1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 - reordering of memory allocation and freeing to be more space efficient
24 - do rough calc of how many regs are needed in each block, and a rough
25 calc of how many regs are available in each class and use that to
26 throttle back the code in cases where RTX_COST is minimal.
27 - dead store elimination
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
43 Global Optimization by Suppression of Partial Redundancies
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
115 Rice University Ph.D. thesis, Apr. 1996
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
125 Advanced Compiler Design and Implementation
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
153 #include "hard-reg-set.h"
156 #include "insn-config.h"
158 #include "basic-block.h"
160 #include "function.h"
166 #define obstack_chunk_alloc gmalloc
167 #define obstack_chunk_free free
169 /* Maximum number of passes to perform. */
172 /* Propagate flow information through back edges and thus enable PRE's
173 moving loop invariant calculations out of loops.
175 Originally this tended to create worse overall code, but several
176 improvements during the development of PRE seem to have made following
177 back edges generally a win.
179 Note much of the loop invariant code motion done here would normally
180 be done by loop.c, which has more heuristics for when to move invariants
181 out of loops. At some point we might need to move some of those
182 heuristics into gcse.c. */
183 #define FOLLOW_BACK_EDGES 1
185 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
186 are a superset of those done by GCSE.
188 We perform the following steps:
190 1) Compute basic block information.
192 2) Compute table of places where registers are set.
194 3) Perform copy/constant propagation.
196 4) Perform global cse.
198 5) Perform another pass of copy/constant propagation.
200 Two passes of copy/constant propagation are done because the first one
201 enables more GCSE and the second one helps to clean up the copies that
202 GCSE creates. This is needed more for PRE than for Classic because Classic
203 GCSE will try to use an existing register containing the common
204 subexpression rather than create a new one. This is harder to do for PRE
205 because of the code motion (which Classic GCSE doesn't do).
207 Expressions we are interested in GCSE-ing are of the form
208 (set (pseudo-reg) (expression)).
209 Function want_to_gcse_p says what these are.
211 PRE handles moving invariant expressions out of loops (by treating them as
212 partially redundant).
214 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
215 assignment) based GVN (global value numbering). L. T. Simpson's paper
216 (Rice University) on value numbering is a useful reference for this.
218 **********************
220 We used to support multiple passes but there are diminishing returns in
221 doing so. The first pass usually makes 90% of the changes that are doable.
222 A second pass can make a few more changes made possible by the first pass.
223 Experiments show any further passes don't make enough changes to justify
226 A study of spec92 using an unlimited number of passes:
227 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
228 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
229 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
231 It was found doing copy propagation between each pass enables further
234 PRE is quite expensive in complicated functions because the DFA can take
235 awhile to converge. Hence we only perform one pass. Macro MAX_PASSES can
236 be modified if one wants to experiment.
238 **********************
240 The steps for PRE are:
242 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
244 2) Perform the data flow analysis for PRE.
246 3) Delete the redundant instructions
248 4) Insert the required copies [if any] that make the partially
249 redundant instructions fully redundant.
251 5) For other reaching expressions, insert an instruction to copy the value
252 to a newly created pseudo that will reach the redundant instruction.
254 The deletion is done first so that when we do insertions we
255 know which pseudo reg to use.
257 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
258 argue it is not. The number of iterations for the algorithm to converge
259 is typically 2-4 so I don't view it as that expensive (relatively speaking).
261 PRE GCSE depends heavily on the second CSE pass to clean up the copies
262 we create. To make an expression reach the place where it's redundant,
263 the result of the expression is copied to a new register, and the redundant
264 expression is deleted by replacing it with this new register. Classic GCSE
265 doesn't have this problem as much as it computes the reaching defs of
266 each register in each block and thus can try to use an existing register.
268 **********************
270 A fair bit of simplicity is created by creating small functions for simple
271 tasks, even when the function is only called in one place. This may
272 measurably slow things down [or may not] by creating more function call
273 overhead than is necessary. The source is laid out so that it's trivial
274 to make the affected functions inline so that one can measure what speed
275 up, if any, can be achieved, and maybe later when things settle things can
278 Help stamp out big monolithic functions! */
280 /* GCSE global vars. */
283 static FILE *gcse_file
;
285 /* Note whether or not we should run jump optimization after gcse. We
286 want to do this for two cases.
288 * If we changed any jumps via cprop.
290 * If we added any labels via edge splitting. */
292 static int run_jump_opt_after_gcse
;
294 /* Bitmaps are normally not included in debugging dumps.
295 However it's useful to be able to print them from GDB.
296 We could create special functions for this, but it's simpler to
297 just allow passing stderr to the dump_foo fns. Since stderr can
298 be a macro, we store a copy here. */
299 static FILE *debug_stderr
;
301 /* An obstack for our working variables. */
302 static struct obstack gcse_obstack
;
304 /* Non-zero for each mode that supports (set (reg) (reg)).
305 This is trivially true for integer and floating point values.
306 It may or may not be true for condition codes. */
307 static char can_copy_p
[(int) NUM_MACHINE_MODES
];
309 /* Non-zero if can_copy_p has been initialized. */
310 static int can_copy_init_p
;
312 struct reg_use
{rtx reg_rtx
; };
314 /* Hash table of expressions. */
318 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
320 /* Index in the available expression bitmaps. */
322 /* Next entry with the same hash. */
323 struct expr
*next_same_hash
;
324 /* List of anticipatable occurrences in basic blocks in the function.
325 An "anticipatable occurrence" is one that is the first occurrence in the
326 basic block, the operands are not modified in the basic block prior
327 to the occurrence and the output is not used between the start of
328 the block and the occurrence. */
329 struct occr
*antic_occr
;
330 /* List of available occurrence in basic blocks in the function.
331 An "available occurrence" is one that is the last occurrence in the
332 basic block and the operands are not modified by following statements in
333 the basic block [including this insn]. */
334 struct occr
*avail_occr
;
335 /* Non-null if the computation is PRE redundant.
336 The value is the newly created pseudo-reg to record a copy of the
337 expression in all the places that reach the redundant copy. */
341 /* Occurrence of an expression.
342 There is one per basic block. If a pattern appears more than once the
343 last appearance is used [or first for anticipatable expressions]. */
347 /* Next occurrence of this expression. */
349 /* The insn that computes the expression. */
351 /* Non-zero if this [anticipatable] occurrence has been deleted. */
353 /* Non-zero if this [available] occurrence has been copied to
355 /* ??? This is mutually exclusive with deleted_p, so they could share
360 /* Expression and copy propagation hash tables.
361 Each hash table is an array of buckets.
362 ??? It is known that if it were an array of entries, structure elements
363 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
364 not clear whether in the final analysis a sufficient amount of memory would
365 be saved as the size of the available expression bitmaps would be larger
366 [one could build a mapping table without holes afterwards though].
367 Someday I'll perform the computation and figure it out. */
369 /* Total size of the expression hash table, in elements. */
370 static unsigned int expr_hash_table_size
;
373 This is an array of `expr_hash_table_size' elements. */
374 static struct expr
**expr_hash_table
;
376 /* Total size of the copy propagation hash table, in elements. */
377 static unsigned int set_hash_table_size
;
380 This is an array of `set_hash_table_size' elements. */
381 static struct expr
**set_hash_table
;
383 /* Mapping of uids to cuids.
384 Only real insns get cuids. */
385 static int *uid_cuid
;
387 /* Highest UID in UID_CUID. */
390 /* Get the cuid of an insn. */
391 #ifdef ENABLE_CHECKING
392 #define INSN_CUID(INSN) (INSN_UID (INSN) > max_uid ? (abort (), 0) : uid_cuid[INSN_UID (INSN)])
394 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
397 /* Number of cuids. */
400 /* Mapping of cuids to insns. */
401 static rtx
*cuid_insn
;
403 /* Get insn from cuid. */
404 #define CUID_INSN(CUID) (cuid_insn[CUID])
406 /* Maximum register number in function prior to doing gcse + 1.
407 Registers created during this pass have regno >= max_gcse_regno.
408 This is named with "gcse" to not collide with global of same name. */
409 static unsigned int max_gcse_regno
;
411 /* Maximum number of cse-able expressions found. */
414 /* Maximum number of assignments for copy propagation found. */
417 /* Table of registers that are modified.
419 For each register, each element is a list of places where the pseudo-reg
422 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
423 requires knowledge of which blocks kill which regs [and thus could use
424 a bitmap instead of the lists `reg_set_table' uses].
426 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
427 num-regs) [however perhaps it may be useful to keep the data as is]. One
428 advantage of recording things this way is that `reg_set_table' is fairly
429 sparse with respect to pseudo regs but for hard regs could be fairly dense
430 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
431 up functions like compute_transp since in the case of pseudo-regs we only
432 need to iterate over the number of times a pseudo-reg is set, not over the
433 number of basic blocks [clearly there is a bit of a slow down in the cases
434 where a pseudo is set more than once in a block, however it is believed
435 that the net effect is to speed things up]. This isn't done for hard-regs
436 because recording call-clobbered hard-regs in `reg_set_table' at each
437 function call can consume a fair bit of memory, and iterating over
438 hard-regs stored this way in compute_transp will be more expensive. */
440 typedef struct reg_set
442 /* The next setting of this register. */
443 struct reg_set
*next
;
444 /* The insn where it was set. */
448 static reg_set
**reg_set_table
;
450 /* Size of `reg_set_table'.
451 The table starts out at max_gcse_regno + slop, and is enlarged as
453 static int reg_set_table_size
;
455 /* Amount to grow `reg_set_table' by when it's full. */
456 #define REG_SET_TABLE_SLOP 100
458 /* This is a list of expressions which are MEMs and will be used by load
460 Load motion tracks MEMs which aren't killed by
461 anything except itself. (ie, loads and stores to a single location).
462 We can then allow movement of these MEM refs with a little special
463 allowance. (all stores copy the same value to the reaching reg used
464 for the loads). This means all values used to store into memory must have
465 no side effects so we can re-issue the setter value.
466 Store Motion uses this structure as an expression table to track stores
467 which look interesting, and might be moveable towards the exit block. */
471 struct expr
* expr
; /* Gcse expression reference for LM. */
472 rtx pattern
; /* Pattern of this mem. */
473 rtx loads
; /* INSN list of loads seen. */
474 rtx stores
; /* INSN list of stores seen. */
475 struct ls_expr
* next
; /* Next in the list. */
476 int invalid
; /* Invalid for some reason. */
477 int index
; /* If it maps to a bitmap index. */
478 int hash_index
; /* Index when in a hash table. */
479 rtx reaching_reg
; /* Register to use when re-writing. */
482 /* Head of the list of load/store memory refs. */
483 static struct ls_expr
* pre_ldst_mems
= NULL
;
485 /* Bitmap containing one bit for each register in the program.
486 Used when performing GCSE to track which registers have been set since
487 the start of the basic block. */
488 static sbitmap reg_set_bitmap
;
490 /* For each block, a bitmap of registers set in the block.
491 This is used by expr_killed_p and compute_transp.
492 It is computed during hash table computation and not by compute_sets
493 as it includes registers added since the last pass (or between cprop and
494 gcse) and it's currently not easy to realloc sbitmap vectors. */
495 static sbitmap
*reg_set_in_block
;
497 /* Array, indexed by basic block number for a list of insns which modify
498 memory within that block. */
499 static rtx
* modify_mem_list
;
501 /* This array parallels modify_mem_list, but is kept canonicalized. */
502 static rtx
* canon_modify_mem_list
;
504 /* For each block, non-zero if memory is set in that block.
505 This is computed during hash table computation and is used by
506 expr_killed_p and compute_transp.
507 ??? Handling of memory is very simple, we don't make any attempt
508 to optimize things (later).
509 ??? This can be computed by compute_sets since the information
511 static char *mem_set_in_block
;
513 /* Various variables for statistics gathering. */
515 /* Memory used in a pass.
516 This isn't intended to be absolutely precise. Its intent is only
517 to keep an eye on memory usage. */
518 static int bytes_used
;
520 /* GCSE substitutions made. */
521 static int gcse_subst_count
;
522 /* Number of copy instructions created. */
523 static int gcse_create_count
;
524 /* Number of constants propagated. */
525 static int const_prop_count
;
526 /* Number of copys propagated. */
527 static int copy_prop_count
;
529 /* These variables are used by classic GCSE.
530 Normally they'd be defined a bit later, but `rd_gen' needs to
531 be declared sooner. */
533 /* Each block has a bitmap of each type.
534 The length of each blocks bitmap is:
536 max_cuid - for reaching definitions
537 n_exprs - for available expressions
539 Thus we view the bitmaps as 2 dimensional arrays. i.e.
540 rd_kill[block_num][cuid_num]
541 ae_kill[block_num][expr_num] */
543 /* For reaching defs */
544 static sbitmap
*rd_kill
, *rd_gen
, *reaching_defs
, *rd_out
;
546 /* for available exprs */
547 static sbitmap
*ae_kill
, *ae_gen
, *ae_in
, *ae_out
;
549 /* Objects of this type are passed around by the null-pointer check
551 struct null_pointer_info
553 /* The basic block being processed. */
555 /* The first register to be handled in this pass. */
556 unsigned int min_reg
;
557 /* One greater than the last register to be handled in this pass. */
558 unsigned int max_reg
;
559 sbitmap
*nonnull_local
;
560 sbitmap
*nonnull_killed
;
563 static void compute_can_copy
PARAMS ((void));
564 static char *gmalloc
PARAMS ((unsigned int));
565 static char *grealloc
PARAMS ((char *, unsigned int));
566 static char *gcse_alloc
PARAMS ((unsigned long));
567 static void alloc_gcse_mem
PARAMS ((rtx
));
568 static void free_gcse_mem
PARAMS ((void));
569 static void alloc_reg_set_mem
PARAMS ((int));
570 static void free_reg_set_mem
PARAMS ((void));
571 static int get_bitmap_width
PARAMS ((int, int, int));
572 static void record_one_set
PARAMS ((int, rtx
));
573 static void record_set_info
PARAMS ((rtx
, rtx
, void *));
574 static void compute_sets
PARAMS ((rtx
));
575 static void hash_scan_insn
PARAMS ((rtx
, int, int));
576 static void hash_scan_set
PARAMS ((rtx
, rtx
, int));
577 static void hash_scan_clobber
PARAMS ((rtx
, rtx
));
578 static void hash_scan_call
PARAMS ((rtx
, rtx
));
579 static int want_to_gcse_p
PARAMS ((rtx
));
580 static int oprs_unchanged_p
PARAMS ((rtx
, rtx
, int));
581 static int oprs_anticipatable_p
PARAMS ((rtx
, rtx
));
582 static int oprs_available_p
PARAMS ((rtx
, rtx
));
583 static void insert_expr_in_table
PARAMS ((rtx
, enum machine_mode
, rtx
,
585 static void insert_set_in_table
PARAMS ((rtx
, rtx
));
586 static unsigned int hash_expr
PARAMS ((rtx
, enum machine_mode
, int *, int));
587 static unsigned int hash_expr_1
PARAMS ((rtx
, enum machine_mode
, int *));
588 static unsigned int hash_string_1
PARAMS ((const char *));
589 static unsigned int hash_set
PARAMS ((int, int));
590 static int expr_equiv_p
PARAMS ((rtx
, rtx
));
591 static void record_last_reg_set_info
PARAMS ((rtx
, int));
592 static void record_last_mem_set_info
PARAMS ((rtx
));
593 static void record_last_set_info
PARAMS ((rtx
, rtx
, void *));
594 static void compute_hash_table
PARAMS ((int));
595 static void alloc_set_hash_table
PARAMS ((int));
596 static void free_set_hash_table
PARAMS ((void));
597 static void compute_set_hash_table
PARAMS ((void));
598 static void alloc_expr_hash_table
PARAMS ((unsigned int));
599 static void free_expr_hash_table
PARAMS ((void));
600 static void compute_expr_hash_table
PARAMS ((void));
601 static void dump_hash_table
PARAMS ((FILE *, const char *, struct expr
**,
603 static struct expr
*lookup_expr
PARAMS ((rtx
));
604 static struct expr
*lookup_set
PARAMS ((unsigned int, rtx
));
605 static struct expr
*next_set
PARAMS ((unsigned int, struct expr
*));
606 static void reset_opr_set_tables
PARAMS ((void));
607 static int oprs_not_set_p
PARAMS ((rtx
, rtx
));
608 static void mark_call
PARAMS ((rtx
));
609 static void mark_set
PARAMS ((rtx
, rtx
));
610 static void mark_clobber
PARAMS ((rtx
, rtx
));
611 static void mark_oprs_set
PARAMS ((rtx
));
612 static void alloc_cprop_mem
PARAMS ((int, int));
613 static void free_cprop_mem
PARAMS ((void));
614 static void compute_transp
PARAMS ((rtx
, int, sbitmap
*, int));
615 static void compute_transpout
PARAMS ((void));
616 static void compute_local_properties
PARAMS ((sbitmap
*, sbitmap
*, sbitmap
*,
618 static void compute_cprop_data
PARAMS ((void));
619 static void find_used_regs
PARAMS ((rtx
));
620 static int try_replace_reg
PARAMS ((rtx
, rtx
, rtx
));
621 static struct expr
*find_avail_set
PARAMS ((int, rtx
));
622 static int cprop_jump
PARAMS ((rtx
, rtx
, rtx
));
624 static int cprop_cc0_jump
PARAMS ((rtx
, struct reg_use
*, rtx
));
626 static void mems_conflict_for_gcse_p
PARAMS ((rtx
, rtx
, void *));
627 static int load_killed_in_block_p
PARAMS ((basic_block
, int, rtx
, int));
628 static void canon_list_insert
PARAMS ((rtx
, rtx
, void *));
629 static int cprop_insn
PARAMS ((rtx
, int));
630 static int cprop
PARAMS ((int));
631 static int one_cprop_pass
PARAMS ((int, int));
632 static void alloc_pre_mem
PARAMS ((int, int));
633 static void free_pre_mem
PARAMS ((void));
634 static void compute_pre_data
PARAMS ((void));
635 static int pre_expr_reaches_here_p
PARAMS ((basic_block
, struct expr
*,
637 static void insert_insn_end_bb
PARAMS ((struct expr
*, basic_block
, int));
638 static void pre_insert_copy_insn
PARAMS ((struct expr
*, rtx
));
639 static void pre_insert_copies
PARAMS ((void));
640 static int pre_delete
PARAMS ((void));
641 static int pre_gcse
PARAMS ((void));
642 static int one_pre_gcse_pass
PARAMS ((int));
643 static void add_label_notes
PARAMS ((rtx
, rtx
));
644 static void alloc_code_hoist_mem
PARAMS ((int, int));
645 static void free_code_hoist_mem
PARAMS ((void));
646 static void compute_code_hoist_vbeinout
PARAMS ((void));
647 static void compute_code_hoist_data
PARAMS ((void));
648 static int hoist_expr_reaches_here_p
PARAMS ((basic_block
, int, basic_block
,
650 static void hoist_code
PARAMS ((void));
651 static int one_code_hoisting_pass
PARAMS ((void));
652 static void alloc_rd_mem
PARAMS ((int, int));
653 static void free_rd_mem
PARAMS ((void));
654 static void handle_rd_kill_set
PARAMS ((rtx
, int, basic_block
));
655 static void compute_kill_rd
PARAMS ((void));
656 static void compute_rd
PARAMS ((void));
657 static void alloc_avail_expr_mem
PARAMS ((int, int));
658 static void free_avail_expr_mem
PARAMS ((void));
659 static void compute_ae_gen
PARAMS ((void));
660 static int expr_killed_p
PARAMS ((rtx
, basic_block
));
661 static void compute_ae_kill
PARAMS ((sbitmap
*, sbitmap
*));
662 static int expr_reaches_here_p
PARAMS ((struct occr
*, struct expr
*,
664 static rtx computing_insn
PARAMS ((struct expr
*, rtx
));
665 static int def_reaches_here_p
PARAMS ((rtx
, rtx
));
666 static int can_disregard_other_sets
PARAMS ((struct reg_set
**, rtx
, int));
667 static int handle_avail_expr
PARAMS ((rtx
, struct expr
*));
668 static int classic_gcse
PARAMS ((void));
669 static int one_classic_gcse_pass
PARAMS ((int));
670 static void invalidate_nonnull_info
PARAMS ((rtx
, rtx
, void *));
671 static void delete_null_pointer_checks_1
PARAMS ((varray_type
*, unsigned int *,
672 sbitmap
*, sbitmap
*,
673 struct null_pointer_info
*));
674 static rtx process_insert_insn
PARAMS ((struct expr
*));
675 static int pre_edge_insert
PARAMS ((struct edge_list
*, struct expr
**));
676 static int expr_reaches_here_p_work
PARAMS ((struct occr
*, struct expr
*,
677 basic_block
, int, char *));
678 static int pre_expr_reaches_here_p_work
PARAMS ((basic_block
, struct expr
*,
679 basic_block
, char *));
680 static struct ls_expr
* ldst_entry
PARAMS ((rtx
));
681 static void free_ldst_entry
PARAMS ((struct ls_expr
*));
682 static void free_ldst_mems
PARAMS ((void));
683 static void print_ldst_list
PARAMS ((FILE *));
684 static struct ls_expr
* find_rtx_in_ldst
PARAMS ((rtx
));
685 static int enumerate_ldsts
PARAMS ((void));
686 static inline struct ls_expr
* first_ls_expr
PARAMS ((void));
687 static inline struct ls_expr
* next_ls_expr
PARAMS ((struct ls_expr
*));
688 static int simple_mem
PARAMS ((rtx
));
689 static void invalidate_any_buried_refs
PARAMS ((rtx
));
690 static void compute_ld_motion_mems
PARAMS ((void));
691 static void trim_ld_motion_mems
PARAMS ((void));
692 static void update_ld_motion_stores
PARAMS ((struct expr
*));
693 static void reg_set_info
PARAMS ((rtx
, rtx
, void *));
694 static int store_ops_ok
PARAMS ((rtx
, basic_block
));
695 static void find_moveable_store
PARAMS ((rtx
));
696 static int compute_store_table
PARAMS ((void));
697 static int load_kills_store
PARAMS ((rtx
, rtx
));
698 static int find_loads
PARAMS ((rtx
, rtx
));
699 static int store_killed_in_insn
PARAMS ((rtx
, rtx
));
700 static int store_killed_after
PARAMS ((rtx
, rtx
, basic_block
));
701 static int store_killed_before
PARAMS ((rtx
, rtx
, basic_block
));
702 static void build_store_vectors
PARAMS ((void));
703 static void insert_insn_start_bb
PARAMS ((rtx
, basic_block
));
704 static int insert_store
PARAMS ((struct ls_expr
*, edge
));
705 static void replace_store_insn
PARAMS ((rtx
, rtx
, basic_block
));
706 static void delete_store
PARAMS ((struct ls_expr
*,
708 static void free_store_memory
PARAMS ((void));
709 static void store_motion
PARAMS ((void));
711 /* Entry point for global common subexpression elimination.
