2000-05-02 Jeff Sturm <jsturm@one-point.com>
[official-gcc.git] / gcc / regrename.c
blobbad6624f59d07ab2e74142880b77e44dbbee87dd
1 /* Register renaming for the GNU compiler.
2 Copyright (C) 2000 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
21 #define REG_OK_STRICT
23 #include "config.h"
24 #include "system.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "insn-config.h"
28 #include "regs.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "reload.h"
32 #include "output.h"
33 #include "function.h"
34 #include "recog.h"
35 #include "flags.h"
36 #include "obstack.h"
38 #define obstack_chunk_alloc xmalloc
39 #define obstack_chunk_free free
41 #ifndef REGNO_MODE_OK_FOR_BASE_P
42 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
43 #endif
45 #ifndef REG_MODE_OK_FOR_BASE_P
46 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
47 #endif
49 static const char *const reg_class_names[] = REG_CLASS_NAMES;
51 struct du_chain
53 struct du_chain *next_chain;
54 struct du_chain *next_use;
56 rtx insn;
57 rtx *loc;
58 enum reg_class class;
59 unsigned int need_caller_save_reg:1;
60 unsigned int earlyclobber:1;
63 enum scan_actions
65 terminate_all_read,
66 terminate_overlapping_read,
67 terminate_write,
68 terminate_dead,
69 mark_read,
70 mark_write
73 static const char * const scan_actions_name[] =
75 "terminate_all_read",
76 "terminate_overlapping_read",
77 "terminate_write",
78 "terminate_dead",
79 "mark_read",
80 "mark_write"
83 static struct obstack rename_obstack;
85 static void do_replace PARAMS ((struct du_chain *, int));
86 static void scan_rtx_reg PARAMS ((rtx, rtx *, enum reg_class,
87 enum scan_actions, enum op_type, int));
88 static void scan_rtx_address PARAMS ((rtx, rtx *, enum reg_class,
89 enum scan_actions, enum machine_mode));
90 static void scan_rtx PARAMS ((rtx, rtx *, enum reg_class,
91 enum scan_actions, enum op_type, int));
92 static struct du_chain *build_def_use PARAMS ((basic_block));
93 static void dump_def_use_chain PARAMS ((struct du_chain *));
94 static void note_sets PARAMS ((rtx, rtx, void *));
95 static void clear_dead_regs PARAMS ((HARD_REG_SET *, enum machine_mode, rtx));
96 static void merge_overlapping_regs PARAMS ((basic_block, HARD_REG_SET *,
97 struct du_chain *));
99 /* Called through note_stores from update_life. Find sets of registers, and
100 record them in *DATA (which is actually a HARD_REG_SET *). */
102 static void
103 note_sets (x, set, data)
104 rtx x;
105 rtx set ATTRIBUTE_UNUSED;
106 void *data;
108 HARD_REG_SET *pset = (HARD_REG_SET *) data;
109 unsigned int regno;
110 int nregs;
111 if (GET_CODE (x) != REG)
112 return;
113 regno = REGNO (x);
114 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
115 while (nregs-- > 0)
116 SET_HARD_REG_BIT (*pset, regno + nregs);
119 /* Clear all registers from *PSET for which a note of kind KIND can be found
120 in the list NOTES. */
122 static void
123 clear_dead_regs (pset, kind, notes)
124 HARD_REG_SET *pset;
125 enum machine_mode kind;
126 rtx notes;
128 rtx note;
129 for (note = notes; note; note = XEXP (note, 1))
130 if (REG_NOTE_KIND (note) == kind && REG_P (XEXP (note, 0)))
132 rtx reg = XEXP (note, 0);
133 unsigned int regno = REGNO (reg);
134 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
135 while (nregs-- > 0)
136 CLEAR_HARD_REG_BIT (*pset, regno + nregs);
140 /* For a def-use chain CHAIN in basic block B, find which registers overlap
141 its lifetime and set the corresponding bits in *PSET. */
143 static void
144 merge_overlapping_regs (b, pset, chain)
145 basic_block b;
146 HARD_REG_SET *pset;
147 struct du_chain *chain;
149 struct du_chain *t = chain;
150 rtx insn;
151 HARD_REG_SET live;
153 REG_SET_TO_HARD_REG_SET (live, b->global_live_at_start);
154 insn = b->head;
155 while (t)
157 /* Search forward until the next reference to the register to be
158 renamed. */
159 while (insn != t->insn)
161 if (INSN_P (insn))
163 clear_dead_regs (&live, REG_DEAD, REG_NOTES (insn));
164 note_stores (PATTERN (insn), note_sets, (void *) &live);
165 /* Only record currently live regs if we are inside the
166 reg's live range. */
167 if (t != chain)
168 IOR_HARD_REG_SET (*pset, live);
169 clear_dead_regs (&live, REG_UNUSED, REG_NOTES (insn));
171 insn = NEXT_INSN (insn);
174 IOR_HARD_REG_SET (*pset, live);
176 /* For the last reference, also merge in all registers set in the
177 same insn.
