compute_mode
))
3981 /* If we still couldn't find a mode, use MODE, but expand_binop will
3983 if (compute_mode
== VOIDmode
)
3984 compute_mode
= mode
;
3986 if (target
&& GET_MODE (target
) == compute_mode
)
3989 tquotient
= gen_reg_rtx (compute_mode
);
3991 size
= GET_MODE_BITSIZE (compute_mode
);
3993 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3994 (mode), and thereby get better code when OP1 is a constant. Do that
3995 later. It will require going over all usages of SIZE below. */
3996 size
= GET_MODE_BITSIZE (mode
);
3999 /* Only deduct something for a REM if the last divide done was
4000 for a different constant. Then set the constant of the last
4002 max_cost
= unsignedp
? udiv_cost
[speed
][compute_mode
] : sdiv_cost
[speed
][compute_mode
];
4003 if (rem_flag
&& ! (last_div_const
!= 0 && op1_is_constant
4004 && INTVAL (op1
) == last_div_const
))
4005 max_cost
-= mul_cost
[speed
][compute_mode
] + add_cost
[speed
][compute_mode
];
4007 last_div_const
= ! rem_flag
&& op1_is_constant
? INTVAL (op1
) : 0;
4009 /* Now convert to the best mode to use. */
4010 if (compute_mode
!= mode
)
4012 op0
= convert_modes (compute_mode
, mode
, op0
, unsignedp
);
4013 op1
= convert_modes (compute_mode
, mode
, op1
, unsignedp
);
4015 /* convert_modes may have placed op1 into a register, so we
4016 must recompute the following. */
4017 op1_is_constant
= CONST_INT_P (op1
);
4018 op1_is_pow2
= (op1_is_constant
4019 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
4021 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1
)))))) ;
4024 /* If one of the operands is a volatile MEM, copy it into a register. */
4026 if (MEM_P (op0
) && MEM_VOLATILE_P (op0
))
4027 op0
= force_reg (compute_mode
, op0
);
4028 if (MEM_P (op1
) && MEM_VOLATILE_P (op1
))
4029 op1
= force_reg (compute_mode
, op1
);
4031 /* If we need the remainder or if OP1 is constant, we need to
4032 put OP0 in a register in case it has any queued subexpressions. */
4033 if (rem_flag
|| op1_is_constant
)
4034 op0
= force_reg (compute_mode
, op0
);
4036 last
= get_last_insn ();
4038 /* Promote floor rounding to trunc rounding for unsigned operations. */
4041 if (code
== FLOOR_DIV_EXPR
)
4042 code
= TRUNC_DIV_EXPR
;
4043 if (code
== FLOOR_MOD_EXPR
)
4044 code
= TRUNC_MOD_EXPR
;
4045 if (code
== EXACT_DIV_EXPR
&& op1_is_pow2
)
4046 code
= TRUNC_DIV_EXPR
;
4049 if (op1
!= const0_rtx
)
4052 case TRUNC_MOD_EXPR
:
4053 case TRUNC_DIV_EXPR
:
4054 if (op1_is_constant
)
4058 unsigned HOST_WIDE_INT mh
;
4059 int pre_shift
, post_shift
;
4062 unsigned HOST_WIDE_INT d
= (INTVAL (op1
)
4063 & GET_MODE_MASK (compute_mode
));
4065 if (EXACT_POWER_OF_2_OR_ZERO_P (d
))
4067 pre_shift
= floor_log2 (d
);
4071 = expand_binop (compute_mode
, and_optab
, op0
,
4072 GEN_INT (((HOST_WIDE_INT
) 1 << pre_shift
) - 1),
4076 return gen_lowpart (mode
, remainder
);
4078 quotient
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4079 build_int_cst (NULL_TREE
,
4083 else if (size
<= HOST_BITS_PER_WIDE_INT
)
4085 if (d
>= ((unsigned HOST_WIDE_INT
) 1 << (size
- 1)))
4087 /* Most significant bit of divisor is set; emit an scc
4089 quotient
= emit_store_flag_force (tquotient
, GEU
, op0
, op1
,
4090 compute_mode
, 1, 1);
4094 /* Find a suitable multiplier and right shift count
4095 instead of multiplying with D. */
4097 mh
= choose_multiplier (d
, size
, size
,
4098 &ml
, &post_shift
, &dummy
);
4100 /* If the suggested multiplier is more than SIZE bits,
4101 we can do better for even divisors, using an
4102 initial right shift. */
4103 if (mh
!= 0 && (d
& 1) == 0)
4105 pre_shift
= floor_log2 (d
& -d
);
4106 mh
= choose_multiplier (d
>> pre_shift
, size
,
4108 &ml
, &post_shift
, &dummy
);
4118 if (post_shift
- 1 >= BITS_PER_WORD
)
4122 = (shift_cost
[speed
][compute_mode
][post_shift
- 1]
4123 + shift_cost
[speed
][compute_mode
][1]
4124 + 2 * add_cost
[speed
][compute_mode
]);
4125 t1
= expand_mult_highpart (compute_mode
, op0
, ml
,
4127 max_cost
- extra_cost
);
4130 t2
= force_operand (gen_rtx_MINUS (compute_mode
,
4134 (RSHIFT_EXPR
, compute_mode
, t2
,
4135 build_int_cst (NULL_TREE
, 1),
4137 t4
= force_operand (gen_rtx_PLUS (compute_mode
,
4140 quotient
= expand_shift
4141 (RSHIFT_EXPR
, compute_mode
, t4
,
4142 build_int_cst (NULL_TREE
, post_shift
- 1),
4149 if (pre_shift
>= BITS_PER_WORD
4150 || post_shift
>= BITS_PER_WORD
)
4154 (RSHIFT_EXPR
, compute_mode
, op0
,
4155 build_int_cst (NULL_TREE
, pre_shift
),
4158 = (shift_cost
[speed
][compute_mode
][pre_shift
]
4159 + shift_cost
[speed
][compute_mode
][post_shift
]);
4160 t2
= expand_mult_highpart (compute_mode
, t1
, ml
,
4162 max_cost
- extra_cost
);
4165 quotient
= expand_shift
4166 (RSHIFT_EXPR
, compute_mode
, t2
,
4167 build_int_cst (NULL_TREE
, post_shift
),
4172 else /* Too wide mode to use tricky code */
4175 insn
= get_last_insn ();
4177 && (set
= single_set (insn
)) != 0
4178 && SET_DEST (set
) == quotient
)
4179 set_unique_reg_note (insn
,
4181 gen_rtx_UDIV (compute_mode
, op0
, op1
));
4183 else /* TRUNC_DIV, signed */
4185 unsigned HOST_WIDE_INT ml
;
4186 int lgup
, post_shift
;
4188 HOST_WIDE_INT d
= INTVAL (op1
);
4189 unsigned HOST_WIDE_INT abs_d
;
4191 /* Since d might be INT_MIN, we have to cast to
4192 unsigned HOST_WIDE_INT before negating to avoid
4193 undefined signed overflow. */
4195 ? (unsigned HOST_WIDE_INT
) d
4196 : - (unsigned HOST_WIDE_INT
) d
);
4198 /* n rem d = n rem -d */
4199 if (rem_flag
&& d
< 0)
4202 op1
= gen_int_mode (abs_d
, compute_mode
);
4208 quotient
= expand_unop (compute_mode
, neg_optab
, op0
,
4210 else if (HOST_BITS_PER_WIDE_INT
>= size
4211 && abs_d
== (unsigned HOST_WIDE_INT
) 1 << (size
- 1))
4213 /* This case is not handled correctly below. */
4214 quotient