712 F is the first instruction in the function. */
720 /* Bytes used at start of pass. */
721 int initial_bytes_used
;
722 /* Maximum number of bytes used by a pass. */
724 /* Point to release obstack data from for each pass. */
725 char *gcse_obstack_bottom
;
727 /* Insertion of instructions on edges can create new basic blocks; we
728 need the original basic block count so that we can properly deallocate
729 arrays sized on the number of basic blocks originally in the cfg. */
731 /* We do not construct an accurate cfg in functions which call
732 setjmp, so just punt to be safe. */
733 if (current_function_calls_setjmp
)
736 /* Assume that we do not need to run jump optimizations after gcse. */
737 run_jump_opt_after_gcse
= 0;
739 /* For calling dump_foo fns from gdb. */
740 debug_stderr
= stderr
;
743 /* Identify the basic block information for this function, including
744 successors and predecessors. */
745 max_gcse_regno
= max_reg_num ();
748 dump_flow_info (file
);
750 orig_bb_count
= n_basic_blocks
;
751 /* Return if there's nothing to do. */
752 if (n_basic_blocks
<= 1)
755 /* Trying to perform global optimizations on flow graphs which have
756 a high connectivity will take a long time and is unlikely to be
759 In normal circumstances a cfg should have about twice as many edges
760 as blocks. But we do not want to punish small functions which have
761 a couple switch statements. So we require a relatively large number
762 of basic blocks and the ratio of edges to blocks to be high. */
763 if (n_basic_blocks
> 1000 && n_edges
/ n_basic_blocks
>= 20)
765 if (warn_disabled_optimization
)
766 warning ("GCSE disabled: %d > 1000 basic blocks and %d >= 20 edges/basic block",
767 n_basic_blocks
, n_edges
/ n_basic_blocks
);
771 /* If allocating memory for the cprop bitmap would take up too much
772 storage it's better just to disable the optimization. */
774 * SBITMAP_SET_SIZE (max_gcse_regno
)
775 * sizeof (SBITMAP_ELT_TYPE
)) > MAX_GCSE_MEMORY
)
777 if (warn_disabled_optimization
)
778 warning ("GCSE disabled: %d basic blocks and %d registers",
779 n_basic_blocks
, max_gcse_regno
);
784 /* See what modes support reg/reg copy operations. */
785 if (! can_copy_init_p
)
791 gcc_obstack_init (&gcse_obstack
);
795 init_alias_analysis ();
796 /* Record where pseudo-registers are set. This data is kept accurate
797 during each pass. ??? We could also record hard-reg information here
798 [since it's unchanging], however it is currently done during hash table
801 It may be tempting to compute MEM set information here too, but MEM sets
802 will be subject to code motion one day and thus we need to compute
803 information about memory sets when we build the hash tables. */
805 alloc_reg_set_mem (max_gcse_regno
);
809 initial_bytes_used
= bytes_used
;
811 gcse_obstack_bottom
= gcse_alloc (1);
813 while (changed
&& pass
< MAX_PASSES
)
817 fprintf (file
, "GCSE pass %d\n\n", pass
+ 1);
819 /* Initialize bytes_used to the space for the pred/succ lists,
820 and the reg_set_table data. */
821 bytes_used
= initial_bytes_used
;
823 /* Each pass may create new registers, so recalculate each time. */
824 max_gcse_regno
= max_reg_num ();
828 /* Don't allow constant propagation to modify jumps
830 changed
= one_cprop_pass (pass
+ 1, 0);
833 changed
|= one_classic_gcse_pass (pass
+ 1);
836 changed
|= one_pre_gcse_pass (pass
+ 1);
837 /* We may have just created new basic blocks. Release and
838 recompute various things which are sized on the number of
844 for (i
= 0; i
< orig_bb_count
; i
++)
846 if (modify_mem_list
[i
])
847 free_INSN_LIST_list (modify_mem_list
+ i
);
848 if (canon_modify_mem_list
[i
])
849 free_INSN_LIST_list (canon_modify_mem_list
+ i
);
852 = (rtx
*) gmalloc (n_basic_blocks
* sizeof (rtx
*));
853 canon_modify_mem_list
854 = (rtx
*) gmalloc (n_basic_blocks
* sizeof (rtx
*));
855 memset ((char *) modify_mem_list
, 0, n_basic_blocks
* sizeof (rtx
*));
856 memset ((char *) canon_modify_mem_list
, 0, n_basic_blocks
* sizeof (rtx
*));
857 orig_bb_count
= n_basic_blocks
;
860 alloc_reg_set_mem (max_reg_num ());
862 run_jump_opt_after_gcse
= 1;
865 if (max_pass_bytes
< bytes_used
)
866 max_pass_bytes
= bytes_used
;
868 /* Free up memory, then reallocate for code hoisting. We can
869 not re-use the existing allocated memory because the tables
870 will not have info for the insns or registers created by
871 partial redundancy elimination. */
874 /* It does not make sense to run code hoisting unless we optimizing
875 for code size -- it rarely makes programs faster, and can make
876 them bigger if we did partial redundancy elimination (when optimizing
877 for space, we use a classic gcse algorithm instead of partial
878 redundancy algorithms). */
881 max_gcse_regno
= max_reg_num ();
883 changed
|= one_code_hoisting_pass ();
886 if (max_pass_bytes
< bytes_used
)
887 max_pass_bytes
= bytes_used
;
892 fprintf (file
, "\n");
896 obstack_free (&gcse_obstack
, gcse_obstack_bottom
);
900 /* Do one last pass of copy propagation, including cprop into
901 conditional jumps. */
903 max_gcse_regno
= max_reg_num ();
905 /* This time, go ahead and allow cprop to alter jumps. */
906 one_cprop_pass (pass
+ 1, 1);
911 fprintf (file
, "GCSE of %s: %d basic blocks, ",
912 current_function_name
, n_basic_blocks
);
913 fprintf (file
, "%d pass%s, %d bytes\n\n",
914 pass
, pass
> 1 ? "es" : "", max_pass_bytes
);
917 obstack_free (&gcse_obstack
, NULL
);
919 /* We are finished with alias. */
920 end_alias_analysis ();
921 allocate_reg_info (max_reg_num (), FALSE
, FALSE
);
923 if (!optimize_size
&& flag_gcse_sm
)
925 /* Record where pseudo-registers are set. */
926 return run_jump_opt_after_gcse
;
929 /* Misc. utilities. */
931 /* Compute which modes support reg/reg copy operations. */
937 #ifndef AVOID_CCMODE_COPIES
940 memset (can_copy_p
, 0, NUM_MACHINE_MODES
);
943 for (i
= 0; i
< NUM_MACHINE_MODES
; i
++)
944 if (GET_MODE_CLASS (i
) == MODE_CC
)
946 #ifdef AVOID_CCMODE_COPIES
949 reg
= gen_rtx_REG ((enum machine_mode
) i
, LAST_VIRTUAL_REGISTER
+ 1);
950 insn
= emit_insn (gen_rtx_SET (VOIDmode
, reg
, reg
));
951 if (recog (PATTERN (insn
), insn
, NULL
) >= 0)
961 /* Cover function to xmalloc to record bytes allocated. */
968 return xmalloc (size
);
971 /* Cover function to xrealloc.
972 We don't record the additional size since we don't know it.
973 It won't affect memory usage stats much anyway. */
980 return xrealloc (ptr
, size
);
983 /* Cover function to obstack_alloc.
984 We don't need to record the bytes allocated here since
985 obstack_chunk_alloc is set to gmalloc. */
991 return (char *) obstack_alloc (&gcse_obstack
, size
);
994 /* Allocate memory for the cuid mapping array,
995 and reg/memory set tracking tables.
997 This is called at the start of each pass. */
1006 /* Find the largest UID and create a mapping from UIDs to CUIDs.
1007 CUIDs are like UIDs except they increase monotonically, have no gaps,
1008 and only apply to real insns. */
1010 max_uid
= get_max_uid ();
1011 n
= (max_uid
+ 1) * sizeof (int);
1012 uid_cuid
= (int *) gmalloc (n
);
1013 memset ((char *) uid_cuid
, 0, n
);
1014 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
1017 uid_cuid
[INSN_UID (insn
)] = i
++;
1019 uid_cuid
[INSN_UID (insn
)] = i
;
1022 /* Create a table mapping cuids to insns. */
1025 n
= (max_cuid
+ 1) * sizeof (rtx
);
1026 cuid_insn
= (rtx
*) gmalloc (n
);
1027 memset ((char *) cuid_insn
, 0, n
);
1028 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
1030 CUID_INSN (i
++) = insn
;
1032 /* Allocate vars to track sets of regs. */
1033 reg_set_bitmap
= (sbitmap
) sbitmap_alloc (max_gcse_regno
);
1035 /* Allocate vars to track sets of regs, memory per block. */
1036 reg_set_in_block
= (sbitmap
*) sbitmap_vector_alloc (n_basic_blocks
,
1038 mem_set_in_block
= (char *) gmalloc (n_basic_blocks
);
1039 /* Allocate array to keep a list of insns which modify memory in each
1041 modify_mem_list
= (rtx
*) gmalloc (n_basic_blocks
* sizeof (rtx
*));
1042 canon_modify_mem_list
= (rtx
*) gmalloc (n_basic_blocks
* sizeof (rtx
*));
1043 memset ((char *) modify_mem_list
, 0, n_basic_blocks
* sizeof (rtx
*));
1044 memset ((char *) canon_modify_mem_list
, 0, n_basic_blocks
* sizeof (rtx
*));
1047 /* Free memory allocated by alloc_gcse_mem. */
1055 free (reg_set_bitmap
);
1057 free (reg_set_in_block
);
1058 free (mem_set_in_block
);
1059 /* re-Cache any INSN_LIST nodes we have allocated. */
1063 for (i
= 0; i
< n_basic_blocks
; i
++)
1065 if (modify_mem_list
[i
])
1066 free_INSN_LIST_list (modify_mem_list
+ i
);
1067 if (canon_modify_mem_list
[i
])
1068 free_INSN_LIST_list (canon_modify_mem_list
+ i
);
1071 free (modify_mem_list
);
1072 free (canon_modify_mem_list
);
1073 modify_mem_list
= 0;
1074 canon_modify_mem_list
= 0;
1078 /* Many of the global optimization algorithms work by solving dataflow
1079 equations for various expressions. Initially, some local value is
1080 computed for each expression in each block. Then, the values across the
1081 various blocks are combined (by following flow graph edges) to arrive at
1082 global values. Conceptually, each set of equations is independent. We
1083 may therefore solve all the equations in parallel, solve them one at a
1084 time, or pick any intermediate approach.
1086 When you're going to need N two-dimensional bitmaps, each X (say, the
1087 number of blocks) by Y (say, the number of expressions), call this
1088 function. It's not important what X and Y represent; only that Y
1089 correspond to the things that can be done in parallel. This function will
1090 return an appropriate chunking factor C; you should solve C sets of
1091 equations in parallel. By going through this function, we can easily
1092 trade space against time; by solving fewer equations in parallel we use
1096 get_bitmap_width (n
, x
, y
)
1101 /* It's not really worth figuring out *exactly* how much memory will
1102 be used by a particular choice. The important thing is to get
1103 something approximately right. */
1104 size_t max_bitmap_memory
= 10 * 1024 * 1024;
1106 /* The number of bytes we'd use for a single column of minimum
1108 size_t column_size
= n
* x
* sizeof (SBITMAP_ELT_TYPE
);
1110 /* Often, it's reasonable just to solve all the equations in
1112 if (column_size
* SBITMAP_SET_SIZE (y
) <= max_bitmap_memory
)
1115 /* Otherwise, pick the largest width we can, without going over the
1117 return SBITMAP_ELT_BITS
* ((max_bitmap_memory
+ column_size
- 1)
1121 /* Compute the local properties of each recorded expression.
1123 Local properties are those that are defined by the block, irrespective of
1126 An expression is transparent in a block if its operands are not modified
1129 An expression is computed (locally available) in a block if it is computed
1130 at least once and expression would contain the same value if the
1131 computation was moved to the end of the block.
1133 An expression is locally anticipatable in a block if it is computed at
1134 least once and expression would contain the same value if the computation
1135 was moved to the beginning of the block.
1137 We call this routine for cprop, pre and code hoisting. They all compute
1138 basically the same information and thus can easily share this code.
1140 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1141 properties. If NULL, then it is not necessary to compute or record that
1142 particular property.
1144 SETP controls which hash table to look at. If zero, this routine looks at
1145 the expr hash table; if nonzero this routine looks at the set hash table.
1146 Additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1150 compute_local_properties (transp
, comp
, antloc
, setp
)
1156 unsigned int i
, hash_table_size
;
1157 struct expr
**hash_table
;
1159 /* Initialize any bitmaps that were passed in. */
1163 sbitmap_vector_zero (transp
, n_basic_blocks
);
1165 sbitmap_vector_ones (transp
, n_basic_blocks
);
1169 sbitmap_vector_zero (comp
, n_basic_blocks
);
1171 sbitmap_vector_zero (antloc
, n_basic_blocks
);
1173 /* We use the same code for cprop, pre and hoisting. For cprop
1174 we care about the set hash table, for pre and hoisting we
1175 care about the expr hash table. */
1176 hash_table_size
= setp
? set_hash_table_size
: expr_hash_table_size
;
1177 hash_table
= setp
? set_hash_table
: expr_hash_table
;
1179 for (i
= 0; i
< hash_table_size
; i
++)
1183 for (expr
= hash_table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
1185 int indx
= expr
->bitmap_index
;
1188 /* The expression is transparent in this block if it is not killed.
1189 We start by assuming all are transparent [none are killed], and
1190 then reset the bits for those that are. */
1192 compute_transp (expr
->expr
, indx
, transp
, setp
);
1194 /* The occurrences recorded in antic_occr are exactly those that
1195 we want to set to non-zero in ANTLOC. */
1197 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
1199 SET_BIT (antloc
[BLOCK_NUM (occr
->insn
)], indx
);
1201 /* While we're scanning the table, this is a good place to
1203 occr
->deleted_p
= 0;
1206 /* The occurrences recorded in avail_occr are exactly those that
1207 we want to set to non-zero in COMP. */
1209 for (occr
= expr
->avail_occr
; occr
!= NULL
; occr
= occr
->next
)
1211 SET_BIT (comp
[BLOCK_NUM (occr
->insn
)], indx
);
1213 /* While we're scanning the table, this is a good place to
1218 /* While we're scanning the table, this is a good place to
1220 expr
->reaching_reg
= 0;
1225 /* Register set information.
1227 `reg_set_table' records where each register is set or otherwise
1230 static struct obstack reg_set_obstack
;
1233 alloc_reg_set_mem (n_regs
)
1238 reg_set_table_size
= n_regs
+ REG_SET_TABLE_SLOP
;
1239 n
= reg_set_table_size
* sizeof (struct reg_set
*);
1240 reg_set_table
= (struct reg_set
**) gmalloc (n
);
1241 memset ((char *) reg_set_table
, 0, n
);
1243 gcc_obstack_init (®_set_obstack
);
1249 free (reg_set_table
);
1250 obstack_free (®_set_obstack
, NULL
);
1253 /* Record REGNO in the reg_set table. */
1256 record_one_set (regno
, insn
)
1260 /* Allocate a new reg_set element and link it onto the list. */
1261 struct reg_set
*new_reg_info
;
1263 /* If the table isn't big enough, enlarge it. */
1264 if (regno
>= reg_set_table_size
)
1266 int new_size
= regno
+ REG_SET_TABLE_SLOP
;
1269 = (struct reg_set
**) grealloc ((char *) reg_set_table
,
1270 new_size
* sizeof (struct reg_set
*));
1271 memset ((char *) (reg_set_table
+ reg_set_table_size
), 0,
1272 (new_size
- reg_set_table_size
) * sizeof (struct reg_set
*));
1273 reg_set_table_size
= new_size
;
1276 new_reg_info
= (struct reg_set
*) obstack_alloc (®_set_obstack
,
1277 sizeof (struct reg_set
));
1278 bytes_used
+= sizeof (struct reg_set
);
1279 new_reg_info
->insn
= insn
;
1280 new_reg_info
->next
= reg_set_table
[regno
];
1281 reg_set_table
[regno
] = new_reg_info
;
1284 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1285 an insn. The DATA is really the instruction in which the SET is
1289 record_set_info (dest
, setter
, data
)
1290 rtx dest
, setter ATTRIBUTE_UNUSED
;
1293 rtx record_set_insn
= (rtx
) data
;
1295 if (GET_CODE (dest
) == REG
&& REGNO (dest
) >= FIRST_PSEUDO_REGISTER
)
1296 record_one_set (REGNO (dest
), record_set_insn
);
1299 /* Scan the function and record each set of each pseudo-register.
1301 This is called once, at the start of the gcse pass. See the comments for
1302 `reg_set_table' for further documenation. */
1310 for (insn
= f
; insn
!= 0; insn
= NEXT_INSN (insn
))
1312 note_stores (PATTERN (insn
), record_set_info
, insn
);
1315 /* Hash table support. */
1317 /* For each register, the cuid of the first/last insn in the block to set it,
1318 or -1 if not set. */
1319 #define NEVER_SET -1
1320 static int *reg_first_set
;
1321 static int *reg_last_set
;
1323 /* While computing "first/last set" info, this is the CUID of first/last insn
1324 to set memory or -1 if not set. `mem_last_set' is also used when
1325 performing GCSE to record whether memory has been set since the beginning
1328 Note that handling of memory is very simple, we don't make any attempt
1329 to optimize things (later). */
1330 static int mem_first_set
;
1331 static int mem_last_set
;
1333 /* See whether X, the source of a set, is something we want to consider for
1340 static rtx test_insn
= 0;
1341 int num_clobbers
= 0;
1344 switch (GET_CODE (x
))
1357 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1358 if (general_operand (x
, GET_MODE (x
)))
1360 else if (GET_MODE (x
) == VOIDmode
)
1363 /* Otherwise, check if we can make a valid insn from it. First initialize
1364 our test insn if we haven't already. */
1368 = make_insn_raw (gen_rtx_SET (VOIDmode
,
1369 gen_rtx_REG (word_mode
,
1370 FIRST_PSEUDO_REGISTER
* 2),
1372 NEXT_INSN (test_insn
) = PREV_INSN (test_insn
) = 0;
1373 ggc_add_rtx_root (&test_insn
, 1);
1376 /* Now make an insn like the one we would make when GCSE'ing and see if
1378 PUT_MODE (SET_DEST (PATTERN (test_insn
)), GET_MODE (x
));
1379 SET_SRC (PATTERN (test_insn
)) = x
;
1380 return ((icode
= recog (PATTERN (test_insn
), test_insn
, &num_clobbers
)) >= 0
1381 && (num_clobbers
== 0 || ! added_clobbers_hard_reg_p (icode
)));
1384 /* Return non-zero if the operands of expression X are unchanged from the
1385 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1386 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1389 oprs_unchanged_p (x
, insn
, avail_p
)
1400 code
= GET_CODE (x
);
1405 return (reg_last_set
[REGNO (x
)] == NEVER_SET
1406 || reg_last_set
[REGNO (x
)] < INSN_CUID (insn
));
1408 return (reg_first_set
[REGNO (x
)] == NEVER_SET
1409 || reg_first_set
[REGNO (x
)] >= INSN_CUID (insn
));
1412 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn
), INSN_CUID (insn
),
1415 if (avail_p
&& mem_last_set
!= NEVER_SET
1416 && mem_last_set
>= INSN_CUID (insn
))
1418 else if (! avail_p
&& mem_first_set
!= NEVER_SET
1419 && mem_first_set
< INSN_CUID (insn
))
1422 return oprs_unchanged_p (XEXP (x
, 0), insn
, avail_p
);
1447 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
1451 /* If we are about to do the last recursive call needed at this
1452 level, change it into iteration. This function is called enough
1455 return oprs_unchanged_p (XEXP (x
, i
), insn
, avail_p
);
1457 else if (! oprs_unchanged_p (XEXP (x
, i
), insn
, avail_p
))
1460 else if (fmt
[i
] == 'E')
1461 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1462 if (! oprs_unchanged_p (XVECEXP (x
, i
, j
), insn
, avail_p
))
1469 /* Used for communication between mems_conflict_for_gcse_p and
1470 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1471 conflict between two memory references. */
1472 static int gcse_mems_conflict_p
;
1474 /* Used for communication between mems_conflict_for_gcse_p and
1475 load_killed_in_block_p. A memory reference for a load instruction,
1476 mems_conflict_for_gcse_p will see if a memory store conflicts with
1477 this memory load. */
1478 static rtx gcse_mem_operand
;
1480 /* DEST is the output of an instruction. If it is a memory reference, and
1481 possibly conflicts with the load found in gcse_mem_operand, then set
1482 gcse_mems_conflict_p to a nonzero value. */
1485 mems_conflict_for_gcse_p (dest
, setter
, data
)
1486 rtx dest
, setter ATTRIBUTE_UNUSED
;
1487 void *data ATTRIBUTE_UNUSED
;
1489 while (GET_CODE (dest
) == SUBREG
1490 || GET_CODE (dest
) == ZERO_EXTRACT
1491 || GET_CODE (dest
) == SIGN_EXTRACT
1492 || GET_CODE (dest
) == STRICT_LOW_PART
)
1493 dest
= XEXP (dest
, 0);
1495 /* If DEST is not a MEM, then it will not conflict with the load. Note
1496 that function calls are assumed to clobber memory, but are handled
1498 if (GET_CODE (dest
) != MEM
)
1501 /* If we are setting a MEM in our list of specially recognized MEMs,
1502 don't mark as killed this time. */
1504 if (dest
== gcse_mem_operand
&& pre_ldst_mems
!= NULL
)
1506 if (!find_rtx_in_ldst (dest
))
1507 gcse_mems_conflict_p
= 1;
1511 if (true_dependence (dest
, GET_MODE (dest
), gcse_mem_operand
,
1513 gcse_mems_conflict_p
= 1;
1516 /* Return nonzero if the expression in X (a memory reference) is killed
1517 in block BB before or after the insn with the CUID in UID_LIMIT.
1518 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1521 To check the entire block, set UID_LIMIT to max_uid + 1 and
1525 load_killed_in_block_p (bb
, uid_limit
, x
, avail_p
)
1531 rtx list_entry
= modify_mem_list
[bb
->index
];
1535 /* Ignore entries in the list that do not apply. */
1537 && INSN_CUID (XEXP (list_entry
, 0)) < uid_limit
)
1539 && INSN_CUID (XEXP (list_entry
, 0)) > uid_limit
))
1541 list_entry
= XEXP (list_entry
, 1);
1545 setter
= XEXP (list_entry
, 0);
1547 /* If SETTER is a call everything is clobbered. Note that calls
1548 to pure functions are never put on the list, so we need not
1549 worry about them. */
1550 if (GET_CODE (setter
) == CALL_INSN
)
1553 /* SETTER must be an INSN of some kind that sets memory. Call
1554 note_stores to examine each hunk of memory that is modified.
1556 The note_stores interface is pretty limited, so we have to
1557 communicate via global variables. Yuk. */
1558 gcse_mem_operand
= x
;
1559 gcse_mems_conflict_p
= 0;
1560 note_stores (PATTERN (setter
), mems_conflict_for_gcse_p
, NULL
);
1561 if (gcse_mems_conflict_p
)
1563 list_entry
= XEXP (list_entry
, 1);
1568 /* Return non-zero if the operands of expression X are unchanged from
1569 the start of INSN's basic block up to but not including INSN. */
1572 oprs_anticipatable_p (x
, insn
)
1575 return oprs_unchanged_p (x
, insn
, 0);
1578 /* Return non-zero if the operands of expression X are unchanged from
1579 INSN to the end of INSN's basic block. */
1582 oprs_available_p (x
, insn
)
1585 return oprs_unchanged_p (x
, insn
, 1);
1588 /* Hash expression X.
1590 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1591 indicating if a volatile operand is found or if the expression contains
1592 something we don't want to insert in the table.
1594 ??? One might want to merge this with canon_hash. Later. */
1597 hash_expr (x
, mode
, do_not_record_p
, hash_table_size
)
1599 enum machine_mode mode
;
1600 int *do_not_record_p
;
1601 int hash_table_size
;
1605 *do_not_record_p
= 0;
1607 hash
= hash_expr_1 (x
, mode
, do_not_record_p
);
1608 return hash
% hash_table_size
;
1611 /* Hash a string. Just add its bytes up. */
1613 static inline unsigned
1618 const unsigned char *p
= (const unsigned char *)ps
;
1627 /* Subroutine of hash_expr to do the actual work. */
1630 hash_expr_1 (x
, mode
, do_not_record_p
)
1632 enum machine_mode mode
;
1633 int *do_not_record_p
;
1640 /* Used to turn recursion into iteration. We can't rely on GCC's
1641 tail-recursion eliminatio since we need to keep accumulating values
1648 code
= GET_CODE (x
);
1652 hash
+= ((unsigned int) REG
<< 7) + REGNO (x
);
1656 hash
+= (((unsigned int) CONST_INT
<< 7) + (unsigned int) mode
1657 + (unsigned int) INTVAL (x
));
1661 /* This is like the general case, except that it only counts
1662 the integers representing the constant. */
1663 hash
+= (unsigned int) code
+ (unsigned int) GET_MODE (x
);
1664 if (GET_MODE (x
) != VOIDmode
)
1665 for (i
= 2; i
< GET_RTX_LENGTH (CONST_DOUBLE
); i
++)
1666 hash
+= (unsigned int) XWINT (x
, i
);
1668 hash
+= ((unsigned int) CONST_DOUBLE_LOW (x
)
1669 + (unsigned int) CONST_DOUBLE_HIGH (x
));
1672 /* Assume there is only one rtx object for any given label. */
1674 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1675 differences and differences between each stage's debugging dumps. */
1676 hash
+= (((unsigned int) LABEL_REF
<< 7)
1677 + CODE_LABEL_NUMBER (XEXP (x
, 0)));
1682 /* Don't hash on the symbol's address to avoid bootstrap differences.
1683 Different hash values may cause expressions to be recorded in
1684 different orders and thus different registers to be used in the
1685 final assembler. This also avoids differences in the dump files
1686 between various stages. */
1688 const unsigned char *p
= (const unsigned char *) XSTR (x
, 0);
1691 h
+= (h
<< 7) + *p
++; /* ??? revisit */
1693 hash
+= ((unsigned int) SYMBOL_REF
<< 7) + h
;
1698 if (MEM_VOLATILE_P (x
))
1700 *do_not_record_p
= 1;
1704 hash
+= (unsigned int) MEM
;
1705 hash
+= MEM_ALIAS_SET (x
);
1716 case UNSPEC_VOLATILE
:
1717 *do_not_record_p
= 1;
1721 if (MEM_VOLATILE_P (x
))
1723 *do_not_record_p
= 1;
1728 /* We don't want to take the filename and line into account. */
1729 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
)
1730 + hash_string_1 (ASM_OPERANDS_TEMPLATE (x
))
1731 + hash_string_1 (ASM_OPERANDS_OUTPUT_CONSTRAINT (x
))
1732 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x
);
1734 if (ASM_OPERANDS_INPUT_LENGTH (x
))
1736 for (i
= 1; i
< ASM_OPERANDS_INPUT_LENGTH (x
); i
++)
1738 hash
+= (hash_expr_1 (ASM_OPERANDS_INPUT (x
, i
),
1739 GET_MODE (ASM_OPERANDS_INPUT (x
, i
)),
1741 + hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT
1745 hash
+= hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT (x
, 0));
1746 x
= ASM_OPERANDS_INPUT (x
, 0);
1747 mode
= GET_MODE (x
);
1757 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
);
1758 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
1762 /* If we are about to do the last recursive call
1763 needed at this level, change it into iteration.
