1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
32 #include "hard-reg-set.h"
33 #include "insn-config.h"
36 #if !defined PREFERRED_STACK_BOUNDARY && defined STACK_BOUNDARY
37 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
40 static rtx break_out_memory_refs
PARAMS ((rtx
));
41 static void emit_stack_probe
PARAMS ((rtx
));
44 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
47 trunc_int_for_mode (c
, mode
)
49 enum machine_mode mode
;
51 int width
= GET_MODE_BITSIZE (mode
);
53 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
55 return c
& 1 ? STORE_FLAG_VALUE
: 0;
57 /* Sign-extend for the requested mode. */
59 if (width
< HOST_BITS_PER_WIDE_INT
)
61 HOST_WIDE_INT sign
= 1;
71 /* Return an rtx for the sum of X and the integer C.
73 This function should be used via the `plus_constant' macro. */
76 plus_constant_wide (x
, c
)
78 register HOST_WIDE_INT c
;
80 register RTX_CODE code
;
81 register enum machine_mode mode
;
95 return GEN_INT (INTVAL (x
) + c
);
99 unsigned HOST_WIDE_INT l1
= CONST_DOUBLE_LOW (x
);
100 HOST_WIDE_INT h1
= CONST_DOUBLE_HIGH (x
);
101 unsigned HOST_WIDE_INT l2
= c
;
102 HOST_WIDE_INT h2
= c
< 0 ? ~0 : 0;
103 unsigned HOST_WIDE_INT lv
;
106 add_double (l1
, h1
, l2
, h2
, &lv
, &hv
);
108 return immed_double_const (lv
, hv
, VOIDmode
);
112 /* If this is a reference to the constant pool, try replacing it with
113 a reference to a new constant. If the resulting address isn't
114 valid, don't return it because we have no way to validize it. */
115 if (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
116 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)))
119 = force_const_mem (GET_MODE (x
),
120 plus_constant (get_pool_constant (XEXP (x
, 0)),
122 if (memory_address_p (GET_MODE (tem
), XEXP (tem
, 0)))
128 /* If adding to something entirely constant, set a flag
129 so that we can add a CONST around the result. */
140 /* The interesting case is adding the integer to a sum.
141 Look for constant term in the sum and combine
142 with C. For an integer constant term, we make a combined
143 integer. For a constant term that is not an explicit integer,
144 we cannot really combine, but group them together anyway.
146 Restart or use a recursive call in case the remaining operand is
147 something that we handle specially, such as a SYMBOL_REF.
149 We may not immediately return from the recursive call here, lest
150 all_constant gets lost. */
152 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
154 c
+= INTVAL (XEXP (x
, 1));
156 if (GET_MODE (x
) != VOIDmode
)
157 c
= trunc_int_for_mode (c
, GET_MODE (x
));
162 else if (CONSTANT_P (XEXP (x
, 0)))
164 x
= gen_rtx_PLUS (mode
,
165 plus_constant (XEXP (x
, 0), c
),
169 else if (CONSTANT_P (XEXP (x
, 1)))
171 x
= gen_rtx_PLUS (mode
,
173 plus_constant (XEXP (x
, 1), c
));
183 x
= gen_rtx_PLUS (mode
, x
, GEN_INT (c
));
185 if (GET_CODE (x
) == SYMBOL_REF
|| GET_CODE (x
) == LABEL_REF
)
187 else if (all_constant
)
188 return gen_rtx_CONST (mode
, x
);
193 /* This is the same as `plus_constant', except that it handles LO_SUM.
195 This function should be used via the `plus_constant_for_output' macro. */
198 plus_constant_for_output_wide (x
, c
)
200 register HOST_WIDE_INT c
;
202 register enum machine_mode mode
= GET_MODE (x
);
204 if (GET_CODE (x
) == LO_SUM
)
205 return gen_rtx_LO_SUM (mode
, XEXP (x
, 0),
206 plus_constant_for_output (XEXP (x
, 1), c
));
209 return plus_constant (x
, c
);
212 /* If X is a sum, return a new sum like X but lacking any constant terms.
213 Add all the removed constant terms into *CONSTPTR.
214 X itself is not altered. The result != X if and only if
215 it is not isomorphic to X. */
218 eliminate_constant_term (x
, constptr
)
225 if (GET_CODE (x
) != PLUS
)
228 /* First handle constants appearing at this level explicitly. */
229 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
230 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
), *constptr
,
232 && GET_CODE (tem
) == CONST_INT
)
235 return eliminate_constant_term (XEXP (x
, 0), constptr
);
239 x0
= eliminate_constant_term (XEXP (x
, 0), &tem
);
240 x1
= eliminate_constant_term (XEXP (x
, 1), &tem
);
241 if ((x1
!= XEXP (x
, 1) || x0
!= XEXP (x
, 0))
242 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
),
244 && GET_CODE (tem
) == CONST_INT
)
247 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
253 /* Returns the insn that next references REG after INSN, or 0
254 if REG is clobbered before next referenced or we cannot find
255 an insn that references REG in a straight-line piece of code. */
258 find_next_ref (reg
, insn
)
264 for (insn
= NEXT_INSN (insn
); insn
; insn
= next
)
266 next
= NEXT_INSN (insn
);
267 if (GET_CODE (insn
) == NOTE
)
269 if (GET_CODE (insn
) == CODE_LABEL
270 || GET_CODE (insn
) == BARRIER
)
272 if (GET_CODE (insn
) == INSN
273 || GET_CODE (insn
) == JUMP_INSN
274 || GET_CODE (insn
) == CALL_INSN
)
276 if (reg_set_p (reg
, insn
))
278 if (reg_mentioned_p (reg
, PATTERN (insn
)))
280 if (GET_CODE (insn
) == JUMP_INSN
)
282 if (any_uncondjump_p (insn
))
283 next
= JUMP_LABEL (insn
);
287 if (GET_CODE (insn
) == CALL_INSN
288 && REGNO (reg
) < FIRST_PSEUDO_REGISTER
289 && call_used_regs
[REGNO (reg
)])
298 /* Return an rtx for the size in bytes of the value of EXP. */
304 tree size
= size_in_bytes (TREE_TYPE (exp
));
306 if (TREE_CODE (size
) != INTEGER_CST
307 && contains_placeholder_p (size
))
308 size
= build (WITH_RECORD_EXPR
, sizetype
, size
, exp
);
310 return expand_expr (size
, NULL_RTX
, TYPE_MODE (sizetype
),
311 EXPAND_MEMORY_USE_BAD
);
314 /* Return a copy of X in which all memory references
315 and all constants that involve symbol refs
316 have been replaced with new temporary registers.