178 @@@ We only have take earlyclobbered sets into account. */
179 if (! t->next_use)
180 note_stores (PATTERN (insn), note_sets, (void *) pset);
182 t = t->next_use;
186 /* Perform register renaming on the current function. */
188 void
189 regrename_optimize ()
191 int tick[FIRST_PSEUDO_REGISTER];
192 int this_tick = 0;
193 int b;
194 char *first_obj;
196 memset (tick, 0, sizeof tick);
198 gcc_obstack_init (&rename_obstack);
199 first_obj = (char *) obstack_alloc (&rename_obstack, 0);
201 for (b = 0; b < n_basic_blocks; b++)
203 basic_block bb = BASIC_BLOCK (b);
204 struct du_chain *all_chains = 0;
205 HARD_REG_SET unavailable;
206 HARD_REG_SET regs_seen;
208 CLEAR_HARD_REG_SET (unavailable);
210 if (rtl_dump_file)
211 fprintf (rtl_dump_file, "\nBasic block %d:\n", b);
213 all_chains = build_def_use (bb);
215 if (rtl_dump_file)
216 dump_def_use_chain (all_chains);
218 CLEAR_HARD_REG_SET (unavailable);
219 /* Don't clobber traceback for noreturn functions. */
220 if (frame_pointer_needed)
222 SET_HARD_REG_BIT (unavailable, FRAME_POINTER_REGNUM);
223 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
224 SET_HARD_REG_BIT (unavailable, HARD_FRAME_POINTER_REGNUM);
225 #endif
228 CLEAR_HARD_REG_SET (regs_seen);
229 while (all_chains)
231 int new_reg, best_new_reg = -1;
232 int n_uses;
233 struct du_chain *this = all_chains;
234 struct du_chain *tmp, *last;
235 HARD_REG_SET this_unavailable;
236 int reg = REGNO (*this->loc), treg;
237 int nregs = HARD_REGNO_NREGS (reg, GET_MODE (*this->loc));
238 int i;
240 all_chains = this->next_chain;
242 #if 0 /* This just disables optimization opportunities. */
243 /* Only rename once we've seen the reg more than once. */
244 if (! TEST_HARD_REG_BIT (regs_seen, reg))
246 SET_HARD_REG_BIT (regs_seen, reg);
247 continue;
249 #endif
251 if (fixed_regs[reg] || global_regs[reg]
252 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
253 || (frame_pointer_needed && reg == HARD_FRAME_POINTER_REGNUM)
254 #else
255 || (frame_pointer_needed && reg == FRAME_POINTER_REGNUM)
256 #endif
258 continue;
260 COPY_HARD_REG_SET (this_unavailable, unavailable);
262 /* Find last entry on chain (which has the need_caller_save bit),
263 count number of uses, and narrow the set of registers we can
264 use for renaming. */
265 n_uses = 0;
266 for (last = this; last->next_use; last = last->next_use)
268 n_uses++;
269 IOR_COMPL_HARD_REG_SET (this_unavailable,
270 reg_class_contents[last->class]);
272 if (n_uses < 1)
273 continue;
275 IOR_COMPL_HARD_REG_SET (this_unavailable,
276 reg_class_contents[last->class]);
278 if (this->need_caller_save_reg)
279 IOR_HARD_REG_SET (this_unavailable, call_used_reg_set);
281 merge_overlapping_regs (bb, &this_unavailable, this);
283 /* Now potential_regs is a reasonable approximation, let's
284 have a closer look at each register still in there. */
285 for (treg = 0; treg < FIRST_PSEUDO_REGISTER; treg++)
287 new_reg = treg;
288 for (i = nregs - 1; i >= 0; --i)
289 if (TEST_HARD_REG_BIT (this_unavailable, new_reg + i)
290 || fixed_regs[new_reg + i]