1764 This function is called enough to be worth it. */
1771 hash
+= hash_expr_1 (XEXP (x
, i
), 0, do_not_record_p
);
1772 if (*do_not_record_p
)
1776 else if (fmt
[i
] == 'E')
1777 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1779 hash
+= hash_expr_1 (XVECEXP (x
, i
, j
), 0, do_not_record_p
);
1780 if (*do_not_record_p
)
1784 else if (fmt
[i
] == 's')
1785 hash
+= hash_string_1 (XSTR (x
, i
));
1786 else if (fmt
[i
] == 'i')
1787 hash
+= (unsigned int) XINT (x
, i
);
1795 /* Hash a set of register REGNO.
1797 Sets are hashed on the register that is set. This simplifies the PRE copy
1800 ??? May need to make things more elaborate. Later, as necessary. */
1803 hash_set (regno
, hash_table_size
)
1805 int hash_table_size
;
1810 return hash
% hash_table_size
;
1813 /* Return non-zero if exp1 is equivalent to exp2.
1814 ??? Borrowed from cse.c. Might want to remerge with cse.c. Later. */
1821 register enum rtx_code code
;
1822 register const char *fmt
;
1827 if (x
== 0 || y
== 0)
1830 code
= GET_CODE (x
);
1831 if (code
!= GET_CODE (y
))
1834 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1835 if (GET_MODE (x
) != GET_MODE (y
))
1845 return INTVAL (x
) == INTVAL (y
);
1848 return XEXP (x
, 0) == XEXP (y
, 0);
1851 return XSTR (x
, 0) == XSTR (y
, 0);
1854 return REGNO (x
) == REGNO (y
);
1857 /* Can't merge two expressions in different alias sets, since we can
1858 decide that the expression is transparent in a block when it isn't,
1859 due to it being set with the different alias set. */
1860 if (MEM_ALIAS_SET (x
) != MEM_ALIAS_SET (y
))
1864 /* For commutative operations, check both orders. */
1872 return ((expr_equiv_p (XEXP (x
, 0), XEXP (y
, 0))
1873 && expr_equiv_p (XEXP (x
, 1), XEXP (y
, 1)))
1874 || (expr_equiv_p (XEXP (x
, 0), XEXP (y
, 1))
1875 && expr_equiv_p (XEXP (x
, 1), XEXP (y
, 0))));
1878 /* We don't use the generic code below because we want to
1879 disregard filename and line numbers. */
1881 /* A volatile asm isn't equivalent to any other. */
1882 if (MEM_VOLATILE_P (x
) || MEM_VOLATILE_P (y
))
1885 if (GET_MODE (x
) != GET_MODE (y
)
1886 || strcmp (ASM_OPERANDS_TEMPLATE (x
), ASM_OPERANDS_TEMPLATE (y
))
1887 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x
),
1888 ASM_OPERANDS_OUTPUT_CONSTRAINT (y
))
1889 || ASM_OPERANDS_OUTPUT_IDX (x
) != ASM_OPERANDS_OUTPUT_IDX (y
)
1890 || ASM_OPERANDS_INPUT_LENGTH (x
) != ASM_OPERANDS_INPUT_LENGTH (y
))
1893 if (ASM_OPERANDS_INPUT_LENGTH (x
))
1895 for (i
= ASM_OPERANDS_INPUT_LENGTH (x
) - 1; i
>= 0; i
--)
1896 if (! expr_equiv_p (ASM_OPERANDS_INPUT (x
, i
),
1897 ASM_OPERANDS_INPUT (y
, i
))
1898 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x
, i
),
1899 ASM_OPERANDS_INPUT_CONSTRAINT (y
, i
)))
1909 /* Compare the elements. If any pair of corresponding elements
1910 fail to match, return 0 for the whole thing. */
1912 fmt
= GET_RTX_FORMAT (code
);
1913 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1918 if (! expr_equiv_p (XEXP (x
, i
), XEXP (y
, i
)))
1923 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1925 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1926 if (! expr_equiv_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
)))
1931 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1936 if (XINT (x
, i
) != XINT (y
, i
))
1941 if (XWINT (x
, i
) != XWINT (y
, i
))
1956 /* Insert expression X in INSN in the hash table.
1957 If it is already present, record it as the last occurrence in INSN's
1960 MODE is the mode of the value X is being stored into.
1961 It is only used if X is a CONST_INT.
1963 ANTIC_P is non-zero if X is an anticipatable expression.
1964 AVAIL_P is non-zero if X is an available expression. */
1967 insert_expr_in_table (x
, mode
, insn
, antic_p
, avail_p
)
1969 enum machine_mode mode
;
1971 int antic_p
, avail_p
;
1973 int found
, do_not_record_p
;
1975 struct expr
*cur_expr
, *last_expr
= NULL
;
1976 struct occr
*antic_occr
, *avail_occr
;
1977 struct occr
*last_occr
= NULL
;
1979 hash
= hash_expr (x
, mode
, &do_not_record_p
, expr_hash_table_size
);
1981 /* Do not insert expression in table if it contains volatile operands,
1982 or if hash_expr determines the expression is something we don't want
1983 to or can't handle. */
1984 if (do_not_record_p
)
1987 cur_expr
= expr_hash_table
[hash
];
1990 while (cur_expr
&& 0 == (found
= expr_equiv_p (cur_expr
->expr
, x
)))
1992 /* If the expression isn't found, save a pointer to the end of
1994 last_expr
= cur_expr
;
1995 cur_expr
= cur_expr
->next_same_hash
;
2000 cur_expr
= (struct expr
*) gcse_alloc (sizeof (struct expr
));
2001 bytes_used
+= sizeof (struct expr
);
2002 if (expr_hash_table
[hash
] == NULL
)
2003 /* This is the first pattern that hashed to this index. */
2004 expr_hash_table
[hash
] = cur_expr
;
2006 /* Add EXPR to end of this hash chain. */
2007 last_expr
->next_same_hash
= cur_expr
;
2009 /* Set the fields of the expr element. */
2011 cur_expr
->bitmap_index
= n_exprs
++;
2012 cur_expr
->next_same_hash
= NULL
;
2013 cur_expr
->antic_occr
= NULL
;
2014 cur_expr
->avail_occr
= NULL
;
2017 /* Now record the occurrence(s). */
2020 antic_occr
= cur_expr
->antic_occr
;
2022 /* Search for another occurrence in the same basic block. */
2023 while (antic_occr
&& BLOCK_NUM (antic_occr
->insn
) != BLOCK_NUM (insn
))
2025 /* If an occurrence isn't found, save a pointer to the end of
2027 last_occr
= antic_occr
;
2028 antic_occr
= antic_occr
->next
;
2032 /* Found another instance of the expression in the same basic block.
2033 Prefer the currently recorded one. We want the first one in the
2034 block and the block is scanned from start to end. */
2035 ; /* nothing to do */
2038 /* First occurrence of this expression in this basic block. */
2039 antic_occr
= (struct occr
*) gcse_alloc (sizeof (struct occr
));
2040 bytes_used
+= sizeof (struct occr
);
2041 /* First occurrence of this expression in any block? */
2042 if (cur_expr
->antic_occr
== NULL
)
2043 cur_expr
->antic_occr
= antic_occr
;
2045 last_occr
->next
= antic_occr
;
2047 antic_occr
->insn
= insn
;
2048 antic_occr
->next
= NULL
;
2054 avail_occr
= cur_expr
->avail_occr
;
2056 /* Search for another occurrence in the same basic block. */
2057 while (avail_occr
&& BLOCK_NUM (avail_occr
->insn
) != BLOCK_NUM (insn
))
2059 /* If an occurrence isn't found, save a pointer to the end of
2061 last_occr
= avail_occr
;
2062 avail_occr
= avail_occr
->next
;
2066 /* Found another instance of the expression in the same basic block.
2067 Prefer this occurrence to the currently recorded one. We want
2068 the last one in the block and the block is scanned from start
2070 avail_occr
->insn
= insn
;
2073 /* First occurrence of this expression in this basic block. */
2074 avail_occr
= (struct occr
*) gcse_alloc (sizeof (struct occr
));
2075 bytes_used
+= sizeof (struct occr
);
2077 /* First occurrence of this expression in any block? */
2078 if (cur_expr
->avail_occr
== NULL
)
2079 cur_expr
->avail_occr
= avail_occr
;
2081 last_occr
->next
= avail_occr
;
2083 avail_occr
->insn
= insn
;
2084 avail_occr
->next
= NULL
;
2089 /* Insert pattern X in INSN in the hash table.
2090 X is a SET of a reg to either another reg or a constant.
2091 If it is already present, record it as the last occurrence in INSN's
2095 insert_set_in_table (x
, insn
)
2101 struct expr
*cur_expr
, *last_expr
= NULL
;
2102 struct occr
*cur_occr
, *last_occr
= NULL
;
2104 if (GET_CODE (x
) != SET
2105 || GET_CODE (SET_DEST (x
)) != REG
)
2108 hash
= hash_set (REGNO (SET_DEST (x
)), set_hash_table_size
);
2110 cur_expr
= set_hash_table
[hash
];
2113 while (cur_expr
&& 0 == (found
= expr_equiv_p (cur_expr
->expr
, x
)))
2115 /* If the expression isn't found, save a pointer to the end of
2117 last_expr
= cur_expr
;
2118 cur_expr
= cur_expr
->next_same_hash
;
2123 cur_expr
= (struct expr
*) gcse_alloc (sizeof (struct expr
));
2124 bytes_used
+= sizeof (struct expr
);
2125 if (set_hash_table
[hash
] == NULL
)
2126 /* This is the first pattern that hashed to this index. */
2127 set_hash_table
[hash
] = cur_expr
;
2129 /* Add EXPR to end of this hash chain. */
2130 last_expr
->next_same_hash
= cur_expr
;
2132 /* Set the fields of the expr element.
2133 We must copy X because it can be modified when copy propagation is
2134 performed on its operands. */
2135 cur_expr
->expr
= copy_rtx (x
);
2136 cur_expr
->bitmap_index
= n_sets
++;
2137 cur_expr
->next_same_hash
= NULL
;
2138 cur_expr
->antic_occr
= NULL
;
2139 cur_expr
->avail_occr
= NULL
;
2142 /* Now record the occurrence. */
2143 cur_occr
= cur_expr
->avail_occr
;
2145 /* Search for another occurrence in the same basic block. */
2146 while (cur_occr
&& BLOCK_NUM (cur_occr
->insn
) != BLOCK_NUM (insn
))
2148 /* If an occurrence isn't found, save a pointer to the end of
2150 last_occr
= cur_occr
;
2151 cur_occr
= cur_occr
->next
;
2155 /* Found another instance of the expression in the same basic block.
2156 Prefer this occurrence to the currently recorded one. We want the
2157 last one in the block and the block is scanned from start to end. */
2158 cur_occr
->insn
= insn
;
2161 /* First occurrence of this expression in this basic block. */
2162 cur_occr
= (struct occr
*) gcse_alloc (sizeof (struct occr
));
2163 bytes_used
+= sizeof (struct occr
);
2165 /* First occurrence of this expression in any block? */
2166 if (cur_expr
->avail_occr
== NULL
)
2167 cur_expr
->avail_occr
= cur_occr
;
2169 last_occr
->next
= cur_occr
;
2171 cur_occr
->insn
= insn
;
2172 cur_occr
->next
= NULL
;
2176 /* Scan pattern PAT of INSN and add an entry to the hash table. If SET_P is
2177 non-zero, this is for the assignment hash table, otherwise it is for the
2178 expression hash table. */
2181 hash_scan_set (pat
, insn
, set_p
)
2185 rtx src
= SET_SRC (pat
);
2186 rtx dest
= SET_DEST (pat
);
2189 if (GET_CODE (src
) == CALL
)
2190 hash_scan_call (src
, insn
);
2192 else if (GET_CODE (dest
) == REG
)
2194 unsigned int regno
= REGNO (dest
);
2197 /* If this is a single set and we are doing constant propagation,
2198 see if a REG_NOTE shows this equivalent to a constant. */
2199 if (set_p
&& (note
= find_reg_equal_equiv_note (insn
)) != 0
2200 && CONSTANT_P (XEXP (note
, 0)))
2201 src
= XEXP (note
, 0), pat
= gen_rtx_SET (VOIDmode
, dest
, src
);
2203 /* Only record sets of pseudo-regs in the hash table. */
2205 && regno
>= FIRST_PSEUDO_REGISTER
2206 /* Don't GCSE something if we can't do a reg/reg copy. */
2207 && can_copy_p
[GET_MODE (dest
)]
2208 /* Is SET_SRC something we want to gcse? */
2209 && want_to_gcse_p (src
)
2210 /* Don't CSE a nop. */
2211 && ! set_noop_p (pat
)
2212 /* Don't GCSE if it has attached REG_EQUIV note.
2213 At this point this only function parameters should have
2214 REG_EQUIV notes and if the argument slot is used somewhere
2215 explicitely, it means address of parameter has been taken,
2216 so we should not extend the lifetime of the pseudo. */
2217 && ((note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) == 0
2218 || GET_CODE (XEXP (note
, 0)) != MEM
))
2220 /* An expression is not anticipatable if its operands are
2221 modified before this insn or if this is not the only SET in
2223 int antic_p
= oprs_anticipatable_p (src
, insn
) && single_set (insn
);
2224 /* An expression is not available if its operands are
2225 subsequently modified, including this insn. */
2226 int avail_p
= oprs_available_p (src
, insn
);
2228 insert_expr_in_table (src
, GET_MODE (dest
), insn
, antic_p
, avail_p
);
2231 /* Record sets for constant/copy propagation. */
2233 && regno
>= FIRST_PSEUDO_REGISTER
2234 && ((GET_CODE (src
) == REG
2235 && REGNO (src
) >= FIRST_PSEUDO_REGISTER
2236 && can_copy_p
[GET_MODE (dest
)]
2237 && REGNO (src
) != regno
)
2238 || GET_CODE (src
) == CONST_INT
2239 || GET_CODE (src
) == SYMBOL_REF
2240 || GET_CODE (src
) == CONST_DOUBLE
)
2241 /* A copy is not available if its src or dest is subsequently
2242 modified. Here we want to search from INSN+1 on, but
2243 oprs_available_p searches from INSN on. */
2244 && (insn
== BLOCK_END (BLOCK_NUM (insn
))
2245 || ((tmp
= next_nonnote_insn (insn
)) != NULL_RTX
2246 && oprs_available_p (pat
, tmp
))))
2247 insert_set_in_table (pat
, insn
);
2252 hash_scan_clobber (x
, insn
)
2253 rtx x ATTRIBUTE_UNUSED
, insn ATTRIBUTE_UNUSED
;
2255 /* Currently nothing to do. */
2259 hash_scan_call (x
, insn
)
2260 rtx x ATTRIBUTE_UNUSED
, insn ATTRIBUTE_UNUSED
;
2262 /* Currently nothing to do. */
2265 /* Process INSN and add hash table entries as appropriate.
2267 Only available expressions that set a single pseudo-reg are recorded.
2269 Single sets in a PARALLEL could be handled, but it's an extra complication
2270 that isn't dealt with right now. The trick is handling the CLOBBERs that
2271 are also in the PARALLEL. Later.
2273 If SET_P is non-zero, this is for the assignment hash table,
2274 otherwise it is for the expression hash table.
2275 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
2276 not record any expressions. */
2279 hash_scan_insn (insn
, set_p
, in_libcall_block
)
2282 int in_libcall_block
;
2284 rtx pat
= PATTERN (insn
);
2287 if (in_libcall_block
)
2290 /* Pick out the sets of INSN and for other forms of instructions record
2291 what's been modified. */
2293 if (GET_CODE (pat
) == SET
)
2294 hash_scan_set (pat
, insn
, set_p
);
2295 else if (GET_CODE (pat
) == PARALLEL
)
2296 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
2298 rtx x
= XVECEXP (pat
, 0, i
);
2300 if (GET_CODE (x
) == SET
)
2301 hash_scan_set (x
, insn
, set_p
);
2302 else if (GET_CODE (x
) == CLOBBER
)
2303 hash_scan_clobber (x
, insn
);
2304 else if (GET_CODE (x
) == CALL
)
2305 hash_scan_call (x
, insn
);
2308 else if (GET_CODE (pat
) == CLOBBER
)
2309 hash_scan_clobber (pat
, insn
);
2310 else if (GET_CODE (pat
) == CALL
)
2311 hash_scan_call (pat
, insn
);
2315 dump_hash_table (file
, name
, table
, table_size
, total_size
)
2318 struct expr
**table
;
2319 int table_size
, total_size
;
2322 /* Flattened out table, so it's printed in proper order. */
2323 struct expr
**flat_table
;
2324 unsigned int *hash_val
;
2328 = (struct expr
**) xcalloc (total_size
, sizeof (struct expr
*));
2329 hash_val
= (unsigned int *) xmalloc (total_size
* sizeof (unsigned int));
2331 for (i
= 0; i
< table_size
; i
++)
2332 for (expr
= table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
2334 flat_table
[expr
->bitmap_index
] = expr
;
2335 hash_val
[expr
->bitmap_index
] = i
;
2338 fprintf (file
, "%s hash table (%d buckets, %d entries)\n",
2339 name
, table_size
, total_size
);
2341 for (i
= 0; i
< total_size
; i
++)
2342 if (flat_table
[i
] != 0)
2344 expr
= flat_table
[i
];
2345 fprintf (file
, "Index %d (hash value %d)\n ",
2346 expr
->bitmap_index
, hash_val
[i
]);
2347 print_rtl (file
, expr
->expr
);
2348 fprintf (file
, "\n");
2351 fprintf (file
, "\n");
2357 /* Record register first/last/block set information for REGNO in INSN.
2359 reg_first_set records the first place in the block where the register
2360 is set and is used to compute "anticipatability".
2362 reg_last_set records the last place in the block where the register
2363 is set and is used to compute "availability".
2365 reg_set_in_block records whether the register is set in the block
2366 and is used to compute "transparency". */
2369 record_last_reg_set_info (insn
, regno
)
2373 if (reg_first_set
[regno
] == NEVER_SET
)
2374 reg_first_set
[regno
] = INSN_CUID (insn
);
2376 reg_last_set
[regno
] = INSN_CUID (insn
);
2377 SET_BIT (reg_set_in_block
[BLOCK_NUM (insn
)], regno
);
2381 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
2382 Note we store a pair of elements in the list, so they have to be
2383 taken off pairwise. */
2386 canon_list_insert (dest
, unused1
, v_insn
)
2387 rtx dest ATTRIBUTE_UNUSED
;
2388 rtx unused1 ATTRIBUTE_UNUSED
;
2391 rtx dest_addr
, insn
;
2393 while (GET_CODE (dest
) == SUBREG
2394 || GET_CODE (dest
) == ZERO_EXTRACT
2395 || GET_CODE (dest
) == SIGN_EXTRACT
2396 || GET_CODE (dest
) == STRICT_LOW_PART
)
2397 dest
= XEXP (dest
, 0);
2399 /* If DEST is not a MEM, then it will not conflict with a load. Note
2400 that function calls are assumed to clobber memory, but are handled
2403 if (GET_CODE (dest
) != MEM
)
2406 dest_addr
= get_addr (XEXP (dest
, 0));
2407 dest_addr
= canon_rtx (dest_addr
);
2408 insn
= (rtx
) v_insn
;
2410 canon_modify_mem_list
[BLOCK_NUM (insn
)] =
2411 alloc_INSN_LIST (dest_addr
, canon_modify_mem_list
[BLOCK_NUM (insn
)]);
2412 canon_modify_mem_list
[BLOCK_NUM (insn
)] =
2413 alloc_INSN_LIST (dest
, canon_modify_mem_list
[BLOCK_NUM (insn
)]);
2416 /* Record memory first/last/block set information for INSN. */
2417 /* Record memory modification information for INSN. We do not actually care
2418 about the memory location(s) that are set, or even how they are set (consider
2419 a CALL_INSN). We merely need to record which insns modify memory. */
2422 record_last_mem_set_info (insn
)
2425 if (mem_first_set
== NEVER_SET
)
2426 mem_first_set
= INSN_CUID (insn
);
2428 mem_last_set
= INSN_CUID (insn
);
2429 mem_set_in_block
[BLOCK_NUM (insn
)] = 1;
2430 modify_mem_list
[BLOCK_NUM (insn
)] =
2431 alloc_INSN_LIST (insn
, modify_mem_list
[BLOCK_NUM (insn
)]);
2433 if (GET_CODE (insn
) == CALL_INSN
)
2435 /* Note that traversals of this loop (other than for free-ing)
2436 will break after encountering a CALL_INSN. So, there's no
2437 need to insert a pair of items, as canon_list_insert does. */
2438 canon_modify_mem_list
[BLOCK_NUM (insn
)] =
2439 alloc_INSN_LIST (insn
, canon_modify_mem_list
[BLOCK_NUM (insn
)]);
2442 note_stores (PATTERN (insn
), canon_list_insert
, (void*)insn
);
2445 /* Called from compute_hash_table via note_stores to handle one
2446 SET or CLOBBER in an insn. DATA is really the instruction in which
2447 the SET is taking place. */
2450 record_last_set_info (dest
, setter
, data
)
2451 rtx dest
, setter ATTRIBUTE_UNUSED
;
2454 rtx last_set_insn
= (rtx
) data
;
2456 if (GET_CODE (dest
) == SUBREG
)
2457 dest
= SUBREG_REG (dest
);
2459 if (GET_CODE (dest
) == REG
)
2460 record_last_reg_set_info (last_set_insn
, REGNO (dest
));
2461 else if (GET_CODE (dest
) == MEM
2462 /* Ignore pushes, they clobber nothing. */
2463 && ! push_operand (dest
, GET_MODE (dest
)))
2464 record_last_mem_set_info (last_set_insn
);
2467 /* Top level function to create an expression or assignment hash table.
2469 Expression entries are placed in the hash table if
2470 - they are of the form (set (pseudo-reg) src),
2471 - src is something we want to perform GCSE on,
2472 - none of the operands are subsequently modified in the block
2474 Assignment entries are placed in the hash table if
2475 - they are of the form (set (pseudo-reg) src),
2476 - src is something we want to perform const/copy propagation on,
2477 - none of the operands or target are subsequently modified in the block
2479 Currently src must be a pseudo-reg or a const_int.
2481 F is the first insn.
2482 SET_P is non-zero for computing the assignment hash table. */
2485 compute_hash_table (set_p
)
2490 /* While we compute the hash table we also compute a bit array of which
2491 registers are set in which blocks.
2492 We also compute which blocks set memory, in the absence of aliasing
2493 support [which is TODO].
2494 ??? This isn't needed during const/copy propagation, but it's cheap to
2496 sbitmap_vector_zero (reg_set_in_block
, n_basic_blocks
);
2497 memset ((char *) mem_set_in_block
, 0, n_basic_blocks
);
2499 /* re-Cache any INSN_LIST nodes we have allocated. */
2502 for (i
= 0; i
< n_basic_blocks
; i
++)
2504 if (modify_mem_list
[i
])
2505 free_INSN_LIST_list (modify_mem_list
+ i
);
2506 if (canon_modify_mem_list
[i
])
2507 free_INSN_LIST_list (canon_modify_mem_list
+ i
);
2510 /* Some working arrays used to track first and last set in each block. */
2511 /* ??? One could use alloca here, but at some size a threshold is crossed
2512 beyond which one should use malloc. Are we at that threshold here? */
2513 reg_first_set
= (int *) gmalloc (max_gcse_regno
* sizeof (int));
2514 reg_last_set
= (int *) gmalloc (max_gcse_regno
* sizeof (int));
2516 for (bb
= 0; bb
< n_basic_blocks
; bb
++)
2520 int in_libcall_block
;
2523 /* First pass over the instructions records information used to
2524 determine when registers and memory are first and last set.
