2000-05-02 Jeff Sturm <jsturm@one-point.com>
[official-gcc.git] / gcc / regclass.c
blob82d90faa525f991d5628235e0d78653d5b4077e5
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
27 #include "config.h"
28 #include "system.h"
29 #include "rtl.h"
30 #include "expr.h"
31 #include "tm_p.h"
32 #include "hard-reg-set.h"
33 #include "flags.h"
34 #include "basic-block.h"
35 #include "regs.h"
36 #include "function.h"
37 #include "insn-config.h"
38 #include "recog.h"
39 #include "reload.h"
40 #include "real.h"
41 #include "toplev.h"
42 #include "output.h"
43 #include "ggc.h"
45 #ifndef REGISTER_MOVE_COST
46 #define REGISTER_MOVE_COST(m, x, y) 2
47 #endif
49 static void init_reg_sets_1 PARAMS ((void));
50 static void init_reg_modes PARAMS ((void));
52 /* If we have auto-increment or auto-decrement and we can have secondary
53 reloads, we are not allowed to use classes requiring secondary
54 reloads for pseudos auto-incremented since reload can't handle it. */
56 #ifdef AUTO_INC_DEC
57 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
58 #define FORBIDDEN_INC_DEC_CLASSES
59 #endif
60 #endif
62 /* Register tables used by many passes. */
64 /* Indexed by hard register number, contains 1 for registers
65 that are fixed use (stack pointer, pc, frame pointer, etc.).
66 These are the registers that cannot be used to allocate
67 a pseudo reg for general use. */
69 char fixed_regs[FIRST_PSEUDO_REGISTER];
71 /* Same info as a HARD_REG_SET. */
73 HARD_REG_SET fixed_reg_set;
75 /* Data for initializing the above. */
77 static char initial_fixed_regs[] = FIXED_REGISTERS;
79 /* Indexed by hard register number, contains 1 for registers
80 that are fixed use or are clobbered by function calls.
81 These are the registers that cannot be used to allocate
82 a pseudo reg whose life crosses calls unless we are able
83 to save/restore them across the calls. */
85 char call_used_regs[FIRST_PSEUDO_REGISTER];
87 /* Same info as a HARD_REG_SET. */
89 HARD_REG_SET call_used_reg_set;
91 /* HARD_REG_SET of registers we want to avoid caller saving. */
92 HARD_REG_SET losing_caller_save_reg_set;
94 /* Data for initializing the above. */
96 static char initial_call_used_regs[] = CALL_USED_REGISTERS;
98 /* Indexed by hard register number, contains 1 for registers that are
99 fixed use or call used registers that cannot hold quantities across
100 calls even if we are willing to save and restore them. call fixed
101 registers are a subset of call used registers. */
103 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
105 /* The same info as a HARD_REG_SET. */
107 HARD_REG_SET call_fixed_reg_set;
109 /* Number of non-fixed registers. */
111 int n_non_fixed_regs;
113 /* Indexed by hard register number, contains 1 for registers
114 that are being used for global register decls.
115 These must be exempt from ordinary flow analysis
116 and are also considered fixed. */
118 char global_regs[FIRST_PSEUDO_REGISTER];
120 /* Table of register numbers in the order in which to try to use them. */
121 #ifdef REG_ALLOC_ORDER
122 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
124 /* The inverse of reg_alloc_order. */
125 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
126 #endif
128 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
130 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
132 /* The same information, but as an array of unsigned ints. We copy from
133 these unsigned ints to the table above. We do this so the tm.h files
134 do not have to be aware of the wordsize for machines with <= 64 regs. */
136 #define N_REG_INTS \
137 ((FIRST_PSEUDO_REGISTER + (HOST_BITS_PER_INT - 1)) / HOST_BITS_PER_INT)
139 static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
140 = REG_CLASS_CONTENTS;
142 /* For each reg class, number of regs it contains. */
144 unsigned int reg_class_size[N_REG_CLASSES];
146 /* For each reg class, table listing all the containing classes. */
148 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
150 /* For each reg class, table listing all the classes contained in it. */
152 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
154 /* For each pair of reg classes,
155 a largest reg class contained in their union. */
157 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
159 /* For each pair of reg classes,
160 the smallest reg class containing their union. */
162 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
164 /* Array containing all of the register names. Unless
165 DEBUG_REGISTER_NAMES is defined, use the copy in print-rtl.c. */
167 #ifdef DEBUG_REGISTER_NAMES
168 const char * reg_names[] = REGISTER_NAMES;
169 #endif
171 /* For each hard register, the widest mode object that it can contain.
172 This will be a MODE_INT mode if the register can hold integers. Otherwise
173 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
174 register. */
176 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
178 /* 1 if class does contain register of given mode. */
180 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
182 /* Maximum cost of moving from a register in one class to a register in
183 another class. Based on REGISTER_MOVE_COST. */
185 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
187 /* Similar, but here we don't have to move if the first index is a subset
188 of the second so in that case the cost is zero. */
190 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
192 /* Similar, but here we don't have to move if the first index is a superset
193 of the second so in that case the cost is zero. */
195 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
197 #ifdef FORBIDDEN_INC_DEC_CLASSES
199 /* These are the classes that regs which are auto-incremented or decremented
200 cannot be put in. */
202 static int forbidden_inc_dec_class[N_REG_CLASSES];
204 /* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
205 context. */
207 static char *in_inc_dec;
209 #endif /* FORBIDDEN_INC_DEC_CLASSES */
211 #ifdef CLASS_CANNOT_CHANGE_MODE
213 /* These are the classes containing only registers that can be used in
214 a SUBREG expression that changes the mode of the register in some
215 way that is illegal. */
217 static int class_can_change_mode[N_REG_CLASSES];
219 /* Registers, including pseudos, which change modes in some way that
220 is illegal. */
222 static regset reg_changes_mode;
224 #endif /* CLASS_CANNOT_CHANGE_MODE */
226 #ifdef HAVE_SECONDARY_RELOADS
228 /* Sample MEM values for use by memory_move_secondary_cost. */
230 static rtx top_of_stack[MAX_MACHINE_MODE];
232 #endif /* HAVE_SECONDARY_RELOADS */
234 /* Linked list of reg_info structures allocated for reg_n_info array.
235 Grouping all of the allocated structures together in one lump
236 means only one call to bzero to clear them, rather than n smaller
237 calls. */
238 struct reg_info_data {
239 struct reg_info_data *next; /* next set of reg_info structures */
240 size_t min_index; /* minimum index # */
241 size_t max_index; /* maximum index # */
242 char used_p; /* non-zero if this has been used previously */
243 reg_info data[1]; /* beginning of the reg_info data */
246 static struct reg_info_data *reg_info_head;
248 /* No more global register variables may be declared; true once
249 regclass has been initialized. */
251 static int no_global_reg_vars = 0;
254 /* Function called only once to initialize the above data on reg usage.
255 Once this is done, various switches may override. */
257 void
258 init_reg_sets ()
260 register int i, j;
262 /* First copy the register information from the initial int form into
263 the regsets. */
265 for (i = 0; i < N_REG_CLASSES; i++)
267 CLEAR_HARD_REG_SET (reg_class_contents[i]);
269 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
270 if (int_reg_class_contents[i][j / HOST_BITS_PER_INT]
271 & ((unsigned) 1 << (j % HOST_BITS_PER_INT)))
272 SET_HARD_REG_BIT (reg_class_contents[i], j);
275 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
276 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
277 memset (global_regs, 0, sizeof global_regs);
279 /* Do any additional initialization regsets may need */
280 INIT_ONCE_REG_SET ();
282 #ifdef REG_ALLOC_ORDER
283 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
284 inv_reg_alloc_order[reg_alloc_order[i]] = i;
285 #endif
288 /* After switches have been processed, which perhaps alter
289 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
291 static void
292 init_reg_sets_1 ()
294 register unsigned int i, j;
295 register unsigned int /* enum machine_mode */ m;
296 char allocatable_regs_of_mode [MAX_MACHINE_MODE];
298 /* This macro allows the fixed or call-used registers
299 and the register classes to depend on target flags. */
301 #ifdef CONDITIONAL_REGISTER_USAGE
302 CONDITIONAL_REGISTER_USAGE;
303 #endif
305 /* Compute number of hard regs in each class. */
307 memset ((char *) reg_class_size, 0, sizeof reg_class_size);
308 for (i = 0; i < N_REG_CLASSES; i++)
309 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
310 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
311 reg_class_size[i]++;
313 /* Initialize the table of subunions.
314 reg_class_subunion[I][J] gets the largest-numbered reg-class
315 that is contained in the union of classes I and J. */
317 for (i = 0; i < N_REG_CLASSES; i++)
319 for (j = 0; j < N_REG_CLASSES; j++)
321 #ifdef HARD_REG_SET
322 register /* Declare it register if it's a scalar. */
323 #endif
324 HARD_REG_SET c;
325 register int k;
327 COPY_HARD_REG_SET (c, reg_class_contents[i]);
328 IOR_HARD_REG_SET (c, reg_class_contents[j]);
329 for (k = 0; k < N_REG_CLASSES; k++)
331 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
332 subclass1);
333 continue;
335 subclass1:
336 /* keep the largest subclass */ /* SPEE 900308 */
337 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
338 reg_class_contents[(int) reg_class_subunion[i][j]],
339 subclass2);
340 reg_class_subunion[i][j] = (enum reg_class) k;
341 subclass2:
347 /* Initialize the table of superunions.