= emit_store_flag (tquotient
, EQ
, op0
, op1
,
4215 compute_mode
, 1, 1);
4219 else if (EXACT_POWER_OF_2_OR_ZERO_P (d
)
4220 && (rem_flag
? smod_pow2_cheap
[speed
][compute_mode
]
4221 : sdiv_pow2_cheap
[speed
][compute_mode
])
4222 /* We assume that cheap metric is true if the
4223 optab has an expander for this mode. */
4224 && ((optab_handler ((rem_flag
? smod_optab
4226 compute_mode
)->insn_code
4227 != CODE_FOR_nothing
)
4228 || (optab_handler(sdivmod_optab
,
4230 ->insn_code
!= CODE_FOR_nothing
)))
4232 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d
))
4236 remainder
= expand_smod_pow2 (compute_mode
, op0
, d
);
4238 return gen_lowpart (mode
, remainder
);
4241 if (sdiv_pow2_cheap
[speed
][compute_mode
]
4242 && ((optab_handler (sdiv_optab
, compute_mode
)->insn_code
4243 != CODE_FOR_nothing
)
4244 || (optab_handler (sdivmod_optab
, compute_mode
)->insn_code
4245 != CODE_FOR_nothing
)))
4246 quotient
= expand_divmod (0, TRUNC_DIV_EXPR
,
4248 gen_int_mode (abs_d
,
4252 quotient
= expand_sdiv_pow2 (compute_mode
, op0
, abs_d
);
4254 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4255 negate the quotient. */
4258 insn
= get_last_insn ();
4260 && (set
= single_set (insn
)) != 0
4261 && SET_DEST (set
) == quotient
4262 && abs_d
< ((unsigned HOST_WIDE_INT
) 1
4263 << (HOST_BITS_PER_WIDE_INT
- 1)))
4264 set_unique_reg_note (insn
,
4266 gen_rtx_DIV (compute_mode
,
4273 quotient
= expand_unop (compute_mode
, neg_optab
,
4274 quotient
, quotient
, 0);
4277 else if (size
<= HOST_BITS_PER_WIDE_INT
)
4279 choose_multiplier (abs_d
, size
, size
- 1,
4280 &mlr
, &post_shift
, &lgup
);
4281 ml
= (unsigned HOST_WIDE_INT
) INTVAL (mlr
);
4282 if (ml
< (unsigned HOST_WIDE_INT
) 1 << (size
- 1))
4286 if (post_shift
>= BITS_PER_WORD
4287 || size
- 1 >= BITS_PER_WORD
)
4290 extra_cost
= (shift_cost
[speed
][compute_mode
][post_shift
]
4291 + shift_cost
[speed
][compute_mode
][size
- 1]
4292 + add_cost
[speed
][compute_mode
]);
4293 t1
= expand_mult_highpart (compute_mode
, op0
, mlr
,
4295 max_cost
- extra_cost
);
4299 (RSHIFT_EXPR
, compute_mode
, t1
,
4300 build_int_cst (NULL_TREE
, post_shift
),
4303 (RSHIFT_EXPR
, compute_mode
, op0
,
4304 build_int_cst (NULL_TREE
, size
- 1),
4308 = force_operand (gen_rtx_MINUS (compute_mode
,
4313 = force_operand (gen_rtx_MINUS (compute_mode
,
4321 if (post_shift
>= BITS_PER_WORD
4322 || size
- 1 >= BITS_PER_WORD
)
4325 ml
|= (~(unsigned HOST_WIDE_INT
) 0) << (size
- 1);
4326 mlr
= gen_int_mode (ml
, compute_mode
);
4327 extra_cost
= (shift_cost
[speed
][compute_mode
][post_shift
]
4328 + shift_cost
[speed
][compute_mode
][size
- 1]
4329 + 2 * add_cost
[speed
][compute_mode
]);
4330 t1
= expand_mult_highpart (compute_mode
, op0
, mlr
,
4332 max_cost
- extra_cost
);
4335 t2
= force_operand (gen_rtx_PLUS (compute_mode
,
4339 (RSHIFT_EXPR
, compute_mode
, t2
,
4340 build_int_cst (NULL_TREE
, post_shift
),
4343 (RSHIFT_EXPR
, compute_mode
, op0
,
4344 build_int_cst (NULL_TREE
, size
- 1),
4348 = force_operand (gen_rtx_MINUS (compute_mode
,
4353 = force_operand (gen_rtx_MINUS (compute_mode
,
4358 else /* Too wide mode to use tricky code */
4361 insn
= get_last_insn ();
4363 && (set
= single_set (insn
)) != 0
4364 && SET_DEST (set
) == quotient
)
4365 set_unique_reg_note (insn
,
4367 gen_rtx_DIV (compute_mode
, op0
, op1
));
4372 delete_insns_since (last
);
4375 case FLOOR_DIV_EXPR
:
4376 case FLOOR_MOD_EXPR
:
4377 /* We will come here only for signed operations. */
4378 if (op1_is_constant
&& HOST_BITS_PER_WIDE_INT
>= size
)
4380 unsigned HOST_WIDE_INT mh
;
4381 int pre_shift
, lgup
, post_shift
;
4382 HOST_WIDE_INT d
= INTVAL (op1
);
4387 /* We could just as easily deal with negative constants here,
4388 but it does not seem worth the trouble for GCC 2.6. */
4389 if (EXACT_POWER_OF_2_OR_ZERO_P (d
))
4391 pre_shift
= floor_log2 (d
);
4394 remainder
= expand_binop (compute_mode
, and_optab
, op0
,
4395 GEN_INT (((HOST_WIDE_INT
) 1 << pre_shift
) - 1),
4396 remainder
, 0, OPTAB_LIB_WIDEN
);
4398 return gen_lowpart (mode
, remainder
);
4400 quotient
= expand_shift
4401 (RSHIFT_EXPR
, compute_mode
, op0
,
4402 build_int_cst (NULL_TREE
, pre_shift
),
4409 mh
= choose_multiplier (d
, size
, size
- 1,
4410 &ml
, &post_shift
, &lgup
);
4413 if (post_shift
< BITS_PER_WORD
4414 && size
- 1 < BITS_PER_WORD
)
4417 (RSHIFT_EXPR
, compute_mode
, op0
,
4418 build_int_cst (NULL_TREE
, size
- 1),
4420 t2
= expand_binop (compute_mode
, xor_optab
, op0
, t1
,
4421 NULL_RTX
, 0, OPTAB_WIDEN
);
4422 extra_cost
= (shift_cost
[speed
][compute_mode
][post_shift
]
4423 + shift_cost
[speed
][compute_mode
][size
- 1]
4424 + 2 * add_cost
[speed
][compute_mode
]);
4425 t3
= expand_mult_highpart (compute_mode
, t2
, ml
,
4427 max_cost
- extra_cost
);
4431 (RSHIFT_EXPR
, compute_mode
, t3
,
4432 build_int_cst (NULL_TREE
, post_shift
),
4434 quotient
= expand_binop (compute_mode
, xor_optab
,
4435 t4
, t1
, tquotient
, 0,
4443 rtx nsign
, t1
, t2
, t3
, t4
;
4444 t1
= force_operand (gen_rtx_PLUS (compute_mode
,
4445 op0
, constm1_rtx
), NULL_RTX
);
4446 t2
= expand_binop (compute_mode
, ior_optab
, op0
, t1
, NULL_RTX
,
4448 nsign
= expand_shift
4449 (RSHIFT_EXPR
, compute_mode
, t2
,
4450 build_int_cst (NULL_TREE
, size
- 1),
4452 t3
= force_operand (gen_rtx_MINUS (compute_mode
, t1
, nsign
),
4454 t4
= expand_divmod (0, TRUNC_DIV_EXPR
, compute_mode
, t3
, op1
,
4459 t5
= expand_unop (compute_mode
, one_cmpl_optab
, nsign
,
4461 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4470 delete_insns_since (last
);
4472 /* Try using an instruction that produces both the quotient and
4473 remainder, using truncation. We can easily compensate the quotient
4474 or remainder to get floor rounding, once we have the remainder.
