* flow.c (allocate_reg_life_data): Reset REG_FREQ.
[official-gcc.git] / gcc / flow.c
blobd543ba44e8ad49f0b138f3e1886da7991f8759f1
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
41 find_basic_blocks also finds any unreachable loops and deletes them.
43 ** life_analysis **
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
49 ** live-register info **
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
88 ** Other actions of life_analysis **
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
112 /* TODO:
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "ssa.h"
140 #include "timevar.h"
142 #include "obstack.h"
143 #include "splay-tree.h"
145 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
146 the stack pointer does not matter. The value is tested only in
147 functions that have frame pointers.
148 No definition is equivalent to always zero. */
149 #ifndef EXIT_IGNORE_STACK
150 #define EXIT_IGNORE_STACK 0
151 #endif
153 #ifndef HAVE_epilogue
154 #define HAVE_epilogue 0
155 #endif
156 #ifndef HAVE_prologue
157 #define HAVE_prologue 0
158 #endif
159 #ifndef HAVE_sibcall_epilogue
160 #define HAVE_sibcall_epilogue 0
161 #endif
163 #ifndef LOCAL_REGNO
164 #define LOCAL_REGNO(REGNO) 0
165 #endif
166 #ifndef EPILOGUE_USES
167 #define EPILOGUE_USES(REGNO) 0
168 #endif
169 #ifndef EH_USES
170 #define EH_USES(REGNO) 0
171 #endif
173 #ifdef HAVE_conditional_execution
174 #ifndef REVERSE_CONDEXEC_PREDICATES_P
175 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
176 #endif
177 #endif
179 /* Nonzero if the second flow pass has completed. */
180 int flow2_completed;
182 /* Maximum register number used in this function, plus one. */
184 int max_regno;
186 /* Indexed by n, giving various register information */
188 varray_type reg_n_info;
190 /* Size of a regset for the current function,
191 in (1) bytes and (2) elements. */
193 int regset_bytes;
194 int regset_size;
196 /* Regset of regs live when calls to `setjmp'-like functions happen. */
197 /* ??? Does this exist only for the setjmp-clobbered warning message? */
199 regset regs_live_at_setjmp;
201 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
202 that have to go in the same hard reg.
203 The first two regs in the list are a pair, and the next two
204 are another pair, etc. */
205 rtx regs_may_share;
207 /* Callback that determines if it's ok for a function to have no
208 noreturn attribute. */
209 int (*lang_missing_noreturn_ok_p) PARAMS ((tree));
211 /* Set of registers that may be eliminable. These are handled specially
212 in updating regs_ever_live. */
214 static HARD_REG_SET elim_reg_set;
216 /* Holds information for tracking conditional register life information. */
217 struct reg_cond_life_info
219 /* A boolean expression of conditions under which a register is dead. */
220 rtx condition;
221 /* Conditions under which a register is dead at the basic block end. */
222 rtx orig_condition;
224 /* A boolean expression of conditions under which a register has been
225 stored into. */
226 rtx stores;
228 /* ??? Could store mask of bytes that are dead, so that we could finally
229 track lifetimes of multi-word registers accessed via subregs. */
232 /* For use in communicating between propagate_block and its subroutines.
233 Holds all information needed to compute life and def-use information. */
235 struct propagate_block_info
237 /* The basic block we're considering. */
238 basic_block bb;
240 /* Bit N is set if register N is conditionally or unconditionally live. */
241 regset reg_live;
243 /* Bit N is set if register N is set this insn. */
244 regset new_set;
246 /* Element N is the next insn that uses (hard or pseudo) register N
247 within the current basic block; or zero, if there is no such insn. */
248 rtx *reg_next_use;
250 /* Contains a list of all the MEMs we are tracking for dead store
251 elimination. */
252 rtx mem_set_list;
254 /* If non-null, record the set of registers set unconditionally in the
255 basic block. */
256 regset local_set;
258 /* If non-null, record the set of registers set conditionally in the
259 basic block. */
260 regset cond_local_set;
262 #ifdef HAVE_conditional_execution
263 /* Indexed by register number, holds a reg_cond_life_info for each
264 register that is not unconditionally live or dead. */
265 splay_tree reg_cond_dead;
267 /* Bit N is set if register N is in an expression in reg_cond_dead. */
268 regset reg_cond_reg;
269 #endif
271 /* The length of mem_set_list. */
272 int mem_set_list_len;
274 /* Nonzero if the value of CC0 is live. */
275 int cc0_live;
277 /* Flags controling the set of information propagate_block collects. */
278 int flags;
281 /* Number of dead insns removed. */
282 static int ndead;
284 /* Maximum length of pbi->mem_set_list before we start dropping
285 new elements on the floor. */
286 #define MAX_MEM_SET_LIST_LEN 100
288 /* Forward declarations */
289 static int verify_wide_reg_1 PARAMS ((rtx *, void *));
290 static void verify_wide_reg PARAMS ((int, basic_block));
291 static void verify_local_live_at_start PARAMS ((regset, basic_block));
292 static void notice_stack_pointer_modification_1 PARAMS ((rtx, rtx, void *));
293 static void notice_stack_pointer_modification PARAMS ((rtx));
294 static void mark_reg PARAMS ((rtx, void *));
295 static void mark_regs_live_at_end PARAMS ((regset));
296 static int set_phi_alternative_reg PARAMS ((rtx, int, int, void *));
297 static void calculate_global_regs_live PARAMS ((sbitmap, sbitmap, int));
298 static void propagate_block_delete_insn PARAMS ((rtx));
299 static rtx propagate_block_delete_libcall PARAMS ((rtx, rtx));
300 static int insn_dead_p PARAMS ((struct propagate_block_info *,
301 rtx, int, rtx));
302 static int libcall_dead_p PARAMS ((struct propagate_block_info *,
303 rtx, rtx));
304 static void mark_set_regs PARAMS ((struct propagate_block_info *,
305 rtx, rtx));
306 static void mark_set_1 PARAMS ((struct propagate_block_info *,
307 enum rtx_code, rtx, rtx,
308 rtx, int));
309 static int find_regno_partial PARAMS ((rtx *, void *));
311 #ifdef HAVE_conditional_execution
312 static int mark_regno_cond_dead PARAMS ((struct propagate_block_info *,
313 int, rtx));
314 static void free_reg_cond_life_info PARAMS ((splay_tree_value));
315 static int flush_reg_cond_reg_1 PARAMS ((splay_tree_node, void *));
316 static void flush_reg_cond_reg PARAMS ((struct propagate_block_info *,
317 int));
318 static rtx elim_reg_cond PARAMS ((rtx, unsigned int));
319 static rtx ior_reg_cond PARAMS ((rtx, rtx, int));
320 static rtx not_reg_cond PARAMS ((rtx));
321 static rtx and_reg_cond PARAMS ((rtx, rtx, int));
322 #endif
323 #ifdef AUTO_INC_DEC
324 static void attempt_auto_inc PARAMS ((struct propagate_block_info *,
325 rtx, rtx, rtx, rtx, rtx));
326 static void find_auto_inc PARAMS ((struct propagate_block_info *,
327 rtx, rtx));
328 static int try_pre_increment_1 PARAMS ((struct propagate_block_info *,
329 rtx));
330 static int try_pre_increment PARAMS ((rtx, rtx, HOST_WIDE_INT));
331 #endif
332 static void mark_used_reg PARAMS ((struct propagate_block_info *,
333 rtx, rtx, rtx));
334 static void mark_used_regs PARAMS ((struct propagate_block_info *,
335 rtx, rtx, rtx));
336 void dump_flow_info PARAMS ((FILE *));
337 void debug_flow_info PARAMS ((void));
338 static void add_to_mem_set_list PARAMS ((struct propagate_block_info *,
339 rtx));
340 static int invalidate_mems_from_autoinc PARAMS ((rtx *, void *));
341 static void invalidate_mems_from_set PARAMS ((struct propagate_block_info *,
342 rtx));
343 static void clear_log_links PARAMS ((sbitmap));
346 void
347 check_function_return_warnings ()
349 if (warn_missing_noreturn
350 && !TREE_THIS_VOLATILE (cfun->decl)
351 && EXIT_BLOCK_PTR->pred == NULL
352 && (lang_missing_noreturn_ok_p
353 && !lang_missing_noreturn_ok_p (cfun->decl)))
354 warning ("function might be possible candidate for attribute `noreturn'");
356 /* If we have a path to EXIT, then we do return. */
357 if (TREE_THIS_VOLATILE (cfun->decl)
358 && EXIT_BLOCK_PTR->pred != NULL)
359 warning ("`noreturn' function does return");
361 /* If the clobber_return_insn appears in some basic block, then we
362 do reach the end without returning a value. */
363 else if (warn_return_type
364 && cfun->x_clobber_return_insn != NULL
365 && EXIT_BLOCK_PTR->pred != NULL)
367 int max_uid = get_max_uid ();
369 /* If clobber_return_insn was excised by jump1, then renumber_insns
370 can make max_uid smaller than the number still recorded in our rtx.
371 That's fine, since this is a quick way of verifying that the insn
372 is no longer in the chain. */
373 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
375 rtx insn;
377 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
378 if (insn == cfun->x_clobber_return_insn)
380 warning ("control reaches end of non-void function");
381 break;
387 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
388 note associated with the BLOCK. */
391 first_insn_after_basic_block_note (block)
392 basic_block block;
394 rtx insn;
396 /* Get the first instruction in the block. */
397 insn = block->head;
399 if (insn == NULL_RTX)
400 return NULL_RTX;
401 if (GET_CODE (insn) == CODE_LABEL)
402 insn = NEXT_INSN (insn);
403 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
404 abort ();
406 return NEXT_INSN (insn);
409 /* Perform data flow analysis.
410 F is the first insn of the function; FLAGS is a set of PROP_* flags
411 to be used in accumulating flow info. */
413 void
414 life_analysis (f, file, flags)
415 rtx f;
416 FILE *file;
417 int flags;
419 int i;
420 #ifdef ELIMINABLE_REGS
421 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
422 #endif
424 /* Record which registers will be eliminated. We use this in
425 mark_used_regs. */
427 CLEAR_HARD_REG_SET (elim_reg_set);
429 #ifdef ELIMINABLE_REGS
430 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
431 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
432 #else
433 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
434 #endif
437 #ifdef CANNOT_CHANGE_MODE_CLASS
438 if (flags & PROP_REG_INFO)
439 for (i=0; i < NUM_MACHINE_MODES; ++i)
440 INIT_REG_SET (&subregs_of_mode[i]);
441 #endif
443 if (! optimize)
444 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
446 /* The post-reload life analysis have (on a global basis) the same
447 registers live as was computed by reload itself. elimination
448 Otherwise offsets and such may be incorrect.
450 Reload will make some registers as live even though they do not
451 appear in the rtl.
453 We don't want to create new auto-incs after reload, since they
454 are unlikely to be useful and can cause problems with shared
455 stack slots. */
456 if (reload_completed)
457 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
459 /* We want alias analysis information for local dead store elimination. */
460 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
461 init_alias_analysis ();
463 /* Always remove no-op moves. Do this before other processing so
464 that we don't have to keep re-scanning them. */
465 delete_noop_moves (f);
467 /* Some targets can emit simpler epilogues if they know that sp was
468 not ever modified during the function. After reload, of course,
469 we've already emitted the epilogue so there's no sense searching. */
470 if (! reload_completed)
471 notice_stack_pointer_modification (f);
473 /* Allocate and zero out data structures that will record the
474 data from lifetime analysis. */
475 allocate_reg_life_data ();
476 allocate_bb_life_data ();
478 /* Find the set of registers live on function exit. */
479 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
481 /* "Update" life info from zero. It'd be nice to begin the
482 relaxation with just the exit and noreturn blocks, but that set
483 is not immediately handy. */
485 if (flags & PROP_REG_INFO)
486 memset (regs_ever_live, 0, sizeof (regs_ever_live));
487 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
489 /* Clean up. */
490 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
491 end_alias_analysis ();
493 if (file)
494 dump_flow_info (file);
496 free_basic_block_vars (1);
498 /* Removing dead insns should've made jumptables really dead. */
499 delete_dead_jumptables ();
502 /* A subroutine of verify_wide_reg, called through for_each_rtx.
503 Search for REGNO. If found, return 2 if it is not wider than
504 word_mode. */
506 static int
507 verify_wide_reg_1 (px, pregno)
508 rtx *px;
509 void *pregno;
511 rtx x = *px;
512 unsigned int regno = *(int *) pregno;
514 if (GET_CODE (x) == REG && REGNO (x) == regno)
516 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
517 return 2;
518 return 1;
520 return 0;
523 /* A subroutine of verify_local_live_at_start. Search through insns
524 of BB looking for register REGNO. */
526 static void
527 verify_wide_reg (regno, bb)
528 int regno;
529 basic_block bb;
531 rtx head = bb->head, end = bb->end;
533 while (1)
535 if (INSN_P (head))
537 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
538 if (r == 1)
539 return;
540 if (r == 2)
541 break;
543 if (head == end)
544 break;
545 head = NEXT_INSN (head);
548 if (rtl_dump_file)
550 fprintf (rtl_dump_file, "Register %d died unexpectedly.\n", regno);
551 dump_bb (bb, rtl_dump_file);
553 abort ();
556 /* A subroutine of update_life_info. Verify that there are no untoward
557 changes in live_at_start during a local update. */
559 static void
560 verify_local_live_at_start (new_live_at_start, bb)
561 regset new_live_at_start;
562 basic_block bb;
564 if (reload_completed)
566 /* After reload, there are no pseudos, nor subregs of multi-word
567 registers. The regsets should exactly match. */
568 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
570 if (rtl_dump_file)
572 fprintf (rtl_dump_file,
573 "live_at_start mismatch in bb %d, aborting\nNew:\n",
574 bb->index);
575 debug_bitmap_file (rtl_dump_file, new_live_at_start);
576 fputs ("Old:\n", rtl_dump_file);
577 dump_bb (bb, rtl_dump_file);
579 abort ();
582 else
584 int i;
586 /* Find the set of changed registers. */
587 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
589 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
591 /* No registers should die. */
592 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
594 if (rtl_dump_file)
596 fprintf (rtl_dump_file,
597 "Register %d died unexpectedly.\n", i);
598 dump_bb (bb, rtl_dump_file);
600 abort ();
603 /* Verify that the now-live register is wider than word_mode. */
604 verify_wide_reg (i, bb);
609 /* Updates life information starting with the basic blocks set in BLOCKS.
610 If BLOCKS is null, consider it to be the universal set.
612 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
613 we are only expecting local modifications to basic blocks. If we find
614 extra registers live at the beginning of a block, then we either killed
615 useful data, or we have a broken split that wants data not provided.
616 If we find registers removed from live_at_start, that means we have
617 a broken peephole that is killing a register it shouldn't.
619 ??? This is not true in one situation -- when a pre-reload splitter
620 generates subregs of a multi-word pseudo, current life analysis will
621 lose the kill. So we _can_ have a pseudo go live. How irritating.
