1 /* Output Dwarf format symbol table information from the GNU C compiler.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4 Contributed by Ron Guilmette (rfg@monkeys.com) of Network Computing Devices.
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
25 #ifdef DWARF_DEBUGGING_INFO
31 #include "hard-reg-set.h"
32 #include "insn-config.h"
39 /* IMPORTANT NOTE: Please see the file README.DWARF for important details
40 regarding the GNU implementation of Dwarf. */
42 /* NOTE: In the comments in this file, many references are made to
43 so called "Debugging Information Entries". For the sake of brevity,
44 this term is abbreviated to `DIE' throughout the remainder of this
47 /* Note that the implementation of C++ support herein is (as yet) unfinished.
48 If you want to try to complete it, more power to you. */
50 /* How to start an assembler comment. */
51 #ifndef ASM_COMMENT_START
52 #define ASM_COMMENT_START ";#"
55 /* How to print out a register name. */
57 #define PRINT_REG(RTX, CODE, FILE) \
58 fprintf ((FILE), "%s", reg_names[REGNO (RTX)])
61 /* Define a macro which returns non-zero for any tagged type which is
62 used (directly or indirectly) in the specification of either some
63 function's return type or some formal parameter of some function.
64 We use this macro when we are operating in "terse" mode to help us
65 know what tagged types have to be represented in Dwarf (even in
66 terse mode) and which ones don't.
68 A flag bit with this meaning really should be a part of the normal
69 GCC ..._TYPE nodes, but at the moment, there is no such bit defined
70 for these nodes. For now, we have to just fake it. It it safe for
71 us to simply return zero for all complete tagged types (which will
72 get forced out anyway if they were used in the specification of some
73 formal or return type) and non-zero for all incomplete tagged types.
76 #define TYPE_USED_FOR_FUNCTION(tagged_type) (TYPE_SIZE (tagged_type) == 0)
78 /* Define a macro which returns non-zero for a TYPE_DECL which was
79 implicitly generated for a tagged type.
81 Note that unlike the gcc front end (which generates a NULL named
82 TYPE_DECL node for each complete tagged type, each array type, and
83 each function type node created) the g++ front end generates a
84 _named_ TYPE_DECL node for each tagged type node created.
85 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
86 generate a DW_TAG_typedef DIE for them. */
87 #define TYPE_DECL_IS_STUB(decl) \
88 (DECL_NAME (decl) == NULL \
89 || (DECL_ARTIFICIAL (decl) \
90 && is_tagged_type (TREE_TYPE (decl)) \
91 && decl == TYPE_STUB_DECL (TREE_TYPE (decl))))
93 extern int flag_traditional
;
95 /* Maximum size (in bytes) of an artificially generated label. */
97 #define MAX_ARTIFICIAL_LABEL_BYTES 30
99 /* Structure to keep track of source filenames. */
101 struct filename_entry
{
106 typedef struct filename_entry filename_entry
;
108 /* Pointer to an array of elements, each one having the structure above. */
110 static filename_entry
*filename_table
;
112 /* Total number of entries in the table (i.e. array) pointed to by
113 `filename_table'. This is the *total* and includes both used and
116 static unsigned ft_entries_allocated
;
118 /* Number of entries in the filename_table which are actually in use. */
120 static unsigned ft_entries
;
122 /* Size (in elements) of increments by which we may expand the filename
123 table. Actually, a single hunk of space of this size should be enough
124 for most typical programs. */
126 #define FT_ENTRIES_INCREMENT 64
128 /* Local pointer to the name of the main input file. Initialized in
131 static const char *primary_filename
;
133 /* Pointer to the most recent filename for which we produced some line info. */
135 static const char *last_filename
;
137 /* Counter to generate unique names for DIEs. */
139 static unsigned next_unused_dienum
= 1;
141 /* Number of the DIE which is currently being generated. */
143 static unsigned current_dienum
;
145 /* Number to use for the special "pubname" label on the next DIE which
146 represents a function or data object defined in this compilation
147 unit which has "extern" linkage. */
149 static int next_pubname_number
= 0;
151 #define NEXT_DIE_NUM pending_sibling_stack[pending_siblings-1]
153 /* Pointer to a dynamically allocated list of pre-reserved and still
154 pending sibling DIE numbers. Note that this list will grow as needed. */
156 static unsigned *pending_sibling_stack
;
158 /* Counter to keep track of the number of pre-reserved and still pending
159 sibling DIE numbers. */
161 static unsigned pending_siblings
;
163 /* The currently allocated size of the above list (expressed in number of
166 static unsigned pending_siblings_allocated
;
168 /* Size (in elements) of increments by which we may expand the pending
169 sibling stack. Actually, a single hunk of space of this size should
170 be enough for most typical programs. */
172 #define PENDING_SIBLINGS_INCREMENT 64
174 /* Non-zero if we are performing our file-scope finalization pass and if
175 we should force out Dwarf descriptions of any and all file-scope
176 tagged types which are still incomplete types. */
178 static int finalizing
= 0;
180 /* A pointer to the base of a list of pending types which we haven't
181 generated DIEs for yet, but which we will have to come back to
184 static tree
*pending_types_list
;
186 /* Number of elements currently allocated for the pending_types_list. */
188 static unsigned pending_types_allocated
;
190 /* Number of elements of pending_types_list currently in use. */
192 static unsigned pending_types
;
194 /* Size (in elements) of increments by which we may expand the pending
195 types list. Actually, a single hunk of space of this size should
196 be enough for most typical programs. */
198 #define PENDING_TYPES_INCREMENT 64
200 /* A pointer to the base of a list of incomplete types which might be
201 completed at some later time. */
203 static tree
*incomplete_types_list
;
205 /* Number of elements currently allocated for the incomplete_types_list. */
206 static unsigned incomplete_types_allocated
;
208 /* Number of elements of incomplete_types_list currently in use. */
209 static unsigned incomplete_types
;
211 /* Size (in elements) of increments by which we may expand the incomplete
212 types list. Actually, a single hunk of space of this size should
213 be enough for most typical programs. */
214 #define INCOMPLETE_TYPES_INCREMENT 64
216 /* Pointer to an artificial RECORD_TYPE which we create in dwarfout_init.
217 This is used in a hack to help us get the DIEs describing types of
218 formal parameters to come *after* all of the DIEs describing the formal
219 parameters themselves. That's necessary in order to be compatible
220 with what the brain-damaged svr4 SDB debugger requires. */
222 static tree fake_containing_scope
;
224 /* The number of the current function definition that we are generating
225 debugging information for. These numbers range from 1 up to the maximum
226 number of function definitions contained within the current compilation
227 unit. These numbers are used to create unique labels for various things
228 contained within various function definitions. */
230 static unsigned current_funcdef_number
= 1;
232 /* A pointer to the ..._DECL node which we have most recently been working
233 on. We keep this around just in case something about it looks screwy
234 and we want to tell the user what the source coordinates for the actual
237 static tree dwarf_last_decl
;
239 /* A flag indicating that we are emitting the member declarations of a
240 class, so member functions and variables should not be entirely emitted.
241 This is a kludge to avoid passing a second argument to output_*_die. */
245 /* Forward declarations for functions defined in this file. */
247 static const char *dwarf_tag_name
PARAMS ((unsigned));
248 static const char *dwarf_attr_name
PARAMS ((unsigned));
249 static const char *dwarf_stack_op_name
PARAMS ((unsigned));
250 static const char *dwarf_typemod_name
PARAMS ((unsigned));
251 static const char *dwarf_fmt_byte_name
PARAMS ((unsigned));
252 static const char *dwarf_fund_type_name
PARAMS ((unsigned));
253 static tree decl_ultimate_origin
PARAMS ((tree
));
254 static tree block_ultimate_origin
PARAMS ((tree
));
255 static tree decl_class_context
PARAMS ((tree
));
257 static void output_unsigned_leb128
PARAMS ((unsigned long));
258 static void output_signed_leb128
PARAMS ((long));
260 static int fundamental_type_code
PARAMS ((tree
));
261 static tree root_type_1
PARAMS ((tree
, int));
262 static tree root_type
PARAMS ((tree
));
263 static void write_modifier_bytes_1
PARAMS ((tree
, int, int, int));
264 static void write_modifier_bytes
PARAMS ((tree
, int, int));
265 static inline int type_is_fundamental
PARAMS ((tree
));
266 static void equate_decl_number_to_die_number
PARAMS ((tree
));
267 static inline void equate_type_number_to_die_number
PARAMS ((tree
));
268 static void output_reg_number
PARAMS ((rtx
));
269 static void output_mem_loc_descriptor
PARAMS ((rtx
));
270 static void output_loc_descriptor
PARAMS ((rtx
));
271 static void output_bound_representation
PARAMS ((tree
, unsigned, int));
272 static void output_enumeral_list
PARAMS ((tree
));
273 static inline HOST_WIDE_INT ceiling
PARAMS ((HOST_WIDE_INT
, unsigned int));
274 static inline tree field_type
PARAMS ((tree
));
275 static inline unsigned int simple_type_align_in_bits
PARAMS ((tree
));
276 static inline unsigned HOST_WIDE_INT simple_type_size_in_bits
PARAMS ((tree
));
277 static HOST_WIDE_INT field_byte_offset
PARAMS ((tree
));
278 static inline void sibling_attribute
PARAMS ((void));
279 static void location_attribute
PARAMS ((rtx
));
280 static void data_member_location_attribute
PARAMS ((tree
));
281 static void const_value_attribute
PARAMS ((rtx
));
282 static void location_or_const_value_attribute
PARAMS ((tree
));
283 static inline void name_attribute
PARAMS ((const char *));
284 static inline void fund_type_attribute
PARAMS ((unsigned));
285 static void mod_fund_type_attribute
PARAMS ((tree
, int, int));
286 static inline void user_def_type_attribute
PARAMS ((tree
));
287 static void mod_u_d_type_attribute
PARAMS ((tree
, int, int));
288 #ifdef USE_ORDERING_ATTRIBUTE
289 static inline void ordering_attribute
PARAMS ((unsigned));
290 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
291 static void subscript_data_attribute
PARAMS ((tree
));
292 static void byte_size_attribute
PARAMS ((tree
));
293 static inline void bit_offset_attribute
PARAMS ((tree
));
294 static inline void bit_size_attribute
PARAMS ((tree
));
295 static inline void element_list_attribute
PARAMS ((tree
));
296 static inline void stmt_list_attribute
PARAMS ((const char *));
297 static inline void low_pc_attribute
PARAMS ((const char *));
298 static inline void high_pc_attribute
PARAMS ((const char *));
299 static inline void body_begin_attribute
PARAMS ((const char *));
300 static inline void body_end_attribute
PARAMS ((const char *));
301 static inline void language_attribute
PARAMS ((unsigned));
302 static inline void member_attribute
PARAMS ((tree
));
304 static inline void string_length_attribute
PARAMS ((tree
));
306 static inline void comp_dir_attribute
PARAMS ((const char *));
307 static inline void sf_names_attribute
PARAMS ((const char *));
308 static inline void src_info_attribute
PARAMS ((const char *));
309 static inline void mac_info_attribute
PARAMS ((const char *));
310 static inline void prototyped_attribute
PARAMS ((tree
));
311 static inline void producer_attribute
PARAMS ((const char *));
312 static inline void inline_attribute
PARAMS ((tree
));
313 static inline void containing_type_attribute
PARAMS ((tree
));
314 static inline void abstract_origin_attribute
PARAMS ((tree
));
315 #ifdef DWARF_DECL_COORDINATES
316 static inline void src_coords_attribute
PARAMS ((unsigned, unsigned));
317 #endif /* defined(DWARF_DECL_COORDINATES) */
318 static inline void pure_or_virtual_attribute
PARAMS ((tree
));
319 static void name_and_src_coords_attributes
PARAMS ((tree
));
320 static void type_attribute
PARAMS ((tree
, int, int));
321 static const char *type_tag
PARAMS ((tree
));
322 static inline void dienum_push
PARAMS ((void));
323 static inline void dienum_pop
PARAMS ((void));
324 static inline tree member_declared_type
PARAMS ((tree
));
325 static const char *function_start_label
PARAMS ((tree
));
326 static void output_array_type_die
PARAMS ((void *));
327 static void output_set_type_die
PARAMS ((void *));
329 static void output_entry_point_die
PARAMS ((void *));
331 static void output_inlined_enumeration_type_die
PARAMS ((void *));
332 static void output_inlined_structure_type_die
PARAMS ((void *));
333 static void output_inlined_union_type_die
PARAMS ((void *));
334 static void output_enumeration_type_die
PARAMS ((void *));
335 static void output_formal_parameter_die
PARAMS ((void *));
336 static void output_global_subroutine_die
PARAMS ((void *));
337 static void output_global_variable_die
PARAMS ((void *));
338 static void output_label_die
PARAMS ((void *));
339 static void output_lexical_block_die
PARAMS ((void *));
340 static void output_inlined_subroutine_die
PARAMS ((void *));
341 static void output_local_variable_die
PARAMS ((void *));
342 static void output_member_die
PARAMS ((void *));
344 static void output_pointer_type_die
PARAMS ((void *));
345 static void output_reference_type_die
PARAMS ((void *));
347 static void output_ptr_to_mbr_type_die
PARAMS ((void *));
348 static void output_compile_unit_die
PARAMS ((void *));
349 static void output_string_type_die
PARAMS ((void *));
350 static void output_inheritance_die
PARAMS ((void *));
351 static void output_structure_type_die
PARAMS ((void *));
352 static void output_local_subroutine_die
PARAMS ((void *));
353 static void output_subroutine_type_die
PARAMS ((void *));
354 static void output_typedef_die
PARAMS ((void *));
355 static void output_union_type_die
PARAMS ((void *));
356 static void output_unspecified_parameters_die
PARAMS ((void *));
357 static void output_padded_null_die
PARAMS ((void *));
358 static void output_die
PARAMS ((void (*)(void *), void *));
359 static void end_sibling_chain
PARAMS ((void));
360 static void output_formal_types
PARAMS ((tree
));
361 static void pend_type
PARAMS ((tree
));
362 static int type_ok_for_scope
PARAMS ((tree
, tree
));
363 static void output_pending_types_for_scope
PARAMS ((tree
));
364 static void output_type
PARAMS ((tree
, tree
));
365 static void output_tagged_type_instantiation
PARAMS ((tree
));
366 static void output_block
PARAMS ((tree
, int));
367 static void output_decls_for_scope
PARAMS ((tree
, int));
368 static void output_decl
PARAMS ((tree
, tree
));
369 static void shuffle_filename_entry
PARAMS ((filename_entry
*));
370 static void generate_new_sfname_entry
PARAMS ((void));
371 static unsigned lookup_filename
PARAMS ((const char *));
372 static void generate_srcinfo_entry
PARAMS ((unsigned, unsigned));
373 static void generate_macinfo_entry
PARAMS ((const char *, const char *));
374 static int is_pseudo_reg
PARAMS ((rtx
));
375 static tree type_main_variant
PARAMS ((tree
));
376 static int is_tagged_type
PARAMS ((tree
));
377 static int is_redundant_typedef
PARAMS ((tree
));
378 static void add_incomplete_type
PARAMS ((tree
));
379 static void retry_incomplete_types
PARAMS ((void));
381 /* Definitions of defaults for assembler-dependent names of various
382 pseudo-ops and section names.
384 Theses may be overridden in your tm.h file (if necessary) for your
385 particular assembler. The default values provided here correspond to
386 what is expected by "standard" AT&T System V.4 assemblers. */
389 #define FILE_ASM_OP "\t.file\t"
391 #ifndef VERSION_ASM_OP
392 #define VERSION_ASM_OP "\t.version\t"
394 #ifndef UNALIGNED_SHORT_ASM_OP
395 #define UNALIGNED_SHORT_ASM_OP "\t.2byte\t"
397 #ifndef UNALIGNED_INT_ASM_OP
398 #define UNALIGNED_INT_ASM_OP "\t.4byte\t"
401 #define ASM_BYTE_OP "\t.byte\t"
404 #define SET_ASM_OP "\t.set\t"
407 /* Pseudo-ops for pushing the current section onto the section stack (and
408 simultaneously changing to a new section) and for poping back to the
409 section we were in immediately before this one. Note that most svr4
410 assemblers only maintain a one level stack... you can push all the
411 sections you want, but you can only pop out one level. (The sparc
412 svr4 assembler is an exception to this general rule.) That's
413 OK because we only use at most one level of the section stack herein. */
415 #ifndef PUSHSECTION_ASM_OP
416 #define PUSHSECTION_ASM_OP "\t.section\t"
418 #ifndef POPSECTION_ASM_OP
419 #define POPSECTION_ASM_OP "\t.previous"
422 /* The default format used by the ASM_OUTPUT_PUSH_SECTION macro (see below)
423 to print the PUSHSECTION_ASM_OP and the section name. The default here
424 works for almost all svr4 assemblers, except for the sparc, where the
425 section name must be enclosed in double quotes. (See sparcv4.h.) */
427 #ifndef PUSHSECTION_FORMAT
428 #define PUSHSECTION_FORMAT "%s%s\n"
431 #ifndef DEBUG_SECTION
432 #define DEBUG_SECTION ".debug"
435 #define LINE_SECTION ".line"
437 #ifndef SFNAMES_SECTION
438 #define SFNAMES_SECTION ".debug_sfnames"
440 #ifndef SRCINFO_SECTION
441 #define SRCINFO_SECTION ".debug_srcinfo"
443 #ifndef MACINFO_SECTION
444 #define MACINFO_SECTION ".debug_macinfo"
446 #ifndef PUBNAMES_SECTION
447 #define PUBNAMES_SECTION ".debug_pubnames"
449 #ifndef ARANGES_SECTION
450 #define ARANGES_SECTION ".debug_aranges"
453 #define TEXT_SECTION ".text"
456 #define DATA_SECTION ".data"
458 #ifndef DATA1_SECTION
459 #define DATA1_SECTION ".data1"
461 #ifndef RODATA_SECTION
462 #define RODATA_SECTION ".rodata"
464 #ifndef RODATA1_SECTION
465 #define RODATA1_SECTION ".rodata1"
468 #define BSS_SECTION ".bss"
471 /* Definitions of defaults for formats and names of various special
472 (artificial) labels which may be generated within this file (when
473 the -g options is used and DWARF_DEBUGGING_INFO is in effect.
475 If necessary, these may be overridden from within your tm.h file,
476 but typically, you should never need to override these.