4475 Notice that we compute also the final remainder value here,
4476 and return the result right away. */
4477 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4478 target
= gen_reg_rtx (compute_mode
);
4483 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4484 quotient
= gen_reg_rtx (compute_mode
);
4489 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4490 remainder
= gen_reg_rtx (compute_mode
);
4493 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
,
4494 quotient
, remainder
, 0))
4496 /* This could be computed with a branch-less sequence.
4497 Save that for later. */
4499 rtx label
= gen_label_rtx ();
4500 do_cmp_and_jump (remainder
, const0_rtx
, EQ
, compute_mode
, label
);
4501 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4502 NULL_RTX
, 0, OPTAB_WIDEN
);
4503 do_cmp_and_jump (tem
, const0_rtx
, GE
, compute_mode
, label
);
4504 expand_dec (quotient
, const1_rtx
);
4505 expand_inc (remainder
, op1
);
4507 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4510 /* No luck with division elimination or divmod. Have to do it
4511 by conditionally adjusting op0 *and* the result. */
4513 rtx label1
, label2
, label3
, label4
, label5
;
4517 quotient
= gen_reg_rtx (compute_mode
);
4518 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4519 label1
= gen_label_rtx ();
4520 label2
= gen_label_rtx ();
4521 label3
= gen_label_rtx ();
4522 label4
= gen_label_rtx ();
4523 label5
= gen_label_rtx ();
4524 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
4525 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
, compute_mode
, label1
);
4526 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4527 quotient
, 0, OPTAB_LIB_WIDEN
);
4528 if (tem
!= quotient
)
4529 emit_move_insn (quotient
, tem
);
4530 emit_jump_insn (gen_jump (label5
));
4532 emit_label (label1
);
4533 expand_inc (adjusted_op0
, const1_rtx
);
4534 emit_jump_insn (gen_jump (label4
));
4536 emit_label (label2
);
4537 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
, compute_mode
, label3
);
4538 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4539 quotient
, 0, OPTAB_LIB_WIDEN
);
4540 if (tem
!= quotient
)
4541 emit_move_insn (quotient
, tem
);
4542 emit_jump_insn (gen_jump (label5
));
4544 emit_label (label3
);
4545 expand_dec (adjusted_op0
, const1_rtx
);
4546 emit_label (label4
);
4547 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4548 quotient
, 0, OPTAB_LIB_WIDEN
);
4549 if (tem
!= quotient
)
4550 emit_move_insn (quotient
, tem
);
4551 expand_dec (quotient
, const1_rtx
);
4552 emit_label (label5
);
4560 if (op1_is_constant
&& EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
)))
4563 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4564 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4565 build_int_cst (NULL_TREE
, floor_log2 (d
)),
4567 t2
= expand_binop (compute_mode
, and_optab
, op0
,
4569 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4570 t3
= gen_reg_rtx (compute_mode
);
4571 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
,
4572 compute_mode
, 1, 1);
4576 lab
= gen_label_rtx ();
4577 do_cmp_and_jump (t2
, const0_rtx
, EQ
, compute_mode
, lab
);
4578 expand_inc (t1
, const1_rtx
);
4583 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4589 /* Try using an instruction that produces both the quotient and
4590 remainder, using truncation. We can easily compensate the
4591 quotient or remainder to get ceiling rounding, once we have the
4592 remainder. Notice that we compute also the final remainder
4593 value here, and return the result right away. */
4594 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4595 target
= gen_reg_rtx (compute_mode
);
4599 remainder
= (REG_P (target
)
4600 ? target
: gen_reg_rtx (compute_mode
));
4601 quotient
= gen_reg_rtx (compute_mode
);
4605 quotient
= (REG_P (target
)
4606 ? target
: gen_reg_rtx (compute_mode
));
4607 remainder
= gen_reg_rtx (compute_mode
);
4610 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
,
4613 /* This could be computed with a branch-less sequence.
4614 Save that for later. */
4615 rtx label
= gen_label_rtx ();
4616 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
4617 compute_mode
, label
);
4618 expand_inc (quotient
, const1_rtx
);
4619 expand_dec (remainder
, op1
);
4621 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4624 /* No luck with division elimination or divmod. Have to do it
4625 by conditionally adjusting op0 *and* the result. */
4628 rtx adjusted_op0
, tem
;
4630 quotient
= gen_reg_rtx (compute_mode
);
4631 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4632 label1
= gen_label_rtx ();
4633 label2
= gen_label_rtx ();
4634 do_cmp_and_jump (adjusted_op0
, const0_rtx
, NE
,
4635 compute_mode
, label1
);
4636 emit_move_insn (quotient
, const0_rtx
);
4637 emit_jump_insn (gen_jump (label2
));
4639 emit_label (label1
);
4640 expand_dec (adjusted_op0
, const1_rtx
);
4641 tem
= expand_binop (compute_mode
, udiv_optab
, adjusted_op0
, op1
,
4642 quotient
, 1, OPTAB_LIB_WIDEN
);
4643 if (tem
!= quotient
)
4644 emit_move_insn (quotient
, tem
);
4645 expand_inc (quotient
, const1_rtx
);
4646 emit_label (label2
);
4651 if (op1_is_constant
&& EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
4652 && INTVAL (op1
) >= 0)
4654 /* This is extremely similar to the code for the unsigned case
4655 above. For 2.7 we should merge these variants, but for
4656 2.6.1 I don't want to touch the code for unsigned since that
4657 get used in C. The signed case will only be used by other
4661 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4662 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4663 build_int_cst (NULL_TREE
, floor_log2 (d
)),
4665 t2
= expand_binop (compute_mode
, and_optab
, op0
,
4667 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4668 t3
= gen_reg_rtx (compute_mode
);
4669 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
,
4670 compute_mode
, 1, 1);
4674 lab
= gen_label_rtx ();
4675 do_cmp_and_jump (t2
, const0_rtx
, EQ
, compute_mode
, lab
);
4676 expand_inc (t1
, const1_rtx
);
4681 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4687 /* Try using an instruction that produces both the quotient and
4688 remainder, using truncation. We can easily compensate the
4689 quotient or remainder to get ceiling rounding, once we have the
4690 remainder. Notice that we compute also the final remainder
4691 value here, and return the result right away. */
4692 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4693 target
= gen_reg_rtx (compute_mode
);
4696 remainder
= (REG_P (target
)
4697 ? target
: gen_reg_rtx (compute_mode
));
4698 quotient
= gen_reg_rtx (compute_mode
);
4702 quotient
= (REG_P (target
)
4703 ? target
: gen_reg_rtx (compute_mode
));
4704 remainder
= gen_reg_rtx (compute_mode
);
4707 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
,
4710 /* This could be computed with a branch-less sequence.