623 Including PROP_REG_INFO does not properly refresh regs_ever_live
624 unless the caller resets it to zero. */
627 update_life_info (blocks, extent, prop_flags)
628 sbitmap blocks;
629 enum update_life_extent extent;
630 int prop_flags;
632 regset tmp;
633 regset_head tmp_head;
634 int i;
635 int stabilized_prop_flags = prop_flags;
636 basic_block bb;
638 tmp = INITIALIZE_REG_SET (tmp_head);
639 ndead = 0;
641 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
642 ? TV_LIFE_UPDATE : TV_LIFE);
644 /* Changes to the CFG are only allowed when
645 doing a global update for the entire CFG. */
646 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
647 && (extent == UPDATE_LIFE_LOCAL || blocks))
648 abort ();
650 /* For a global update, we go through the relaxation process again. */
651 if (extent != UPDATE_LIFE_LOCAL)
653 for ( ; ; )
655 int changed = 0;
657 calculate_global_regs_live (blocks, blocks,
658 prop_flags & (PROP_SCAN_DEAD_CODE
659 | PROP_SCAN_DEAD_STORES
660 | PROP_ALLOW_CFG_CHANGES));
662 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
663 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
664 break;
666 /* Removing dead code may allow the CFG to be simplified which
667 in turn may allow for further dead code detection / removal. */
668 FOR_EACH_BB_REVERSE (bb)
670 COPY_REG_SET (tmp, bb->global_live_at_end);
671 changed |= propagate_block (bb, tmp, NULL, NULL,
672 prop_flags & (PROP_SCAN_DEAD_CODE
673 | PROP_SCAN_DEAD_STORES
674 | PROP_KILL_DEAD_CODE));
677 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
678 subsequent propagate_block calls, since removing or acting as
679 removing dead code can affect global register liveness, which
680 is supposed to be finalized for this call after this loop. */
681 stabilized_prop_flags
682 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
683 | PROP_KILL_DEAD_CODE);
685 if (! changed)
686 break;
688 /* We repeat regardless of what cleanup_cfg says. If there were
689 instructions deleted above, that might have been only a
690 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
691 Further improvement may be possible. */
692 cleanup_cfg (CLEANUP_EXPENSIVE);
695 /* If asked, remove notes from the blocks we'll update. */
696 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
697 count_or_remove_death_notes (blocks, 1);
700 /* Clear log links in case we are asked to (re)compute them. */
701 if (prop_flags & PROP_LOG_LINKS)
702 clear_log_links (blocks);
704 if (blocks)
706 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
708 bb = BASIC_BLOCK (i);
710 COPY_REG_SET (tmp, bb->global_live_at_end);
711 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
713 if (extent == UPDATE_LIFE_LOCAL)
714 verify_local_live_at_start (tmp, bb);
717 else
719 FOR_EACH_BB_REVERSE (bb)
721 COPY_REG_SET (tmp, bb->global_live_at_end);
723 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
725 if (extent == UPDATE_LIFE_LOCAL)
726 verify_local_live_at_start (tmp, bb);
730 FREE_REG_SET (tmp);
732 if (prop_flags & PROP_REG_INFO)
734 /* The only pseudos that are live at the beginning of the function
735 are those that were not set anywhere in the function. local-alloc
736 doesn't know how to handle these correctly, so mark them as not
737 local to any one basic block. */
738 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
739 FIRST_PSEUDO_REGISTER, i,
740 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
742 /* We have a problem with any pseudoreg that lives across the setjmp.
743 ANSI says that if a user variable does not change in value between
744 the setjmp and the longjmp, then the longjmp preserves it. This
745 includes longjmp from a place where the pseudo appears dead.
746 (In principle, the value still exists if it is in scope.)
747 If the pseudo goes in a hard reg, some other value may occupy
748 that hard reg where this pseudo is dead, thus clobbering the pseudo.
749 Conclusion: such a pseudo must not go in a hard reg. */
750 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
751 FIRST_PSEUDO_REGISTER, i,
753 if (regno_reg_rtx[i] != 0)
755 REG_LIVE_LENGTH (i) = -1;
756 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
760 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
761 ? TV_LIFE_UPDATE : TV_LIFE);
762 if (ndead && rtl_dump_file)
763 fprintf (rtl_dump_file, "deleted %i dead insns\n", ndead);
764 return ndead;
767 /* Update life information in all blocks where BB_DIRTY is set. */
770 update_life_info_in_dirty_blocks (extent, prop_flags)
771 enum update_life_extent extent;
772 int prop_flags;
774 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
775 int n = 0;
776 basic_block bb;
777 int retval = 0;
779 sbitmap_zero (update_life_blocks);
780 FOR_EACH_BB (bb)
782 if (extent == UPDATE_LIFE_LOCAL)
784 if (bb->flags & BB_DIRTY)
786 SET_BIT (update_life_blocks, bb->index);
787 n++;
790 else
792 /* ??? Bootstrap with -march=pentium4 fails to terminate
793 with only a partial life update. */
794 SET_BIT (update_life_blocks, bb->index);
795 if (bb->flags & BB_DIRTY)
796 n++;
800 if (n)
801 retval = update_life_info (update_life_blocks, extent, prop_flags);
803 sbitmap_free (update_life_blocks);
804 return retval;
807 /* Free the variables allocated by find_basic_blocks.
809 KEEP_HEAD_END_P is nonzero if basic_block_info is not to be freed. */
811 void
812 free_basic_block_vars (keep_head_end_p)
813 int keep_head_end_p;
815 if (! keep_head_end_p)
817 if (basic_block_info)
819 clear_edges ();
820 VARRAY_FREE (basic_block_info);
822 n_basic_blocks = 0;
823 last_basic_block = 0;
825 ENTRY_BLOCK_PTR->aux = NULL;
826 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
827 EXIT_BLOCK_PTR->aux = NULL;
828 EXIT_BLOCK_PTR->global_live_at_start = NULL;
832 /* Delete any insns that copy a register to itself. */
835 delete_noop_moves (f)
836 rtx f ATTRIBUTE_UNUSED;
838 rtx insn, next;
839 basic_block bb;
840 int nnoops = 0;
842 FOR_EACH_BB (bb)
844 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = next)
846 next = NEXT_INSN (insn);
847 if (INSN_P (insn) && noop_move_p (insn))
849 rtx note;
851 /* If we're about to remove the first insn of a libcall
852 then move the libcall note to the next real insn and
853 update the retval note. */
854 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
855 && XEXP (note, 0) != insn)
857 rtx new_libcall_insn = next_real_insn (insn);
858 rtx retval_note = find_reg_note (XEXP (note, 0),
859 REG_RETVAL, NULL_RTX);
860 REG_NOTES (new_libcall_insn)
861 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
862 REG_NOTES (new_libcall_insn));
863 XEXP (retval_note, 0) = new_libcall_insn;
866 delete_insn_and_edges (insn);
867 nnoops++;
871 if (nnoops && rtl_dump_file)
872 fprintf (rtl_dump_file, "deleted %i noop moves", nnoops);
873 return nnoops;
876 /* Delete any jump tables never referenced. We can't delete them at the
877 time of removing tablejump insn as they are referenced by the preceding
878 insns computing the destination, so we delay deleting and garbagecollect
879 them once life information is computed. */
880 void
881 delete_dead_jumptables ()
883 rtx insn, next;
884 for (insn = get_insns (); insn; insn = next)
886 next = NEXT_INSN (insn);
887 if (GET_CODE (insn) == CODE_LABEL
888 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
889 && GET_CODE (next) == JUMP_INSN
890 && (GET_CODE (PATTERN (next)) == ADDR_VEC
891 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
893 if (rtl_dump_file)
894 fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
895 delete_insn (NEXT_INSN (insn));
896 delete_insn (insn);
897 next = NEXT_INSN (next);
902 /* Determine if the stack pointer is constant over the life of the function.
903 Only useful before prologues have been emitted. */
905 static void
906 notice_stack_pointer_modification_1 (x, pat, data)
907 rtx x;
908 rtx pat ATTRIBUTE_UNUSED;
909 void *data ATTRIBUTE_UNUSED;
911 if (x == stack_pointer_rtx
912 /* The stack pointer is only modified indirectly as the result
913 of a push until later in flow. See the comments in rtl.texi
914 regarding Embedded Side-Effects on Addresses. */
915 || (GET_CODE (x) == MEM
916 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
917 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
918 current_function_sp_is_unchanging = 0;
921 static void
922 notice_stack_pointer_modification (f)
923 rtx f;
925 rtx insn;
927 /* Assume that the stack pointer is unchanging if alloca hasn't
928 been used. */
929 current_function_sp_is_unchanging = !current_function_calls_alloca;
930 if (! current_function_sp_is_unchanging)
931 return;
933 for (insn = f; insn; insn = NEXT_INSN (insn))
935 if (INSN_P (insn))
937 /* Check if insn modifies the stack pointer. */
938 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
939 NULL);
940 if (! current_function_sp_is_unchanging)
941 return;
946 /* Mark a register in SET. Hard registers in large modes get all
947 of their component registers set as well. */
949 static void
950 mark_reg (reg, xset)
951 rtx reg;
952 void *xset;
954 regset set = (regset) xset;
955 int regno = REGNO (reg);
957 if (GET_MODE (reg) == BLKmode)
958 abort ();
960 SET_REGNO_REG_SET (set, regno);
961 if (regno < FIRST_PSEUDO_REGISTER)
963 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
964 while (--n > 0)
965 SET_REGNO_REG_SET (set, regno + n);
969 /* Mark those regs which are needed at the end of the function as live
970 at the end of the last basic block. */
972 static void
973 mark_regs_live_at_end (set)
974 regset set;
976 unsigned int i;
978 /* If exiting needs the right stack value, consider the stack pointer
979 live at the end of the function. */
980 if ((HAVE_epilogue && reload_completed)
981 || ! EXIT_IGNORE_STACK
982 || (! FRAME_POINTER_REQUIRED
983 && ! current_function_calls_alloca
984 && flag_omit_frame_pointer)
985 || current_function_sp_is_unchanging)
987 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
990 /* Mark the frame pointer if needed at the end of the function. If
991 we end up eliminating it, it will be removed from the live list
992 of each basic block by reload. */
994 if (! reload_completed || frame_pointer_needed)
996 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
997 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
998 /* If they are different, also mark the hard frame pointer as live. */
999 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
1000 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
1001 #endif
1004 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1005 /* Many architectures have a GP register even without flag_pic.
1006 Assume the pic register is not in use, or will be handled by
1007 other means, if it is not fixed. */
1008 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1009 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1010 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
1011 #endif
1013 /* Mark all global registers, and all registers used by the epilogue
1014 as being live at the end of the function since they may be
1015 referenced by our caller. */
1016 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1017 if (global_regs[i] || EPILOGUE_USES (i))
1018 SET_REGNO_REG_SET (set, i);
1020 if (HAVE_epilogue && reload_completed)
1022 /* Mark all call-saved registers that we actually used. */
1023 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1024 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
1025 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1026 SET_REGNO_REG_SET (set, i);
1029 #ifdef EH_RETURN_DATA_REGNO
1030 /* Mark the registers that will contain data for the handler. */
1031 if (reload_completed && current_function_calls_eh_return)
1032 for (i = 0; ; ++i)
1034 unsigned regno = EH_RETURN_DATA_REGNO(i);
1035 if (regno == INVALID_REGNUM)
1036 break;
1037 SET_REGNO_REG_SET (set, regno);
1039 #endif
1040 #ifdef EH_RETURN_STACKADJ_RTX
1041 if ((! HAVE_epilogue || ! reload_completed)
1042 && current_function_calls_eh_return)
1044 rtx tmp = EH_RETURN_STACKADJ_RTX;
1045 if (tmp && REG_P (tmp))
1046 mark_reg (tmp, set);
1048 #endif
1049 #ifdef EH_RETURN_HANDLER_RTX
1050 if ((! HAVE_epilogue || ! reload_completed)
1051 && current_function_calls_eh_return)
1053 rtx tmp = EH_RETURN_HANDLER_RTX;
1054 if (tmp && REG_P (tmp))
1055 mark_reg (tmp, set);
1057 #endif
1059 /* Mark function return value. */
1060 diddle_return_value (mark_reg, set);
1063 /* Callback function for for_each_successor_phi. DATA is a regset.
1064 Sets the SRC_REGNO, the regno of the phi alternative for phi node
1065 INSN, in the regset. */
1067 static int
1068 set_phi_alternative_reg (insn, dest_regno, src_regno, data)
1069 rtx insn ATTRIBUTE_UNUSED;
1070 int dest_regno ATTRIBUTE_UNUSED;
1071 int src_regno;
1072 void *data;
1074 regset live = (regset) data;
1075 SET_REGNO_REG_SET (live, src_regno);
1076 return 0;
1079 /* Propagate global life info around the graph of basic blocks. Begin
1080 considering blocks with their corresponding bit set in BLOCKS_IN.
