2010-05-14 Steven G. Kargl <kargl@gcc.gnu.org>
[official-gcc.git] / gcc / dominance.c
blobfde79d71df37d65b0049f921d30e1813e85c89c3
1 /* Calculate (post)dominators in slightly super-linear time.
2 Copyright (C) 2000, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Michael Matz (matz@ifh.de).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file implements the well known algorithm from Lengauer and Tarjan
23 to compute the dominators in a control flow graph. A basic block D is said
24 to dominate another block X, when all paths from the entry node of the CFG
25 to X go also over D. The dominance relation is a transitive reflexive
26 relation and its minimal transitive reduction is a tree, called the
27 dominator tree. So for each block X besides the entry block exists a
28 block I(X), called the immediate dominator of X, which is the parent of X
29 in the dominator tree.
31 The algorithm computes this dominator tree implicitly by computing for
32 each block its immediate dominator. We use tree balancing and path
33 compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
34 slowly growing functional inverse of the Ackerman function. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "hard-reg-set.h"
42 #include "obstack.h"
43 #include "basic-block.h"
44 #include "toplev.h"
45 #include "et-forest.h"
46 #include "timevar.h"
47 #include "vecprim.h"
48 #include "pointer-set.h"
49 #include "graphds.h"
51 /* We name our nodes with integers, beginning with 1. Zero is reserved for
52 'undefined' or 'end of list'. The name of each node is given by the dfs
53 number of the corresponding basic block. Please note, that we include the
54 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
55 support multiple entry points. Its dfs number is of course 1. */
57 /* Type of Basic Block aka. TBB */
58 typedef unsigned int TBB;
60 /* We work in a poor-mans object oriented fashion, and carry an instance of
61 this structure through all our 'methods'. It holds various arrays
62 reflecting the (sub)structure of the flowgraph. Most of them are of type
63 TBB and are also indexed by TBB. */
65 struct dom_info
67 /* The parent of a node in the DFS tree. */
68 TBB *dfs_parent;
69 /* For a node x key[x] is roughly the node nearest to the root from which
70 exists a way to x only over nodes behind x. Such a node is also called
71 semidominator. */
72 TBB *key;
73 /* The value in path_min[x] is the node y on the path from x to the root of
74 the tree x is in with the smallest key[y]. */
75 TBB *path_min;
76 /* bucket[x] points to the first node of the set of nodes having x as key. */
77 TBB *bucket;
78 /* And next_bucket[x] points to the next node. */
79 TBB *next_bucket;
80 /* After the algorithm is done, dom[x] contains the immediate dominator
81 of x. */
82 TBB *dom;
84 /* The following few fields implement the structures needed for disjoint
85 sets. */
86 /* set_chain[x] is the next node on the path from x to the representative
87 of the set containing x. If set_chain[x]==0 then x is a root. */
88 TBB *set_chain;
89 /* set_size[x] is the number of elements in the set named by x. */
90 unsigned int *set_size;
91 /* set_child[x] is used for balancing the tree representing a set. It can
92 be understood as the next sibling of x. */
93 TBB *set_child;
95 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
96 number of that node in DFS order counted from 1. This is an index
97 into most of the other arrays in this structure. */
98 TBB *dfs_order;
99 /* If x is the DFS-index of a node which corresponds with a basic block,
100 dfs_to_bb[x] is that basic block. Note, that in our structure there are
101 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
102 is true for every basic block bb, but not the opposite. */
103 basic_block *dfs_to_bb;
105 /* This is the next free DFS number when creating the DFS tree. */
106 unsigned int dfsnum;
107 /* The number of nodes in the DFS tree (==dfsnum-1). */
108 unsigned int nodes;
110 /* Blocks with bits set here have a fake edge to EXIT. These are used
111 to turn a DFS forest into a proper tree. */
112 bitmap fake_exit_edge;
115 static void init_dom_info (struct dom_info *, enum cdi_direction);
116 static void free_dom_info (struct dom_info *);
117 static void calc_dfs_tree_nonrec (struct dom_info *, basic_block, bool);
118 static void calc_dfs_tree (struct dom_info *, bool);
119 static void compress (struct dom_info *, TBB);
120 static TBB eval (struct dom_info *, TBB);
121 static void link_roots (struct dom_info *, TBB, TBB);
122 static void calc_idoms (struct dom_info *, bool);
123 void debug_dominance_info (enum cdi_direction);
124 void debug_dominance_tree (enum cdi_direction, basic_block);
126 /* Helper macro for allocating and initializing an array,
127 for aesthetic reasons. */
128 #define init_ar(var, type, num, content) \
129 do \
131 unsigned int i = 1; /* Catch content == i. */ \
132 if (! (content)) \
133 (var) = XCNEWVEC (type, num); \
134 else \
136 (var) = XNEWVEC (type, (num)); \
137 for (i = 0; i < num; i++) \
138 (var)[i] = (content); \
141 while (0)
143 /* Allocate all needed memory in a pessimistic fashion (so we round up).