478 These labels have been hacked (temporarily) so that they all begin with
479 a `.L' sequence so as to appease the stock sparc/svr4 assembler and the
480 stock m88k/svr4 assembler, both of which need to see .L at the start of
481 a label in order to prevent that label from going into the linker symbol
482 table). When I get time, I'll have to fix this the right way so that we
483 will use ASM_GENERATE_INTERNAL_LABEL and ASM_OUTPUT_INTERNAL_LABEL herein,
484 but that will require a rather massive set of changes. For the moment,
485 the following definitions out to produce the right results for all svr4
486 and svr3 assemblers. -- rfg
489 #ifndef TEXT_BEGIN_LABEL
490 #define TEXT_BEGIN_LABEL "*.L_text_b"
492 #ifndef TEXT_END_LABEL
493 #define TEXT_END_LABEL "*.L_text_e"
496 #ifndef DATA_BEGIN_LABEL
497 #define DATA_BEGIN_LABEL "*.L_data_b"
499 #ifndef DATA_END_LABEL
500 #define DATA_END_LABEL "*.L_data_e"
503 #ifndef DATA1_BEGIN_LABEL
504 #define DATA1_BEGIN_LABEL "*.L_data1_b"
506 #ifndef DATA1_END_LABEL
507 #define DATA1_END_LABEL "*.L_data1_e"
510 #ifndef RODATA_BEGIN_LABEL
511 #define RODATA_BEGIN_LABEL "*.L_rodata_b"
513 #ifndef RODATA_END_LABEL
514 #define RODATA_END_LABEL "*.L_rodata_e"
517 #ifndef RODATA1_BEGIN_LABEL
518 #define RODATA1_BEGIN_LABEL "*.L_rodata1_b"
520 #ifndef RODATA1_END_LABEL
521 #define RODATA1_END_LABEL "*.L_rodata1_e"
524 #ifndef BSS_BEGIN_LABEL
525 #define BSS_BEGIN_LABEL "*.L_bss_b"
527 #ifndef BSS_END_LABEL
528 #define BSS_END_LABEL "*.L_bss_e"
531 #ifndef LINE_BEGIN_LABEL
532 #define LINE_BEGIN_LABEL "*.L_line_b"
534 #ifndef LINE_LAST_ENTRY_LABEL
535 #define LINE_LAST_ENTRY_LABEL "*.L_line_last"
537 #ifndef LINE_END_LABEL
538 #define LINE_END_LABEL "*.L_line_e"
541 #ifndef DEBUG_BEGIN_LABEL
542 #define DEBUG_BEGIN_LABEL "*.L_debug_b"
544 #ifndef SFNAMES_BEGIN_LABEL
545 #define SFNAMES_BEGIN_LABEL "*.L_sfnames_b"
547 #ifndef SRCINFO_BEGIN_LABEL
548 #define SRCINFO_BEGIN_LABEL "*.L_srcinfo_b"
550 #ifndef MACINFO_BEGIN_LABEL
551 #define MACINFO_BEGIN_LABEL "*.L_macinfo_b"
554 #ifndef DEBUG_ARANGES_BEGIN_LABEL
555 #define DEBUG_ARANGES_BEGIN_LABEL "*.L_debug_aranges_begin"
557 #ifndef DEBUG_ARANGES_END_LABEL
558 #define DEBUG_ARANGES_END_LABEL "*.L_debug_aranges_end"
561 #ifndef DIE_BEGIN_LABEL_FMT
562 #define DIE_BEGIN_LABEL_FMT "*.L_D%u"
564 #ifndef DIE_END_LABEL_FMT
565 #define DIE_END_LABEL_FMT "*.L_D%u_e"
567 #ifndef PUB_DIE_LABEL_FMT
568 #define PUB_DIE_LABEL_FMT "*.L_P%u"
570 #ifndef BLOCK_BEGIN_LABEL_FMT
571 #define BLOCK_BEGIN_LABEL_FMT "*.L_B%u"
573 #ifndef BLOCK_END_LABEL_FMT
574 #define BLOCK_END_LABEL_FMT "*.L_B%u_e"
576 #ifndef SS_BEGIN_LABEL_FMT
577 #define SS_BEGIN_LABEL_FMT "*.L_s%u"
579 #ifndef SS_END_LABEL_FMT
580 #define SS_END_LABEL_FMT "*.L_s%u_e"
582 #ifndef EE_BEGIN_LABEL_FMT
583 #define EE_BEGIN_LABEL_FMT "*.L_e%u"
585 #ifndef EE_END_LABEL_FMT
586 #define EE_END_LABEL_FMT "*.L_e%u_e"
588 #ifndef MT_BEGIN_LABEL_FMT
589 #define MT_BEGIN_LABEL_FMT "*.L_t%u"
591 #ifndef MT_END_LABEL_FMT
592 #define MT_END_LABEL_FMT "*.L_t%u_e"
594 #ifndef LOC_BEGIN_LABEL_FMT
595 #define LOC_BEGIN_LABEL_FMT "*.L_l%u"
597 #ifndef LOC_END_LABEL_FMT
598 #define LOC_END_LABEL_FMT "*.L_l%u_e"
600 #ifndef BOUND_BEGIN_LABEL_FMT
601 #define BOUND_BEGIN_LABEL_FMT "*.L_b%u_%u_%c"
603 #ifndef BOUND_END_LABEL_FMT
604 #define BOUND_END_LABEL_FMT "*.L_b%u_%u_%c_e"
606 #ifndef DERIV_BEGIN_LABEL_FMT
607 #define DERIV_BEGIN_LABEL_FMT "*.L_d%u"
609 #ifndef DERIV_END_LABEL_FMT
610 #define DERIV_END_LABEL_FMT "*.L_d%u_e"
612 #ifndef SL_BEGIN_LABEL_FMT
613 #define SL_BEGIN_LABEL_FMT "*.L_sl%u"
615 #ifndef SL_END_LABEL_FMT
616 #define SL_END_LABEL_FMT "*.L_sl%u_e"
618 #ifndef BODY_BEGIN_LABEL_FMT
619 #define BODY_BEGIN_LABEL_FMT "*.L_b%u"
621 #ifndef BODY_END_LABEL_FMT
622 #define BODY_END_LABEL_FMT "*.L_b%u_e"
624 #ifndef FUNC_END_LABEL_FMT
625 #define FUNC_END_LABEL_FMT "*.L_f%u_e"
627 #ifndef TYPE_NAME_FMT
628 #define TYPE_NAME_FMT "*.L_T%u"
630 #ifndef DECL_NAME_FMT
631 #define DECL_NAME_FMT "*.L_E%u"
633 #ifndef LINE_CODE_LABEL_FMT
634 #define LINE_CODE_LABEL_FMT "*.L_LC%u"
636 #ifndef SFNAMES_ENTRY_LABEL_FMT
637 #define SFNAMES_ENTRY_LABEL_FMT "*.L_F%u"
639 #ifndef LINE_ENTRY_LABEL_FMT
640 #define LINE_ENTRY_LABEL_FMT "*.L_LE%u"
643 /* Definitions of defaults for various types of primitive assembly language
646 If necessary, these may be overridden from within your tm.h file,
647 but typically, you shouldn't need to override these. */
649 #ifndef ASM_OUTPUT_PUSH_SECTION
650 #define ASM_OUTPUT_PUSH_SECTION(FILE, SECTION) \
651 fprintf ((FILE), PUSHSECTION_FORMAT, PUSHSECTION_ASM_OP, SECTION)
654 #ifndef ASM_OUTPUT_POP_SECTION
655 #define ASM_OUTPUT_POP_SECTION(FILE) \
656 fprintf ((FILE), "%s\n", POPSECTION_ASM_OP)
659 #ifndef ASM_OUTPUT_DWARF_DELTA2
660 #define ASM_OUTPUT_DWARF_DELTA2(FILE,LABEL1,LABEL2) \
661 do { fprintf ((FILE), "%s", UNALIGNED_SHORT_ASM_OP); \
662 assemble_name (FILE, LABEL1); \
663 fprintf (FILE, "-"); \
664 assemble_name (FILE, LABEL2); \
665 fprintf (FILE, "\n"); \
669 #ifndef ASM_OUTPUT_DWARF_DELTA4
670 #define ASM_OUTPUT_DWARF_DELTA4(FILE,LABEL1,LABEL2) \
671 do { fprintf ((FILE), "%s", UNALIGNED_INT_ASM_OP); \
672 assemble_name (FILE, LABEL1); \
673 fprintf (FILE, "-"); \
674 assemble_name (FILE, LABEL2); \
675 fprintf (FILE, "\n"); \
679 #ifndef ASM_OUTPUT_DWARF_TAG
680 #define ASM_OUTPUT_DWARF_TAG(FILE,TAG) \
682 fprintf ((FILE), "%s0x%x", \
683 UNALIGNED_SHORT_ASM_OP, (unsigned) TAG); \
684 if (flag_debug_asm) \
685 fprintf ((FILE), "\t%s %s", \
686 ASM_COMMENT_START, dwarf_tag_name (TAG)); \
687 fputc ('\n', (FILE)); \
691 #ifndef ASM_OUTPUT_DWARF_ATTRIBUTE
692 #define ASM_OUTPUT_DWARF_ATTRIBUTE(FILE,ATTR) \
694 fprintf ((FILE), "%s0x%x", \
695 UNALIGNED_SHORT_ASM_OP, (unsigned) ATTR); \
696 if (flag_debug_asm) \
697 fprintf ((FILE), "\t%s %s", \
698 ASM_COMMENT_START, dwarf_attr_name (ATTR)); \
699 fputc ('\n', (FILE)); \
703 #ifndef ASM_OUTPUT_DWARF_STACK_OP
704 #define ASM_OUTPUT_DWARF_STACK_OP(FILE,OP) \
706 fprintf ((FILE), "%s0x%x", ASM_BYTE_OP, (unsigned) OP); \
707 if (flag_debug_asm) \
708 fprintf ((FILE), "\t%s %s", \
709 ASM_COMMENT_START, dwarf_stack_op_name (OP)); \
710 fputc ('\n', (FILE)); \
714 #ifndef ASM_OUTPUT_DWARF_FUND_TYPE
715 #define ASM_OUTPUT_DWARF_FUND_TYPE(FILE,FT) \
717 fprintf ((FILE), "%s0x%x", \
718 UNALIGNED_SHORT_ASM_OP, (unsigned) FT); \
719 if (flag_debug_asm) \
720 fprintf ((FILE), "\t%s %s", \
721 ASM_COMMENT_START, dwarf_fund_type_name (FT)); \
722 fputc ('\n', (FILE)); \
726 #ifndef ASM_OUTPUT_DWARF_FMT_BYTE
727 #define ASM_OUTPUT_DWARF_FMT_BYTE(FILE,FMT) \
729 fprintf ((FILE), "%s0x%x", ASM_BYTE_OP, (unsigned) FMT); \
730 if (flag_debug_asm) \
731 fprintf ((FILE), "\t%s %s", \
732 ASM_COMMENT_START, dwarf_fmt_byte_name (FMT)); \
733 fputc ('\n', (FILE)); \
737 #ifndef ASM_OUTPUT_DWARF_TYPE_MODIFIER
738 #define ASM_OUTPUT_DWARF_TYPE_MODIFIER(FILE,MOD) \
740 fprintf ((FILE), "%s0x%x", ASM_BYTE_OP, (unsigned) MOD); \
741 if (flag_debug_asm) \
742 fprintf ((FILE), "\t%s %s", \
743 ASM_COMMENT_START, dwarf_typemod_name (MOD)); \
744 fputc ('\n', (FILE)); \
748 #ifndef ASM_OUTPUT_DWARF_ADDR
749 #define ASM_OUTPUT_DWARF_ADDR(FILE,LABEL) \
750 do { fprintf ((FILE), "%s", UNALIGNED_INT_ASM_OP); \
751 assemble_name (FILE, LABEL); \
752 fprintf (FILE, "\n"); \
756 #ifndef ASM_OUTPUT_DWARF_ADDR_CONST
757 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE,RTX) \
759 fprintf ((FILE), "%s", UNALIGNED_INT_ASM_OP); \
760 output_addr_const ((FILE), (RTX)); \
761 fputc ('\n', (FILE)); \
765 #ifndef ASM_OUTPUT_DWARF_REF
766 #define ASM_OUTPUT_DWARF_REF(FILE,LABEL) \
767 do { fprintf ((FILE), "%s", UNALIGNED_INT_ASM_OP); \
768 assemble_name (FILE, LABEL); \
769 fprintf (FILE, "\n"); \
773 #ifndef ASM_OUTPUT_DWARF_DATA1
774 #define ASM_OUTPUT_DWARF_DATA1(FILE,VALUE) \
775 fprintf ((FILE), "%s0x%x\n", ASM_BYTE_OP, VALUE)
778 #ifndef ASM_OUTPUT_DWARF_DATA2
779 #define ASM_OUTPUT_DWARF_DATA2(FILE,VALUE) \
780 fprintf ((FILE), "%s0x%x\n", UNALIGNED_SHORT_ASM_OP, (unsigned) VALUE)
783 #ifndef ASM_OUTPUT_DWARF_DATA4
784 #define ASM_OUTPUT_DWARF_DATA4(FILE,VALUE) \
785 fprintf ((FILE), "%s0x%x\n", UNALIGNED_INT_ASM_OP, (unsigned) VALUE)
788 #ifndef ASM_OUTPUT_DWARF_DATA8
789 #define ASM_OUTPUT_DWARF_DATA8(FILE,HIGH_VALUE,LOW_VALUE) \
791 if (WORDS_BIG_ENDIAN) \
793 fprintf ((FILE), "%s0x%x\n", UNALIGNED_INT_ASM_OP, HIGH_VALUE); \
794 fprintf ((FILE), "%s0x%x\n", UNALIGNED_INT_ASM_OP, LOW_VALUE); \
798 fprintf ((FILE), "%s0x%x\n", UNALIGNED_INT_ASM_OP, LOW_VALUE); \
799 fprintf ((FILE), "%s0x%x\n", UNALIGNED_INT_ASM_OP, HIGH_VALUE); \
804 /* ASM_OUTPUT_DWARF_STRING is defined to output an ascii string, but to
805 NOT issue a trailing newline. We define ASM_OUTPUT_DWARF_STRING_NEWLINE
806 based on whether ASM_OUTPUT_DWARF_STRING is defined or not. If it is
807 defined, we call it, then issue the line feed. If not, we supply a
808 default defintion of calling ASM_OUTPUT_ASCII */
810 #ifndef ASM_OUTPUT_DWARF_STRING
811 #define ASM_OUTPUT_DWARF_STRING_NEWLINE(FILE,P) \
812 ASM_OUTPUT_ASCII ((FILE), P, strlen (P)+1)
814 #define ASM_OUTPUT_DWARF_STRING_NEWLINE(FILE,P) \
815 ASM_OUTPUT_DWARF_STRING (FILE,P), ASM_OUTPUT_DWARF_STRING (FILE,"\n")
819 /************************ general utility functions **************************/
825 return (((GET_CODE (rtl
) == REG
) && (REGNO (rtl
) >= FIRST_PSEUDO_REGISTER
))
826 || ((GET_CODE (rtl
) == SUBREG
)
827 && (REGNO (SUBREG_REG (rtl
)) >= FIRST_PSEUDO_REGISTER
)));
831 type_main_variant (type
)
834 type
= TYPE_MAIN_VARIANT (type
);
836 /* There really should be only one main variant among any group of variants
837 of a given type (and all of the MAIN_VARIANT values for all members of
838 the group should point to that one type) but sometimes the C front-end
839 messes this up for array types, so we work around that bug here. */
841 if (TREE_CODE (type
) == ARRAY_TYPE
)
843 while (type
!= TYPE_MAIN_VARIANT (type
))
844 type
= TYPE_MAIN_VARIANT (type
);
850 /* Return non-zero if the given type node represents a tagged type. */
853 is_tagged_type (type
)
856 register enum tree_code code
= TREE_CODE (type
);
858 return (code
== RECORD_TYPE
|| code
== UNION_TYPE
859 || code
== QUAL_UNION_TYPE
|| code
== ENUMERAL_TYPE
);
864 register unsigned tag
;
868 case TAG_padding
: return "TAG_padding";
869 case TAG_array_type
: return "TAG_array_type";
870 case TAG_class_type
: return "TAG_class_type";
871 case TAG_entry_point
: return "TAG_entry_point";
872 case TAG_enumeration_type
: return "TAG_enumeration_type";
873 case TAG_formal_parameter
: return "TAG_formal_parameter";
874 case TAG_global_subroutine
: return "TAG_global_subroutine";
875 case TAG_global_variable
: return "TAG_global_variable";
876 case TAG_label
: return "TAG_label";
877 case TAG_lexical_block
: return "TAG_lexical_block";
878 case TAG_local_variable
: return "TAG_local_variable";
879 case TAG_member
: return "TAG_member";
880 case TAG_pointer_type
: return "TAG_pointer_type";
881 case TAG_reference_type
: return "TAG_reference_type";
882 case TAG_compile_unit
: return "TAG_compile_unit";
883 case TAG_string_type
: return "TAG_string_type";
884 case TAG_structure_type
: return "TAG_structure_type";
885 case TAG_subroutine
: return "TAG_subroutine";
886 case TAG_subroutine_type
: return "TAG_subroutine_type";
887 case TAG_typedef
: return "TAG_typedef";
888 case TAG_union_type
: return "TAG_union_type";
889 case TAG_unspecified_parameters
: return "TAG_unspecified_parameters";
890 case TAG_variant
: return "TAG_variant";
891 case TAG_common_block
: return "TAG_common_block";
892 case TAG_common_inclusion
: return "TAG_common_inclusion";
893 case TAG_inheritance
: return "TAG_inheritance";
894 case TAG_inlined_subroutine
: return "TAG_inlined_subroutine";
895 case TAG_module
: return "TAG_module";
896 case TAG_ptr_to_member_type
: return "TAG_ptr_to_member_type";
897 case TAG_set_type
: return "TAG_set_type";
898 case TAG_subrange_type
: return "TAG_subrange_type";
899 case TAG_with_stmt
: return "TAG_with_stmt";
901 /* GNU extensions. */
903 case TAG_format_label
: return "TAG_format_label";
904 case TAG_namelist
: return "TAG_namelist";
905 case TAG_function_template
: return "TAG_function_template";
906 case TAG_class_template
: return "TAG_class_template";
908 default: return "TAG_<unknown>";
913 dwarf_attr_name (attr
)
914 register unsigned attr
;
918 case AT_sibling
: return "AT_sibling";
919 case AT_location
: return "AT_location";
920 case AT_name
: return "AT_name";
921 case AT_fund_type
: return "AT_fund_type";
922 case AT_mod_fund_type
: return "AT_mod_fund_type";
923 case AT_user_def_type
: return "AT_user_def_type";
924 case AT_mod_u_d_type
: return "AT_mod_u_d_type";
925 case AT_ordering
: return "AT_ordering";
926 case AT_subscr_data
: return "AT_subscr_data";
927 case AT_byte_size
: return "AT_byte_size";
928 case AT_bit_offset
: return "AT_bit_offset";
929 case AT_bit_size
: return "AT_bit_size";
930 case AT_element_list
: return "AT_element_list";
931 case AT_stmt_list
: return "AT_stmt_list";
932 case AT_low_pc
: return "AT_low_pc";
933 case AT_high_pc
: return "AT_high_pc";
934 case AT_language
: return "AT_language";
935 case AT_member
: return "AT_member";
936 case AT_discr
: return "AT_discr";
937 case AT_discr_value
: return "AT_discr_value";
938 case AT_string_length
: return "AT_string_length";
939 case AT_common_reference
: return "AT_common_reference";
940 case AT_comp_dir
: return "AT_comp_dir";
941 case AT_const_value_string
: return "AT_const_value_string";
942 case AT_const_value_data2
: return "AT_const_value_data2";
943 case AT_const_value_data4
: return "AT_const_value_data4";
944 case AT_const_value_data8
: return "AT_const_value_data8";
945 case AT_const_value_block2
: return "AT_const_value_block2";
946 case AT_const_value_block4
: return "AT_const_value_block4";
947 case AT_containing_type
: return "AT_containing_type";
948 case AT_default_value_addr
: return "AT_default_value_addr";
949 case AT_default_value_data2
: return "AT_default_value_data2";
950 case AT_default_value_data4
: return "AT_default_value_data4";
951 case AT_default_value_data8
: return "AT_default_value_data8";
952 case AT_default_value_string
: return "AT_default_value_string";
953 case AT_friends
: return "AT_friends";
954 case AT_inline
: return "AT_inline";
955 case AT_is_optional
: return "AT_is_optional";
956 case AT_lower_bound_ref
: return "AT_lower_bound_ref";
957 case AT_lower_bound_data2
: return "AT_lower_bound_data2";
958 case AT_lower_bound_data4
: return "AT_lower_bound_data4";
959 case AT_lower_bound_data8
: return "AT_lower_bound_data8";
960 case AT_private
: return "AT_private";
961 case AT_producer
: return "AT_producer";
962 case AT_program
: return "AT_program";
963 case AT_protected
: return "AT_protected";
964 case AT_prototyped
: return "AT_prototyped";
965 case AT_public
: return "AT_public";
966 case AT_pure_virtual
: return "AT_pure_virtual";
967 case AT_return_addr
: return "AT_return_addr";
968 case AT_abstract_origin
: return "AT_abstract_origin";
969 case AT_start_scope
: return "AT_start_scope";
970 case AT_stride_size
: return "AT_stride_size";
971 case AT_upper_bound_ref
: return "AT_upper_bound_ref";
972 case AT_upper_bound_data2
: return "AT_upper_bound_data2";
973 case AT_upper_bound_data4
: return "AT_upper_bound_data4";
974 case AT_upper_bound_data8
: return "AT_upper_bound_data8";
975 case AT_virtual
: return "AT_virtual";
979 case AT_sf_names
: return "AT_sf_names";
980 case AT_src_info
: return "AT_src_info";
981 case AT_mac_info
: return "AT_mac_info";
982 case AT_src_coords
: return "AT_src_coords";
983 case AT_body_begin
: return "AT_body_begin";
984 case AT_body_end
: return "AT_body_end";
986 default: return "AT_<unknown>";
991 dwarf_stack_op_name (op
)
992 register unsigned op
;
996 case OP_REG
: return "OP_REG";
997 case OP_BASEREG
: return "OP_BASEREG";
998 case OP_ADDR
: return "OP_ADDR";
999 case OP_CONST
: return "OP_CONST";
1000 case OP_DEREF2
: return "OP_DEREF2";
1001 case OP_DEREF4
: return "OP_DEREF4";
1002 case OP_ADD
: return "OP_ADD";
1003 default: return "OP_<unknown>";
1008 dwarf_typemod_name (mod
)
1009 register unsigned mod
;
1013 case MOD_pointer_to
: return "MOD_pointer_to";
1014 case MOD_reference_to
: return "MOD_reference_to";
1015 case MOD_const
: return "MOD_const";
1016 case MOD_volatile
: return "MOD_volatile";
1017 default: return "MOD_<unknown>";
1022 dwarf_fmt_byte_name (fmt
)
1023 register unsigned fmt
;
1027 case FMT_FT_C_C
: return "FMT_FT_C_C";
1028 case FMT_FT_C_X
: return "FMT_FT_C_X";
1029 case FMT_FT_X_C
: return "FMT_FT_X_C";
1030 case FMT_FT_X_X
: return "FMT_FT_X_X";
1031 case FMT_UT_C_C
: return "FMT_UT_C_C";
1032 case FMT_UT_C_X
: return "FMT_UT_C_X";
1033 case FMT_UT_X_C
: return "FMT_UT_X_C";
1034 case FMT_UT_X_X
: return "FMT_UT_X_X";
1035 case FMT_ET
: return "FMT_ET";
1036 default: return "FMT_<unknown>";
1041 dwarf_fund_type_name (ft
)
1042 register unsigned ft
;
1046 case FT_char
: return "FT_char";
1047 case FT_signed_char
: return "FT_signed_char";
1048 case FT_unsigned_char
: return "FT_unsigned_char";
1049 case FT_short
: return "FT_short";
1050 case FT_signed_short
: return "FT_signed_short";
1051 case FT_unsigned_short
: return "FT_unsigned_short";
1052 case FT_integer
: return "FT_integer";
1053 case FT_signed_integer
: return "FT_signed_integer";
1054 case FT_unsigned_integer
: return "FT_unsigned_integer";
1055 case FT_long
: return "FT_long";
1056 case FT_signed_long
: return "FT_signed_long";
1057 case FT_unsigned_long
: return "FT_unsigned_long";
1058 case FT_pointer
: return "FT_pointer";
1059 case FT_float
: return "FT_float";
1060 case FT_dbl_prec_float
: return "FT_dbl_prec_float";
1061 case FT_ext_prec_float
: return "FT_ext_prec_float";
1062 case FT_complex
: return "FT_complex";
1063 case FT_dbl_prec_complex
: return "FT_dbl_prec_complex";
1064 case FT_void
: return "FT_void";
1065 case FT_boolean
: return "FT_boolean";
1066 case FT_ext_prec_complex
: return "FT_ext_prec_complex";
1067 case FT_label
: return "FT_label";
1069 /* GNU extensions. */
1071 case FT_long_long
: return "FT_long_long";
1072 case FT_signed_long_long
: return "FT_signed_long_long";
1073 case FT_unsigned_long_long
: return "FT_unsigned_long_long";
1075 case FT_int8
: return "FT_int8";
1076 case FT_signed_int8
: return "FT_signed_int8";
1077 case FT_unsigned_int8
: return "FT_unsigned_int8";
1078 case FT_int16
: return "FT_int16";
1079 case FT_signed_int16
: return "FT_signed_int16";
1080 case FT_unsigned_int16
: return "FT_unsigned_int16";
1081 case FT_int32
: return "FT_int32";
1082 case FT_signed_int32
: return "FT_signed_int32";
1083 case FT_unsigned_int32
: return "FT_unsigned_int32";
1084 case FT_int64
: return "FT_int64";
1085 case FT_signed_int64
: return "FT_signed_int64";
1086 case FT_unsigned_int64
: return "FT_unsigned_int64";
1087 case FT_int128
: return "FT_int128";
1088 case FT_signed_int128
: return "FT_signed_int128";
1089 case FT_unsigned_int128
: return "FT_unsigned_int128";
1091 case FT_real32
: return "FT_real32";
1092 case FT_real64
: return "FT_real64";
1093 case FT_real96
: return "FT_real96";
1094 case FT_real128
: return "FT_real128";
1096 default: return "FT_<unknown>";
1100 /* Determine the "ultimate origin" of a decl. The decl may be an
1101 inlined instance of an inlined instance of a decl which is local
1102 to an inline function, so we have to trace all of the way back
1103 through the origin chain to find out what sort of node actually
1104 served as the original seed for the given block. */
1107 decl_ultimate_origin (decl
)
1110 #ifdef ENABLE_CHECKING
1111 if (DECL_FROM_INLINE (DECL_ORIGIN (decl
)))
1112 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
1113 most distant ancestor, this should never happen. */
1117 return DECL_ABSTRACT_ORIGIN (decl
);
1120 /* Determine the "ultimate origin" of a block. The block may be an
1121 inlined instance of an inlined instance of a block which is local
1122 to an inline function, so we have to trace all of the way back
1123 through the origin chain to find out what sort of node actually
1124 served as the original seed for the given block. */
1127 block_ultimate_origin (block
)
1128 register tree block
;
1130 register tree immediate_origin
= BLOCK_ABSTRACT_ORIGIN (block
);
1132 if (immediate_origin
== NULL
)
1136 register tree ret_val
;
1137 register tree lookahead
= immediate_origin
;
1141 ret_val
= lookahead
;
1142 lookahead
= (TREE_CODE (ret_val
) == BLOCK
)
1143 ? BLOCK_ABSTRACT_ORIGIN (ret_val
)
1146 while (lookahead
!= NULL
&& lookahead
!= ret_val
);
1151 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
1152 of a virtual function may refer to a base class, so we check the 'this'
1156 decl_class_context (decl
)
1159 tree context
= NULL_TREE
;
1160 if (TREE_CODE (decl
) != FUNCTION_DECL
|| ! DECL_VINDEX (decl
))
1161 context
= DECL_CONTEXT (decl
);
1163 context
= TYPE_MAIN_VARIANT
1164 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl
)))));
1166 if (context
&& !TYPE_P (context
))
1167 context
= NULL_TREE
;
1174 output_unsigned_leb128 (value
)
1175 register unsigned long value
;
1177 register unsigned long orig_value
= value
;
1181 register unsigned byte
= (value
& 0x7f);
1184 if (value
!= 0) /* more bytes to follow */
1186 fprintf (asm_out_file
, "%s0x%x", ASM_BYTE_OP
, (unsigned) byte
);
1187 if (flag_debug_asm
&& value
== 0)
1188 fprintf (asm_out_file
, "\t%s ULEB128 number - value = %lu",
1189 ASM_COMMENT_START
, orig_value
);
1190 fputc ('\n', asm_out_file
);
1196 output_signed_leb128 (value
)
1197 register long value
;
1199 register long orig_value
= value
;
1200 register int negative
= (value
< 0);
1205 register unsigned byte
= (value
& 0x7f);
1209 value
|= 0xfe000000; /* manually sign extend */
1210 if (((value
== 0) && ((byte
& 0x40) == 0))
1211 || ((value
== -1) && ((byte
& 0x40) == 1)))
1218 fprintf (asm_out_file
, "%s0x%x", ASM_BYTE_OP
, (unsigned) byte
);
1219 if (flag_debug_asm
&& more
== 0)
1220 fprintf (asm_out_file
, "\t%s SLEB128 number - value = %ld",
1221 ASM_COMMENT_START
, orig_value
);
1222 fputc ('\n', asm_out_file
);
1228 /**************** utility functions for attribute functions ******************/
1230 /* Given a pointer to a tree node for some type, return a Dwarf fundamental
1231 type code for the given type.