1081 If BLOCKS_IN is null, consider it the universal set.
1083 BLOCKS_OUT is set for every block that was changed. */
1085 static void
1086 calculate_global_regs_live (blocks_in, blocks_out, flags)
1087 sbitmap blocks_in, blocks_out;
1088 int flags;
1090 basic_block *queue, *qhead, *qtail, *qend, bb;
1091 regset tmp, new_live_at_end, invalidated_by_call;
1092 regset_head tmp_head, invalidated_by_call_head;
1093 regset_head new_live_at_end_head;
1094 int i;
1096 /* Some passes used to forget clear aux field of basic block causing
1097 sick behavior here. */
1098 #ifdef ENABLE_CHECKING
1099 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1100 if (bb->aux)
1101 abort ();
1102 #endif
1104 tmp = INITIALIZE_REG_SET (tmp_head);
1105 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1106 invalidated_by_call = INITIALIZE_REG_SET (invalidated_by_call_head);
1108 /* Inconveniently, this is only readily available in hard reg set form. */
1109 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1110 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1111 SET_REGNO_REG_SET (invalidated_by_call, i);
1113 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1114 because the `head == tail' style test for an empty queue doesn't
1115 work with a full queue. */
1116 queue = (basic_block *) xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1117 qtail = queue;
1118 qhead = qend = queue + n_basic_blocks + 2;
1120 /* Queue the blocks set in the initial mask. Do this in reverse block
1121 number order so that we are more likely for the first round to do
1122 useful work. We use AUX non-null to flag that the block is queued. */
1123 if (blocks_in)
1125 FOR_EACH_BB (bb)
1126 if (TEST_BIT (blocks_in, bb->index))
1128 *--qhead = bb;
1129 bb->aux = bb;
1132 else
1134 FOR_EACH_BB (bb)
1136 *--qhead = bb;
1137 bb->aux = bb;
1141 /* We clean aux when we remove the initially-enqueued bbs, but we
1142 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1143 unconditionally. */
1144 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1146 if (blocks_out)
1147 sbitmap_zero (blocks_out);
1149 /* We work through the queue until there are no more blocks. What
1150 is live at the end of this block is precisely the union of what
1151 is live at the beginning of all its successors. So, we set its
1152 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1153 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1154 this block by walking through the instructions in this block in
1155 reverse order and updating as we go. If that changed
1156 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1157 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1159 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1160 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1161 must either be live at the end of the block, or used within the
1162 block. In the latter case, it will certainly never disappear
1163 from GLOBAL_LIVE_AT_START. In the former case, the register
1164 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1165 for one of the successor blocks. By induction, that cannot
1166 occur. */
1167 while (qhead != qtail)
1169 int rescan, changed;
1170 basic_block bb;
1171 edge e;
1173 bb = *qhead++;
1174 if (qhead == qend)
1175 qhead = queue;
1176 bb->aux = NULL;
1178 /* Begin by propagating live_at_start from the successor blocks. */
1179 CLEAR_REG_SET (new_live_at_end);
1181 if (bb->succ)
1182 for (e = bb->succ; e; e = e->succ_next)
1184 basic_block sb = e->dest;
1186 /* Call-clobbered registers die across exception and
1187 call edges. */
1188 /* ??? Abnormal call edges ignored for the moment, as this gets
1189 confused by sibling call edges, which crashes reg-stack. */
1190 if (e->flags & EDGE_EH)
1192 bitmap_operation (tmp, sb->global_live_at_start,
1193 invalidated_by_call, BITMAP_AND_COMPL);
1194 IOR_REG_SET (new_live_at_end, tmp);
1196 else
1197 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1199 /* If a target saves one register in another (instead of on
1200 the stack) the save register will need to be live for EH. */
1201 if (e->flags & EDGE_EH)
1202 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1203 if (EH_USES (i))
1204 SET_REGNO_REG_SET (new_live_at_end, i);
1206 else
1208 /* This might be a noreturn function that throws. And
1209 even if it isn't, getting the unwind info right helps
1210 debugging. */
1211 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1212 if (EH_USES (i))
1213 SET_REGNO_REG_SET (new_live_at_end, i);
1216 /* The all-important stack pointer must always be live. */
1217 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1219 /* Before reload, there are a few registers that must be forced
1220 live everywhere -- which might not already be the case for
1221 blocks within infinite loops. */
1222 if (! reload_completed)
1224 /* Any reference to any pseudo before reload is a potential
1225 reference of the frame pointer. */
1226 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1228 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1229 /* Pseudos with argument area equivalences may require
1230 reloading via the argument pointer. */
1231 if (fixed_regs[ARG_POINTER_REGNUM])
1232 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1233 #endif
1235 /* Any constant, or pseudo with constant equivalences, may
1236 require reloading from memory using the pic register. */
1237 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1238 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1239 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1242 /* Regs used in phi nodes are not included in
1243 global_live_at_start, since they are live only along a
1244 particular edge. Set those regs that are live because of a
1245 phi node alternative corresponding to this particular block. */
1246 if (in_ssa_form)
1247 for_each_successor_phi (bb, &set_phi_alternative_reg,
1248 new_live_at_end);
1250 if (bb == ENTRY_BLOCK_PTR)
1252 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1253 continue;
1256 /* On our first pass through this block, we'll go ahead and continue.
1257 Recognize first pass by local_set NULL. On subsequent passes, we
1258 get to skip out early if live_at_end wouldn't have changed. */
1260 if (bb->local_set == NULL)
1262 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1263 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1264 rescan = 1;
1266 else
1268 /* If any bits were removed from live_at_end, we'll have to
1269 rescan the block. This wouldn't be necessary if we had
1270 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1271 local_live is really dependent on live_at_end. */
1272 CLEAR_REG_SET (tmp);
1273 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1274 new_live_at_end, BITMAP_AND_COMPL);
1276 if (! rescan)
1278 /* If any of the registers in the new live_at_end set are
1279 conditionally set in this basic block, we must rescan.
1280 This is because conditional lifetimes at the end of the
1281 block do not just take the live_at_end set into account,
1282 but also the liveness at the start of each successor
1283 block. We can miss changes in those sets if we only
1284 compare the new live_at_end against the previous one. */
1285 CLEAR_REG_SET (tmp);
1286 rescan = bitmap_operation (tmp, new_live_at_end,
1287 bb->cond_local_set, BITMAP_AND);
1290 if (! rescan)
1292 /* Find the set of changed bits. Take this opportunity
1293 to notice that this set is empty and early out. */
1294 CLEAR_REG_SET (tmp);
1295 changed = bitmap_operation (tmp, bb->global_live_at_end,
1296 new_live_at_end, BITMAP_XOR);
1297 if (! changed)
1298 continue;
1300 /* If any of the changed bits overlap with local_set,
1301 we'll have to rescan the block. Detect overlap by
1302 the AND with ~local_set turning off bits. */
1303 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1304 BITMAP_AND_COMPL);
1308 /* Let our caller know that BB changed enough to require its
1309 death notes updated. */
1310 if (blocks_out)
1311 SET_BIT (blocks_out, bb->index);
1313 if (! rescan)
1315 /* Add to live_at_start the set of all registers in
1316 new_live_at_end that aren't in the old live_at_end. */
1318 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1319 BITMAP_AND_COMPL);
1320 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1322 changed = bitmap_operation (bb->global_live_at_start,
1323 bb->global_live_at_start,
1324 tmp, BITMAP_IOR);
1325 if (! changed)
1326 continue;
1328 else
1330 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1332 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1333 into live_at_start. */
1334 propagate_block (bb, new_live_at_end, bb->local_set,
1335 bb->cond_local_set, flags);
1337 /* If live_at start didn't change, no need to go farther. */
1338 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1339 continue;
1341 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1344 /* Queue all predecessors of BB so that we may re-examine
1345 their live_at_end. */
1346 for (e = bb->pred; e; e = e->pred_next)
1348 basic_block pb = e->src;
1349 if (pb->aux == NULL)
1351 *qtail++ = pb;
1352 if (qtail == qend)
1353 qtail = queue;
1354 pb->aux = pb;
1359 FREE_REG_SET (tmp);
1360 FREE_REG_SET (new_live_at_end);
1361 FREE_REG_SET (invalidated_by_call);
1363 if (blocks_out)
1365 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1367 basic_block bb = BASIC_BLOCK (i);
1368 FREE_REG_SET (bb->local_set);
1369 FREE_REG_SET (bb->cond_local_set);
1372 else
1374 FOR_EACH_BB (bb)
1376 FREE_REG_SET (bb->local_set);
1377 FREE_REG_SET (bb->cond_local_set);
1381 free (queue);
1385 /* This structure is used to pass parameters to and from the
1386 the function find_regno_partial(). It is used to pass in the
1387 register number we are looking, as well as to return any rtx
1388 we find. */
1390 typedef struct {
1391 unsigned regno_to_find;
1392 rtx retval;
1393 } find_regno_partial_param;
1396 /* Find the rtx for the reg numbers specified in 'data' if it is
1397 part of an expression which only uses part of the register. Return
1398 it in the structure passed in. */
1399 static int
1400 find_regno_partial (ptr, data)
1401 rtx *ptr;
1402 void *data;
1404 find_regno_partial_param *param = (find_regno_partial_param *)data;
1405 unsigned reg = param->regno_to_find;
1406 param->retval = NULL_RTX;
1408 if (*ptr == NULL_RTX)
1409 return 0;
1411 switch (GET_CODE (*ptr))
1413 case ZERO_EXTRACT:
1414 case SIGN_EXTRACT:
1415 case STRICT_LOW_PART:
1416 if (GET_CODE (XEXP (*ptr, 0)) == REG && REGNO (XEXP (*ptr, 0)) == reg)
1418 param->retval = XEXP (*ptr, 0);
1419 return 1;
1421 break;
1423 case SUBREG:
1424 if (GET_CODE (SUBREG_REG (*ptr)) == REG
1425 && REGNO (SUBREG_REG (*ptr)) == reg)
1427 param->retval = SUBREG_REG (*ptr);
1428 return 1;
1430 break;
1432 default:
1433 break;
1436 return 0;
1439 /* Process all immediate successors of the entry block looking for pseudo
1440 registers which are live on entry. Find all of those whose first
1441 instance is a partial register reference of some kind, and initialize
1442 them to 0 after the entry block. This will prevent bit sets within
1443 registers whose value is unknown, and may contain some kind of sticky
1444 bits we don't want. */
1447 initialize_uninitialized_subregs ()
1449 rtx insn;
1450 edge e;
1451 int reg, did_something = 0;
1452 find_regno_partial_param param;
1454 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1456 basic_block bb = e->dest;
1457 regset map = bb->global_live_at_start;
1458 EXECUTE_IF_SET_IN_REG_SET (map,
1459 FIRST_PSEUDO_REGISTER, reg,
1461 int uid = REGNO_FIRST_UID (reg);
1462 rtx i;
1464 /* Find an insn which mentions the register we are looking for.
1465 Its preferable to have an instance of the register's rtl since
1466 there may be various flags set which we need to duplicate.
1467 If we can't find it, its probably an automatic whose initial
1468 value doesn't matter, or hopefully something we don't care about. */
1469 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1471 if (i != NULL_RTX)
1473 /* Found the insn, now get the REG rtx, if we can. */
1474 param.regno_to_find = reg;
1475 for_each_rtx (&i, find_regno_partial, &param);
1476 if (param.retval != NULL_RTX)
1478 insn = gen_move_insn (param.retval,
1479 CONST0_RTX (GET_MODE (param.retval)));
1480 insert_insn_on_edge (insn, e);
1481 did_something = 1;
1487 if (did_something)
1488 commit_edge_insertions ();
1489 return did_something;
1493 /* Subroutines of life analysis. */
1495 /* Allocate the permanent data structures that represent the results
1496 of life analysis. Not static since used also for stupid life analysis. */
1498 void
1499 allocate_bb_life_data ()
1501 basic_block bb;
1503 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1505 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1506 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1509 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1512 void
1513 allocate_reg_life_data ()
1515 int i;
1517 max_regno = max_reg_num ();
1519 /* Recalculate the register space, in case it has grown. Old style
1520 vector oriented regsets would set regset_{size,bytes} here also. */
1521 allocate_reg_info (max_regno, FALSE, FALSE);
1523 /* Reset all the data we'll collect in propagate_block and its
1524 subroutines. */
1525 for (i = 0; i < max_regno; i++)
1527 REG_N_SETS (i) = 0;
1528 REG_N_REFS (i) = 0;
1529 REG_N_DEATHS (i) = 0;
1530 REG_N_CALLS_CROSSED (i) = 0;
1531 REG_LIVE_LENGTH (i) = 0;
1532 REG_FREQ (i) = 0;
1533 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1537 /* Delete dead instructions for propagate_block. */
1539 static void
1540 propagate_block_delete_insn (insn)
1541 rtx insn;
1543 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1545 /* If the insn referred to a label, and that label was attached to
1546 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1547 pretty much mandatory to delete it, because the ADDR_VEC may be
1548 referencing labels that no longer exist.
1550 INSN may reference a deleted label, particularly when a jump
1551 table has been optimized into a direct jump. There's no
1552 real good way to fix up the reference to the deleted label
1553 when the label is deleted, so we just allow it here. */
1555 if (inote && GET_CODE (inote) == CODE_LABEL)
1557 rtx label = XEXP (inote, 0);
1558 rtx next;
1560 /* The label may be forced if it has been put in the constant
1561 pool. If that is the only use we must discard the table
1562 jump following it, but not the label itself. */
1563 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1564 && (next = next_nonnote_insn (label)) != NULL
1565 && GET_CODE (next) == JUMP_INSN
1566 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1567 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1569 rtx pat = PATTERN (next);
1570 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1571 int len = XVECLEN (pat, diff_vec_p);
1572 int i;
1574 for (i = 0; i < len; i++)
1575 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1577 delete_insn_and_edges (next);
1578 ndead++;
1582 delete_insn_and_edges (insn);
1583 ndead++;
1586 /* Delete dead libcalls for propagate_block. Return the insn
1587 before the libcall. */
1589 static rtx
1590 propagate_block_delete_libcall ( insn, note)
1591 rtx insn, note;
1593 rtx first = XEXP (note, 0);
1594 rtx before = PREV_INSN (first);
1596 delete_insn_chain_and_edges (first, insn);
1597 ndead++;
1598 return before;
1601 /* Update the life-status of regs for one insn. Return the previous insn. */
1604 propagate_one_insn (pbi, insn)
1605 struct propagate_block_info *pbi;
1606 rtx insn;
1608 rtx prev = PREV_INSN (insn);
1609 int flags = pbi->flags;
1610 int insn_is_dead = 0;
1611 int libcall_is_dead = 0;
1612 rtx note;
1613 int i;
1615 if (! INSN_P (insn))
1616 return prev;
1618 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1619 if (flags & PROP_SCAN_DEAD_CODE)
1621 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1622 libcall_is_dead = (insn_is_dead && note != 0
1623 && libcall_dead_p (pbi, note, insn));
1626 /* If an instruction consists of just dead store(s) on final pass,
1627 delete it. */
1628 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1630 /* If we're trying to delete a prologue or epilogue instruction
1631 that isn't flagged as possibly being dead, something is wrong.
1632 But if we are keeping the stack pointer depressed, we might well
1633 be deleting insns that are used to compute the amount to update
1634 it by, so they are fine. */
1635 if (reload_completed
1636 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1637 && (TYPE_RETURNS_STACK_DEPRESSED
1638 (TREE_TYPE (current_function_decl))))
1639 && (((HAVE_epilogue || HAVE_prologue)
1640 && prologue_epilogue_contains (insn))
1641 || (HAVE_sibcall_epilogue
1642 && sibcall_epilogue_contains (insn)))
1643 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1644 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1646 /* Record sets. Do this even for dead instructions, since they
1647 would have killed the values if they hadn't been deleted. */
1648 mark_set_regs (pbi, PATTERN (insn), insn);
1650 /* CC0 is now known to be dead. Either this insn used it,
1651 in which case it doesn't anymore, or clobbered it,
1652 so the next insn can't use it. */
1653 pbi->cc0_live = 0;
1655 if (libcall_is_dead)
1656 prev = propagate_block_delete_libcall ( insn, note);
1657 else
1660 /* If INSN contains a RETVAL note and is dead, but the libcall
1661 as a whole is not dead, then we want to remove INSN, but
1662 not the whole libcall sequence.