144 This initializes the contents of DI, which already must be allocated. */
146 static void
147 init_dom_info (struct dom_info *di, enum cdi_direction dir)
149 /* We need memory for n_basic_blocks nodes. */
150 unsigned int num = n_basic_blocks;
151 init_ar (di->dfs_parent, TBB, num, 0);
152 init_ar (di->path_min, TBB, num, i);
153 init_ar (di->key, TBB, num, i);
154 init_ar (di->dom, TBB, num, 0);
156 init_ar (di->bucket, TBB, num, 0);
157 init_ar (di->next_bucket, TBB, num, 0);
159 init_ar (di->set_chain, TBB, num, 0);
160 init_ar (di->set_size, unsigned int, num, 1);
161 init_ar (di->set_child, TBB, num, 0);
163 init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
164 init_ar (di->dfs_to_bb, basic_block, num, 0);
166 di->dfsnum = 1;
167 di->nodes = 0;
169 switch (dir)
171 case CDI_DOMINATORS:
172 di->fake_exit_edge = NULL;
173 break;
174 case CDI_POST_DOMINATORS:
175 di->fake_exit_edge = BITMAP_ALLOC (NULL);
176 break;
177 default:
178 gcc_unreachable ();
179 break;
183 #undef init_ar
185 /* Map dominance calculation type to array index used for various
186 dominance information arrays. This version is simple -- it will need
187 to be modified, obviously, if additional values are added to
188 cdi_direction. */
190 static unsigned int
191 dom_convert_dir_to_idx (enum cdi_direction dir)
193 gcc_assert (dir == CDI_DOMINATORS || dir == CDI_POST_DOMINATORS);
194 return dir - 1;
197 /* Free all allocated memory in DI, but not DI itself. */
199 static void
200 free_dom_info (struct dom_info *di)
202 free (di->dfs_parent);
203 free (di->path_min);
204 free (di->key);
205 free (di->dom);
206 free (di->bucket);
207 free (di->next_bucket);
208 free (di->set_chain);
209 free (di->set_size);
210 free (di->set_child);
211 free (di->dfs_order);
212 free (di->dfs_to_bb);
213 BITMAP_FREE (di->fake_exit_edge);
216 /* The nonrecursive variant of creating a DFS tree. DI is our working
217 structure, BB the starting basic block for this tree and REVERSE
218 is true, if predecessors should be visited instead of successors of a
219 node. After this is done all nodes reachable from BB were visited, have
220 assigned their dfs number and are linked together to form a tree. */
222 static void
223 calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb, bool reverse)
225 /* We call this _only_ if bb is not already visited. */
226 edge e;
227 TBB child_i, my_i = 0;
228 edge_iterator *stack;
229 edge_iterator ei, einext;
230 int sp;
231 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
232 problem). */
233 basic_block en_block;
234 /* Ending block. */
235 basic_block ex_block;
237 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
238 sp = 0;
240 /* Initialize our border blocks, and the first edge. */
241 if (reverse)
243 ei = ei_start (bb->preds);
244 en_block = EXIT_BLOCK_PTR;
245 ex_block = ENTRY_BLOCK_PTR;
247 else
249 ei = ei_start (bb->succs);
250 en_block = ENTRY_BLOCK_PTR;
251 ex_block = EXIT_BLOCK_PTR;
254 /* When the stack is empty we break out of this loop. */
255 while (1)
257 basic_block bn;
259 /* This loop traverses edges e in depth first manner, and fills the
260 stack. */
261 while (!ei_end_p (ei))
263 e = ei_edge (ei);
265 /* Deduce from E the current and the next block (BB and BN), and the
266 next edge. */
267 if (reverse)
269 bn = e->src;
271 /* If the next node BN is either already visited or a border
272 block the current edge is useless, and simply overwritten
273 with the next edge out of the current node. */
274 if (bn == ex_block || di->dfs_order[bn->index])
276 ei_next (&ei);
277 continue;
279 bb = e->dest;
280 einext = ei_start (bn->preds);
282 else
284 bn = e->dest;
285 if (bn == ex_block || di->dfs_order[bn->index])
287 ei_next (&ei);
288 continue;
290 bb = e->src;
291 einext = ei_start (bn->succs);
294 gcc_assert (bn != en_block);
296 /* Fill the DFS tree info calculatable _before_ recursing. */
297 if (bb != en_block)
298 my_i = di->dfs_order[bb->index];
299 else
300 my_i = di->dfs_order[last_basic_block];
301 child_i = di->dfs_order[bn->index] = di->dfsnum++;
302 di->dfs_to_bb[child_i] = bn;
303 di->dfs_parent[child_i] = my_i;
305 /* Save the current point in the CFG on the stack, and recurse. */
306 stack[sp++] = ei;
307 ei = einext;
310 if (!sp)
311 break;
312 ei = stack[--sp];
314 /* OK. The edge-list was exhausted, meaning normally we would
315 end the recursion. After returning from the recursive call,
316 there were (may be) other statements which were run after a
317 child node was completely considered by DFS. Here is the
318 point to do it in the non-recursive variant.
319 E.g. The block just completed is in e->dest for forward DFS,
320 the block not yet completed (the parent of the one above)
321 in e->src. This could be used e.g. for computing the number of
322 descendants or the tree depth. */
323 ei_next (&ei);
325 free (stack);
328 /* The main entry for calculating the DFS tree or forest. DI is our working
329 structure and REVERSE is true, if we are interested in the reverse flow
330 graph. In that case the result is not necessarily a tree but a forest,
331 because there may be nodes from which the EXIT_BLOCK is unreachable. */
333 static void
334 calc_dfs_tree (struct dom_info *di, bool reverse)
336 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
337 basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
338 di->dfs_order[last_basic_block] = di->dfsnum;
339 di->dfs_to_bb[di->dfsnum] = begin;
340 di->dfsnum++;
342 calc_dfs_tree_nonrec (di, begin, reverse);
344 if (reverse)
346 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
347 They are reverse-unreachable. In the dom-case we disallow such
348 nodes, but in post-dom we have to deal with them.