1233 This routine must only be called for GCC type nodes that correspond to
1234 Dwarf fundamental types.
1236 The current Dwarf draft specification calls for Dwarf fundamental types
1237 to accurately reflect the fact that a given type was either a "plain"
1238 integral type or an explicitly "signed" integral type. Unfortunately,
1239 we can't always do this, because GCC may already have thrown away the
1240 information about the precise way in which the type was originally
1243 typedef signed int my_type;
1245 struct s { my_type f; };
1247 Since we may be stuck here without enought information to do exactly
1248 what is called for in the Dwarf draft specification, we do the best
1249 that we can under the circumstances and always use the "plain" integral
1250 fundamental type codes for int, short, and long types. That's probably
1251 good enough. The additional accuracy called for in the current DWARF
1252 draft specification is probably never even useful in practice. */
1255 fundamental_type_code (type
)
1258 if (TREE_CODE (type
) == ERROR_MARK
)
1261 switch (TREE_CODE (type
))
1270 /* Carefully distinguish all the standard types of C,
1271 without messing up if the language is not C.
1272 Note that we check only for the names that contain spaces;
1273 other names might occur by coincidence in other languages. */
1274 if (TYPE_NAME (type
) != 0
1275 && TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
1276 && DECL_NAME (TYPE_NAME (type
)) != 0
1277 && TREE_CODE (DECL_NAME (TYPE_NAME (type
))) == IDENTIFIER_NODE
)
1280 IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type
)));
1282 if (!strcmp (name
, "unsigned char"))
1283 return FT_unsigned_char
;
1284 if (!strcmp (name
, "signed char"))
1285 return FT_signed_char
;
1286 if (!strcmp (name
, "unsigned int"))
1287 return FT_unsigned_integer
;
1288 if (!strcmp (name
, "short int"))
1290 if (!strcmp (name
, "short unsigned int"))
1291 return FT_unsigned_short
;
1292 if (!strcmp (name
, "long int"))
1294 if (!strcmp (name
, "long unsigned int"))
1295 return FT_unsigned_long
;
1296 if (!strcmp (name
, "long long int"))
1297 return FT_long_long
; /* Not grok'ed by svr4 SDB */
1298 if (!strcmp (name
, "long long unsigned int"))
1299 return FT_unsigned_long_long
; /* Not grok'ed by svr4 SDB */
1302 /* Most integer types will be sorted out above, however, for the
1303 sake of special `array index' integer types, the following code
1304 is also provided. */
1306 if (TYPE_PRECISION (type
) == INT_TYPE_SIZE
)
1307 return (TREE_UNSIGNED (type
) ? FT_unsigned_integer
: FT_integer
);
1309 if (TYPE_PRECISION (type
) == LONG_TYPE_SIZE
)
1310 return (TREE_UNSIGNED (type
) ? FT_unsigned_long
: FT_long
);
1312 if (TYPE_PRECISION (type
) == LONG_LONG_TYPE_SIZE
)
1313 return (TREE_UNSIGNED (type
) ? FT_unsigned_long_long
: FT_long_long
);
1315 if (TYPE_PRECISION (type
) == SHORT_TYPE_SIZE
)
1316 return (TREE_UNSIGNED (type
) ? FT_unsigned_short
: FT_short
);
1318 if (TYPE_PRECISION (type
) == CHAR_TYPE_SIZE
)
1319 return (TREE_UNSIGNED (type
) ? FT_unsigned_char
: FT_char
);
1321 if (TYPE_MODE (type
) == TImode
)
1322 return (TREE_UNSIGNED (type
) ? FT_unsigned_int128
: FT_int128
);
1324 /* In C++, __java_boolean is an INTEGER_TYPE with precision == 1 */
1325 if (TYPE_PRECISION (type
) == 1)
1331 /* Carefully distinguish all the standard types of C,
1332 without messing up if the language is not C. */
1333 if (TYPE_NAME (type
) != 0
1334 && TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
1335 && DECL_NAME (TYPE_NAME (type
)) != 0
1336 && TREE_CODE (DECL_NAME (TYPE_NAME (type
))) == IDENTIFIER_NODE
)
1339 IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type
)));
1341 /* Note that here we can run afowl of a serious bug in "classic"
1342 svr4 SDB debuggers. They don't seem to understand the
1343 FT_ext_prec_float type (even though they should). */
1345 if (!strcmp (name
, "long double"))
1346 return FT_ext_prec_float
;
1349 if (TYPE_PRECISION (type
) == DOUBLE_TYPE_SIZE
)
1351 /* On the SH, when compiling with -m3e or -m4-single-only, both
1352 float and double are 32 bits. But since the debugger doesn't
1353 know about the subtarget, it always thinks double is 64 bits.
1354 So we have to tell the debugger that the type is float to
1355 make the output of the 'print' command etc. readable. */
1356 if (DOUBLE_TYPE_SIZE
== FLOAT_TYPE_SIZE
&& FLOAT_TYPE_SIZE
== 32)
1358 return FT_dbl_prec_float
;
1360 if (TYPE_PRECISION (type
) == FLOAT_TYPE_SIZE
)
1363 /* Note that here we can run afowl of a serious bug in "classic"
1364 svr4 SDB debuggers. They don't seem to understand the
1365 FT_ext_prec_float type (even though they should). */
1367 if (TYPE_PRECISION (type
) == LONG_DOUBLE_TYPE_SIZE
)
1368 return FT_ext_prec_float
;
1372 return FT_complex
; /* GNU FORTRAN COMPLEX type. */
1375 return FT_char
; /* GNU Pascal CHAR type. Not used in C. */
1378 return FT_boolean
; /* GNU FORTRAN BOOLEAN type. */
1381 abort (); /* No other TREE_CODEs are Dwarf fundamental types. */
1386 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
1387 the Dwarf "root" type for the given input type. The Dwarf "root" type
1388 of a given type is generally the same as the given type, except that if
1389 the given type is a pointer or reference type, then the root type of
1390 the given type is the root type of the "basis" type for the pointer or
1391 reference type. (This definition of the "root" type is recursive.)
1392 Also, the root type of a `const' qualified type or a `volatile'
1393 qualified type is the root type of the given type without the
1397 root_type_1 (type
, count
)
1401 /* Give up after searching 1000 levels, in case this is a recursive
1402 pointer type. Such types are possible in Ada, but it is not possible
1403 to represent them in DWARF1 debug info. */
1405 return error_mark_node
;
1407 switch (TREE_CODE (type
))
1410 return error_mark_node
;
1413 case REFERENCE_TYPE
:
1414 return root_type_1 (TREE_TYPE (type
), count
+1);
1425 type
= root_type_1 (type
, 0);
1426 if (type
!= error_mark_node
)
1427 type
= type_main_variant (type
);
1431 /* Given a pointer to an arbitrary ..._TYPE tree node, write out a sequence
1432 of zero or more Dwarf "type-modifier" bytes applicable to the type. */
1435 write_modifier_bytes_1 (type
, decl_const
, decl_volatile
, count
)
1437 register int decl_const
;
1438 register int decl_volatile
;
1441 if (TREE_CODE (type
) == ERROR_MARK
)
1444 /* Give up after searching 1000 levels, in case this is a recursive
1445 pointer type. Such types are possible in Ada, but it is not possible
1446 to represent them in DWARF1 debug info. */
1450 if (TYPE_READONLY (type
) || decl_const
)
1451 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file
, MOD_const
);
1452 if (TYPE_VOLATILE (type
) || decl_volatile
)
1453 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file
, MOD_volatile
);
1454 switch (TREE_CODE (type
))
1457 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file
, MOD_pointer_to
);
1458 write_modifier_bytes_1 (TREE_TYPE (type
), 0, 0, count
+1);
1461 case REFERENCE_TYPE
:
1462 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file
, MOD_reference_to
);
1463 write_modifier_bytes_1 (TREE_TYPE (type
), 0, 0, count
+1);
1473 write_modifier_bytes (type
, decl_const
, decl_volatile
)
1475 register int decl_const
;
1476 register int decl_volatile
;
1478 write_modifier_bytes_1 (type
, decl_const
, decl_volatile
, 0);
1481 /* Given a pointer to an arbitrary ..._TYPE tree node, return non-zero if the
1482 given input type is a Dwarf "fundamental" type. Otherwise return zero. */
1485 type_is_fundamental (type
)
1488 switch (TREE_CODE (type
))
1503 case QUAL_UNION_TYPE
:
1508 case REFERENCE_TYPE
:
1521 /* Given a pointer to some ..._DECL tree node, generate an assembly language
1522 equate directive which will associate a symbolic name with the current DIE.
1524 The name used is an artificial label generated from the DECL_UID number
1525 associated with the given decl node. The name it gets equated to is the
1526 symbolic label that we (previously) output at the start of the DIE that
1527 we are currently generating.
1529 Calling this function while generating some "decl related" form of DIE
1530 makes it possible to later refer to the DIE which represents the given
1531 decl simply by re-generating the symbolic name from the ..._DECL node's
1535 equate_decl_number_to_die_number (decl
)
1538 /* In the case where we are generating a DIE for some ..._DECL node
1539 which represents either some inline function declaration or some
1540 entity declared within an inline function declaration/definition,
1541 setup a symbolic name for the current DIE so that we have a name
1542 for this DIE that we can easily refer to later on within
1543 AT_abstract_origin attributes. */
1545 char decl_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
1546 char die_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
1548 sprintf (decl_label
, DECL_NAME_FMT
, DECL_UID (decl
));
1549 sprintf (die_label
, DIE_BEGIN_LABEL_FMT
, current_dienum
);
1550 ASM_OUTPUT_DEF (asm_out_file
, decl_label
, die_label
);
1553 /* Given a pointer to some ..._TYPE tree node, generate an assembly language
1554 equate directive which will associate a symbolic name with the current DIE.
1556 The name used is an artificial label generated from the TYPE_UID number
1557 associated with the given type node. The name it gets equated to is the
1558 symbolic label that we (previously) output at the start of the DIE that
1559 we are currently generating.
1561 Calling this function while generating some "type related" form of DIE
1562 makes it easy to later refer to the DIE which represents the given type
1563 simply by re-generating the alternative name from the ..._TYPE node's
1567 equate_type_number_to_die_number (type
)
1570 char type_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
1571 char die_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
1573 /* We are generating a DIE to represent the main variant of this type
1574 (i.e the type without any const or volatile qualifiers) so in order
1575 to get the equate to come out right, we need to get the main variant
1578 type
= type_main_variant (type
);
1580 sprintf (type_label
, TYPE_NAME_FMT
, TYPE_UID (type
));
1581 sprintf (die_label
, DIE_BEGIN_LABEL_FMT
, current_dienum
);
1582 ASM_OUTPUT_DEF (asm_out_file
, type_label
, die_label
);
1586 output_reg_number (rtl
)
1589 register unsigned regno
= REGNO (rtl
);
1591 if (regno
>= DWARF_FRAME_REGISTERS
)
1593 warning_with_decl (dwarf_last_decl
, "internal regno botch: regno = %d\n",
1597 fprintf (asm_out_file
, "%s0x%x",
1598 UNALIGNED_INT_ASM_OP
, DBX_REGISTER_NUMBER (regno
));
1601 fprintf (asm_out_file
, "\t%s ", ASM_COMMENT_START
);
1602 PRINT_REG (rtl
, 0, asm_out_file
);
1604 fputc ('\n', asm_out_file
);
1607 /* The following routine is a nice and simple transducer. It converts the
1608 RTL for a variable or parameter (resident in memory) into an equivalent
1609 Dwarf representation of a mechanism for getting the address of that same
1610 variable onto the top of a hypothetical "address evaluation" stack.
1612 When creating memory location descriptors, we are effectively trans-
1613 forming the RTL for a memory-resident object into its Dwarf postfix
1614 expression equivalent. This routine just recursively descends an
1615 RTL tree, turning it into Dwarf postfix code as it goes. */
1618 output_mem_loc_descriptor (rtl
)
1621 /* Note that for a dynamically sized array, the location we will
1622 generate a description of here will be the lowest numbered location
1623 which is actually within the array. That's *not* necessarily the
1624 same as the zeroth element of the array. */
1626 #ifdef ASM_SIMPLIFY_DWARF_ADDR
1627 rtl
= ASM_SIMPLIFY_DWARF_ADDR (rtl
);
1630 switch (GET_CODE (rtl
))
1634 /* The case of a subreg may arise when we have a local (register)
1635 variable or a formal (register) parameter which doesn't quite
1636 fill up an entire register. For now, just assume that it is
1637 legitimate to make the Dwarf info refer to the whole register
1638 which contains the given subreg. */
1640 rtl
= SUBREG_REG (rtl
);
1645 /* Whenever a register number forms a part of the description of
1646 the method for calculating the (dynamic) address of a memory
1647 resident object, DWARF rules require the register number to
1648 be referred to as a "base register". This distinction is not
1649 based in any way upon what category of register the hardware
1650 believes the given register belongs to. This is strictly
1651 DWARF terminology we're dealing with here.
1653 Note that in cases where the location of a memory-resident data
1654 object could be expressed as:
1656 OP_ADD (OP_BASEREG (basereg), OP_CONST (0))
1658 the actual DWARF location descriptor that we generate may just
1659 be OP_BASEREG (basereg). This may look deceptively like the
1660 object in question was allocated to a register (rather than
1661 in memory) so DWARF consumers need to be aware of the subtle
1662 distinction between OP_REG and OP_BASEREG. */
1664 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file
, OP_BASEREG
);
1665 output_reg_number (rtl
);
1669 output_mem_loc_descriptor (XEXP (rtl
, 0));
1670 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file
, OP_DEREF4
);
1675 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file
, OP_ADDR
);
1676 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file
, rtl
);
1680 output_mem_loc_descriptor (XEXP (rtl
, 0));
1681 output_mem_loc_descriptor (XEXP (rtl
, 1));
1682 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file
, OP_ADD
);
1686 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file
, OP_CONST
);
1687 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, INTVAL (rtl
));
1691 /* If a pseudo-reg is optimized away, it is possible for it to
1692 be replaced with a MEM containing a multiply. Use a GNU extension
1694 output_mem_loc_descriptor (XEXP (rtl
, 0));
1695 output_mem_loc_descriptor (XEXP (rtl
, 1));
1696 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file
, OP_MULT
);
1704 /* Output a proper Dwarf location descriptor for a variable or parameter
1705 which is either allocated in a register or in a memory location. For
1706 a register, we just generate an OP_REG and the register number. For a
1707 memory location we provide a Dwarf postfix expression describing how to
1708 generate the (dynamic) address of the object onto the address stack. */
1711 output_loc_descriptor (rtl
)
1714 switch (GET_CODE (rtl
))
1718 /* The case of a subreg may arise when we have a local (register)
1719 variable or a formal (register) parameter which doesn't quite
1720 fill up an entire register. For now, just assume that it is
1721 legitimate to make the Dwarf info refer to the whole register
1722 which contains the given subreg. */
1724 rtl
= SUBREG_REG (rtl
);
1728 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file
, OP_REG
);
1729 output_reg_number (rtl
);
1733 output_mem_loc_descriptor (XEXP (rtl
, 0));
1737 abort (); /* Should never happen */
1741 /* Given a tree node describing an array bound (either lower or upper)
1742 output a representation for that bound. */
1745 output_bound_representation (bound
, dim_num
, u_or_l
)
1746 register tree bound
;
1747 register unsigned dim_num
; /* For multi-dimensional arrays. */
1748 register char u_or_l
; /* Designates upper or lower bound. */
1750 switch (TREE_CODE (bound
))
1756 /* All fixed-bounds are represented by INTEGER_CST nodes. */
1759 if (host_integerp (bound
, 0))
1760 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, tree_low_cst (bound
, 0));
1765 /* Dynamic bounds may be represented by NOP_EXPR nodes containing
1766 SAVE_EXPR nodes, in which case we can do something, or as
1767 an expression, which we cannot represent. */
1769 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
1770 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
1772 sprintf (begin_label
, BOUND_BEGIN_LABEL_FMT
,
1773 current_dienum
, dim_num
, u_or_l
);
1775 sprintf (end_label
, BOUND_END_LABEL_FMT
,
1776 current_dienum
, dim_num
, u_or_l
);
1778 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file
, end_label
, begin_label
);
1779 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
1781 /* If optimization is turned on, the SAVE_EXPRs that describe
1782 how to access the upper bound values are essentially bogus.