2525 ??? The mem_set_in_block and hard-reg reg_set_in_block computation
2526 could be moved to compute_sets since they currently don't change. */
2528 for (i
= 0; i
< max_gcse_regno
; i
++)
2529 reg_first_set
[i
] = reg_last_set
[i
] = NEVER_SET
;
2531 mem_first_set
= NEVER_SET
;
2532 mem_last_set
= NEVER_SET
;
2534 for (insn
= BLOCK_HEAD (bb
);
2535 insn
&& insn
!= NEXT_INSN (BLOCK_END (bb
));
2536 insn
= NEXT_INSN (insn
))
2538 #ifdef NON_SAVING_SETJMP
2539 if (NON_SAVING_SETJMP
&& GET_CODE (insn
) == NOTE
2540 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_SETJMP
)
2542 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
2543 record_last_reg_set_info (insn
, regno
);
2548 if (! INSN_P (insn
))
2551 if (GET_CODE (insn
) == CALL_INSN
)
2553 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
2554 if ((call_used_regs
[regno
]
2555 && regno
!= STACK_POINTER_REGNUM
2556 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2557 && regno
!= HARD_FRAME_POINTER_REGNUM
2559 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2560 && ! (regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
2562 #if !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
2563 && ! (regno
== PIC_OFFSET_TABLE_REGNUM
&& flag_pic
)
2566 && regno
!= FRAME_POINTER_REGNUM
)
2567 || global_regs
[regno
])
2568 record_last_reg_set_info (insn
, regno
);
2570 if (! CONST_CALL_P (insn
))
2571 record_last_mem_set_info (insn
);
2574 note_stores (PATTERN (insn
), record_last_set_info
, insn
);
2577 /* The next pass builds the hash table. */
2579 for (insn
= BLOCK_HEAD (bb
), in_libcall_block
= 0;
2580 insn
&& insn
!= NEXT_INSN (BLOCK_END (bb
));
2581 insn
= NEXT_INSN (insn
))
2584 if (find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
))
2585 in_libcall_block
= 1;
2586 else if (find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
2587 in_libcall_block
= 0;
2588 hash_scan_insn (insn
, set_p
, in_libcall_block
);
2592 free (reg_first_set
);
2593 free (reg_last_set
);
2595 /* Catch bugs early. */
2596 reg_first_set
= reg_last_set
= 0;
2599 /* Allocate space for the set hash table.
2600 N_INSNS is the number of instructions in the function.
2601 It is used to determine the number of buckets to use. */
2604 alloc_set_hash_table (n_insns
)
2609 set_hash_table_size
= n_insns
/ 4;
2610 if (set_hash_table_size
< 11)
2611 set_hash_table_size
= 11;
2613 /* Attempt to maintain efficient use of hash table.
2614 Making it an odd number is simplest for now.
2615 ??? Later take some measurements. */
2616 set_hash_table_size
|= 1;
2617 n
= set_hash_table_size
* sizeof (struct expr
*);
2618 set_hash_table
= (struct expr
**) gmalloc (n
);
2621 /* Free things allocated by alloc_set_hash_table. */
2624 free_set_hash_table ()
2626 free (set_hash_table
);
2629 /* Compute the hash table for doing copy/const propagation. */
2632 compute_set_hash_table ()
2634 /* Initialize count of number of entries in hash table. */
2636 memset ((char *) set_hash_table
, 0,
2637 set_hash_table_size
* sizeof (struct expr
*));
2639 compute_hash_table (1);
2642 /* Allocate space for the expression hash table.
2643 N_INSNS is the number of instructions in the function.
2644 It is used to determine the number of buckets to use. */
2647 alloc_expr_hash_table (n_insns
)
2648 unsigned int n_insns
;
2652 expr_hash_table_size
= n_insns
/ 2;
2653 /* Make sure the amount is usable. */
2654 if (expr_hash_table_size
< 11)
2655 expr_hash_table_size
= 11;
2657 /* Attempt to maintain efficient use of hash table.
2658 Making it an odd number is simplest for now.
2659 ??? Later take some measurements. */
2660 expr_hash_table_size
|= 1;
2661 n
= expr_hash_table_size
* sizeof (struct expr
*);
2662 expr_hash_table
= (struct expr
**) gmalloc (n
);
2665 /* Free things allocated by alloc_expr_hash_table. */
2668 free_expr_hash_table ()
2670 free (expr_hash_table
);
2673 /* Compute the hash table for doing GCSE. */
2676 compute_expr_hash_table ()
2678 /* Initialize count of number of entries in hash table. */
2680 memset ((char *) expr_hash_table
, 0,
2681 expr_hash_table_size
* sizeof (struct expr
*));
2683 compute_hash_table (0);
2686 /* Expression tracking support. */
2688 /* Lookup pattern PAT in the expression table.
2689 The result is a pointer to the table entry, or NULL if not found. */
2691 static struct expr
*
2695 int do_not_record_p
;
2696 unsigned int hash
= hash_expr (pat
, GET_MODE (pat
), &do_not_record_p
,
2697 expr_hash_table_size
);
2700 if (do_not_record_p
)
2703 expr
= expr_hash_table
[hash
];
2705 while (expr
&& ! expr_equiv_p (expr
->expr
, pat
))
2706 expr
= expr
->next_same_hash
;
2711 /* Lookup REGNO in the set table. If PAT is non-NULL look for the entry that
2712 matches it, otherwise return the first entry for REGNO. The result is a
2713 pointer to the table entry, or NULL if not found. */
2715 static struct expr
*
2716 lookup_set (regno
, pat
)
2720 unsigned int hash
= hash_set (regno
, set_hash_table_size
);
2723 expr
= set_hash_table
[hash
];
2727 while (expr
&& ! expr_equiv_p (expr
->expr
, pat
))
2728 expr
= expr
->next_same_hash
;
2732 while (expr
&& REGNO (SET_DEST (expr
->expr
)) != regno
)
2733 expr
= expr
->next_same_hash
;
2739 /* Return the next entry for REGNO in list EXPR. */
2741 static struct expr
*
2742 next_set (regno
, expr
)
2747 expr
= expr
->next_same_hash
;
2748 while (expr
&& REGNO (SET_DEST (expr
->expr
)) != regno
);
2753 /* Reset tables used to keep track of what's still available [since the
2754 start of the block]. */
2757 reset_opr_set_tables ()
2759 /* Maintain a bitmap of which regs have been set since beginning of
2761 sbitmap_zero (reg_set_bitmap
);
2763 /* Also keep a record of the last instruction to modify memory.
2764 For now this is very trivial, we only record whether any memory
2765 location has been modified. */
2770 /* re-Cache any INSN_LIST nodes we have allocated. */
2771 for (i
= 0; i
< n_basic_blocks
; i
++)
2773 if (modify_mem_list
[i
])
2774 free_INSN_LIST_list (modify_mem_list
+ i
);
2775 if (canon_modify_mem_list
[i
])
2776 free_INSN_LIST_list (canon_modify_mem_list
+ i
);
2781 /* Return non-zero if the operands of X are not set before INSN in
2782 INSN's basic block. */
2785 oprs_not_set_p (x
, insn
)
2795 code
= GET_CODE (x
);
2810 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn
),
2811 INSN_CUID (insn
), x
, 0))
2813 if (mem_last_set
!= 0)
2816 return oprs_not_set_p (XEXP (x
, 0), insn
);
2819 return ! TEST_BIT (reg_set_bitmap
, REGNO (x
));
2825 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
2829 /* If we are about to do the last recursive call
2830 needed at this level, change it into iteration.
2831 This function is called enough to be worth it. */
2833 return oprs_not_set_p (XEXP (x
, i
), insn
);
2835 if (! oprs_not_set_p (XEXP (x
, i
), insn
))
2838 else if (fmt
[i
] == 'E')
2839 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2840 if (! oprs_not_set_p (XVECEXP (x
, i
, j
), insn
))
2847 /* Mark things set by a CALL. */
2853 mem_last_set
= INSN_CUID (insn
);
2854 if (! CONST_CALL_P (insn
))
2855 record_last_mem_set_info (insn
);
2858 /* Mark things set by a SET. */
2861 mark_set (pat
, insn
)
2864 rtx dest
= SET_DEST (pat
);
2866 while (GET_CODE (dest
) == SUBREG
2867 || GET_CODE (dest
) == ZERO_EXTRACT
2868 || GET_CODE (dest
) == SIGN_EXTRACT
2869 || GET_CODE (dest
) == STRICT_LOW_PART
)
2870 dest
= XEXP (dest
, 0);
2872 if (GET_CODE (dest
) == REG
)
2873 SET_BIT (reg_set_bitmap
, REGNO (dest
));
2874 else if (GET_CODE (dest
) == MEM
)
2875 record_last_mem_set_info (insn
);
2877 if (GET_CODE (dest
) == REG
)
2878 SET_BIT (reg_set_bitmap
, REGNO (dest
));
2879 else if (GET_CODE (dest
) == MEM
)
2880 mem_last_set
= INSN_CUID (insn
);
2882 if (GET_CODE (SET_SRC (pat
)) == CALL
)
2886 /* Record things set by a CLOBBER. */
2889 mark_clobber (pat
, insn
)
2892 rtx clob
= XEXP (pat
, 0);
2894 while (GET_CODE (clob
) == SUBREG
|| GET_CODE (clob
) == STRICT_LOW_PART
)
2895 clob
= XEXP (clob
, 0);
2897 if (GET_CODE (clob
) == REG
)
2898 SET_BIT (reg_set_bitmap
, REGNO (clob
));
2900 mem_last_set
= INSN_CUID (insn
);
2901 if (GET_CODE (clob
) == REG
)
2902 SET_BIT (reg_set_bitmap
, REGNO (clob
));
2904 record_last_mem_set_info (insn
);
2907 /* Record things set by INSN.
2908 This data is used by oprs_not_set_p. */
2911 mark_oprs_set (insn
)
2914 rtx pat
= PATTERN (insn
);
2917 if (GET_CODE (pat
) == SET
)
2918 mark_set (pat
, insn
);
2919 else if (GET_CODE (pat
) == PARALLEL
)
2920 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
2922 rtx x
= XVECEXP (pat
, 0, i
);
2924 if (GET_CODE (x
) == SET
)
2926 else if (GET_CODE (x
) == CLOBBER
)
2927 mark_clobber (x
, insn
);
2928 else if (GET_CODE (x
) == CALL
)
2932 else if (GET_CODE (pat
) == CLOBBER
)
2933 mark_clobber (pat
, insn
);
2934 else if (GET_CODE (pat
) == CALL
)
2939 /* Classic GCSE reaching definition support. */
2941 /* Allocate reaching def variables. */
2944 alloc_rd_mem (n_blocks
, n_insns
)
2945 int n_blocks
, n_insns
;
2947 rd_kill
= (sbitmap
*) sbitmap_vector_alloc (n_blocks
, n_insns
);
2948 sbitmap_vector_zero (rd_kill
, n_basic_blocks
);
2950 rd_gen
= (sbitmap
*) sbitmap_vector_alloc (n_blocks
, n_insns
);
2951 sbitmap_vector_zero (rd_gen
, n_basic_blocks
);
2953 reaching_defs
= (sbitmap
*) sbitmap_vector_alloc (n_blocks
, n_insns
);
2954 sbitmap_vector_zero (reaching_defs
, n_basic_blocks
);
2956 rd_out
= (sbitmap
*) sbitmap_vector_alloc (n_blocks
, n_insns
);
2957 sbitmap_vector_zero (rd_out
, n_basic_blocks
);
2960 /* Free reaching def variables. */
2967 free (reaching_defs
);
2971 /* Add INSN to the kills of BB. REGNO, set in BB, is killed by INSN. */
2974 handle_rd_kill_set (insn
, regno
, bb
)
2979 struct reg_set
*this_reg
;
2981 for (this_reg
= reg_set_table
[regno
]; this_reg
; this_reg
= this_reg
->next
)
2982 if (BLOCK_NUM (this_reg
->insn
) != BLOCK_NUM (insn
))
2983 SET_BIT (rd_kill
[bb
->index
], INSN_CUID (this_reg
->insn
));
2986 /* Compute the set of kill's for reaching definitions. */
2996 For each set bit in `gen' of the block (i.e each insn which
2997 generates a definition in the block)
2998 Call the reg set by the insn corresponding to that bit regx
2999 Look at the linked list starting at reg_set_table[regx]
3000 For each setting of regx in the linked list, which is not in
3002 Set the bit in `kill' corresponding to that insn. */
3003 for (bb
= 0; bb
< n_basic_blocks
; bb
++)
3004 for (cuid
= 0; cuid
< max_cuid
; cuid
++)
3005 if (TEST_BIT (rd_gen
[bb
], cuid
))
3007 rtx insn
= CUID_INSN (cuid
);
3008 rtx pat
= PATTERN (insn
);
3010 if (GET_CODE (insn
) == CALL_INSN
)
3012 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
3014 if ((call_used_regs
[regno
]
3015 && regno
!= STACK_POINTER_REGNUM
3016 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3017 && regno
!= HARD_FRAME_POINTER_REGNUM
3019 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
3020 && ! (regno
== ARG_POINTER_REGNUM
3021 && fixed_regs
[regno
])
3023 #if !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
3024 && ! (regno
== PIC_OFFSET_TABLE_REGNUM
&& flag_pic
)
3026 && regno
!= FRAME_POINTER_REGNUM
)
3027 || global_regs
[regno
])
3028 handle_rd_kill_set (insn
, regno
, BASIC_BLOCK (bb
));
3032 if (GET_CODE (pat
) == PARALLEL
)
3034 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
3036 enum rtx_code code
= GET_CODE (XVECEXP (pat
, 0, i
));
3038 if ((code
== SET
|| code
== CLOBBER
)
3039 && GET_CODE (XEXP (XVECEXP (pat
, 0, i
), 0)) == REG
)
3040 handle_rd_kill_set (insn
,
3041 REGNO (XEXP (XVECEXP (pat
, 0, i
), 0)),
3045 else if (GET_CODE (pat
) == SET
&& GET_CODE (SET_DEST (pat
)) == REG
)
3046 /* Each setting of this register outside of this block
3047 must be marked in the set of kills in this block. */
3048 handle_rd_kill_set (insn
, REGNO (SET_DEST (pat
)), BASIC_BLOCK (bb
));
3052 /* Compute the reaching definitions as in
3053 Compilers Principles, Techniques, and Tools. Aho, Sethi, Ullman,
3054 Chapter 10. It is the same algorithm as used for computing available
3055 expressions but applied to the gens and kills of reaching definitions. */
3060 int bb
, changed
, passes
;
3062 for (bb
= 0; bb
< n_basic_blocks
; bb
++)
3063 sbitmap_copy (rd_out
[bb
] /*dst*/, rd_gen
[bb
] /*src*/);
3070 for (bb
= 0; bb
< n_basic_blocks
; bb
++)
3072 sbitmap_union_of_preds (reaching_defs
[bb
], rd_out
, bb
);
3073 changed
|= sbitmap_union_of_diff (rd_out
[bb
], rd_gen
[bb
],
3074 reaching_defs
[bb
], rd_kill
[bb
]);
3080 fprintf (gcse_file
, "reaching def computation: %d passes\n", passes
);
3083 /* Classic GCSE available expression support. */
3085 /* Allocate memory for available expression computation. */
3088 alloc_avail_expr_mem (n_blocks
, n_exprs
)
3089 int n_blocks
, n_exprs
;
3091 ae_kill
= (sbitmap
*) sbitmap_vector_alloc (n_blocks
, n_exprs
);
3092 sbitmap_vector_zero (ae_kill
, n_basic_blocks
);
3094 ae_gen
= (sbitmap
*) sbitmap_vector_alloc (n_blocks
, n_exprs
);
3095 sbitmap_vector_zero (ae_gen
, n_basic_blocks
);
3097 ae_in
= (sbitmap
*) sbitmap_vector_alloc (n_blocks
, n_exprs
);
3098 sbitmap_vector_zero (ae_in
, n_basic_blocks
);
3100 ae_out
= (sbitmap
*) sbitmap_vector_alloc (n_blocks
, n_exprs
);
3101 sbitmap_vector_zero (ae_out
, n_basic_blocks
);
3105 free_avail_expr_mem ()
3113 /* Compute the set of available expressions generated in each basic block. */
3122 /* For each recorded occurrence of each expression, set ae_gen[bb][expr].
3123 This is all we have to do because an expression is not recorded if it
3124 is not available, and the only expressions we want to work with are the
3125 ones that are recorded. */
3126 for (i
= 0; i
< expr_hash_table_size
; i
++)
3127 for (expr
= expr_hash_table
[i
]; expr
!= 0; expr
= expr
->next_same_hash
)
3128 for (occr
= expr
->avail_occr
; occr
!= 0; occr
= occr
->next
)
3129 SET_BIT (ae_gen
[BLOCK_NUM (occr
->insn
)], expr
->bitmap_index
);
3132 /* Return non-zero if expression X is killed in BB. */
3135 expr_killed_p (x
, bb
)
3146 code
= GET_CODE (x
);
3150 return TEST_BIT (reg_set_in_block
[bb
->index
], REGNO (x
));
3153 if (load_killed_in_block_p (bb
, get_max_uid () + 1, x
, 0))
3155 if (mem_set_in_block
[bb
->index
])
3158 return expr_killed_p (XEXP (x
, 0), bb
);
3175 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
3179 /* If we are about to do the last recursive call
3180 needed at this level, change it into iteration.
3181 This function is called enough to be worth it. */
3183 return expr_killed_p (XEXP (x
, i
), bb
);
3184 else if (expr_killed_p (XEXP (x
, i
), bb
))
3187 else if (fmt
[i
] == 'E')
3188 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3189 if (expr_killed_p (XVECEXP (x
, i
, j
), bb
))
3196 /* Compute the set of available expressions killed in each basic block. */
3199 compute_ae_kill (ae_gen
, ae_kill
)
3200 sbitmap
*ae_gen
, *ae_kill
;
3206 for (bb
= 0; bb
< n_basic_blocks
; bb
++)
3207 for (i
= 0; i
< expr_hash_table_size
; i
++)
3208 for (expr
= expr_hash_table
[i
]; expr
; expr
= expr
->next_same_hash
)
3210 /* Skip EXPR if generated in this block. */
3211 if (TEST_BIT (ae_gen
[bb
], expr
->bitmap_index
))
3214 if (expr_killed_p (expr
->expr
, BASIC_BLOCK (bb
)))
3215 SET_BIT (ae_kill
[bb
], expr
->bitmap_index
);
3219 /* Actually perform the Classic GCSE optimizations. */
3221 /* Return non-zero if occurrence OCCR of expression EXPR reaches block BB.
3223 CHECK_SELF_LOOP is non-zero if we should consider a block reaching itself
3224 as a positive reach. We want to do this when there are two computations
3225 of the expression in the block.
3227 VISITED is a pointer to a working buffer for tracking which BB's have
3228 been visited. It is NULL for the top-level call.
3230 We treat reaching expressions that go through blocks containing the same
3231 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3232 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3233 2 as not reaching. The intent is to improve the probability of finding
3234 only one reaching expression and to reduce register lifetimes by picking
3235 the closest such expression. */
3238 expr_reaches_here_p_work (occr
, expr
, bb
, check_self_loop
, visited
)
3242 int check_self_loop
;
3247 for (pred
= bb
->pred
; pred
!= NULL
; pred
= pred
->pred_next
)
3249 basic_block pred_bb
= pred
->src
;
3251 if (visited
[pred_bb
->index
])
3252 /* This predecessor has already been visited. Nothing to do. */
3254 else if (pred_bb
== bb
)
3256 /* BB loops on itself. */
3258 && TEST_BIT (ae_gen
[pred_bb
->index
], expr
->bitmap_index
)
3259 && BLOCK_NUM (occr
->insn
) == pred_bb
->index
)
3262 visited
[pred_bb
->index
] = 1;
3265 /* Ignore this predecessor if it kills the expression. */
3266 else if (TEST_BIT (ae_kill
[pred_bb
->index
], expr
->bitmap_index
))
3267 visited
[pred_bb
->index
] = 1;
3269 /* Does this predecessor generate this expression? */
3270 else if (TEST_BIT (ae_gen
[pred_bb
->index
], expr
->bitmap_index
))
3272 /* Is this the occurrence we're looking for?
3273 Note that there's only one generating occurrence per block
3274 so we just need to check the block number. */
3275 if (BLOCK_NUM (occr
->insn
) == pred_bb
->index
)
3278 visited
[pred_bb
->index
] = 1;
3281 /* Neither gen nor kill. */
3284 visited
[pred_bb
->index
] = 1;
3285 if (expr_reaches_here_p_work (occr
, expr
, pred_bb
, check_self_loop
,
3292 /* All paths have been checked. */
3296 /* This wrapper for expr_reaches_here_p_work() is to ensure that any
3297 memory allocated for that function is returned. */
3300 expr_reaches_here_p (occr
, expr
, bb
, check_self_loop
)
3304 int check_self_loop
;
3307 char *visited
= (char *) xcalloc (n_basic_blocks
, 1);
3309 rval
= expr_reaches_here_p_work (occr
, expr
, bb
, check_self_loop
, visited
);
3315 /* Return the instruction that computes EXPR that reaches INSN's basic block.
3316 If there is more than one such instruction, return NULL.
3318 Called only by handle_avail_expr. */
3321 computing_insn (expr
, insn
)
3325 basic_block bb
= BLOCK_FOR_INSN (insn
);
3327 if (expr
->avail_occr
->next
== NULL
)
3329 if (BLOCK_FOR_INSN (expr
->avail_occr
->insn
) == bb
)
3330 /* The available expression is actually itself
3331 (i.e. a loop in the flow graph) so do nothing. */
3334 /* (FIXME) Case that we found a pattern that was created by
3335 a substitution that took place. */
3336 return expr
->avail_occr
->insn
;
3340 /* Pattern is computed more than once.
3341 Search backwards from this insn to see how many of these
3342 computations actually reach this insn. */
3344 rtx insn_computes_expr
= NULL
;
3347 for (occr
= expr
->avail_occr
; occr
!= NULL
; occr
= occr
->next
)
3349 if (BLOCK_FOR_INSN (occr
->insn
) == bb
)
3351 /* The expression is generated in this block.
3352 The only time we care about this is when the expression
3353 is generated later in the block [and thus there's a loop].
3354 We let the normal cse pass handle the other cases. */
3355 if (INSN_CUID (insn
) < INSN_CUID (occr
->insn
)
3356 && expr_reaches_here_p (occr
, expr
, bb
, 1))
3362 insn_computes_expr
= occr
->insn
;
3365 else if (expr_reaches_here_p (occr
, expr
, bb
, 0))
3371 insn_computes_expr
= occr
->insn
;
3375 if (insn_computes_expr
== NULL
)
3378 return insn_computes_expr
;
3382 /* Return non-zero if the definition in DEF_INSN can reach INSN.
3383 Only called by can_disregard_other_sets. */
3386 def_reaches_here_p (insn
, def_insn
)
3391 if (TEST_BIT (reaching_defs
[BLOCK_NUM (insn
)], INSN_CUID (def_insn
)))
3394 if (BLOCK_NUM (insn
) == BLOCK_NUM (def_insn
))
3396 if (INSN_CUID (def_insn
) < INSN_CUID (insn
))
3398 if (GET_CODE (PATTERN (def_insn
)) == PARALLEL
)
3400 else if (GET_CODE (PATTERN (def_insn
)) == CLOBBER
)
3401 reg
= XEXP (PATTERN (def_insn
), 0);
3402 else if (GET_CODE (PATTERN (def_insn
)) == SET
)
3403 reg
= SET_DEST (PATTERN (def_insn
));
3407 return ! reg_set_between_p (reg
, NEXT_INSN (def_insn
), insn
);
3416 /* Return non-zero if *ADDR_THIS_REG can only have one value at INSN. The
3417 value returned is the number of definitions that reach INSN. Returning a
3418 value of zero means that [maybe] more than one definition reaches INSN and
3419 the caller can't perform whatever optimization it is trying. i.e. it is
3420 always safe to return zero. */
3423 can_disregard_other_sets (addr_this_reg
, insn
, for_combine
)
3424 struct reg_set
**addr_this_reg
;
3428 int number_of_reaching_defs
= 0;
3429 struct reg_set
*this_reg
;
3431 for (this_reg
= *addr_this_reg
; this_reg
!= 0; this_reg
= this_reg
->next
)
3432 if (def_reaches_here_p (insn
, this_reg
->insn
))
3434 number_of_reaching_defs
++;
3435 /* Ignore parallels for now. */
3436 if (GET_CODE (PATTERN (this_reg
->insn
)) == PARALLEL
)
3440 && (GET_CODE (PATTERN (this_reg
->insn
)) == CLOBBER
3441 || ! rtx_equal_p (SET_SRC (PATTERN (this_reg
->insn
)),
3442 SET_SRC (PATTERN (insn
)))))
3443 /* A setting of the reg to a different value reaches INSN. */
3446 if (number_of_reaching_defs
> 1)
3448 /* If in this setting the value the register is being set to is
3449 equal to the previous value the register was set to and this
3450 setting reaches the insn we are trying to do the substitution
3451 on then we are ok. */
3452 if (GET_CODE (PATTERN (this_reg
->insn
)) == CLOBBER
)
3454 else if (! rtx_equal_p (SET_SRC (PATTERN (this_reg
->insn
)),
3455 SET_SRC (PATTERN (insn
))))
3459 *addr_this_reg
= this_reg
;
3462 return number_of_reaching_defs
;
3465 /* Expression computed by insn is available and the substitution is legal,
3466 so try to perform the substitution.