350 There are two situations in which this occurs. First, noreturn
351 functions. Second, infinite loops. In the first case we need to
352 pretend that there is an edge to the exit block. In the second
353 case, we wind up with a forest. We need to process all noreturn
354 blocks before we know if we've got any infinite loops. */
356 basic_block b;
357 bool saw_unconnected = false;
359 FOR_EACH_BB_REVERSE (b)
361 if (EDGE_COUNT (b->succs) > 0)
363 if (di->dfs_order[b->index] == 0)
364 saw_unconnected = true;
365 continue;
367 bitmap_set_bit (di->fake_exit_edge, b->index);
368 di->dfs_order[b->index] = di->dfsnum;
369 di->dfs_to_bb[di->dfsnum] = b;
370 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
371 di->dfsnum++;
372 calc_dfs_tree_nonrec (di, b, reverse);
375 if (saw_unconnected)
377 FOR_EACH_BB_REVERSE (b)
379 if (di->dfs_order[b->index])
380 continue;
381 bitmap_set_bit (di->fake_exit_edge, b->index);
382 di->dfs_order[b->index] = di->dfsnum;
383 di->dfs_to_bb[di->dfsnum] = b;
384 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
385 di->dfsnum++;
386 calc_dfs_tree_nonrec (di, b, reverse);
391 di->nodes = di->dfsnum - 1;
393 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
394 gcc_assert (di->nodes == (unsigned int) n_basic_blocks - 1);
397 /* Compress the path from V to the root of its set and update path_min at the
398 same time. After compress(di, V) set_chain[V] is the root of the set V is
399 in and path_min[V] is the node with the smallest key[] value on the path
400 from V to that root. */
402 static void
403 compress (struct dom_info *di, TBB v)
405 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
406 greater than 5 even for huge graphs (I've not seen call depth > 4).
407 Also performance wise compress() ranges _far_ behind eval(). */
408 TBB parent = di->set_chain[v];
409 if (di->set_chain[parent])
411 compress (di, parent);
412 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
413 di->path_min[v] = di->path_min[parent];
414 di->set_chain[v] = di->set_chain[parent];
418 /* Compress the path from V to the set root of V if needed (when the root has
419 changed since the last call). Returns the node with the smallest key[]
420 value on the path from V to the root. */
422 static inline TBB
423 eval (struct dom_info *di, TBB v)
425 /* The representative of the set V is in, also called root (as the set
426 representation is a tree). */
427 TBB rep = di->set_chain[v];
429 /* V itself is the root. */
430 if (!rep)
431 return di->path_min[v];
433 /* Compress only if necessary. */
434 if (di->set_chain[rep])
436 compress (di, v);
437 rep = di->set_chain[v];
440 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
441 return di->path_min[v];
442 else
443 return di->path_min[rep];
446 /* This essentially merges the two sets of V and W, giving a single set with
447 the new root V. The internal representation of these disjoint sets is a
448 balanced tree. Currently link(V,W) is only used with V being the parent
449 of W. */
451 static void
452 link_roots (struct dom_info *di, TBB v, TBB w)
454 TBB s = w;
456 /* Rebalance the tree. */
457 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
459 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
460 >= 2 * di->set_size[di->set_child[s]])
462 di->set_chain[di->set_child[s]] = s;
463 di->set_child[s] = di->set_child[di->set_child[s]];
465 else
467 di->set_size[di->set_child[s]] = di->set_size[s];
468 s = di->set_chain[s] = di->set_child[s];
472 di->path_min[s] = di->path_min[w];
473 di->set_size[v] += di->set_size[w];
474 if (di->set_size[v] < 2 * di->set_size[w])
476 TBB tmp = s;
477 s = di->set_child[v];
478 di->set_child[v] = tmp;
481 /* Merge all subtrees. */
482 while (s)
484 di->set_chain[s] = v;
485 s = di->set_child[s];
489 /* This calculates the immediate dominators (or post-dominators if REVERSE is
490 true). DI is our working structure and should hold the DFS forest.
491 On return the immediate dominator to node V is in di->dom[V]. */
493 static void
494 calc_idoms (struct dom_info *di, bool reverse)
496 TBB v, w, k, par;
497 basic_block en_block;
498 edge_iterator ei, einext;
500 if (reverse)
501 en_block = EXIT_BLOCK_PTR;
502 else
503 en_block = ENTRY_BLOCK_PTR;
505 /* Go backwards in DFS order, to first look at the leafs. */
506 v = di->nodes;
507 while (v > 1)
509 basic_block bb = di->dfs_to_bb[v];
510 edge e;
512 par = di->dfs_parent[v];
513 k = v;
515 ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
517 if (reverse)
519 /* If this block has a fake edge to exit, process that first. */
520 if (bitmap_bit_p (di->fake_exit_edge, bb->index))
522 einext = ei;
523 einext.index = 0;
524 goto do_fake_exit_edge;
528 /* Search all direct predecessors for the smallest node with a path
529 to them. That way we have the smallest node with also a path to
530 us only over nodes behind us. In effect we search for our
531 semidominator. */
532 while (!ei_end_p (ei))
534 TBB k1;