1783 They only describe (at best) how to get at these values at
1784 the points in the generated code right after they have just
1785 been computed. Worse yet, in the typical case, the upper
1786 bound values will not even *be* computed in the optimized
1787 code, so these SAVE_EXPRs are entirely bogus.
1789 In order to compensate for this fact, we check here to see
1790 if optimization is enabled, and if so, we effectively create
1791 an empty location description for the (unknown and unknowable)
1794 This should not cause too much trouble for existing (stupid?)
1795 debuggers because they have to deal with empty upper bounds
1796 location descriptions anyway in order to be able to deal with
1797 incomplete array types.
1799 Of course an intelligent debugger (GDB?) should be able to
1800 comprehend that a missing upper bound specification in a
1801 array type used for a storage class `auto' local array variable
1802 indicates that the upper bound is both unknown (at compile-
1803 time) and unknowable (at run-time) due to optimization. */
1807 while (TREE_CODE (bound
) == NOP_EXPR
1808 || TREE_CODE (bound
) == CONVERT_EXPR
)
1809 bound
= TREE_OPERAND (bound
, 0);
1811 if (TREE_CODE (bound
) == SAVE_EXPR
)
1812 output_loc_descriptor
1813 (eliminate_regs (SAVE_EXPR_RTL (bound
), 0, NULL_RTX
));
1816 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
1823 /* Recursive function to output a sequence of value/name pairs for
1824 enumeration constants in reversed order. This is called from
1825 enumeration_type_die. */
1828 output_enumeral_list (link
)
1833 output_enumeral_list (TREE_CHAIN (link
));
1835 if (host_integerp (TREE_VALUE (link
), 0))
1836 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
,
1837 tree_low_cst (TREE_VALUE (link
), 0));
1839 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
,
1840 IDENTIFIER_POINTER (TREE_PURPOSE (link
)));
1844 /* Given an unsigned value, round it up to the lowest multiple of `boundary'
1845 which is not less than the value itself. */
1847 static inline HOST_WIDE_INT
1848 ceiling (value
, boundary
)
1849 register HOST_WIDE_INT value
;
1850 register unsigned int boundary
;
1852 return (((value
+ boundary
- 1) / boundary
) * boundary
);
1855 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
1856 pointer to the declared type for the relevant field variable, or return
1857 `integer_type_node' if the given node turns out to be an ERROR_MARK node. */
1865 if (TREE_CODE (decl
) == ERROR_MARK
)
1866 return integer_type_node
;
1868 type
= DECL_BIT_FIELD_TYPE (decl
);
1870 type
= TREE_TYPE (decl
);
1874 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
1875 node, return the alignment in bits for the type, or else return
1876 BITS_PER_WORD if the node actually turns out to be an ERROR_MARK node. */
1878 static inline unsigned int
1879 simple_type_align_in_bits (type
)
1882 return (TREE_CODE (type
) != ERROR_MARK
) ? TYPE_ALIGN (type
) : BITS_PER_WORD
;
1885 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
1886 node, return the size in bits for the type if it is a constant, or
1887 else return the alignment for the type if the type's size is not
1888 constant, or else return BITS_PER_WORD if the type actually turns out
1889 to be an ERROR_MARK node. */
1891 static inline unsigned HOST_WIDE_INT
1892 simple_type_size_in_bits (type
)
1895 tree type_size_tree
;
1897 if (TREE_CODE (type
) == ERROR_MARK
)
1898 return BITS_PER_WORD
;
1899 type_size_tree
= TYPE_SIZE (type
);
1901 if (type_size_tree
== NULL_TREE
)
1903 if (! host_integerp (type_size_tree
, 1))
1904 return TYPE_ALIGN (type
);
1905 return tree_low_cst (type_size_tree
, 1);
1908 /* Given a pointer to what is assumed to be a FIELD_DECL node, compute and
1909 return the byte offset of the lowest addressed byte of the "containing
1910 object" for the given FIELD_DECL, or return 0 if we are unable to deter-
1911 mine what that offset is, either because the argument turns out to be a
1912 pointer to an ERROR_MARK node, or because the offset is actually variable.
1913 (We can't handle the latter case just yet.) */
1915 static HOST_WIDE_INT
1916 field_byte_offset (decl
)
1919 unsigned int type_align_in_bytes
;
1920 unsigned int type_align_in_bits
;
1921 unsigned HOST_WIDE_INT type_size_in_bits
;
1922 HOST_WIDE_INT object_offset_in_align_units
;
1923 HOST_WIDE_INT object_offset_in_bits
;
1924 HOST_WIDE_INT object_offset_in_bytes
;
1926 tree field_size_tree
;
1927 HOST_WIDE_INT bitpos_int
;
1928 HOST_WIDE_INT deepest_bitpos
;
1929 unsigned HOST_WIDE_INT field_size_in_bits
;
1931 if (TREE_CODE (decl
) == ERROR_MARK
)
1934 if (TREE_CODE (decl
) != FIELD_DECL
)
1937 type
= field_type (decl
);
1938 field_size_tree
= DECL_SIZE (decl
);
1940 /* The size could be unspecified if there was an error, or for
1941 a flexible array member. */
1942 if (! field_size_tree
)
1943 field_size_tree
= bitsize_zero_node
;
1945 /* We cannot yet cope with fields whose positions or sizes are variable,
1946 so for now, when we see such things, we simply return 0. Someday,
1947 we may be able to handle such cases, but it will be damn difficult. */
1949 if (! host_integerp (bit_position (decl
), 0)
1950 || ! host_integerp (field_size_tree
, 1))
1953 bitpos_int
= int_bit_position (decl
);
1954 field_size_in_bits
= tree_low_cst (field_size_tree
, 1);
1956 type_size_in_bits
= simple_type_size_in_bits (type
);
1957 type_align_in_bits
= simple_type_align_in_bits (type
);
1958 type_align_in_bytes
= type_align_in_bits
/ BITS_PER_UNIT
;
1960 /* Note that the GCC front-end doesn't make any attempt to keep track
1961 of the starting bit offset (relative to the start of the containing
1962 structure type) of the hypothetical "containing object" for a bit-
1963 field. Thus, when computing the byte offset value for the start of
1964 the "containing object" of a bit-field, we must deduce this infor-
1967 This can be rather tricky to do in some cases. For example, handling
1968 the following structure type definition when compiling for an i386/i486
1969 target (which only aligns long long's to 32-bit boundaries) can be very
1974 long long field2:31;
1977 Fortunately, there is a simple rule-of-thumb which can be used in such
1978 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for
1979 the structure shown above. It decides to do this based upon one simple
1980 rule for bit-field allocation. Quite simply, GCC allocates each "con-
1981 taining object" for each bit-field at the first (i.e. lowest addressed)
1982 legitimate alignment boundary (based upon the required minimum alignment
1983 for the declared type of the field) which it can possibly use, subject
1984 to the condition that there is still enough available space remaining
1985 in the containing object (when allocated at the selected point) to
1986 fully accommodate all of the bits of the bit-field itself.
1988 This simple rule makes it obvious why GCC allocates 8 bytes for each
1989 object of the structure type shown above. When looking for a place to
1990 allocate the "containing object" for `field2', the compiler simply tries
1991 to allocate a 64-bit "containing object" at each successive 32-bit
1992 boundary (starting at zero) until it finds a place to allocate that 64-
1993 bit field such that at least 31 contiguous (and previously unallocated)
1994 bits remain within that selected 64 bit field. (As it turns out, for
1995 the example above, the compiler finds that it is OK to allocate the
1996 "containing object" 64-bit field at bit-offset zero within the
1999 Here we attempt to work backwards from the limited set of facts we're
2000 given, and we try to deduce from those facts, where GCC must have
2001 believed that the containing object started (within the structure type).
2003 The value we deduce is then used (by the callers of this routine) to
2004 generate AT_location and AT_bit_offset attributes for fields (both
2005 bit-fields and, in the case of AT_location, regular fields as well). */
2007 /* Figure out the bit-distance from the start of the structure to the
2008 "deepest" bit of the bit-field. */
2009 deepest_bitpos
= bitpos_int
+ field_size_in_bits
;
2011 /* This is the tricky part. Use some fancy footwork to deduce where the
2012 lowest addressed bit of the containing object must be. */
2013 object_offset_in_bits
2014 = ceiling (deepest_bitpos
, type_align_in_bits
) - type_size_in_bits
;
2016 /* Compute the offset of the containing object in "alignment units". */
2017 object_offset_in_align_units
= object_offset_in_bits
/ type_align_in_bits
;
2019 /* Compute the offset of the containing object in bytes. */
2020 object_offset_in_bytes
= object_offset_in_align_units
* type_align_in_bytes
;
2022 /* The above code assumes that the field does not cross an alignment
2023 boundary. This can happen if PCC_BITFIELD_TYPE_MATTERS is not defined,
2024 or if the structure is packed. If this happens, then we get an object
2025 which starts after the bitfield, which means that the bit offset is
2026 negative. Gdb fails when given negative bit offsets. We avoid this
2027 by recomputing using the first bit of the bitfield. This will give
2028 us an object which does not completely contain the bitfield, but it
2029 will be aligned, and it will contain the first bit of the bitfield.
2031 However, only do this for a BYTES_BIG_ENDIAN target. For a
2032 ! BYTES_BIG_ENDIAN target, bitpos_int + field_size_in_bits is the first
2033 first bit of the bitfield. If we recompute using bitpos_int + 1 below,
2034 then we end up computing the object byte offset for the wrong word of the
2035 desired bitfield, which in turn causes the field offset to be negative
2036 in bit_offset_attribute. */
2037 if (BYTES_BIG_ENDIAN
2038 && object_offset_in_bits
> bitpos_int
)
2040 deepest_bitpos
= bitpos_int
+ 1;
2041 object_offset_in_bits
2042 = ceiling (deepest_bitpos
, type_align_in_bits
) - type_size_in_bits
;
2043 object_offset_in_align_units
= (object_offset_in_bits
2044 / type_align_in_bits
);
2045 object_offset_in_bytes
= (object_offset_in_align_units
2046 * type_align_in_bytes
);
2049 return object_offset_in_bytes
;
2052 /****************************** attributes *********************************/
2054 /* The following routines are responsible for writing out the various types
2055 of Dwarf attributes (and any following data bytes associated with them).
2056 These routines are listed in order based on the numerical codes of their
2057 associated attributes. */
2059 /* Generate an AT_sibling attribute. */
2062 sibling_attribute ()
2064 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2066 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_sibling
);
2067 sprintf (label
, DIE_BEGIN_LABEL_FMT
, NEXT_DIE_NUM
);
2068 ASM_OUTPUT_DWARF_REF (asm_out_file
, label
);
2071 /* Output the form of location attributes suitable for whole variables and
2072 whole parameters. Note that the location attributes for struct fields
2073 are generated by the routine `data_member_location_attribute' below. */
2076 location_attribute (rtl
)
2079 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2080 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2082 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_location
);
2083 sprintf (begin_label
, LOC_BEGIN_LABEL_FMT
, current_dienum
);
2084 sprintf (end_label
, LOC_END_LABEL_FMT
, current_dienum
);
2085 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file
, end_label
, begin_label
);
2086 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
2088 /* Handle a special case. If we are about to output a location descriptor
2089 for a variable or parameter which has been optimized out of existence,
2090 don't do that. Instead we output a zero-length location descriptor
2091 value as part of the location attribute.
2093 A variable which has been optimized out of existence will have a
2094 DECL_RTL value which denotes a pseudo-reg.
2096 Currently, in some rare cases, variables can have DECL_RTL values
2097 which look like (MEM (REG pseudo-reg#)). These cases are due to
2098 bugs elsewhere in the compiler. We treat such cases
2099 as if the variable(s) in question had been optimized out of existence.
2101 Note that in all cases where we wish to express the fact that a
2102 variable has been optimized out of existence, we do not simply
2103 suppress the generation of the entire location attribute because
2104 the absence of a location attribute in certain kinds of DIEs is
2105 used to indicate something else entirely... i.e. that the DIE
2106 represents an object declaration, but not a definition. So saith
2110 if (! is_pseudo_reg (rtl
)
2111 && (GET_CODE (rtl
) != MEM
|| ! is_pseudo_reg (XEXP (rtl
, 0))))
2112 output_loc_descriptor (rtl
);
2114 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
2117 /* Output the specialized form of location attribute used for data members
2118 of struct and union types.
2120 In the special case of a FIELD_DECL node which represents a bit-field,
2121 the "offset" part of this special location descriptor must indicate the
2122 distance in bytes from the lowest-addressed byte of the containing
2123 struct or union type to the lowest-addressed byte of the "containing
2124 object" for the bit-field. (See the `field_byte_offset' function above.)
2126 For any given bit-field, the "containing object" is a hypothetical
2127 object (of some integral or enum type) within which the given bit-field
2128 lives. The type of this hypothetical "containing object" is always the
2129 same as the declared type of the individual bit-field itself (for GCC
2130 anyway... the DWARF spec doesn't actually mandate this).
2132 Note that it is the size (in bytes) of the hypothetical "containing
2133 object" which will be given in the AT_byte_size attribute for this
2134 bit-field. (See the `byte_size_attribute' function below.) It is
2135 also used when calculating the value of the AT_bit_offset attribute.
2136 (See the `bit_offset_attribute' function below.) */
2139 data_member_location_attribute (t
)
2142 register unsigned object_offset_in_bytes
;
2143 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2144 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2146 if (TREE_CODE (t
) == TREE_VEC
)
2147 object_offset_in_bytes
= tree_low_cst (BINFO_OFFSET (t
), 0);
2149 object_offset_in_bytes
= field_byte_offset (t
);
2151 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_location
);
2152 sprintf (begin_label
, LOC_BEGIN_LABEL_FMT
, current_dienum
);
2153 sprintf (end_label
, LOC_END_LABEL_FMT
, current_dienum
);
2154 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file
, end_label
, begin_label
);
2155 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
2156 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file
, OP_CONST
);
2157 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, object_offset_in_bytes
);
2158 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file
, OP_ADD
);
2159 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
2162 /* Output an AT_const_value attribute for a variable or a parameter which
2163 does not have a "location" either in memory or in a register. These
2164 things can arise in GNU C when a constant is passed as an actual
2165 parameter to an inlined function. They can also arise in C++ where
2166 declared constants do not necessarily get memory "homes". */
2169 const_value_attribute (rtl
)
2172 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2173 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2175 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_const_value_block4
);
2176 sprintf (begin_label
, LOC_BEGIN_LABEL_FMT
, current_dienum
);
2177 sprintf (end_label
, LOC_END_LABEL_FMT
, current_dienum
);
2178 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, end_label
, begin_label
);
2179 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
2181 switch (GET_CODE (rtl
))
2184 /* Note that a CONST_INT rtx could represent either an integer or
2185 a floating-point constant. A CONST_INT is used whenever the
2186 constant will fit into a single word. In all such cases, the
2187 original mode of the constant value is wiped out, and the
2188 CONST_INT rtx is assigned VOIDmode. Since we no longer have
2189 precise mode information for these constants, we always just
2190 output them using 4 bytes. */
2192 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, (unsigned) INTVAL (rtl
));
2196 /* Note that a CONST_DOUBLE rtx could represent either an integer
2197 or a floating-point constant. A CONST_DOUBLE is used whenever
2198 the constant requires more than one word in order to be adequately
2199 represented. In all such cases, the original mode of the constant
2200 value is preserved as the mode of the CONST_DOUBLE rtx, but for
2201 simplicity we always just output CONST_DOUBLEs using 8 bytes. */
2203 ASM_OUTPUT_DWARF_DATA8 (asm_out_file
,
2204 (unsigned int) CONST_DOUBLE_HIGH (rtl
),
2205 (unsigned int) CONST_DOUBLE_LOW (rtl
));
2209 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, XSTR (rtl
, 0));
2215 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file
, rtl
);
2219 /* In cases where an inlined instance of an inline function is passed
2220 the address of an `auto' variable (which is local to the caller)
2221 we can get a situation where the DECL_RTL of the artificial
2222 local variable (for the inlining) which acts as a stand-in for
2223 the corresponding formal parameter (of the inline function)
2224 will look like (plus:SI (reg:SI FRAME_PTR) (const_int ...)).
2225 This is not exactly a compile-time constant expression, but it
2226 isn't the address of the (artificial) local variable either.
2227 Rather, it represents the *value* which the artificial local
2228 variable always has during its lifetime. We currently have no
2229 way to represent such quasi-constant values in Dwarf, so for now
2230 we just punt and generate an AT_const_value attribute with form
2231 FORM_BLOCK4 and a length of zero. */
2235 abort (); /* No other kinds of rtx should be possible here. */
2238 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
2241 /* Generate *either* an AT_location attribute or else an AT_const_value
2242 data attribute for a variable or a parameter. We generate the
2243 AT_const_value attribute only in those cases where the given
2244 variable or parameter does not have a true "location" either in
2245 memory or in a register. This can happen (for example) when a
2246 constant is passed as an actual argument in a call to an inline
2247 function. (It's possible that these things can crop up in other
2248 ways also.) Note that one type of constant value which can be
2249 passed into an inlined function is a constant pointer. This can
2250 happen for example if an actual argument in an inlined function
2251 call evaluates to a compile-time constant address. */
2254 location_or_const_value_attribute (decl
)
2259 if (TREE_CODE (decl
) == ERROR_MARK
)
2262 if ((TREE_CODE (decl
) != VAR_DECL
) && (TREE_CODE (decl
) != PARM_DECL
))
2264 /* Should never happen. */
2269 /* Here we have to decide where we are going to say the parameter "lives"
2270 (as far as the debugger is concerned). We only have a couple of choices.
2271 GCC provides us with DECL_RTL and with DECL_INCOMING_RTL. DECL_RTL
2272 normally indicates where the parameter lives during most of the activa-
2273 tion of the function. If optimization is enabled however, this could
2274 be either NULL or else a pseudo-reg. Both of those cases indicate that
2275 the parameter doesn't really live anywhere (as far as the code generation
2276 parts of GCC are concerned) during most of the function's activation.
2277 That will happen (for example) if the parameter is never referenced
2278 within the function.
2280 We could just generate a location descriptor here for all non-NULL
2281 non-pseudo values of DECL_RTL and ignore all of the rest, but we can
2282 be a little nicer than that if we also consider DECL_INCOMING_RTL in
2283 cases where DECL_RTL is NULL or is a pseudo-reg.
2285 Note however that we can only get away with using DECL_INCOMING_RTL as
2286 a backup substitute for DECL_RTL in certain limited cases. In cases
2287 where DECL_ARG_TYPE(decl) indicates the same type as TREE_TYPE(decl)
2288 we can be sure that the parameter was passed using the same type as it
2289 is declared to have within the function, and that its DECL_INCOMING_RTL
2290 points us to a place where a value of that type is passed. In cases
2291 where DECL_ARG_TYPE(decl) and TREE_TYPE(decl) are different types
2292 however, we cannot (in general) use DECL_INCOMING_RTL as a backup
2293 substitute for DECL_RTL because in these cases, DECL_INCOMING_RTL
2294 points us to a value of some type which is *different* from the type
2295 of the parameter itself. Thus, if we tried to use DECL_INCOMING_RTL
2296 to generate a location attribute in such cases, the debugger would
2297 end up (for example) trying to fetch a `float' from a place which
2298 actually contains the first part of a `double'. That would lead to
2299 really incorrect and confusing output at debug-time, and we don't
2300 want that now do we?
2302 So in general, we DO NOT use DECL_INCOMING_RTL as a backup for DECL_RTL
2303 in cases where DECL_ARG_TYPE(decl) != TREE_TYPE(decl). There are a
2304 couple of cute exceptions however. On little-endian machines we can
2305 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE(decl) is
2306 not the same as TREE_TYPE(decl) but only when DECL_ARG_TYPE(decl) is
2307 an integral type which is smaller than TREE_TYPE(decl). These cases
2308 arise when (on a little-endian machine) a non-prototyped function has
2309 a parameter declared to be of type `short' or `char'. In such cases,
2310 TREE_TYPE(decl) will be `short' or `char', DECL_ARG_TYPE(decl) will be
2311 `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
2312 passed `int' value. If the debugger then uses that address to fetch a
2313 `short' or a `char' (on a little-endian machine) the result will be the
2314 correct data, so we allow for such exceptional cases below.
2316 Note that our goal here is to describe the place where the given formal
2317 parameter lives during most of the function's activation (i.e. between
2318 the end of the prologue and the start of the epilogue). We'll do that
2319 as best as we can. Note however that if the given formal parameter is
2320 modified sometime during the execution of the function, then a stack
2321 backtrace (at debug-time) will show the function as having been called
2322 with the *new* value rather than the value which was originally passed
2323 in. This happens rarely enough that it is not a major problem, but it
2324 *is* a problem, and I'd like to fix it. A future version of dwarfout.c
2325 may generate two additional attributes for any given TAG_formal_parameter
2326 DIE which will describe the "passed type" and the "passed location" for
2327 the given formal parameter in addition to the attributes we now generate
2328 to indicate the "declared type" and the "active location" for each
2329 parameter. This additional set of attributes could be used by debuggers
2330 for stack backtraces.
2332 Separately, note that sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL
2333 can be NULL also. This happens (for example) for inlined-instances of
2334 inline function formal parameters which are never referenced. This really
2335 shouldn't be happening. All PARM_DECL nodes should get valid non-NULL
2336 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate
2337 these values for inlined instances of inline function parameters, so
2338 when we see such cases, we are just out-of-luck for the time
2339 being (until integrate.c gets fixed).