348 reg_class_superunion[I][J] gets the smallest-numbered reg-class
349 containing the union of classes I and J. */
351 for (i = 0; i < N_REG_CLASSES; i++)
353 for (j = 0; j < N_REG_CLASSES; j++)
355 #ifdef HARD_REG_SET
356 register /* Declare it register if it's a scalar. */
357 #endif
358 HARD_REG_SET c;
359 register int k;
361 COPY_HARD_REG_SET (c, reg_class_contents[i]);
362 IOR_HARD_REG_SET (c, reg_class_contents[j]);
363 for (k = 0; k < N_REG_CLASSES; k++)
364 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
366 superclass:
367 reg_class_superunion[i][j] = (enum reg_class) k;
371 /* Initialize the tables of subclasses and superclasses of each reg class.
372 First clear the whole table, then add the elements as they are found. */
374 for (i = 0; i < N_REG_CLASSES; i++)
376 for (j = 0; j < N_REG_CLASSES; j++)
378 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
379 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
383 for (i = 0; i < N_REG_CLASSES; i++)
385 if (i == (int) NO_REGS)
386 continue;
388 for (j = i + 1; j < N_REG_CLASSES; j++)
390 enum reg_class *p;
392 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
393 subclass);
394 continue;
395 subclass:
396 /* Reg class I is a subclass of J.
397 Add J to the table of superclasses of I. */
398 p = &reg_class_superclasses[i][0];
399 while (*p != LIM_REG_CLASSES) p++;
400 *p = (enum reg_class) j;
401 /* Add I to the table of superclasses of J. */
402 p = &reg_class_subclasses[j][0];
403 while (*p != LIM_REG_CLASSES) p++;
404 *p = (enum reg_class) i;
408 /* Initialize "constant" tables. */
410 CLEAR_HARD_REG_SET (fixed_reg_set);
411 CLEAR_HARD_REG_SET (call_used_reg_set);
412 CLEAR_HARD_REG_SET (call_fixed_reg_set);
414 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
416 n_non_fixed_regs = 0;
418 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
420 if (fixed_regs[i])
421 SET_HARD_REG_BIT (fixed_reg_set, i);
422 else
423 n_non_fixed_regs++;
425 if (call_used_regs[i])
426 SET_HARD_REG_BIT (call_used_reg_set, i);
427 if (call_fixed_regs[i])
428 SET_HARD_REG_BIT (call_fixed_reg_set, i);
429 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
430 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
432 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
433 memset (allocatable_regs_of_mode, 0, sizeof (allocatable_regs_of_mode));
434 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
435 for (i = 0; i < N_REG_CLASSES; i++)
436 if (CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
437 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
438 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
439 && HARD_REGNO_MODE_OK (j, m))
441 contains_reg_of_mode [i][m] = 1;
442 allocatable_regs_of_mode [m] = 1;
443 break;
446 /* Initialize the move cost table. Find every subset of each class
447 and take the maximum cost of moving any subset to any other. */
449 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
450 if (allocatable_regs_of_mode [m])
452 for (i = 0; i < N_REG_CLASSES; i++)
453 if (contains_reg_of_mode [i][m])
454 for (j = 0; j < N_REG_CLASSES; j++)
456 int cost;
457 enum reg_class *p1, *p2;
459 if (!contains_reg_of_mode [j][m])
461 move_cost[m][i][j] = 65536;
462 may_move_in_cost[m][i][j] = 65536;
463 may_move_out_cost[m][i][j] = 65536;
465 else
467 cost = i == j ? 2 : REGISTER_MOVE_COST (m, i, j);
469 for (p2 = &reg_class_subclasses[j][0];
470 *p2 != LIM_REG_CLASSES;
471 p2++)
472 if (*p2 != i && contains_reg_of_mode [*p2][m])
473 cost = MAX (cost, move_cost [m][i][*p2]);
475 for (p1 = &reg_class_subclasses[i][0];
476 *p1 != LIM_REG_CLASSES;
477 p1++)
478 if (*p1 != j && contains_reg_of_mode [*p1][m])
479 cost = MAX (cost, move_cost [m][*p1][j]);
481 move_cost[m][i][j] = cost;
483 if (reg_class_subset_p (i, j))
484 may_move_in_cost[m][i][j] = 0;
485 else
486 may_move_in_cost[m][i][j] = cost;
488 if (reg_class_subset_p (j, i))
489 may_move_out_cost[m][i][j] = 0;
490 else
491 may_move_out_cost[m][i][j] = cost;
494 else
495 for (j = 0; j < N_REG_CLASSES; j++)
497 move_cost[m][i][j] = 65536;
498 may_move_in_cost[m][i][j] = 65536;
499 may_move_out_cost[m][i][j] = 65536;
503 #ifdef CLASS_CANNOT_CHANGE_MODE
505 HARD_REG_SET c;
506 COMPL_HARD_REG_SET (c, reg_class_contents[CLASS_CANNOT_CHANGE_MODE]);
508 for (i = 0; i < N_REG_CLASSES; i++)
510 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], c, ok_class);
511 class_can_change_mode [i] = 0;
512 continue;
513 ok_class:
514 class_can_change_mode [i] = 1;
517 #endif /* CLASS_CANNOT_CHANGE_MODE */
520 /* Compute the table of register modes.
521 These values are used to record death information for individual registers
522 (as opposed to a multi-register mode). */
524 static void
525 init_reg_modes ()
527 register int i;
529 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
531 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
533 /* If we couldn't find a valid mode, just use the previous mode.
534 ??? One situation in which we need to do this is on the mips where
535 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
536 to use DF mode for the even registers and VOIDmode for the odd
537 (for the cpu models where the odd ones are inaccessible). */
538 if (reg_raw_mode[i] == VOIDmode)
539 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
543 /* Finish initializing the register sets and
544 initialize the register modes. */
546 void
547 init_regs ()
549 /* This finishes what was started by init_reg_sets, but couldn't be done
550 until after register usage was specified. */
551 init_reg_sets_1 ();
553 init_reg_modes ();
555 #ifdef HAVE_SECONDARY_RELOADS
557 /* Make some fake stack-frame MEM references for use in
558 memory_move_secondary_cost. */
559 int i;
561 for (i = 0; i < MAX_MACHINE_MODE; i++)
562 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
563 ggc_add_rtx_root (top_of_stack, MAX_MACHINE_MODE);
565 #endif
568 #ifdef HAVE_SECONDARY_RELOADS
570 /* Compute extra cost of moving registers to/from memory due to reloads.
571 Only needed if secondary reloads are required for memory moves. */
574 memory_move_secondary_cost (mode, class, in)
575 enum machine_mode mode;
576 enum reg_class class;
577 int in;
579 enum reg_class altclass;
580 int partial_cost = 0;
581 /* We need a memory reference to feed to SECONDARY... macros. */
582 /* mem may be unused even if the SECONDARY_ macros are defined. */
583 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
586 if (in)
588 #ifdef SECONDARY_INPUT_RELOAD_CLASS
589 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
590 #else
591 altclass = NO_REGS;
592 #endif
594 else
596 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
597 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
598 #else
599 altclass = NO_REGS;
600 #endif
603 if (altclass == NO_REGS)
604 return 0;
606 if (in)
607 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
608 else
609 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
611 if (class == altclass)
612 /* This isn't simply a copy-to-temporary situation. Can't guess
613 what it is, so MEMORY_MOVE_COST really ought not to be calling
614 here in that case.
616 I'm tempted to put in an abort here, but returning this will
617 probably only give poor estimates, which is what we would've
618 had before this code anyways. */
619 return partial_cost;
621 /* Check if the secondary reload register will also need a
622 secondary reload. */
623 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
625 #endif
627 /* Return a machine mode that is legitimate for hard reg REGNO and large
628 enough to save nregs. If we can't find one, return VOIDmode. */
630 enum machine_mode
631 choose_hard_reg_mode (regno, nregs)
632 unsigned int regno ATTRIBUTE_UNUSED;
633 unsigned int nregs;
635 unsigned int /* enum machine_mode */ m;
636 enum machine_mode found_mode = VOIDmode, mode;
638 /* We first look for the largest integer mode that can be validly
639 held in REGNO. If none, we look for the largest floating-point mode.