535 basic_block b;
537 e = ei_edge (ei);
538 b = (reverse) ? e->dest : e->src;
539 einext = ei;
540 ei_next (&einext);
542 if (b == en_block)
544 do_fake_exit_edge:
545 k1 = di->dfs_order[last_basic_block];
547 else
548 k1 = di->dfs_order[b->index];
550 /* Call eval() only if really needed. If k1 is above V in DFS tree,
551 then we know, that eval(k1) == k1 and key[k1] == k1. */
552 if (k1 > v)
553 k1 = di->key[eval (di, k1)];
554 if (k1 < k)
555 k = k1;
557 ei = einext;
560 di->key[v] = k;
561 link_roots (di, par, v);
562 di->next_bucket[v] = di->bucket[k];
563 di->bucket[k] = v;
565 /* Transform semidominators into dominators. */
566 for (w = di->bucket[par]; w; w = di->next_bucket[w])
568 k = eval (di, w);
569 if (di->key[k] < di->key[w])
570 di->dom[w] = k;
571 else
572 di->dom[w] = par;
574 /* We don't need to cleanup next_bucket[]. */
575 di->bucket[par] = 0;
576 v--;
579 /* Explicitly define the dominators. */
580 di->dom[1] = 0;
581 for (v = 2; v <= di->nodes; v++)
582 if (di->dom[v] != di->key[v])
583 di->dom[v] = di->dom[di->dom[v]];
586 /* Assign dfs numbers starting from NUM to NODE and its sons. */
588 static void
589 assign_dfs_numbers (struct et_node *node, int *num)
591 struct et_node *son;
593 node->dfs_num_in = (*num)++;
595 if (node->son)
597 assign_dfs_numbers (node->son, num);
598 for (son = node->son->right; son != node->son; son = son->right)
599 assign_dfs_numbers (son, num);
602 node->dfs_num_out = (*num)++;
605 /* Compute the data necessary for fast resolving of dominator queries in a
606 static dominator tree. */
608 static void
609 compute_dom_fast_query (enum cdi_direction dir)
611 int num = 0;
612 basic_block bb;
613 unsigned int dir_index = dom_convert_dir_to_idx (dir);
615 gcc_assert (dom_info_available_p (dir));
617 if (dom_computed[dir_index] == DOM_OK)
618 return;
620 FOR_ALL_BB (bb)
622 if (!bb->dom[dir_index]->father)
623 assign_dfs_numbers (bb->dom[dir_index], &num);
626 dom_computed[dir_index] = DOM_OK;
629 /* The main entry point into this module. DIR is set depending on whether
630 we want to compute dominators or postdominators. */
632 void
633 calculate_dominance_info (enum cdi_direction dir)
635 struct dom_info di;
636 basic_block b;
637 unsigned int dir_index = dom_convert_dir_to_idx (dir);
638 bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
640 if (dom_computed[dir_index] == DOM_OK)
641 return;
643 timevar_push (TV_DOMINANCE);
644 if (!dom_info_available_p (dir))
646 gcc_assert (!n_bbs_in_dom_tree[dir_index]);
648 FOR_ALL_BB (b)
650 b->dom[dir_index] = et_new_tree (b);
652 n_bbs_in_dom_tree[dir_index] = n_basic_blocks;
654 init_dom_info (&di, dir);
655 calc_dfs_tree (&di, reverse);
656 calc_idoms (&di, reverse);
658 FOR_EACH_BB (b)
660 TBB d = di.dom[di.dfs_order[b->index]];
662 if (di.dfs_to_bb[d])
663 et_set_father (b->dom[dir_index], di.dfs_to_bb[d]->dom[dir_index]);
666 free_dom_info (&di);
667 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
670 compute_dom_fast_query (dir);
672 timevar_pop (TV_DOMINANCE);
675 /* Free dominance information for direction DIR. */
676 void
677 free_dominance_info (enum cdi_direction dir)
679 basic_block bb;
680 unsigned int dir_index = dom_convert_dir_to_idx (dir);
682 if (!dom_info_available_p (dir))
683 return;
685 FOR_ALL_BB (bb)
687 et_free_tree_force (bb->dom[dir_index]);
688 bb->dom[dir_index] = NULL;
690 et_free_pools ();
692 n_bbs_in_dom_tree[dir_index] = 0;
694 dom_computed[dir_index] = DOM_NONE;
697 /* Return the immediate dominator of basic block BB. */
698 basic_block
699 get_immediate_dominator (enum cdi_direction dir, basic_block bb)
701 unsigned int dir_index = dom_convert_dir_to_idx (dir);
702 struct et_node *node = bb->dom[dir_index];
704 gcc_assert (dom_computed[dir_index]);
706 if (!node->father)
707 return NULL;
709 return (basic_block) node->father->data;
712 /* Set the immediate dominator of the block possibly removing
713 existing edge. NULL can be used to remove any edge. */
714 void
715 set_immediate_dominator (enum cdi_direction dir, basic_block bb,
716 basic_block dominated_by)
718 unsigned int dir_index = dom_convert_dir_to_idx (dir);
719 struct et_node *node = bb->dom[dir_index];
721 gcc_assert (dom_computed[dir_index]);
723 if (node->father)
725 if (node->father->data == dominated_by)
726 return;
727 et_split (node);
730 if (dominated_by)
731 et_set_father (node, dominated_by->dom[dir_index]);
733 if (dom_computed[dir_index] == DOM_OK)
734 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
737 /* Returns the list of basic blocks immediately dominated by BB, in the
738 direction DIR. */
739 VEC (basic_block, heap) *
740 get_dominated_by (enum cdi_direction dir, basic_block bb)
742 unsigned int dir_index = dom_convert_dir_to_idx (dir);
743 struct et_node *node = bb->dom[dir_index], *son = node->son, *ason;
744 VEC (basic_block, heap) *bbs = NULL;
746 gcc_assert (dom_computed[dir_index]);
748 if (!son)
749 return NULL;