291 || global_regs[new_reg + i]
292 /* Can't use regs which aren't saved by the prologue. */
293 || (! regs_ever_live[new_reg + i]
294 && ! call_used_regs[new_reg + i])
295 #ifdef LEAF_REGISTERS
296 /* We can't use a non-leaf register if we're in a
297 leaf function. */
298 || (current_function_is_leaf
299 && !LEAF_REGISTERS[new_reg + i])
300 #endif
301 #ifdef HARD_REGNO_RENAME_OK
302 || ! HARD_REGNO_RENAME_OK (reg + i, new_reg + i)
303 #endif
305 break;
306 if (i >= 0)
307 continue;
309 /* See whether it accepts all modes that occur in
310 definition and uses. */
311 for (tmp = this; tmp; tmp = tmp->next_use)
312 if (! HARD_REGNO_MODE_OK (new_reg, GET_MODE (*tmp->loc)))
313 break;
314 if (! tmp)
316 if (best_new_reg == -1
317 || tick[best_new_reg] > tick[new_reg])
318 best_new_reg = new_reg;
322 if (rtl_dump_file)
324 fprintf (rtl_dump_file, "Register %s in insn %d",
325 reg_names[reg], INSN_UID (last->insn));
326 if (last->need_caller_save_reg)
327 fprintf (rtl_dump_file, " crosses a call");
330 if (best_new_reg == -1)
332 if (rtl_dump_file)
333 fprintf (rtl_dump_file, "; no available registers\n");
334 continue;
337 do_replace (this, best_new_reg);
338 tick[best_new_reg] = this_tick++;
340 if (rtl_dump_file)
341 fprintf (rtl_dump_file, ", renamed as %s\n", reg_names[best_new_reg]);
344 obstack_free (&rename_obstack, first_obj);
347 obstack_free (&rename_obstack, NULL);
349 if (rtl_dump_file)
350 fputc ('\n', rtl_dump_file);
352 count_or_remove_death_notes (NULL, 1);
353 update_life_info (NULL, UPDATE_LIFE_LOCAL,
354 PROP_REG_INFO | PROP_DEATH_NOTES);
357 static void
358 do_replace (chain, reg)
359 struct du_chain *chain;
360 int reg;
362 while (chain)
364 unsigned int regno = ORIGINAL_REGNO (*chain->loc);
365 *chain->loc = gen_raw_REG (GET_MODE (*chain->loc), reg);
366 if (regno >= FIRST_PSEUDO_REGISTER)
367 ORIGINAL_REGNO (*chain->loc) = regno;
368 chain = chain->next_use;
373 static struct du_chain *open_chains;
374 static struct du_chain *closed_chains;
376 static void
377 scan_rtx_reg (insn, loc, class, action, type, earlyclobber)
378 rtx insn;
379 rtx *loc;
380 enum reg_class class;
381 enum scan_actions action;
382 enum op_type type;
383 int earlyclobber;
385 struct du_chain **p;
386 rtx x = *loc;
387 enum machine_mode mode = GET_MODE (x);
388 int this_regno = REGNO (x);
389 int this_nregs = HARD_REGNO_NREGS (this_regno, mode);
391 if (action == mark_write)
393 if (type == OP_OUT)
395 struct du_chain *this = (struct du_chain *)
396 obstack_alloc (&rename_obstack, sizeof (struct du_chain));
397 this->next_use = 0;
398 this->next_chain = open_chains;
399 this->loc = loc;
400 this->insn = insn;
401 this->class = class;
402 this->need_caller_save_reg = 0;
403 this->earlyclobber = earlyclobber;
404 open_chains = this;
406 return;
409 if ((type == OP_OUT && action != terminate_write)
410 || (type != OP_OUT && action == terminate_write))
411 return;
413 for (p = &open_chains; *p;)
415 struct du_chain *this = *p;
417 /* Check if the chain has been terminated if it has then skip to
418 the next chain.