4711 Save that for later. */
4713 rtx label
= gen_label_rtx ();
4714 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
4715 compute_mode
, label
);
4716 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4717 NULL_RTX
, 0, OPTAB_WIDEN
);
4718 do_cmp_and_jump (tem
, const0_rtx
, LT
, compute_mode
, label
);
4719 expand_inc (quotient
, const1_rtx
);
4720 expand_dec (remainder
, op1
);
4722 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4725 /* No luck with division elimination or divmod. Have to do it
4726 by conditionally adjusting op0 *and* the result. */
4728 rtx label1
, label2
, label3
, label4
, label5
;
4732 quotient
= gen_reg_rtx (compute_mode
);
4733 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4734 label1
= gen_label_rtx ();
4735 label2
= gen_label_rtx ();
4736 label3
= gen_label_rtx ();
4737 label4
= gen_label_rtx ();
4738 label5
= gen_label_rtx ();
4739 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
4740 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
,
4741 compute_mode
, label1
);
4742 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4743 quotient
, 0, OPTAB_LIB_WIDEN
);
4744 if (tem
!= quotient
)
4745 emit_move_insn (quotient
, tem
);
4746 emit_jump_insn (gen_jump (label5
));
4748 emit_label (label1
);
4749 expand_dec (adjusted_op0
, const1_rtx
);
4750 emit_jump_insn (gen_jump (label4
));
4752 emit_label (label2
);
4753 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
,
4754 compute_mode
, label3
);
4755 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4756 quotient
, 0, OPTAB_LIB_WIDEN
);
4757 if (tem
!= quotient
)
4758 emit_move_insn (quotient
, tem
);
4759 emit_jump_insn (gen_jump (label5
));
4761 emit_label (label3
);
4762 expand_inc (adjusted_op0
, const1_rtx
);
4763 emit_label (label4
);
4764 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4765 quotient
, 0, OPTAB_LIB_WIDEN
);
4766 if (tem
!= quotient
)
4767 emit_move_insn (quotient
, tem
);
4768 expand_inc (quotient
, const1_rtx
);
4769 emit_label (label5
);
4774 case EXACT_DIV_EXPR
:
4775 if (op1_is_constant
&& HOST_BITS_PER_WIDE_INT
>= size
)
4777 HOST_WIDE_INT d
= INTVAL (op1
);
4778 unsigned HOST_WIDE_INT ml
;
4782 pre_shift
= floor_log2 (d
& -d
);
4783 ml
= invert_mod2n (d
>> pre_shift
, size
);
4784 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4785 build_int_cst (NULL_TREE
, pre_shift
),
4786 NULL_RTX
, unsignedp
);
4787 quotient
= expand_mult (compute_mode
, t1
,
4788 gen_int_mode (ml
, compute_mode
),
4791 insn
= get_last_insn ();
4792 set_unique_reg_note (insn
,
4794 gen_rtx_fmt_ee (unsignedp
? UDIV
: DIV
,
4800 case ROUND_DIV_EXPR
:
4801 case ROUND_MOD_EXPR
:
4806 label
= gen_label_rtx ();
4807 quotient
= gen_reg_rtx (compute_mode
);
4808 remainder
= gen_reg_rtx (compute_mode
);
4809 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
, remainder
, 1) == 0)
4812 quotient
= expand_binop (compute_mode
, udiv_optab
, op0
, op1
,
4813 quotient
, 1, OPTAB_LIB_WIDEN
);
4814 tem
= expand_mult (compute_mode
, quotient
, op1
, NULL_RTX
, 1);
4815 remainder
= expand_binop (compute_mode
, sub_optab
, op0
, tem
,
4816 remainder
, 1, OPTAB_LIB_WIDEN
);
4818 tem
= plus_constant (op1
, -1);
4819 tem
= expand_shift (RSHIFT_EXPR
, compute_mode
, tem
,
4820 build_int_cst (NULL_TREE
, 1),
4822 do_cmp_and_jump (remainder
, tem
, LEU
, compute_mode
, label
);
4823 expand_inc (quotient
, const1_rtx
);
4824 expand_dec (remainder
, op1
);
4829 rtx abs_rem
, abs_op1
, tem
, mask
;
4831 label
= gen_label_rtx ();
4832 quotient
= gen_reg_rtx (compute_mode
);
4833 remainder
= gen_reg_rtx (compute_mode
);
4834 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
, remainder
, 0) == 0)
4837 quotient
= expand_binop (compute_mode
, sdiv_optab
, op0
, op1
,
4838 quotient
, 0, OPTAB_LIB_WIDEN
);
4839 tem
= expand_mult (compute_mode
, quotient
, op1
, NULL_RTX
, 0);
4840 remainder
= expand_binop (compute_mode
, sub_optab
, op0
, tem
,
4841 remainder
, 0, OPTAB_LIB_WIDEN
);
4843 abs_rem
= expand_abs (compute_mode
, remainder
, NULL_RTX
, 1, 0);
4844 abs_op1
= expand_abs (compute_mode
, op1
, NULL_RTX
, 1, 0);
4845 tem
= expand_shift (LSHIFT_EXPR
, compute_mode
, abs_rem
,
4846 build_int_cst (NULL_TREE
, 1),
4848 do_cmp_and_jump (tem
, abs_op1
, LTU
, compute_mode
, label
);
4849 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4850 NULL_RTX
, 0, OPTAB_WIDEN
);
4851 mask
= expand_shift (RSHIFT_EXPR
, compute_mode
, tem
,
4852 build_int_cst (NULL_TREE
, size
- 1),
4854 tem
= expand_binop (compute_mode
, xor_optab
, mask
, const1_rtx
,
4855 NULL_RTX
, 0, OPTAB_WIDEN
);
4856 tem
= expand_binop (compute_mode
, sub_optab
, tem
, mask
,
4857 NULL_RTX
, 0, OPTAB_WIDEN
);
4858 expand_inc (quotient
, tem
);
4859 tem
= expand_binop (compute_mode
, xor_optab
, mask
, op1
,
4860 NULL_RTX
, 0, OPTAB_WIDEN
);
4861 tem
= expand_binop (compute_mode
, sub_optab
, tem
, mask
,
4862 NULL_RTX
, 0, OPTAB_WIDEN
);
4863 expand_dec (remainder
, tem
);
4866 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4874 if (target
&& GET_MODE (target
) != compute_mode
)
4879 /* Try to produce the remainder without producing the quotient.
4880 If we seem to have a divmod pattern that does not require widening,
4881 don't try widening here. We should really have a WIDEN argument
4882 to expand_twoval_binop, since what we'd really like to do here is
4883 1) try a mod insn in compute_mode
4884 2) try a divmod insn in compute_mode
4885 3) try a div insn in compute_mode and multiply-subtract to get
4887 4) try the same things with widening allowed. */
4889 = sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
4892 ((optab_handler (optab2
, compute_mode
)->insn_code
4893 != CODE_FOR_nothing
)
4894 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
4897 /* No luck there. Can we do remainder and divide at once
4898 without a library call? */
4899 remainder
= gen_reg_rtx (compute_mode
);
4900 if (! expand_twoval_binop ((unsignedp
4904 NULL_RTX
, remainder
, unsignedp
))
4909 return gen_lowpart (mode
, remainder
);
4912 /* Produce the quotient. Try a quotient insn, but not a library call.