751 VEC_safe_push (basic_block, heap, bbs, (basic_block) son->data);
752 for (ason = son->right; ason != son; ason = ason->right)
753 VEC_safe_push (basic_block, heap, bbs, (basic_block) ason->data);
755 return bbs;
758 /* Returns the list of basic blocks that are immediately dominated (in
759 direction DIR) by some block between N_REGION ones stored in REGION,
760 except for blocks in the REGION itself. */
762 VEC (basic_block, heap) *
763 get_dominated_by_region (enum cdi_direction dir, basic_block *region,
764 unsigned n_region)
766 unsigned i;
767 basic_block dom;
768 VEC (basic_block, heap) *doms = NULL;
770 for (i = 0; i < n_region; i++)
771 region[i]->flags |= BB_DUPLICATED;
772 for (i = 0; i < n_region; i++)
773 for (dom = first_dom_son (dir, region[i]);
774 dom;
775 dom = next_dom_son (dir, dom))
776 if (!(dom->flags & BB_DUPLICATED))
777 VEC_safe_push (basic_block, heap, doms, dom);
778 for (i = 0; i < n_region; i++)
779 region[i]->flags &= ~BB_DUPLICATED;
781 return doms;
784 /* Returns the list of basic blocks including BB dominated by BB, in the
785 direction DIR. The vector will be sorted in preorder. */
787 VEC (basic_block, heap) *
788 get_all_dominated_blocks (enum cdi_direction dir, basic_block bb)
790 VEC(basic_block, heap) *bbs = NULL;
791 unsigned i;
793 i = 0;
794 VEC_safe_push (basic_block, heap, bbs, bb);
798 basic_block son;
800 bb = VEC_index (basic_block, bbs, i++);
801 for (son = first_dom_son (dir, bb);
802 son;
803 son = next_dom_son (dir, son))
804 VEC_safe_push (basic_block, heap, bbs, son);
806 while (i < VEC_length (basic_block, bbs));
808 return bbs;
811 /* Redirect all edges pointing to BB to TO. */
812 void
813 redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
814 basic_block to)
816 unsigned int dir_index = dom_convert_dir_to_idx (dir);
817 struct et_node *bb_node, *to_node, *son;
819 bb_node = bb->dom[dir_index];
820 to_node = to->dom[dir_index];
822 gcc_assert (dom_computed[dir_index]);
824 if (!bb_node->son)
825 return;
827 while (bb_node->son)
829 son = bb_node->son;
831 et_split (son);
832 et_set_father (son, to_node);
835 if (dom_computed[dir_index] == DOM_OK)
836 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
839 /* Find first basic block in the tree dominating both BB1 and BB2. */
840 basic_block
841 nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
843 unsigned int dir_index = dom_convert_dir_to_idx (dir);
845 gcc_assert (dom_computed[dir_index]);
847 if (!bb1)
848 return bb2;
849 if (!bb2)
850 return bb1;
852 return (basic_block) et_nca (bb1->dom[dir_index], bb2->dom[dir_index])->data;
856 /* Find the nearest common dominator for the basic blocks in BLOCKS,
857 using dominance direction DIR. */
859 basic_block
860 nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
862 unsigned i, first;
863 bitmap_iterator bi;
864 basic_block dom;
866 first = bitmap_first_set_bit (blocks);
867 dom = BASIC_BLOCK (first);
868 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
869 if (dom != BASIC_BLOCK (i))
870 dom = nearest_common_dominator (dir, dom, BASIC_BLOCK (i));
872 return dom;
875 /* Given a dominator tree, we can determine whether one thing
876 dominates another in constant time by using two DFS numbers:
878 1. The number for when we visit a node on the way down the tree
879 2. The number for when we visit a node on the way back up the tree
881 You can view these as bounds for the range of dfs numbers the
882 nodes in the subtree of the dominator tree rooted at that node
883 will contain.
885 The dominator tree is always a simple acyclic tree, so there are
886 only three possible relations two nodes in the dominator tree have
887 to each other:
889 1. Node A is above Node B (and thus, Node A dominates node B)
898 In the above case, DFS_Number_In of A will be <= DFS_Number_In of
899 B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
900 because we must hit A in the dominator tree *before* B on the walk
901 down, and we will hit A *after* B on the walk back up
903 2. Node A is below node B (and thus, node B dominates node A)
912 In the above case, DFS_Number_In of A will be >= DFS_Number_In of
913 B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
915 This is because we must hit A in the dominator tree *after* B on
916 the walk down, and we will hit A *before* B on the walk back up
918 3. Node A and B are siblings (and thus, neither dominates the other)
926 In the above case, DFS_Number_In of A will *always* be <=
927 DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
928 DFS_Number_Out of B. This is because we will always finish the dfs
929 walk of one of the subtrees before the other, and thus, the dfs
930 numbers for one subtree can't intersect with the range of dfs
931 numbers for the other subtree. If you swap A and B's position in
932 the dominator tree, the comparison changes direction, but the point
933 is that both comparisons will always go the same way if there is no
934 dominance relationship.