420 This can happen when we've already appended the location to
421 the chain in Step 3, but are trying to hide in-out operands
422 from terminate_write in Step 5. */
424 if (*this->loc == cc0_rtx)
425 p = &this->next_chain;
426 else
428 int regno = REGNO (*this->loc);
429 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (*this->loc));
430 int exact_match = (regno == this_regno && nregs == this_nregs);
432 if (regno + nregs <= this_regno
433 || this_regno + this_nregs <= regno)
435 p = &this->next_chain;
436 continue;
439 if (action == mark_read)
441 if (! exact_match)
442 abort ();
444 /* ??? Class NO_REGS can happen if the md file makes use of
445 EXTRA_CONSTRAINTS to match registers. Which is arguably
446 wrong, but there we are. Since we know not what this may
447 be replaced with, terminate the chain. */
448 if (class != NO_REGS)
450 this = (struct du_chain *)
451 obstack_alloc (&rename_obstack, sizeof (struct du_chain));
452 this->next_use = 0;
453 this->next_chain = (*p)->next_chain;
454 this->loc = loc;
455 this->insn = insn;
456 this->class = class;
457 this->need_caller_save_reg = 0;
458 while (*p)
459 p = &(*p)->next_use;
460 *p = this;
461 return;
465 if (action != terminate_overlapping_read || ! exact_match)
467 struct du_chain *next = this->next_chain;
469 /* Whether the terminated chain can be used for renaming
470 depends on the action and this being an exact match.
471 In either case, we remove this element from open_chains. */
473 if ((action == terminate_dead || action == terminate_write)
474 && exact_match)
476 this->next_chain = closed_chains;
477 closed_chains = this;
478 if (rtl_dump_file)
479 fprintf (rtl_dump_file,
480 "Closing chain %s at insn %d (%s)\n",
481 reg_names[REGNO (*this->loc)], INSN_UID (insn),
482 scan_actions_name[(int) action]);
484 else
486 if (rtl_dump_file)
487 fprintf (rtl_dump_file,
488 "Discarding chain %s at insn %d (%s)\n",
489 reg_names[REGNO (*this->loc)], INSN_UID (insn),
490 scan_actions_name[(int) action]);
492 *p = next;
494 else
495 p = &this->next_chain;
500 /* Adapted from find_reloads_address_1. CLASS is INDEX_REG_CLASS or
501 BASE_REG_CLASS depending on how the register is being considered. */
503 static void
504 scan_rtx_address (insn, loc, class, action, mode)
505 rtx insn;
506 rtx *loc;
507 enum reg_class class;
508 enum scan_actions action;
509 enum machine_mode mode;
511 rtx x = *loc;
512 RTX_CODE code = GET_CODE (x);
513 const char *fmt;
514 int i, j;
516 if (action == mark_write)
517 return;
519 switch (code)
521 case PLUS:
523 rtx orig_op0 = XEXP (x, 0);
524 rtx orig_op1 = XEXP (x, 1);
525 RTX_CODE code0 = GET_CODE (orig_op0);
526 RTX_CODE code1 = GET_CODE (orig_op1);
527 rtx op0 = orig_op0;
528 rtx op1 = orig_op1;
529 rtx *locI = NULL;
530 rtx *locB = NULL;
532 if (GET_CODE (op0) == SUBREG)
534 op0 = SUBREG_REG (op0);
535 code0 = GET_CODE (op0);
538 if (GET_CODE (op1) == SUBREG)
540 op1 = SUBREG_REG (op1);
541 code1 = GET_CODE (op1);
544 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
545 || code0 == ZERO_EXTEND || code1 == MEM)
547 locI = &XEXP (x, 0);
548 locB = &XEXP (x, 1);
550 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
551 || code1 == ZERO_EXTEND || code0 == MEM)
553 locI = &XEXP (x, 1);
554 locB = &XEXP (x, 0);
556 else if (code0 == CONST_INT || code0 == CONST
557 || code0 == SYMBOL_REF || code0 == LABEL_REF)
558 locB = &XEXP (x, 1);
559 else if (code1 == CONST_INT || code1 == CONST
560 || code1 == SYMBOL_REF || code1 == LABEL_REF)
561 locB = &XEXP (x, 0);
562 else if (code0 == REG && code1 == REG)
564 int index_op;
566 if (REG_OK_FOR_INDEX_P (op0)
567 && REG_MODE_OK_FOR_BASE_P (op1, mode))
568 index_op = 0;
569 else if (REG_OK_FOR_INDEX_P (op1)
570 && REG_MODE_OK_FOR_BASE_P (op0, mode))
571 index_op = 1;