3468 The result is non-zero if any changes were made. */
3471 handle_avail_expr (insn
, expr
)
3475 rtx pat
, insn_computes_expr
;
3477 struct reg_set
*this_reg
;
3478 int found_setting
, use_src
;
3481 /* We only handle the case where one computation of the expression
3482 reaches this instruction. */
3483 insn_computes_expr
= computing_insn (expr
, insn
);
3484 if (insn_computes_expr
== NULL
)
3490 /* At this point we know only one computation of EXPR outside of this
3491 block reaches this insn. Now try to find a register that the
3492 expression is computed into. */
3493 if (GET_CODE (SET_SRC (PATTERN (insn_computes_expr
))) == REG
)
3495 /* This is the case when the available expression that reaches
3496 here has already been handled as an available expression. */
3497 unsigned int regnum_for_replacing
3498 = REGNO (SET_SRC (PATTERN (insn_computes_expr
)));
3500 /* If the register was created by GCSE we can't use `reg_set_table',
3501 however we know it's set only once. */
3502 if (regnum_for_replacing
>= max_gcse_regno
3503 /* If the register the expression is computed into is set only once,
3504 or only one set reaches this insn, we can use it. */
3505 || (((this_reg
= reg_set_table
[regnum_for_replacing
]),
3506 this_reg
->next
== NULL
)
3507 || can_disregard_other_sets (&this_reg
, insn
, 0)))
3516 unsigned int regnum_for_replacing
3517 = REGNO (SET_DEST (PATTERN (insn_computes_expr
)));
3519 /* This shouldn't happen. */
3520 if (regnum_for_replacing
>= max_gcse_regno
)
3523 this_reg
= reg_set_table
[regnum_for_replacing
];
3525 /* If the register the expression is computed into is set only once,
3526 or only one set reaches this insn, use it. */
3527 if (this_reg
->next
== NULL
3528 || can_disregard_other_sets (&this_reg
, insn
, 0))
3534 pat
= PATTERN (insn
);
3536 to
= SET_SRC (PATTERN (insn_computes_expr
));
3538 to
= SET_DEST (PATTERN (insn_computes_expr
));
3539 changed
= validate_change (insn
, &SET_SRC (pat
), to
, 0);
3541 /* We should be able to ignore the return code from validate_change but
3542 to play it safe we check. */
3546 if (gcse_file
!= NULL
)
3548 fprintf (gcse_file
, "GCSE: Replacing the source in insn %d with",
3550 fprintf (gcse_file
, " reg %d %s insn %d\n",
3551 REGNO (to
), use_src
? "from" : "set in",
3552 INSN_UID (insn_computes_expr
));
3557 /* The register that the expr is computed into is set more than once. */
3558 else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/)
3560 /* Insert an insn after insnx that copies the reg set in insnx
3561 into a new pseudo register call this new register REGN.
3562 From insnb until end of basic block or until REGB is set
3563 replace all uses of REGB with REGN. */
3566 to
= gen_reg_rtx (GET_MODE (SET_DEST (PATTERN (insn_computes_expr
))));
3568 /* Generate the new insn. */
3569 /* ??? If the change fails, we return 0, even though we created
3570 an insn. I think this is ok. */
3572 = emit_insn_after (gen_rtx_SET (VOIDmode
, to
,
3574 (insn_computes_expr
))),
3575 insn_computes_expr
);
3577 /* Keep block number table up to date. */
3578 set_block_for_new_insns (new_insn
, BLOCK_FOR_INSN (insn_computes_expr
));
3580 /* Keep register set table up to date. */
3581 record_one_set (REGNO (to
), new_insn
);
3583 gcse_create_count
++;
3584 if (gcse_file
!= NULL
)
3586 fprintf (gcse_file
, "GCSE: Creating insn %d to copy value of reg %d",
3587 INSN_UID (NEXT_INSN (insn_computes_expr
)),
3588 REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr
)))));
3589 fprintf (gcse_file
, ", computed in insn %d,\n",
3590 INSN_UID (insn_computes_expr
));
3591 fprintf (gcse_file
, " into newly allocated reg %d\n",
3595 pat
= PATTERN (insn
);
3597 /* Do register replacement for INSN. */
3598 changed
= validate_change (insn
, &SET_SRC (pat
),
3600 (NEXT_INSN (insn_computes_expr
))),
3603 /* We should be able to ignore the return code from validate_change but
3604 to play it safe we check. */
3608 if (gcse_file
!= NULL
)
3611 "GCSE: Replacing the source in insn %d with reg %d ",
3613 REGNO (SET_DEST (PATTERN (NEXT_INSN
3614 (insn_computes_expr
)))));
3615 fprintf (gcse_file
, "set in insn %d\n",
3616 INSN_UID (insn_computes_expr
));
3624 /* Perform classic GCSE. This is called by one_classic_gcse_pass after all
3625 the dataflow analysis has been done.
3627 The result is non-zero if a change was made. */
3635 /* Note we start at block 1. */
3638 for (bb
= 1; bb
< n_basic_blocks
; bb
++)
3640 /* Reset tables used to keep track of what's still valid [since the
3641 start of the block]. */
3642 reset_opr_set_tables ();
3644 for (insn
= BLOCK_HEAD (bb
);
3645 insn
!= NULL
&& insn
!= NEXT_INSN (BLOCK_END (bb
));
3646 insn
= NEXT_INSN (insn
))
3648 /* Is insn of form (set (pseudo-reg) ...)? */
3649 if (GET_CODE (insn
) == INSN
3650 && GET_CODE (PATTERN (insn
)) == SET
3651 && GET_CODE (SET_DEST (PATTERN (insn
))) == REG
3652 && REGNO (SET_DEST (PATTERN (insn
))) >= FIRST_PSEUDO_REGISTER
)
3654 rtx pat
= PATTERN (insn
);
3655 rtx src
= SET_SRC (pat
);
3658 if (want_to_gcse_p (src
)
3659 /* Is the expression recorded? */
3660 && ((expr
= lookup_expr (src
)) != NULL
)
3661 /* Is the expression available [at the start of the
3663 && TEST_BIT (ae_in
[bb
], expr
->bitmap_index
)
3664 /* Are the operands unchanged since the start of the
3666 && oprs_not_set_p (src
, insn
))
3667 changed
|= handle_avail_expr (insn
, expr
);
3670 /* Keep track of everything modified by this insn. */
3671 /* ??? Need to be careful w.r.t. mods done to INSN. */
3673 mark_oprs_set (insn
);
3680 /* Top level routine to perform one classic GCSE pass.
3682 Return non-zero if a change was made. */
3685 one_classic_gcse_pass (pass
)
3690 gcse_subst_count
= 0;
3691 gcse_create_count
= 0;
3693 alloc_expr_hash_table (max_cuid
);
3694 alloc_rd_mem (n_basic_blocks
, max_cuid
);
3695 compute_expr_hash_table ();
3697 dump_hash_table (gcse_file
, "Expression", expr_hash_table
,
3698 expr_hash_table_size
, n_exprs
);
3704 alloc_avail_expr_mem (n_basic_blocks
, n_exprs
);
3706 compute_ae_kill (ae_gen
, ae_kill
);
3707 compute_available (ae_gen
, ae_kill
, ae_out
, ae_in
);
3708 changed
= classic_gcse ();
3709 free_avail_expr_mem ();
3713 free_expr_hash_table ();
3717 fprintf (gcse_file
, "\n");
3718 fprintf (gcse_file
, "GCSE of %s, pass %d: %d bytes needed, %d substs,",
3719 current_function_name
, pass
, bytes_used
, gcse_subst_count
);
3720 fprintf (gcse_file
, "%d insns created\n", gcse_create_count
);
3726 /* Compute copy/constant propagation working variables. */
3728 /* Local properties of assignments. */
3729 static sbitmap
*cprop_pavloc
;
3730 static sbitmap
*cprop_absaltered
;
3732 /* Global properties of assignments (computed from the local properties). */
3733 static sbitmap
*cprop_avin
;
3734 static sbitmap
*cprop_avout
;
3736 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
3737 basic blocks. N_SETS is the number of sets. */
3740 alloc_cprop_mem (n_blocks
, n_sets
)
3741 int n_blocks
, n_sets
;
3743 cprop_pavloc
= sbitmap_vector_alloc (n_blocks
, n_sets
);
3744 cprop_absaltered
= sbitmap_vector_alloc (n_blocks
, n_sets
);
3746 cprop_avin
= sbitmap_vector_alloc (n_blocks
, n_sets
);
3747 cprop_avout
= sbitmap_vector_alloc (n_blocks
, n_sets
);
3750 /* Free vars used by copy/const propagation. */
3755 free (cprop_pavloc
);
3756 free (cprop_absaltered
);
3761 /* For each block, compute whether X is transparent. X is either an
3762 expression or an assignment [though we don't care which, for this context
3763 an assignment is treated as an expression]. For each block where an
3764 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
3768 compute_transp (x
, indx
, bmap
, set_p
)
3779 /* repeat is used to turn tail-recursion into iteration since GCC
3780 can't do it when there's no return value. */
3786 code
= GET_CODE (x
);
3792 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
)
3794 for (bb
= 0; bb
< n_basic_blocks
; bb
++)
3795 if (TEST_BIT (reg_set_in_block
[bb
], REGNO (x
)))
3796 SET_BIT (bmap
[bb
], indx
);
3800 for (r
= reg_set_table
[REGNO (x
)]; r
!= NULL
; r
= r
->next
)
3801 SET_BIT (bmap
[BLOCK_NUM (r
->insn
)], indx
);
3806 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
)
3808 for (bb
= 0; bb
< n_basic_blocks
; bb
++)
3809 if (TEST_BIT (reg_set_in_block
[bb
], REGNO (x
)))
3810 RESET_BIT (bmap
[bb
], indx
);
3814 for (r
= reg_set_table
[REGNO (x
)]; r
!= NULL
; r
= r
->next
)
3815 RESET_BIT (bmap
[BLOCK_NUM (r
->insn
)], indx
);
3822 for (bb
= 0; bb
< n_basic_blocks
; bb
++)
3824 rtx list_entry
= canon_modify_mem_list
[bb
];
3828 rtx dest
, dest_addr
;
3830 if (GET_CODE (XEXP (list_entry
, 0)) == CALL_INSN
)
3833 SET_BIT (bmap
[bb
], indx
);
3835 RESET_BIT (bmap
[bb
], indx
);
3838 /* LIST_ENTRY must be an INSN of some kind that sets memory.
3839 Examine each hunk of memory that is modified. */
3841 dest
= XEXP (list_entry
, 0);
3842 list_entry
= XEXP (list_entry
, 1);
3843 dest_addr
= XEXP (list_entry
, 0);
3845 if (canon_true_dependence (dest
, GET_MODE (dest
), dest_addr
,
3846 x
, rtx_addr_varies_p
))
3849 SET_BIT (bmap
[bb
], indx
);
3851 RESET_BIT (bmap
[bb
], indx
);
3854 list_entry
= XEXP (list_entry
, 1);
3859 for (bb
= 0; bb
< n_basic_blocks
; bb
++)
3860 if (mem_set_in_block
[bb
])
3861 SET_BIT (bmap
[bb
], indx
);
3865 for (bb
= 0; bb
< n_basic_blocks
; bb
++)
3866 if (mem_set_in_block
[bb
])
3867 RESET_BIT (bmap
[bb
], indx
);
3888 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
3892 /* If we are about to do the last recursive call
3893 needed at this level, change it into iteration.
3894 This function is called enough to be worth it. */
3901 compute_transp (XEXP (x
, i
), indx
, bmap
, set_p
);
3903 else if (fmt
[i
] == 'E')
3904 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3905 compute_transp (XVECEXP (x
, i
, j
), indx
, bmap
, set_p
);
3909 /* Top level routine to do the dataflow analysis needed by copy/const
3913 compute_cprop_data ()
3915 compute_local_properties (cprop_absaltered
, cprop_pavloc
, NULL
, 1);
3916 compute_available (cprop_pavloc
, cprop_absaltered
,
3917 cprop_avout
, cprop_avin
);
3920 /* Copy/constant propagation. */
3922 /* Maximum number of register uses in an insn that we handle. */
3925 /* Table of uses found in an insn.
3926 Allocated statically to avoid alloc/free complexity and overhead. */
3927 static struct reg_use reg_use_table
[MAX_USES
];
3929 /* Index into `reg_use_table' while building it. */
3930 static int reg_use_count
;
3932 /* Set up a list of register numbers used in INSN. The found uses are stored
3933 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
3934 and contains the number of uses in the table upon exit.
3936 ??? If a register appears multiple times we will record it multiple times.
3937 This doesn't hurt anything but it will slow things down. */
3947 /* repeat is used to turn tail-recursion into iteration since GCC
3948 can't do it when there's no return value. */
3954 code
= GET_CODE (x
);
3958 if (reg_use_count
== MAX_USES
)
3961 reg_use_table
[reg_use_count
].reg_rtx
= x
;
3979 case ASM_INPUT
: /*FIXME*/
3983 if (GET_CODE (SET_DEST (x
)) == MEM
)
3984 find_used_regs (SET_DEST (x
));
3992 /* Recursively scan the operands of this expression. */
3994 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
3998 /* If we are about to do the last recursive call
3999 needed at this level, change it into iteration.
4000 This function is called enough to be worth it. */
4007 find_used_regs (XEXP (x
, i
));
4009 else if (fmt
[i
] == 'E')
4010 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
4011 find_used_regs (XVECEXP (x
, i
, j
));
4015 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
4016 Returns non-zero is successful. */
4019 try_replace_reg (from
, to
, insn
)
4022 rtx note
= find_reg_equal_equiv_note (insn
);
4025 rtx set
= single_set (insn
);
4027 /* If this is a single set, try to simplify the source of the set given
4028 our substitution. We could perhaps try this for multiple SETs, but
4029 it probably won't buy us anything. */
4032 src
= simplify_replace_rtx (SET_SRC (set
), from
, to
);
4034 /* Try this two ways: first just replace SET_SRC. If that doesn't
4035 work and this is a PARALLEL, try to replace the whole pattern
4037 if (validate_change (insn
, &SET_SRC (set
), src
, 0))
4039 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
4040 && validate_change (insn
, &PATTERN (insn
),
4041 gen_rtx_SET (VOIDmode
, SET_DEST (set
),
4047 /* Otherwise, try to do a global replacement within the insn. */
4049 success
= validate_replace_src (from
, to
, insn
);
4051 /* If we've failed to do replacement, have a single SET, and don't already
4052 have a note, add a REG_EQUAL note to not lose information. */
4053 if (!success
&& note
== 0 && set
!= 0)
4054 note
= REG_NOTES (insn
)
4055 = gen_rtx_EXPR_LIST (REG_EQUAL
, src
, REG_NOTES (insn
));
4057 /* If there is already a NOTE, update the expression in it with our
4060 XEXP (note
, 0) = simplify_replace_rtx (XEXP (note
, 0), from
, to
);
4062 /* REG_EQUAL may get simplified into register.
4063 We don't allow that. Remove that note. This code ought
4064 not to hapen, because previous code ought to syntetize
4065 reg-reg move, but be on the safe side. */
4066 if (note
&& REG_P (XEXP (note
, 0)))
4067 remove_note (insn
, note
);
4072 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
4073 NULL no such set is found. */
4075 static struct expr
*
4076 find_avail_set (regno
, insn
)
4080 /* SET1 contains the last set found that can be returned to the caller for
4081 use in a substitution. */
4082 struct expr
*set1
= 0;
4084 /* Loops are not possible here. To get a loop we would need two sets
4085 available at the start of the block containing INSN. ie we would
4086 need two sets like this available at the start of the block:
4088 (set (reg X) (reg Y))
4089 (set (reg Y) (reg X))
4091 This can not happen since the set of (reg Y) would have killed the
4092 set of (reg X) making it unavailable at the start of this block. */
4096 struct expr
*set
= lookup_set (regno
, NULL_RTX
);
4098 /* Find a set that is available at the start of the block
4099 which contains INSN. */
4102 if (TEST_BIT (cprop_avin
[BLOCK_NUM (insn
)], set
->bitmap_index
))
4104 set
= next_set (regno
, set
);
4107 /* If no available set was found we've reached the end of the
4108 (possibly empty) copy chain. */
4112 if (GET_CODE (set
->expr
) != SET
)
4115 src
= SET_SRC (set
->expr
);
4117 /* We know the set is available.
4118 Now check that SRC is ANTLOC (i.e. none of the source operands
4119 have changed since the start of the block).
4121 If the source operand changed, we may still use it for the next
4122 iteration of this loop, but we may not use it for substitutions. */
4124 if (CONSTANT_P (src
) || oprs_not_set_p (src
, insn
))
4127 /* If the source of the set is anything except a register, then
4128 we have reached the end of the copy chain. */
4129 if (GET_CODE (src
) != REG
)
4132 /* Follow the copy chain, ie start another iteration of the loop
4133 and see if we have an available copy into SRC. */
4134 regno
= REGNO (src
);
4137 /* SET1 holds the last set that was available and anticipatable at
4142 /* Subroutine of cprop_insn that tries to propagate constants into
4143 JUMP_INSNS. INSN must be a conditional jump. FROM is what we will try to
4144 replace, SRC is the constant we will try to substitute for it. Returns
4145 nonzero if a change was made. We know INSN has just a SET. */
4148 cprop_jump (insn
, from
, src
)
4153 rtx set
= PATTERN (insn
);
4154 rtx
new = simplify_replace_rtx (SET_SRC (set
), from
, src
);
4156 /* If no simplification can be made, then try the next
4158 if (rtx_equal_p (new, SET_SRC (set
)))
4161 /* If this is now a no-op leave it that way, but update LABEL_NUSED if
4165 SET_SRC (set
) = new;
4167 if (JUMP_LABEL (insn
) != 0)
4168 --LABEL_NUSES (JUMP_LABEL (insn
));
4171 /* Otherwise, this must be a valid instruction. */
4172 else if (! validate_change (insn
, &SET_SRC (set
), new, 0))
4175 /* If this has turned into an unconditional jump,
4176 then put a barrier after it so that the unreachable
4177 code will be deleted. */
4178 if (GET_CODE (SET_SRC (set
)) == LABEL_REF
)
4179 emit_barrier_after (insn
);
4181 run_jump_opt_after_gcse
= 1;
4184 if (gcse_file
!= NULL
)
4187 "CONST-PROP: Replacing reg %d in insn %d with constant ",
4188 REGNO (from
), INSN_UID (insn
));
4189 print_rtl (gcse_file
, src
);
4190 fprintf (gcse_file
, "\n");
4198 /* Subroutine of cprop_insn that tries to propagate constants into JUMP_INSNS
4199 for machines that have CC0. INSN is a single set that stores into CC0;
4200 the insn following it is a conditional jump. REG_USED is the use we will
4201 try to replace, SRC is the constant we will try to substitute for it.
4202 Returns nonzero if a change was made. */
4205 cprop_cc0_jump (insn
, reg_used
, src
)
4207 struct reg_use
*reg_used
;
4210 /* First substitute in the SET_SRC of INSN, then substitute that for
4212 rtx jump
= NEXT_INSN (insn
);
4213 rtx new_src
= simplify_replace_rtx (SET_SRC (PATTERN (insn
)),
4214 reg_used
->reg_rtx
, src
);
4216 if (! cprop_jump (jump
, cc0_rtx
, new_src
))
4219 /* If we succeeded, delete the cc0 setter. */
4220 PUT_CODE (insn
, NOTE
);
4221 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
4222 NOTE_SOURCE_FILE (insn
) = 0;
4228 /* Perform constant and copy propagation on INSN.
4229 The result is non-zero if a change was made. */
4232 cprop_insn (insn
, alter_jumps
)
4236 struct reg_use
*reg_used
;
4240 /* Only propagate into SETs. Note that a conditional jump is a
4241 SET with pc_rtx as the destination. */
4242 if (GET_CODE (insn
) != INSN
&& GET_CODE (insn
) != JUMP_INSN
)
4246 find_used_regs (PATTERN (insn
));
4248 note
= find_reg_equal_equiv_note (insn
);
4250 /* We may win even when propagating constants into notes. */
4252 find_used_regs (XEXP (note
, 0));
4254 for (reg_used
= ®_use_table
[0]; reg_use_count
> 0;
4255 reg_used
++, reg_use_count
--)
4257 unsigned int regno
= REGNO (reg_used
->reg_rtx
);
4261 /* Ignore registers created by GCSE.
4262 We do this because ... */
4263 if (regno
>= max_gcse_regno
)
4266 /* If the register has already been set in this block, there's
4267 nothing we can do. */
4268 if (! oprs_not_set_p (reg_used
->reg_rtx
, insn
))
4271 /* Find an assignment that sets reg_used and is available
4272 at the start of the block. */
4273 set
= find_avail_set (regno
, insn
);
4278 /* ??? We might be able to handle PARALLELs. Later. */
4279 if (GET_CODE (pat
) != SET
)
4282 src
= SET_SRC (pat
);
4284 /* Constant propagation. */
4285 if (GET_CODE (src
) == CONST_INT
|| GET_CODE (src
) == CONST_DOUBLE
4286 || GET_CODE (src
) == SYMBOL_REF
)
4288 /* Handle normal insns first. */
4289 if (GET_CODE (insn
) == INSN
4290 && try_replace_reg (reg_used
->reg_rtx
, src
, insn
))
4294 if (gcse_file
!= NULL
)
4296 fprintf (gcse_file
, "CONST-PROP: Replacing reg %d in ",
4298 fprintf (gcse_file
, "insn %d with constant ",
4300 print_rtl (gcse_file
, src
);
4301 fprintf (gcse_file
, "\n");
4304 /* The original insn setting reg_used may or may not now be
4305 deletable. We leave the deletion to flow. */
4308 /* Try to propagate a CONST_INT into a conditional jump.
4309 We're pretty specific about what we will handle in this
4310 code, we can extend this as necessary over time.
4312 Right now the insn in question must look like
4313 (set (pc) (if_then_else ...)) */
4314 else if (alter_jumps
4315 && GET_CODE (insn
) == JUMP_INSN
4316 && condjump_p (insn
)
4317 && ! simplejump_p (insn
))
4318 changed
|= cprop_jump (insn
, reg_used
->reg_rtx
, src
);
4321 /* Similar code for machines that use a pair of CC0 setter and
4322 conditional jump insn. */
4323 else if (alter_jumps
4324 && GET_CODE (PATTERN (insn
)) == SET
4325 && SET_DEST (PATTERN (insn
)) == cc0_rtx
4326 && GET_CODE (NEXT_INSN (insn
)) == JUMP_INSN
4327 && condjump_p (NEXT_INSN (insn
))
4328 && ! simplejump_p (NEXT_INSN (insn
))
4329 && cprop_cc0_jump (insn
, reg_used
, src
))
4336 else if (GET_CODE (src
) == REG
4337 && REGNO (src
) >= FIRST_PSEUDO_REGISTER
4338 && REGNO (src
) != regno
)
4340 if (try_replace_reg (reg_used
->reg_rtx
, src
, insn
))
4344 if (gcse_file
!= NULL
)
4346 fprintf (gcse_file
, "COPY-PROP: Replacing reg %d in insn %d",
4347 regno
, INSN_UID (insn
));
4348 fprintf (gcse_file
, " with reg %d\n", REGNO (src
));
4351 /* The original insn setting reg_used may or may not now be
4352 deletable. We leave the deletion to flow. */
4353 /* FIXME: If it turns out that the insn isn't deletable,
4354 then we may have unnecessarily extended register lifetimes
4355 and made things worse. */
4363 /* Forward propagate copies. This includes copies and constants. Return
4364 non-zero if a change was made. */
4373 /* Note we start at block 1. */
4376 for (bb
= 1; bb
< n_basic_blocks
; bb
++)
4378 /* Reset tables used to keep track of what's still valid [since the
4379 start of the block]. */
4380 reset_opr_set_tables ();
4382 for (insn
= BLOCK_HEAD (bb
);
4383 insn
!= NULL
&& insn
!= NEXT_INSN (BLOCK_END (bb
));
4384 insn
= NEXT_INSN (insn
))
4387 changed
|= cprop_insn (insn
, alter_jumps
);
4389 /* Keep track of everything modified by this insn. */
4390 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
4391 call mark_oprs_set if we turned the insn into a NOTE. */
4392 if (GET_CODE (insn
) != NOTE
)
4393 mark_oprs_set (insn
);
4397 if (gcse_file
!= NULL
)
4398 fprintf (gcse_file
, "\n");
4403 /* Perform one copy/constant propagation pass.
4404 F is the first insn in the function.
4405 PASS is the pass count. */
4408 one_cprop_pass (pass
, alter_jumps
)
4414 const_prop_count
= 0;
4415 copy_prop_count
= 0;
4417 alloc_set_hash_table (max_cuid
);
4418 compute_set_hash_table ();
4420 dump_hash_table (gcse_file
, "SET", set_hash_table
, set_hash_table_size
,
4424 alloc_cprop_mem (n_basic_blocks
, n_sets
);
4425 compute_cprop_data ();
4426 changed
= cprop (alter_jumps
);
4430 free_set_hash_table ();
4434 fprintf (gcse_file
, "CPROP of %s, pass %d: %d bytes needed, ",
4435 current_function_name
, pass
, bytes_used
);
4436 fprintf (gcse_file
, "%d const props, %d copy props\n\n",
4437 const_prop_count
, copy_prop_count
);
4443 /* Compute PRE+LCM working variables. */
4445 /* Local properties of expressions. */
4446 /* Nonzero for expressions that are transparent in the block. */
4447 static sbitmap
*transp
;
4449 /* Nonzero for expressions that are transparent at the end of the block.