936 Thus, it is sufficient to write
938 A_Dominates_B (node A, node B)
940 return DFS_Number_In(A) <= DFS_Number_In(B)
941 && DFS_Number_Out (A) >= DFS_Number_Out(B);
944 A_Dominated_by_B (node A, node B)
946 return DFS_Number_In(A) >= DFS_Number_In(A)
947 && DFS_Number_Out (A) <= DFS_Number_Out(B);
948 } */
950 /* Return TRUE in case BB1 is dominated by BB2. */
951 bool
952 dominated_by_p (enum cdi_direction dir, const_basic_block bb1, const_basic_block bb2)
954 unsigned int dir_index = dom_convert_dir_to_idx (dir);
955 struct et_node *n1 = bb1->dom[dir_index], *n2 = bb2->dom[dir_index];
957 gcc_assert (dom_computed[dir_index]);
959 if (dom_computed[dir_index] == DOM_OK)
960 return (n1->dfs_num_in >= n2->dfs_num_in
961 && n1->dfs_num_out <= n2->dfs_num_out);
963 return et_below (n1, n2);
966 /* Returns the entry dfs number for basic block BB, in the direction DIR. */
968 unsigned
969 bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
971 unsigned int dir_index = dom_convert_dir_to_idx (dir);
972 struct et_node *n = bb->dom[dir_index];
974 gcc_assert (dom_computed[dir_index] == DOM_OK);
975 return n->dfs_num_in;
978 /* Returns the exit dfs number for basic block BB, in the direction DIR. */
980 unsigned
981 bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
983 unsigned int dir_index = dom_convert_dir_to_idx (dir);
984 struct et_node *n = bb->dom[dir_index];
986 gcc_assert (dom_computed[dir_index] == DOM_OK);
987 return n->dfs_num_out;
990 /* Verify invariants of dominator structure. */
991 void
992 verify_dominators (enum cdi_direction dir)
994 int err = 0;
995 basic_block bb, imm_bb, imm_bb_correct;
996 struct dom_info di;
997 bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
999 gcc_assert (dom_info_available_p (dir));
1001 init_dom_info (&di, dir);
1002 calc_dfs_tree (&di, reverse);
1003 calc_idoms (&di, reverse);
1005 FOR_EACH_BB (bb)
1007 imm_bb = get_immediate_dominator (dir, bb);
1008 if (!imm_bb)
1010 error ("dominator of %d status unknown", bb->index);
1011 err = 1;
1014 imm_bb_correct = di.dfs_to_bb[di.dom[di.dfs_order[bb->index]]];
1015 if (imm_bb != imm_bb_correct)
1017 error ("dominator of %d should be %d, not %d",
1018 bb->index, imm_bb_correct->index, imm_bb->index);
1019 err = 1;
1023 free_dom_info (&di);
1024 gcc_assert (!err);
1027 /* Determine immediate dominator (or postdominator, according to DIR) of BB,
1028 assuming that dominators of other blocks are correct. We also use it to
1029 recompute the dominators in a restricted area, by iterating it until it
1030 reaches a fixed point. */
1032 basic_block
1033 recompute_dominator (enum cdi_direction dir, basic_block bb)
1035 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1036 basic_block dom_bb = NULL;
1037 edge e;
1038 edge_iterator ei;
1040 gcc_assert (dom_computed[dir_index]);
1042 if (dir == CDI_DOMINATORS)
1044 FOR_EACH_EDGE (e, ei, bb->preds)
1046 if (!dominated_by_p (dir, e->src, bb))
1047 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
1050 else
1052 FOR_EACH_EDGE (e, ei, bb->succs)
1054 if (!dominated_by_p (dir, e->dest, bb))
1055 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
1059 return dom_bb;
1062 /* Use simple heuristics (see iterate_fix_dominators) to determine dominators
1063 of BBS. We assume that all the immediate dominators except for those of the
1064 blocks in BBS are correct. If CONSERVATIVE is true, we also assume that the
1065 currently recorded immediate dominators of blocks in BBS really dominate the
1066 blocks. The basic blocks for that we determine the dominator are removed
1067 from BBS. */
1069 static void
1070 prune_bbs_to_update_dominators (VEC (basic_block, heap) *bbs,
1071 bool conservative)
1073 unsigned i;
1074 bool single;
1075 basic_block bb, dom = NULL;
1076 edge_iterator ei;
1077 edge e;
1079 for (i = 0; VEC_iterate (basic_block, bbs, i, bb);)
1081 if (bb == ENTRY_BLOCK_PTR)
1082 goto succeed;
1084 if (single_pred_p (bb))
1086 set_immediate_dominator (CDI_DOMINATORS, bb, single_pred (bb));
1087 goto succeed;
1090 if (!conservative)
1091 goto fail;
1093 single = true;
1094 dom = NULL;
1095 FOR_EACH_EDGE (e, ei, bb->preds)
1097 if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1098 continue;
1100 if (!dom)
1101 dom = e->src;
1102 else
1104 single = false;
1105 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1109 gcc_assert (dom != NULL);
1110 if (single
1111 || find_edge (dom, bb))
1113 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1114 goto succeed;
1117 fail:
1118 i++;
1119 continue;
1121 succeed:
1122 VEC_unordered_remove (basic_block, bbs, i);
1126 /* Returns root of the dominance tree in the direction DIR that contains
1127 BB. */
1129 static basic_block
1130 root_of_dom_tree (enum cdi_direction dir, basic_block bb)
1132 return (basic_block) et_root (bb->dom[dom_convert_dir_to_idx (dir)])->data;
1135 /* See the comment in iterate_fix_dominators. Finds the immediate dominators
1136 for the sons of Y, found using the SON and BROTHER arrays representing
1137 the dominance tree of graph G. BBS maps the vertices of G to the basic
1138 blocks. */
1140 static void
1141 determine_dominators_for_sons (struct graph *g, VEC (basic_block, heap) *bbs,
1142 int y, int *son, int *brother)
1144 bitmap gprime;
1145 int i, a, nc;
1146 VEC (int, heap) **sccs;
1147 basic_block bb, dom, ybb;
1148 unsigned si;
1149 edge e;
1150 edge_iterator ei;
1152 if (son[y] == -1)
1153 return;
1154 if (y == (int) VEC_length (basic_block, bbs))
1155 ybb = ENTRY_BLOCK_PTR;
1156 else
1157 ybb = VEC_index (basic_block, bbs, y);
1159 if (brother[son[y]] == -1)
1161 /* Handle the common case Y has just one son specially. */
1162 bb = VEC_index (basic_block, bbs, son[y]);
1163 set_immediate_dominator (CDI_DOMINATORS, bb,
1164 recompute_dominator (CDI_DOMINATORS, bb));
1165 identify_vertices (g, y, son[y]);
1166 return;
1169 gprime = BITMAP_ALLOC (NULL);
1170 for (a = son[y]; a != -1; a = brother[a])
1171 bitmap_set_bit (gprime, a);
1173 nc = graphds_scc (g, gprime);
1174 BITMAP_FREE (gprime);
1176 sccs = XCNEWVEC (VEC (int, heap) *, nc);
1177 for (a = son[y]; a != -1; a = brother[a])
1178 VEC_safe_push (int, heap, sccs[g->vertices[a].component], a);
1180 for (i = nc - 1; i >= 0; i--)
1182 dom = NULL;
1183 for (si = 0; VEC_iterate (int, sccs[i], si, a); si++)
1185 bb = VEC_index (basic_block, bbs, a);
1186 FOR_EACH_EDGE (e, ei, bb->preds)
1188 if (root_of_dom_tree (CDI_DOMINATORS, e->src) != ybb)
1189 continue;
1191 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1195 gcc_assert (dom != NULL);
1196 for (si = 0; VEC_iterate (int, sccs[i], si, a); si++)
1198 bb = VEC_index (basic_block, bbs, a);
1199 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1203 for (i = 0; i < nc; i++)
1204 VEC_free (int, heap, sccs[i]);
1205 free (sccs);
1207 for (a = son[y]; a != -1; a = brother[a])
1208 identify_vertices (g, y, a);
1211 /* Recompute dominance information for basic blocks in the set BBS. The
1212 function assumes that the immediate dominators of all the other blocks
1213 in CFG are correct, and that there are no unreachable blocks.