1664 However, we need to also remove the dangling REG_LIBCALL
1665 note so that we do not have mis-matched LIBCALL/RETVAL
1666 notes. In theory we could find a new location for the
1667 REG_RETVAL note, but it hardly seems worth the effort.
1669 NOTE at this point will be the RETVAL note if it exists. */
1670 if (note)
1672 rtx libcall_note;
1674 libcall_note
1675 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1676 remove_note (XEXP (note, 0), libcall_note);
1679 /* Similarly if INSN contains a LIBCALL note, remove the
1680 dnagling REG_RETVAL note. */
1681 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1682 if (note)
1684 rtx retval_note;
1686 retval_note
1687 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1688 remove_note (XEXP (note, 0), retval_note);
1691 /* Now delete INSN. */
1692 propagate_block_delete_insn (insn);
1695 return prev;
1698 /* See if this is an increment or decrement that can be merged into
1699 a following memory address. */
1700 #ifdef AUTO_INC_DEC
1702 rtx x = single_set (insn);
1704 /* Does this instruction increment or decrement a register? */
1705 if ((flags & PROP_AUTOINC)
1706 && x != 0
1707 && GET_CODE (SET_DEST (x)) == REG
1708 && (GET_CODE (SET_SRC (x)) == PLUS
1709 || GET_CODE (SET_SRC (x)) == MINUS)
1710 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1711 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1712 /* Ok, look for a following memory ref we can combine with.
1713 If one is found, change the memory ref to a PRE_INC
1714 or PRE_DEC, cancel this insn, and return 1.
1715 Return 0 if nothing has been done. */
1716 && try_pre_increment_1 (pbi, insn))
1717 return prev;
1719 #endif /* AUTO_INC_DEC */
1721 CLEAR_REG_SET (pbi->new_set);
1723 /* If this is not the final pass, and this insn is copying the value of
1724 a library call and it's dead, don't scan the insns that perform the
1725 library call, so that the call's arguments are not marked live. */
1726 if (libcall_is_dead)
1728 /* Record the death of the dest reg. */
1729 mark_set_regs (pbi, PATTERN (insn), insn);
1731 insn = XEXP (note, 0);
1732 return PREV_INSN (insn);
1734 else if (GET_CODE (PATTERN (insn)) == SET
1735 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1736 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1737 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1738 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1739 /* We have an insn to pop a constant amount off the stack.
1740 (Such insns use PLUS regardless of the direction of the stack,
1741 and any insn to adjust the stack by a constant is always a pop.)
1742 These insns, if not dead stores, have no effect on life, though
1743 they do have an effect on the memory stores we are tracking. */
1744 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1745 else
1747 rtx note;
1748 /* Any regs live at the time of a call instruction must not go
1749 in a register clobbered by calls. Find all regs now live and
1750 record this for them. */
1752 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1753 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1754 { REG_N_CALLS_CROSSED (i)++; });
1756 /* Record sets. Do this even for dead instructions, since they
1757 would have killed the values if they hadn't been deleted. */
1758 mark_set_regs (pbi, PATTERN (insn), insn);
1760 if (GET_CODE (insn) == CALL_INSN)
1762 int i;
1763 rtx note, cond;
1765 cond = NULL_RTX;
1766 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1767 cond = COND_EXEC_TEST (PATTERN (insn));
1769 /* Non-constant calls clobber memory, constant calls do not
1770 clobber memory, though they may clobber outgoing arguments
1771 on the stack. */
1772 if (! CONST_OR_PURE_CALL_P (insn))
1774 free_EXPR_LIST_list (&pbi->mem_set_list);
1775 pbi->mem_set_list_len = 0;
1777 else
1778 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1780 /* There may be extra registers to be clobbered. */
1781 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1782 note;
1783 note = XEXP (note, 1))
1784 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1785 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1786 cond, insn, pbi->flags);
1788 /* Calls change all call-used and global registers. */
1789 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1790 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1792 /* We do not want REG_UNUSED notes for these registers. */
1793 mark_set_1 (pbi, CLOBBER, regno_reg_rtx[i], cond, insn,
1794 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1798 /* If an insn doesn't use CC0, it becomes dead since we assume
1799 that every insn clobbers it. So show it dead here;
1800 mark_used_regs will set it live if it is referenced. */
1801 pbi->cc0_live = 0;
1803 /* Record uses. */
1804 if (! insn_is_dead)
1805 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1806 if ((flags & PROP_EQUAL_NOTES)
1807 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1808 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1809 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1811 /* Sometimes we may have inserted something before INSN (such as a move)
1812 when we make an auto-inc. So ensure we will scan those insns. */
1813 #ifdef AUTO_INC_DEC
1814 prev = PREV_INSN (insn);
1815 #endif
1817 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1819 int i;
1820 rtx note, cond;
1822 cond = NULL_RTX;
1823 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1824 cond = COND_EXEC_TEST (PATTERN (insn));
1826 /* Calls use their arguments. */
1827 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1828 note;
1829 note = XEXP (note, 1))
1830 if (GET_CODE (XEXP (note, 0)) == USE)
1831 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0),
1832 cond, insn);
1834 /* The stack ptr is used (honorarily) by a CALL insn. */
1835 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1837 /* Calls may also reference any of the global registers,
1838 so they are made live. */
1839 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1840 if (global_regs[i])
1841 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1845 /* On final pass, update counts of how many insns in which each reg
1846 is live. */
1847 if (flags & PROP_REG_INFO)
1848 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1849 { REG_LIVE_LENGTH (i)++; });
1851 return prev;
1854 /* Initialize a propagate_block_info struct for public consumption.
1855 Note that the structure itself is opaque to this file, but that
1856 the user can use the regsets provided here. */
1858 struct propagate_block_info *
1859 init_propagate_block_info (bb, live, local_set, cond_local_set, flags)
1860 basic_block bb;
1861 regset live, local_set, cond_local_set;
1862 int flags;
1864 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1866 pbi->bb = bb;
1867 pbi->reg_live = live;
1868 pbi->mem_set_list = NULL_RTX;
1869 pbi->mem_set_list_len = 0;
1870 pbi->local_set = local_set;
1871 pbi->cond_local_set = cond_local_set;
1872 pbi->cc0_live = 0;
1873 pbi->flags = flags;
1875 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1876 pbi->reg_next_use = (rtx *) xcalloc (max_reg_num (), sizeof (rtx));
1877 else
1878 pbi->reg_next_use = NULL;
1880 pbi->new_set = BITMAP_XMALLOC ();
1882 #ifdef HAVE_conditional_execution
1883 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1884 free_reg_cond_life_info);
1885 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1887 /* If this block ends in a conditional branch, for each register live
1888 from one side of the branch and not the other, record the register
1889 as conditionally dead. */
1890 if (GET_CODE (bb->end) == JUMP_INSN
1891 && any_condjump_p (bb->end))
1893 regset_head diff_head;
1894 regset diff = INITIALIZE_REG_SET (diff_head);
1895 basic_block bb_true, bb_false;
1896 rtx cond_true, cond_false, set_src;
1897 int i;
1899 /* Identify the successor blocks. */
1900 bb_true = bb->succ->dest;
1901 if (bb->succ->succ_next != NULL)
1903 bb_false = bb->succ->succ_next->dest;
1905 if (bb->succ->flags & EDGE_FALLTHRU)
1907 basic_block t = bb_false;
1908 bb_false = bb_true;
1909 bb_true = t;
1911 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1912 abort ();
1914 else
1916 /* This can happen with a conditional jump to the next insn. */
1917 if (JUMP_LABEL (bb->end) != bb_true->head)
1918 abort ();
1920 /* Simplest way to do nothing. */
1921 bb_false = bb_true;
1924 /* Extract the condition from the branch. */
1925 set_src = SET_SRC (pc_set (bb->end));
1926 cond_true = XEXP (set_src, 0);
1927 cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1928 GET_MODE (cond_true), XEXP (cond_true, 0),
1929 XEXP (cond_true, 1));
1930 if (GET_CODE (XEXP (set_src, 1)) == PC)
1932 rtx t = cond_false;
1933 cond_false = cond_true;
1934 cond_true = t;
1937 /* Compute which register lead different lives in the successors. */
1938 if (bitmap_operation (diff, bb_true->global_live_at_start,
1939 bb_false->global_live_at_start, BITMAP_XOR))
1941 rtx reg = XEXP (cond_true, 0);
1943 if (GET_CODE (reg) == SUBREG)
1944 reg = SUBREG_REG (reg);
1946 if (GET_CODE (reg) != REG)
1947 abort ();
1949 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1951 /* For each such register, mark it conditionally dead. */
1952 EXECUTE_IF_SET_IN_REG_SET
1953 (diff, 0, i,
1955 struct reg_cond_life_info *rcli;
1956 rtx cond;
1958 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
1960 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1961 cond = cond_false;
1962 else
1963 cond = cond_true;
1964 rcli->condition = cond;
1965 rcli->stores = const0_rtx;
1966 rcli->orig_condition = cond;
1968 splay_tree_insert (pbi->reg_cond_dead, i,
1969 (splay_tree_value) rcli);
1973 FREE_REG_SET (diff);
1975 #endif
1977 /* If this block has no successors, any stores to the frame that aren't
1978 used later in the block are dead. So make a pass over the block
1979 recording any such that are made and show them dead at the end. We do
1980 a very conservative and simple job here. */
1981 if (optimize
1982 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1983 && (TYPE_RETURNS_STACK_DEPRESSED
1984 (TREE_TYPE (current_function_decl))))
1985 && (flags & PROP_SCAN_DEAD_STORES)
1986 && (bb->succ == NULL
1987 || (bb->succ->succ_next == NULL
1988 && bb->succ->dest == EXIT_BLOCK_PTR
1989 && ! current_function_calls_eh_return)))
1991 rtx insn, set;
1992 for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
1993 if (GET_CODE (insn) == INSN
1994 && (set = single_set (insn))
1995 && GET_CODE (SET_DEST (set)) == MEM)
1997 rtx mem = SET_DEST (set);
1998 rtx canon_mem = canon_rtx (mem);
2000 /* This optimization is performed by faking a store to the
2001 memory at the end of the block. This doesn't work for
2002 unchanging memories because multiple stores to unchanging
2003 memory is illegal and alias analysis doesn't consider it. */
2004 if (RTX_UNCHANGING_P (canon_mem))
2005 continue;
2007 if (XEXP (canon_mem, 0) == frame_pointer_rtx
2008 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
2009 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
2010 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
2011 add_to_mem_set_list (pbi, canon_mem);
2015 return pbi;
2018 /* Release a propagate_block_info struct. */
2020 void
2021 free_propagate_block_info (pbi)
2022 struct propagate_block_info *pbi;
2024 free_EXPR_LIST_list (&pbi->mem_set_list);
2026 BITMAP_XFREE (pbi->new_set);
2028 #ifdef HAVE_conditional_execution
2029 splay_tree_delete (pbi->reg_cond_dead);
2030 BITMAP_XFREE (pbi->reg_cond_reg);
2031 #endif
2033 if (pbi->reg_next_use)
2034 free (pbi->reg_next_use);
2036 free (pbi);
2039 /* Compute the registers live at the beginning of a basic block BB from
2040 those live at the end.
2042 When called, REG_LIVE contains those live at the end. On return, it
2043 contains those live at the beginning.
2045 LOCAL_SET, if non-null, will be set with all registers killed
2046 unconditionally by this basic block.
2047 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2048 killed conditionally by this basic block. If there is any unconditional
2049 set of a register, then the corresponding bit will be set in LOCAL_SET
2050 and cleared in COND_LOCAL_SET.
2051 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2052 case, the resulting set will be equal to the union of the two sets that
2053 would otherwise be computed.
2055 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2058 propagate_block (bb, live, local_set, cond_local_set, flags)
2059 basic_block bb;
2060 regset live;
2061 regset local_set;
2062 regset cond_local_set;
2063 int flags;
2065 struct propagate_block_info *pbi;
2066 rtx insn, prev;
2067 int changed;
2069 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2071 if (flags & PROP_REG_INFO)
2073 int i;
2075 /* Process the regs live at the end of the block.
2076 Mark them as not local to any one basic block. */
2077 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2078 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2081 /* Scan the block an insn at a time from end to beginning. */
2083 changed = 0;
2084 for (insn = bb->end;; insn = prev)
2086 /* If this is a call to `setjmp' et al, warn if any
2087 non-volatile datum is live. */
2088 if ((flags & PROP_REG_INFO)
2089 && GET_CODE (insn) == CALL_INSN
2090 && find_reg_note (insn, REG_SETJMP, NULL))
2091 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2093 prev = propagate_one_insn (pbi, insn);
2094 changed |= NEXT_INSN (prev) != insn;
2096 if (insn == bb->head)
2097 break;
2100 free_propagate_block_info (pbi);
2102 return changed;
2105 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2106 (SET expressions whose destinations are registers dead after the insn).
2107 NEEDED is the regset that says which regs are alive after the insn.
2109 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2111 If X is the entire body of an insn, NOTES contains the reg notes
2112 pertaining to the insn. */
2114 static int
2115 insn_dead_p (pbi, x, call_ok, notes)
2116 struct propagate_block_info *pbi;
2117 rtx x;
2118 int call_ok;
2119 rtx notes ATTRIBUTE_UNUSED;
2121 enum rtx_code code = GET_CODE (x);
2123 /* Don't eliminate insns that may trap. */
2124 if (flag_non_call_exceptions && may_trap_p (x))
2125 return 0;
2127 #ifdef AUTO_INC_DEC
2128 /* As flow is invoked after combine, we must take existing AUTO_INC
2129 expressions into account. */
2130 for (; notes; notes = XEXP (notes, 1))
2132 if (REG_NOTE_KIND (notes) == REG_INC)
2134 int regno = REGNO (XEXP (notes, 0));
2136 /* Don't delete insns to set global regs. */
2137 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2138 || REGNO_REG_SET_P (pbi->reg_live, regno))
2139 return 0;
2142 #endif
2144 /* If setting something that's a reg or part of one,
2145 see if that register's altered value will be live. */
2147 if (code == SET)
2149 rtx r = SET_DEST (x);
2151 #ifdef HAVE_cc0
2152 if (GET_CODE (r) == CC0)
2153 return ! pbi->cc0_live;
2154 #endif
2156 /* A SET that is a subroutine call cannot be dead. */
2157 if (GET_CODE (SET_SRC (x)) == CALL)
2159 if (! call_ok)
2160 return 0;
2163 /* Don't eliminate loads from volatile memory or volatile asms. */
2164 else if (volatile_refs_p (SET_SRC (x)))
2165 return 0;
2167 if (GET_CODE (r) == MEM)
2169 rtx temp, canon_r;
2171 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2172 return 0;
2174 canon_r = canon_rtx (r);
2176 /* Walk the set of memory locations we are currently tracking
2177 and see if one is an identical match to this memory location.