4450 This is only zero for expressions killed by abnormal critical edge
4451 created by a calls. */
4452 static sbitmap
*transpout
;
4454 /* Nonzero for expressions that are computed (available) in the block. */
4455 static sbitmap
*comp
;
4457 /* Nonzero for expressions that are locally anticipatable in the block. */
4458 static sbitmap
*antloc
;
4460 /* Nonzero for expressions where this block is an optimal computation
4462 static sbitmap
*pre_optimal
;
4464 /* Nonzero for expressions which are redundant in a particular block. */
4465 static sbitmap
*pre_redundant
;
4467 /* Nonzero for expressions which should be inserted on a specific edge. */
4468 static sbitmap
*pre_insert_map
;
4470 /* Nonzero for expressions which should be deleted in a specific block. */
4471 static sbitmap
*pre_delete_map
;
4473 /* Contains the edge_list returned by pre_edge_lcm. */
4474 static struct edge_list
*edge_list
;
4476 /* Redundant insns. */
4477 static sbitmap pre_redundant_insns
;
4479 /* Allocate vars used for PRE analysis. */
4482 alloc_pre_mem (n_blocks
, n_exprs
)
4483 int n_blocks
, n_exprs
;
4485 transp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4486 comp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4487 antloc
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4490 pre_redundant
= NULL
;
4491 pre_insert_map
= NULL
;
4492 pre_delete_map
= NULL
;
4495 ae_kill
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4497 /* pre_insert and pre_delete are allocated later. */
4500 /* Free vars used for PRE analysis. */
4508 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
4513 free (pre_redundant
);
4515 free (pre_insert_map
);
4517 free (pre_delete_map
);
4524 transp
= comp
= NULL
;
4525 pre_optimal
= pre_redundant
= pre_insert_map
= pre_delete_map
= NULL
;
4526 ae_in
= ae_out
= NULL
;
4529 /* Top level routine to do the dataflow analysis needed by PRE. */
4534 sbitmap trapping_expr
;
4538 compute_local_properties (transp
, comp
, antloc
, 0);
4539 sbitmap_vector_zero (ae_kill
, n_basic_blocks
);
4541 /* Collect expressions which might trap. */
4542 trapping_expr
= sbitmap_alloc (n_exprs
);
4543 sbitmap_zero (trapping_expr
);
4544 for (ui
= 0; ui
< expr_hash_table_size
; ui
++)
4547 for (e
= expr_hash_table
[ui
]; e
!= NULL
; e
= e
->next_same_hash
)
4548 if (may_trap_p (e
->expr
))
4549 SET_BIT (trapping_expr
, e
->bitmap_index
);
4552 /* Compute ae_kill for each basic block using:
4556 This is significantly faster than compute_ae_kill. */
4558 for (i
= 0; i
< n_basic_blocks
; i
++)
4562 /* If the current block is the destination of an abnormal edge, we
4563 kill all trapping expressions because we won't be able to properly
4564 place the instruction on the edge. So make them neither
4565 anticipatable nor transparent. This is fairly conservative. */
4566 for (e
= BASIC_BLOCK (i
)->pred
; e
; e
= e
->pred_next
)
4567 if (e
->flags
& EDGE_ABNORMAL
)
4569 sbitmap_difference (antloc
[i
], antloc
[i
], trapping_expr
);
4570 sbitmap_difference (transp
[i
], transp
[i
], trapping_expr
);
4574 sbitmap_a_or_b (ae_kill
[i
], transp
[i
], comp
[i
]);
4575 sbitmap_not (ae_kill
[i
], ae_kill
[i
]);
4578 edge_list
= pre_edge_lcm (gcse_file
, n_exprs
, transp
, comp
, antloc
,
4579 ae_kill
, &pre_insert_map
, &pre_delete_map
);
4584 free (trapping_expr
);
4589 /* Return non-zero if an occurrence of expression EXPR in OCCR_BB would reach
4592 VISITED is a pointer to a working buffer for tracking which BB's have
4593 been visited. It is NULL for the top-level call.
4595 We treat reaching expressions that go through blocks containing the same
4596 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
4597 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
4598 2 as not reaching. The intent is to improve the probability of finding
4599 only one reaching expression and to reduce register lifetimes by picking
4600 the closest such expression. */
4603 pre_expr_reaches_here_p_work (occr_bb
, expr
, bb
, visited
)
4604 basic_block occr_bb
;
4611 for (pred
= bb
->pred
; pred
!= NULL
; pred
= pred
->pred_next
)
4613 basic_block pred_bb
= pred
->src
;
4615 if (pred
->src
== ENTRY_BLOCK_PTR
4616 /* Has predecessor has already been visited? */
4617 || visited
[pred_bb
->index
])
4618 ;/* Nothing to do. */
4620 /* Does this predecessor generate this expression? */
4621 else if (TEST_BIT (comp
[pred_bb
->index
], expr
->bitmap_index
))
4623 /* Is this the occurrence we're looking for?
4624 Note that there's only one generating occurrence per block
4625 so we just need to check the block number. */
4626 if (occr_bb
== pred_bb
)
4629 visited
[pred_bb
->index
] = 1;
4631 /* Ignore this predecessor if it kills the expression. */
4632 else if (! TEST_BIT (transp
[pred_bb
->index
], expr
->bitmap_index
))
4633 visited
[pred_bb
->index
] = 1;
4635 /* Neither gen nor kill. */
4638 visited
[pred_bb
->index
] = 1;
4639 if (pre_expr_reaches_here_p_work (occr_bb
, expr
, pred_bb
, visited
))
4644 /* All paths have been checked. */
4648 /* The wrapper for pre_expr_reaches_here_work that ensures that any
4649 memory allocated for that function is returned. */
4652 pre_expr_reaches_here_p (occr_bb
, expr
, bb
)
4653 basic_block occr_bb
;
4658 char *visited
= (char *) xcalloc (n_basic_blocks
, 1);
4660 rval
= pre_expr_reaches_here_p_work(occr_bb
, expr
, bb
, visited
);
4667 /* Given an expr, generate RTL which we can insert at the end of a BB,
4668 or on an edge. Set the block number of any insns generated to
4672 process_insert_insn (expr
)
4675 rtx reg
= expr
->reaching_reg
;
4676 rtx exp
= copy_rtx (expr
->expr
);
4681 /* If the expression is something that's an operand, like a constant,
4682 just copy it to a register. */
4683 if (general_operand (exp
, GET_MODE (reg
)))
4684 emit_move_insn (reg
, exp
);
4686 /* Otherwise, make a new insn to compute this expression and make sure the
4687 insn will be recognized (this also adds any needed CLOBBERs). Copy the
4688 expression to make sure we don't have any sharing issues. */
4689 else if (insn_invalid_p (emit_insn (gen_rtx_SET (VOIDmode
, reg
, exp
))))
4692 pat
= gen_sequence ();
4698 /* Add EXPR to the end of basic block BB.
4700 This is used by both the PRE and code hoisting.
4702 For PRE, we want to verify that the expr is either transparent
4703 or locally anticipatable in the target block. This check makes
4704 no sense for code hoisting. */
4707 insert_insn_end_bb (expr
, bb
, pre
)
4714 rtx reg
= expr
->reaching_reg
;
4715 int regno
= REGNO (reg
);
4719 pat
= process_insert_insn (expr
);
4721 /* If the last insn is a jump, insert EXPR in front [taking care to
4722 handle cc0, etc. properly]. */
4724 if (GET_CODE (insn
) == JUMP_INSN
)
4730 /* If this is a jump table, then we can't insert stuff here. Since
4731 we know the previous real insn must be the tablejump, we insert
4732 the new instruction just before the tablejump. */
4733 if (GET_CODE (PATTERN (insn
)) == ADDR_VEC
4734 || GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
4735 insn
= prev_real_insn (insn
);
4738 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4739 if cc0 isn't set. */
4740 note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
4742 insn
= XEXP (note
, 0);
4745 rtx maybe_cc0_setter
= prev_nonnote_insn (insn
);
4746 if (maybe_cc0_setter
4747 && INSN_P (maybe_cc0_setter
)
4748 && sets_cc0_p (PATTERN (maybe_cc0_setter
)))
4749 insn
= maybe_cc0_setter
;
4752 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4753 new_insn
= emit_block_insn_before (pat
, insn
, bb
);
4756 /* Likewise if the last insn is a call, as will happen in the presence
4757 of exception handling. */
4758 else if (GET_CODE (insn
) == CALL_INSN
)
4760 HARD_REG_SET parm_regs
;
4764 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4765 we search backward and place the instructions before the first
4766 parameter is loaded. Do this for everyone for consistency and a
4767 presumtion that we'll get better code elsewhere as well.
4769 It should always be the case that we can put these instructions
4770 anywhere in the basic block with performing PRE optimizations.
4774 && !TEST_BIT (antloc
[bb
->index
], expr
->bitmap_index
)
4775 && !TEST_BIT (transp
[bb
->index
], expr
->bitmap_index
))
4778 /* Since different machines initialize their parameter registers
4779 in different orders, assume nothing. Collect the set of all
4780 parameter registers. */
4781 CLEAR_HARD_REG_SET (parm_regs
);
4783 for (p
= CALL_INSN_FUNCTION_USAGE (insn
); p
; p
= XEXP (p
, 1))
4784 if (GET_CODE (XEXP (p
, 0)) == USE
4785 && GET_CODE (XEXP (XEXP (p
, 0), 0)) == REG
)
4787 if (REGNO (XEXP (XEXP (p
, 0), 0)) >= FIRST_PSEUDO_REGISTER
)
4790 /* We only care about registers which can hold function
4792 if (! FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p
, 0), 0))))
4795 SET_HARD_REG_BIT (parm_regs
, REGNO (XEXP (XEXP (p
, 0), 0)));
4799 /* Search backward for the first set of a register in this set. */
4800 while (nparm_regs
&& bb
->head
!= insn
)
4802 insn
= PREV_INSN (insn
);
4803 p
= single_set (insn
);
4804 if (p
&& GET_CODE (SET_DEST (p
)) == REG
4805 && REGNO (SET_DEST (p
)) < FIRST_PSEUDO_REGISTER
4806 && TEST_HARD_REG_BIT (parm_regs
, REGNO (SET_DEST (p
))))
4808 CLEAR_HARD_REG_BIT (parm_regs
, REGNO (SET_DEST (p
)));
4813 /* If we found all the parameter loads, then we want to insert
4814 before the first parameter load.
4816 If we did not find all the parameter loads, then we might have
4817 stopped on the head of the block, which could be a CODE_LABEL.
4818 If we inserted before the CODE_LABEL, then we would be putting
4819 the insn in the wrong basic block. In that case, put the insn
4820 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4821 while (GET_CODE (insn
) == CODE_LABEL
4822 || NOTE_INSN_BASIC_BLOCK_P (insn
))
4823 insn
= NEXT_INSN (insn
);
4825 new_insn
= emit_block_insn_before (pat
, insn
, bb
);
4829 new_insn
= emit_insn_after (pat
, insn
);
4833 /* Keep block number table up to date.
4834 Note, PAT could be a multiple insn sequence, we have to make
4835 sure that each insn in the sequence is handled. */
4836 if (GET_CODE (pat
) == SEQUENCE
)
4838 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
4840 rtx insn
= XVECEXP (pat
, 0, i
);
4842 set_block_for_insn (insn
, bb
);
4844 add_label_notes (PATTERN (insn
), new_insn
);
4846 note_stores (PATTERN (insn
), record_set_info
, insn
);
4851 add_label_notes (SET_SRC (pat
), new_insn
);
4852 set_block_for_new_insns (new_insn
, bb
);
4854 /* Keep register set table up to date. */
4855 record_one_set (regno
, new_insn
);
4858 gcse_create_count
++;
4862 fprintf (gcse_file
, "PRE/HOIST: end of bb %d, insn %d, ",
4863 bb
->index
, INSN_UID (new_insn
));
4864 fprintf (gcse_file
, "copying expression %d to reg %d\n",
4865 expr
->bitmap_index
, regno
);
4869 /* Insert partially redundant expressions on edges in the CFG to make
4870 the expressions fully redundant. */
4873 pre_edge_insert (edge_list
, index_map
)
4874 struct edge_list
*edge_list
;
4875 struct expr
**index_map
;
4877 int e
, i
, j
, num_edges
, set_size
, did_insert
= 0;
4880 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4881 if it reaches any of the deleted expressions. */
4883 set_size
= pre_insert_map
[0]->size
;
4884 num_edges
= NUM_EDGES (edge_list
);
4885 inserted
= sbitmap_vector_alloc (num_edges
, n_exprs
);
4886 sbitmap_vector_zero (inserted
, num_edges
);
4888 for (e
= 0; e
< num_edges
; e
++)
4891 basic_block bb
= INDEX_EDGE_PRED_BB (edge_list
, e
);
4893 for (i
= indx
= 0; i
< set_size
; i
++, indx
+= SBITMAP_ELT_BITS
)
4895 SBITMAP_ELT_TYPE insert
= pre_insert_map
[e
]->elms
[i
];
4897 for (j
= indx
; insert
&& j
< n_exprs
; j
++, insert
>>= 1)
4898 if ((insert
& 1) != 0 && index_map
[j
]->reaching_reg
!= NULL_RTX
)
4900 struct expr
*expr
= index_map
[j
];
4903 /* Now look at each deleted occurence of this expression. */
4904 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
4906 if (! occr
->deleted_p
)
4909 /* Insert this expression on this edge if if it would
4910 reach the deleted occurence in BB. */
4911 if (!TEST_BIT (inserted
[e
], j
))
4914 edge eg
= INDEX_EDGE (edge_list
, e
);
4916 /* We can't insert anything on an abnormal and
4917 critical edge, so we insert the insn at the end of
4918 the previous block. There are several alternatives
4919 detailed in Morgans book P277 (sec 10.5) for
4920 handling this situation. This one is easiest for
4923 if ((eg
->flags
& EDGE_ABNORMAL
) == EDGE_ABNORMAL
)
4924 insert_insn_end_bb (index_map
[j
], bb
, 0);
4927 insn
= process_insert_insn (index_map
[j
]);
4928 insert_insn_on_edge (insn
, eg
);
4933 fprintf (gcse_file
, "PRE/HOIST: edge (%d,%d), ",
4935 INDEX_EDGE_SUCC_BB (edge_list
, e
)->index
);
4936 fprintf (gcse_file
, "copy expression %d\n",
4937 expr
->bitmap_index
);
4940 update_ld_motion_stores (expr
);
4941 SET_BIT (inserted
[e
], j
);
4943 gcse_create_count
++;
4954 /* Copy the result of INSN to REG. INDX is the expression number. */
4957 pre_insert_copy_insn (expr
, insn
)
4961 rtx reg
= expr
->reaching_reg
;
4962 int regno
= REGNO (reg
);
4963 int indx
= expr
->bitmap_index
;
4964 rtx set
= single_set (insn
);
4966 basic_block bb
= BLOCK_FOR_INSN (insn
);
4971 new_insn
= emit_insn_after (gen_rtx_SET (VOIDmode
, reg
, SET_DEST (set
)),
4974 /* Keep block number table up to date. */
4975 set_block_for_new_insns (new_insn
, bb
);
4977 /* Keep register set table up to date. */
4978 record_one_set (regno
, new_insn
);
4979 if (insn
== bb
->end
)
4982 gcse_create_count
++;
4986 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4987 BLOCK_NUM (insn
), INSN_UID (new_insn
), indx
,
4988 INSN_UID (insn
), regno
);
4991 /* Copy available expressions that reach the redundant expression
4992 to `reaching_reg'. */
4995 pre_insert_copies ()
5002 /* For each available expression in the table, copy the result to
5003 `reaching_reg' if the expression reaches a deleted one.
5005 ??? The current algorithm is rather brute force.
5006 Need to do some profiling. */
5008 for (i
= 0; i
< expr_hash_table_size
; i
++)
5009 for (expr
= expr_hash_table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
5011 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
5012 we don't want to insert a copy here because the expression may not
5013 really be redundant. So only insert an insn if the expression was
5014 deleted. This test also avoids further processing if the
5015 expression wasn't deleted anywhere. */
5016 if (expr
->reaching_reg
== NULL
)
5019 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
5021 if (! occr
->deleted_p
)
5024 for (avail
= expr
->avail_occr
; avail
!= NULL
; avail
= avail
->next
)
5026 rtx insn
= avail
->insn
;
5028 /* No need to handle this one if handled already. */
5029 if (avail
->copied_p
)
5032 /* Don't handle this one if it's a redundant one. */
5033 if (TEST_BIT (pre_redundant_insns
, INSN_CUID (insn
)))
5036 /* Or if the expression doesn't reach the deleted one. */
5037 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail
->insn
),
5039 BLOCK_FOR_INSN (occr
->insn
)))
5042 /* Copy the result of avail to reaching_reg. */
5043 pre_insert_copy_insn (expr
, insn
);
5044 avail
->copied_p
= 1;
5050 /* Delete redundant computations.
5051 Deletion is done by changing the insn to copy the `reaching_reg' of
5052 the expression into the result of the SET. It is left to later passes
5053 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
5055 Returns non-zero if a change is made. */
5066 for (i
= 0; i
< expr_hash_table_size
; i
++)
5067 for (expr
= expr_hash_table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
5069 int indx
= expr
->bitmap_index
;
5071 /* We only need to search antic_occr since we require
5074 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
5076 rtx insn
= occr
->insn
;
5078 basic_block bb
= BLOCK_FOR_INSN (insn
);
5080 if (TEST_BIT (pre_delete_map
[bb
->index
], indx
))
5082 set
= single_set (insn
);
5086 /* Create a pseudo-reg to store the result of reaching
5087 expressions into. Get the mode for the new pseudo from
5088 the mode of the original destination pseudo. */
5089 if (expr
->reaching_reg
== NULL
)
5091 = gen_reg_rtx (GET_MODE (SET_DEST (set
)));
5093 /* In theory this should never fail since we're creating
5096 However, on the x86 some of the movXX patterns actually
5097 contain clobbers of scratch regs. This may cause the
5098 insn created by validate_change to not match any pattern
5099 and thus cause validate_change to fail. */
5100 if (validate_change (insn
, &SET_SRC (set
),
5101 expr
->reaching_reg
, 0))
5103 occr
->deleted_p
= 1;
5104 SET_BIT (pre_redundant_insns
, INSN_CUID (insn
));
5112 "PRE: redundant insn %d (expression %d) in ",
5113 INSN_UID (insn
), indx
);
5114 fprintf (gcse_file
, "bb %d, reaching reg is %d\n",
5115 bb
->index
, REGNO (expr
->reaching_reg
));
5124 /* Perform GCSE optimizations using PRE.
5125 This is called by one_pre_gcse_pass after all the dataflow analysis
5128 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
5129 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
5130 Compiler Design and Implementation.
5132 ??? A new pseudo reg is created to hold the reaching expression. The nice
5133 thing about the classical approach is that it would try to use an existing
5134 reg. If the register can't be adequately optimized [i.e. we introduce
5135 reload problems], one could add a pass here to propagate the new register
5138 ??? We don't handle single sets in PARALLELs because we're [currently] not
5139 able to copy the rest of the parallel when we insert copies to create full
5140 redundancies from partial redundancies. However, there's no reason why we
5141 can't handle PARALLELs in the cases where there are no partial
5148 int did_insert
, changed
;
5149 struct expr
**index_map
;
5152 /* Compute a mapping from expression number (`bitmap_index') to
5153 hash table entry. */
5155 index_map
= (struct expr
**) xcalloc (n_exprs
, sizeof (struct expr
*));
5156 for (i
= 0; i
< expr_hash_table_size
; i
++)
5157 for (expr
= expr_hash_table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
5158 index_map
[expr
->bitmap_index
] = expr
;
5160 /* Reset bitmap used to track which insns are redundant. */
5161 pre_redundant_insns
= sbitmap_alloc (max_cuid
);
5162 sbitmap_zero (pre_redundant_insns
);
5164 /* Delete the redundant insns first so that
5165 - we know what register to use for the new insns and for the other
5166 ones with reaching expressions
5167 - we know which insns are redundant when we go to create copies */
5169 changed
= pre_delete ();
5171 did_insert
= pre_edge_insert (edge_list
, index_map
);
5173 /* In other places with reaching expressions, copy the expression to the
5174 specially allocated pseudo-reg that reaches the redundant expr. */
5175 pre_insert_copies ();
5178 commit_edge_insertions ();
5183 free (pre_redundant_insns
);
5187 /* Top level routine to perform one PRE GCSE pass.
5189 Return non-zero if a change was made. */
5192 one_pre_gcse_pass (pass
)
5197 gcse_subst_count
= 0;
5198 gcse_create_count
= 0;
5200 alloc_expr_hash_table (max_cuid
);
5201 add_noreturn_fake_exit_edges ();
5203 compute_ld_motion_mems ();
5205 compute_expr_hash_table ();
5206 trim_ld_motion_mems ();
5208 dump_hash_table (gcse_file
, "Expression", expr_hash_table
,
5209 expr_hash_table_size
, n_exprs
);
5213 alloc_pre_mem (n_basic_blocks
, n_exprs
);
5214 compute_pre_data ();
5215 changed
|= pre_gcse ();
5216 free_edge_list (edge_list
);
5221 remove_fake_edges ();
5222 free_expr_hash_table ();
5226 fprintf (gcse_file
, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
5227 current_function_name
, pass
, bytes_used
);
5228 fprintf (gcse_file
, "%d substs, %d insns created\n",
5229 gcse_subst_count
, gcse_create_count
);
5235 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
5236 If notes are added to an insn which references a CODE_LABEL, the
5237 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
5238 because the following loop optimization pass requires them. */
5240 /* ??? This is very similar to the loop.c add_label_notes function. We
5241 could probably share code here. */
5243 /* ??? If there was a jump optimization pass after gcse and before loop,
5244 then we would not need to do this here, because jump would add the
5245 necessary REG_LABEL notes. */
5248 add_label_notes (x
, insn
)
5252 enum rtx_code code
= GET_CODE (x
);
5256 if (code
== LABEL_REF
&& !LABEL_REF_NONLOCAL_P (x
))
5258 /* This code used to ignore labels that referred to dispatch tables to
5259 avoid flow generating (slighly) worse code.
5261 We no longer ignore such label references (see LABEL_REF handling in
5262 mark_jump_label for additional information). */
5264 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (REG_LABEL
, XEXP (x
, 0),
5266 if (LABEL_P (XEXP (x
, 0)))
5267 LABEL_NUSES (XEXP (x
, 0))++;
5271 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
5274 add_label_notes (XEXP (x
, i
), insn
);
5275 else if (fmt
[i
] == 'E')
5276 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5277 add_label_notes (XVECEXP (x
, i
, j
), insn
);
5281 /* Compute transparent outgoing information for each block.
5283 An expression is transparent to an edge unless it is killed by
5284 the edge itself. This can only happen with abnormal control flow,
5285 when the edge is traversed through a call. This happens with
5286 non-local labels and exceptions.
5288 This would not be necessary if we split the edge. While this is
5289 normally impossible for abnormal critical edges, with some effort
5290 it should be possible with exception handling, since we still have
5291 control over which handler should be invoked. But due to increased
5292 EH table sizes, this may not be worthwhile. */
5295 compute_transpout ()
5301 sbitmap_vector_ones (transpout
, n_basic_blocks
);
5303 for (bb
= 0; bb
< n_basic_blocks
; ++bb
)
5305 /* Note that flow inserted a nop a the end of basic blocks that
5306 end in call instructions for reasons other than abnormal
5308 if (GET_CODE (BLOCK_END (bb
)) != CALL_INSN
)
5311 for (i
= 0; i
< expr_hash_table_size
; i
++)
5312 for (expr
= expr_hash_table
[i
]; expr
; expr
= expr
->next_same_hash
)
5313 if (GET_CODE (expr
->expr
) == MEM
)
5315 if (GET_CODE (XEXP (expr
->expr
, 0)) == SYMBOL_REF
5316 && CONSTANT_POOL_ADDRESS_P (XEXP (expr
->expr
, 0)))
5319 /* ??? Optimally, we would use interprocedural alias
5320 analysis to determine if this mem is actually killed
5322 RESET_BIT (transpout
[bb
], expr
->bitmap_index
);
5327 /* Removal of useless null pointer checks */
5329 /* Called via note_stores. X is set by SETTER. If X is a register we must
5330 invalidate nonnull_local and set nonnull_killed. DATA is really a
5331 `null_pointer_info *'.