1215 If CONSERVATIVE is true, we additionally assume that all the ancestors of
1216 a block of BBS in the current dominance tree dominate it. */
1218 void
1219 iterate_fix_dominators (enum cdi_direction dir, VEC (basic_block, heap) *bbs,
1220 bool conservative)
1222 unsigned i;
1223 basic_block bb, dom;
1224 struct graph *g;
1225 int n, y;
1226 size_t dom_i;
1227 edge e;
1228 edge_iterator ei;
1229 struct pointer_map_t *map;
1230 int *parent, *son, *brother;
1231 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1233 /* We only support updating dominators. There are some problems with
1234 updating postdominators (need to add fake edges from infinite loops
1235 and noreturn functions), and since we do not currently use
1236 iterate_fix_dominators for postdominators, any attempt to handle these
1237 problems would be unused, untested, and almost surely buggy. We keep
1238 the DIR argument for consistency with the rest of the dominator analysis
1239 interface. */
1240 gcc_assert (dir == CDI_DOMINATORS);
1241 gcc_assert (dom_computed[dir_index]);
1243 /* The algorithm we use takes inspiration from the following papers, although
1244 the details are quite different from any of them:
1246 [1] G. Ramalingam, T. Reps, An Incremental Algorithm for Maintaining the
1247 Dominator Tree of a Reducible Flowgraph
1248 [2] V. C. Sreedhar, G. R. Gao, Y.-F. Lee: Incremental computation of
1249 dominator trees
1250 [3] K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
1251 Algorithm
1253 First, we use the following heuristics to decrease the size of the BBS
1254 set:
1255 a) if BB has a single predecessor, then its immediate dominator is this
1256 predecessor
1257 additionally, if CONSERVATIVE is true:
1258 b) if all the predecessors of BB except for one (X) are dominated by BB,
1259 then X is the immediate dominator of BB
1260 c) if the nearest common ancestor of the predecessors of BB is X and
1261 X -> BB is an edge in CFG, then X is the immediate dominator of BB
1263 Then, we need to establish the dominance relation among the basic blocks
1264 in BBS. We split the dominance tree by removing the immediate dominator
1265 edges from BBS, creating a forest F. We form a graph G whose vertices
1266 are BBS and ENTRY and X -> Y is an edge of G if there exists an edge
1267 X' -> Y in CFG such that X' belongs to the tree of the dominance forest
1268 whose root is X. We then determine dominance tree of G. Note that
1269 for X, Y in BBS, X dominates Y in CFG if and only if X dominates Y in G.
1270 In this step, we can use arbitrary algorithm to determine dominators.
1271 We decided to prefer the algorithm [3] to the algorithm of
1272 Lengauer and Tarjan, since the set BBS is usually small (rarely exceeding
1273 10 during gcc bootstrap), and [3] should perform better in this case.
1275 Finally, we need to determine the immediate dominators for the basic
1276 blocks of BBS. If the immediate dominator of X in G is Y, then
1277 the immediate dominator of X in CFG belongs to the tree of F rooted in
1278 Y. We process the dominator tree T of G recursively, starting from leaves.
1279 Suppose that X_1, X_2, ..., X_k are the sons of Y in T, and that the
1280 subtrees of the dominance tree of CFG rooted in X_i are already correct.
1281 Let G' be the subgraph of G induced by {X_1, X_2, ..., X_k}. We make
1282 the following observations:
1283 (i) the immediate dominator of all blocks in a strongly connected
1284 component of G' is the same
1285 (ii) if X has no predecessors in G', then the immediate dominator of X
1286 is the nearest common ancestor of the predecessors of X in the
1287 subtree of F rooted in Y
1288 Therefore, it suffices to find the topological ordering of G', and
1289 process the nodes X_i in this order using the rules (i) and (ii).