317 Also emit code to load the memory locations and constants
318 into those registers.
320 If X contains no such constants or memory references,
321 X itself (not a copy) is returned.
323 If a constant is found in the address that is not a legitimate constant
324 in an insn, it is left alone in the hope that it might be valid in the
327 X may contain no arithmetic except addition, subtraction and multiplication.
328 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
331 break_out_memory_refs (x
)
334 if (GET_CODE (x
) == MEM
335 || (CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
)
336 && GET_MODE (x
) != VOIDmode
))
337 x
= force_reg (GET_MODE (x
), x
);
338 else if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
339 || GET_CODE (x
) == MULT
)
341 register rtx op0
= break_out_memory_refs (XEXP (x
, 0));
342 register rtx op1
= break_out_memory_refs (XEXP (x
, 1));
344 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
345 x
= gen_rtx_fmt_ee (GET_CODE (x
), Pmode
, op0
, op1
);
351 #ifdef POINTERS_EXTEND_UNSIGNED
353 /* Given X, a memory address in ptr_mode, convert it to an address
354 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
355 the fact that pointers are not allowed to overflow by commuting arithmetic
356 operations over conversions so that address arithmetic insns can be
360 convert_memory_address (to_mode
, x
)
361 enum machine_mode to_mode
;
364 enum machine_mode from_mode
= to_mode
== ptr_mode
? Pmode
: ptr_mode
;
367 /* Here we handle some special cases. If none of them apply, fall through
368 to the default case. */
369 switch (GET_CODE (x
))
376 if (GET_MODE (SUBREG_REG (x
)) == to_mode
)
377 return SUBREG_REG (x
);
381 temp
= gen_rtx_LABEL_REF (to_mode
, XEXP (x
, 0));
382 LABEL_REF_NONLOCAL_P (temp
) = LABEL_REF_NONLOCAL_P (x
);
386 temp
= gen_rtx_SYMBOL_REF (to_mode
, XSTR (x
, 0));
387 SYMBOL_REF_FLAG (temp
) = SYMBOL_REF_FLAG (x
);
388 CONSTANT_POOL_ADDRESS_P (temp
) = CONSTANT_POOL_ADDRESS_P (x
);
389 STRING_POOL_ADDRESS_P (temp
) = STRING_POOL_ADDRESS_P (x
);
393 return gen_rtx_CONST (to_mode
,
394 convert_memory_address (to_mode
, XEXP (x
, 0)));
398 /* For addition the second operand is a small constant, we can safely
399 permute the conversion and addition operation. We can always safely
400 permute them if we are making the address narrower. In addition,
401 always permute the operations if this is a constant. */
402 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
)
403 || (GET_CODE (x
) == PLUS
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
404 && (INTVAL (XEXP (x
, 1)) + 20000 < 40000
405 || CONSTANT_P (XEXP (x
, 0)))))
406 return gen_rtx_fmt_ee (GET_CODE (x
), to_mode
,
407 convert_memory_address (to_mode
, XEXP (x
, 0)),
408 convert_memory_address (to_mode
, XEXP (x
, 1)));
415 return convert_modes (to_mode
, from_mode
,
416 x
, POINTERS_EXTEND_UNSIGNED
);
420 /* Given a memory address or facsimile X, construct a new address,
421 currently equivalent, that is stable: future stores won't change it.
423 X must be composed of constants, register and memory references
424 combined with addition, subtraction and multiplication:
425 in other words, just what you can get from expand_expr if sum_ok is 1.
427 Works by making copies of all regs and memory locations used
428 by X and combining them the same way X does.
429 You could also stabilize the reference to this address
430 by copying the address to a register with copy_to_reg;
431 but then you wouldn't get indexed addressing in the reference. */
437 if (GET_CODE (x
) == REG
)
439 if (REGNO (x
) != FRAME_POINTER_REGNUM
440 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
441 && REGNO (x
) != HARD_FRAME_POINTER_REGNUM
446 else if (GET_CODE (x
) == MEM
)
448 else if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
449 || GET_CODE (x
) == MULT
)
451 register rtx op0
= copy_all_regs (XEXP (x
, 0));
452 register rtx op1
= copy_all_regs (XEXP (x
, 1));
453 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
454 x
= gen_rtx_fmt_ee (GET_CODE (x
), Pmode
, op0
, op1
);
459 /* Return something equivalent to X but valid as a memory address
460 for something of mode MODE. When X is not itself valid, this
461 works by copying X or subexpressions of it into registers. */
464 memory_address (mode
, x
)
465 enum machine_mode mode
;
468 register rtx oldx
= x
;
470 if (GET_CODE (x
) == ADDRESSOF
)
473 #ifdef POINTERS_EXTEND_UNSIGNED
474 if (GET_MODE (x
) == ptr_mode
)
475 x
= convert_memory_address (Pmode
, x
);
478 /* By passing constant addresses thru registers
479 we get a chance to cse them. */
480 if (! cse_not_expected
&& CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
))
481 x
= force_reg (Pmode
, x
);
483 /* Accept a QUEUED that refers to a REG
484 even though that isn't a valid address.
485 On attempting to put this in an insn we will call protect_from_queue
486 which will turn it into a REG, which is valid. */
487 else if (GET_CODE (x
) == QUEUED
488 && GET_CODE (QUEUED_VAR (x
)) == REG
)
491 /* We get better cse by rejecting indirect addressing at this stage.