5333 We ignore hard registers. */
5336 invalidate_nonnull_info (x
, setter
, data
)
5338 rtx setter ATTRIBUTE_UNUSED
;
5342 struct null_pointer_info
*npi
= (struct null_pointer_info
*) data
;
5344 while (GET_CODE (x
) == SUBREG
)
5347 /* Ignore anything that is not a register or is a hard register. */
5348 if (GET_CODE (x
) != REG
5349 || REGNO (x
) < npi
->min_reg
5350 || REGNO (x
) >= npi
->max_reg
)
5353 regno
= REGNO (x
) - npi
->min_reg
;
5355 RESET_BIT (npi
->nonnull_local
[npi
->current_block
], regno
);
5356 SET_BIT (npi
->nonnull_killed
[npi
->current_block
], regno
);
5359 /* Do null-pointer check elimination for the registers indicated in
5360 NPI. NONNULL_AVIN and NONNULL_AVOUT are pre-allocated sbitmaps;
5361 they are not our responsibility to free. */
5364 delete_null_pointer_checks_1 (delete_list
, block_reg
, nonnull_avin
,
5366 varray_type
*delete_list
;
5367 unsigned int *block_reg
;
5368 sbitmap
*nonnull_avin
;
5369 sbitmap
*nonnull_avout
;
5370 struct null_pointer_info
*npi
;
5374 sbitmap
*nonnull_local
= npi
->nonnull_local
;
5375 sbitmap
*nonnull_killed
= npi
->nonnull_killed
;
5377 /* Compute local properties, nonnull and killed. A register will have
5378 the nonnull property if at the end of the current block its value is
5379 known to be nonnull. The killed property indicates that somewhere in
5380 the block any information we had about the register is killed.
5382 Note that a register can have both properties in a single block. That
5383 indicates that it's killed, then later in the block a new value is
5385 sbitmap_vector_zero (nonnull_local
, n_basic_blocks
);
5386 sbitmap_vector_zero (nonnull_killed
, n_basic_blocks
);
5388 for (current_block
= 0; current_block
< n_basic_blocks
; current_block
++)
5390 rtx insn
, stop_insn
;
5392 /* Set the current block for invalidate_nonnull_info. */
5393 npi
->current_block
= current_block
;
5395 /* Scan each insn in the basic block looking for memory references and
5397 stop_insn
= NEXT_INSN (BLOCK_END (current_block
));
5398 for (insn
= BLOCK_HEAD (current_block
);
5400 insn
= NEXT_INSN (insn
))
5405 /* Ignore anything that is not a normal insn. */
5406 if (! INSN_P (insn
))
5409 /* Basically ignore anything that is not a simple SET. We do have
5410 to make sure to invalidate nonnull_local and set nonnull_killed
5411 for such insns though. */
5412 set
= single_set (insn
);
5415 note_stores (PATTERN (insn
), invalidate_nonnull_info
, npi
);
5419 /* See if we've got a useable memory load. We handle it first
5420 in case it uses its address register as a dest (which kills
5421 the nonnull property). */
5422 if (GET_CODE (SET_SRC (set
)) == MEM
5423 && GET_CODE ((reg
= XEXP (SET_SRC (set
), 0))) == REG
5424 && REGNO (reg
) >= npi
->min_reg
5425 && REGNO (reg
) < npi
->max_reg
)
5426 SET_BIT (nonnull_local
[current_block
],
5427 REGNO (reg
) - npi
->min_reg
);
5429 /* Now invalidate stuff clobbered by this insn. */
5430 note_stores (PATTERN (insn
), invalidate_nonnull_info
, npi
);
5432 /* And handle stores, we do these last since any sets in INSN can
5433 not kill the nonnull property if it is derived from a MEM
5434 appearing in a SET_DEST. */
5435 if (GET_CODE (SET_DEST (set
)) == MEM
5436 && GET_CODE ((reg
= XEXP (SET_DEST (set
), 0))) == REG
5437 && REGNO (reg
) >= npi
->min_reg
5438 && REGNO (reg
) < npi
->max_reg
)
5439 SET_BIT (nonnull_local
[current_block
],
5440 REGNO (reg
) - npi
->min_reg
);
5444 /* Now compute global properties based on the local properties. This
5445 is a classic global availablity algorithm. */
5446 compute_available (nonnull_local
, nonnull_killed
,
5447 nonnull_avout
, nonnull_avin
);
5449 /* Now look at each bb and see if it ends with a compare of a value
5451 for (bb
= 0; bb
< n_basic_blocks
; bb
++)
5453 rtx last_insn
= BLOCK_END (bb
);
5454 rtx condition
, earliest
;
5455 int compare_and_branch
;
5457 /* Since MIN_REG is always at least FIRST_PSEUDO_REGISTER, and
5458 since BLOCK_REG[BB] is zero if this block did not end with a
5459 comparison against zero, this condition works. */
5460 if (block_reg
[bb
] < npi
->min_reg
5461 || block_reg
[bb
] >= npi
->max_reg
)
5464 /* LAST_INSN is a conditional jump. Get its condition. */
5465 condition
= get_condition (last_insn
, &earliest
);
5467 /* If we can't determine the condition then skip. */
5471 /* Is the register known to have a nonzero value? */
5472 if (!TEST_BIT (nonnull_avout
[bb
], block_reg
[bb
] - npi
->min_reg
))
5475 /* Try to compute whether the compare/branch at the loop end is one or
5476 two instructions. */
5477 if (earliest
== last_insn
)
5478 compare_and_branch
= 1;
5479 else if (earliest
== prev_nonnote_insn (last_insn
))
5480 compare_and_branch
= 2;
5484 /* We know the register in this comparison is nonnull at exit from
5485 this block. We can optimize this comparison. */
5486 if (GET_CODE (condition
) == NE
)
5490 new_jump
= emit_jump_insn_before (gen_jump (JUMP_LABEL (last_insn
)),
5492 JUMP_LABEL (new_jump
) = JUMP_LABEL (last_insn
);
5493 LABEL_NUSES (JUMP_LABEL (new_jump
))++;
5494 emit_barrier_after (new_jump
);
5497 VARRAY_RTX_INIT (*delete_list
, 10, "delete_list");
5499 VARRAY_PUSH_RTX (*delete_list
, last_insn
);
5500 if (compare_and_branch
== 2)
5501 VARRAY_PUSH_RTX (*delete_list
, earliest
);
5503 /* Don't check this block again. (Note that BLOCK_END is
5504 invalid here; we deleted the last instruction in the
5510 /* Find EQ/NE comparisons against zero which can be (indirectly) evaluated
5513 This is conceptually similar to global constant/copy propagation and
5514 classic global CSE (it even uses the same dataflow equations as cprop).
5516 If a register is used as memory address with the form (mem (reg)), then we
5517 know that REG can not be zero at that point in the program. Any instruction
5518 which sets REG "kills" this property.
5520 So, if every path leading to a conditional branch has an available memory
5521 reference of that form, then we know the register can not have the value
5522 zero at the conditional branch.
5524 So we merely need to compute the local properies and propagate that data
5525 around the cfg, then optimize where possible.
5527 We run this pass two times. Once before CSE, then again after CSE. This
5528 has proven to be the most profitable approach. It is rare for new
5529 optimization opportunities of this nature to appear after the first CSE
5532 This could probably be integrated with global cprop with a little work. */
5535 delete_null_pointer_checks (f
)
5536 rtx f ATTRIBUTE_UNUSED
;
5538 sbitmap
*nonnull_avin
, *nonnull_avout
;
5539 unsigned int *block_reg
;
5540 varray_type delete_list
= NULL
;
5546 struct null_pointer_info npi
;
5548 /* If we have only a single block, then there's nothing to do. */
5549 if (n_basic_blocks
<= 1)
5552 /* Trying to perform global optimizations on flow graphs which have
5553 a high connectivity will take a long time and is unlikely to be
5554 particularly useful.
5556 In normal circumstances a cfg should have about twice as many edges
5557 as blocks. But we do not want to punish small functions which have
5558 a couple switch statements. So we require a relatively large number
5559 of basic blocks and the ratio of edges to blocks to be high. */
5560 if (n_basic_blocks
> 1000 && n_edges
/ n_basic_blocks
>= 20)
5563 /* We need four bitmaps, each with a bit for each register in each
5565 max_reg
= max_reg_num ();
5566 regs_per_pass
= get_bitmap_width (4, n_basic_blocks
, max_reg
);
5568 /* Allocate bitmaps to hold local and global properties. */
5569 npi
.nonnull_local
= sbitmap_vector_alloc (n_basic_blocks
, regs_per_pass
);
5570 npi
.nonnull_killed
= sbitmap_vector_alloc (n_basic_blocks
, regs_per_pass
);
5571 nonnull_avin
= sbitmap_vector_alloc (n_basic_blocks
, regs_per_pass
);
5572 nonnull_avout
= sbitmap_vector_alloc (n_basic_blocks
, regs_per_pass
);
5574 /* Go through the basic blocks, seeing whether or not each block
5575 ends with a conditional branch whose condition is a comparison
5576 against zero. Record the register compared in BLOCK_REG. */
5577 block_reg
= (unsigned int *) xcalloc (n_basic_blocks
, sizeof (int));
5578 for (bb
= 0; bb
< n_basic_blocks
; bb
++)
5580 rtx last_insn
= BLOCK_END (bb
);
5581 rtx condition
, earliest
, reg
;
5583 /* We only want conditional branches. */
5584 if (GET_CODE (last_insn
) != JUMP_INSN
5585 || !any_condjump_p (last_insn
)
5586 || !onlyjump_p (last_insn
))
5589 /* LAST_INSN is a conditional jump. Get its condition. */
5590 condition
= get_condition (last_insn
, &earliest
);
5592 /* If we were unable to get the condition, or it is not a equality
5593 comparison against zero then there's nothing we can do. */
5595 || (GET_CODE (condition
) != NE
&& GET_CODE (condition
) != EQ
)
5596 || GET_CODE (XEXP (condition
, 1)) != CONST_INT
5597 || (XEXP (condition
, 1)
5598 != CONST0_RTX (GET_MODE (XEXP (condition
, 0)))))
5601 /* We must be checking a register against zero. */
5602 reg
= XEXP (condition
, 0);
5603 if (GET_CODE (reg
) != REG
)
5606 block_reg
[bb
] = REGNO (reg
);
5609 /* Go through the algorithm for each block of registers. */
5610 for (reg
= FIRST_PSEUDO_REGISTER
; reg
< max_reg
; reg
+= regs_per_pass
)
5613 npi
.max_reg
= MIN (reg
+ regs_per_pass
, max_reg
);
5614 delete_null_pointer_checks_1 (&delete_list
, block_reg
, nonnull_avin
,
5615 nonnull_avout
, &npi
);
5618 /* Now delete the instructions all at once. This breaks the CFG. */
5621 for (i
= 0; i
< VARRAY_ACTIVE_SIZE (delete_list
); i
++)
5622 delete_insn (VARRAY_RTX (delete_list
, i
));
5623 VARRAY_FREE (delete_list
);
5626 /* Free the table of registers compared at the end of every block. */
5630 free (npi
.nonnull_local
);
5631 free (npi
.nonnull_killed
);
5632 free (nonnull_avin
);
5633 free (nonnull_avout
);
5636 /* Code Hoisting variables and subroutines. */
5638 /* Very busy expressions. */
5639 static sbitmap
*hoist_vbein
;
5640 static sbitmap
*hoist_vbeout
;
5642 /* Hoistable expressions. */
5643 static sbitmap
*hoist_exprs
;
5645 /* Dominator bitmaps. */
5646 static sbitmap
*dominators
;
5648 /* ??? We could compute post dominators and run this algorithm in
5649 reverse to to perform tail merging, doing so would probably be
5650 more effective than the tail merging code in jump.c.
5652 It's unclear if tail merging could be run in parallel with
5653 code hoisting. It would be nice. */
5655 /* Allocate vars used for code hoisting analysis. */
5658 alloc_code_hoist_mem (n_blocks
, n_exprs
)
5659 int n_blocks
, n_exprs
;
5661 antloc
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
5662 transp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
5663 comp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
5665 hoist_vbein
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
5666 hoist_vbeout
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
5667 hoist_exprs
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
5668 transpout
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
5670 dominators
= sbitmap_vector_alloc (n_blocks
, n_blocks
);
5673 /* Free vars used for code hoisting analysis. */
5676 free_code_hoist_mem ()
5683 free (hoist_vbeout
);
5690 /* Compute the very busy expressions at entry/exit from each block.
5692 An expression is very busy if all paths from a given point
5693 compute the expression. */
5696 compute_code_hoist_vbeinout ()
5698 int bb
, changed
, passes
;
5700 sbitmap_vector_zero (hoist_vbeout
, n_basic_blocks
);
5701 sbitmap_vector_zero (hoist_vbein
, n_basic_blocks
);
5710 /* We scan the blocks in the reverse order to speed up
5712 for (bb
= n_basic_blocks
- 1; bb
>= 0; bb
--)
5714 changed
|= sbitmap_a_or_b_and_c (hoist_vbein
[bb
], antloc
[bb
],
5715 hoist_vbeout
[bb
], transp
[bb
]);
5716 if (bb
!= n_basic_blocks
- 1)
5717 sbitmap_intersection_of_succs (hoist_vbeout
[bb
], hoist_vbein
, bb
);
5724 fprintf (gcse_file
, "hoisting vbeinout computation: %d passes\n", passes
);
5727 /* Top level routine to do the dataflow analysis needed by code hoisting. */
5730 compute_code_hoist_data ()
5732 compute_local_properties (transp
, comp
, antloc
, 0);
5733 compute_transpout ();
5734 compute_code_hoist_vbeinout ();
5735 calculate_dominance_info (NULL
, dominators
, CDI_DOMINATORS
);
5737 fprintf (gcse_file
, "\n");
5740 /* Determine if the expression identified by EXPR_INDEX would
5741 reach BB unimpared if it was placed at the end of EXPR_BB.
5743 It's unclear exactly what Muchnick meant by "unimpared". It seems
5744 to me that the expression must either be computed or transparent in
5745 *every* block in the path(s) from EXPR_BB to BB. Any other definition
5746 would allow the expression to be hoisted out of loops, even if
5747 the expression wasn't a loop invariant.
5749 Contrast this to reachability for PRE where an expression is
5750 considered reachable if *any* path reaches instead of *all*
5754 hoist_expr_reaches_here_p (expr_bb
, expr_index
, bb
, visited
)
5755 basic_block expr_bb
;
5761 int visited_allocated_locally
= 0;
5764 if (visited
== NULL
)
5766 visited_allocated_locally
= 1;
5767 visited
= xcalloc (n_basic_blocks
, 1);
5770 for (pred
= bb
->pred
; pred
!= NULL
; pred
= pred
->pred_next
)
5772 basic_block pred_bb
= pred
->src
;
5774 if (pred
->src
== ENTRY_BLOCK_PTR
)
5776 else if (visited
[pred_bb
->index
])
5779 /* Does this predecessor generate this expression? */
5780 else if (TEST_BIT (comp
[pred_bb
->index
], expr_index
))
5782 else if (! TEST_BIT (transp
[pred_bb
->index
], expr_index
))
5788 visited
[pred_bb
->index
] = 1;
5789 if (! hoist_expr_reaches_here_p (expr_bb
, expr_index
,
5794 if (visited_allocated_locally
)
5797 return (pred
== NULL
);
5800 /* Actually perform code hoisting. */
5807 struct expr
**index_map
;
5810 sbitmap_vector_zero (hoist_exprs
, n_basic_blocks
);
5812 /* Compute a mapping from expression number (`bitmap_index') to
5813 hash table entry. */
5815 index_map
= (struct expr
**) xcalloc (n_exprs
, sizeof (struct expr
*));
5816 for (i
= 0; i
< expr_hash_table_size
; i
++)
5817 for (expr
= expr_hash_table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
5818 index_map
[expr
->bitmap_index
] = expr
;
5820 /* Walk over each basic block looking for potentially hoistable
5821 expressions, nothing gets hoisted from the entry block. */
5822 for (bb
= 0; bb
< n_basic_blocks
; bb
++)
5825 int insn_inserted_p
;
5827 /* Examine each expression that is very busy at the exit of this
5828 block. These are the potentially hoistable expressions. */
5829 for (i
= 0; i
< hoist_vbeout
[bb
]->n_bits
; i
++)
5833 if (TEST_BIT (hoist_vbeout
[bb
], i
) && TEST_BIT (transpout
[bb
], i
))
5835 /* We've found a potentially hoistable expression, now
5836 we look at every block BB dominates to see if it
5837 computes the expression. */
5838 for (dominated
= 0; dominated
< n_basic_blocks
; dominated
++)
5840 /* Ignore self dominance. */
5842 || ! TEST_BIT (dominators
[dominated
], bb
))
5845 /* We've found a dominated block, now see if it computes
5846 the busy expression and whether or not moving that
5847 expression to the "beginning" of that block is safe. */
5848 if (!TEST_BIT (antloc
[dominated
], i
))
5851 /* Note if the expression would reach the dominated block
5852 unimpared if it was placed at the end of BB.
5854 Keep track of how many times this expression is hoistable
5855 from a dominated block into BB. */
5856 if (hoist_expr_reaches_here_p (BASIC_BLOCK (bb
), i
,
5857 BASIC_BLOCK (dominated
), NULL
))
5861 /* If we found more than one hoistable occurence of this
5862 expression, then note it in the bitmap of expressions to
5863 hoist. It makes no sense to hoist things which are computed
5864 in only one BB, and doing so tends to pessimize register
5865 allocation. One could increase this value to try harder
5866 to avoid any possible code expansion due to register
5867 allocation issues; however experiments have shown that
5868 the vast majority of hoistable expressions are only movable
5869 from two successors, so raising this threshhold is likely
5870 to nullify any benefit we get from code hoisting. */
5873 SET_BIT (hoist_exprs
[bb
], i
);
5879 /* If we found nothing to hoist, then quit now. */
5883 /* Loop over all the hoistable expressions. */
5884 for (i
= 0; i
< hoist_exprs
[bb
]->n_bits
; i
++)
5886 /* We want to insert the expression into BB only once, so
5887 note when we've inserted it. */
5888 insn_inserted_p
= 0;
5890 /* These tests should be the same as the tests above. */
5891 if (TEST_BIT (hoist_vbeout
[bb
], i
))
5893 /* We've found a potentially hoistable expression, now
5894 we look at every block BB dominates to see if it
5895 computes the expression. */
5896 for (dominated
= 0; dominated
< n_basic_blocks
; dominated
++)
5898 /* Ignore self dominance. */
5900 || ! TEST_BIT (dominators
[dominated
], bb
))
5903 /* We've found a dominated block, now see if it computes
5904 the busy expression and whether or not moving that
5905 expression to the "beginning" of that block is safe. */
5906 if (!TEST_BIT (antloc
[dominated
], i
))
5909 /* The expression is computed in the dominated block and
5910 it would be safe to compute it at the start of the
5911 dominated block. Now we have to determine if the
5912 expresion would reach the dominated block if it was
5913 placed at the end of BB. */
5914 if (hoist_expr_reaches_here_p (BASIC_BLOCK (bb
), i
,
5915 BASIC_BLOCK (dominated
), NULL
))
5917 struct expr
*expr
= index_map
[i
];
5918 struct occr
*occr
= expr
->antic_occr
;
5922 /* Find the right occurence of this expression. */
5923 while (BLOCK_NUM (occr
->insn
) != dominated
&& occr
)
5926 /* Should never happen. */
5932 set
= single_set (insn
);
5936 /* Create a pseudo-reg to store the result of reaching
5937 expressions into. Get the mode for the new pseudo
5938 from the mode of the original destination pseudo. */
5939 if (expr
->reaching_reg
== NULL
)
5941 = gen_reg_rtx (GET_MODE (SET_DEST (set
)));
5943 /* In theory this should never fail since we're creating
5946 However, on the x86 some of the movXX patterns
5947 actually contain clobbers of scratch regs. This may
5948 cause the insn created by validate_change to not
5949 match any pattern and thus cause validate_change to
5951 if (validate_change (insn
, &SET_SRC (set
),
5952 expr
->reaching_reg
, 0))
5954 occr
->deleted_p
= 1;
5955 if (!insn_inserted_p
)
5957 insert_insn_end_bb (index_map
[i
],
5958 BASIC_BLOCK (bb
), 0);
5959 insn_inserted_p
= 1;
5971 /* Top level routine to perform one code hoisting (aka unification) pass
5973 Return non-zero if a change was made. */
5976 one_code_hoisting_pass ()
5980 alloc_expr_hash_table (max_cuid
);
5981 compute_expr_hash_table ();
5983 dump_hash_table (gcse_file
, "Code Hosting Expressions", expr_hash_table
,
5984 expr_hash_table_size
, n_exprs
);
5988 alloc_code_hoist_mem (n_basic_blocks
, n_exprs
);
5989 compute_code_hoist_data ();
5991 free_code_hoist_mem ();
5994 free_expr_hash_table ();
5999 /* Here we provide the things required to do store motion towards
6000 the exit. In order for this to be effective, gcse also needed to
6001 be taught how to move a load when it is kill only by a store to itself.
6006 void foo(float scale)
6008 for (i=0; i<10; i++)
6012 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
6013 the load out since its live around the loop, and stored at the bottom
6016 The 'Load Motion' referred to and implemented in this file is
6017 an enhancement to gcse which when using edge based lcm, recognizes
6018 this situation and allows gcse to move the load out of the loop.
6020 Once gcse has hoisted the load, store motion can then push this
6021 load towards the exit, and we end up with no loads or stores of 'i'
6024 /* This will search the ldst list for a matching expresion. If it
6025 doesn't find one, we create one and initialize it. */
6027 static struct ls_expr
*
6031 struct ls_expr
* ptr
;
6033 for (ptr
= first_ls_expr(); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
6034 if (expr_equiv_p (ptr
->pattern
, x
))
6039 ptr
= (struct ls_expr
*) xmalloc (sizeof (struct ls_expr
));
6041 ptr
->next
= pre_ldst_mems
;
6044 ptr
->loads
= NULL_RTX
;
6045 ptr
->stores
= NULL_RTX
;
6046 ptr
->reaching_reg
= NULL_RTX
;
6049 ptr
->hash_index
= 0;
6050 pre_ldst_mems
= ptr
;
6056 /* Free up an individual ldst entry. */
6059 free_ldst_entry (ptr
)
6060 struct ls_expr
* ptr
;
6062 free_INSN_LIST_list (& ptr
->loads
);
6063 free_INSN_LIST_list (& ptr
->stores
);
6068 /* Free up all memory associated with the ldst list. */
6073 while (pre_ldst_mems
)
6075 struct ls_expr
* tmp
= pre_ldst_mems
;
6077 pre_ldst_mems
= pre_ldst_mems
->next
;
6079 free_ldst_entry (tmp
);
6082 pre_ldst_mems
= NULL
;
6085 /* Dump debugging info about the ldst list. */
6088 print_ldst_list (file
)
6091 struct ls_expr
* ptr
;
6093 fprintf (file
, "LDST list: \n");
6095 for (ptr
= first_ls_expr(); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
6097 fprintf (file
, " Pattern (%3d): ", ptr
->index
);
6099 print_rtl (file
, ptr
->pattern
);
6101 fprintf (file
, "\n Loads : ");
6104 print_rtl (file
, ptr
->loads
);
6106 fprintf (file
, "(nil)");
6108 fprintf (file
, "\n Stores : ");
6111 print_rtl (file
, ptr
->stores
);
6113 fprintf (file
, "(nil)");
6115 fprintf (file
, "\n\n");
6118 fprintf (file
, "\n");
6121 /* Returns 1 if X is in the list of ldst only expressions. */
6123 static struct ls_expr
*
6124 find_rtx_in_ldst (x
)
6127 struct ls_expr
* ptr
;
6129 for (ptr
= pre_ldst_mems
; ptr
!= NULL
; ptr
= ptr
->next
)
6130 if (expr_equiv_p (ptr
->pattern
, x
) && ! ptr
->invalid
)
6136 /* Assign each element of the list of mems a monotonically increasing value. */
6141 struct ls_expr
* ptr
;
6144 for (ptr
= pre_ldst_mems
; ptr
!= NULL
; ptr
= ptr
->next
)
6150 /* Return first item in the list. */
6152 static inline struct ls_expr
*
6155 return pre_ldst_mems
;
6158 /* Return the next item in ther list after the specified one. */
6160 static inline struct ls_expr
*
6162 struct ls_expr
* ptr
;
6167 /* Load Motion for loads which only kill themselves. */
6169 /* Return true if x is a simple MEM operation, with no registers or
6170 side effects. These are the types of loads we consider for the
6171 ld_motion list, otherwise we let the usual aliasing take care of it. */
6177 if (GET_CODE (x
) != MEM
)
6180 if (MEM_VOLATILE_P (x
))
6183 if (GET_MODE (x
) == BLKmode
)
6186 if (!rtx_varies_p (XEXP (x
, 0), 0))
6192 /* Make sure there isn't a buried reference in this pattern anywhere.