4913 If we have a divmod in this mode, use it in preference to widening
4914 the div (for this test we assume it will not fail). Note that optab2
4915 is set to the one of the two optabs that the call below will use. */
4917 = sign_expand_binop (compute_mode
, udiv_optab
, sdiv_optab
,
4918 op0
, op1
, rem_flag
? NULL_RTX
: target
,
4920 ((optab_handler (optab2
, compute_mode
)->insn_code
4921 != CODE_FOR_nothing
)
4922 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
4926 /* No luck there. Try a quotient-and-remainder insn,
4927 keeping the quotient alone. */
4928 quotient
= gen_reg_rtx (compute_mode
);
4929 if (! expand_twoval_binop (unsignedp
? udivmod_optab
: sdivmod_optab
,
4931 quotient
, NULL_RTX
, unsignedp
))
4935 /* Still no luck. If we are not computing the remainder,
4936 use a library call for the quotient. */
4937 quotient
= sign_expand_binop (compute_mode
,
4938 udiv_optab
, sdiv_optab
,
4940 unsignedp
, OPTAB_LIB_WIDEN
);
4947 if (target
&& GET_MODE (target
) != compute_mode
)
4952 /* No divide instruction either. Use library for remainder. */
4953 remainder
= sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
4955 unsignedp
, OPTAB_LIB_WIDEN
);
4956 /* No remainder function. Try a quotient-and-remainder
4957 function, keeping the remainder. */
4960 remainder
= gen_reg_rtx (compute_mode
);
4961 if (!expand_twoval_binop_libfunc
4962 (unsignedp
? udivmod_optab
: sdivmod_optab
,
4964 NULL_RTX
, remainder
,
4965 unsignedp
? UMOD
: MOD
))
4966 remainder
= NULL_RTX
;
4971 /* We divided. Now finish doing X - Y * (X / Y). */
4972 remainder
= expand_mult (compute_mode
, quotient
, op1
,
4973 NULL_RTX
, unsignedp
);
4974 remainder
= expand_binop (compute_mode
, sub_optab
, op0
,
4975 remainder
, target
, unsignedp
,
4980 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4983 /* Return a tree node with data type TYPE, describing the value of X.
4984 Usually this is an VAR_DECL, if there is no obvious better choice.
4985 X may be an expression, however we only support those expressions
4986 generated by loop.c. */
4989 make_tree (tree type
, rtx x
)
4993 switch (GET_CODE (x
))
4997 HOST_WIDE_INT hi
= 0;
5000 && !(TYPE_UNSIGNED (type
)
5001 && (GET_MODE_BITSIZE (TYPE_MODE (type
))
5002 < HOST_BITS_PER_WIDE_INT
)))
5005 t
= build_int_cst_wide (type
, INTVAL (x
), hi
);
5011 if (GET_MODE (x
) == VOIDmode
)
5012 t
= build_int_cst_wide (type
,
5013 CONST_DOUBLE_LOW (x
), CONST_DOUBLE_HIGH (x
));
5018 REAL_VALUE_FROM_CONST_DOUBLE (d
, x
);
5019 t
= build_real (type
, d
);
5026 int units
= CONST_VECTOR_NUNITS (x
);
5027 tree itype
= TREE_TYPE (type
);
5032 /* Build a tree with vector elements. */
5033 for (i
= units
- 1; i
>= 0; --i
)
5035 rtx elt
= CONST_VECTOR_ELT (x
, i
);
5036 t
= tree_cons (NULL_TREE
, make_tree (itype
, elt
), t
);
5039 return build_vector (type
, t
);
5043 return fold_build2 (PLUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5044 make_tree (type
, XEXP (x
, 1)));
5047 return fold_build2 (MINUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5048 make_tree (type
, XEXP (x
, 1)));
5051 return fold_build1 (NEGATE_EXPR
, type
, make_tree (type
, XEXP (x
, 0)));
5054 return fold_build2 (MULT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5055 make_tree (type
, XEXP (x
, 1)));
5058 return fold_build2 (LSHIFT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5059 make_tree (type
, XEXP (x
, 1)));
5062 t
= unsigned_type_for (type
);
5063 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
5064 make_tree (t
, XEXP (x
, 0)),
5065 make_tree (type
, XEXP (x
, 1))));
5068 t
= signed_type_for (type
);
5069 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
5070 make_tree (t
, XEXP (x
, 0)),
5071 make_tree (type
, XEXP (x
, 1))));
5074 if (TREE_CODE (type
) != REAL_TYPE
)
5075 t
= signed_type_for (type
);
5079 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
5080 make_tree (t
, XEXP (x
, 0)),
5081 make_tree (t
, XEXP (x
, 1))));
5083 t
= unsigned_type_for (type
);
5084 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
5085 make_tree (t
, XEXP (x
, 0)),
5086 make_tree (t
, XEXP (x
, 1))));
5090 t
= lang_hooks
.types
.type_for_mode (GET_MODE (XEXP (x
, 0)),
5091 GET_CODE (x
) == ZERO_EXTEND
);
5092 return fold_convert (type
, make_tree (t
, XEXP (x
, 0)));
5095 return make_tree (type
, XEXP (x
, 0));
5098 t
= SYMBOL_REF_DECL (x
);
5100 return fold_convert (type
, build_fold_addr_expr (t
));
5101 /* else fall through. */
5104 t
= build_decl (RTL_LOCATION (x
), VAR_DECL
, NULL_TREE
, type
);
5106 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5107 address mode to pointer mode. */
5108 if (POINTER_TYPE_P (type
))
5109 x
= convert_memory_address_addr_space
5110 (TYPE_MODE (type
), x
, TYPE_ADDR_SPACE (TREE_TYPE (type
)));
5112 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5113 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5114 t
->decl_with_rtl
.rtl
= x
;
5120 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5121 and returning TARGET.
5123 If TARGET is 0, a pseudo-register or constant is returned. */
5126 expand_and (enum machine_mode mode
, rtx op0
, rtx op1
, rtx target
)
5130 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
5131 tem
= simplify_binary_operation (AND
, mode
, op0
, op1
);
5133 tem
= expand_binop (mode
, and_optab
, op0
, op1
, target
, 0, OPTAB_LIB_WIDEN
);
5137 else if (tem
!= target
)
5138 emit_move_insn (target
, tem
);
5142 /* Helper function for emit_store_flag. */
5144 emit_cstore (rtx target
, enum insn_code icode
, enum rtx_code code
,
5145 enum machine_mode mode
, enum machine_mode compare_mode
,
5146 int unsignedp
, rtx x
, rtx y
, int normalizep
,
5147 enum machine_mode target_mode
)
5149 rtx op0
, last
, comparison
, subtarget
, pattern
;
5150 enum machine_mode result_mode
= insn_data
[(int) icode
].operand
[0].mode
;
5152 last
= get_last_insn ();
5153 x
= prepare_operand (icode
, x
, 2, mode
, compare_mode
, unsignedp
);
5154 y
= prepare_operand (icode
, y
, 3, mode
, compare_mode
, unsignedp
);
5155 comparison
= gen_rtx_fmt_ee (code
, result_mode
, x
, y
);
5157 || !insn_data
[icode
].operand
[2].predicate
5158 (x
, insn_data
[icode
].operand
[2].mode
)
5159 || !insn_data
[icode
].operand
[3].predicate
5160 (y
, insn_data
[icode
].operand
[3].mode
)
5161 || !insn_data
[icode
].operand
[1].predicate (comparison
, VOIDmode
))
5163 delete_insns_since (last
);
5167 if (target_mode
== VOIDmode
)
5168 target_mode
= result_mode
;
5170 target
= gen_reg_rtx (target_mode
);
5173 || !(insn_data
[(int) icode
].operand
[0].predicate (target
, result_mode
)))
5174 subtarget
= gen_reg_rtx (result_mode
);
5178 pattern
= GEN_FCN (icode
) (subtarget
, comparison
, x
, y
);
5181 emit_insn (pattern
);
5183 /* If we are converting to a wider mode, first convert to
5184 TARGET_MODE, then normalize. This produces better combining
5185 opportunities on machines that have a SIGN_EXTRACT when we are
5186 testing a single bit. This mostly benefits the 68k.