492 Let the combiner create indirect addresses where appropriate.
493 For now, generate the code so that the subexpressions useful to share
494 are visible. But not if cse won't be done! */
497 if (! cse_not_expected
&& GET_CODE (x
) != REG
)
498 x
= break_out_memory_refs (x
);
500 /* At this point, any valid address is accepted. */
501 GO_IF_LEGITIMATE_ADDRESS (mode
, x
, win
);
503 /* If it was valid before but breaking out memory refs invalidated it,
504 use it the old way. */
505 if (memory_address_p (mode
, oldx
))
508 /* Perform machine-dependent transformations on X
509 in certain cases. This is not necessary since the code
510 below can handle all possible cases, but machine-dependent
511 transformations can make better code. */
512 LEGITIMIZE_ADDRESS (x
, oldx
, mode
, win
);
514 /* PLUS and MULT can appear in special ways
515 as the result of attempts to make an address usable for indexing.
516 Usually they are dealt with by calling force_operand, below.
517 But a sum containing constant terms is special
518 if removing them makes the sum a valid address:
519 then we generate that address in a register
520 and index off of it. We do this because it often makes
521 shorter code, and because the addresses thus generated
522 in registers often become common subexpressions. */
523 if (GET_CODE (x
) == PLUS
)
525 rtx constant_term
= const0_rtx
;
526 rtx y
= eliminate_constant_term (x
, &constant_term
);
527 if (constant_term
== const0_rtx
528 || ! memory_address_p (mode
, y
))
529 x
= force_operand (x
, NULL_RTX
);
532 y
= gen_rtx_PLUS (GET_MODE (x
), copy_to_reg (y
), constant_term
);
533 if (! memory_address_p (mode
, y
))
534 x
= force_operand (x
, NULL_RTX
);
540 else if (GET_CODE (x
) == MULT
|| GET_CODE (x
) == MINUS
)
541 x
= force_operand (x
, NULL_RTX
);
543 /* If we have a register that's an invalid address,
544 it must be a hard reg of the wrong class. Copy it to a pseudo. */
545 else if (GET_CODE (x
) == REG
)
548 /* Last resort: copy the value to a register, since
549 the register is a valid address. */
551 x
= force_reg (Pmode
, x
);
558 if (flag_force_addr
&& ! cse_not_expected
&& GET_CODE (x
) != REG
559 /* Don't copy an addr via a reg if it is one of our stack slots. */
560 && ! (GET_CODE (x
) == PLUS
561 && (XEXP (x
, 0) == virtual_stack_vars_rtx
562 || XEXP (x
, 0) == virtual_incoming_args_rtx
)))
564 if (general_operand (x
, Pmode
))
565 x
= force_reg (Pmode
, x
);
567 x
= force_operand (x
, NULL_RTX
);
573 /* If we didn't change the address, we are done. Otherwise, mark
574 a reg as a pointer if we have REG or REG + CONST_INT. */
577 else if (GET_CODE (x
) == REG
)
578 mark_reg_pointer (x
, BITS_PER_UNIT
);
579 else if (GET_CODE (x
) == PLUS
580 && GET_CODE (XEXP (x
, 0)) == REG
581 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
582 mark_reg_pointer (XEXP (x
, 0), BITS_PER_UNIT
);
584 /* OLDX may have been the address on a temporary. Update the address
585 to indicate that X is now used. */
586 update_temp_slot_address (oldx
, x
);
591 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
594 memory_address_noforce (mode
, x
)
595 enum machine_mode mode
;
598 int ambient_force_addr
= flag_force_addr
;
602 val
= memory_address (mode
, x
);
603 flag_force_addr
= ambient_force_addr
;
607 /* Convert a mem ref into one with a valid memory address.
608 Pass through anything else unchanged. */
614 if (GET_CODE (ref
) != MEM
)
616 if (memory_address_p (GET_MODE (ref
), XEXP (ref
, 0)))
618 /* Don't alter REF itself, since that is probably a stack slot. */
619 return change_address (ref
, GET_MODE (ref
), XEXP (ref
, 0));
622 /* Given REF, either a MEM or a REG, and T, either the type of X or
623 the expression corresponding to REF, set RTX_UNCHANGING_P if
627 maybe_set_unchanging (ref
, t
)
631 /* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
632 initialization is only executed once, or whose initializer always
633 has the same value. Currently we simplify this to PARM_DECLs in the
634 first case, and decls with TREE_CONSTANT initializers in the second. */
635 if ((TREE_READONLY (t
) && DECL_P (t
)
636 && (TREE_CODE (t
) == PARM_DECL
637 || DECL_INITIAL (t
) == NULL_TREE
638 || TREE_CONSTANT (DECL_INITIAL (t
))))
639 || TREE_CODE_CLASS (TREE_CODE (t
)) == 'c')
640 RTX_UNCHANGING_P (ref
) = 1;
643 /* Given REF, a MEM, and T, either the type of X or the expression
644 corresponding to REF, set the memory attributes. OBJECTP is nonzero
645 if we are making a new object of this type. */
648 set_mem_attributes (ref
, t
, objectp
)
655 /* It can happen that type_for_mode was given a mode for which there
656 is no language-level type. In which case it returns NULL, which
661 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
663 /* Get the alias set from the expression or type (perhaps using a
664 front-end routine) and then copy bits from the type. */
666 /* It is incorrect to set RTX_UNCHANGING_P from TREE_READONLY (type)
667 here, because, in C and C++, the fact that a location is accessed
668 through a const expression does not mean that the value there can
670 MEM_ALIAS_SET (ref
) = get_alias_set (t
);
671 MEM_VOLATILE_P (ref
) = TYPE_VOLATILE (type
);
672 MEM_IN_STRUCT_P (ref
) = AGGREGATE_TYPE_P (type
);
674 /* If we are making an object of this type, we know that it is a scalar if
675 the type is not an aggregate. */
676 if (objectp
&& ! AGGREGATE_TYPE_P (type
))
677 MEM_SCALAR_P (ref
) = 1;
679 /* If T is a type, this is all we can do. Otherwise, we may be able
680 to deduce some more information about the expression. */
684 maybe_set_unchanging (ref
, t
);
685 if (TREE_THIS_VOLATILE (t
))
686 MEM_VOLATILE_P (ref
) = 1;
688 /* Now see if we can say more about whether it's an aggregate or
689 scalar. If we already know it's an aggregate, don't bother. */
690 if (MEM_IN_STRUCT_P (ref
))
693 /* Now remove any NOPs: they don't change what the underlying object is.