572 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
573 index_op = 0;
574 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
575 index_op = 1;
576 else if (REG_OK_FOR_INDEX_P (op1))
577 index_op = 1;
578 else
579 index_op = 0;
581 locI = &XEXP (x, index_op);
582 locB = &XEXP (x, !index_op);
584 else if (code0 == REG)
586 locI = &XEXP (x, 0);
587 locB = &XEXP (x, 1);
589 else if (code1 == REG)
591 locI = &XEXP (x, 1);
592 locB = &XEXP (x, 0);
595 if (locI)
596 scan_rtx_address (insn, locI, INDEX_REG_CLASS, action, mode);
597 if (locB)
598 scan_rtx_address (insn, locB, BASE_REG_CLASS, action, mode);
599 return;
602 case POST_INC:
603 case POST_DEC:
604 case POST_MODIFY:
605 case PRE_INC:
606 case PRE_DEC:
607 case PRE_MODIFY:
608 #ifndef AUTO_INC_DEC
609 /* If the target doesn't claim to handle autoinc, this must be
610 something special, like a stack push. Kill this chain. */
611 action = terminate_all_read;
612 #endif
613 break;
615 case MEM:
616 scan_rtx_address (insn, &XEXP (x, 0), BASE_REG_CLASS, action,
617 GET_MODE (x));
618 return;
620 case REG:
621 scan_rtx_reg (insn, loc, class, action, OP_IN, 0);
622 return;
624 default:
625 break;
628 fmt = GET_RTX_FORMAT (code);
629 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
631 if (fmt[i] == 'e')
632 scan_rtx_address (insn, &XEXP (x, i), class, action, mode);
633 else if (fmt[i] == 'E')
634 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
635 scan_rtx_address (insn, &XVECEXP (x, i, j), class, action, mode);
639 static void
640 scan_rtx (insn, loc, class, action, type, earlyclobber)
641 rtx insn;
642 rtx *loc;
643 enum reg_class class;
644 enum scan_actions action;
645 enum op_type type;
646 int earlyclobber;
648 const char *fmt;
649 rtx x = *loc;
650 enum rtx_code code = GET_CODE (x);
651 int i, j;
653 code = GET_CODE (x);
654 switch (code)
656 case CONST:
657 case CONST_INT:
658 case CONST_DOUBLE:
659 case SYMBOL_REF:
660 case LABEL_REF:
661 case CC0:
662 case PC:
663 return;
665 case REG:
666 scan_rtx_reg (insn, loc, class, action, type, earlyclobber);
667 return;
669 case MEM:
670 scan_rtx_address (insn, &XEXP (x, 0), BASE_REG_CLASS, action,
671 GET_MODE (x));
672 return;
674 case SET:
675 scan_rtx (insn, &SET_SRC (x), class, action, OP_IN, 0);
676 scan_rtx (insn, &SET_DEST (x), class, action, OP_OUT, 0);
677 return;
679 case STRICT_LOW_PART:
680 scan_rtx (insn, &XEXP (x, 0), class, action, OP_INOUT, earlyclobber);
681 return;
683 case ZERO_EXTRACT:
684 case SIGN_EXTRACT:
685 scan_rtx (insn, &XEXP (x, 0), class, action,
686 type == OP_IN ? OP_IN : OP_INOUT, earlyclobber);
687 scan_rtx (insn, &XEXP (x, 1), class, action, OP_IN, 0);
688 scan_rtx (insn, &XEXP (x, 2), class, action, OP_IN, 0);
689 return;
691 case POST_INC:
692 case PRE_INC:
693 case POST_DEC:
694 case PRE_DEC:
695 case POST_MODIFY:
696 case PRE_MODIFY:
697 /* Should only happen inside MEM. */
698 abort ();
700 case CLOBBER:
701 scan_rtx (insn, &SET_DEST (x), class, action, OP_OUT, 1);
702 return;
704 case EXPR_LIST:
705 scan_rtx (insn, &XEXP (x, 0), class, action, type, 0);
706 if (XEXP (x, 1))
707 scan_rtx (insn, &XEXP (x, 1), class, action, type, 0);
708 return;
710 default:
711 break;
714 fmt = GET_RTX_FORMAT (code);
715 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
717 if (fmt[i] == 'e')
718 scan_rtx (insn, &XEXP (x, i), class, action, type, 0);
719 else if (fmt[i] == 'E')
720 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
721 scan_rtx (insn, &XVECEXP (x, i, j), class, action, type, 0);
725 /* Build def/use chain */
727 static struct du_chain *
728 build_def_use (bb)
729 basic_block bb;
731 rtx insn;
733 open_chains = closed_chains = NULL;
735 for (insn = bb->head; ; insn = NEXT_INSN (insn))
737 if (INSN_P (insn))
739 int n_ops;
740 rtx note;