2342 /* Use DECL_RTL as the "location" unless we find something better. */
2343 rtl
= DECL_RTL (decl
);
2345 if (TREE_CODE (decl
) == PARM_DECL
)
2346 if (rtl
== NULL_RTX
|| is_pseudo_reg (rtl
))
2348 /* This decl represents a formal parameter which was optimized out. */
2349 register tree declared_type
= type_main_variant (TREE_TYPE (decl
));
2350 register tree passed_type
= type_main_variant (DECL_ARG_TYPE (decl
));
2352 /* Note that DECL_INCOMING_RTL may be NULL in here, but we handle
2353 *all* cases where (rtl == NULL_RTX) just below. */
2355 if (declared_type
== passed_type
)
2356 rtl
= DECL_INCOMING_RTL (decl
);
2357 else if (! BYTES_BIG_ENDIAN
)
2358 if (TREE_CODE (declared_type
) == INTEGER_TYPE
)
2360 if (TYPE_SIZE (declared_type
) <= TYPE_SIZE (passed_type
))
2361 rtl
= DECL_INCOMING_RTL (decl
);
2364 if (rtl
== NULL_RTX
)
2367 rtl
= eliminate_regs (rtl
, 0, NULL_RTX
);
2368 #ifdef LEAF_REG_REMAP
2369 if (current_function_uses_only_leaf_regs
)
2370 leaf_renumber_regs_insn (rtl
);
2373 switch (GET_CODE (rtl
))
2376 /* The address of a variable that was optimized away; don't emit
2386 case PLUS
: /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
2387 const_value_attribute (rtl
);
2393 location_attribute (rtl
);
2397 /* ??? CONCAT is used for complex variables, which may have the real
2398 part stored in one place and the imag part stored somewhere else.
2399 DWARF1 has no way to describe a variable that lives in two different
2400 places, so we just describe where the first part lives, and hope that
2401 the second part is stored after it. */
2402 location_attribute (XEXP (rtl
, 0));
2406 abort (); /* Should never happen. */
2410 /* Generate an AT_name attribute given some string value to be included as
2411 the value of the attribute. */
2414 name_attribute (name_string
)
2415 register const char *name_string
;
2417 if (name_string
&& *name_string
)
2419 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_name
);
2420 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, name_string
);
2425 fund_type_attribute (ft_code
)
2426 register unsigned ft_code
;
2428 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_fund_type
);
2429 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file
, ft_code
);
2433 mod_fund_type_attribute (type
, decl_const
, decl_volatile
)
2435 register int decl_const
;
2436 register int decl_volatile
;
2438 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2439 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2441 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_mod_fund_type
);
2442 sprintf (begin_label
, MT_BEGIN_LABEL_FMT
, current_dienum
);
2443 sprintf (end_label
, MT_END_LABEL_FMT
, current_dienum
);
2444 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file
, end_label
, begin_label
);
2445 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
2446 write_modifier_bytes (type
, decl_const
, decl_volatile
);
2447 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file
,
2448 fundamental_type_code (root_type (type
)));
2449 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
2453 user_def_type_attribute (type
)
2456 char ud_type_name
[MAX_ARTIFICIAL_LABEL_BYTES
];
2458 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_user_def_type
);
2459 sprintf (ud_type_name
, TYPE_NAME_FMT
, TYPE_UID (type
));
2460 ASM_OUTPUT_DWARF_REF (asm_out_file
, ud_type_name
);
2464 mod_u_d_type_attribute (type
, decl_const
, decl_volatile
)
2466 register int decl_const
;
2467 register int decl_volatile
;
2469 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2470 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2471 char ud_type_name
[MAX_ARTIFICIAL_LABEL_BYTES
];
2473 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_mod_u_d_type
);
2474 sprintf (begin_label
, MT_BEGIN_LABEL_FMT
, current_dienum
);
2475 sprintf (end_label
, MT_END_LABEL_FMT
, current_dienum
);
2476 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file
, end_label
, begin_label
);
2477 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
2478 write_modifier_bytes (type
, decl_const
, decl_volatile
);
2479 sprintf (ud_type_name
, TYPE_NAME_FMT
, TYPE_UID (root_type (type
)));
2480 ASM_OUTPUT_DWARF_REF (asm_out_file
, ud_type_name
);
2481 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
2484 #ifdef USE_ORDERING_ATTRIBUTE
2486 ordering_attribute (ordering
)
2487 register unsigned ordering
;
2489 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_ordering
);
2490 ASM_OUTPUT_DWARF_DATA2 (asm_out_file
, ordering
);
2492 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
2494 /* Note that the block of subscript information for an array type also
2495 includes information about the element type of type given array type. */
2498 subscript_data_attribute (type
)
2501 register unsigned dimension_number
;
2502 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2503 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2505 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_subscr_data
);
2506 sprintf (begin_label
, SS_BEGIN_LABEL_FMT
, current_dienum
);
2507 sprintf (end_label
, SS_END_LABEL_FMT
, current_dienum
);
2508 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file
, end_label
, begin_label
);
2509 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
2511 /* The GNU compilers represent multidimensional array types as sequences
2512 of one dimensional array types whose element types are themselves array
2513 types. Here we squish that down, so that each multidimensional array
2514 type gets only one array_type DIE in the Dwarf debugging info. The
2515 draft Dwarf specification say that we are allowed to do this kind
2516 of compression in C (because there is no difference between an
2517 array or arrays and a multidimensional array in C) but for other
2518 source languages (e.g. Ada) we probably shouldn't do this. */
2520 for (dimension_number
= 0;
2521 TREE_CODE (type
) == ARRAY_TYPE
;
2522 type
= TREE_TYPE (type
), dimension_number
++)
2524 register tree domain
= TYPE_DOMAIN (type
);
2526 /* Arrays come in three flavors. Unspecified bounds, fixed
2527 bounds, and (in GNU C only) variable bounds. Handle all
2528 three forms here. */
2532 /* We have an array type with specified bounds. */
2534 register tree lower
= TYPE_MIN_VALUE (domain
);
2535 register tree upper
= TYPE_MAX_VALUE (domain
);
2537 /* Handle only fundamental types as index types for now. */
2538 if (! type_is_fundamental (domain
))
2541 /* Output the representation format byte for this dimension. */
2542 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file
,
2543 FMT_CODE (1, TREE_CODE (lower
) == INTEGER_CST
,
2544 upper
&& TREE_CODE (upper
) == INTEGER_CST
));
2546 /* Output the index type for this dimension. */
2547 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file
,
2548 fundamental_type_code (domain
));
2550 /* Output the representation for the lower bound. */
2551 output_bound_representation (lower
, dimension_number
, 'l');
2553 /* Output the representation for the upper bound. */
2555 output_bound_representation (upper
, dimension_number
, 'u');
2557 ASM_OUTPUT_DWARF_DATA2 (asm_out_file
, 0);
2561 /* We have an array type with an unspecified length. For C and
2562 C++ we can assume that this really means that (a) the index
2563 type is an integral type, and (b) the lower bound is zero.
2564 Note that Dwarf defines the representation of an unspecified
2565 (upper) bound as being a zero-length location description. */
2567 /* Output the array-bounds format byte. */
2569 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file
, FMT_FT_C_X
);
2571 /* Output the (assumed) index type. */
2573 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file
, FT_integer
);
2575 /* Output the (assumed) lower bound (constant) value. */
2577 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, 0);
2579 /* Output the (empty) location description for the upper bound. */
2581 ASM_OUTPUT_DWARF_DATA2 (asm_out_file
, 0);
2585 /* Output the prefix byte that says that the element type is coming up. */
2587 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file
, FMT_ET
);
2589 /* Output a representation of the type of the elements of this array type. */
2591 type_attribute (type
, 0, 0);
2593 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
2597 byte_size_attribute (tree_node
)
2598 register tree tree_node
;
2600 register unsigned size
;
2602 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_byte_size
);
2603 switch (TREE_CODE (tree_node
))
2612 case QUAL_UNION_TYPE
:
2614 size
= int_size_in_bytes (tree_node
);
2618 /* For a data member of a struct or union, the AT_byte_size is
2619 generally given as the number of bytes normally allocated for
2620 an object of the *declared* type of the member itself. This
2621 is true even for bit-fields. */
2622 size
= simple_type_size_in_bits (field_type (tree_node
))
2630 /* Note that `size' might be -1 when we get to this point. If it
2631 is, that indicates that the byte size of the entity in question
2632 is variable. We have no good way of expressing this fact in Dwarf
2633 at the present time, so just let the -1 pass on through. */
2635 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, size
);
2638 /* For a FIELD_DECL node which represents a bit-field, output an attribute
2639 which specifies the distance in bits from the highest order bit of the
2640 "containing object" for the bit-field to the highest order bit of the
2643 For any given bit-field, the "containing object" is a hypothetical
2644 object (of some integral or enum type) within which the given bit-field
2645 lives. The type of this hypothetical "containing object" is always the
2646 same as the declared type of the individual bit-field itself.
2648 The determination of the exact location of the "containing object" for
2649 a bit-field is rather complicated. It's handled by the `field_byte_offset'
2652 Note that it is the size (in bytes) of the hypothetical "containing
2653 object" which will be given in the AT_byte_size attribute for this
2654 bit-field. (See `byte_size_attribute' above.) */
2657 bit_offset_attribute (decl
)
2660 HOST_WIDE_INT object_offset_in_bytes
= field_byte_offset (decl
);
2661 tree type
= DECL_BIT_FIELD_TYPE (decl
);
2662 HOST_WIDE_INT bitpos_int
;
2663 HOST_WIDE_INT highest_order_object_bit_offset
;
2664 HOST_WIDE_INT highest_order_field_bit_offset
;
2665 HOST_WIDE_INT bit_offset
;
2667 /* Must be a bit field. */
2669 || TREE_CODE (decl
) != FIELD_DECL
)
2672 /* We can't yet handle bit-fields whose offsets or sizes are variable, so
2673 if we encounter such things, just return without generating any
2674 attribute whatsoever. */
2676 if (! host_integerp (bit_position (decl
), 0)
2677 || ! host_integerp (DECL_SIZE (decl
), 1))
2680 bitpos_int
= int_bit_position (decl
);
2682 /* Note that the bit offset is always the distance (in bits) from the
2683 highest-order bit of the "containing object" to the highest-order
2684 bit of the bit-field itself. Since the "high-order end" of any
2685 object or field is different on big-endian and little-endian machines,
2686 the computation below must take account of these differences. */
2688 highest_order_object_bit_offset
= object_offset_in_bytes
* BITS_PER_UNIT
;
2689 highest_order_field_bit_offset
= bitpos_int
;
2691 if (! BYTES_BIG_ENDIAN
)
2693 highest_order_field_bit_offset
+= tree_low_cst (DECL_SIZE (decl
), 1);
2694 highest_order_object_bit_offset
+= simple_type_size_in_bits (type
);
2699 ? highest_order_object_bit_offset
- highest_order_field_bit_offset
2700 : highest_order_field_bit_offset
- highest_order_object_bit_offset
);
2702 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_bit_offset
);
2703 ASM_OUTPUT_DWARF_DATA2 (asm_out_file
, bit_offset
);
2706 /* For a FIELD_DECL node which represents a bit field, output an attribute
2707 which specifies the length in bits of the given field. */
2710 bit_size_attribute (decl
)
2713 /* Must be a field and a bit field. */
2714 if (TREE_CODE (decl
) != FIELD_DECL
2715 || ! DECL_BIT_FIELD_TYPE (decl
))
2718 if (host_integerp (DECL_SIZE (decl
), 1))
2720 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_bit_size
);
2721 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
,
2722 tree_low_cst (DECL_SIZE (decl
), 1));
2726 /* The following routine outputs the `element_list' attribute for enumeration
2727 type DIEs. The element_lits attribute includes the names and values of
2728 all of the enumeration constants associated with the given enumeration
2732 element_list_attribute (element
)
2733 register tree element
;
2735 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2736 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2738 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_element_list
);
2739 sprintf (begin_label
, EE_BEGIN_LABEL_FMT
, current_dienum
);
2740 sprintf (end_label
, EE_END_LABEL_FMT
, current_dienum
);
2741 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, end_label
, begin_label
);
2742 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
2744 /* Here we output a list of value/name pairs for each enumeration constant
2745 defined for this enumeration type (as required), but we do it in REVERSE
2746 order. The order is the one required by the draft #5 Dwarf specification
2747 published by the UI/PLSIG. */
2749 output_enumeral_list (element
); /* Recursively output the whole list. */
2751 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
2754 /* Generate an AT_stmt_list attribute. These are normally present only in
2755 DIEs with a TAG_compile_unit tag. */
2758 stmt_list_attribute (label
)
2759 register const char *label
;
2761 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_stmt_list
);
2762 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2763 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, label
);
2766 /* Generate an AT_low_pc attribute for a label DIE, a lexical_block DIE or
2767 for a subroutine DIE. */
2770 low_pc_attribute (asm_low_label
)
2771 register const char *asm_low_label
;
2773 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_low_pc
);
2774 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, asm_low_label
);
2777 /* Generate an AT_high_pc attribute for a lexical_block DIE or for a
2781 high_pc_attribute (asm_high_label
)
2782 register const char *asm_high_label
;
2784 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_high_pc
);
2785 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, asm_high_label
);
2788 /* Generate an AT_body_begin attribute for a subroutine DIE. */
2791 body_begin_attribute (asm_begin_label
)
2792 register const char *asm_begin_label
;
2794 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_body_begin
);
2795 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, asm_begin_label
);
2798 /* Generate an AT_body_end attribute for a subroutine DIE. */
2801 body_end_attribute (asm_end_label
)
2802 register const char *asm_end_label
;
2804 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_body_end
);
2805 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, asm_end_label
);
2808 /* Generate an AT_language attribute given a LANG value. These attributes
2809 are used only within TAG_compile_unit DIEs. */
2812 language_attribute (language_code
)
2813 register unsigned language_code
;
2815 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_language
);
2816 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, language_code
);
2820 member_attribute (context
)
2821 register tree context
;
2823 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2825 /* Generate this attribute only for members in C++. */
2827 if (context
!= NULL
&& is_tagged_type (context
))
2829 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_member
);
2830 sprintf (label
, TYPE_NAME_FMT
, TYPE_UID (context
));
2831 ASM_OUTPUT_DWARF_REF (asm_out_file
, label
);
2837 string_length_attribute (upper_bound
)
2838 register tree upper_bound
;
2840 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2841 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2843 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_string_length
);
2844 sprintf (begin_label
, SL_BEGIN_LABEL_FMT
, current_dienum
);
2845 sprintf (end_label
, SL_END_LABEL_FMT
, current_dienum
);
2846 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file
, end_label
, begin_label
);
2847 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
2848 output_bound_representation (upper_bound
, 0, 'u');
2849 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
2854 comp_dir_attribute (dirname
)
2855 register const char *dirname
;
2857 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_comp_dir
);
2858 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, dirname
);
2862 sf_names_attribute (sf_names_start_label
)
2863 register const char *sf_names_start_label
;
2865 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_sf_names
);
2866 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2867 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, sf_names_start_label
);
2871 src_info_attribute (src_info_start_label
)
2872 register const char *src_info_start_label
;
2874 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_src_info
);
2875 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2876 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, src_info_start_label
);
2880 mac_info_attribute (mac_info_start_label
)
2881 register const char *mac_info_start_label
;
2883 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_mac_info
);
2884 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2885 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, mac_info_start_label
);
2889 prototyped_attribute (func_type
)
2890 register tree func_type
;
2892 if ((strcmp (language_string
, "GNU C") == 0)
2893 && (TYPE_ARG_TYPES (func_type
) != NULL
))
2895 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_prototyped
);
2896 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, "");
2901 producer_attribute (producer
)
2902 register const char *producer
;
2904 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_producer
);
2905 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, producer
);
2909 inline_attribute (decl
)
2912 if (DECL_INLINE (decl
))
2914 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_inline
);
2915 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, "");
2920 containing_type_attribute (containing_type
)
2921 register tree containing_type
;
2923 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2925 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_containing_type
);
2926 sprintf (label
, TYPE_NAME_FMT
, TYPE_UID (containing_type
));
2927 ASM_OUTPUT_DWARF_REF (asm_out_file
, label
);
2931 abstract_origin_attribute (origin
)
2932 register tree origin
;
2934 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2936 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_abstract_origin
);
2937 switch (TREE_CODE_CLASS (TREE_CODE (origin
)))
2940 sprintf (label
, DECL_NAME_FMT
, DECL_UID (origin
));
2944 sprintf (label
, TYPE_NAME_FMT
, TYPE_UID (origin
));
2948 abort (); /* Should never happen. */
2951 ASM_OUTPUT_DWARF_REF (asm_out_file
, label
);
2954 #ifdef DWARF_DECL_COORDINATES
2956 src_coords_attribute (src_fileno
, src_lineno
)
2957 register unsigned src_fileno
;
2958 register unsigned src_lineno
;
2960 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_src_coords
);
2961 ASM_OUTPUT_DWARF_DATA2 (asm_out_file
, src_fileno
);
2962 ASM_OUTPUT_DWARF_DATA2 (asm_out_file
, src_lineno
);
2964 #endif /* defined(DWARF_DECL_COORDINATES) */
2967 pure_or_virtual_attribute (func_decl
)
2968 register tree func_decl
;
2970 if (DECL_VIRTUAL_P (func_decl
))
2972 #if 0 /* DECL_ABSTRACT_VIRTUAL_P is C++-specific. */
2973 if (DECL_ABSTRACT_VIRTUAL_P (func_decl
))
2974 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_pure_virtual
);
2977 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_virtual
);
2978 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, "");
2982 /************************* end of attributes *****************************/
2984 /********************* utility routines for DIEs *************************/
2986 /* Output an AT_name attribute and an AT_src_coords attribute for the
2987 given decl, but only if it actually has a name. */
2990 name_and_src_coords_attributes (decl
)
2993 register tree decl_name
= DECL_NAME (decl
);
2995 if (decl_name
&& IDENTIFIER_POINTER (decl_name
))
2997 name_attribute (IDENTIFIER_POINTER (decl_name
));
2998 #ifdef DWARF_DECL_COORDINATES
3000 register unsigned file_index
;
3002 /* This is annoying, but we have to pop out of the .debug section
3003 for a moment while we call `lookup_filename' because calling it
3004 may cause a temporary switch into the .debug_sfnames section and
3005 most svr4 assemblers are not smart enough to be able to nest
3006 section switches to any depth greater than one. Note that we
3007 also can't skirt this issue by delaying all output to the
3008 .debug_sfnames section unit the end of compilation because that
3009 would cause us to have inter-section forward references and
3010 Fred Fish sez that m68k/svr4 assemblers botch those. */
3012 ASM_OUTPUT_POP_SECTION (asm_out_file
);
3013 file_index
= lookup_filename (DECL_SOURCE_FILE (decl
));
3014 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_SECTION
);
3016 src_coords_attribute (file_index
, DECL_SOURCE_LINE (decl
));
3018 #endif /* defined(DWARF_DECL_COORDINATES) */
3022 /* Many forms of DIEs contain a "type description" part. The following
3023 routine writes out these "type descriptor" parts. */
3026 type_attribute (type
, decl_const
, decl_volatile
)
3028 register int decl_const
;
3029 register int decl_volatile
;
3031 register enum tree_code code
= TREE_CODE (type
);
3032 register int root_type_modified
;
3034 if (code
== ERROR_MARK
)
3037 /* Handle a special case. For functions whose return type is void,
3038 we generate *no* type attribute. (Note that no object may have
3039 type `void', so this only applies to function return types. */
3041 if (code
== VOID_TYPE
)
3044 /* If this is a subtype, find the underlying type. Eventually,
3045 this should write out the appropriate subtype info. */
3046 while ((code
== INTEGER_TYPE
|| code
== REAL_TYPE
)
3047 && TREE_TYPE (type
) != 0)
3048 type
= TREE_TYPE (type
), code
= TREE_CODE (type
);
3050 root_type_modified
= (code
== POINTER_TYPE
|| code
== REFERENCE_TYPE
3051 || decl_const
|| decl_volatile
3052 || TYPE_READONLY (type
) || TYPE_VOLATILE (type
));
3054 if (type_is_fundamental (root_type (type
)))
3056 if (root_type_modified
)
3057 mod_fund_type_attribute (type
, decl_const
, decl_volatile
);
3059 fund_type_attribute (fundamental_type_code (type
));
3063 if (root_type_modified
)
3064 mod_u_d_type_attribute (type
, decl_const
, decl_volatile
);
3066 /* We have to get the type_main_variant here (and pass that to the
3067 `user_def_type_attribute' routine) because the ..._TYPE node we
3068 have might simply be a *copy* of some original type node (where
3069 the copy was created to help us keep track of typedef names)
3070 and that copy might have a different TYPE_UID from the original
3071 ..._TYPE node. (Note that when `equate_type_number_to_die_number'
3072 is labeling a given type DIE for future reference, it always and
3073 only creates labels for DIEs representing *main variants*, and it
3074 never even knows about non-main-variants.) */
3075 user_def_type_attribute (type_main_variant (type
));
3079 /* Given a tree pointer to a struct, class, union, or enum type node, return
3080 a pointer to the (string) tag name for the given type, or zero if the
3081 type was declared without a tag. */
3087 register const char *name
= 0;
3089 if (TYPE_NAME (type
) != 0)
3091 register tree t
= 0;
3093 /* Find the IDENTIFIER_NODE for the type name. */
3094 if (TREE_CODE (TYPE_NAME (type
)) == IDENTIFIER_NODE
)
3095 t
= TYPE_NAME (type
);
3097 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
3098 a TYPE_DECL node, regardless of whether or not a `typedef' was
3100 else if (TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
3101 && ! DECL_IGNORED_P (TYPE_NAME (type
)))
3102 t
= DECL_NAME (TYPE_NAME (type
));
3104 /* Now get the name as a string, or invent one. */
3106 name
= IDENTIFIER_POINTER (t
);
3109 return (name
== 0 || *name
== '\0') ? 0 : name
;
3115 /* Start by checking if the pending_sibling_stack needs to be expanded.