694 Likewise for SAVE_EXPR. */
695 while (TREE_CODE (t
) == NOP_EXPR
|| TREE_CODE (t
) == CONVERT_EXPR
696 || TREE_CODE (t
) == NON_LVALUE_EXPR
|| TREE_CODE (t
) == SAVE_EXPR
)
697 t
= TREE_OPERAND (t
, 0);
699 /* Since we already know the type isn't an aggregate, if this is a decl,
700 it must be a scalar. Or if it is a reference into an aggregate,
701 this is part of an aggregate. Otherwise we don't know. */
703 MEM_SCALAR_P (ref
) = 1;
704 else if (TREE_CODE (t
) == COMPONENT_REF
|| TREE_CODE (t
) == ARRAY_REF
705 || TREE_CODE (t
) == BIT_FIELD_REF
)
706 MEM_IN_STRUCT_P (ref
) = 1;
709 /* Return a modified copy of X with its memory address copied
710 into a temporary register to protect it from side effects.
711 If X is not a MEM, it is returned unchanged (and not copied).
712 Perhaps even if it is a MEM, if there is no need to change it. */
720 if (GET_CODE (x
) != MEM
)
724 if (rtx_unstable_p (addr
))
726 rtx temp
= force_reg (Pmode
, copy_all_regs (addr
));
727 rtx mem
= gen_rtx_MEM (GET_MODE (x
), temp
);
729 MEM_COPY_ATTRIBUTES (mem
, x
);
735 /* Copy the value or contents of X to a new temp reg and return that reg. */
741 register rtx temp
= gen_reg_rtx (GET_MODE (x
));
743 /* If not an operand, must be an address with PLUS and MULT so
744 do the computation. */
745 if (! general_operand (x
, VOIDmode
))
746 x
= force_operand (x
, temp
);
749 emit_move_insn (temp
, x
);
754 /* Like copy_to_reg but always give the new register mode Pmode
755 in case X is a constant. */
761 return copy_to_mode_reg (Pmode
, x
);
764 /* Like copy_to_reg but always give the new register mode MODE
765 in case X is a constant. */
768 copy_to_mode_reg (mode
, x
)
769 enum machine_mode mode
;
772 register rtx temp
= gen_reg_rtx (mode
);
774 /* If not an operand, must be an address with PLUS and MULT so
775 do the computation. */
776 if (! general_operand (x
, VOIDmode
))
777 x
= force_operand (x
, temp
);
779 if (GET_MODE (x
) != mode
&& GET_MODE (x
) != VOIDmode
)
782 emit_move_insn (temp
, x
);
786 /* Load X into a register if it is not already one.
787 Use mode MODE for the register.
788 X should be valid for mode MODE, but it may be a constant which
789 is valid for all integer modes; that's why caller must specify MODE.
791 The caller must not alter the value in the register we return,
792 since we mark it as a "constant" register. */
796 enum machine_mode mode
;
799 register rtx temp
, insn
, set
;
801 if (GET_CODE (x
) == REG
)
804 temp
= gen_reg_rtx (mode
);
806 if (! general_operand (x
, mode
))
807 x
= force_operand (x
, NULL_RTX
);
809 insn
= emit_move_insn (temp
, x
);
811 /* Let optimizers know that TEMP's value never changes
812 and that X can be substituted for it. Don't get confused
813 if INSN set something else (such as a SUBREG of TEMP). */
815 && (set
= single_set (insn
)) != 0
816 && SET_DEST (set
) == temp
)
818 rtx note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
823 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (REG_EQUAL
, x
, REG_NOTES (insn
));
828 /* If X is a memory ref, copy its contents to a new temp reg and return
829 that reg. Otherwise, return X. */
837 if (GET_CODE (x
) != MEM
|| GET_MODE (x
) == BLKmode
)
840 temp
= gen_reg_rtx (GET_MODE (x
));
841 emit_move_insn (temp
, x
);
845 /* Copy X to TARGET (if it's nonzero and a reg)
846 or to a new temp reg and return that reg.
847 MODE is the mode to use for X in case it is a constant. */
850 copy_to_suggested_reg (x
, target
, mode
)
852 enum machine_mode mode
;
856 if (target
&& GET_CODE (target
) == REG
)
859 temp
= gen_reg_rtx (mode
);
861 emit_move_insn (temp
, x
);
865 /* Return the mode to use to store a scalar of TYPE and MODE.
866 PUNSIGNEDP points to the signedness of the type and may be adjusted
867 to show what signedness to use on extension operations.