2178 If so, this memory write is dead (remember, we're walking
2179 backwards from the end of the block to the start). Since
2180 rtx_equal_p does not check the alias set or flags, we also
2181 must have the potential for them to conflict (anti_dependence). */
2182 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2183 if (anti_dependence (r, XEXP (temp, 0)))
2185 rtx mem = XEXP (temp, 0);
2187 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2188 && (GET_MODE_SIZE (GET_MODE (canon_r))
2189 <= GET_MODE_SIZE (GET_MODE (mem))))
2190 return 1;
2192 #ifdef AUTO_INC_DEC
2193 /* Check if memory reference matches an auto increment. Only
2194 post increment/decrement or modify are valid. */
2195 if (GET_MODE (mem) == GET_MODE (r)
2196 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2197 || GET_CODE (XEXP (mem, 0)) == POST_INC
2198 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2199 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2200 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2201 return 1;
2202 #endif
2205 else
2207 while (GET_CODE (r) == SUBREG
2208 || GET_CODE (r) == STRICT_LOW_PART
2209 || GET_CODE (r) == ZERO_EXTRACT)
2210 r = XEXP (r, 0);
2212 if (GET_CODE (r) == REG)
2214 int regno = REGNO (r);
2216 /* Obvious. */
2217 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2218 return 0;
2220 /* If this is a hard register, verify that subsequent
2221 words are not needed. */
2222 if (regno < FIRST_PSEUDO_REGISTER)
2224 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
2226 while (--n > 0)
2227 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2228 return 0;
2231 /* Don't delete insns to set global regs. */
2232 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2233 return 0;
2235 /* Make sure insns to set the stack pointer aren't deleted. */
2236 if (regno == STACK_POINTER_REGNUM)
2237 return 0;
2239 /* ??? These bits might be redundant with the force live bits
2240 in calculate_global_regs_live. We would delete from
2241 sequential sets; whether this actually affects real code
2242 for anything but the stack pointer I don't know. */
2243 /* Make sure insns to set the frame pointer aren't deleted. */
2244 if (regno == FRAME_POINTER_REGNUM
2245 && (! reload_completed || frame_pointer_needed))
2246 return 0;
2247 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2248 if (regno == HARD_FRAME_POINTER_REGNUM
2249 && (! reload_completed || frame_pointer_needed))
2250 return 0;
2251 #endif
2253 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2254 /* Make sure insns to set arg pointer are never deleted
2255 (if the arg pointer isn't fixed, there will be a USE
2256 for it, so we can treat it normally). */
2257 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2258 return 0;
2259 #endif
2261 /* Otherwise, the set is dead. */
2262 return 1;
2267 /* If performing several activities, insn is dead if each activity
2268 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2269 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2270 worth keeping. */
2271 else if (code == PARALLEL)
2273 int i = XVECLEN (x, 0);
2275 for (i--; i >= 0; i--)
2276 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2277 && GET_CODE (XVECEXP (x, 0, i)) != USE
2278 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2279 return 0;
2281 return 1;
2284 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2285 is not necessarily true for hard registers. */
2286 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
2287 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2288 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2289 return 1;
2291 /* We do not check other CLOBBER or USE here. An insn consisting of just
2292 a CLOBBER or just a USE should not be deleted. */
2293 return 0;
2296 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2297 return 1 if the entire library call is dead.
2298 This is true if INSN copies a register (hard or pseudo)
2299 and if the hard return reg of the call insn is dead.
2300 (The caller should have tested the destination of the SET inside
2301 INSN already for death.)
2303 If this insn doesn't just copy a register, then we don't
2304 have an ordinary libcall. In that case, cse could not have
2305 managed to substitute the source for the dest later on,
2306 so we can assume the libcall is dead.
2308 PBI is the block info giving pseudoregs live before this insn.
2309 NOTE is the REG_RETVAL note of the insn. */
2311 static int
2312 libcall_dead_p (pbi, note, insn)
2313 struct propagate_block_info *pbi;
2314 rtx note;
2315 rtx insn;
2317 rtx x = single_set (insn);
2319 if (x)
2321 rtx r = SET_SRC (x);
2323 if (GET_CODE (r) == REG)
2325 rtx call = XEXP (note, 0);
2326 rtx call_pat;
2327 int i;
2329 /* Find the call insn. */
2330 while (call != insn && GET_CODE (call) != CALL_INSN)
2331 call = NEXT_INSN (call);
2333 /* If there is none, do nothing special,
2334 since ordinary death handling can understand these insns. */
2335 if (call == insn)
2336 return 0;
2338 /* See if the hard reg holding the value is dead.
2339 If this is a PARALLEL, find the call within it. */
2340 call_pat = PATTERN (call);
2341 if (GET_CODE (call_pat) == PARALLEL)
2343 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2344 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2345 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2346 break;
2348 /* This may be a library call that is returning a value
2349 via invisible pointer. Do nothing special, since
2350 ordinary death handling can understand these insns. */
2351 if (i < 0)
2352 return 0;
2354 call_pat = XVECEXP (call_pat, 0, i);
2357 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2360 return 1;
2363 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2364 live at function entry. Don't count global register variables, variables
2365 in registers that can be used for function arg passing, or variables in
2366 fixed hard registers. */
2369 regno_uninitialized (regno)
2370 unsigned int regno;
2372 if (n_basic_blocks == 0
2373 || (regno < FIRST_PSEUDO_REGISTER
2374 && (global_regs[regno]
2375 || fixed_regs[regno]
2376 || FUNCTION_ARG_REGNO_P (regno))))
2377 return 0;
2379 return REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno);
2382 /* 1 if register REGNO was alive at a place where `setjmp' was called
2383 and was set more than once or is an argument.
2384 Such regs may be clobbered by `longjmp'. */
2387 regno_clobbered_at_setjmp (regno)
2388 int regno;
2390 if (n_basic_blocks == 0)
2391 return 0;
2393 return ((REG_N_SETS (regno) > 1
2394 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno))
2395 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2398 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2399 maximal list size; look for overlaps in mode and select the largest. */
2400 static void
2401 add_to_mem_set_list (pbi, mem)
2402 struct propagate_block_info *pbi;
2403 rtx mem;
2405 rtx i;
2407 /* We don't know how large a BLKmode store is, so we must not
2408 take them into consideration. */
2409 if (GET_MODE (mem) == BLKmode)
2410 return;
2412 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2414 rtx e = XEXP (i, 0);
2415 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2417 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2419 #ifdef AUTO_INC_DEC
2420 /* If we must store a copy of the mem, we can just modify
2421 the mode of the stored copy. */
2422 if (pbi->flags & PROP_AUTOINC)
2423 PUT_MODE (e, GET_MODE (mem));
2424 else
2425 #endif
2426 XEXP (i, 0) = mem;
2428 return;
2432 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2434 #ifdef AUTO_INC_DEC
2435 /* Store a copy of mem, otherwise the address may be
2436 scrogged by find_auto_inc. */
2437 if (pbi->flags & PROP_AUTOINC)
2438 mem = shallow_copy_rtx (mem);
2439 #endif
2440 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2441 pbi->mem_set_list_len++;
2445 /* INSN references memory, possibly using autoincrement addressing modes.
2446 Find any entries on the mem_set_list that need to be invalidated due
2447 to an address change. */
2449 static int
2450 invalidate_mems_from_autoinc (px, data)
2451 rtx *px;
2452 void *data;
2454 rtx x = *px;
2455 struct propagate_block_info *pbi = data;
2457 if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
2459 invalidate_mems_from_set (pbi, XEXP (x, 0));
2460 return -1;
2463 return 0;
2466 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2468 static void
2469 invalidate_mems_from_set (pbi, exp)
2470 struct propagate_block_info *pbi;
2471 rtx exp;
2473 rtx temp = pbi->mem_set_list;
2474 rtx prev = NULL_RTX;
2475 rtx next;
2477 while (temp)
2479 next = XEXP (temp, 1);
2480 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2482 /* Splice this entry out of the list. */
2483 if (prev)
2484 XEXP (prev, 1) = next;
2485 else
2486 pbi->mem_set_list = next;
2487 free_EXPR_LIST_node (temp);
2488 pbi->mem_set_list_len--;
2490 else
2491 prev = temp;
2492 temp = next;
2496 /* Process the registers that are set within X. Their bits are set to
2497 1 in the regset DEAD, because they are dead prior to this insn.
2499 If INSN is nonzero, it is the insn being processed.
2501 FLAGS is the set of operations to perform. */
2503 static void
2504 mark_set_regs (pbi, x, insn)
2505 struct propagate_block_info *pbi;
2506 rtx x, insn;
2508 rtx cond = NULL_RTX;
2509 rtx link;
2510 enum rtx_code code;
2512 if (insn)
2513 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2515 if (REG_NOTE_KIND (link) == REG_INC)
2516 mark_set_1 (pbi, SET, XEXP (link, 0),
2517 (GET_CODE (x) == COND_EXEC
2518 ? COND_EXEC_TEST (x) : NULL_RTX),
2519 insn, pbi->flags);
2521 retry:
2522 switch (code = GET_CODE (x))
2524 case SET:
2525 case CLOBBER:
2526 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
2527 return;
2529 case COND_EXEC:
2530 cond = COND_EXEC_TEST (x);
2531 x = COND_EXEC_CODE (x);
2532 goto retry;
2534 case PARALLEL:
2536 int i;
2538 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2540 rtx sub = XVECEXP (x, 0, i);
2541 switch (code = GET_CODE (sub))
2543 case COND_EXEC:
2544 if (cond != NULL_RTX)
2545 abort ();
2547 cond = COND_EXEC_TEST (sub);
2548 sub = COND_EXEC_CODE (sub);
2549 if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
2550 break;
2551 /* Fall through. */
2553 case SET:
2554 case CLOBBER:
2555 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
2556 break;
2558 default:
2559 break;
2562 break;
2565 default:
2566 break;
2570 /* Process a single set, which appears in INSN. REG (which may not
2571 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2572 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2573 If the set is conditional (because it appear in a COND_EXEC), COND
2574 will be the condition. */
2576 static void
2577 mark_set_1 (pbi, code, reg, cond, insn, flags)
2578 struct propagate_block_info *pbi;
2579 enum rtx_code code;
2580 rtx reg, cond, insn;
2581 int flags;
2583 int regno_first = -1, regno_last = -1;
2584 unsigned long not_dead = 0;
2585 int i;
2587 /* Modifying just one hardware register of a multi-reg value or just a
2588 byte field of a register does not mean the value from before this insn
2589 is now dead. Of course, if it was dead after it's unused now. */
2591 switch (GET_CODE (reg))
2593 case PARALLEL:
2594 /* Some targets place small structures in registers for return values of
2595 functions. We have to detect this case specially here to get correct
2596 flow information. */
2597 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2598 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2599 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2600 flags);
2601 return;
2603 case ZERO_EXTRACT:
2604 case SIGN_EXTRACT:
2605 case STRICT_LOW_PART:
2606 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2608 reg = XEXP (reg, 0);
2609 while (GET_CODE (reg) == SUBREG
2610 || GET_CODE (reg) == ZERO_EXTRACT
2611 || GET_CODE (reg) == SIGN_EXTRACT
2612 || GET_CODE (reg) == STRICT_LOW_PART);
2613 if (GET_CODE (reg) == MEM)
2614 break;
2615 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2616 /* Fall through. */
2618 case REG:
2619 regno_last = regno_first = REGNO (reg);
2620 if (regno_first < FIRST_PSEUDO_REGISTER)
2621 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
2622 break;
2624 case SUBREG:
2625 if (GET_CODE (SUBREG_REG (reg)) == REG)
2627 enum machine_mode outer_mode = GET_MODE (reg);
2628 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2630 /* Identify the range of registers affected. This is moderately
2631 tricky for hard registers. See alter_subreg. */
2633 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2634 if (regno_first < FIRST_PSEUDO_REGISTER)
2636 regno_first += subreg_regno_offset (regno_first, inner_mode,
2637 SUBREG_BYTE (reg),
2638 outer_mode);
2639 regno_last = (regno_first
2640 + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
2642 /* Since we've just adjusted the register number ranges, make
2643 sure REG matches. Otherwise some_was_live will be clear
2644 when it shouldn't have been, and we'll create incorrect
2645 REG_UNUSED notes. */
2646 reg = gen_rtx_REG (outer_mode, regno_first);
2648 else
2650 /* If the number of words in the subreg is less than the number
2651 of words in the full register, we have a well-defined partial
2652 set. Otherwise the high bits are undefined.
2654 This is only really applicable to pseudos, since we just took
2655 care of multi-word hard registers. */
2656 if (((GET_MODE_SIZE (outer_mode)
2657 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2658 < ((GET_MODE_SIZE (inner_mode)
2659 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2660 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2661 regno_first);
2663 reg = SUBREG_REG (reg);
2666 else
2667 reg = SUBREG_REG (reg);
2668 break;
2670 default:
2671 break;
2674 /* If this set is a MEM, then it kills any aliased writes.
2675 If this set is a REG, then it kills any MEMs which use the reg. */
2676 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2678 if (GET_CODE (reg) == REG)
2679 invalidate_mems_from_set (pbi, reg);
2681 /* If the memory reference had embedded side effects (autoincrement
2682 address modes. Then we may need to kill some entries on the
2683 memory set list. */
2684 if (insn && GET_CODE (reg) == MEM)
2685 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2687 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2688 /* ??? With more effort we could track conditional memory life. */
2689 && ! cond)
2690 add_to_mem_set_list (pbi, canon_rtx (reg));
2693 if (GET_CODE (reg) == REG
2694 && ! (regno_first == FRAME_POINTER_REGNUM
2695 && (! reload_completed || frame_pointer_needed))
2696 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2697 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2698 && (! reload_completed || frame_pointer_needed))
2699 #endif
2700 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2701 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2702 #endif
2705 int some_was_live = 0, some_was_dead = 0;
2707 for (i = regno_first; i <= regno_last; ++i)
2709 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2710 if (pbi->local_set)
2712 /* Order of the set operation matters here since both
2713 sets may be the same. */
2714 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2715 if (cond != NULL_RTX
2716 && ! REGNO_REG_SET_P (pbi->local_set, i))
2717 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2718 else
2719 SET_REGNO_REG_SET (pbi->local_set, i);
2721 if (code != CLOBBER)
2722 SET_REGNO_REG_SET (pbi->new_set, i);
2724 some_was_live |= needed_regno;
2725 some_was_dead |= ! needed_regno;
2728 #ifdef HAVE_conditional_execution
2729 /* Consider conditional death in deciding that the register needs
2730 a death note. */
2731 if (some_was_live && ! not_dead
2732 /* The stack pointer is never dead. Well, not strictly true,
2733 but it's very difficult to tell from here. Hopefully
2734 combine_stack_adjustments will fix up the most egregious
2735 errors. */
2736 && regno_first != STACK_POINTER_REGNUM)
2738 for (i = regno_first; i <= regno_last; ++i)
2739 if (! mark_regno_cond_dead (pbi, i, cond))
2740 not_dead |= ((unsigned long) 1) << (i - regno_first);
2742 #endif
2744 /* Additional data to record if this is the final pass. */
2745 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2746 | PROP_DEATH_NOTES | PROP_AUTOINC))
2748 rtx y;
2749 int blocknum = pbi->bb->index;
2751 y = NULL_RTX;
2752 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2754 y = pbi->reg_next_use[regno_first];
2756 /* The next use is no longer next, since a store intervenes. */
2757 for (i = regno_first; i <= regno_last; ++i)
2758 pbi->reg_next_use[i] = 0;
2761 if (flags & PROP_REG_INFO)
2763 for (i = regno_first; i <= regno_last; ++i)
2765 /* Count (weighted) references, stores, etc. This counts a
2766 register twice if it is modified, but that is correct. */
2767 REG_N_SETS (i) += 1;
2768 REG_N_REFS (i) += 1;
2769 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2771 /* The insns where a reg is live are normally counted
2772 elsewhere, but we want the count to include the insn
2773 where the reg is set, and the normal counting mechanism
2774 would not count it. */
2775 REG_LIVE_LENGTH (i) += 1;
2778 /* If this is a hard reg, record this function uses the reg. */
2779 if (regno_first < FIRST_PSEUDO_REGISTER)
2781 for (i = regno_first; i <= regno_last; i++)
2782 regs_ever_live[i] = 1;
2784 else
2786 /* Keep track of which basic blocks each reg appears in. */
2787 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2788 REG_BASIC_BLOCK (regno_first) = blocknum;
2789 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2790 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2794 if (! some_was_dead)
2796 if (flags & PROP_LOG_LINKS)
2798 /* Make a logical link from the next following insn
2799 that uses this register, back to this insn.