5188 If STORE_FLAG_VALUE does not have the sign bit set when
5189 interpreted in MODE, we can do this conversion as unsigned, which
5190 is usually more efficient. */
5191 if (GET_MODE_SIZE (target_mode
) > GET_MODE_SIZE (result_mode
))
5193 convert_move (target
, subtarget
,
5194 (GET_MODE_BITSIZE (result_mode
) <= HOST_BITS_PER_WIDE_INT
)
5195 && 0 == (STORE_FLAG_VALUE
5196 & ((HOST_WIDE_INT
) 1
5197 << (GET_MODE_BITSIZE (result_mode
) -1))));
5199 result_mode
= target_mode
;
5204 /* If we want to keep subexpressions around, don't reuse our last
5209 /* Now normalize to the proper value in MODE. Sometimes we don't
5210 have to do anything. */
5211 if (normalizep
== 0 || normalizep
== STORE_FLAG_VALUE
)
5213 /* STORE_FLAG_VALUE might be the most negative number, so write
5214 the comparison this way to avoid a compiler-time warning. */
5215 else if (- normalizep
== STORE_FLAG_VALUE
)
5216 op0
= expand_unop (result_mode
, neg_optab
, op0
, subtarget
, 0);
5218 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5219 it hard to use a value of just the sign bit due to ANSI integer
5220 constant typing rules. */
5221 else if (GET_MODE_BITSIZE (result_mode
) <= HOST_BITS_PER_WIDE_INT
5222 && (STORE_FLAG_VALUE
5223 & ((HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (result_mode
) - 1))))
5224 op0
= expand_shift (RSHIFT_EXPR
, result_mode
, op0
,
5225 size_int (GET_MODE_BITSIZE (result_mode
) - 1), subtarget
,
5229 gcc_assert (STORE_FLAG_VALUE
& 1);
5231 op0
= expand_and (result_mode
, op0
, const1_rtx
, subtarget
);
5232 if (normalizep
== -1)
5233 op0
= expand_unop (result_mode
, neg_optab
, op0
, op0
, 0);
5236 /* If we were converting to a smaller mode, do the conversion now. */
5237 if (target_mode
!= result_mode
)
5239 convert_move (target
, op0
, 0);
5247 /* A subroutine of emit_store_flag only including "tricks" that do not
5248 need a recursive call. These are kept separate to avoid infinite
5252 emit_store_flag_1 (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5253 enum machine_mode mode
, int unsignedp
, int normalizep
,
5254 enum machine_mode target_mode
)
5257 enum insn_code icode
;
5258 enum machine_mode compare_mode
;
5259 enum mode_class mclass
;
5260 enum rtx_code scode
;
5264 code
= unsigned_condition (code
);
5265 scode
= swap_condition (code
);
5267 /* If one operand is constant, make it the second one. Only do this
5268 if the other operand is not constant as well. */
5270 if (swap_commutative_operands_p (op0
, op1
))
5275 code
= swap_condition (code
);
5278 if (mode
== VOIDmode
)
5279 mode
= GET_MODE (op0
);
5281 /* For some comparisons with 1 and -1, we can convert this to
5282 comparisons with zero. This will often produce more opportunities for
5283 store-flag insns. */
5288 if (op1
== const1_rtx
)
5289 op1
= const0_rtx
, code
= LE
;
5292 if (op1
== constm1_rtx
)
5293 op1
= const0_rtx
, code
= LT
;
5296 if (op1
== const1_rtx
)
5297 op1
= const0_rtx
, code
= GT
;
5300 if (op1
== constm1_rtx
)
5301 op1
= const0_rtx
, code
= GE
;
5304 if (op1
== const1_rtx
)
5305 op1
= const0_rtx
, code
= NE
;
5308 if (op1
== const1_rtx
)
5309 op1
= const0_rtx
, code
= EQ
;
5315 /* If we are comparing a double-word integer with zero or -1, we can
5316 convert the comparison into one involving a single word. */
5317 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
* 2
5318 && GET_MODE_CLASS (mode
) == MODE_INT
5319 && (!MEM_P (op0
) || ! MEM_VOLATILE_P (op0
)))
5321 if ((code
== EQ
|| code
== NE
)
5322 && (op1
== const0_rtx
|| op1
== constm1_rtx
))
5326 /* Do a logical OR or AND of the two words and compare the
5328 op00
= simplify_gen_subreg (word_mode
, op0
, mode
, 0);
5329 op01
= simplify_gen_subreg (word_mode
, op0
, mode
, UNITS_PER_WORD
);
5330 tem
= expand_binop (word_mode
,
5331 op1
== const0_rtx
? ior_optab
: and_optab
,
5332 op00
, op01
, NULL_RTX
, unsignedp
,
5336 tem
= emit_store_flag (NULL_RTX
, code
, tem
, op1
, word_mode
,
5337 unsignedp
, normalizep
);
5339 else if ((code
== LT
|| code
== GE
) && op1
== const0_rtx
)
5343 /* If testing the sign bit, can just test on high word. */
5344 op0h
= simplify_gen_subreg (word_mode
, op0
, mode
,
5345 subreg_highpart_offset (word_mode
,
5347 tem
= emit_store_flag (NULL_RTX
, code
, op0h
, op1
, word_mode
,
5348 unsignedp
, normalizep
);
5355 if (target_mode
== VOIDmode
|| GET_MODE (tem
) == target_mode
)
5358 target
= gen_reg_rtx (target_mode
);
5360 convert_move (target
, tem
,
5361 0 == ((normalizep
? normalizep
: STORE_FLAG_VALUE
)
5362 & ((HOST_WIDE_INT
) 1
5363 << (GET_MODE_BITSIZE (word_mode
) -1))));
5368 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5369 complement of A (for GE) and shifting the sign bit to the low bit. */
5370 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
5371 && GET_MODE_CLASS (mode
) == MODE_INT
5372 && (normalizep
|| STORE_FLAG_VALUE
== 1
5373 || (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5374 && ((STORE_FLAG_VALUE
& GET_MODE_MASK (mode
))
5375 == ((unsigned HOST_WIDE_INT
) 1
5376 << (GET_MODE_BITSIZE (mode
) - 1))))))
5383 /* If the result is to be wider than OP0, it is best to convert it
5384 first. If it is to be narrower, it is *incorrect* to convert it
5386 else if (GET_MODE_SIZE (target_mode
) > GET_MODE_SIZE (mode
))
5388 op0
= convert_modes (target_mode
, mode
, op0
, 0);
5392 if (target_mode
!= mode
)
5396 op0
= expand_unop (mode
, one_cmpl_optab
, op0
,
5397 ((STORE_FLAG_VALUE
== 1 || normalizep
)
5398 ? 0 : subtarget
), 0);
5400 if (STORE_FLAG_VALUE
== 1 || normalizep
)
5401 /* If we are supposed to produce a 0/1 value, we want to do
5402 a logical shift from the sign bit to the low-order bit; for
5403 a -1/0 value, we do an arithmetic shift. */
5404 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
5405 size_int (GET_MODE_BITSIZE (mode
) - 1),
5406 subtarget
, normalizep
!= -1);
5408 if (mode
!= target_mode
)
5409 op0
= convert_modes (target_mode
, mode
, op0
, 0);
5414 mclass
= GET_MODE_CLASS (mode
);
5415 for (compare_mode
= mode
; compare_mode
!= VOIDmode
;
5416 compare_mode
= GET_MODE_WIDER_MODE (compare_mode
))
5418 enum machine_mode optab_mode
= mclass
== MODE_CC
? CCmode
: compare_mode
;
5419 icode
= optab_handler (cstore_optab
, optab_mode
)->insn_code
;
5420 if (icode
!= CODE_FOR_nothing
)
5422 do_pending_stack_adjust ();
5423 tem
= emit_cstore (target
, icode
, code
, mode
, compare_mode
,
5424 unsignedp
, op0
, op1
, normalizep
, target_mode
);
5428 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5430 tem
= emit_cstore (target
, icode
, scode
, mode
, compare_mode
,
5431 unsignedp
, op1
, op0
, normalizep
, target_mode
);
5442 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5443 and storing in TARGET. Normally return TARGET.