869 FOR_CALL is non-zero if this call is promoting args for a call. */
872 promote_mode (type
, mode
, punsignedp
, for_call
)
874 enum machine_mode mode
;
876 int for_call ATTRIBUTE_UNUSED
;
878 enum tree_code code
= TREE_CODE (type
);
879 int unsignedp
= *punsignedp
;
881 #ifdef PROMOTE_FOR_CALL_ONLY
889 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
890 case CHAR_TYPE
: case REAL_TYPE
: case OFFSET_TYPE
:
891 PROMOTE_MODE (mode
, unsignedp
, type
);
895 #ifdef POINTERS_EXTEND_UNSIGNED
899 unsignedp
= POINTERS_EXTEND_UNSIGNED
;
907 *punsignedp
= unsignedp
;
911 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
912 This pops when ADJUST is positive. ADJUST need not be constant. */
915 adjust_stack (adjust
)
919 adjust
= protect_from_queue (adjust
, 0);
921 if (adjust
== const0_rtx
)
924 /* We expect all variable sized adjustments to be multiple of
925 PREFERRED_STACK_BOUNDARY. */
926 if (GET_CODE (adjust
) == CONST_INT
)
927 stack_pointer_delta
-= INTVAL (adjust
);
929 temp
= expand_binop (Pmode
,
930 #ifdef STACK_GROWS_DOWNWARD
935 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
938 if (temp
!= stack_pointer_rtx
)
939 emit_move_insn (stack_pointer_rtx
, temp
);
942 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
943 This pushes when ADJUST is positive. ADJUST need not be constant. */
946 anti_adjust_stack (adjust
)
950 adjust
= protect_from_queue (adjust
, 0);
952 if (adjust
== const0_rtx
)
955 /* We expect all variable sized adjustments to be multiple of
956 PREFERRED_STACK_BOUNDARY. */
957 if (GET_CODE (adjust
) == CONST_INT
)
958 stack_pointer_delta
+= INTVAL (adjust
);
960 temp
= expand_binop (Pmode
,
961 #ifdef STACK_GROWS_DOWNWARD
966 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
969 if (temp
!= stack_pointer_rtx
)
970 emit_move_insn (stack_pointer_rtx
, temp
);
973 /* Round the size of a block to be pushed up to the boundary required
974 by this machine. SIZE is the desired size, which need not be constant. */
980 #ifdef PREFERRED_STACK_BOUNDARY
981 int align
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
984 if (GET_CODE (size
) == CONST_INT
)
986 int new = (INTVAL (size
) + align
- 1) / align
* align
;
987 if (INTVAL (size
) != new)
988 size
= GEN_INT (new);
992 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
993 but we know it can't. So add ourselves and then do
995 size
= expand_binop (Pmode
, add_optab
, size
, GEN_INT (align
- 1),
996 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
997 size
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, size
, GEN_INT (align
),
999 size
= expand_mult (Pmode
, size
, GEN_INT (align
), NULL_RTX
, 1);
1001 #endif /* PREFERRED_STACK_BOUNDARY */
1005 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
1006 to a previously-created save area. If no save area has been allocated,
1007 this function will allocate one. If a save area is specified, it
1008 must be of the proper mode.
1010 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
1011 are emitted at the current position. */
1014 emit_stack_save (save_level
, psave
, after
)
1015 enum save_level save_level
;
1020 /* The default is that we use a move insn and save in a Pmode object. */
1021 rtx (*fcn
) PARAMS ((rtx
, rtx
)) = gen_move_insn
;
1022 enum machine_mode mode
= STACK_SAVEAREA_MODE (save_level
);
1024 /* See if this machine has anything special to do for this kind of save. */
1027 #ifdef HAVE_save_stack_block
1029 if (HAVE_save_stack_block
)
1030 fcn
= gen_save_stack_block
;
1033 #ifdef HAVE_save_stack_function
1035 if (HAVE_save_stack_function
)
1036 fcn
= gen_save_stack_function
;
1039 #ifdef HAVE_save_stack_nonlocal
1041 if (HAVE_save_stack_nonlocal
)
1042 fcn
= gen_save_stack_nonlocal
;
1049 /* If there is no save area and we have to allocate one, do so. Otherwise
1050 verify the save area is the proper mode. */
1054 if (mode
!= VOIDmode
)
1056 if (save_level
== SAVE_NONLOCAL
)
1057 *psave
= sa
= assign_stack_local (mode
, GET_MODE_SIZE (mode
), 0);
1059 *psave
= sa
= gen_reg_rtx (mode
);
1064 if (mode
== VOIDmode
|| GET_MODE (sa
) != mode
)
1073 /* We must validize inside the sequence, to ensure that any instructions
1074 created by the validize call also get moved to the right place. */
1076 sa
= validize_mem (sa
);
1077 emit_insn (fcn (sa
, stack_pointer_rtx
));
1078 seq
= gen_sequence ();
1080 emit_insn_after (seq
, after
);
1085 sa
= validize_mem (sa
);
1086 emit_insn (fcn (sa
, stack_pointer_rtx
));
1090 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1091 area made by emit_stack_save. If it is zero, we have nothing to do.
1093 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1094 current position. */
1097 emit_stack_restore (save_level
, sa
, after
)
1098 enum save_level save_level
;
1102 /* The default is that we use a move insn. */
1103 rtx (*fcn
) PARAMS ((rtx
, rtx
)) = gen_move_insn
;
1105 /* See if this machine has anything special to do for this kind of save. */
1108 #ifdef HAVE_restore_stack_block
1110 if (HAVE_restore_stack_block
)
1111 fcn
= gen_restore_stack_block
;
1114 #ifdef HAVE_restore_stack_function
1116 if (HAVE_restore_stack_function
)
1117 fcn
= gen_restore_stack_function
;
1120 #ifdef HAVE_restore_stack_nonlocal
1122 if (HAVE_restore_stack_nonlocal
)
1123 fcn
= gen_restore_stack_nonlocal
;
1131 sa
= validize_mem (sa
);
1138 emit_insn (fcn (stack_pointer_rtx
, sa
));
1139 seq
= gen_sequence ();
1141 emit_insn_after (seq
, after
);
1144 emit_insn (fcn (stack_pointer_rtx
, sa
));
1147 #ifdef SETJMP_VIA_SAVE_AREA
1148 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1149 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1150 platforms, the dynamic stack space used can corrupt the original
1151 frame, thus causing a crash if a longjmp unwinds to it. */
1154 optimize_save_area_alloca (insns
)
1159 for (insn
= insns
; insn
; insn
= NEXT_INSN(insn
))
1163 if (GET_CODE (insn
) != INSN
)
1166 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1168 if (REG_NOTE_KIND (note
) != REG_SAVE_AREA
)
1171 if (!current_function_calls_setjmp
)
1173 rtx pat
= PATTERN (insn
);
1175 /* If we do not see the note in a pattern matching
1176 these precise characteristics, we did something
1177 entirely wrong in allocate_dynamic_stack_space.