2800 The following insns have already been processed.
2802 We don't build a LOG_LINK for hard registers containing
2803 in ASM_OPERANDs. If these registers get replaced,
2804 we might wind up changing the semantics of the insn,
2805 even if reload can make what appear to be valid
2806 assignments later. */
2807 if (y && (BLOCK_NUM (y) == blocknum)
2808 && (regno_first >= FIRST_PSEUDO_REGISTER
2809 || asm_noperands (PATTERN (y)) < 0))
2810 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2813 else if (not_dead)
2815 else if (! some_was_live)
2817 if (flags & PROP_REG_INFO)
2818 REG_N_DEATHS (regno_first) += 1;
2820 if (flags & PROP_DEATH_NOTES)
2822 /* Note that dead stores have already been deleted
2823 when possible. If we get here, we have found a
2824 dead store that cannot be eliminated (because the
2825 same insn does something useful). Indicate this
2826 by marking the reg being set as dying here. */
2827 REG_NOTES (insn)
2828 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2831 else
2833 if (flags & PROP_DEATH_NOTES)
2835 /* This is a case where we have a multi-word hard register
2836 and some, but not all, of the words of the register are
2837 needed in subsequent insns. Write REG_UNUSED notes
2838 for those parts that were not needed. This case should
2839 be rare. */
2841 for (i = regno_first; i <= regno_last; ++i)
2842 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2843 REG_NOTES (insn)
2844 = alloc_EXPR_LIST (REG_UNUSED,
2845 regno_reg_rtx[i],
2846 REG_NOTES (insn));
2851 /* Mark the register as being dead. */
2852 if (some_was_live
2853 /* The stack pointer is never dead. Well, not strictly true,
2854 but it's very difficult to tell from here. Hopefully
2855 combine_stack_adjustments will fix up the most egregious
2856 errors. */
2857 && regno_first != STACK_POINTER_REGNUM)
2859 for (i = regno_first; i <= regno_last; ++i)
2860 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2861 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2864 else if (GET_CODE (reg) == REG)
2866 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2867 pbi->reg_next_use[regno_first] = 0;
2870 /* If this is the last pass and this is a SCRATCH, show it will be dying
2871 here and count it. */
2872 else if (GET_CODE (reg) == SCRATCH)
2874 if (flags & PROP_DEATH_NOTES)
2875 REG_NOTES (insn)
2876 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2880 #ifdef HAVE_conditional_execution
2881 /* Mark REGNO conditionally dead.
2882 Return true if the register is now unconditionally dead. */
2884 static int
2885 mark_regno_cond_dead (pbi, regno, cond)
2886 struct propagate_block_info *pbi;
2887 int regno;
2888 rtx cond;
2890 /* If this is a store to a predicate register, the value of the
2891 predicate is changing, we don't know that the predicate as seen
2892 before is the same as that seen after. Flush all dependent
2893 conditions from reg_cond_dead. This will make all such
2894 conditionally live registers unconditionally live. */
2895 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2896 flush_reg_cond_reg (pbi, regno);
2898 /* If this is an unconditional store, remove any conditional
2899 life that may have existed. */
2900 if (cond == NULL_RTX)
2901 splay_tree_remove (pbi->reg_cond_dead, regno);
2902 else
2904 splay_tree_node node;
2905 struct reg_cond_life_info *rcli;
2906 rtx ncond;
2908 /* Otherwise this is a conditional set. Record that fact.
2909 It may have been conditionally used, or there may be a
2910 subsequent set with a complimentary condition. */
2912 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2913 if (node == NULL)
2915 /* The register was unconditionally live previously.
2916 Record the current condition as the condition under
2917 which it is dead. */
2918 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
2919 rcli->condition = cond;
2920 rcli->stores = cond;
2921 rcli->orig_condition = const0_rtx;
2922 splay_tree_insert (pbi->reg_cond_dead, regno,
2923 (splay_tree_value) rcli);
2925 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2927 /* Not unconditionally dead. */
2928 return 0;
2930 else
2932 /* The register was conditionally live previously.
2933 Add the new condition to the old. */
2934 rcli = (struct reg_cond_life_info *) node->value;
2935 ncond = rcli->condition;
2936 ncond = ior_reg_cond (ncond, cond, 1);
2937 if (rcli->stores == const0_rtx)
2938 rcli->stores = cond;
2939 else if (rcli->stores != const1_rtx)
2940 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2942 /* If the register is now unconditionally dead, remove the entry
2943 in the splay_tree. A register is unconditionally dead if the
2944 dead condition ncond is true. A register is also unconditionally
2945 dead if the sum of all conditional stores is an unconditional
2946 store (stores is true), and the dead condition is identically the
2947 same as the original dead condition initialized at the end of
2948 the block. This is a pointer compare, not an rtx_equal_p
2949 compare. */
2950 if (ncond == const1_rtx
2951 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2952 splay_tree_remove (pbi->reg_cond_dead, regno);
2953 else
2955 rcli->condition = ncond;
2957 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2959 /* Not unconditionally dead. */
2960 return 0;
2965 return 1;
2968 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2970 static void
2971 free_reg_cond_life_info (value)
2972 splay_tree_value value;
2974 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2975 free (rcli);
2978 /* Helper function for flush_reg_cond_reg. */
2980 static int
2981 flush_reg_cond_reg_1 (node, data)
2982 splay_tree_node node;
2983 void *data;
2985 struct reg_cond_life_info *rcli;
2986 int *xdata = (int *) data;
2987 unsigned int regno = xdata[0];
2989 /* Don't need to search if last flushed value was farther on in
2990 the in-order traversal. */
2991 if (xdata[1] >= (int) node->key)
2992 return 0;
2994 /* Splice out portions of the expression that refer to regno. */
2995 rcli = (struct reg_cond_life_info *) node->value;
2996 rcli->condition = elim_reg_cond (rcli->condition, regno);
2997 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
2998 rcli->stores = elim_reg_cond (rcli->stores, regno);
3000 /* If the entire condition is now false, signal the node to be removed. */
3001 if (rcli->condition == const0_rtx)
3003 xdata[1] = node->key;
3004 return -1;
3006 else if (rcli->condition == const1_rtx)
3007 abort ();
3009 return 0;
3012 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
3014 static void
3015 flush_reg_cond_reg (pbi, regno)
3016 struct propagate_block_info *pbi;
3017 int regno;
3019 int pair[2];
3021 pair[0] = regno;
3022 pair[1] = -1;
3023 while (splay_tree_foreach (pbi->reg_cond_dead,
3024 flush_reg_cond_reg_1, pair) == -1)
3025 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
3027 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
3030 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3031 For ior/and, the ADD flag determines whether we want to add the new
3032 condition X to the old one unconditionally. If it is zero, we will
3033 only return a new expression if X allows us to simplify part of
3034 OLD, otherwise we return NULL to the caller.
3035 If ADD is nonzero, we will return a new condition in all cases. The
3036 toplevel caller of one of these functions should always pass 1 for
3037 ADD. */
3039 static rtx
3040 ior_reg_cond (old, x, add)
3041 rtx old, x;
3042 int add;
3044 rtx op0, op1;
3046 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3048 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3049 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
3050 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3051 return const1_rtx;
3052 if (GET_CODE (x) == GET_CODE (old)
3053 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3054 return old;
3055 if (! add)
3056 return NULL;
3057 return gen_rtx_IOR (0, old, x);
3060 switch (GET_CODE (old))
3062 case IOR:
3063 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3064 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3065 if (op0 != NULL || op1 != NULL)
3067 if (op0 == const0_rtx)
3068 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3069 if (op1 == const0_rtx)
3070 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3071 if (op0 == const1_rtx || op1 == const1_rtx)
3072 return const1_rtx;
3073 if (op0 == NULL)
3074 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3075 else if (rtx_equal_p (x, op0))
3076 /* (x | A) | x ~ (x | A). */
3077 return old;
3078 if (op1 == NULL)
3079 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3080 else if (rtx_equal_p (x, op1))
3081 /* (A | x) | x ~ (A | x). */
3082 return old;
3083 return gen_rtx_IOR (0, op0, op1);
3085 if (! add)
3086 return NULL;
3087 return gen_rtx_IOR (0, old, x);
3089 case AND:
3090 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3091 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3092 if (op0 != NULL || op1 != NULL)
3094 if (op0 == const1_rtx)
3095 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3096 if (op1 == const1_rtx)
3097 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3098 if (op0 == const0_rtx || op1 == const0_rtx)
3099 return const0_rtx;
3100 if (op0 == NULL)
3101 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3102 else if (rtx_equal_p (x, op0))
3103 /* (x & A) | x ~ x. */
3104 return op0;
3105 if (op1 == NULL)
3106 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3107 else if (rtx_equal_p (x, op1))
3108 /* (A & x) | x ~ x. */
3109 return op1;
3110 return gen_rtx_AND (0, op0, op1);
3112 if (! add)
3113 return NULL;
3114 return gen_rtx_IOR (0, old, x);
3116 case NOT:
3117 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3118 if (op0 != NULL)
3119 return not_reg_cond (op0);
3120 if (! add)
3121 return NULL;
3122 return gen_rtx_IOR (0, old, x);
3124 default:
3125 abort ();
3129 static rtx
3130 not_reg_cond (x)
3131 rtx x;
3133 enum rtx_code x_code;
3135 if (x == const0_rtx)
3136 return const1_rtx;
3137 else if (x == const1_rtx)
3138 return const0_rtx;
3139 x_code = GET_CODE (x);
3140 if (x_code == NOT)
3141 return XEXP (x, 0);
3142 if (GET_RTX_CLASS (x_code) == '<'
3143 && GET_CODE (XEXP (x, 0)) == REG)
3145 if (XEXP (x, 1) != const0_rtx)
3146 abort ();
3148 return gen_rtx_fmt_ee (reverse_condition (x_code),
3149 VOIDmode, XEXP (x, 0), const0_rtx);
3151 return gen_rtx_NOT (0, x);
3154 static rtx
3155 and_reg_cond (old, x, add)
3156 rtx old, x;
3157 int add;
3159 rtx op0, op1;
3161 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3163 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3164 && GET_CODE (x) == reverse_condition (GET_CODE (old))
3165 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3166 return const0_rtx;
3167 if (GET_CODE (x) == GET_CODE (old)
3168 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3169 return old;
3170 if (! add)
3171 return NULL;
3172 return gen_rtx_AND (0, old, x);
3175 switch (GET_CODE (old))
3177 case IOR:
3178 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3179 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3180 if (op0 != NULL || op1 != NULL)
3182 if (op0 == const0_rtx)
3183 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3184 if (op1 == const0_rtx)
3185 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3186 if (op0 == const1_rtx || op1 == const1_rtx)
3187 return const1_rtx;
3188 if (op0 == NULL)
3189 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3190 else if (rtx_equal_p (x, op0))
3191 /* (x | A) & x ~ x. */
3192 return op0;
3193 if (op1 == NULL)
3194 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3195 else if (rtx_equal_p (x, op1))
3196 /* (A | x) & x ~ x. */
3197 return op1;
3198 return gen_rtx_IOR (0, op0, op1);
3200 if (! add)
3201 return NULL;
3202 return gen_rtx_AND (0, old, x);
3204 case AND:
3205 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3206 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3207 if (op0 != NULL || op1 != NULL)
3209 if (op0 == const1_rtx)
3210 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3211 if (op1 == const1_rtx)
3212 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3213 if (op0 == const0_rtx || op1 == const0_rtx)
3214 return const0_rtx;
3215 if (op0 == NULL)
3216 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3217 else if (rtx_equal_p (x, op0))
3218 /* (x & A) & x ~ (x & A). */
3219 return old;
3220 if (op1 == NULL)
3221 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3222 else if (rtx_equal_p (x, op1))
3223 /* (A & x) & x ~ (A & x). */
3224 return old;
3225 return gen_rtx_AND (0, op0, op1);
3227 if (! add)
3228 return NULL;
3229 return gen_rtx_AND (0, old, x);
3231 case NOT:
3232 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3233 if (op0 != NULL)
3234 return not_reg_cond (op0);
3235 if (! add)
3236 return NULL;
3237 return gen_rtx_AND (0, old, x);
3239 default:
3240 abort ();
3244 /* Given a condition X, remove references to reg REGNO and return the
3245 new condition. The removal will be done so that all conditions
3246 involving REGNO are considered to evaluate to false. This function
3247 is used when the value of REGNO changes. */
3249 static rtx
3250 elim_reg_cond (x, regno)
3251 rtx x;
3252 unsigned int regno;
3254 rtx op0, op1;
3256 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3258 if (REGNO (XEXP (x, 0)) == regno)
3259 return const0_rtx;
3260 return x;
3263 switch (GET_CODE (x))
3265 case AND:
3266 op0 = elim_reg_cond (XEXP (x, 0), regno);
3267 op1 = elim_reg_cond (XEXP (x, 1), regno);
3268 if (op0 == const0_rtx || op1 == const0_rtx)
3269 return const0_rtx;
3270 if (op0 == const1_rtx)
3271 return op1;
3272 if (op1 == const1_rtx)
3273 return op0;
3274 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3275 return x;
3276 return gen_rtx_AND (0, op0, op1);
3278 case IOR:
3279 op0 = elim_reg_cond (XEXP (x, 0), regno);
3280 op1 = elim_reg_cond (XEXP (x, 1), regno);
3281 if (op0 == const1_rtx || op1 == const1_rtx)
3282 return const1_rtx;
3283 if (op0 == const0_rtx)
3284 return op1;
3285 if (op1 == const0_rtx)
3286 return op0;
3287 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3288 return x;
3289 return gen_rtx_IOR (0, op0, op1);
3291 case NOT:
3292 op0 = elim_reg_cond (XEXP (x, 0), regno);
3293 if (op0 == const0_rtx)
3294 return const1_rtx;
3295 if (op0 == const1_rtx)
3296 return const0_rtx;
3297 if (op0 != XEXP (x, 0))
3298 return not_reg_cond (op0);
3299 return x;
3301 default:
3302 abort ();
3305 #endif /* HAVE_conditional_execution */
3307 #ifdef AUTO_INC_DEC
3309 /* Try to substitute the auto-inc expression INC as the address inside
3310 MEM which occurs in INSN. Currently, the address of MEM is an expression
3311 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3312 that has a single set whose source is a PLUS of INCR_REG and something
3313 else. */
3315 static void
3316 attempt_auto_inc (pbi, inc, insn, mem, incr, incr_reg)
3317 struct propagate_block_info *pbi;
3318 rtx inc, insn, mem, incr, incr_reg;
3320 int regno = REGNO (incr_reg);
3321 rtx set = single_set (incr);
3322 rtx q = SET_DEST (set);
3323 rtx y = SET_SRC (set);
3324 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3326 /* Make sure this reg appears only once in this insn. */
3327 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3328 return;
3330 if (dead_or_set_p (incr, incr_reg)
3331 /* Mustn't autoinc an eliminable register. */
3332 && (regno >= FIRST_PSEUDO_REGISTER
3333 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3335 /* This is the simple case. Try to make the auto-inc. If
3336 we can't, we are done. Otherwise, we will do any
3337 needed updates below. */
3338 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3339 return;
3341 else if (GET_CODE (q) == REG
3342 /* PREV_INSN used here to check the semi-open interval
3343 [insn,incr). */
3344 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3345 /* We must also check for sets of q as q may be
3346 a call clobbered hard register and there may
3347 be a call between PREV_INSN (insn) and incr. */
3348 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3350 /* We have *p followed sometime later by q = p+size.