640 If we still didn't find a valid mode, try CCmode. */
642 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
643 mode != VOIDmode;
644 mode = GET_MODE_WIDER_MODE (mode))
645 if (HARD_REGNO_NREGS (regno, mode) == nregs
646 && HARD_REGNO_MODE_OK (regno, mode))
647 found_mode = mode;
649 if (found_mode != VOIDmode)
650 return found_mode;
652 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
653 mode != VOIDmode;
654 mode = GET_MODE_WIDER_MODE (mode))
655 if (HARD_REGNO_NREGS (regno, mode) == nregs
656 && HARD_REGNO_MODE_OK (regno, mode))
657 found_mode = mode;
659 if (found_mode != VOIDmode)
660 return found_mode;
662 /* Iterate over all of the CCmodes. */
663 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
665 mode = (enum machine_mode) m;
666 if (HARD_REGNO_NREGS (regno, mode) == nregs
667 && HARD_REGNO_MODE_OK (regno, mode))
668 return mode;
671 /* We can't find a mode valid for this register. */
672 return VOIDmode;
675 /* Specify the usage characteristics of the register named NAME.
676 It should be a fixed register if FIXED and a
677 call-used register if CALL_USED. */
679 void
680 fix_register (name, fixed, call_used)
681 const char *name;
682 int fixed, call_used;
684 int i;
686 /* Decode the name and update the primary form of
687 the register info. */
689 if ((i = decode_reg_name (name)) >= 0)
691 if ((i == STACK_POINTER_REGNUM
692 #ifdef HARD_FRAME_POINTER_REGNUM
693 || i == HARD_FRAME_POINTER_REGNUM
694 #else
695 || i == FRAME_POINTER_REGNUM
696 #endif
698 && (fixed == 0 || call_used == 0))
700 static const char * const what_option[2][2] = {
701 { "call-saved", "call-used" },
702 { "no-such-option", "fixed" }};
704 error ("can't use '%s' as a %s register", name,
705 what_option[fixed][call_used]);
707 else
709 fixed_regs[i] = fixed;
710 call_used_regs[i] = call_used;
713 else
715 warning ("unknown register name: %s", name);
719 /* Mark register number I as global. */
721 void
722 globalize_reg (i)
723 int i;
725 if (fixed_regs[i] == 0 && no_global_reg_vars)
726 error ("global register variable follows a function definition");
728 if (global_regs[i])
730 warning ("register used for two global register variables");
731 return;
734 if (call_used_regs[i] && ! fixed_regs[i])
735 warning ("call-clobbered register used for global register variable");
737 global_regs[i] = 1;
739 /* If already fixed, nothing else to do. */
740 if (fixed_regs[i])
741 return;
743 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
744 n_non_fixed_regs--;
746 SET_HARD_REG_BIT (fixed_reg_set, i);
747 SET_HARD_REG_BIT (call_used_reg_set, i);
748 SET_HARD_REG_BIT (call_fixed_reg_set, i);
751 /* Now the data and code for the `regclass' pass, which happens
752 just before local-alloc. */
754 /* The `costs' struct records the cost of using a hard register of each class
755 and of using memory for each pseudo. We use this data to set up
756 register class preferences. */
758 struct costs
760 int cost[N_REG_CLASSES];
761 int mem_cost;
764 /* Structure used to record preferrences of given pseudo. */
765 struct reg_pref
767 /* (enum reg_class) prefclass is the preferred class. */
768 char prefclass;
770 /* altclass is a register class that we should use for allocating
771 pseudo if no register in the preferred class is available.
772 If no register in this class is available, memory is preferred.
774 It might appear to be more general to have a bitmask of classes here,
775 but since it is recommended that there be a class corresponding to the
776 union of most major pair of classes, that generality is not required. */
777 char altclass;
780 /* Record the cost of each class for each pseudo. */
782 static struct costs *costs;
784 /* Initialized once, and used to initialize cost values for each insn. */
786 static struct costs init_cost;
788 /* Record preferrences of each pseudo.
789 This is available after `regclass' is run. */
791 static struct reg_pref *reg_pref;
793 /* Allocated buffers for reg_pref. */
795 static struct reg_pref *reg_pref_buffer;
797 /* Account for the fact that insns within a loop are executed very commonly,
798 but don't keep doing this as loops go too deep. */
800 static int loop_cost;
802 static rtx scan_one_insn PARAMS ((rtx, int));
803 static void record_operand_costs PARAMS ((rtx, struct costs *, struct reg_pref *));
804 static void dump_regclass PARAMS ((FILE *));
805 static void record_reg_classes PARAMS ((int, int, rtx *, enum machine_mode *,
806 const char **, rtx,
807 struct costs *, struct reg_pref *));
808 static int copy_cost PARAMS ((rtx, enum machine_mode,
809 enum reg_class, int));
810 static void record_address_regs PARAMS ((rtx, enum reg_class, int));
811 #ifdef FORBIDDEN_INC_DEC_CLASSES
812 static int auto_inc_dec_reg_p PARAMS ((rtx, enum machine_mode));
813 #endif
814 static void reg_scan_mark_refs PARAMS ((rtx, rtx, int, unsigned int));
816 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
817 This function is sometimes called before the info has been computed.
818 When that happens, just return GENERAL_REGS, which is innocuous. */
820 enum reg_class
821 reg_preferred_class (regno)
822 int regno;
824 if (reg_pref == 0)
825 return GENERAL_REGS;
826 return (enum reg_class) reg_pref[regno].prefclass;
829 enum reg_class
830 reg_alternate_class (regno)
831 int regno;
833 if (reg_pref == 0)
834 return ALL_REGS;
836 return (enum reg_class) reg_pref[regno].altclass;
839 /* Initialize some global data for this pass. */
841 void
842 regclass_init ()
844 int i;
846 init_cost.mem_cost = 10000;
847 for (i = 0; i < N_REG_CLASSES; i++)
848 init_cost.cost[i] = 10000;
850 /* This prevents dump_flow_info from losing if called
851 before regclass is run. */
852 reg_pref = NULL;
854 /* No more global register variables may be declared. */
855 no_global_reg_vars = 1;
858 /* Dump register costs. */
859 static void
860 dump_regclass (dump)
861 FILE *dump;
863 static const char *const reg_class_names[] = REG_CLASS_NAMES;
864 int i;
865 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
867 int /* enum reg_class */ class;
868 if (REG_N_REFS (i))
870 fprintf (dump, " Register %i costs:", i);
871 for (class = 0; class < (int) N_REG_CLASSES; class++)
872 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
873 #ifdef FORBIDDEN_INC_DEC_CLASSES
874 && (!in_inc_dec[i]
875 || !forbidden_inc_dec_class[(enum reg_class) class])
876 #endif
877 #ifdef CLASS_CANNOT_CHANGE_MODE
878 && (!REGNO_REG_SET_P (reg_changes_mode, i)
879 || class_can_change_mode [(enum reg_class) class])
880 #endif
882 fprintf (dump, " %s:%i", reg_class_names[class],
883 costs[i].cost[(enum reg_class) class]);
884 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
890 /* Calculate the costs of insn operands. */
892 static void
893 record_operand_costs (insn, op_costs, reg_pref)
894 rtx insn;
895 struct costs *op_costs;
896 struct reg_pref *reg_pref;
898 const char *constraints[MAX_RECOG_OPERANDS];
899 enum machine_mode modes[MAX_RECOG_OPERANDS];
900 int i;
902 for (i = 0; i < recog_data.n_operands; i++)
904 constraints[i] = recog_data.constraints[i];
905 modes[i] = recog_data.operand_mode[i];
908 /* If we get here, we are set up to record the costs of all the
909 operands for this insn. Start by initializing the costs.
910 Then handle any address registers. Finally record the desired
911 classes for any pseudos, doing it twice if some pair of
912 operands are commutative. */
914 for (i = 0; i < recog_data.n_operands; i++)
916 op_costs[i] = init_cost;
918 if (GET_CODE (recog_data.operand[i]) == SUBREG)
920 rtx inner = SUBREG_REG (recog_data.operand[i]);
921 #ifdef CLASS_CANNOT_CHANGE_MODE
922 if (GET_CODE (inner) == REG
923 && CLASS_CANNOT_CHANGE_MODE_P (modes[i], GET_MODE (inner)))
924 SET_REGNO_REG_SET (reg_changes_mode, REGNO (inner));
925 #endif
926 recog_data.operand[i] = inner;
929 if (GET_CODE (recog_data.operand[i]) == MEM)
930 record_address_regs (XEXP (recog_data.operand[i], 0),
931 BASE_REG_CLASS, loop_cost * 2);
932 else if (constraints[i][0] == 'p')
933 record_address_regs (recog_data.operand[i],
934 BASE_REG_CLASS, loop_cost * 2);
937 /* Check for commutative in a separate loop so everything will
938 have been initialized. We must do this even if one operand
939 is a constant--see addsi3 in m68k.md. */
941 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
942 if (constraints[i][0] == '%')
944 const char *xconstraints[MAX_RECOG_OPERANDS];
945 int j;
947 /* Handle commutative operands by swapping the constraints.