3116 If necessary, expand it. */
3118 if (pending_siblings
== pending_siblings_allocated
)
3120 pending_siblings_allocated
+= PENDING_SIBLINGS_INCREMENT
;
3121 pending_sibling_stack
3122 = (unsigned *) xrealloc (pending_sibling_stack
,
3123 pending_siblings_allocated
* sizeof(unsigned));
3127 NEXT_DIE_NUM
= next_unused_dienum
++;
3130 /* Pop the sibling stack so that the most recently pushed DIEnum becomes the
3140 member_declared_type (member
)
3141 register tree member
;
3143 return (DECL_BIT_FIELD_TYPE (member
))
3144 ? DECL_BIT_FIELD_TYPE (member
)
3145 : TREE_TYPE (member
);
3148 /* Get the function's label, as described by its RTL.
3149 This may be different from the DECL_NAME name used
3150 in the source file. */
3153 function_start_label (decl
)
3159 x
= DECL_RTL (decl
);
3160 if (GET_CODE (x
) != MEM
)
3163 if (GET_CODE (x
) != SYMBOL_REF
)
3165 fnname
= XSTR (x
, 0);
3170 /******************************* DIEs ************************************/
3172 /* Output routines for individual types of DIEs. */
3174 /* Note that every type of DIE (except a null DIE) gets a sibling. */
3177 output_array_type_die (arg
)
3180 register tree type
= arg
;
3182 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_array_type
);
3183 sibling_attribute ();
3184 equate_type_number_to_die_number (type
);
3185 member_attribute (TYPE_CONTEXT (type
));
3187 /* I believe that we can default the array ordering. SDB will probably
3188 do the right things even if AT_ordering is not present. It's not
3189 even an issue until we start to get into multidimensional arrays
3190 anyway. If SDB is ever caught doing the Wrong Thing for multi-
3191 dimensional arrays, then we'll have to put the AT_ordering attribute
3192 back in. (But if and when we find out that we need to put these in,
3193 we will only do so for multidimensional arrays. After all, we don't
3194 want to waste space in the .debug section now do we?) */
3196 #ifdef USE_ORDERING_ATTRIBUTE
3197 ordering_attribute (ORD_row_major
);
3198 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
3200 subscript_data_attribute (type
);
3204 output_set_type_die (arg
)
3207 register tree type
= arg
;
3209 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_set_type
);
3210 sibling_attribute ();
3211 equate_type_number_to_die_number (type
);
3212 member_attribute (TYPE_CONTEXT (type
));
3213 type_attribute (TREE_TYPE (type
), 0, 0);
3217 /* Implement this when there is a GNU FORTRAN or GNU Ada front end. */
3220 output_entry_point_die (arg
)
3223 register tree decl
= arg
;
3224 register tree origin
= decl_ultimate_origin (decl
);
3226 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_entry_point
);
3227 sibling_attribute ();
3230 abstract_origin_attribute (origin
);
3233 name_and_src_coords_attributes (decl
);
3234 member_attribute (DECL_CONTEXT (decl
));
3235 type_attribute (TREE_TYPE (TREE_TYPE (decl
)), 0, 0);
3237 if (DECL_ABSTRACT (decl
))
3238 equate_decl_number_to_die_number (decl
);
3240 low_pc_attribute (function_start_label (decl
));
3244 /* Output a DIE to represent an inlined instance of an enumeration type. */
3247 output_inlined_enumeration_type_die (arg
)
3250 register tree type
= arg
;
3252 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_enumeration_type
);
3253 sibling_attribute ();
3254 if (!TREE_ASM_WRITTEN (type
))
3256 abstract_origin_attribute (type
);
3259 /* Output a DIE to represent an inlined instance of a structure type. */
3262 output_inlined_structure_type_die (arg
)
3265 register tree type
= arg
;
3267 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_structure_type
);
3268 sibling_attribute ();
3269 if (!TREE_ASM_WRITTEN (type
))
3271 abstract_origin_attribute (type
);
3274 /* Output a DIE to represent an inlined instance of a union type. */
3277 output_inlined_union_type_die (arg
)
3280 register tree type
= arg
;
3282 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_union_type
);
3283 sibling_attribute ();
3284 if (!TREE_ASM_WRITTEN (type
))
3286 abstract_origin_attribute (type
);
3289 /* Output a DIE to represent an enumeration type. Note that these DIEs
3290 include all of the information about the enumeration values also.
3291 This information is encoded into the element_list attribute. */
3294 output_enumeration_type_die (arg
)
3297 register tree type
= arg
;
3299 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_enumeration_type
);
3300 sibling_attribute ();
3301 equate_type_number_to_die_number (type
);
3302 name_attribute (type_tag (type
));
3303 member_attribute (TYPE_CONTEXT (type
));
3305 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
3306 given enum type is incomplete, do not generate the AT_byte_size
3307 attribute or the AT_element_list attribute. */
3309 if (COMPLETE_TYPE_P (type
))
3311 byte_size_attribute (type
);
3312 element_list_attribute (TYPE_FIELDS (type
));
3316 /* Output a DIE to represent either a real live formal parameter decl or
3317 to represent just the type of some formal parameter position in some
3320 Note that this routine is a bit unusual because its argument may be
3321 a ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
3322 represents an inlining of some PARM_DECL) or else some sort of a
3323 ..._TYPE node. If it's the former then this function is being called
3324 to output a DIE to represent a formal parameter object (or some inlining
3325 thereof). If it's the latter, then this function is only being called
3326 to output a TAG_formal_parameter DIE to stand as a placeholder for some
3327 formal argument type of some subprogram type. */
3330 output_formal_parameter_die (arg
)
3333 register tree node
= arg
;
3335 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_formal_parameter
);
3336 sibling_attribute ();
3338 switch (TREE_CODE_CLASS (TREE_CODE (node
)))
3340 case 'd': /* We were called with some kind of a ..._DECL node. */
3342 register tree origin
= decl_ultimate_origin (node
);
3345 abstract_origin_attribute (origin
);
3348 name_and_src_coords_attributes (node
);
3349 type_attribute (TREE_TYPE (node
),
3350 TREE_READONLY (node
), TREE_THIS_VOLATILE (node
));
3352 if (DECL_ABSTRACT (node
))
3353 equate_decl_number_to_die_number (node
);
3355 location_or_const_value_attribute (node
);
3359 case 't': /* We were called with some kind of a ..._TYPE node. */
3360 type_attribute (node
, 0, 0);
3364 abort (); /* Should never happen. */
3368 /* Output a DIE to represent a declared function (either file-scope
3369 or block-local) which has "external linkage" (according to ANSI-C). */
3372 output_global_subroutine_die (arg
)
3375 register tree decl
= arg
;
3376 register tree origin
= decl_ultimate_origin (decl
);
3378 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_global_subroutine
);
3379 sibling_attribute ();
3382 abstract_origin_attribute (origin
);
3385 register tree type
= TREE_TYPE (decl
);
3387 name_and_src_coords_attributes (decl
);
3388 inline_attribute (decl
);
3389 prototyped_attribute (type
);
3390 member_attribute (DECL_CONTEXT (decl
));
3391 type_attribute (TREE_TYPE (type
), 0, 0);
3392 pure_or_virtual_attribute (decl
);
3394 if (DECL_ABSTRACT (decl
))
3395 equate_decl_number_to_die_number (decl
);
3398 if (! DECL_EXTERNAL (decl
) && ! in_class
3399 && decl
== current_function_decl
)
3401 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3403 low_pc_attribute (function_start_label (decl
));
3404 sprintf (label
, FUNC_END_LABEL_FMT
, current_funcdef_number
);
3405 high_pc_attribute (label
);
3406 if (use_gnu_debug_info_extensions
)
3408 sprintf (label
, BODY_BEGIN_LABEL_FMT
, current_funcdef_number
);
3409 body_begin_attribute (label
);
3410 sprintf (label
, BODY_END_LABEL_FMT
, current_funcdef_number
);
3411 body_end_attribute (label
);
3417 /* Output a DIE to represent a declared data object (either file-scope
3418 or block-local) which has "external linkage" (according to ANSI-C). */
3421 output_global_variable_die (arg
)
3424 register tree decl
= arg
;
3425 register tree origin
= decl_ultimate_origin (decl
);
3427 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_global_variable
);
3428 sibling_attribute ();
3430 abstract_origin_attribute (origin
);
3433 name_and_src_coords_attributes (decl
);
3434 member_attribute (DECL_CONTEXT (decl
));
3435 type_attribute (TREE_TYPE (decl
),
3436 TREE_READONLY (decl
), TREE_THIS_VOLATILE (decl
));
3438 if (DECL_ABSTRACT (decl
))
3439 equate_decl_number_to_die_number (decl
);
3442 if (! DECL_EXTERNAL (decl
) && ! in_class
3443 && current_function_decl
== decl_function_context (decl
))
3444 location_or_const_value_attribute (decl
);
3449 output_label_die (arg
)
3452 register tree decl
= arg
;
3453 register tree origin
= decl_ultimate_origin (decl
);
3455 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_label
);
3456 sibling_attribute ();
3458 abstract_origin_attribute (origin
);
3460 name_and_src_coords_attributes (decl
);
3461 if (DECL_ABSTRACT (decl
))
3462 equate_decl_number_to_die_number (decl
);
3465 register rtx insn
= DECL_RTL (decl
);
3467 /* Deleted labels are programmer specified labels which have been
3468 eliminated because of various optimisations. We still emit them
3469 here so that it is possible to put breakpoints on them. */
3470 if (GET_CODE (insn
) == CODE_LABEL
3471 || ((GET_CODE (insn
) == NOTE
3472 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_DELETED_LABEL
)))
3474 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3476 /* When optimization is enabled (via -O) some parts of the compiler
3477 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
3478 represent source-level labels which were explicitly declared by
3479 the user. This really shouldn't be happening though, so catch
3480 it if it ever does happen. */
3482 if (INSN_DELETED_P (insn
))
3483 abort (); /* Should never happen. */
3485 ASM_GENERATE_INTERNAL_LABEL (label
, "L", CODE_LABEL_NUMBER (insn
));
3486 low_pc_attribute (label
);
3492 output_lexical_block_die (arg
)
3495 register tree stmt
= arg
;
3497 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_lexical_block
);
3498 sibling_attribute ();
3500 if (! BLOCK_ABSTRACT (stmt
))
3502 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3503 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3505 sprintf (begin_label
, BLOCK_BEGIN_LABEL_FMT
, BLOCK_NUMBER (stmt
));
3506 low_pc_attribute (begin_label
);
3507 sprintf (end_label
, BLOCK_END_LABEL_FMT
, BLOCK_NUMBER (stmt
));
3508 high_pc_attribute (end_label
);
3513 output_inlined_subroutine_die (arg
)
3516 register tree stmt
= arg
;
3518 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_inlined_subroutine
);
3519 sibling_attribute ();
3521 abstract_origin_attribute (block_ultimate_origin (stmt
));
3522 if (! BLOCK_ABSTRACT (stmt
))
3524 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3525 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3527 sprintf (begin_label
, BLOCK_BEGIN_LABEL_FMT
, BLOCK_NUMBER (stmt
));
3528 low_pc_attribute (begin_label
);
3529 sprintf (end_label
, BLOCK_END_LABEL_FMT
, BLOCK_NUMBER (stmt
));
3530 high_pc_attribute (end_label
);
3534 /* Output a DIE to represent a declared data object (either file-scope
3535 or block-local) which has "internal linkage" (according to ANSI-C). */
3538 output_local_variable_die (arg
)
3541 register tree decl
= arg
;
3542 register tree origin
= decl_ultimate_origin (decl
);
3544 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_local_variable
);
3545 sibling_attribute ();
3547 abstract_origin_attribute (origin
);
3550 name_and_src_coords_attributes (decl
);
3551 member_attribute (DECL_CONTEXT (decl
));
3552 type_attribute (TREE_TYPE (decl
),
3553 TREE_READONLY (decl
), TREE_THIS_VOLATILE (decl
));
3555 if (DECL_ABSTRACT (decl
))
3556 equate_decl_number_to_die_number (decl
);
3558 location_or_const_value_attribute (decl
);
3562 output_member_die (arg
)
3565 register tree decl
= arg
;
3567 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_member
);
3568 sibling_attribute ();
3569 name_and_src_coords_attributes (decl
);
3570 member_attribute (DECL_CONTEXT (decl
));
3571 type_attribute (member_declared_type (decl
),
3572 TREE_READONLY (decl
), TREE_THIS_VOLATILE (decl
));
3573 if (DECL_BIT_FIELD_TYPE (decl
)) /* If this is a bit field... */
3575 byte_size_attribute (decl
);
3576 bit_size_attribute (decl
);
3577 bit_offset_attribute (decl
);
3579 data_member_location_attribute (decl
);
3583 /* Don't generate either pointer_type DIEs or reference_type DIEs. Use
3584 modified types instead.
3586 We keep this code here just in case these types of DIEs may be
3587 needed to represent certain things in other languages (e.g. Pascal)
3591 output_pointer_type_die (arg
)
3594 register tree type
= arg
;
3596 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_pointer_type
);
3597 sibling_attribute ();
3598 equate_type_number_to_die_number (type
);
3599 member_attribute (TYPE_CONTEXT (type
));
3600 type_attribute (TREE_TYPE (type
), 0, 0);
3604 output_reference_type_die (arg
)
3607 register tree type
= arg
;
3609 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_reference_type
);
3610 sibling_attribute ();
3611 equate_type_number_to_die_number (type
);
3612 member_attribute (TYPE_CONTEXT (type
));
3613 type_attribute (TREE_TYPE (type
), 0, 0);
3618 output_ptr_to_mbr_type_die (arg
)
3621 register tree type
= arg
;
3623 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_ptr_to_member_type
);
3624 sibling_attribute ();
3625 equate_type_number_to_die_number (type
);
3626 member_attribute (TYPE_CONTEXT (type
));
3627 containing_type_attribute (TYPE_OFFSET_BASETYPE (type
));
3628 type_attribute (TREE_TYPE (type
), 0, 0);
3632 output_compile_unit_die (arg
)
3635 register const char *main_input_filename
= arg
;
3637 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_compile_unit
);
3638 sibling_attribute ();
3640 name_attribute (main_input_filename
);
3645 sprintf (producer
, "%s %s", language_string
, version_string
);
3646 producer_attribute (producer
);
3649 if (strcmp (language_string
, "GNU C++") == 0)
3650 language_attribute (LANG_C_PLUS_PLUS
);
3651 else if (strcmp (language_string
, "GNU Ada") == 0)
3652 language_attribute (LANG_ADA83
);
3653 else if (strcmp (language_string
, "GNU F77") == 0)
3654 language_attribute (LANG_FORTRAN77
);
3655 else if (strcmp (language_string
, "GNU Pascal") == 0)
3656 language_attribute (LANG_PASCAL83
);
3657 else if (strcmp (language_string
, "GNU Java") == 0)
3658 language_attribute (LANG_JAVA
);
3659 else if (flag_traditional
)
3660 language_attribute (LANG_C
);
3662 language_attribute (LANG_C89
);
3663 low_pc_attribute (TEXT_BEGIN_LABEL
);
3664 high_pc_attribute (TEXT_END_LABEL
);
3665 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
3666 stmt_list_attribute (LINE_BEGIN_LABEL
);
3667 last_filename
= xstrdup (main_input_filename
);
3670 const char *wd
= getpwd ();
3672 comp_dir_attribute (wd
);
3675 if (debug_info_level
>= DINFO_LEVEL_NORMAL
&& use_gnu_debug_info_extensions
)
3677 sf_names_attribute (SFNAMES_BEGIN_LABEL
);
3678 src_info_attribute (SRCINFO_BEGIN_LABEL
);
3679 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
3680 mac_info_attribute (MACINFO_BEGIN_LABEL
);
3685 output_string_type_die (arg
)
3688 register tree type
= arg
;
3690 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_string_type
);
3691 sibling_attribute ();
3692 equate_type_number_to_die_number (type
);
3693 member_attribute (TYPE_CONTEXT (type
));
3694 /* this is a fixed length string */
3695 byte_size_attribute (type
);
3699 output_inheritance_die (arg
)
3702 register tree binfo
= arg
;
3704 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_inheritance
);
3705 sibling_attribute ();
3706 type_attribute (BINFO_TYPE (binfo
), 0, 0);
3707 data_member_location_attribute (binfo
);
3708 if (TREE_VIA_VIRTUAL (binfo
))
3710 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_virtual
);
3711 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, "");
3713 if (TREE_VIA_PUBLIC (binfo
))
3715 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_public
);
3716 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, "");
3718 else if (TREE_VIA_PROTECTED (binfo
))
3720 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file
, AT_protected
);
3721 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, "");
3726 output_structure_type_die (arg
)
3729 register tree type
= arg
;
3731 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_structure_type
);
3732 sibling_attribute ();
3733 equate_type_number_to_die_number (type
);
3734 name_attribute (type_tag (type
));
3735 member_attribute (TYPE_CONTEXT (type
));
3737 /* If this type has been completed, then give it a byte_size attribute
3738 and prepare to give a list of members. Otherwise, don't do either of
3739 these things. In the latter case, we will not be generating a list
3740 of members (since we don't have any idea what they might be for an
3741 incomplete type). */
3743 if (COMPLETE_TYPE_P (type
))
3746 byte_size_attribute (type
);
3750 /* Output a DIE to represent a declared function (either file-scope
3751 or block-local) which has "internal linkage" (according to ANSI-C). */
3754 output_local_subroutine_die (arg
)
3757 register tree decl
= arg
;
3758 register tree origin
= decl_ultimate_origin (decl
);
3760 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_subroutine
);
3761 sibling_attribute ();
3764 abstract_origin_attribute (origin
);
3767 register tree type
= TREE_TYPE (decl
);
3769 name_and_src_coords_attributes (decl
);
3770 inline_attribute (decl
);
3771 prototyped_attribute (type
);
3772 member_attribute (DECL_CONTEXT (decl
));
3773 type_attribute (TREE_TYPE (type
), 0, 0);
3774 pure_or_virtual_attribute (decl
);
3776 if (DECL_ABSTRACT (decl
))
3777 equate_decl_number_to_die_number (decl
);
3780 /* Avoid getting screwed up in cases where a function was declared
3781 static but where no definition was ever given for it. */
3783 if (TREE_ASM_WRITTEN (decl
))
3785 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3786 low_pc_attribute (function_start_label (decl
));
3787 sprintf (label
, FUNC_END_LABEL_FMT
, current_funcdef_number
);
3788 high_pc_attribute (label
);
3789 if (use_gnu_debug_info_extensions
)
3791 sprintf (label
, BODY_BEGIN_LABEL_FMT
, current_funcdef_number
);
3792 body_begin_attribute (label
);
3793 sprintf (label
, BODY_END_LABEL_FMT
, current_funcdef_number
);
3794 body_end_attribute (label
);
3801 output_subroutine_type_die (arg
)
3804 register tree type
= arg
;
3805 register tree return_type
= TREE_TYPE (type
);
3807 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_subroutine_type
);
3808 sibling_attribute ();
3810 equate_type_number_to_die_number (type
);
3811 prototyped_attribute (type
);
3812 member_attribute (TYPE_CONTEXT (type
));
3813 type_attribute (return_type
, 0, 0);
3817 output_typedef_die (arg
)
3820 register tree decl
= arg
;
3821 register tree origin
= decl_ultimate_origin (decl
);
3823 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_typedef
);
3824 sibling_attribute ();
3826 abstract_origin_attribute (origin
);
3829 name_and_src_coords_attributes (decl
);
3830 member_attribute (DECL_CONTEXT (decl
));
3831 type_attribute (TREE_TYPE (decl
),
3832 TREE_READONLY (decl
), TREE_THIS_VOLATILE (decl
));
3834 if (DECL_ABSTRACT (decl
))
3835 equate_decl_number_to_die_number (decl
);
3839 output_union_type_die (arg
)
3842 register tree type
= arg
;
3844 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_union_type
);
3845 sibling_attribute ();
3846 equate_type_number_to_die_number (type
);
3847 name_attribute (type_tag (type
));
3848 member_attribute (TYPE_CONTEXT (type
));
3850 /* If this type has been completed, then give it a byte_size attribute
3851 and prepare to give a list of members. Otherwise, don't do either of
3852 these things. In the latter case, we will not be generating a list
3853 of members (since we don't have any idea what they might be for an
3854 incomplete type). */
3856 if (COMPLETE_TYPE_P (type
))
3859 byte_size_attribute (type
);
3863 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
3864 at the end of an (ANSI prototyped) formal parameters list. */
3867 output_unspecified_parameters_die (arg
)
3870 register tree decl_or_type
= arg
;
3872 ASM_OUTPUT_DWARF_TAG (asm_out_file
, TAG_unspecified_parameters
);
3873 sibling_attribute ();
3875 /* This kludge is here only for the sake of being compatible with what
3876 the USL CI5 C compiler does. The specification of Dwarf Version 1
3877 doesn't say that TAG_unspecified_parameters DIEs should contain any
3878 attributes other than the AT_sibling attribute, but they are certainly
3879 allowed to contain additional attributes, and the CI5 compiler
3880 generates AT_name, AT_fund_type, and AT_location attributes within
3881 TAG_unspecified_parameters DIEs which appear in the child lists for
3882 DIEs representing function definitions, so we do likewise here. */
3884 if (TREE_CODE (decl_or_type
) == FUNCTION_DECL
&& DECL_INITIAL (decl_or_type
))
3886 name_attribute ("...");
3887 fund_type_attribute (FT_pointer
);
3888 /* location_attribute (?); */
3893 output_padded_null_die (arg
)
3894 register void *arg ATTRIBUTE_UNUSED
;
3896 ASM_OUTPUT_ALIGN (asm_out_file
, 2); /* 2**2 == 4 */
3899 /*************************** end of DIEs *********************************/
3901 /* Generate some type of DIE. This routine generates the generic outer
3902 wrapper stuff which goes around all types of DIE's (regardless of their
3903 TAGs. All forms of DIEs start with a DIE-specific label, followed by a
3904 DIE-length word, followed by the guts of the DIE itself. After the guts
3905 of the DIE, there must always be a terminator label for the DIE. */
3908 output_die (die_specific_output_function
, param
)
3909 register void (*die_specific_output_function
) PARAMS ((void *));
3910 register void *param
;
3912 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3913 char end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3915 current_dienum
= NEXT_DIE_NUM
;
3916 NEXT_DIE_NUM
= next_unused_dienum
;
3918 sprintf (begin_label
, DIE_BEGIN_LABEL_FMT
, current_dienum
);
3919 sprintf (end_label
, DIE_END_LABEL_FMT
, current_dienum
);
3921 /* Write a label which will act as the name for the start of this DIE. */
3923 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
3925 /* Write the DIE-length word. */
3927 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, end_label
, begin_label
);
3929 /* Fill in the guts of the DIE. */
3931 next_unused_dienum
++;
3932 die_specific_output_function (param
);
3934 /* Write a label which will act as the name for the end of this DIE. */
3936 ASM_OUTPUT_LABEL (asm_out_file
, end_label
);
3940 end_sibling_chain ()
3942 char begin_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
3944 current_dienum
= NEXT_DIE_NUM
;
3945 NEXT_DIE_NUM
= next_unused_dienum
;
3947 sprintf (begin_label
, DIE_BEGIN_LABEL_FMT
, current_dienum
);
3949 /* Write a label which will act as the name for the start of this DIE. */
3951 ASM_OUTPUT_LABEL (asm_out_file
, begin_label
);
3953 /* Write the DIE-length word. */
3955 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, 4);
3960 /* Generate a list of nameless TAG_formal_parameter DIEs (and perhaps a
3961 TAG_unspecified_parameters DIE) to represent the types of the formal
3962 parameters as specified in some function type specification (except
3963 for those which appear as part of a function *definition*).