741 rtx old_operands[MAX_RECOG_OPERANDS];
742 rtx old_dups[MAX_DUP_OPERANDS];
743 int i;
744 int alt;
745 int predicated;
747 /* Process the insn, determining its effect on the def-use
748 chains. We perform the following steps with the register
749 references in the insn:
750 (1) Any read that overlaps an open chain, but doesn't exactly
751 match, causes that chain to be closed. We can't deal
752 with overlaps yet.
753 (2) Any read outside an operand causes any chain it overlaps
754 with to be closed, since we can't replace it.
755 (3) Any read inside an operand is added if there's already
756 an open chain for it.
757 (4) For any REG_DEAD note we find, close open chains that
758 overlap it.
759 (5) For any write we find, close open chains that overlap it.
760 (6) For any write we find in an operand, make a new chain.
761 (7) For any REG_UNUSED, close any chains we just opened. */
763 extract_insn (insn);
764 constrain_operands (1);
765 preprocess_constraints ();
766 alt = which_alternative;
767 n_ops = recog_data.n_operands;
769 /* Simplify the code below by rewriting things to reflect
770 matching constraints. Also promote OP_OUT to OP_INOUT
771 in predicated instructions. */
773 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
774 for (i = 0; i < n_ops; ++i)
776 int matches = recog_op_alt[i][alt].matches;
777 if (matches >= 0)
778 recog_op_alt[i][alt].class = recog_op_alt[matches][alt].class;
779 if (matches >= 0 || recog_op_alt[i][alt].matched >= 0
780 || (predicated && recog_data.operand_type[i] == OP_OUT))
781 recog_data.operand_type[i] = OP_INOUT;
784 /* Step 1: Close chains for which we have overlapping reads. */
785 for (i = 0; i < n_ops; i++)
786 scan_rtx (insn, recog_data.operand_loc[i],
787 NO_REGS, terminate_overlapping_read,
788 recog_data.operand_type[i], 0);
790 /* Step 2: Close chains for which we have reads outside operands.
791 We do this by munging all operands into CC0, and closing
792 everything remaining. */
794 for (i = 0; i < n_ops; i++)
796 old_operands[i] = recog_data.operand[i];
797 /* Don't squash match_operator or match_parallel here, since
798 we don't know that all of the contained registers are
799 reachable by proper operands. */
800 if (recog_data.constraints[i][0] == '\0')
801 continue;
802 *recog_data.operand_loc[i] = cc0_rtx;
804 for (i = 0; i < recog_data.n_dups; i++)
806 old_dups[i] = *recog_data.dup_loc[i];
807 *recog_data.dup_loc[i] = cc0_rtx;
810 scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_all_read,
811 OP_IN, 0);
813 for (i = 0; i < recog_data.n_dups; i++)
814 *recog_data.dup_loc[i] = old_dups[i];
815 for (i = 0; i < n_ops; i++)
816 *recog_data.operand_loc[i] = old_operands[i];
818 /* Step 2B: Can't rename function call argument registers. */
819 if (GET_CODE (insn) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (insn))
820 scan_rtx (insn, &CALL_INSN_FUNCTION_USAGE (insn),
821 NO_REGS, terminate_all_read, OP_IN, 0);
823 /* Step 3: Append to chains for reads inside operands. */
824 for (i = 0; i < n_ops + recog_data.n_dups; i++)
826 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
827 rtx *loc = (i < n_ops
828 ? recog_data.operand_loc[opn]
829 : recog_data.dup_loc[i - n_ops]);
830 enum reg_class class = recog_op_alt[opn][alt].class;
831 enum op_type type = recog_data.operand_type[opn];
833 /* Don't scan match_operand here, since we've no reg class
834 information to pass down. Any operands that we could
835 substitute in will be represented elsewhere. */
836 if (recog_data.constraints[opn][0] == '\0')
837 continue;
839 if (recog_op_alt[opn][alt].is_address)
840 scan_rtx_address (insn, loc, class, mark_read, VOIDmode);
841 else
842 scan_rtx (insn, loc, class, mark_read, type, 0);
845 /* Step 4: Close chains for registers that die here.