948 We assume the modes are the same. */
950 for (j = 0; j < recog_data.n_operands; j++)
951 xconstraints[j] = constraints[j];
953 xconstraints[i] = constraints[i+1];
954 xconstraints[i+1] = constraints[i];
955 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
956 recog_data.operand, modes,
957 xconstraints, insn, op_costs, reg_pref);
960 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
961 recog_data.operand, modes,
962 constraints, insn, op_costs, reg_pref);
965 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
966 time it would save code to put a certain register in a certain class.
967 PASS, when nonzero, inhibits some optimizations which need only be done
968 once.
969 Return the last insn processed, so that the scan can be continued from
970 there. */
972 static rtx
973 scan_one_insn (insn, pass)
974 rtx insn;
975 int pass;
977 enum rtx_code code = GET_CODE (insn);
978 enum rtx_code pat_code;
979 rtx set, note;
980 int i, j;
981 struct costs op_costs[MAX_RECOG_OPERANDS];
983 if (GET_RTX_CLASS (code) != 'i')
984 return insn;
986 pat_code = GET_CODE (PATTERN (insn));
987 if (pat_code == USE
988 || pat_code == CLOBBER
989 || pat_code == ASM_INPUT
990 || pat_code == ADDR_VEC
991 || pat_code == ADDR_DIFF_VEC)
992 return insn;
994 set = single_set (insn);
995 extract_insn (insn);
997 /* If this insn loads a parameter from its stack slot, then
998 it represents a savings, rather than a cost, if the
999 parameter is stored in memory. Record this fact. */
1001 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
1002 && GET_CODE (SET_SRC (set)) == MEM
1003 && (note = find_reg_note (insn, REG_EQUIV,
1004 NULL_RTX)) != 0
1005 && GET_CODE (XEXP (note, 0)) == MEM)
1007 costs[REGNO (SET_DEST (set))].mem_cost
1008 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1009 GENERAL_REGS, 1)
1010 * loop_cost);
1011 record_address_regs (XEXP (SET_SRC (set), 0),
1012 BASE_REG_CLASS, loop_cost * 2);
1013 return insn;
1016 /* Improve handling of two-address insns such as
1017 (set X (ashift CONST Y)) where CONST must be made to
1018 match X. Change it into two insns: (set X CONST)
1019 (set X (ashift X Y)). If we left this for reloading, it
1020 would probably get three insns because X and Y might go
1021 in the same place. This prevents X and Y from receiving
1022 the same hard reg.
1024 We can only do this if the modes of operands 0 and 1
1025 (which might not be the same) are tieable and we only need
1026 do this during our first pass. */
1028 if (pass == 0 && optimize
1029 && recog_data.n_operands >= 3
1030 && recog_data.constraints[1][0] == '0'
1031 && recog_data.constraints[1][1] == 0
1032 && CONSTANT_P (recog_data.operand[1])
1033 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1034 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1035 && GET_CODE (recog_data.operand[0]) == REG
1036 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1037 recog_data.operand_mode[1]))
1039 rtx previnsn = prev_real_insn (insn);
1040 rtx dest
1041 = gen_lowpart (recog_data.operand_mode[1],
1042 recog_data.operand[0]);
1043 rtx newinsn
1044 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1046 /* If this insn was the start of a basic block,
1047 include the new insn in that block.
1048 We need not check for code_label here;
1049 while a basic block can start with a code_label,
1050 INSN could not be at the beginning of that block. */
1051 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
1053 int b;
1054 for (b = 0; b < n_basic_blocks; b++)
1055 if (insn == BLOCK_HEAD (b))
1056 BLOCK_HEAD (b) = newinsn;
1059 /* This makes one more setting of new insns's dest. */
1060 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1061 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1063 *recog_data.operand_loc[1] = recog_data.operand[0];
1064 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1065 for (i = recog_data.n_dups - 1; i >= 0; i--)
1066 if (recog_data.dup_num[i] == 1)
1068 *recog_data.dup_loc[i] = recog_data.operand[0];
1069 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1072 return PREV_INSN (newinsn);
1075 record_operand_costs (insn, op_costs, reg_pref);
1077 /* Now add the cost for each operand to the total costs for
1078 its register. */
1080 for (i = 0; i < recog_data.n_operands; i++)
1081 if (GET_CODE (recog_data.operand[i]) == REG
1082 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1084 int regno = REGNO (recog_data.operand[i]);
1085 struct costs *p = &costs[regno], *q = &op_costs[i];
1087 p->mem_cost += q->mem_cost * loop_cost;
1088 for (j = 0; j < N_REG_CLASSES; j++)
1089 p->cost[j] += q->cost[j] * loop_cost;
1092 return insn;
1095 /* This is a pass of the compiler that scans all instructions
1096 and calculates the preferred class for each pseudo-register.
1097 This information can be accessed later by calling `reg_preferred_class'.
1098 This pass comes just before local register allocation. */
1100 void
1101 regclass (f, nregs, dump)
1102 rtx f;
1103 int nregs;
1104 FILE *dump;
1106 register rtx insn;
1107 register int i;
1108 int pass;
1110 init_recog ();
1112 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
1114 #ifdef CLASS_CANNOT_CHANGE_MODE
1115 reg_changes_mode = BITMAP_XMALLOC();
1116 #endif
1118 #ifdef FORBIDDEN_INC_DEC_CLASSES
1120 in_inc_dec = (char *) xmalloc (nregs);
1122 /* Initialize information about which register classes can be used for
1123 pseudos that are auto-incremented or auto-decremented. It would
1124 seem better to put this in init_reg_sets, but we need to be able
1125 to allocate rtx, which we can't do that early. */
1127 for (i = 0; i < N_REG_CLASSES; i++)
1129 rtx r = gen_rtx_REG (VOIDmode, 0);
1130 enum machine_mode m;
1131 register int j;
1133 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1134 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1136 REGNO (r) = j;
1138 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1139 m = (enum machine_mode) ((int) m + 1))
1140 if (HARD_REGNO_MODE_OK (j, m))
1142 PUT_MODE (r, m);
1144 /* If a register is not directly suitable for an
1145 auto-increment or decrement addressing mode and
1146 requires secondary reloads, disallow its class from
1147 being used in such addresses. */
1149 if ((0
1150 #ifdef SECONDARY_RELOAD_CLASS
1151 || (SECONDARY_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1152 != NO_REGS)
1153 #else
1154 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1155 || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1156 != NO_REGS)
1157 #endif
1158 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1159 || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1160 != NO_REGS)
1161 #endif
1162 #endif
1164 && ! auto_inc_dec_reg_p (r, m))
1165 forbidden_inc_dec_class[i] = 1;
1169 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1171 /* Normally we scan the insns once and determine the best class to use for
1172 each register. However, if -fexpensive_optimizations are on, we do so
1173 twice, the second time using the tentative best classes to guide the
1174 selection. */
1176 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1178 int index;
1180 if (dump)
1181 fprintf (dump, "\n\nPass %i\n\n",pass);
1182 /* Zero out our accumulation of the cost of each class for each reg. */
1184 memset ((char *) costs, 0, nregs * sizeof (struct costs));
1186 #ifdef FORBIDDEN_INC_DEC_CLASSES
1187 memset (in_inc_dec, 0, nregs);
1188 #endif
1190 /* Scan the instructions and record each time it would
1191 save code to put a certain register in a certain class. */
1193 if (!optimize)
1195 loop_cost = 1;
1196 for (insn = f; insn; insn = NEXT_INSN (insn))
1197 insn = scan_one_insn (insn, pass);
1199 else
1200 for (index = 0; index < n_basic_blocks; index++)
1202 basic_block bb = BASIC_BLOCK (index);
1204 /* Show that an insn inside a loop is likely to be executed three
1205 times more than insns outside a loop. This is much more
1206 aggressive than the assumptions made elsewhere and is being
1207 tried as an experiment. */
1208 if (optimize_size)
1209 loop_cost = 1;
1210 else
1211 loop_cost = 1 << (2 * MIN (bb->loop_depth, 5));
1212 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1214 insn = scan_one_insn (insn, pass);
1215 if (insn == bb->end)
1216 break;
1220 /* Now for each register look at how desirable each class is
1221 and find which class is preferred. Store that in
1222 `prefclass'. Record in `altclass' the largest register
1223 class any of whose registers is better than memory. */
1225 if (pass == 0)
1226 reg_pref = reg_pref_buffer;
1228 if (dump)
1230 dump_regclass (dump);
1231 fprintf (dump,"\n");
1233 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1235 register int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1236 enum reg_class best = ALL_REGS, alt = NO_REGS;
1237 /* This is an enum reg_class, but we call it an int
1238 to save lots of casts. */
1239 register int class;
1240 register struct costs *p = &costs[i];
1242 /* In non-optimizing compilation REG_N_REFS is not initialized
1243 yet. */
1244 if (optimize && !REG_N_REFS (i))
1245 continue;
1247 for (class = (int) ALL_REGS - 1; class > 0; class--)
1249 /* Ignore classes that are too small for this operand or
1250 invalid for a operand that was auto-incremented. */
1251 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1252 #ifdef FORBIDDEN_INC_DEC_CLASSES
1253 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1254 #endif
1255 #ifdef CLASS_CANNOT_CHANGE_MODE
1256 || (REGNO_REG_SET_P (reg_changes_mode, i)
1257 && ! class_can_change_mode [class])
1258 #endif
1261 else if (p->cost[class] < best_cost)
1263 best_cost = p->cost[class];
1264 best = (enum reg_class) class;
1266 else if (p->cost[class] == best_cost)
1267 best = reg_class_subunion[(int)best][class];
1270 /* Record the alternate register class; i.e., a class for which
1271 every register in it is better than using memory. If adding a
1272 class would make a smaller class (i.e., no union of just those
1273 classes exists), skip that class. The major unions of classes
1274 should be provided as a register class. Don't do this if we
1275 will be doing it again later. */
1277 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1278 for (class = 0; class < N_REG_CLASSES; class++)
1279 if (p->cost[class] < p->mem_cost
1280 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1281 > reg_class_size[(int) alt])
1282 #ifdef FORBIDDEN_INC_DEC_CLASSES
1283 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1284 #endif
1285 #ifdef CLASS_CANNOT_CHANGE_MODE
1286 && ! (REGNO_REG_SET_P (reg_changes_mode, i)
1287 && ! class_can_change_mode [class])
1288 #endif
1290 alt = reg_class_subunion[(int) alt][class];
1292 /* If we don't add any classes, nothing to try. */
1293 if (alt == best)
1294 alt = NO_REGS;
1296 if (dump
1297 && (reg_pref[i].prefclass != (int) best
1298 || reg_pref[i].altclass != (int) alt))
1300 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1301 fprintf (dump, " Register %i", i);
1302 if (alt == ALL_REGS || best == ALL_REGS)
1303 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1304 else if (alt == NO_REGS)
1305 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1306 else
1307 fprintf (dump, " pref %s, else %s\n",
1308 reg_class_names[(int) best],
1309 reg_class_names[(int) alt]);
1312 /* We cast to (int) because (char) hits bugs in some compilers. */
1313 reg_pref[i].prefclass = (int) best;
1314 reg_pref[i].altclass = (int) alt;
1318 #ifdef FORBIDDEN_INC_DEC_CLASSES
1319 free (in_inc_dec);
1320 #endif
1321 #ifdef CLASS_CANNOT_CHANGE_MODE
1322 BITMAP_XFREE (reg_changes_mode);
1323 #endif
1324 free (costs);
1327 /* Record the cost of using memory or registers of various classes for
1328 the operands in INSN.