1290 Then, we contract all the nodes X_i with Y in G, so that the further
1291 steps work correctly. */
1293 if (!conservative)
1295 /* Split the tree now. If the idoms of blocks in BBS are not
1296 conservatively correct, setting the dominators using the
1297 heuristics in prune_bbs_to_update_dominators could
1298 create cycles in the dominance "tree", and cause ICE. */
1299 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
1300 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1303 prune_bbs_to_update_dominators (bbs, conservative);
1304 n = VEC_length (basic_block, bbs);
1306 if (n == 0)
1307 return;
1309 if (n == 1)
1311 bb = VEC_index (basic_block, bbs, 0);
1312 set_immediate_dominator (CDI_DOMINATORS, bb,
1313 recompute_dominator (CDI_DOMINATORS, bb));
1314 return;
1317 /* Construct the graph G. */
1318 map = pointer_map_create ();
1319 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
1321 /* If the dominance tree is conservatively correct, split it now. */
1322 if (conservative)
1323 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1324 *pointer_map_insert (map, bb) = (void *) (size_t) i;
1326 *pointer_map_insert (map, ENTRY_BLOCK_PTR) = (void *) (size_t) n;
1328 g = new_graph (n + 1);
1329 for (y = 0; y < g->n_vertices; y++)
1330 g->vertices[y].data = BITMAP_ALLOC (NULL);
1331 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
1333 FOR_EACH_EDGE (e, ei, bb->preds)
1335 dom = root_of_dom_tree (CDI_DOMINATORS, e->src);
1336 if (dom == bb)
1337 continue;
1339 dom_i = (size_t) *pointer_map_contains (map, dom);
1341 /* Do not include parallel edges to G. */
1342 if (bitmap_bit_p ((bitmap) g->vertices[dom_i].data, i))
1343 continue;
1345 bitmap_set_bit ((bitmap) g->vertices[dom_i].data, i);
1346 add_edge (g, dom_i, i);
1349 for (y = 0; y < g->n_vertices; y++)
1350 BITMAP_FREE (g->vertices[y].data);
1351 pointer_map_destroy (map);
1353 /* Find the dominator tree of G. */
1354 son = XNEWVEC (int, n + 1);
1355 brother = XNEWVEC (int, n + 1);
1356 parent = XNEWVEC (int, n + 1);
1357 graphds_domtree (g, n, parent, son, brother);
1359 /* Finally, traverse the tree and find the immediate dominators. */
1360 for (y = n; son[y] != -1; y = son[y])
1361 continue;
1362 while (y != -1)
1364 determine_dominators_for_sons (g, bbs, y, son, brother);
1366 if (brother[y] != -1)
1368 y = brother[y];
1369 while (son[y] != -1)
1370 y = son[y];
1372 else
1373 y = parent[y];
1376 free (son);
1377 free (brother);
1378 free (parent);
1380 free_graph (g);
1383 void
1384 add_to_dominance_info (enum cdi_direction dir, basic_block bb)
1386 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1388 gcc_assert (dom_computed[dir_index]);
1389 gcc_assert (!bb->dom[dir_index]);
1391 n_bbs_in_dom_tree[dir_index]++;
1393 bb->dom[dir_index] = et_new_tree (bb);
1395 if (dom_computed[dir_index] == DOM_OK)
1396 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1399 void
1400 delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
1402 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1404 gcc_assert (dom_computed[dir_index]);
1406 et_free_tree (bb->dom[dir_index]);
1407 bb->dom[dir_index] = NULL;
1408 n_bbs_in_dom_tree[dir_index]--;
1410 if (dom_computed[dir_index] == DOM_OK)
1411 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1414 /* Returns the first son of BB in the dominator or postdominator tree
1415 as determined by DIR. */
1417 basic_block
1418 first_dom_son (enum cdi_direction dir, basic_block bb)
1420 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1421 struct et_node *son = bb->dom[dir_index]->son;
1423 return (basic_block) (son ? son->data : NULL);
1426 /* Returns the next dominance son after BB in the dominator or postdominator
1427 tree as determined by DIR, or NULL if it was the last one. */
1429 basic_block
1430 next_dom_son (enum cdi_direction dir, basic_block bb)
1432 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1433 struct et_node *next = bb->dom[dir_index]->right;
1435 return (basic_block) (next->father->son == next ? NULL : next->data);
1438 /* Return dominance availability for dominance info DIR. */
1440 enum dom_state
1441 dom_info_state (enum cdi_direction dir)
1443 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1445 return dom_computed[dir_index];
1448 /* Set the dominance availability for dominance info DIR to NEW_STATE. */
1450 void
1451 set_dom_info_availability (enum cdi_direction dir, enum dom_state new_state)
1453 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1455 dom_computed[dir_index] = new_state;
1458 /* Returns true if dominance information for direction DIR is available. */
1460 bool
1461 dom_info_available_p (enum cdi_direction dir)
1463 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1465 return dom_computed[dir_index] != DOM_NONE;
1468 void
1469 debug_dominance_info (enum cdi_direction dir)
1471 basic_block bb, bb2;
1472 FOR_EACH_BB (bb)
1473 if ((bb2 = get_immediate_dominator (dir, bb)))
1474 fprintf (stderr, "%i %i\n", bb->index, bb2->index);
1477 /* Prints to stderr representation of the dominance tree (for direction DIR)
1478 rooted in ROOT, indented by INDENT tabulators. If INDENT_FIRST is false,
1479 the first line of the output is not indented. */
1481 static void
1482 debug_dominance_tree_1 (enum cdi_direction dir, basic_block root,
1483 unsigned indent, bool indent_first)
1485 basic_block son;
1486 unsigned i;
1487 bool first = true;
1489 if (indent_first)
1490 for (i = 0; i < indent; i++)
1491 fprintf (stderr, "\t");
1492 fprintf (stderr, "%d\t", root->index);
1494 for (son = first_dom_son (dir, root);
1495 son;
1496 son = next_dom_son (dir, son))
1498 debug_dominance_tree_1 (dir, son, indent + 1, !first);
1499 first = false;
1502 if (first)
1503 fprintf (stderr, "\n");
1506 /* Prints to stderr representation of the dominance tree (for direction DIR)
1507 rooted in ROOT. */
1509 void
1510 debug_dominance_tree (enum cdi_direction dir, basic_block root)
1512 debug_dominance_tree_1 (dir, root, 0, false);