5444 Return 0 if that cannot be done.
5446 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5447 it is VOIDmode, they cannot both be CONST_INT.
5449 UNSIGNEDP is for the case where we have to widen the operands
5450 to perform the operation. It says to use zero-extension.
5452 NORMALIZEP is 1 if we should convert the result to be either zero
5453 or one. Normalize is -1 if we should convert the result to be
5454 either zero or -1. If NORMALIZEP is zero, the result will be left
5455 "raw" out of the scc insn. */
5458 emit_store_flag (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5459 enum machine_mode mode
, int unsignedp
, int normalizep
)
5461 enum machine_mode target_mode
= target
? GET_MODE (target
) : VOIDmode
;
5462 enum rtx_code rcode
;
5464 rtx tem
, last
, trueval
;
5466 tem
= emit_store_flag_1 (target
, code
, op0
, op1
, mode
, unsignedp
, normalizep
,
5471 /* If we reached here, we can't do this with a scc insn, however there
5472 are some comparisons that can be done in other ways. Don't do any
5473 of these cases if branches are very cheap. */
5474 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
5477 /* See what we need to return. We can only return a 1, -1, or the
5480 if (normalizep
== 0)
5482 if (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
5483 normalizep
= STORE_FLAG_VALUE
;
5485 else if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5486 && ((STORE_FLAG_VALUE
& GET_MODE_MASK (mode
))
5487 == (unsigned HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (mode
) - 1)))
5493 last
= get_last_insn ();
5495 /* If optimizing, use different pseudo registers for each insn, instead
5496 of reusing the same pseudo. This leads to better CSE, but slows
5497 down the compiler, since there are more pseudos */
5498 subtarget
= (!optimize
5499 && (target_mode
== mode
)) ? target
: NULL_RTX
;
5500 trueval
= GEN_INT (normalizep
? normalizep
: STORE_FLAG_VALUE
);
5502 /* For floating-point comparisons, try the reverse comparison or try
5503 changing the "orderedness" of the comparison. */
5504 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5506 enum rtx_code first_code
;
5509 rcode
= reverse_condition_maybe_unordered (code
);
5510 if (can_compare_p (rcode
, mode
, ccp_store_flag
)
5511 && (code
== ORDERED
|| code
== UNORDERED
5512 || (! HONOR_NANS (mode
) && (code
== LTGT
|| code
== UNEQ
))
5513 || (! HONOR_SNANS (mode
) && (code
== EQ
|| code
== NE
))))
5515 int want_add
= ((STORE_FLAG_VALUE
== 1 && normalizep
== -1)
5516 || (STORE_FLAG_VALUE
== -1 && normalizep
== 1));
5518 /* For the reverse comparison, use either an addition or a XOR. */
5520 && rtx_cost (GEN_INT (normalizep
), PLUS
,
5521 optimize_insn_for_speed_p ()) == 0)
5523 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5524 STORE_FLAG_VALUE
, target_mode
);
5526 return expand_binop (target_mode
, add_optab
, tem
,
5527 GEN_INT (normalizep
),
5528 target
, 0, OPTAB_WIDEN
);
5531 && rtx_cost (trueval
, XOR
,
5532 optimize_insn_for_speed_p ()) == 0)
5534 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5535 normalizep
, target_mode
);
5537 return expand_binop (target_mode
, xor_optab
, tem
, trueval
,
5538 target
, INTVAL (trueval
) >= 0, OPTAB_WIDEN
);
5542 delete_insns_since (last
);
5544 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
5545 if (code
== ORDERED
|| code
== UNORDERED
)
5548 and_them
= split_comparison (code
, mode
, &first_code
, &code
);
5550 /* If there are no NaNs, the first comparison should always fall through.
5551 Effectively change the comparison to the other one. */
5552 if (!HONOR_NANS (mode
))
5554 gcc_assert (first_code
== (and_them
? ORDERED
: UNORDERED
));
5555 return emit_store_flag_1 (target
, code
, op0
, op1
, mode
, 0, normalizep
,
5559 #ifdef HAVE_conditional_move
5560 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
5561 conditional move. */
5562 tem
= emit_store_flag_1 (subtarget
, first_code
, op0
, op1
, mode
, 0,
5563 normalizep
, target_mode
);
5568 tem
= emit_conditional_move (target
, code
, op0
, op1
, mode
,
5569 tem
, const0_rtx
, GET_MODE (tem
), 0);
5571 tem
= emit_conditional_move (target
, code
, op0
, op1
, mode
,
5572 trueval
, tem
, GET_MODE (tem
), 0);
5575 delete_insns_since (last
);
5582 /* The remaining tricks only apply to integer comparisons. */
5584 if (GET_MODE_CLASS (mode
) != MODE_INT
)
5587 /* If this is an equality comparison of integers, we can try to exclusive-or
5588 (or subtract) the two operands and use a recursive call to try the
5589 comparison with zero. Don't do any of these cases if branches are
5592 if ((code
== EQ
|| code
== NE
) && op1
!= const0_rtx
)
5594 tem
= expand_binop (mode
, xor_optab
, op0
, op1
, subtarget
, 1,
5598 tem
= expand_binop (mode
, sub_optab
, op0
, op1
, subtarget
, 1,
5601 tem
= emit_store_flag (target
, code
, tem
, const0_rtx
,
5602 mode
, unsignedp
, normalizep
);
5606 delete_insns_since (last
);
5609 /* For integer comparisons, try the reverse comparison. However, for
5610 small X and if we'd have anyway to extend, implementing "X != 0"
5611 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5612 rcode
= reverse_condition (code
);
5613 if (can_compare_p (rcode
, mode
, ccp_store_flag
)
5614 && ! (optab_handler (cstore_optab
, mode
)->insn_code
== CODE_FOR_nothing
5616 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
5617 && op1
== const0_rtx
))
5619 int want_add
= ((STORE_FLAG_VALUE
== 1 && normalizep
== -1)
5620 || (STORE_FLAG_VALUE
== -1 && normalizep
== 1));
5622 /* Again, for the reverse comparison, use either an addition or a XOR. */
5624 && rtx_cost (GEN_INT (normalizep
), PLUS
,
5625 optimize_insn_for_speed_p ()) == 0)
5627 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5628 STORE_FLAG_VALUE
, target_mode
);
5630 tem
= expand_binop (target_mode
, add_optab
, tem
,
5631 GEN_INT (normalizep
), target
, 0, OPTAB_WIDEN
);
5634 && rtx_cost (trueval
, XOR
,
5635 optimize_insn_for_speed_p ()) == 0)
5637 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5638 normalizep
, target_mode
);
5640 tem
= expand_binop (target_mode
, xor_optab
, tem
, trueval
, target
,
5641 INTVAL (trueval
) >= 0, OPTAB_WIDEN
);
5646 delete_insns_since (last
);
5649 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5650 the constant zero. Reject all other comparisons at this point. Only
5651 do LE and GT if branches are expensive since they are expensive on
5652 2-operand machines. */
5654 if (op1
!= const0_rtx
5655 || (code
!= EQ
&& code
!= NE
5656 && (BRANCH_COST (optimize_insn_for_speed_p (),
5657 false) <= 1 || (code
!= LE
&& code
!= GT
))))
5660 /* Try to put the result of the comparison in the sign bit. Assume we can't
5661 do the necessary operation below. */
5665 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5666 the sign bit set. */
5670 /* This is destructive, so SUBTARGET can't be OP0. */
5671 if (rtx_equal_p (subtarget
, op0
))
5674 tem
= expand_binop (mode
, sub_optab
, op0
, const1_rtx
, subtarget
, 0,
5677 tem
= expand_binop (mode
, ior_optab
, op0
, tem
, subtarget
, 0,
5681 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5682 number of bits in the mode of OP0, minus one. */
5686 if (rtx_equal_p (subtarget
, op0
))
5689 tem
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
5690 size_int (GET_MODE_BITSIZE (mode
) - 1),
5692 tem
= expand_binop (mode
, sub_optab
, tem
, op0
, subtarget
, 0,
5696 if (code
== EQ
|| code
== NE
)
5698 /* For EQ or NE, one way to do the comparison is to apply an operation
5699 that converts the operand into a positive number if it is nonzero
5700 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5701 for NE we negate. This puts the result in the sign bit. Then we
5702 normalize with a shift, if needed.