1330 N_ALTS is the number of alternatives.
1332 N_OPS is the number of operands.
1334 OPS is an array of the operands.
1336 MODES are the modes of the operands, in case any are VOIDmode.
1338 CONSTRAINTS are the constraints to use for the operands. This array
1339 is modified by this procedure.
1341 This procedure works alternative by alternative. For each alternative
1342 we assume that we will be able to allocate all pseudos to their ideal
1343 register class and calculate the cost of using that alternative. Then
1344 we compute for each operand that is a pseudo-register, the cost of
1345 having the pseudo allocated to each register class and using it in that
1346 alternative. To this cost is added the cost of the alternative.
1348 The cost of each class for this insn is its lowest cost among all the
1349 alternatives. */
1351 static void
1352 record_reg_classes (n_alts, n_ops, ops, modes,
1353 constraints, insn, op_costs, reg_pref)
1354 int n_alts;
1355 int n_ops;
1356 rtx *ops;
1357 enum machine_mode *modes;
1358 const char **constraints;
1359 rtx insn;
1360 struct costs *op_costs;
1361 struct reg_pref *reg_pref;
1363 int alt;
1364 int i, j;
1365 rtx set;
1367 /* Process each alternative, each time minimizing an operand's cost with
1368 the cost for each operand in that alternative. */
1370 for (alt = 0; alt < n_alts; alt++)
1372 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1373 int alt_fail = 0;
1374 int alt_cost = 0;
1375 enum reg_class classes[MAX_RECOG_OPERANDS];
1376 int allows_mem[MAX_RECOG_OPERANDS];
1377 int class;
1379 for (i = 0; i < n_ops; i++)
1381 const char *p = constraints[i];
1382 rtx op = ops[i];
1383 enum machine_mode mode = modes[i];
1384 int allows_addr = 0;
1385 int win = 0;
1386 unsigned char c;
1388 /* Initially show we know nothing about the register class. */
1389 classes[i] = NO_REGS;
1390 allows_mem[i] = 0;
1392 /* If this operand has no constraints at all, we can conclude
1393 nothing about it since anything is valid. */
1395 if (*p == 0)
1397 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1398 memset ((char *) &this_op_costs[i], 0, sizeof this_op_costs[i]);
1400 continue;
1403 /* If this alternative is only relevant when this operand
1404 matches a previous operand, we do different things depending
1405 on whether this operand is a pseudo-reg or not. We must process
1406 any modifiers for the operand before we can make this test. */
1408 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1409 p++;
1411 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1413 /* Copy class and whether memory is allowed from the matching
1414 alternative. Then perform any needed cost computations
1415 and/or adjustments. */
1416 j = p[0] - '0';
1417 classes[i] = classes[j];
1418 allows_mem[i] = allows_mem[j];
1420 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1422 /* If this matches the other operand, we have no added
1423 cost and we win. */
1424 if (rtx_equal_p (ops[j], op))
1425 win = 1;
1427 /* If we can put the other operand into a register, add to
1428 the cost of this alternative the cost to copy this
1429 operand to the register used for the other operand. */
1431 else if (classes[j] != NO_REGS)
1432 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1434 else if (GET_CODE (ops[j]) != REG
1435 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1437 /* This op is a pseudo but the one it matches is not. */
1439 /* If we can't put the other operand into a register, this
1440 alternative can't be used. */
1442 if (classes[j] == NO_REGS)
1443 alt_fail = 1;
1445 /* Otherwise, add to the cost of this alternative the cost
1446 to copy the other operand to the register used for this
1447 operand. */
1449 else
1450 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1452 else
1454 /* The costs of this operand are not the same as the other
1455 operand since move costs are not symmetric. Moreover,
1456 if we cannot tie them, this alternative needs to do a
1457 copy, which is one instruction. */
1459 struct costs *pp = &this_op_costs[i];
1461 for (class = 0; class < N_REG_CLASSES; class++)
1462 pp->cost[class]
1463 = ((recog_data.operand_type[i] != OP_OUT
1464 ? may_move_in_cost[mode][class][(int) classes[i]]
1465 : 0)
1466 + (recog_data.operand_type[i] != OP_IN
1467 ? may_move_out_cost[mode][(int) classes[i]][class]
1468 : 0));
1470 /* If the alternative actually allows memory, make things
1471 a bit cheaper since we won't need an extra insn to
1472 load it. */
1474 pp->mem_cost
1475 = ((recog_data.operand_type[i] != OP_IN
1476 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1477 : 0)
1478 + (recog_data.operand_type[i] != OP_OUT
1479 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1480 : 0) - allows_mem[i]);
1482 /* If we have assigned a class to this register in our
1483 first pass, add a cost to this alternative corresponding
1484 to what we would add if this register were not in the
1485 appropriate class. */
1487 if (reg_pref)
1488 alt_cost
1489 += (may_move_in_cost[mode]
1490 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1491 [(int) classes[i]]);
1493 if (REGNO (ops[i]) != REGNO (ops[j])
1494 && ! find_reg_note (insn, REG_DEAD, op))
1495 alt_cost += 2;
1497 /* This is in place of ordinary cost computation
1498 for this operand, so skip to the end of the
1499 alternative (should be just one character). */
1500 while (*p && *p++ != ',')
1503 constraints[i] = p;
1504 continue;
1508 /* Scan all the constraint letters. See if the operand matches
1509 any of the constraints. Collect the valid register classes
1510 and see if this operand accepts memory. */
1512 while (*p && (c = *p++) != ',')
1513 switch (c)
1515 case '*':
1516 /* Ignore the next letter for this pass. */
1517 p++;
1518 break;
1520 case '?':
1521 alt_cost += 2;
1522 case '!': case '#': case '&':
1523 case '0': case '1': case '2': case '3': case '4':
1524 case '5': case '6': case '7': case '8': case '9':
1525 break;
1527 case 'p':
1528 allows_addr = 1;
1529 win = address_operand (op, GET_MODE (op));
1530 /* We know this operand is an address, so we want it to be
1531 allocated to a register that can be the base of an
1532 address, ie BASE_REG_CLASS. */
1533 classes[i]
1534 = reg_class_subunion[(int) classes[i]]
1535 [(int) BASE_REG_CLASS];
1536 break;
1538 case 'm': case 'o': case 'V':
1539 /* It doesn't seem worth distinguishing between offsettable
1540 and non-offsettable addresses here. */
1541 allows_mem[i] = 1;
1542 if (GET_CODE (op) == MEM)
1543 win = 1;
1544 break;
1546 case '<':
1547 if (GET_CODE (op) == MEM
1548 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1549 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1550 win = 1;
1551 break;
1553 case '>':
1554 if (GET_CODE (op) == MEM
1555 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1556 || GET_CODE (XEXP (op, 0)) == POST_INC))
1557 win = 1;
1558 break;
1560 case 'E':
1561 #ifndef REAL_ARITHMETIC
1562 /* Match any floating double constant, but only if
1563 we can examine the bits of it reliably. */
1564 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
1565 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
1566 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1567 break;
1568 #endif
1569 if (GET_CODE (op) == CONST_DOUBLE)
1570 win = 1;
1571 break;
1573 case 'F':
1574 if (GET_CODE (op) == CONST_DOUBLE)
1575 win = 1;
1576 break;
1578 case 'G':
1579 case 'H':
1580 if (GET_CODE (op) == CONST_DOUBLE
1581 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1582 win = 1;
1583 break;
1585 case 's':
1586 if (GET_CODE (op) == CONST_INT
1587 || (GET_CODE (op) == CONST_DOUBLE
1588 && GET_MODE (op) == VOIDmode))
1589 break;
1590 case 'i':
1591 if (CONSTANT_P (op)
1592 #ifdef LEGITIMATE_PIC_OPERAND_P
1593 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1594 #endif
1596 win = 1;
1597 break;
1599 case 'n':
1600 if (GET_CODE (op) == CONST_INT
1601 || (GET_CODE (op) == CONST_DOUBLE
1602 && GET_MODE (op) == VOIDmode))
1603 win = 1;
1604 break;
1606 case 'I':
1607 case 'J':
1608 case 'K':
1609 case 'L':
1610 case 'M':
1611 case 'N':
1612 case 'O':
1613 case 'P':
1614 if (GET_CODE (op) == CONST_INT