1179 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1180 was defined on a machine where stacks grow towards higher
1183 Right now only supported port with stack that grow upward
1184 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1185 if (GET_CODE (pat
) != SET
1186 || SET_DEST (pat
) != stack_pointer_rtx
1187 || GET_CODE (SET_SRC (pat
)) != MINUS
1188 || XEXP (SET_SRC (pat
), 0) != stack_pointer_rtx
)
1191 /* This will now be transformed into a (set REG REG)
1192 so we can just blow away all the other notes. */
1193 XEXP (SET_SRC (pat
), 1) = XEXP (note
, 0);
1194 REG_NOTES (insn
) = NULL_RTX
;
1198 /* setjmp was called, we must remove the REG_SAVE_AREA
1199 note so that later passes do not get confused by its
1201 if (note
== REG_NOTES (insn
))
1203 REG_NOTES (insn
) = XEXP (note
, 1);
1209 for (srch
= REG_NOTES (insn
); srch
; srch
= XEXP (srch
, 1))
1210 if (XEXP (srch
, 1) == note
)
1213 if (srch
== NULL_RTX
)
1216 XEXP (srch
, 1) = XEXP (note
, 1);
1219 /* Once we've seen the note of interest, we need not look at
1220 the rest of them. */
1225 #endif /* SETJMP_VIA_SAVE_AREA */
1227 /* Return an rtx representing the address of an area of memory dynamically
1228 pushed on the stack. This region of memory is always aligned to
1229 a multiple of BIGGEST_ALIGNMENT.
1231 Any required stack pointer alignment is preserved.
1233 SIZE is an rtx representing the size of the area.
1234 TARGET is a place in which the address can be placed.
1236 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1239 allocate_dynamic_stack_space (size
, target
, known_align
)
1244 #ifdef SETJMP_VIA_SAVE_AREA
1245 rtx setjmpless_size
= NULL_RTX
;
1248 /* If we're asking for zero bytes, it doesn't matter what we point
1249 to since we can't dereference it. But return a reasonable
1251 if (size
== const0_rtx
)
1252 return virtual_stack_dynamic_rtx
;
1254 /* Otherwise, show we're calling alloca or equivalent. */
1255 current_function_calls_alloca
= 1;
1257 /* Ensure the size is in the proper mode. */
1258 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1259 size
= convert_to_mode (Pmode
, size
, 1);
1261 /* We can't attempt to minimize alignment necessary, because we don't
1262 know the final value of preferred_stack_boundary yet while executing
1264 #ifdef PREFERRED_STACK_BOUNDARY
1265 cfun
->preferred_stack_boundary
= PREFERRED_STACK_BOUNDARY
;
1268 /* We will need to ensure that the address we return is aligned to
1269 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1270 always know its final value at this point in the compilation (it
1271 might depend on the size of the outgoing parameter lists, for
1272 example), so we must align the value to be returned in that case.
1273 (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
1274 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1275 We must also do an alignment operation on the returned value if
1276 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1278 If we have to align, we must leave space in SIZE for the hole
1279 that might result from the alignment operation. */
1281 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET) || ! defined (PREFERRED_STACK_BOUNDARY)
1282 #define MUST_ALIGN 1
1284 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1289 = force_operand (plus_constant (size
,
1290 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
- 1),
1293 #ifdef SETJMP_VIA_SAVE_AREA
1294 /* If setjmp restores regs from a save area in the stack frame,
1295 avoid clobbering the reg save area. Note that the offset of
1296 virtual_incoming_args_rtx includes the preallocated stack args space.
1297 It would be no problem to clobber that, but it's on the wrong side
1298 of the old save area. */
1301 = expand_binop (Pmode
, sub_optab
, virtual_stack_dynamic_rtx
,
1302 stack_pointer_rtx
, NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1304 if (!current_function_calls_setjmp
)
1306 int align
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
1308 /* See optimize_save_area_alloca to understand what is being
1311 #if !defined(PREFERRED_STACK_BOUNDARY) || !defined(MUST_ALIGN) || (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1312 /* If anyone creates a target with these characteristics, let them
1313 know that our optimization cannot work correctly in such a case. */
1317 if (GET_CODE (size
) == CONST_INT
)
1319 HOST_WIDE_INT
new = INTVAL (size
) / align
* align
;
1321 if (INTVAL (size
) != new)
1322 setjmpless_size
= GEN_INT (new);
1324 setjmpless_size
= size
;
1328 /* Since we know overflow is not possible, we avoid using
1329 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1330 setjmpless_size
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, size
,
1331 GEN_INT (align
), NULL_RTX
, 1);
1332 setjmpless_size
= expand_mult (Pmode
, setjmpless_size
,
1333 GEN_INT (align
), NULL_RTX
, 1);
1335 /* Our optimization works based upon being able to perform a simple
1336 transformation of this RTL into a (set REG REG) so make sure things
1337 did in fact end up in a REG. */
1338 if (!register_operand (setjmpless_size
, Pmode
))
1339 setjmpless_size
= force_reg (Pmode
, setjmpless_size
);
1342 size
= expand_binop (Pmode
, add_optab
, size
, dynamic_offset
,
1343 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1345 #endif /* SETJMP_VIA_SAVE_AREA */
1347 /* Round the size to a multiple of the required stack alignment.
1348 Since the stack if presumed to be rounded before this allocation,
1349 this will maintain the required alignment.