5704 Two operations that can do the above actions are ABS and FFS, so try
5705 them. If that doesn't work, and MODE is smaller than a full word,
5706 we can use zero-extension to the wider mode (an unsigned conversion)
5707 as the operation. */
5709 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5710 that is compensated by the subsequent overflow when subtracting
5713 if (optab_handler (abs_optab
, mode
)->insn_code
!= CODE_FOR_nothing
)
5714 tem
= expand_unop (mode
, abs_optab
, op0
, subtarget
, 1);
5715 else if (optab_handler (ffs_optab
, mode
)->insn_code
!= CODE_FOR_nothing
)
5716 tem
= expand_unop (mode
, ffs_optab
, op0
, subtarget
, 1);
5717 else if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
5719 tem
= convert_modes (word_mode
, mode
, op0
, 1);
5726 tem
= expand_binop (mode
, sub_optab
, tem
, const1_rtx
, subtarget
,
5729 tem
= expand_unop (mode
, neg_optab
, tem
, subtarget
, 0);
5732 /* If we couldn't do it that way, for NE we can "or" the two's complement
5733 of the value with itself. For EQ, we take the one's complement of
5734 that "or", which is an extra insn, so we only handle EQ if branches
5739 || BRANCH_COST (optimize_insn_for_speed_p (),
5742 if (rtx_equal_p (subtarget
, op0
))
5745 tem
= expand_unop (mode
, neg_optab
, op0
, subtarget
, 0);
5746 tem
= expand_binop (mode
, ior_optab
, tem
, op0
, subtarget
, 0,
5749 if (tem
&& code
== EQ
)
5750 tem
= expand_unop (mode
, one_cmpl_optab
, tem
, subtarget
, 0);
5754 if (tem
&& normalizep
)
5755 tem
= expand_shift (RSHIFT_EXPR
, mode
, tem
,
5756 size_int (GET_MODE_BITSIZE (mode
) - 1),
5757 subtarget
, normalizep
== 1);
5763 else if (GET_MODE (tem
) != target_mode
)
5765 convert_move (target
, tem
, 0);
5768 else if (!subtarget
)
5770 emit_move_insn (target
, tem
);
5775 delete_insns_since (last
);
5780 /* Like emit_store_flag, but always succeeds. */
5783 emit_store_flag_force (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5784 enum machine_mode mode
, int unsignedp
, int normalizep
)
5787 rtx trueval
, falseval
;
5789 /* First see if emit_store_flag can do the job. */
5790 tem
= emit_store_flag (target
, code
, op0
, op1
, mode
, unsignedp
, normalizep
);
5795 target
= gen_reg_rtx (word_mode
);
5797 /* If this failed, we have to do this with set/compare/jump/set code.
5798 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
5799 trueval
= normalizep
? GEN_INT (normalizep
) : const1_rtx
;
5801 && GET_MODE_CLASS (mode
) == MODE_INT
5804 && op1
== const0_rtx
)
5806 label
= gen_label_rtx ();
5807 do_compare_rtx_and_jump (target
, const0_rtx
, EQ
, unsignedp
,
5808 mode
, NULL_RTX
, NULL_RTX
, label
, -1);
5809 emit_move_insn (target
, trueval
);
5815 || reg_mentioned_p (target
, op0
) || reg_mentioned_p (target
, op1
))
5816 target
= gen_reg_rtx (GET_MODE (target
));
5818 /* Jump in the right direction if the target cannot implement CODE
5819 but can jump on its reverse condition. */
5820 falseval
= const0_rtx
;
5821 if (! can_compare_p (code
, mode
, ccp_jump
)
5822 && (! FLOAT_MODE_P (mode
)
5823 || code
== ORDERED
|| code
== UNORDERED
5824 || (! HONOR_NANS (mode
) && (code
== LTGT
|| code
== UNEQ
))
5825 || (! HONOR_SNANS (mode
) && (code
== EQ
|| code
== NE
))))
5827 enum rtx_code rcode
;
5828 if (FLOAT_MODE_P (mode
))
5829 rcode
= reverse_condition_maybe_unordered (code
);
5831 rcode
= reverse_condition (code
);
5833 /* Canonicalize to UNORDERED for the libcall. */
5834 if (can_compare_p (rcode
, mode
, ccp_jump
)
5835 || (code
== ORDERED
&& ! can_compare_p (ORDERED
, mode
, ccp_jump
)))
5838 trueval
= const0_rtx
;
5843 emit_move_insn (target
, trueval
);
5844 label
= gen_label_rtx ();
5845 do_compare_rtx_and_jump (op0
, op1
, code
, unsignedp
, mode
, NULL_RTX
,
5846 NULL_RTX
, label
, -1);
5848 emit_move_insn (target
, falseval
);
5854 /* Perform possibly multi-word comparison and conditional jump to LABEL
5855 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5856 now a thin wrapper around do_compare_rtx_and_jump. */
5859 do_cmp_and_jump (rtx arg1
, rtx arg2
, enum rtx_code op
, enum machine_mode mode
,
5862 int unsignedp
= (op
== LTU
|| op
== LEU
|| op
== GTU
|| op
== GEU
);
5863 do_compare_rtx_and_jump (arg1
, arg2
, op
, unsignedp
, mode
,
5864 NULL_RTX
, NULL_RTX
, label
, -1);