3965 Note that we must be careful here to output all of the parameter
3966 DIEs *before* we output any DIEs needed to represent the types of
3967 the formal parameters. This keeps svr4 SDB happy because it
3968 (incorrectly) thinks that the first non-parameter DIE it sees ends
3969 the formal parameter list. */
3972 output_formal_types (function_or_method_type
)
3973 register tree function_or_method_type
;
3976 register tree formal_type
= NULL
;
3977 register tree first_parm_type
= TYPE_ARG_TYPES (function_or_method_type
);
3979 /* Set TREE_ASM_WRITTEN while processing the parameters, lest we
3980 get bogus recursion when outputting tagged types local to a
3981 function declaration. */
3982 int save_asm_written
= TREE_ASM_WRITTEN (function_or_method_type
);
3983 TREE_ASM_WRITTEN (function_or_method_type
) = 1;
3985 /* In the case where we are generating a formal types list for a C++
3986 non-static member function type, skip over the first thing on the
3987 TYPE_ARG_TYPES list because it only represents the type of the
3988 hidden `this pointer'. The debugger should be able to figure
3989 out (without being explicitly told) that this non-static member
3990 function type takes a `this pointer' and should be able to figure
3991 what the type of that hidden parameter is from the AT_member
3992 attribute of the parent TAG_subroutine_type DIE. */
3994 if (TREE_CODE (function_or_method_type
) == METHOD_TYPE
)
3995 first_parm_type
= TREE_CHAIN (first_parm_type
);
3997 /* Make our first pass over the list of formal parameter types and output
3998 a TAG_formal_parameter DIE for each one. */
4000 for (link
= first_parm_type
; link
; link
= TREE_CHAIN (link
))
4002 formal_type
= TREE_VALUE (link
);
4003 if (formal_type
== void_type_node
)
4006 /* Output a (nameless) DIE to represent the formal parameter itself. */
4008 output_die (output_formal_parameter_die
, formal_type
);
4011 /* If this function type has an ellipsis, add a TAG_unspecified_parameters
4012 DIE to the end of the parameter list. */
4014 if (formal_type
!= void_type_node
)
4015 output_die (output_unspecified_parameters_die
, function_or_method_type
);
4017 /* Make our second (and final) pass over the list of formal parameter types
4018 and output DIEs to represent those types (as necessary). */
4020 for (link
= TYPE_ARG_TYPES (function_or_method_type
);
4022 link
= TREE_CHAIN (link
))
4024 formal_type
= TREE_VALUE (link
);
4025 if (formal_type
== void_type_node
)
4028 output_type (formal_type
, function_or_method_type
);
4031 TREE_ASM_WRITTEN (function_or_method_type
) = save_asm_written
;
4034 /* Remember a type in the pending_types_list. */
4040 if (pending_types
== pending_types_allocated
)
4042 pending_types_allocated
+= PENDING_TYPES_INCREMENT
;
4044 = (tree
*) xrealloc (pending_types_list
,
4045 sizeof (tree
) * pending_types_allocated
);
4047 pending_types_list
[pending_types
++] = type
;
4049 /* Mark the pending type as having been output already (even though
4050 it hasn't been). This prevents the type from being added to the
4051 pending_types_list more than once. */
4053 TREE_ASM_WRITTEN (type
) = 1;
4056 /* Return non-zero if it is legitimate to output DIEs to represent a
4057 given type while we are generating the list of child DIEs for some
4058 DIE (e.g. a function or lexical block DIE) associated with a given scope.
4060 See the comments within the function for a description of when it is
4061 considered legitimate to output DIEs for various kinds of types.
4063 Note that TYPE_CONTEXT(type) may be NULL (to indicate global scope)
4064 or it may point to a BLOCK node (for types local to a block), or to a
4065 FUNCTION_DECL node (for types local to the heading of some function
4066 definition), or to a FUNCTION_TYPE node (for types local to the
4067 prototyped parameter list of a function type specification), or to a
4068 RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE node
4069 (in the case of C++ nested types).
4071 The `scope' parameter should likewise be NULL or should point to a
4072 BLOCK node, a FUNCTION_DECL node, a FUNCTION_TYPE node, a RECORD_TYPE
4073 node, a UNION_TYPE node, or a QUAL_UNION_TYPE node.
4075 This function is used only for deciding when to "pend" and when to
4076 "un-pend" types to/from the pending_types_list.
4078 Note that we sometimes make use of this "type pending" feature in a
4079 rather twisted way to temporarily delay the production of DIEs for the
4080 types of formal parameters. (We do this just to make svr4 SDB happy.)
4081 It order to delay the production of DIEs representing types of formal
4082 parameters, callers of this function supply `fake_containing_scope' as
4083 the `scope' parameter to this function. Given that fake_containing_scope
4084 is a tagged type which is *not* the containing scope for *any* other type,
4085 the desired effect is achieved, i.e. output of DIEs representing types
4086 is temporarily suspended, and any type DIEs which would have otherwise
4087 been output are instead placed onto the pending_types_list. Later on,
4088 we force these (temporarily pended) types to be output simply by calling
4089 `output_pending_types_for_scope' with an actual argument equal to the
4090 true scope of the types we temporarily pended. */
4093 type_ok_for_scope (type
, scope
)
4095 register tree scope
;
4097 /* Tagged types (i.e. struct, union, and enum types) must always be
4098 output only in the scopes where they actually belong (or else the
4099 scoping of their own tag names and the scoping of their member
4100 names will be incorrect). Non-tagged-types on the other hand can
4101 generally be output anywhere, except that svr4 SDB really doesn't
4102 want to see them nested within struct or union types, so here we
4103 say it is always OK to immediately output any such a (non-tagged)
4104 type, so long as we are not within such a context. Note that the
4105 only kinds of non-tagged types which we will be dealing with here
4106 (for C and C++ anyway) will be array types and function types. */
4108 return is_tagged_type (type
)
4109 ? (TYPE_CONTEXT (type
) == scope
4110 /* Ignore namespaces for the moment. */
4111 || (scope
== NULL_TREE
4112 && TREE_CODE (TYPE_CONTEXT (type
)) == NAMESPACE_DECL
)
4113 || (scope
== NULL_TREE
&& is_tagged_type (TYPE_CONTEXT (type
))
4114 && TREE_ASM_WRITTEN (TYPE_CONTEXT (type
))))
4115 : (scope
== NULL_TREE
|| ! is_tagged_type (scope
));
4118 /* Output any pending types (from the pending_types list) which we can output
4119 now (taking into account the scope that we are working on now).
4121 For each type output, remove the given type from the pending_types_list
4122 *before* we try to output it.
4124 Note that we have to process the list in beginning-to-end order,
4125 because the call made here to output_type may cause yet more types
4126 to be added to the end of the list, and we may have to output some
4130 output_pending_types_for_scope (containing_scope
)
4131 register tree containing_scope
;
4133 register unsigned i
;
4135 for (i
= 0; i
< pending_types
; )
4137 register tree type
= pending_types_list
[i
];
4139 if (type_ok_for_scope (type
, containing_scope
))
4141 register tree
*mover
;
4142 register tree
*limit
;
4145 limit
= &pending_types_list
[pending_types
];
4146 for (mover
= &pending_types_list
[i
]; mover
< limit
; mover
++)
4147 *mover
= *(mover
+1);
4149 /* Un-mark the type as having been output already (because it
4150 hasn't been, really). Then call output_type to generate a
4151 Dwarf representation of it. */
4153 TREE_ASM_WRITTEN (type
) = 0;
4154 output_type (type
, containing_scope
);
4156 /* Don't increment the loop counter in this case because we
4157 have shifted all of the subsequent pending types down one
4158 element in the pending_types_list array. */
4165 /* Remember a type in the incomplete_types_list. */
4168 add_incomplete_type (type
)
4171 if (incomplete_types
== incomplete_types_allocated
)
4173 incomplete_types_allocated
+= INCOMPLETE_TYPES_INCREMENT
;
4174 incomplete_types_list
4175 = (tree
*) xrealloc (incomplete_types_list
,
4176 sizeof (tree
) * incomplete_types_allocated
);
4179 incomplete_types_list
[incomplete_types
++] = type
;
4182 /* Walk through the list of incomplete types again, trying once more to
4183 emit full debugging info for them. */
4186 retry_incomplete_types ()
4191 while (incomplete_types
)
4194 type
= incomplete_types_list
[incomplete_types
];
4195 output_type (type
, NULL_TREE
);
4200 output_type (type
, containing_scope
)
4202 register tree containing_scope
;
4204 if (type
== 0 || type
== error_mark_node
)
4207 /* We are going to output a DIE to represent the unqualified version of
4208 this type (i.e. without any const or volatile qualifiers) so get
4209 the main variant (i.e. the unqualified version) of this type now. */
4211 type
= type_main_variant (type
);
4213 if (TREE_ASM_WRITTEN (type
))
4215 if (finalizing
&& AGGREGATE_TYPE_P (type
))
4217 register tree member
;
4219 /* Some of our nested types might not have been defined when we
4220 were written out before; force them out now. */
4222 for (member
= TYPE_FIELDS (type
); member
;
4223 member
= TREE_CHAIN (member
))
4224 if (TREE_CODE (member
) == TYPE_DECL
4225 && ! TREE_ASM_WRITTEN (TREE_TYPE (member
)))
4226 output_type (TREE_TYPE (member
), containing_scope
);
4231 /* If this is a nested type whose containing class hasn't been
4232 written out yet, writing it out will cover this one, too. */
4234 if (TYPE_CONTEXT (type
)
4235 && TYPE_P (TYPE_CONTEXT (type
))
4236 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type
)))
4238 output_type (TYPE_CONTEXT (type
), containing_scope
);
4242 /* Don't generate any DIEs for this type now unless it is OK to do so
4243 (based upon what `type_ok_for_scope' tells us). */
4245 if (! type_ok_for_scope (type
, containing_scope
))
4251 switch (TREE_CODE (type
))
4257 output_type (TYPE_DEBUG_REPRESENTATION_TYPE (type
), containing_scope
);
4261 case REFERENCE_TYPE
:
4262 /* Prevent infinite recursion in cases where this is a recursive
4263 type. Recursive types are possible in Ada. */
4264 TREE_ASM_WRITTEN (type
) = 1;
4265 /* For these types, all that is required is that we output a DIE
4266 (or a set of DIEs) to represent the "basis" type. */
4267 output_type (TREE_TYPE (type
), containing_scope
);
4271 /* This code is used for C++ pointer-to-data-member types. */
4272 /* Output a description of the relevant class type. */
4273 output_type (TYPE_OFFSET_BASETYPE (type
), containing_scope
);
4274 /* Output a description of the type of the object pointed to. */
4275 output_type (TREE_TYPE (type
), containing_scope
);
4276 /* Now output a DIE to represent this pointer-to-data-member type
4278 output_die (output_ptr_to_mbr_type_die
, type
);
4282 output_type (TYPE_DOMAIN (type
), containing_scope
);
4283 output_die (output_set_type_die
, type
);
4287 output_type (TREE_TYPE (type
), containing_scope
);
4288 abort (); /* No way to represent these in Dwarf yet! */
4292 /* Force out return type (in case it wasn't forced out already). */
4293 output_type (TREE_TYPE (type
), containing_scope
);
4294 output_die (output_subroutine_type_die
, type
);
4295 output_formal_types (type
);
4296 end_sibling_chain ();
4300 /* Force out return type (in case it wasn't forced out already). */
4301 output_type (TREE_TYPE (type
), containing_scope
);
4302 output_die (output_subroutine_type_die
, type
);
4303 output_formal_types (type
);
4304 end_sibling_chain ();
4308 if (TYPE_STRING_FLAG (type
) && TREE_CODE(TREE_TYPE(type
)) == CHAR_TYPE
)
4310 output_type (TREE_TYPE (type
), containing_scope
);
4311 output_die (output_string_type_die
, type
);
4315 register tree element_type
;
4317 element_type
= TREE_TYPE (type
);
4318 while (TREE_CODE (element_type
) == ARRAY_TYPE
)
4319 element_type
= TREE_TYPE (element_type
);
4321 output_type (element_type
, containing_scope
);
4322 output_die (output_array_type_die
, type
);
4329 case QUAL_UNION_TYPE
:
4331 /* For a non-file-scope tagged type, we can always go ahead and
4332 output a Dwarf description of this type right now, even if
4333 the type in question is still incomplete, because if this
4334 local type *was* ever completed anywhere within its scope,
4335 that complete definition would already have been attached to
4336 this RECORD_TYPE, UNION_TYPE, QUAL_UNION_TYPE or ENUMERAL_TYPE
4337 node by the time we reach this point. That's true because of the
4338 way the front-end does its processing of file-scope declarations (of
4339 functions and class types) within which other types might be
4340 nested. The C and C++ front-ends always gobble up such "local
4341 scope" things en-mass before they try to output *any* debugging
4342 information for any of the stuff contained inside them and thus,
4343 we get the benefit here of what is (in effect) a pre-resolution
4344 of forward references to tagged types in local scopes.
4346 Note however that for file-scope tagged types we cannot assume
4347 that such pre-resolution of forward references has taken place.
4348 A given file-scope tagged type may appear to be incomplete when
4349 we reach this point, but it may yet be given a full definition
4350 (at file-scope) later on during compilation. In order to avoid
4351 generating a premature (and possibly incorrect) set of Dwarf
4352 DIEs for such (as yet incomplete) file-scope tagged types, we
4353 generate nothing at all for as-yet incomplete file-scope tagged
4354 types here unless we are making our special "finalization" pass
4355 for file-scope things at the very end of compilation. At that
4356 time, we will certainly know as much about each file-scope tagged
4357 type as we are ever going to know, so at that point in time, we
4358 can safely generate correct Dwarf descriptions for these file-
4359 scope tagged types. */
4361 if (!COMPLETE_TYPE_P (type
)
4362 && (TYPE_CONTEXT (type
) == NULL
4363 || AGGREGATE_TYPE_P (TYPE_CONTEXT (type
))
4364 || TREE_CODE (TYPE_CONTEXT (type
)) == NAMESPACE_DECL
)
4367 /* We don't need to do this for function-local types. */
4368 if (! decl_function_context (TYPE_STUB_DECL (type
)))
4369 add_incomplete_type (type
);
4370 return; /* EARLY EXIT! Avoid setting TREE_ASM_WRITTEN. */
4373 /* Prevent infinite recursion in cases where the type of some
4374 member of this type is expressed in terms of this type itself. */
4376 TREE_ASM_WRITTEN (type
) = 1;
4378 /* Output a DIE to represent the tagged type itself. */
4380 switch (TREE_CODE (type
))
4383 output_die (output_enumeration_type_die
, type
);
4384 return; /* a special case -- nothing left to do so just return */
4387 output_die (output_structure_type_die
, type
);
4391 case QUAL_UNION_TYPE
:
4392 output_die (output_union_type_die
, type
);
4396 abort (); /* Should never happen. */
4399 /* If this is not an incomplete type, output descriptions of
4400 each of its members.
4402 Note that as we output the DIEs necessary to represent the
4403 members of this record or union type, we will also be trying
4404 to output DIEs to represent the *types* of those members.
4405 However the `output_type' function (above) will specifically
4406 avoid generating type DIEs for member types *within* the list
4407 of member DIEs for this (containing) type execpt for those
4408 types (of members) which are explicitly marked as also being
4409 members of this (containing) type themselves. The g++ front-
4410 end can force any given type to be treated as a member of some
4411 other (containing) type by setting the TYPE_CONTEXT of the
4412 given (member) type to point to the TREE node representing the
4413 appropriate (containing) type.