1351 If the stack grows downward, we could save an insn by subtracting
1352 SIZE from the stack pointer and then aligning the stack pointer.
1353 The problem with this is that the stack pointer may be unaligned
1354 between the execution of the subtraction and alignment insns and
1355 some machines do not allow this. Even on those that do, some
1356 signal handlers malfunction if a signal should occur between those
1357 insns. Since this is an extremely rare event, we have no reliable
1358 way of knowing which systems have this problem. So we avoid even
1359 momentarily mis-aligning the stack. */
1361 #ifdef PREFERRED_STACK_BOUNDARY
1362 /* If we added a variable amount to SIZE,
1363 we can no longer assume it is aligned. */
1364 #if !defined (SETJMP_VIA_SAVE_AREA)
1365 if (MUST_ALIGN
|| known_align
% PREFERRED_STACK_BOUNDARY
!= 0)
1367 size
= round_push (size
);
1370 do_pending_stack_adjust ();
1372 /* We ought to be called always on the toplevel and stack ought to be aligned
1374 #ifdef PREFERRED_STACK_BOUNDARY
1375 if (stack_pointer_delta
% (PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
))
1379 /* If needed, check that we have the required amount of stack. Take into
1380 account what has already been checked. */
1381 if (flag_stack_check
&& ! STACK_CHECK_BUILTIN
)
1382 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE
+ STACK_CHECK_PROTECT
, size
);
1384 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1385 if (target
== 0 || GET_CODE (target
) != REG
1386 || REGNO (target
) < FIRST_PSEUDO_REGISTER
1387 || GET_MODE (target
) != Pmode
)
1388 target
= gen_reg_rtx (Pmode
);
1390 mark_reg_pointer (target
, known_align
);
1392 /* Perform the required allocation from the stack. Some systems do
1393 this differently than simply incrementing/decrementing from the
1394 stack pointer, such as acquiring the space by calling malloc(). */
1395 #ifdef HAVE_allocate_stack
1396 if (HAVE_allocate_stack
)
1398 enum machine_mode mode
= STACK_SIZE_MODE
;
1399 insn_operand_predicate_fn pred
;
1401 pred
= insn_data
[(int) CODE_FOR_allocate_stack
].operand
[0].predicate
;
1402 if (pred
&& ! ((*pred
) (target
, Pmode
)))
1403 #ifdef POINTERS_EXTEND_UNSIGNED
1404 target
= convert_memory_address (Pmode
, target
);
1406 target
= copy_to_mode_reg (Pmode
, target
);
1409 if (mode
== VOIDmode
)
1412 pred
= insn_data
[(int) CODE_FOR_allocate_stack
].operand
[1].predicate
;
1413 if (pred
&& ! ((*pred
) (size
, mode
)))
1414 size
= copy_to_mode_reg (mode
, size
);
1416 emit_insn (gen_allocate_stack (target
, size
));
1421 #ifndef STACK_GROWS_DOWNWARD
1422 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1425 /* Check stack bounds if necessary. */
1426 if (current_function_limit_stack
)
1429 rtx space_available
= gen_label_rtx ();
1430 #ifdef STACK_GROWS_DOWNWARD
1431 available
= expand_binop (Pmode
, sub_optab
,
1432 stack_pointer_rtx
, stack_limit_rtx
,
1433 NULL_RTX
, 1, OPTAB_WIDEN
);
1435 available
= expand_binop (Pmode
, sub_optab
,
1436 stack_limit_rtx
, stack_pointer_rtx
,
1437 NULL_RTX
, 1, OPTAB_WIDEN
);
1439 emit_cmp_and_jump_insns (available
, size
, GEU
, NULL_RTX
, Pmode
, 1,
1440 0, space_available
);
1443 emit_insn (gen_trap ());
1446 error ("stack limits not supported on this target");
1448 emit_label (space_available
);
1451 anti_adjust_stack (size
);
1452 #ifdef SETJMP_VIA_SAVE_AREA
1453 if (setjmpless_size
!= NULL_RTX
)
1455 rtx note_target
= get_last_insn ();
1457 REG_NOTES (note_target
)
1458 = gen_rtx_EXPR_LIST (REG_SAVE_AREA
, setjmpless_size
,
1459 REG_NOTES (note_target
));
1461 #endif /* SETJMP_VIA_SAVE_AREA */
1463 #ifdef STACK_GROWS_DOWNWARD
1464 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1470 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1471 but we know it can't. So add ourselves and then do
1473 target
= expand_binop (Pmode
, add_optab
, target
,
1474 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
- 1),
1475 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1476 target
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, target
,
1477 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
),
1479 target
= expand_mult (Pmode
, target
,
1480 GEN_INT (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
),
1484 /* Some systems require a particular insn to refer to the stack
1485 to make the pages exist. */
1488 emit_insn (gen_probe ());
1491 /* Record the new stack level for nonlocal gotos. */
1492 if (nonlocal_goto_handler_slots
!= 0)
1493 emit_stack_save (SAVE_NONLOCAL
, &nonlocal_goto_stack_level
, NULL_RTX
);
1498 /* A front end may want to override GCC's stack checking by providing a
1499 run-time routine to call to check the stack, so provide a mechanism for
1500 calling that routine. */
1502 static rtx stack_check_libfunc
;
1505 set_stack_check_libfunc (libfunc
)
1508 stack_check_libfunc
= libfunc
;
1511 /* Emit one stack probe at ADDRESS, an address within the stack. */
1514 emit_stack_probe (address
)
1517 rtx memref
= gen_rtx_MEM (word_mode
, address
);
1519 MEM_VOLATILE_P (memref
) = 1;
1521 if (STACK_CHECK_PROBE_LOAD
)
1522 emit_move_insn (gen_reg_rtx (word_mode
), memref
);
1524 emit_move_insn (memref
, const0_rtx
);