3351 Both p and q must be live afterward,
3352 and q is not used between INSN and its assignment.
3353 Change it to q = p, ...*q..., q = q+size.
3354 Then fall into the usual case. */
3355 rtx insns, temp;
3357 start_sequence ();
3358 emit_move_insn (q, incr_reg);
3359 insns = get_insns ();
3360 end_sequence ();
3362 /* If we can't make the auto-inc, or can't make the
3363 replacement into Y, exit. There's no point in making
3364 the change below if we can't do the auto-inc and doing
3365 so is not correct in the pre-inc case. */
3367 XEXP (inc, 0) = q;
3368 validate_change (insn, &XEXP (mem, 0), inc, 1);
3369 validate_change (incr, &XEXP (y, opnum), q, 1);
3370 if (! apply_change_group ())
3371 return;
3373 /* We now know we'll be doing this change, so emit the
3374 new insn(s) and do the updates. */
3375 emit_insn_before (insns, insn);
3377 if (pbi->bb->head == insn)
3378 pbi->bb->head = insns;
3380 /* INCR will become a NOTE and INSN won't contain a
3381 use of INCR_REG. If a use of INCR_REG was just placed in
3382 the insn before INSN, make that the next use.
3383 Otherwise, invalidate it. */
3384 if (GET_CODE (PREV_INSN (insn)) == INSN
3385 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3386 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3387 pbi->reg_next_use[regno] = PREV_INSN (insn);
3388 else
3389 pbi->reg_next_use[regno] = 0;
3391 incr_reg = q;
3392 regno = REGNO (q);
3394 /* REGNO is now used in INCR which is below INSN, but
3395 it previously wasn't live here. If we don't mark
3396 it as live, we'll put a REG_DEAD note for it
3397 on this insn, which is incorrect. */
3398 SET_REGNO_REG_SET (pbi->reg_live, regno);
3400 /* If there are any calls between INSN and INCR, show
3401 that REGNO now crosses them. */
3402 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3403 if (GET_CODE (temp) == CALL_INSN)
3404 REG_N_CALLS_CROSSED (regno)++;
3406 /* Invalidate alias info for Q since we just changed its value. */
3407 clear_reg_alias_info (q);
3409 else
3410 return;
3412 /* If we haven't returned, it means we were able to make the
3413 auto-inc, so update the status. First, record that this insn
3414 has an implicit side effect. */
3416 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3418 /* Modify the old increment-insn to simply copy
3419 the already-incremented value of our register. */
3420 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3421 abort ();
3423 /* If that makes it a no-op (copying the register into itself) delete
3424 it so it won't appear to be a "use" and a "set" of this
3425 register. */
3426 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3428 /* If the original source was dead, it's dead now. */
3429 rtx note;
3431 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3433 remove_note (incr, note);
3434 if (XEXP (note, 0) != incr_reg)
3435 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3438 PUT_CODE (incr, NOTE);
3439 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3440 NOTE_SOURCE_FILE (incr) = 0;
3443 if (regno >= FIRST_PSEUDO_REGISTER)
3445 /* Count an extra reference to the reg. When a reg is
3446 incremented, spilling it is worse, so we want to make
3447 that less likely. */
3448 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3450 /* Count the increment as a setting of the register,
3451 even though it isn't a SET in rtl. */
3452 REG_N_SETS (regno)++;
3456 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3457 reference. */
3459 static void
3460 find_auto_inc (pbi, x, insn)
3461 struct propagate_block_info *pbi;
3462 rtx x;
3463 rtx insn;
3465 rtx addr = XEXP (x, 0);
3466 HOST_WIDE_INT offset = 0;
3467 rtx set, y, incr, inc_val;
3468 int regno;
3469 int size = GET_MODE_SIZE (GET_MODE (x));
3471 if (GET_CODE (insn) == JUMP_INSN)
3472 return;
3474 /* Here we detect use of an index register which might be good for
3475 postincrement, postdecrement, preincrement, or predecrement. */
3477 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3478 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3480 if (GET_CODE (addr) != REG)
3481 return;
3483 regno = REGNO (addr);
3485 /* Is the next use an increment that might make auto-increment? */
3486 incr = pbi->reg_next_use[regno];
3487 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3488 return;
3489 set = single_set (incr);
3490 if (set == 0 || GET_CODE (set) != SET)
3491 return;
3492 y = SET_SRC (set);
3494 if (GET_CODE (y) != PLUS)
3495 return;
3497 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3498 inc_val = XEXP (y, 1);
3499 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3500 inc_val = XEXP (y, 0);
3501 else
3502 return;
3504 if (GET_CODE (inc_val) == CONST_INT)
3506 if (HAVE_POST_INCREMENT
3507 && (INTVAL (inc_val) == size && offset == 0))
3508 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3509 incr, addr);
3510 else if (HAVE_POST_DECREMENT
3511 && (INTVAL (inc_val) == -size && offset == 0))
3512 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3513 incr, addr);
3514 else if (HAVE_PRE_INCREMENT
3515 && (INTVAL (inc_val) == size && offset == size))
3516 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3517 incr, addr);
3518 else if (HAVE_PRE_DECREMENT
3519 && (INTVAL (inc_val) == -size && offset == -size))
3520 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3521 incr, addr);
3522 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3523 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3524 gen_rtx_PLUS (Pmode,
3525 addr,
3526 inc_val)),
3527 insn, x, incr, addr);
3529 else if (GET_CODE (inc_val) == REG
3530 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3531 NEXT_INSN (incr)))
3534 if (HAVE_POST_MODIFY_REG && offset == 0)
3535 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3536 gen_rtx_PLUS (Pmode,
3537 addr,
3538 inc_val)),
3539 insn, x, incr, addr);
3543 #endif /* AUTO_INC_DEC */
3545 static void
3546 mark_used_reg (pbi, reg, cond, insn)
3547 struct propagate_block_info *pbi;
3548 rtx reg;
3549 rtx cond ATTRIBUTE_UNUSED;
3550 rtx insn;
3552 unsigned int regno_first, regno_last, i;
3553 int some_was_live, some_was_dead, some_not_set;
3555 regno_last = regno_first = REGNO (reg);
3556 if (regno_first < FIRST_PSEUDO_REGISTER)
3557 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
3559 /* Find out if any of this register is live after this instruction. */
3560 some_was_live = some_was_dead = 0;
3561 for (i = regno_first; i <= regno_last; ++i)
3563 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3564 some_was_live |= needed_regno;
3565 some_was_dead |= ! needed_regno;
3568 /* Find out if any of the register was set this insn. */
3569 some_not_set = 0;
3570 for (i = regno_first; i <= regno_last; ++i)
3571 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3573 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3575 /* Record where each reg is used, so when the reg is set we know
3576 the next insn that uses it. */
3577 pbi->reg_next_use[regno_first] = insn;
3580 if (pbi->flags & PROP_REG_INFO)
3582 if (regno_first < FIRST_PSEUDO_REGISTER)
3584 /* If this is a register we are going to try to eliminate,
3585 don't mark it live here. If we are successful in
3586 eliminating it, it need not be live unless it is used for
3587 pseudos, in which case it will have been set live when it
3588 was allocated to the pseudos. If the register will not
3589 be eliminated, reload will set it live at that point.
3591 Otherwise, record that this function uses this register. */
3592 /* ??? The PPC backend tries to "eliminate" on the pic
3593 register to itself. This should be fixed. In the mean
3594 time, hack around it. */
3596 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3597 && (regno_first == FRAME_POINTER_REGNUM
3598 || regno_first == ARG_POINTER_REGNUM)))
3599 for (i = regno_first; i <= regno_last; ++i)
3600 regs_ever_live[i] = 1;
3602 else
3604 /* Keep track of which basic block each reg appears in. */
3606 int blocknum = pbi->bb->index;
3607 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3608 REG_BASIC_BLOCK (regno_first) = blocknum;
3609 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3610 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3612 /* Count (weighted) number of uses of each reg. */
3613 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3614 REG_N_REFS (regno_first)++;
3618 /* Record and count the insns in which a reg dies. If it is used in
3619 this insn and was dead below the insn then it dies in this insn.
3620 If it was set in this insn, we do not make a REG_DEAD note;
3621 likewise if we already made such a note. */
3622 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3623 && some_was_dead
3624 && some_not_set)
3626 /* Check for the case where the register dying partially
3627 overlaps the register set by this insn. */
3628 if (regno_first != regno_last)
3629 for (i = regno_first; i <= regno_last; ++i)
3630 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3632 /* If none of the words in X is needed, make a REG_DEAD note.
3633 Otherwise, we must make partial REG_DEAD notes. */
3634 if (! some_was_live)
3636 if ((pbi->flags & PROP_DEATH_NOTES)
3637 && ! find_regno_note (insn, REG_DEAD, regno_first))
3638 REG_NOTES (insn)
3639 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3641 if (pbi->flags & PROP_REG_INFO)
3642 REG_N_DEATHS (regno_first)++;
3644 else
3646 /* Don't make a REG_DEAD note for a part of a register
3647 that is set in the insn. */
3648 for (i = regno_first; i <= regno_last; ++i)
3649 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3650 && ! dead_or_set_regno_p (insn, i))
3651 REG_NOTES (insn)
3652 = alloc_EXPR_LIST (REG_DEAD,
3653 regno_reg_rtx[i],
3654 REG_NOTES (insn));
3658 /* Mark the register as being live. */
3659 for (i = regno_first; i <= regno_last; ++i)
3661 #ifdef HAVE_conditional_execution
3662 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3663 #endif
3665 SET_REGNO_REG_SET (pbi->reg_live, i);
3667 #ifdef HAVE_conditional_execution
3668 /* If this is a conditional use, record that fact. If it is later
3669 conditionally set, we'll know to kill the register. */
3670 if (cond != NULL_RTX)
3672 splay_tree_node node;
3673 struct reg_cond_life_info *rcli;
3674 rtx ncond;
3676 if (this_was_live)
3678 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3679 if (node == NULL)
3681 /* The register was unconditionally live previously.
3682 No need to do anything. */
3684 else
3686 /* The register was conditionally live previously.
3687 Subtract the new life cond from the old death cond. */
3688 rcli = (struct reg_cond_life_info *) node->value;
3689 ncond = rcli->condition;
3690 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3692 /* If the register is now unconditionally live,
3693 remove the entry in the splay_tree. */
3694 if (ncond == const0_rtx)
3695 splay_tree_remove (pbi->reg_cond_dead, i);
3696 else
3698 rcli->condition = ncond;
3699 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3700 REGNO (XEXP (cond, 0)));
3704 else
3706 /* The register was not previously live at all. Record
3707 the condition under which it is still dead. */
3708 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
3709 rcli->condition = not_reg_cond (cond);
3710 rcli->stores = const0_rtx;
3711 rcli->orig_condition = const0_rtx;
3712 splay_tree_insert (pbi->reg_cond_dead, i,
3713 (splay_tree_value) rcli);
3715 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3718 else if (this_was_live)
3720 /* The register may have been conditionally live previously, but
3721 is now unconditionally live. Remove it from the conditionally
3722 dead list, so that a conditional set won't cause us to think
3723 it dead. */
3724 splay_tree_remove (pbi->reg_cond_dead, i);
3726 #endif
3730 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3731 This is done assuming the registers needed from X are those that
3732 have 1-bits in PBI->REG_LIVE.
3734 INSN is the containing instruction. If INSN is dead, this function
3735 is not called. */
3737 static void
3738 mark_used_regs (pbi, x, cond, insn)
3739 struct propagate_block_info *pbi;
3740 rtx x, cond, insn;
3742 RTX_CODE code;
3743 int regno;
3744 int flags = pbi->flags;
3746 retry:
3747 if (!x)
3748 return;
3749 code = GET_CODE (x);
3750 switch (code)
3752 case LABEL_REF:
3753 case SYMBOL_REF:
3754 case CONST_INT:
3755 case CONST:
3756 case CONST_DOUBLE:
3757 case CONST_VECTOR:
3758 case PC:
3759 case ADDR_VEC:
3760 case ADDR_DIFF_VEC:
3761 return;
3763 #ifdef HAVE_cc0
3764 case CC0:
3765 pbi->cc0_live = 1;
3766 return;
3767 #endif
3769 case CLOBBER:
3770 /* If we are clobbering a MEM, mark any registers inside the address
3771 as being used. */
3772 if (GET_CODE (XEXP (x, 0)) == MEM)
3773 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3774 return;
3776 case MEM:
3777 /* Don't bother watching stores to mems if this is not the
3778 final pass. We'll not be deleting dead stores this round. */
3779 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3781 /* Invalidate the data for the last MEM stored, but only if MEM is
3782 something that can be stored into. */
3783 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3784 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3785 /* Needn't clear the memory set list. */
3787 else
3789 rtx temp = pbi->mem_set_list;
3790 rtx prev = NULL_RTX;
3791 rtx next;
3793 while (temp)
3795 next = XEXP (temp, 1);
3796 if (anti_dependence (XEXP (temp, 0), x))
3798 /* Splice temp out of the list. */
3799 if (prev)
3800 XEXP (prev, 1) = next;
3801 else
3802 pbi->mem_set_list = next;
3803 free_EXPR_LIST_node (temp);
3804 pbi->mem_set_list_len--;
3806 else
3807 prev = temp;
3808 temp = next;
3812 /* If the memory reference had embedded side effects (autoincrement
3813 address modes. Then we may need to kill some entries on the
3814 memory set list. */
3815 if (insn)
3816 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3819 #ifdef AUTO_INC_DEC
3820 if (flags & PROP_AUTOINC)
3821 find_auto_inc (pbi, x, insn);
3822 #endif
3823 break;
3825 case SUBREG:
3826 #ifdef CANNOT_CHANGE_MODE_CLASS
3827 if (GET_CODE (SUBREG_REG (x)) == REG
3828 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
3829 SET_REGNO_REG_SET (&subregs_of_mode[GET_MODE (x)],
3830 REGNO (SUBREG_REG (x)));
3831 #endif
3833 /* While we're here, optimize this case. */
3834 x = SUBREG_REG (x);
3835 if (GET_CODE (x) != REG)
3836 goto retry;
3837 /* Fall through. */
3839 case REG:
3840 /* See a register other than being set => mark it as needed. */
3841 mark_used_reg (pbi, x, cond, insn);
3842 return;
3844 case SET:
3846 rtx testreg = SET_DEST (x);
3847 int mark_dest = 0;
3849 /* If storing into MEM, don't show it as being used. But do
3850 show the address as being used. */
3851 if (GET_CODE (testreg) == MEM)
3853 #ifdef AUTO_INC_DEC
3854 if (flags & PROP_AUTOINC)
3855 find_auto_inc (pbi, testreg, insn);
3856 #endif
3857 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3858 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3859 return;
3862 /* Storing in STRICT_LOW_PART is like storing in a reg
3863 in that this SET might be dead, so ignore it in TESTREG.