1615 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1616 win = 1;
1617 break;
1619 case 'X':
1620 win = 1;
1621 break;
1623 case 'g':
1624 if (GET_CODE (op) == MEM
1625 || (CONSTANT_P (op)
1626 #ifdef LEGITIMATE_PIC_OPERAND_P
1627 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1628 #endif
1630 win = 1;
1631 allows_mem[i] = 1;
1632 case 'r':
1633 classes[i]
1634 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1635 break;
1637 default:
1638 if (REG_CLASS_FROM_LETTER (c) != NO_REGS)
1639 classes[i]
1640 = reg_class_subunion[(int) classes[i]]
1641 [(int) REG_CLASS_FROM_LETTER (c)];
1642 #ifdef EXTRA_CONSTRAINT
1643 else if (EXTRA_CONSTRAINT (op, c))
1644 win = 1;
1645 #endif
1646 break;
1649 constraints[i] = p;
1651 /* How we account for this operand now depends on whether it is a
1652 pseudo register or not. If it is, we first check if any
1653 register classes are valid. If not, we ignore this alternative,
1654 since we want to assume that all pseudos get allocated for
1655 register preferencing. If some register class is valid, compute
1656 the costs of moving the pseudo into that class. */
1658 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1660 if (classes[i] == NO_REGS)
1662 /* We must always fail if the operand is a REG, but
1663 we did not find a suitable class.
1665 Otherwise we may perform an uninitialized read
1666 from this_op_costs after the `continue' statement
1667 below. */
1668 alt_fail = 1;
1670 else
1672 struct costs *pp = &this_op_costs[i];
1674 for (class = 0; class < N_REG_CLASSES; class++)
1675 pp->cost[class]
1676 = ((recog_data.operand_type[i] != OP_OUT
1677 ? may_move_in_cost[mode][class][(int) classes[i]]
1678 : 0)
1679 + (recog_data.operand_type[i] != OP_IN
1680 ? may_move_out_cost[mode][(int) classes[i]][class]
1681 : 0));
1683 /* If the alternative actually allows memory, make things
1684 a bit cheaper since we won't need an extra insn to
1685 load it. */
1687 pp->mem_cost
1688 = ((recog_data.operand_type[i] != OP_IN
1689 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1690 : 0)
1691 + (recog_data.operand_type[i] != OP_OUT
1692 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1693 : 0) - allows_mem[i]);
1695 /* If we have assigned a class to this register in our
1696 first pass, add a cost to this alternative corresponding
1697 to what we would add if this register were not in the
1698 appropriate class. */
1700 if (reg_pref)
1701 alt_cost
1702 += (may_move_in_cost[mode]
1703 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1704 [(int) classes[i]]);
1708 /* Otherwise, if this alternative wins, either because we
1709 have already determined that or if we have a hard register of
1710 the proper class, there is no cost for this alternative. */
1712 else if (win
1713 || (GET_CODE (op) == REG
1714 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1717 /* If registers are valid, the cost of this alternative includes
1718 copying the object to and/or from a register. */
1720 else if (classes[i] != NO_REGS)
1722 if (recog_data.operand_type[i] != OP_OUT)
1723 alt_cost += copy_cost (op, mode, classes[i], 1);
1725 if (recog_data.operand_type[i] != OP_IN)
1726 alt_cost += copy_cost (op, mode, classes[i], 0);
1729 /* The only other way this alternative can be used is if this is a
1730 constant that could be placed into memory. */
1732 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1733 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1734 else
1735 alt_fail = 1;
1738 if (alt_fail)
1739 continue;
1741 /* Finally, update the costs with the information we've calculated
1742 about this alternative. */
1744 for (i = 0; i < n_ops; i++)
1745 if (GET_CODE (ops[i]) == REG
1746 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1748 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1749 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1751 pp->mem_cost = MIN (pp->mem_cost,
1752 (qq->mem_cost + alt_cost) * scale);
1754 for (class = 0; class < N_REG_CLASSES; class++)
1755 pp->cost[class] = MIN (pp->cost[class],
1756 (qq->cost[class] + alt_cost) * scale);
1760 /* If this insn is a single set copying operand 1 to operand 0
1761 and one operand is a pseudo with the other a hard reg or a pseudo
1762 that prefers a register that is in its own register class then
1763 we may want to adjust the cost of that register class to -1.
1765 Avoid the adjustment if the source does not die to avoid stressing of
1766 register allocator by preferrencing two coliding registers into single
1767 class.
1769 Also avoid the adjustment if a copy between registers of the class
1770 is expensive (ten times the cost of a default copy is considered
1771 arbitrarily expensive). This avoids losing when the preferred class
1772 is very expensive as the source of a copy instruction. */
1774 if ((set = single_set (insn)) != 0
1775 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1776 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1777 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1778 for (i = 0; i <= 1; i++)
1779 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1781 unsigned int regno = REGNO (ops[!i]);
1782 enum machine_mode mode = GET_MODE (ops[!i]);
1783 int class;
1784 unsigned int nr;
1786 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1788 enum reg_class pref = reg_pref[regno].prefclass;
1790 if ((reg_class_size[(unsigned char) pref]
1791 == CLASS_MAX_NREGS (pref, mode))
1792 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1793 op_costs[i].cost[(unsigned char) pref] = -1;
1795 else if (regno < FIRST_PSEUDO_REGISTER)
1796 for (class = 0; class < N_REG_CLASSES; class++)
1797 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1798 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
1800 if (reg_class_size[class] == 1)
1801 op_costs[i].cost[class] = -1;
1802 else
1804 for (nr = 0; nr < HARD_REGNO_NREGS (regno, mode); nr++)
1806 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1807 regno + nr))
1808 break;
1811 if (nr == HARD_REGNO_NREGS (regno,mode))
1812 op_costs[i].cost[class] = -1;
1818 /* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1819 TO_P is zero) a register of class CLASS in mode MODE.
1821 X must not be a pseudo. */
1823 static int
1824 copy_cost (x, mode, class, to_p)
1825 rtx x;
1826 enum machine_mode mode ATTRIBUTE_UNUSED;
1827 enum reg_class class;
1828 int to_p ATTRIBUTE_UNUSED;
1830 #ifdef HAVE_SECONDARY_RELOADS
1831 enum reg_class secondary_class = NO_REGS;
1832 #endif
1834 /* If X is a SCRATCH, there is actually nothing to move since we are
1835 assuming optimal allocation. */
1837 if (GET_CODE (x) == SCRATCH)
1838 return 0;
1840 /* Get the class we will actually use for a reload. */
1841 class = PREFERRED_RELOAD_CLASS (x, class);
1843 #ifdef HAVE_SECONDARY_RELOADS
1844 /* If we need a secondary reload (we assume here that we are using
1845 the secondary reload as an intermediate, not a scratch register), the
1846 cost is that to load the input into the intermediate register, then
1847 to copy them. We use a special value of TO_P to avoid recursion. */
1849 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1850 if (to_p == 1)
1851 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1852 #endif
1854 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1855 if (! to_p)
1856 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1857 #endif
1859 if (secondary_class != NO_REGS)
1860 return (move_cost[mode][(int) secondary_class][(int) class]
1861 + copy_cost (x, mode, secondary_class, 2));
1862 #endif /* HAVE_SECONDARY_RELOADS */
1864 /* For memory, use the memory move cost, for (hard) registers, use the
1865 cost to move between the register classes, and use 2 for everything
1866 else (constants). */
1868 if (GET_CODE (x) == MEM || class == NO_REGS)
1869 return MEMORY_MOVE_COST (mode, class, to_p);
1871 else if (GET_CODE (x) == REG)
1872 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1874 else
1875 /* If this is a constant, we may eventually want to call rtx_cost here. */
1876 return COSTS_N_INSNS (1);
1879 /* Record the pseudo registers we must reload into hard registers
1880 in a subexpression of a memory address, X.