1527 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1528 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1529 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1530 subtract from the stack. If SIZE is constant, this is done
1531 with a fixed number of probes. Otherwise, we must make a loop. */
1533 #ifdef STACK_GROWS_DOWNWARD
1534 #define STACK_GROW_OP MINUS
1536 #define STACK_GROW_OP PLUS
1540 probe_stack_range (first
, size
)
1541 HOST_WIDE_INT first
;
1544 /* First see if the front end has set up a function for us to call to
1546 if (stack_check_libfunc
!= 0)
1548 rtx addr
= memory_address (QImode
,
1549 gen_rtx (STACK_GROW_OP
, Pmode
,
1551 plus_constant (size
, first
)));
1553 #ifdef POINTERS_EXTEND_UNSIGNED
1554 if (GET_MODE (addr
) != ptr_mode
)
1555 addr
= convert_memory_address (ptr_mode
, addr
);
1558 emit_library_call (stack_check_libfunc
, 0, VOIDmode
, 1, addr
,
1562 /* Next see if we have an insn to check the stack. Use it if so. */
1563 #ifdef HAVE_check_stack
1564 else if (HAVE_check_stack
)
1566 insn_operand_predicate_fn pred
;
1568 = force_operand (gen_rtx_STACK_GROW_OP (Pmode
,
1570 plus_constant (size
, first
)),
1573 pred
= insn_data
[(int) CODE_FOR_check_stack
].operand
[0].predicate
;
1574 if (pred
&& ! ((*pred
) (last_addr
, Pmode
)))
1575 last_addr
= copy_to_mode_reg (Pmode
, last_addr
);
1577 emit_insn (gen_check_stack (last_addr
));
1581 /* If we have to generate explicit probes, see if we have a constant
1582 small number of them to generate. If so, that's the easy case. */
1583 else if (GET_CODE (size
) == CONST_INT
1584 && INTVAL (size
) < 10 * STACK_CHECK_PROBE_INTERVAL
)
1586 HOST_WIDE_INT offset
;
1588 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1589 for values of N from 1 until it exceeds LAST. If only one
1590 probe is needed, this will not generate any code. Then probe
1592 for (offset
= first
+ STACK_CHECK_PROBE_INTERVAL
;
1593 offset
< INTVAL (size
);
1594 offset
= offset
+ STACK_CHECK_PROBE_INTERVAL
)
1595 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1599 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1601 plus_constant (size
, first
)));
1604 /* In the variable case, do the same as above, but in a loop. We emit loop
1605 notes so that loop optimization can be done. */
1609 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1611 GEN_INT (first
+ STACK_CHECK_PROBE_INTERVAL
)),
1614 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1616 plus_constant (size
, first
)),
1618 rtx incr
= GEN_INT (STACK_CHECK_PROBE_INTERVAL
);
1619 rtx loop_lab
= gen_label_rtx ();
1620 rtx test_lab
= gen_label_rtx ();
1621 rtx end_lab
= gen_label_rtx ();
1624 if (GET_CODE (test_addr
) != REG
1625 || REGNO (test_addr
) < FIRST_PSEUDO_REGISTER
)
1626 test_addr
= force_reg (Pmode
, test_addr
);
1628 emit_note (NULL
, NOTE_INSN_LOOP_BEG
);
1629 emit_jump (test_lab
);
1631 emit_label (loop_lab
);
1632 emit_stack_probe (test_addr
);
1634 emit_note (NULL
, NOTE_INSN_LOOP_CONT
);
1636 #ifdef STACK_GROWS_DOWNWARD
1637 #define CMP_OPCODE GTU
1638 temp
= expand_binop (Pmode
, sub_optab
, test_addr
, incr
, test_addr
,
1641 #define CMP_OPCODE LTU
1642 temp
= expand_binop (Pmode
, add_optab
, test_addr
, incr
, test_addr
,
1646 if (temp
!= test_addr
)
1649 emit_label (test_lab
);
1650 emit_cmp_and_jump_insns (test_addr
, last_addr
, CMP_OPCODE
,
1651 NULL_RTX
, Pmode
, 1, 0, loop_lab
);
1652 emit_jump (end_lab
);
1653 emit_note (NULL
, NOTE_INSN_LOOP_END
);
1654 emit_label (end_lab
);
1656 emit_stack_probe (last_addr
);
1660 /* Return an rtx representing the register or memory location
1661 in which a scalar value of data type VALTYPE
1662 was returned by a function call to function FUNC.
1663 FUNC is a FUNCTION_DECL node if the precise function is known,
1665 OUTGOING is 1 if on a machine with register windows this function
1666 should return the register in which the function will put its result
1670 hard_function_value (valtype
, func
, outgoing
)
1672 tree func ATTRIBUTE_UNUSED
;
1673 int outgoing ATTRIBUTE_UNUSED
;
1677 #ifdef FUNCTION_OUTGOING_VALUE
1679 val
= FUNCTION_OUTGOING_VALUE (valtype
, func
);
1682 val
= FUNCTION_VALUE (valtype
, func
);
1684 if (GET_CODE (val
) == REG
1685 && GET_MODE (val
) == BLKmode
)
1687 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (valtype
);
1688 enum machine_mode tmpmode
;
1690 for (tmpmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1691 tmpmode
!= VOIDmode
;
1692 tmpmode
= GET_MODE_WIDER_MODE (tmpmode
))
1694 /* Have we found a large enough mode? */
1695 if (GET_MODE_SIZE (tmpmode
) >= bytes
)
1699 /* No suitable mode found. */
1700 if (tmpmode
== VOIDmode
)
1703 PUT_MODE (val
, tmpmode
);
1708 /* Return an rtx representing the register or memory location
1709 in which a scalar value of mode MODE was returned by a library call. */
1712 hard_libcall_value (mode
)
1713 enum machine_mode mode
;
1715 return LIBCALL_VALUE (mode
);
1718 /* Look up the tree code for a given rtx code
1719 to provide the arithmetic operation for REAL_ARITHMETIC.
1720 The function returns an int because the caller may not know
1721 what `enum tree_code' means. */
1724 rtx_to_tree_code (code
)
1727 enum tree_code tcode
;
1750 tcode
= LAST_AND_UNUSED_TREE_CODE
;
1753 return ((int) tcode
);