6193 If there is, invalidate the entry for it since we're not capable
6194 of fixing it up just yet.. We have to be sure we know about ALL
6195 loads since the aliasing code will allow all entries in the
6196 ld_motion list to not-alias itself. If we miss a load, we will get
6197 the wrong value since gcse might common it and we won't know to
6201 invalidate_any_buried_refs (x
)
6206 struct ls_expr
* ptr
;
6208 /* Invalidate it in the list. */
6209 if (GET_CODE (x
) == MEM
&& simple_mem (x
))
6211 ptr
= ldst_entry (x
);
6215 /* Recursively process the insn. */
6216 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
6218 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
6221 invalidate_any_buried_refs (XEXP (x
, i
));
6222 else if (fmt
[i
] == 'E')
6223 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
6224 invalidate_any_buried_refs (XVECEXP (x
, i
, j
));
6228 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
6229 being defined as MEM loads and stores to symbols, with no
6230 side effects and no registers in the expression. If there are any
6231 uses/defs which dont match this criteria, it is invalidated and
6232 trimmed out later. */
6235 compute_ld_motion_mems ()
6237 struct ls_expr
* ptr
;
6241 pre_ldst_mems
= NULL
;
6243 for (bb
= 0; bb
< n_basic_blocks
; bb
++)
6245 for (insn
= BLOCK_HEAD (bb
);
6246 insn
&& insn
!= NEXT_INSN (BLOCK_END (bb
));
6247 insn
= NEXT_INSN (insn
))
6249 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i')
6251 if (GET_CODE (PATTERN (insn
)) == SET
)
6253 rtx src
= SET_SRC (PATTERN (insn
));
6254 rtx dest
= SET_DEST (PATTERN (insn
));
6256 /* Check for a simple LOAD... */
6257 if (GET_CODE (src
) == MEM
&& simple_mem (src
))
6259 ptr
= ldst_entry (src
);
6260 if (GET_CODE (dest
) == REG
)
6261 ptr
->loads
= alloc_INSN_LIST (insn
, ptr
->loads
);
6267 /* Make sure there isn't a buried load somewhere. */
6268 invalidate_any_buried_refs (src
);
6271 /* Check for stores. Don't worry about aliased ones, they
6272 will block any movement we might do later. We only care
6273 about this exact pattern since those are the only
6274 circumstance that we will ignore the aliasing info. */
6275 if (GET_CODE (dest
) == MEM
&& simple_mem (dest
))
6277 ptr
= ldst_entry (dest
);
6279 if (GET_CODE (src
) != MEM
6280 && GET_CODE (src
) != ASM_OPERANDS
)
6281 ptr
->stores
= alloc_INSN_LIST (insn
, ptr
->stores
);
6287 invalidate_any_buried_refs (PATTERN (insn
));
6293 /* Remove any references that have been either invalidated or are not in the
6294 expression list for pre gcse. */
6297 trim_ld_motion_mems ()
6299 struct ls_expr
* last
= NULL
;
6300 struct ls_expr
* ptr
= first_ls_expr ();
6304 int del
= ptr
->invalid
;
6305 struct expr
* expr
= NULL
;
6307 /* Delete if entry has been made invalid. */
6313 /* Delete if we cannot find this mem in the expression list. */
6314 for (i
= 0; i
< expr_hash_table_size
&& del
; i
++)
6316 for (expr
= expr_hash_table
[i
];
6318 expr
= expr
->next_same_hash
)
6319 if (expr_equiv_p (expr
->expr
, ptr
->pattern
))
6331 last
->next
= ptr
->next
;
6332 free_ldst_entry (ptr
);
6337 pre_ldst_mems
= pre_ldst_mems
->next
;
6338 free_ldst_entry (ptr
);
6339 ptr
= pre_ldst_mems
;
6344 /* Set the expression field if we are keeping it. */
6351 /* Show the world what we've found. */
6352 if (gcse_file
&& pre_ldst_mems
!= NULL
)
6353 print_ldst_list (gcse_file
);
6356 /* This routine will take an expression which we are replacing with
6357 a reaching register, and update any stores that are needed if
6358 that expression is in the ld_motion list. Stores are updated by
6359 copying their SRC to the reaching register, and then storeing
6360 the reaching register into the store location. These keeps the
6361 correct value in the reaching register for the loads. */
6364 update_ld_motion_stores (expr
)
6367 struct ls_expr
* mem_ptr
;
6369 if ((mem_ptr
= find_rtx_in_ldst (expr
->expr
)))
6371 /* We can try to find just the REACHED stores, but is shouldn't
6372 matter to set the reaching reg everywhere... some might be
6373 dead and should be eliminated later. */
6375 /* We replace SET mem = expr with
6377 SET mem = reg , where reg is the
6378 reaching reg used in the load. */
6379 rtx list
= mem_ptr
->stores
;
6381 for ( ; list
!= NULL_RTX
; list
= XEXP (list
, 1))
6383 rtx insn
= XEXP (list
, 0);
6384 rtx pat
= PATTERN (insn
);
6385 rtx src
= SET_SRC (pat
);
6386 rtx reg
= expr
->reaching_reg
;
6389 /* If we've already copied it, continue. */
6390 if (expr
->reaching_reg
== src
)
6395 fprintf (gcse_file
, "PRE: store updated with reaching reg ");
6396 print_rtl (gcse_file
, expr
->reaching_reg
);
6397 fprintf (gcse_file
, ":\n ");
6398 print_inline_rtx (gcse_file
, insn
, 8);
6399 fprintf (gcse_file
, "\n");
6402 copy
= gen_move_insn ( reg
, SET_SRC (pat
));
6403 new = emit_insn_before (copy
, insn
);
6404 record_one_set (REGNO (reg
), new);
6405 set_block_for_new_insns (new, BLOCK_FOR_INSN (insn
));
6406 SET_SRC (pat
) = reg
;
6408 /* un-recognize this pattern since it's probably different now. */
6409 INSN_CODE (insn
) = -1;
6410 gcse_create_count
++;
6415 /* Store motion code. */
6417 /* This is used to communicate the target bitvector we want to use in the
6418 reg_set_info routine when called via the note_stores mechanism. */
6419 static sbitmap
* regvec
;
6421 /* Used in computing the reverse edge graph bit vectors. */
6422 static sbitmap
* st_antloc
;
6424 /* Global holding the number of store expressions we are dealing with. */
6425 static int num_stores
;
6427 /* Checks to set if we need to mark a register set. Called from note_stores. */
6430 reg_set_info (dest
, setter
, data
)
6431 rtx dest
, setter ATTRIBUTE_UNUSED
;
6432 void * data ATTRIBUTE_UNUSED
;
6434 if (GET_CODE (dest
) == SUBREG
)
6435 dest
= SUBREG_REG (dest
);
6437 if (GET_CODE (dest
) == REG
)
6438 SET_BIT (*regvec
, REGNO (dest
));
6441 /* Return non-zero if the register operands of expression X are killed
6442 anywhere in basic block BB. */
6445 store_ops_ok (x
, bb
)
6453 /* Repeat is used to turn tail-recursion into iteration. */
6459 code
= GET_CODE (x
);
6463 /* If a reg has changed after us in this
6464 block, the operand has been killed. */
6465 return TEST_BIT (reg_set_in_block
[bb
->index
], REGNO (x
));
6492 i
= GET_RTX_LENGTH (code
) - 1;
6493 fmt
= GET_RTX_FORMAT (code
);
6499 rtx tem
= XEXP (x
, i
);
6501 /* If we are about to do the last recursive call
6502 needed at this level, change it into iteration.
6503 This function is called enough to be worth it. */
6510 if (! store_ops_ok (tem
, bb
))
6513 else if (fmt
[i
] == 'E')
6517 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
6519 if (! store_ops_ok (XVECEXP (x
, i
, j
), bb
))
6528 /* Determine whether insn is MEM store pattern that we will consider moving. */
6531 find_moveable_store (insn
)
6534 struct ls_expr
* ptr
;
6535 rtx dest
= PATTERN (insn
);
6537 if (GET_CODE (dest
) != SET
6538 || GET_CODE (SET_SRC (dest
)) == ASM_OPERANDS
)
6541 dest
= SET_DEST (dest
);
6543 if (GET_CODE (dest
) != MEM
|| MEM_VOLATILE_P (dest
)
6544 || GET_MODE (dest
) == BLKmode
)
6547 if (GET_CODE (XEXP (dest
, 0)) != SYMBOL_REF
)
6550 if (rtx_varies_p (XEXP (dest
, 0), 0))
6553 ptr
= ldst_entry (dest
);
6554 ptr
->stores
= alloc_INSN_LIST (insn
, ptr
->stores
);
6557 /* Perform store motion. Much like gcse, except we move expressions the
6558 other way by looking at the flowgraph in reverse. */
6561 compute_store_table ()
6567 max_gcse_regno
= max_reg_num ();
6569 reg_set_in_block
= (sbitmap
*) sbitmap_vector_alloc (n_basic_blocks
,
6571 sbitmap_vector_zero (reg_set_in_block
, n_basic_blocks
);
6574 /* Find all the stores we care about. */
6575 for (bb
= 0; bb
< n_basic_blocks
; bb
++)
6577 regvec
= & (reg_set_in_block
[bb
]);
6578 for (insn
= BLOCK_END (bb
);
6579 insn
&& insn
!= PREV_INSN (BLOCK_HEAD (bb
));
6580 insn
= PREV_INSN (insn
))
6582 #ifdef NON_SAVING_SETJMP
6583 if (NON_SAVING_SETJMP
&& GET_CODE (insn
) == NOTE
6584 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_SETJMP
)
6586 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
6587 SET_BIT (reg_set_in_block
[bb
], regno
);
6591 /* Ignore anything that is not a normal insn. */
6592 if (GET_RTX_CLASS (GET_CODE (insn
)) != 'i')
6595 if (GET_CODE (insn
) == CALL_INSN
)
6597 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
6598 if ((call_used_regs
[regno
]
6599 && regno
!= STACK_POINTER_REGNUM
6600 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
6601 && regno
!= HARD_FRAME_POINTER_REGNUM
6603 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
6604 && ! (regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
6606 #if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
6607 && ! (regno
== PIC_OFFSET_TABLE_REGNUM
&& flag_pic
)
6610 && regno
!= FRAME_POINTER_REGNUM
)
6611 || global_regs
[regno
])
6612 SET_BIT (reg_set_in_block
[bb
], regno
);
6615 pat
= PATTERN (insn
);
6616 note_stores (pat
, reg_set_info
, NULL
);
6618 /* Now that we've marked regs, look for stores. */
6619 if (GET_CODE (pat
) == SET
)
6620 find_moveable_store (insn
);
6624 ret
= enumerate_ldsts ();
6628 fprintf (gcse_file
, "Store Motion Expressions.\n");
6629 print_ldst_list (gcse_file
);
6635 /* Check to see if the load X is aliased with STORE_PATTERN. */
6638 load_kills_store (x
, store_pattern
)
6639 rtx x
, store_pattern
;
6641 if (true_dependence (x
, GET_MODE (x
), store_pattern
, rtx_addr_varies_p
))
6646 /* Go through the entire insn X, looking for any loads which might alias
6647 STORE_PATTERN. Return 1 if found. */
6650 find_loads (x
, store_pattern
)
6651 rtx x
, store_pattern
;
6657 if (GET_CODE (x
) == SET
)
6660 if (GET_CODE (x
) == MEM
)
6662 if (load_kills_store (x
, store_pattern
))
6666 /* Recursively process the insn. */
6667 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
6669 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0 && !ret
; i
--)
6672 ret
|= find_loads (XEXP (x
, i
), store_pattern
);
6673 else if (fmt
[i
] == 'E')
6674 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
6675 ret
|= find_loads (XVECEXP (x
, i
, j
), store_pattern
);
6680 /* Check if INSN kills the store pattern X (is aliased with it).
6681 Return 1 if it it does. */
6684 store_killed_in_insn (x
, insn
)
6687 if (GET_RTX_CLASS (GET_CODE (insn
)) != 'i')
6690 if (GET_CODE (insn
) == CALL_INSN
)
6692 if (CONST_CALL_P (insn
))
6698 if (GET_CODE (PATTERN (insn
)) == SET
)
6700 rtx pat
= PATTERN (insn
);
6701 /* Check for memory stores to aliased objects. */
6702 if (GET_CODE (SET_DEST (pat
)) == MEM
&& !expr_equiv_p (SET_DEST (pat
), x
))
6703 /* pretend its a load and check for aliasing. */
6704 if (find_loads (SET_DEST (pat
), x
))
6706 return find_loads (SET_SRC (pat
), x
);
6709 return find_loads (PATTERN (insn
), x
);
6712 /* Returns 1 if the expression X is loaded or clobbered on or after INSN
6713 within basic block BB. */
6716 store_killed_after (x
, insn
, bb
)
6725 /* Check if the register operands of the store are OK in this block.
6726 Note that if registers are changed ANYWHERE in the block, we'll
6727 decide we can't move it, regardless of whether it changed above
6728 or below the store. This could be improved by checking the register
6729 operands while lookinng for aliasing in each insn. */
6730 if (!store_ops_ok (XEXP (x
, 0), bb
))
6733 for ( ; insn
&& insn
!= NEXT_INSN (last
); insn
= NEXT_INSN (insn
))
6734 if (store_killed_in_insn (x
, insn
))
6740 /* Returns 1 if the expression X is loaded or clobbered on or before INSN
6741 within basic block BB. */
6743 store_killed_before (x
, insn
, bb
)
6747 rtx first
= bb
->head
;
6750 return store_killed_in_insn (x
, insn
);
6752 /* Check if the register operands of the store are OK in this block.
6753 Note that if registers are changed ANYWHERE in the block, we'll
6754 decide we can't move it, regardless of whether it changed above
6755 or below the store. This could be improved by checking the register
6756 operands while lookinng for aliasing in each insn. */
6757 if (!store_ops_ok (XEXP (x
, 0), bb
))
6760 for ( ; insn
&& insn
!= PREV_INSN (first
); insn
= PREV_INSN (insn
))
6761 if (store_killed_in_insn (x
, insn
))
6767 #define ANTIC_STORE_LIST(x) ((x)->loads)
6768 #define AVAIL_STORE_LIST(x) ((x)->stores)
6770 /* Given the table of available store insns at the end of blocks,
6771 determine which ones are not killed by aliasing, and generate
6772 the appropriate vectors for gen and killed. */
6774 build_store_vectors ()
6779 struct ls_expr
* ptr
;
6781 /* Build the gen_vector. This is any store in the table which is not killed
6782 by aliasing later in its block. */
6783 ae_gen
= (sbitmap
*) sbitmap_vector_alloc (n_basic_blocks
, num_stores
);
6784 sbitmap_vector_zero (ae_gen
, n_basic_blocks
);
6786 st_antloc
= (sbitmap
*) sbitmap_vector_alloc (n_basic_blocks
, num_stores
);
6787 sbitmap_vector_zero (st_antloc
, n_basic_blocks
);
6789 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
6791 /* Put all the stores into either the antic list, or the avail list,
6793 rtx store_list
= ptr
->stores
;
6794 ptr
->stores
= NULL_RTX
;
6796 for (st
= store_list
; st
!= NULL
; st
= XEXP (st
, 1))
6798 insn
= XEXP (st
, 0);
6799 bb
= BLOCK_FOR_INSN (insn
);
6801 if (!store_killed_after (ptr
->pattern
, insn
, bb
))
6803 /* If we've already seen an availale expression in this block,
6804 we can delete the one we saw already (It occurs earlier in
6805 the block), and replace it with this one). We'll copy the
6806 old SRC expression to an unused register in case there
6807 are any side effects. */
6808 if (TEST_BIT (ae_gen
[bb
->index
], ptr
->index
))
6810 /* Find previous store. */
6812 for (st
= AVAIL_STORE_LIST (ptr
); st
; st
= XEXP (st
, 1))
6813 if (BLOCK_FOR_INSN (XEXP (st
, 0)) == bb
)
6817 rtx r
= gen_reg_rtx (GET_MODE (ptr
->pattern
));
6819 fprintf(gcse_file
, "Removing redundant store:\n");
6820 replace_store_insn (r
, XEXP (st
, 0), bb
);
6821 XEXP (st
, 0) = insn
;
6825 SET_BIT (ae_gen
[bb
->index
], ptr
->index
);
6826 AVAIL_STORE_LIST (ptr
) = alloc_INSN_LIST (insn
,
6827 AVAIL_STORE_LIST (ptr
));
6830 if (!store_killed_before (ptr
->pattern
, insn
, bb
))
6832 SET_BIT (st_antloc
[BLOCK_NUM (insn
)], ptr
->index
);
6833 ANTIC_STORE_LIST (ptr
) = alloc_INSN_LIST (insn
,
6834 ANTIC_STORE_LIST (ptr
));
6838 /* Free the original list of store insns. */
6839 free_INSN_LIST_list (&store_list
);
6842 ae_kill
= (sbitmap
*) sbitmap_vector_alloc (n_basic_blocks
, num_stores
);
6843 sbitmap_vector_zero (ae_kill
, n_basic_blocks
);
6845 transp
= (sbitmap
*) sbitmap_vector_alloc (n_basic_blocks
, num_stores
);
6846 sbitmap_vector_zero (transp
, n_basic_blocks
);
6848 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
6849 for (b
= 0; b
< n_basic_blocks
; b
++)
6851 if (store_killed_after (ptr
->pattern
, BLOCK_HEAD (b
), BASIC_BLOCK (b
)))
6853 /* The anticipatable expression is not killed if it's gen'd. */
6855 We leave this check out for now. If we have a code sequence
6856 in a block which looks like:
6860 We should flag this as having an ANTIC expression, NOT
6861 transparent, NOT killed, and AVAIL.
6862 Unfortunately, since we haven't re-written all loads to
6863 use the reaching reg, we'll end up doing an incorrect
6864 Load in the middle here if we push the store down. It happens in
6865 gcc.c-torture/execute/960311-1.c with -O3
6866 If we always kill it in this case, we'll sometimes do
6867 uneccessary work, but it shouldn't actually hurt anything.
6868 if (!TEST_BIT (ae_gen[b], ptr->index)). */
6869 SET_BIT (ae_kill
[b
], ptr
->index
);
6872 SET_BIT (transp
[b
], ptr
->index
);
6875 /* Any block with no exits calls some non-returning function, so
6876 we better mark the store killed here, or we might not store to
6877 it at all. If we knew it was abort, we wouldn't have to store,
6878 but we don't know that for sure. */
6881 fprintf (gcse_file
, "ST_avail and ST_antic (shown under loads..)\n");
6882 print_ldst_list (gcse_file
);
6883 dump_sbitmap_vector (gcse_file
, "st_antloc", "", st_antloc
, n_basic_blocks
);
6884 dump_sbitmap_vector (gcse_file
, "st_kill", "", ae_kill
, n_basic_blocks
);
6885 dump_sbitmap_vector (gcse_file
, "Transpt", "", transp
, n_basic_blocks
);
6886 dump_sbitmap_vector (gcse_file
, "st_avloc", "", ae_gen
, n_basic_blocks
);
6890 /* Insert an instruction at the begining of a basic block, and update
6891 the BLOCK_HEAD if needed. */
6894 insert_insn_start_bb (insn
, bb
)
6898 /* Insert at start of successor block. */
6899 rtx prev
= PREV_INSN (bb
->head
);
6900 rtx before
= bb
->head
;
6903 if (GET_CODE (before
) != CODE_LABEL
6904 && (GET_CODE (before
) != NOTE
6905 || NOTE_LINE_NUMBER (before
) != NOTE_INSN_BASIC_BLOCK
))
6908 if (prev
== bb
->end
)
6910 before
= NEXT_INSN (before
);
6913 insn
= emit_insn_after (insn
, prev
);
6915 if (prev
== bb
->end
)
6918 set_block_for_new_insns (insn
, bb
);
6922 fprintf (gcse_file
, "STORE_MOTION insert store at start of BB %d:\n",
6924 print_inline_rtx (gcse_file
, insn
, 6);
6925 fprintf (gcse_file
, "\n");
6929 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6930 the memory reference, and E is the edge to insert it on. Returns non-zero
6931 if an edge insertion was performed. */
6934 insert_store (expr
, e
)
6935 struct ls_expr
* expr
;
6942 /* We did all the deleted before this insert, so if we didn't delete a
6943 store, then we haven't set the reaching reg yet either. */
6944 if (expr
->reaching_reg
== NULL_RTX
)
6947 reg
= expr
->reaching_reg
;
6948 insn
= gen_move_insn (expr
->pattern
, reg
);
6950 /* If we are inserting this expression on ALL predecessor edges of a BB,
6951 insert it at the start of the BB, and reset the insert bits on the other
6952 edges so we don;t try to insert it on the other edges. */
6954 for (tmp
= e
->dest
->pred
; tmp
; tmp
= tmp
->pred_next
)
6956 int index
= EDGE_INDEX (edge_list
, tmp
->src
, tmp
->dest
);
6957 if (index
== EDGE_INDEX_NO_EDGE
)
6959 if (! TEST_BIT (pre_insert_map
[index
], expr
->index
))
6963 /* If tmp is NULL, we found an insertion on every edge, blank the
6964 insertion vector for these edges, and insert at the start of the BB. */
6965 if (!tmp
&& bb
!= EXIT_BLOCK_PTR
)
6967 for (tmp
= e
->dest
->pred
; tmp
; tmp
= tmp
->pred_next
)
6969 int index
= EDGE_INDEX (edge_list
, tmp
->src
, tmp
->dest
);
6970 RESET_BIT (pre_insert_map
[index
], expr
->index
);
6972 insert_insn_start_bb (insn
, bb
);
6976 /* We can't insert on this edge, so we'll insert at the head of the
6977 successors block. See Morgan, sec 10.5. */
6978 if ((e
->flags
& EDGE_ABNORMAL
) == EDGE_ABNORMAL
)
6980 insert_insn_start_bb (insn
, bb
);
6984 insert_insn_on_edge (insn
, e
);
6988 fprintf (gcse_file
, "STORE_MOTION insert insn on edge (%d, %d):\n",
6989 e
->src
->index
, e
->dest
->index
);
6990 print_inline_rtx (gcse_file
, insn
, 6);
6991 fprintf (gcse_file
, "\n");
6997 /* This routine will replace a store with a SET to a specified register. */
7000 replace_store_insn (reg
, del
, bb
)
7006 insn
= gen_move_insn (reg
, SET_SRC (PATTERN (del
)));
7007 insn
= emit_insn_after (insn
, del
);
7008 set_block_for_new_insns (insn
, bb
);
7013 "STORE_MOTION delete insn in BB %d:\n ", bb
->index
);
7014 print_inline_rtx (gcse_file
, del
, 6);
7015 fprintf(gcse_file
, "\nSTORE MOTION replaced with insn:\n ");
7016 print_inline_rtx (gcse_file
, insn
, 6);
7017 fprintf(gcse_file
, "\n");
7023 if (bb
->head
== del
)
7030 /* Delete a store, but copy the value that would have been stored into
7031 the reaching_reg for later storing. */
7034 delete_store (expr
, bb
)
7035 struct ls_expr
* expr
;
7040 if (expr
->reaching_reg
== NULL_RTX
)
7041 expr
->reaching_reg
= gen_reg_rtx (GET_MODE (expr
->pattern
));
7044 /* If there is more than 1 store, the earlier ones will be dead,
7045 but it doesn't hurt to replace them here. */
7046 reg
= expr
->reaching_reg
;
7048 for (i
= AVAIL_STORE_LIST (expr
); i
; i
= XEXP (i
, 1))
7051 if (BLOCK_FOR_INSN (del
) == bb
)
7053 /* We know there is only one since we deleted redundant
7054 ones during the available computation. */
7055 replace_store_insn (reg
, del
, bb
);
7061 /* Free memory used by store motion. */
7064 free_store_memory ()
7077 free (pre_insert_map
);
7079 free (pre_delete_map
);
7080 if (reg_set_in_block
)
7081 free (reg_set_in_block
);
7083 ae_gen
= ae_kill
= transp
= st_antloc
= NULL
;
7084 pre_insert_map
= pre_delete_map
= reg_set_in_block
= NULL
;
7087 /* Perform store motion. Much like gcse, except we move expressions the
7088 other way by looking at the flowgraph in reverse. */
7094 struct ls_expr
* ptr
;
7095 int update_flow
= 0;
7099 fprintf (gcse_file
, "before store motion\n");
7100 print_rtl (gcse_file
, get_insns ());
7104 init_alias_analysis ();
7106 /* Find all the stores that are live to the end of their block. */
7107 num_stores
= compute_store_table ();
7108 if (num_stores
== 0)
7110 free (reg_set_in_block
);
7111 end_alias_analysis ();
7115 /* Now compute whats actually available to move. */
7116 add_noreturn_fake_exit_edges ();
7117 build_store_vectors ();
7119 edge_list
= pre_edge_rev_lcm (gcse_file
, num_stores
, transp
, ae_gen
,
7120 st_antloc
, ae_kill
, &pre_insert_map
,
7123 /* Now we want to insert the new stores which are going to be needed. */
7124 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
7126 for (x
= 0; x
< n_basic_blocks
; x
++)
7127 if (TEST_BIT (pre_delete_map
[x
], ptr
->index
))
7128 delete_store (ptr
, BASIC_BLOCK (x
));
7130 for (x
= 0; x
< NUM_EDGES (edge_list
); x
++)
7131 if (TEST_BIT (pre_insert_map
[x
], ptr
->index
))
7132 update_flow
|= insert_store (ptr
, INDEX_EDGE (edge_list
, x
));
7136 commit_edge_insertions ();
7138 free_store_memory ();
7139 free_edge_list (edge_list
);
7140 remove_fake_edges ();
7141 end_alias_analysis ();