1882 CLASS is the class that the register needs to be in and is either
1883 BASE_REG_CLASS or INDEX_REG_CLASS.
1885 SCALE is twice the amount to multiply the cost by (it is twice so we
1886 can represent half-cost adjustments). */
1888 static void
1889 record_address_regs (x, class, scale)
1890 rtx x;
1891 enum reg_class class;
1892 int scale;
1894 register enum rtx_code code = GET_CODE (x);
1896 switch (code)
1898 case CONST_INT:
1899 case CONST:
1900 case CC0:
1901 case PC:
1902 case SYMBOL_REF:
1903 case LABEL_REF:
1904 return;
1906 case PLUS:
1907 /* When we have an address that is a sum,
1908 we must determine whether registers are "base" or "index" regs.
1909 If there is a sum of two registers, we must choose one to be
1910 the "base". Luckily, we can use the REG_POINTER to make a good
1911 choice most of the time. We only need to do this on machines
1912 that can have two registers in an address and where the base
1913 and index register classes are different.
1915 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1916 that seems bogus since it should only be set when we are sure
1917 the register is being used as a pointer. */
1920 rtx arg0 = XEXP (x, 0);
1921 rtx arg1 = XEXP (x, 1);
1922 register enum rtx_code code0 = GET_CODE (arg0);
1923 register enum rtx_code code1 = GET_CODE (arg1);
1925 /* Look inside subregs. */
1926 if (code0 == SUBREG)
1927 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1928 if (code1 == SUBREG)
1929 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1931 /* If this machine only allows one register per address, it must
1932 be in the first operand. */
1934 if (MAX_REGS_PER_ADDRESS == 1)
1935 record_address_regs (arg0, class, scale);
1937 /* If index and base registers are the same on this machine, just
1938 record registers in any non-constant operands. We assume here,
1939 as well as in the tests below, that all addresses are in
1940 canonical form. */
1942 else if (INDEX_REG_CLASS == BASE_REG_CLASS)
1944 record_address_regs (arg0, class, scale);
1945 if (! CONSTANT_P (arg1))
1946 record_address_regs (arg1, class, scale);
1949 /* If the second operand is a constant integer, it doesn't change
1950 what class the first operand must be. */
1952 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1953 record_address_regs (arg0, class, scale);
1955 /* If the second operand is a symbolic constant, the first operand
1956 must be an index register. */
1958 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1959 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1961 /* If both operands are registers but one is already a hard register
1962 of index or base class, give the other the class that the hard
1963 register is not. */
1965 #ifdef REG_OK_FOR_BASE_P
1966 else if (code0 == REG && code1 == REG
1967 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1968 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
1969 record_address_regs (arg1,
1970 REG_OK_FOR_BASE_P (arg0)
1971 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1972 scale);
1973 else if (code0 == REG && code1 == REG
1974 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1975 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
1976 record_address_regs (arg0,
1977 REG_OK_FOR_BASE_P (arg1)
1978 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1979 scale);
1980 #endif
1982 /* If one operand is known to be a pointer, it must be the base
1983 with the other operand the index. Likewise if the other operand
1984 is a MULT. */
1986 else if ((code0 == REG && REG_POINTER (arg0))
1987 || code1 == MULT)
1989 record_address_regs (arg0, BASE_REG_CLASS, scale);
1990 record_address_regs (arg1, INDEX_REG_CLASS, scale);
1992 else if ((code1 == REG && REG_POINTER (arg1))
1993 || code0 == MULT)
1995 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1996 record_address_regs (arg1, BASE_REG_CLASS, scale);
1999 /* Otherwise, count equal chances that each might be a base
2000 or index register. This case should be rare. */
2002 else
2004 record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
2005 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
2006 record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
2007 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
2010 break;
2012 /* Double the importance of a pseudo register that is incremented
2013 or decremented, since it would take two extra insns
2014 if it ends up in the wrong place. */
2015 case POST_MODIFY:
2016 case PRE_MODIFY:
2017 record_address_regs (XEXP (x, 0), BASE_REG_CLASS, 2 * scale);
2018 if (REG_P (XEXP (XEXP (x, 1), 1)))
2019 record_address_regs (XEXP (XEXP (x, 1), 1),
2020 INDEX_REG_CLASS, 2 * scale);
2021 break;
2023 case POST_INC:
2024 case PRE_INC:
2025 case POST_DEC:
2026 case PRE_DEC:
2027 /* Double the importance of a pseudo register that is incremented
2028 or decremented, since it would take two extra insns
2029 if it ends up in the wrong place. If the operand is a pseudo,
2030 show it is being used in an INC_DEC context. */
2032 #ifdef FORBIDDEN_INC_DEC_CLASSES
2033 if (GET_CODE (XEXP (x, 0)) == REG
2034 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2035 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2036 #endif
2038 record_address_regs (XEXP (x, 0), class, 2 * scale);
2039 break;
2041 case REG:
2043 register struct costs *pp = &costs[REGNO (x)];
2044 register int i;
2046 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2048 for (i = 0; i < N_REG_CLASSES; i++)
2049 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2051 break;
2053 default:
2055 register const char *fmt = GET_RTX_FORMAT (code);
2056 register int i;
2057 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2058 if (fmt[i] == 'e')
2059 record_address_regs (XEXP (x, i), class, scale);
2064 #ifdef FORBIDDEN_INC_DEC_CLASSES
2066 /* Return 1 if REG is valid as an auto-increment memory reference
2067 to an object of MODE. */
2069 static int
2070 auto_inc_dec_reg_p (reg, mode)
2071 rtx reg;
2072 enum machine_mode mode;
2074 if (HAVE_POST_INCREMENT
2075 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2076 return 1;
2078 if (HAVE_POST_DECREMENT
2079 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2080 return 1;
2082 if (HAVE_PRE_INCREMENT
2083 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2084 return 1;
2086 if (HAVE_PRE_DECREMENT
2087 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2088 return 1;
2090 return 0;
2092 #endif
2094 static short *renumber;
2095 static size_t regno_allocated;
2096 static unsigned int reg_n_max;
2098 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2099 reg_scan and flow_analysis that are indexed by the register number. If
2100 NEW_P is non zero, initialize all of the registers, otherwise only
2101 initialize the new registers allocated. The same table is kept from
2102 function to function, only reallocating it when we need more room. If
2103 RENUMBER_P is non zero, allocate the reg_renumber array also. */
2105 void
2106 allocate_reg_info (num_regs, new_p, renumber_p)
2107 size_t num_regs;
2108 int new_p;
2109 int renumber_p;
2111 size_t size_info;
2112 size_t size_renumber;
2113 size_t min = (new_p) ? 0 : reg_n_max;
2114 struct reg_info_data *reg_data;
2116 if (num_regs > regno_allocated)
2118 size_t old_allocated = regno_allocated;
2120 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
2121 size_renumber = regno_allocated * sizeof (short);
2123 if (!reg_n_info)
2125 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2126 renumber = (short *) xmalloc (size_renumber);
2127 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2128 * sizeof (struct reg_pref));
2131 else
2133 VARRAY_GROW (reg_n_info, regno_allocated);
2135 if (new_p) /* if we're zapping everything, no need to realloc */
2137 free ((char *)renumber);
2138 free ((char *)reg_pref);
2139 renumber = (short *) xmalloc (size_renumber);
2140 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2141 * sizeof (struct reg_pref));
2144 else
2146 renumber = (short *) xrealloc ((char *)renumber, size_renumber);
2147 reg_pref_buffer = (struct reg_pref *) xrealloc ((char *)reg_pref_buffer,
2148 regno_allocated
2149 * sizeof (struct reg_pref));
2153 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2154 + sizeof (struct reg_info_data) - sizeof (reg_info);
2155 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
2156 reg_data->min_index = old_allocated;
2157 reg_data->max_index = regno_allocated - 1;
2158 reg_data->next = reg_info_head;
2159 reg_info_head = reg_data;
2162 reg_n_max = num_regs;
2163 if (min < num_regs)
2165 /* Loop through each of the segments allocated for the actual
2166 reg_info pages, and set up the pointers, zero the pages, etc. */
2167 for (reg_data = reg_info_head;
2168 reg_data && reg_data->max_index >= min;
2169 reg_data = reg_data->next)
2171 size_t min_index = reg_data->min_index;
2172 size_t max_index = reg_data->max_index;
2173 size_t max = MIN (max_index, num_regs);
2174 size_t local_min = min - min_index;
2175 size_t i;
2177 if (reg_data->min_index > num_regs)
2178 continue;
2180 if (min < min_index)
2181 local_min = 0;
2182 if (!reg_data->used_p) /* page just allocated with calloc */
2183 reg_data->used_p = 1; /* no need to zero */
2184 else
2185 memset ((char *) &reg_data->data[local_min], 0,
2186 sizeof (reg_info) * (max - min_index - local_min + 1));
2188 for (i = min_index+local_min; i <= max; i++)
2190 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2191 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2192 renumber[i] = -1;
2193 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2194 reg_pref_buffer[i].altclass = (char) NO_REGS;
2199 /* If {pref,alt}class have already been allocated, update the pointers to
2200 the newly realloced ones. */
2201 if (reg_pref)
2202 reg_pref = reg_pref_buffer;
2204 if (renumber_p)
2205 reg_renumber = renumber;
2207 /* Tell the regset code about the new number of registers */
2208 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2211 /* Free up the space allocated by allocate_reg_info. */
2212 void
2213 free_reg_info ()
2215 if (reg_n_info)
2217 struct reg_info_data *reg_data;
2218 struct reg_info_data *reg_next;
2220 VARRAY_FREE (reg_n_info);
2221 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2223 reg_next = reg_data->next;
2224 free ((char *)reg_data);
2227 free (reg_pref_buffer);
2228 reg_pref_buffer = (struct reg_pref *)0;
2229 reg_info_head = (struct reg_info_data *)0;
2230 renumber = (short *)0;
2232 regno_allocated = 0;
2233 reg_n_max = 0;
2236 /* This is the `regscan' pass of the compiler, run just before cse
2237 and again just before loop.