846 Also record updates for REG_INC notes. */
847 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
849 if (REG_NOTE_KIND (note) == REG_DEAD)
850 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
851 OP_IN, 0);
852 else if (REG_NOTE_KIND (note) == REG_INC)
853 scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_read,
854 OP_INOUT, 0);
857 /* Step 4B: If this is a call, any chain live at this point
858 requires a caller-saved reg. */
859 if (GET_CODE (insn) == CALL_INSN)
861 struct du_chain *p;
862 for (p = open_chains; p; p = p->next_chain)
863 p->need_caller_save_reg = 1;
866 /* Step 5: Close open chains that overlap writes. Similar to
867 step 2, we hide in-out operands, since we do not want to
868 close these chains. */
870 for (i = 0; i < n_ops; i++)
872 old_operands[i] = recog_data.operand[i];
873 if (recog_data.operand_type[i] == OP_INOUT)
874 *recog_data.operand_loc[i] = cc0_rtx;
876 for (i = 0; i < recog_data.n_dups; i++)
878 int opn = recog_data.dup_num[i];
879 old_dups[i] = *recog_data.dup_loc[i];
880 if (recog_data.operand_type[opn] == OP_INOUT)
881 *recog_data.dup_loc[i] = cc0_rtx;
884 scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_write, OP_IN, 0);
886 for (i = 0; i < recog_data.n_dups; i++)
887 *recog_data.dup_loc[i] = old_dups[i];
888 for (i = 0; i < n_ops; i++)
889 *recog_data.operand_loc[i] = old_operands[i];
891 /* Step 6: Begin new chains for writes inside operands. */
892 /* ??? Many targets have output constraints on the SET_DEST
893 of a call insn, which is stupid, since these are certainly
894 ABI defined hard registers. Don't change calls at all. */
895 if (GET_CODE (insn) != CALL_INSN)
896 for (i = 0; i < n_ops + recog_data.n_dups; i++)
898 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
899 rtx *loc = (i < n_ops
900 ? recog_data.operand_loc[opn]
901 : recog_data.dup_loc[i - n_ops]);
902 enum reg_class class = recog_op_alt[opn][alt].class;
904 if (recog_data.operand_type[opn] == OP_OUT)
905 scan_rtx (insn, loc, class, mark_write, OP_OUT,
906 recog_op_alt[opn][alt].earlyclobber);
909 /* Step 7: Close chains for registers that were never
910 really used here. */
911 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
912 if (REG_NOTE_KIND (note) == REG_UNUSED)
913 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
914 OP_IN, 0);
916 if (insn == bb->end)
917 break;
920 /* Since we close every chain when we find a REG_DEAD note, anything that
921 is still open lives past the basic block, so it can't be renamed. */
922 return closed_chains;
925 /* Dump all def/use chains in CHAINS to RTL_DUMP_FILE. They are
926 printed in reverse order as that's how we build them. */
928 static void
929 dump_def_use_chain (chains)
930 struct du_chain *chains;
932 while (chains)
934 struct du_chain *this = chains;
935 int r = REGNO (*this->loc);
936 int nregs = HARD_REGNO_NREGS (r, GET_MODE (*this->loc));
937 fprintf (rtl_dump_file, "Register %s (%d):", reg_names[r], nregs);
938 while (this)
940 fprintf (rtl_dump_file, " %d [%s]", INSN_UID (this->insn),
941 reg_class_names[this->class]);
942 this = this->next_use;
944 fprintf (rtl_dump_file, "\n");
945 chains = chains->next_chain;