3864 but in some other ways it is like using the reg.
3866 Storing in a SUBREG or a bit field is like storing the entire
3867 register in that if the register's value is not used
3868 then this SET is not needed. */
3869 while (GET_CODE (testreg) == STRICT_LOW_PART
3870 || GET_CODE (testreg) == ZERO_EXTRACT
3871 || GET_CODE (testreg) == SIGN_EXTRACT
3872 || GET_CODE (testreg) == SUBREG)
3874 #ifdef CANNOT_CHANGE_MODE_CLASS
3875 if (GET_CODE (testreg) == SUBREG
3876 && GET_CODE (SUBREG_REG (testreg)) == REG
3877 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER)
3878 SET_REGNO_REG_SET (&subregs_of_mode[GET_MODE (testreg)],
3879 REGNO (SUBREG_REG (testreg)));
3880 #endif
3882 /* Modifying a single register in an alternate mode
3883 does not use any of the old value. But these other
3884 ways of storing in a register do use the old value. */
3885 if (GET_CODE (testreg) == SUBREG
3886 && !((REG_BYTES (SUBREG_REG (testreg))
3887 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3888 > (REG_BYTES (testreg)
3889 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3891 else
3892 mark_dest = 1;
3894 testreg = XEXP (testreg, 0);
3897 /* If this is a store into a register or group of registers,
3898 recursively scan the value being stored. */
3900 if ((GET_CODE (testreg) == PARALLEL
3901 && GET_MODE (testreg) == BLKmode)
3902 || (GET_CODE (testreg) == REG
3903 && (regno = REGNO (testreg),
3904 ! (regno == FRAME_POINTER_REGNUM
3905 && (! reload_completed || frame_pointer_needed)))
3906 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3907 && ! (regno == HARD_FRAME_POINTER_REGNUM
3908 && (! reload_completed || frame_pointer_needed))
3909 #endif
3910 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3911 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3912 #endif
3915 if (mark_dest)
3916 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3917 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3918 return;
3921 break;
3923 case ASM_OPERANDS:
3924 case UNSPEC_VOLATILE:
3925 case TRAP_IF:
3926 case ASM_INPUT:
3928 /* Traditional and volatile asm instructions must be considered to use
3929 and clobber all hard registers, all pseudo-registers and all of
3930 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3932 Consider for instance a volatile asm that changes the fpu rounding
3933 mode. An insn should not be moved across this even if it only uses
3934 pseudo-regs because it might give an incorrectly rounded result.
3936 ?!? Unfortunately, marking all hard registers as live causes massive
3937 problems for the register allocator and marking all pseudos as live
3938 creates mountains of uninitialized variable warnings.
3940 So for now, just clear the memory set list and mark any regs
3941 we can find in ASM_OPERANDS as used. */
3942 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3944 free_EXPR_LIST_list (&pbi->mem_set_list);
3945 pbi->mem_set_list_len = 0;
3948 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3949 We can not just fall through here since then we would be confused
3950 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3951 traditional asms unlike their normal usage. */
3952 if (code == ASM_OPERANDS)
3954 int j;
3956 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3957 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3959 break;
3962 case COND_EXEC:
3963 if (cond != NULL_RTX)
3964 abort ();
3966 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3968 cond = COND_EXEC_TEST (x);
3969 x = COND_EXEC_CODE (x);
3970 goto retry;
3972 case PHI:
3973 /* We _do_not_ want to scan operands of phi nodes. Operands of
3974 a phi function are evaluated only when control reaches this
3975 block along a particular edge. Therefore, regs that appear
3976 as arguments to phi should not be added to the global live at
3977 start. */
3978 return;
3980 default:
3981 break;
3984 /* Recursively scan the operands of this expression. */
3987 const char * const fmt = GET_RTX_FORMAT (code);
3988 int i;
3990 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3992 if (fmt[i] == 'e')
3994 /* Tail recursive case: save a function call level. */
3995 if (i == 0)
3997 x = XEXP (x, 0);
3998 goto retry;
4000 mark_used_regs (pbi, XEXP (x, i), cond, insn);
4002 else if (fmt[i] == 'E')
4004 int j;
4005 for (j = 0; j < XVECLEN (x, i); j++)
4006 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
4012 #ifdef AUTO_INC_DEC
4014 static int
4015 try_pre_increment_1 (pbi, insn)
4016 struct propagate_block_info *pbi;
4017 rtx insn;
4019 /* Find the next use of this reg. If in same basic block,
4020 make it do pre-increment or pre-decrement if appropriate. */
4021 rtx x = single_set (insn);
4022 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
4023 * INTVAL (XEXP (SET_SRC (x), 1)));
4024 int regno = REGNO (SET_DEST (x));
4025 rtx y = pbi->reg_next_use[regno];
4026 if (y != 0
4027 && SET_DEST (x) != stack_pointer_rtx
4028 && BLOCK_NUM (y) == BLOCK_NUM (insn)
4029 /* Don't do this if the reg dies, or gets set in y; a standard addressing
4030 mode would be better. */
4031 && ! dead_or_set_p (y, SET_DEST (x))
4032 && try_pre_increment (y, SET_DEST (x), amount))
4034 /* We have found a suitable auto-increment and already changed
4035 insn Y to do it. So flush this increment instruction. */
4036 propagate_block_delete_insn (insn);
4038 /* Count a reference to this reg for the increment insn we are
4039 deleting. When a reg is incremented, spilling it is worse,
4040 so we want to make that less likely. */
4041 if (regno >= FIRST_PSEUDO_REGISTER)
4043 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4044 REG_N_SETS (regno)++;
4047 /* Flush any remembered memories depending on the value of
4048 the incremented register. */
4049 invalidate_mems_from_set (pbi, SET_DEST (x));
4051 return 1;
4053 return 0;
4056 /* Try to change INSN so that it does pre-increment or pre-decrement
4057 addressing on register REG in order to add AMOUNT to REG.
4058 AMOUNT is negative for pre-decrement.
4059 Returns 1 if the change could be made.
4060 This checks all about the validity of the result of modifying INSN. */
4062 static int
4063 try_pre_increment (insn, reg, amount)
4064 rtx insn, reg;
4065 HOST_WIDE_INT amount;
4067 rtx use;
4069 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4070 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4071 int pre_ok = 0;
4072 /* Nonzero if we can try to make a post-increment or post-decrement.
4073 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4074 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4075 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4076 int post_ok = 0;
4078 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4079 int do_post = 0;
4081 /* From the sign of increment, see which possibilities are conceivable
4082 on this target machine. */
4083 if (HAVE_PRE_INCREMENT && amount > 0)
4084 pre_ok = 1;
4085 if (HAVE_POST_INCREMENT && amount > 0)
4086 post_ok = 1;
4088 if (HAVE_PRE_DECREMENT && amount < 0)
4089 pre_ok = 1;
4090 if (HAVE_POST_DECREMENT && amount < 0)
4091 post_ok = 1;
4093 if (! (pre_ok || post_ok))
4094 return 0;
4096 /* It is not safe to add a side effect to a jump insn
4097 because if the incremented register is spilled and must be reloaded
4098 there would be no way to store the incremented value back in memory. */
4100 if (GET_CODE (insn) == JUMP_INSN)
4101 return 0;
4103 use = 0;
4104 if (pre_ok)
4105 use = find_use_as_address (PATTERN (insn), reg, 0);
4106 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4108 use = find_use_as_address (PATTERN (insn), reg, -amount);
4109 do_post = 1;
4112 if (use == 0 || use == (rtx) (size_t) 1)
4113 return 0;
4115 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4116 return 0;
4118 /* See if this combination of instruction and addressing mode exists. */
4119 if (! validate_change (insn, &XEXP (use, 0),
4120 gen_rtx_fmt_e (amount > 0
4121 ? (do_post ? POST_INC : PRE_INC)
4122 : (do_post ? POST_DEC : PRE_DEC),
4123 Pmode, reg), 0))
4124 return 0;
4126 /* Record that this insn now has an implicit side effect on X. */
4127 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4128 return 1;
4131 #endif /* AUTO_INC_DEC */
4133 /* Find the place in the rtx X where REG is used as a memory address.
4134 Return the MEM rtx that so uses it.
4135 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4136 (plus REG (const_int PLUSCONST)).
4138 If such an address does not appear, return 0.
4139 If REG appears more than once, or is used other than in such an address,
4140 return (rtx) 1. */
4143 find_use_as_address (x, reg, plusconst)
4144 rtx x;
4145 rtx reg;
4146 HOST_WIDE_INT plusconst;
4148 enum rtx_code code = GET_CODE (x);
4149 const char * const fmt = GET_RTX_FORMAT (code);
4150 int i;
4151 rtx value = 0;
4152 rtx tem;
4154 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4155 return x;
4157 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4158 && XEXP (XEXP (x, 0), 0) == reg
4159 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4160 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4161 return x;
4163 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4165 /* If REG occurs inside a MEM used in a bit-field reference,
4166 that is unacceptable. */
4167 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4168 return (rtx) (size_t) 1;
4171 if (x == reg)
4172 return (rtx) (size_t) 1;
4174 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4176 if (fmt[i] == 'e')
4178 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4179 if (value == 0)
4180 value = tem;
4181 else if (tem != 0)
4182 return (rtx) (size_t) 1;
4184 else if (fmt[i] == 'E')
4186 int j;
4187 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4189 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4190 if (value == 0)
4191 value = tem;
4192 else if (tem != 0)
4193 return (rtx) (size_t) 1;
4198 return value;
4201 /* Write information about registers and basic blocks into FILE.
4202 This is part of making a debugging dump. */
4204 void
4205 dump_regset (r, outf)
4206 regset r;
4207 FILE *outf;
4209 int i;
4210 if (r == NULL)
4212 fputs (" (nil)", outf);
4213 return;
4216 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4218 fprintf (outf, " %d", i);
4219 if (i < FIRST_PSEUDO_REGISTER)
4220 fprintf (outf, " [%s]",
4221 reg_names[i]);
4225 /* Print a human-reaable representation of R on the standard error
4226 stream. This function is designed to be used from within the
4227 debugger. */
4229 void
4230 debug_regset (r)
4231 regset r;
4233 dump_regset (r, stderr);
4234 putc ('\n', stderr);
4237 /* Recompute register set/reference counts immediately prior to register
4238 allocation.
4240 This avoids problems with set/reference counts changing to/from values
4241 which have special meanings to the register allocators.
4243 Additionally, the reference counts are the primary component used by the
4244 register allocators to prioritize pseudos for allocation to hard regs.
4245 More accurate reference counts generally lead to better register allocation.
4247 F is the first insn to be scanned.
4249 LOOP_STEP denotes how much loop_depth should be incremented per
4250 loop nesting level in order to increase the ref count more for
4251 references in a loop.
4253 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4254 possibly other information which is used by the register allocators. */
4256 void
4257 recompute_reg_usage (f, loop_step)
4258 rtx f ATTRIBUTE_UNUSED;
4259 int loop_step ATTRIBUTE_UNUSED;
4261 allocate_reg_life_data ();
4262 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
4265 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4266 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4267 of the number of registers that died. */
4270 count_or_remove_death_notes (blocks, kill)
4271 sbitmap blocks;
4272 int kill;
4274 int count = 0;
4275 basic_block bb;
4277 FOR_EACH_BB_REVERSE (bb)
4279 rtx insn;
4281 if (blocks && ! TEST_BIT (blocks, bb->index))
4282 continue;
4284 for (insn = bb->head;; insn = NEXT_INSN (insn))
4286 if (INSN_P (insn))
4288 rtx *pprev = &REG_NOTES (insn);
4289 rtx link = *pprev;
4291 while (link)
4293 switch (REG_NOTE_KIND (link))
4295 case REG_DEAD:
4296 if (GET_CODE (XEXP (link, 0)) == REG)
4298 rtx reg = XEXP (link, 0);
4299 int n;
4301 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4302 n = 1;
4303 else
4304 n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
4305 count += n;
4307 /* Fall through. */
4309 case REG_UNUSED:
4310 if (kill)
4312 rtx next = XEXP (link, 1);
4313 free_EXPR_LIST_node (link);
4314 *pprev = link = next;
4315 break;
4317 /* Fall through. */
4319 default:
4320 pprev = &XEXP (link, 1);
4321 link = *pprev;
4322 break;
4327 if (insn == bb->end)
4328 break;
4332 return count;
4334 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4335 if blocks is NULL. */
4337 static void
4338 clear_log_links (blocks)
4339 sbitmap blocks;
4341 rtx insn;
4342 int i;
4344 if (!blocks)
4346 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4347 if (INSN_P (insn))
4348 free_INSN_LIST_list (&LOG_LINKS (insn));
4350 else
4351 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4353 basic_block bb = BASIC_BLOCK (i);
4355 for (insn = bb->head; insn != NEXT_INSN (bb->end);
4356 insn = NEXT_INSN (insn))
4357 if (INSN_P (insn))
4358 free_INSN_LIST_list (&LOG_LINKS (insn));
4362 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4363 correspond to the hard registers, if any, set in that map. This
4364 could be done far more efficiently by having all sorts of special-cases
4365 with moving single words, but probably isn't worth the trouble. */
4367 void
4368 reg_set_to_hard_reg_set (to, from)
4369 HARD_REG_SET *to;
4370 bitmap from;
4372 int i;
4374 EXECUTE_IF_SET_IN_BITMAP
4375 (from, 0, i,
4377 if (i >= FIRST_PSEUDO_REGISTER)
4378 return;
4379 SET_HARD_REG_BIT (*to, i);