2239 It finds the first and last use of each pseudo-register
2240 and records them in the vectors regno_first_uid, regno_last_uid
2241 and counts the number of sets in the vector reg_n_sets.
2243 REPEAT is nonzero the second time this is called. */
2245 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2246 Always at least 3, since the combiner could put that many together
2247 and we want this to remain correct for all the remaining passes.
2248 This corresponds to the maximum number of times note_stores will call
2249 a function for any insn. */
2251 int max_parallel;
2253 /* Used as a temporary to record the largest number of registers in
2254 PARALLEL in a SET_DEST. This is added to max_parallel. */
2256 static int max_set_parallel;
2258 void
2259 reg_scan (f, nregs, repeat)
2260 rtx f;
2261 unsigned int nregs;
2262 int repeat ATTRIBUTE_UNUSED;
2264 register rtx insn;
2266 allocate_reg_info (nregs, TRUE, FALSE);
2267 max_parallel = 3;
2268 max_set_parallel = 0;
2270 for (insn = f; insn; insn = NEXT_INSN (insn))
2271 if (GET_CODE (insn) == INSN
2272 || GET_CODE (insn) == CALL_INSN
2273 || GET_CODE (insn) == JUMP_INSN)
2275 if (GET_CODE (PATTERN (insn)) == PARALLEL
2276 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2277 max_parallel = XVECLEN (PATTERN (insn), 0);
2278 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
2280 if (REG_NOTES (insn))
2281 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2284 max_parallel += max_set_parallel;
2287 /* Update 'regscan' information by looking at the insns
2288 from FIRST to LAST. Some new REGs have been created,
2289 and any REG with number greater than OLD_MAX_REGNO is
2290 such a REG. We only update information for those. */
2292 void
2293 reg_scan_update (first, last, old_max_regno)
2294 rtx first;
2295 rtx last;
2296 unsigned int old_max_regno;
2298 register rtx insn;
2300 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2302 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2303 if (GET_CODE (insn) == INSN
2304 || GET_CODE (insn) == CALL_INSN
2305 || GET_CODE (insn) == JUMP_INSN)
2307 if (GET_CODE (PATTERN (insn)) == PARALLEL
2308 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2309 max_parallel = XVECLEN (PATTERN (insn), 0);
2310 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2312 if (REG_NOTES (insn))
2313 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2317 /* X is the expression to scan. INSN is the insn it appears in.
2318 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2319 We should only record information for REGs with numbers
2320 greater than or equal to MIN_REGNO. */
2322 static void
2323 reg_scan_mark_refs (x, insn, note_flag, min_regno)
2324 rtx x;
2325 rtx insn;
2326 int note_flag;
2327 unsigned int min_regno;
2329 register enum rtx_code code;
2330 register rtx dest;
2331 register rtx note;
2333 code = GET_CODE (x);
2334 switch (code)
2336 case CONST:
2337 case CONST_INT:
2338 case CONST_DOUBLE:
2339 case CC0:
2340 case PC:
2341 case SYMBOL_REF:
2342 case LABEL_REF:
2343 case ADDR_VEC:
2344 case ADDR_DIFF_VEC:
2345 return;
2347 case REG:
2349 unsigned int regno = REGNO (x);
2351 if (regno >= min_regno)
2353 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2354 if (!note_flag)
2355 REGNO_LAST_UID (regno) = INSN_UID (insn);
2356 if (REGNO_FIRST_UID (regno) == 0)
2357 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2360 break;
2362 case EXPR_LIST:
2363 if (XEXP (x, 0))
2364 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2365 if (XEXP (x, 1))
2366 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2367 break;
2369 case INSN_LIST:
2370 if (XEXP (x, 1))
2371 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2372 break;
2374 case SET:
2375 /* Count a set of the destination if it is a register. */
2376 for (dest = SET_DEST (x);
2377 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2378 || GET_CODE (dest) == ZERO_EXTEND;
2379 dest = XEXP (dest, 0))
2382 /* For a PARALLEL, record the number of things (less the usual one for a
2383 SET) that are set. */
2384 if (GET_CODE (dest) == PARALLEL)
2385 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2387 if (GET_CODE (dest) == REG
2388 && REGNO (dest) >= min_regno)
2389 REG_N_SETS (REGNO (dest))++;
2391 /* If this is setting a pseudo from another pseudo or the sum of a
2392 pseudo and a constant integer and the other pseudo is known to be
2393 a pointer, set the destination to be a pointer as well.
2395 Likewise if it is setting the destination from an address or from a
2396 value equivalent to an address or to the sum of an address and
2397 something else.
2399 But don't do any of this if the pseudo corresponds to a user
2400 variable since it should have already been set as a pointer based
2401 on the type. */
2403 if (GET_CODE (SET_DEST (x)) == REG
2404 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2405 && REGNO (SET_DEST (x)) >= min_regno
2406 /* If the destination pseudo is set more than once, then other
2407 sets might not be to a pointer value (consider access to a
2408 union in two threads of control in the presense of global
2409 optimizations). So only set REG_POINTER on the destination
2410 pseudo if this is the only set of that pseudo. */
2411 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2412 && ! REG_USERVAR_P (SET_DEST (x))
2413 && ! REG_POINTER (SET_DEST (x))
2414 && ((GET_CODE (SET_SRC (x)) == REG
2415 && REG_POINTER (SET_SRC (x)))
2416 || ((GET_CODE (SET_SRC (x)) == PLUS
2417 || GET_CODE (SET_SRC (x)) == LO_SUM)
2418 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2419 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2420 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2421 || GET_CODE (SET_SRC (x)) == CONST
2422 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2423 || GET_CODE (SET_SRC (x)) == LABEL_REF
2424 || (GET_CODE (SET_SRC (x)) == HIGH
2425 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2426 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2427 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2428 || ((GET_CODE (SET_SRC (x)) == PLUS
2429 || GET_CODE (SET_SRC (x)) == LO_SUM)
2430 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2431 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2432 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2433 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2434 && (GET_CODE (XEXP (note, 0)) == CONST
2435 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2436 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2437 REG_POINTER (SET_DEST (x)) = 1;
2439 /* ... fall through ... */
2441 default:
2443 register const char *fmt = GET_RTX_FORMAT (code);
2444 register int i;
2445 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2447 if (fmt[i] == 'e')
2448 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2449 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2451 register int j;
2452 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2453 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2460 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2461 is also in C2. */
2464 reg_class_subset_p (c1, c2)
2465 register enum reg_class c1;
2466 register enum reg_class c2;
2468 if (c1 == c2) return 1;
2470 if (c2 == ALL_REGS)
2471 win:
2472 return 1;
2473 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
2474 reg_class_contents[(int)c2],
2475 win);
2476 return 0;
2479 /* Return nonzero if there is a register that is in both C1 and C2. */
2482 reg_classes_intersect_p (c1, c2)
2483 register enum reg_class c1;
2484 register enum reg_class c2;
2486 #ifdef HARD_REG_SET
2487 register
2488 #endif
2489 HARD_REG_SET c;
2491 if (c1 == c2) return 1;
2493 if (c1 == ALL_REGS || c2 == ALL_REGS)
2494 return 1;
2496 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2497 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2499 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2500 return 1;
2502 lose:
2503 return 0;
2506 /* Release any memory allocated by register sets. */
2508 void
2509 regset_release_memory ()
2511 bitmap_release_memory ();