4416 if (COMPLETE_TYPE_P (type
))
4418 /* First output info about the base classes. */
4419 if (TYPE_BINFO (type
) && TYPE_BINFO_BASETYPES (type
))
4421 register tree bases
= TYPE_BINFO_BASETYPES (type
);
4422 register int n_bases
= TREE_VEC_LENGTH (bases
);
4425 for (i
= 0; i
< n_bases
; i
++)
4427 tree binfo
= TREE_VEC_ELT (bases
, i
);
4428 output_type (BINFO_TYPE (binfo
), containing_scope
);
4429 output_die (output_inheritance_die
, binfo
);
4436 register tree normal_member
;
4438 /* Now output info about the data members and type members. */
4440 for (normal_member
= TYPE_FIELDS (type
);
4442 normal_member
= TREE_CHAIN (normal_member
))
4443 output_decl (normal_member
, type
);
4447 register tree func_member
;
4449 /* Now output info about the function members (if any). */
4451 for (func_member
= TYPE_METHODS (type
);
4453 func_member
= TREE_CHAIN (func_member
))
4455 /* Don't include clones in the member list. */
4456 if (DECL_ABSTRACT_ORIGIN (func_member
))
4459 output_decl (func_member
, type
);
4465 /* RECORD_TYPEs, UNION_TYPEs, and QUAL_UNION_TYPEs are themselves
4466 scopes (at least in C++) so we must now output any nested
4467 pending types which are local just to this type. */
4469 output_pending_types_for_scope (type
);
4471 end_sibling_chain (); /* Terminate member chain. */
4482 break; /* No DIEs needed for fundamental types. */
4484 case LANG_TYPE
: /* No Dwarf representation currently defined. */
4491 TREE_ASM_WRITTEN (type
) = 1;
4495 output_tagged_type_instantiation (type
)
4498 if (type
== 0 || type
== error_mark_node
)
4501 /* We are going to output a DIE to represent the unqualified version of
4502 this type (i.e. without any const or volatile qualifiers) so make
4503 sure that we have the main variant (i.e. the unqualified version) of
4506 if (type
!= type_main_variant (type
))
4509 if (!TREE_ASM_WRITTEN (type
))
4512 switch (TREE_CODE (type
))
4518 output_die (output_inlined_enumeration_type_die
, type
);
4522 output_die (output_inlined_structure_type_die
, type
);
4526 case QUAL_UNION_TYPE
:
4527 output_die (output_inlined_union_type_die
, type
);
4531 abort (); /* Should never happen. */
4535 /* Output a TAG_lexical_block DIE followed by DIEs to represent all of
4536 the things which are local to the given block. */
4539 output_block (stmt
, depth
)
4543 register int must_output_die
= 0;
4544 register tree origin
;
4545 register enum tree_code origin_code
;
4547 /* Ignore blocks never really used to make RTL. */
4549 if (! stmt
|| ! TREE_USED (stmt
)
4550 || (!TREE_ASM_WRITTEN (stmt
) && !BLOCK_ABSTRACT (stmt
)))
4553 /* Determine the "ultimate origin" of this block. This block may be an
4554 inlined instance of an inlined instance of inline function, so we
4555 have to trace all of the way back through the origin chain to find
4556 out what sort of node actually served as the original seed for the
4557 creation of the current block. */
4559 origin
= block_ultimate_origin (stmt
);
4560 origin_code
= (origin
!= NULL
) ? TREE_CODE (origin
) : ERROR_MARK
;
4562 /* Determine if we need to output any Dwarf DIEs at all to represent this
4565 if (origin_code
== FUNCTION_DECL
)
4566 /* The outer scopes for inlinings *must* always be represented. We
4567 generate TAG_inlined_subroutine DIEs for them. (See below.) */
4568 must_output_die
= 1;
4571 /* In the case where the current block represents an inlining of the
4572 "body block" of an inline function, we must *NOT* output any DIE
4573 for this block because we have already output a DIE to represent
4574 the whole inlined function scope and the "body block" of any
4575 function doesn't really represent a different scope according to
4576 ANSI C rules. So we check here to make sure that this block does
4577 not represent a "body block inlining" before trying to set the
4578 `must_output_die' flag. */
4580 if (! is_body_block (origin
? origin
: stmt
))
4582 /* Determine if this block directly contains any "significant"
4583 local declarations which we will need to output DIEs for. */
4585 if (debug_info_level
> DINFO_LEVEL_TERSE
)
4586 /* We are not in terse mode so *any* local declaration counts
4587 as being a "significant" one. */
4588 must_output_die
= (BLOCK_VARS (stmt
) != NULL
);
4593 /* We are in terse mode, so only local (nested) function
4594 definitions count as "significant" local declarations. */
4596 for (decl
= BLOCK_VARS (stmt
); decl
; decl
= TREE_CHAIN (decl
))
4597 if (TREE_CODE (decl
) == FUNCTION_DECL
&& DECL_INITIAL (decl
))
4599 must_output_die
= 1;
4606 /* It would be a waste of space to generate a Dwarf TAG_lexical_block
4607 DIE for any block which contains no significant local declarations
4608 at all. Rather, in such cases we just call `output_decls_for_scope'
4609 so that any needed Dwarf info for any sub-blocks will get properly
4610 generated. Note that in terse mode, our definition of what constitutes
4611 a "significant" local declaration gets restricted to include only
4612 inlined function instances and local (nested) function definitions. */
4614 if (origin_code
== FUNCTION_DECL
&& BLOCK_ABSTRACT (stmt
))
4615 /* We don't care about an abstract inlined subroutine. */;
4616 else if (must_output_die
)
4618 output_die ((origin_code
== FUNCTION_DECL
)
4619 ? output_inlined_subroutine_die
4620 : output_lexical_block_die
,
4622 output_decls_for_scope (stmt
, depth
);
4623 end_sibling_chain ();
4626 output_decls_for_scope (stmt
, depth
);
4629 /* Output all of the decls declared within a given scope (also called
4630 a `binding contour') and (recursively) all of it's sub-blocks. */
4633 output_decls_for_scope (stmt
, depth
)
4637 /* Ignore blocks never really used to make RTL. */
4639 if (! stmt
|| ! TREE_USED (stmt
))
4642 /* Output the DIEs to represent all of the data objects, functions,
4643 typedefs, and tagged types declared directly within this block
4644 but not within any nested sub-blocks. */
4649 for (decl
= BLOCK_VARS (stmt
); decl
; decl
= TREE_CHAIN (decl
))
4650 output_decl (decl
, stmt
);
4653 output_pending_types_for_scope (stmt
);
4655 /* Output the DIEs to represent all sub-blocks (and the items declared
4656 therein) of this block. */
4659 register tree subblocks
;
4661 for (subblocks
= BLOCK_SUBBLOCKS (stmt
);
4663 subblocks
= BLOCK_CHAIN (subblocks
))
4664 output_block (subblocks
, depth
+ 1);
4668 /* Is this a typedef we can avoid emitting? */
4671 is_redundant_typedef (decl
)
4674 if (TYPE_DECL_IS_STUB (decl
))
4676 if (DECL_ARTIFICIAL (decl
)
4677 && DECL_CONTEXT (decl
)
4678 && is_tagged_type (DECL_CONTEXT (decl
))
4679 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl
))) == TYPE_DECL
4680 && DECL_NAME (decl
) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl
))))
4681 /* Also ignore the artificial member typedef for the class name. */
4686 /* Output Dwarf .debug information for a decl described by DECL. */
4689 output_decl (decl
, containing_scope
)
4691 register tree containing_scope
;
4693 /* Make a note of the decl node we are going to be working on. We may
4694 need to give the user the source coordinates of where it appeared in
4695 case we notice (later on) that something about it looks screwy. */
4697 dwarf_last_decl
= decl
;
4699 if (TREE_CODE (decl
) == ERROR_MARK
)
4702 /* If a structure is declared within an initialization, e.g. as the
4703 operand of a sizeof, then it will not have a name. We don't want
4704 to output a DIE for it, as the tree nodes are in the temporary obstack */
4706 if ((TREE_CODE (TREE_TYPE (decl
)) == RECORD_TYPE
4707 || TREE_CODE (TREE_TYPE (decl
)) == UNION_TYPE
)
4708 && ((DECL_NAME (decl
) == 0 && TYPE_NAME (TREE_TYPE (decl
)) == 0)
4709 || (TYPE_FIELDS (TREE_TYPE (decl
))
4710 && (TREE_CODE (TYPE_FIELDS (TREE_TYPE (decl
))) == ERROR_MARK
))))
4713 /* If this ..._DECL node is marked to be ignored, then ignore it. */
4715 if (DECL_IGNORED_P (decl
))
4718 switch (TREE_CODE (decl
))
4721 /* The individual enumerators of an enum type get output when we
4722 output the Dwarf representation of the relevant enum type itself. */
4726 /* If we are in terse mode, don't output any DIEs to represent
4727 mere function declarations. Also, if we are conforming
4728 to the DWARF version 1 specification, don't output DIEs for
4729 mere function declarations. */
4731 if (DECL_INITIAL (decl
) == NULL_TREE
)
4732 #if (DWARF_VERSION > 1)
4733 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
4737 /* Before we describe the FUNCTION_DECL itself, make sure that we
4738 have described its return type. */
4740 output_type (TREE_TYPE (TREE_TYPE (decl
)), containing_scope
);
4743 /* And its containing type. */
4744 register tree origin
= decl_class_context (decl
);
4746 output_type (origin
, containing_scope
);
4749 /* If we're emitting an out-of-line copy of an inline function,
4750 set up to refer to the abstract instance emitted from
4751 note_deferral_of_defined_inline_function. */
4752 if (DECL_INLINE (decl
) && ! DECL_ABSTRACT (decl
)
4753 && ! (containing_scope
&& TYPE_P (containing_scope
)))
4754 set_decl_origin_self (decl
);
4756 /* If the following DIE will represent a function definition for a
4757 function with "extern" linkage, output a special "pubnames" DIE
4758 label just ahead of the actual DIE. A reference to this label
4759 was already generated in the .debug_pubnames section sub-entry
4760 for this function definition. */
4762 if (TREE_PUBLIC (decl
))
4764 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4766 sprintf (label
, PUB_DIE_LABEL_FMT
, next_pubname_number
++);
4767 ASM_OUTPUT_LABEL (asm_out_file
, label
);
4770 /* Now output a DIE to represent the function itself. */
4772 output_die (TREE_PUBLIC (decl
) || DECL_EXTERNAL (decl
)
4773 ? output_global_subroutine_die
4774 : output_local_subroutine_die
,
4777 /* Now output descriptions of the arguments for this function.
4778 This gets (unnecessarily?) complex because of the fact that
4779 the DECL_ARGUMENT list for a FUNCTION_DECL doesn't indicate
4780 cases where there was a trailing `...' at the end of the formal
4781 parameter list. In order to find out if there was a trailing
4782 ellipsis or not, we must instead look at the type associated
4783 with the FUNCTION_DECL. This will be a node of type FUNCTION_TYPE.
4784 If the chain of type nodes hanging off of this FUNCTION_TYPE node
4785 ends with a void_type_node then there should *not* be an ellipsis
4788 /* In the case where we are describing a mere function declaration, all
4789 we need to do here (and all we *can* do here) is to describe
4790 the *types* of its formal parameters. */
4792 if (decl
!= current_function_decl
|| in_class
)
4793 output_formal_types (TREE_TYPE (decl
));
4796 /* Generate DIEs to represent all known formal parameters */
4798 register tree arg_decls
= DECL_ARGUMENTS (decl
);
4801 /* WARNING! Kludge zone ahead! Here we have a special
4802 hack for svr4 SDB compatibility. Instead of passing the
4803 current FUNCTION_DECL node as the second parameter (i.e.
4804 the `containing_scope' parameter) to `output_decl' (as
4805 we ought to) we instead pass a pointer to our own private
4806 fake_containing_scope node. That node is a RECORD_TYPE
4807 node which NO OTHER TYPE may ever actually be a member of.
4809 This pointer will ultimately get passed into `output_type'
4810 as its `containing_scope' parameter. `Output_type' will
4811 then perform its part in the hack... i.e. it will pend
4812 the type of the formal parameter onto the pending_types
4813 list. Later on, when we are done generating the whole
4814 sequence of formal parameter DIEs for this function
4815 definition, we will un-pend all previously pended types
4816 of formal parameters for this function definition.
4818 This whole kludge prevents any type DIEs from being
4819 mixed in with the formal parameter DIEs. That's good
4820 because svr4 SDB believes that the list of formal
4821 parameter DIEs for a function ends wherever the first
4822 non-formal-parameter DIE appears. Thus, we have to
4823 keep the formal parameter DIEs segregated. They must
4824 all appear (consecutively) at the start of the list of
4825 children for the DIE representing the function definition.
4826 Then (and only then) may we output any additional DIEs
4827 needed to represent the types of these formal parameters.
4831 When generating DIEs, generate the unspecified_parameters
4832 DIE instead if we come across the arg "__builtin_va_alist"
4835 for (parm
= arg_decls
; parm
; parm
= TREE_CHAIN (parm
))
4836 if (TREE_CODE (parm
) == PARM_DECL
)
4838 if (DECL_NAME(parm
) &&
4839 !strcmp(IDENTIFIER_POINTER(DECL_NAME(parm
)),
4840 "__builtin_va_alist") )
4841 output_die (output_unspecified_parameters_die
, decl
);
4843 output_decl (parm
, fake_containing_scope
);
4847 Now that we have finished generating all of the DIEs to
4848 represent the formal parameters themselves, force out
4849 any DIEs needed to represent their types. We do this
4850 simply by un-pending all previously pended types which
4851 can legitimately go into the chain of children DIEs for
4852 the current FUNCTION_DECL.
4855 output_pending_types_for_scope (decl
);
4858 Decide whether we need a unspecified_parameters DIE at the end.
4859 There are 2 more cases to do this for:
4860 1) the ansi ... declaration - this is detectable when the end
4861 of the arg list is not a void_type_node
4862 2) an unprototyped function declaration (not a definition). This
4863 just means that we have no info about the parameters at all.
4867 register tree fn_arg_types
= TYPE_ARG_TYPES (TREE_TYPE (decl
));
4871 /* this is the prototyped case, check for ... */
4872 if (TREE_VALUE (tree_last (fn_arg_types
)) != void_type_node
)
4873 output_die (output_unspecified_parameters_die
, decl
);
4877 /* this is unprototyped, check for undefined (just declaration) */
4878 if (!DECL_INITIAL (decl
))
4879 output_die (output_unspecified_parameters_die
, decl
);
4883 /* Output Dwarf info for all of the stuff within the body of the
4884 function (if it has one - it may be just a declaration). */
4887 register tree outer_scope
= DECL_INITIAL (decl
);
4889 if (outer_scope
&& TREE_CODE (outer_scope
) != ERROR_MARK
)
4891 /* Note that here, `outer_scope' is a pointer to the outermost
4892 BLOCK node created to represent a function.
4893 This outermost BLOCK actually represents the outermost
4894 binding contour for the function, i.e. the contour in which
4895 the function's formal parameters and labels get declared.
4897 Curiously, it appears that the front end doesn't actually
4898 put the PARM_DECL nodes for the current function onto the
4899 BLOCK_VARS list for this outer scope. (They are strung
4900 off of the DECL_ARGUMENTS list for the function instead.)
4901 The BLOCK_VARS list for the `outer_scope' does provide us
4902 with a list of the LABEL_DECL nodes for the function however,
4903 and we output DWARF info for those here.
4905 Just within the `outer_scope' there will be a BLOCK node
4906 representing the function's outermost pair of curly braces,
4907 and any blocks used for the base and member initializers of
4908 a C++ constructor function. */
4910 output_decls_for_scope (outer_scope
, 0);
4912 /* Finally, force out any pending types which are local to the
4913 outermost block of this function definition. These will
4914 all have a TYPE_CONTEXT which points to the FUNCTION_DECL
4917 output_pending_types_for_scope (decl
);
4922 /* Generate a terminator for the list of stuff `owned' by this
4925 end_sibling_chain ();
4930 /* If we are in terse mode, don't generate any DIEs to represent
4931 any actual typedefs. Note that even when we are in terse mode,
4932 we must still output DIEs to represent those tagged types which
4933 are used (directly or indirectly) in the specification of either
4934 a return type or a formal parameter type of some function. */
4936 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
4937 if (! TYPE_DECL_IS_STUB (decl
)
4938 || (! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl
)) && ! in_class
))
4941 /* In the special case of a TYPE_DECL node representing
4942 the declaration of some type tag, if the given TYPE_DECL is
4943 marked as having been instantiated from some other (original)
4944 TYPE_DECL node (e.g. one which was generated within the original
4945 definition of an inline function) we have to generate a special
4946 (abbreviated) TAG_structure_type, TAG_union_type, or
4947 TAG_enumeration-type DIE here. */
4949 if (TYPE_DECL_IS_STUB (decl
) && DECL_ABSTRACT_ORIGIN (decl
))
4951 output_tagged_type_instantiation (TREE_TYPE (decl
));
4955 output_type (TREE_TYPE (decl
), containing_scope
);
4957 if (! is_redundant_typedef (decl
))
4958 /* Output a DIE to represent the typedef itself. */
4959 output_die (output_typedef_die
, decl
);
4963 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
4964 output_die (output_label_die
, decl
);
4968 /* If we are conforming to the DWARF version 1 specification, don't
4969 generated any DIEs to represent mere external object declarations. */
4971 #if (DWARF_VERSION <= 1)
4972 if (DECL_EXTERNAL (decl
) && ! TREE_PUBLIC (decl
))
4976 /* If we are in terse mode, don't generate any DIEs to represent
4977 any variable declarations or definitions. */
4979 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
4982 /* Output any DIEs that are needed to specify the type of this data
4985 output_type (TREE_TYPE (decl
), containing_scope
);
4988 /* And its containing type. */
4989 register tree origin
= decl_class_context (decl
);
4991 output_type (origin
, containing_scope
);
4994 /* If the following DIE will represent a data object definition for a
4995 data object with "extern" linkage, output a special "pubnames" DIE
4996 label just ahead of the actual DIE. A reference to this label
4997 was already generated in the .debug_pubnames section sub-entry
4998 for this data object definition. */
5000 if (TREE_PUBLIC (decl
) && ! DECL_ABSTRACT (decl
))
5002 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5004 sprintf (label
, PUB_DIE_LABEL_FMT
, next_pubname_number
++);
5005 ASM_OUTPUT_LABEL (asm_out_file
, label
);
5008 /* Now output the DIE to represent the data object itself. This gets
5009 complicated because of the possibility that the VAR_DECL really
5010 represents an inlined instance of a formal parameter for an inline
5014 register void (*func
) PARAMS ((void *));
5015 register tree origin
= decl_ultimate_origin (decl
);
5017 if (origin
!= NULL
&& TREE_CODE (origin
) == PARM_DECL
)
5018 func
= output_formal_parameter_die
;
5021 if (TREE_PUBLIC (decl
) || DECL_EXTERNAL (decl
))
5022 func
= output_global_variable_die
;
5024 func
= output_local_variable_die
;
5026 output_die (func
, decl
);
5031 /* Ignore the nameless fields that are used to skip bits. */
5032 if (DECL_NAME (decl
) != 0)
5034 output_type (member_declared_type (decl
), containing_scope
);
5035 output_die (output_member_die
, decl
);
5040 /* Force out the type of this formal, if it was not forced out yet.
5041 Note that here we can run afowl of a bug in "classic" svr4 SDB.
5042 It should be able to grok the presence of type DIEs within a list
5043 of TAG_formal_parameter DIEs, but it doesn't. */
5045 output_type (TREE_TYPE (decl
), containing_scope
);
5046 output_die (output_formal_parameter_die
, decl
);
5049 case NAMESPACE_DECL
:
5050 /* Ignore for now. */
5059 dwarfout_file_scope_decl (decl
, set_finalizing
)
5061 register int set_finalizing
;
5063 if (TREE_CODE (decl
) == ERROR_MARK
)
5066 /* If this ..._DECL node is marked to be ignored, then ignore it. */
5068 if (DECL_IGNORED_P (decl
))
5071 switch (TREE_CODE (decl
))
5075 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of
5076 a builtin function. Explicit programmer-supplied declarations of
5077 these same functions should NOT be ignored however. */
5079 if (DECL_EXTERNAL (decl
) && DECL_FUNCTION_CODE (decl
))
5082 /* What we would really like to do here is to filter out all mere
5083 file-scope declarations of file-scope functions which are never
5084 referenced later within this translation unit (and keep all of
5085 ones that *are* referenced later on) but we aren't clairvoyant,
5086 so we have no idea which functions will be referenced in the
5087 future (i.e. later on within the current translation unit).
5088 So here we just ignore all file-scope function declarations
5089 which are not also definitions. If and when the debugger needs
5090 to know something about these functions, it wil have to hunt
5091 around and find the DWARF information associated with the
5092 *definition* of the function.
5094 Note that we can't just check `DECL_EXTERNAL' to find out which
5095 FUNCTION_DECL nodes represent definitions and which ones represent
5096 mere declarations. We have to check `DECL_INITIAL' instead. That's
5097 because the C front-end supports some weird semantics for "extern
5098 inline" function definitions. These can get inlined within the
5099 current translation unit (an thus, we need to generate DWARF info
5100 for their abstract instances so that the DWARF info for the
5101 concrete inlined instances can have something to refer to) but
5102 the compiler never generates any out-of-lines instances of such
5103 things (despite the fact that they *are* definitions). The
5104 important point is that the C front-end marks these "extern inline"
5105 functions as DECL_EXTERNAL, but we need to generate DWARF for them
5108 Note that the C++ front-end also plays some similar games for inline
5109 function definitions appearing within include files which also
5110 contain `#pragma interface' pragmas. */
5112 if (DECL_INITIAL (decl
) == NULL_TREE
)
5115 if (TREE_PUBLIC (decl
)
5116 && ! DECL_EXTERNAL (decl
)
5117 && ! DECL_ABSTRACT (decl
))
5119 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5121 /* Output a .debug_pubnames entry for a public function
5122 defined in this compilation unit. */
5124 fputc ('\n', asm_out_file
);
5125 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, PUBNAMES_SECTION
);
5126 sprintf (label
, PUB_DIE_LABEL_FMT
, next_pubname_number
);
5127 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, label
);
5128 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
,
5129 IDENTIFIER_POINTER (DECL_NAME (decl
)));
5130 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5137 /* Ignore this VAR_DECL if it refers to a file-scope extern data
5138 object declaration and if the declaration was never even
5139 referenced from within this entire compilation unit. We
5140 suppress these DIEs in order to save space in the .debug section
5141 (by eliminating entries which are probably useless). Note that
5142 we must not suppress block-local extern declarations (whether
5143 used or not) because that would screw-up the debugger's name
5144 lookup mechanism and cause it to miss things which really ought
5145 to be in scope at a given point. */
5147 if (DECL_EXTERNAL (decl
) && !TREE_USED (decl
))
5150 if (TREE_PUBLIC (decl
)
5151 && ! DECL_EXTERNAL (decl
)
5152 && GET_CODE (DECL_RTL (decl
)) == MEM
5153 && ! DECL_ABSTRACT (decl
))
5155 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5157 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
5159 /* Output a .debug_pubnames entry for a public variable
5160 defined in this compilation unit. */
5162 fputc ('\n', asm_out_file
);
5163 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, PUBNAMES_SECTION
);
5164 sprintf (label
, PUB_DIE_LABEL_FMT
, next_pubname_number
);
5165 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, label
);
5166 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
,
5167 IDENTIFIER_POINTER (DECL_NAME (decl
)));
5168 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5171 if (DECL_INITIAL (decl
) == NULL
)
5173 /* Output a .debug_aranges entry for a public variable
5174 which is tentatively defined in this compilation unit. */
5176 fputc ('\n', asm_out_file
);
5177 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, ARANGES_SECTION
);
5178 ASM_OUTPUT_DWARF_ADDR (asm_out_file
,
5179 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl
)));
5180 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
,
5181 (unsigned) int_size_in_bytes (TREE_TYPE (decl
)));
5182 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5186 /* If we are in terse mode, don't generate any DIEs to represent
5187 any variable declarations or definitions. */
5189 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
5195 /* Don't bother trying to generate any DIEs to represent any of the
5196 normal built-in types for the language we are compiling, except
5197 in cases where the types in question are *not* DWARF fundamental
5198 types. We make an exception in the case of non-fundamental types
5199 for the sake of objective C (and perhaps C++) because the GNU
5200 front-ends for these languages may in fact create certain "built-in"
5201 types which are (for example) RECORD_TYPEs. In such cases, we
5202 really need to output these (non-fundamental) types because other
5203 DIEs may contain references to them. */
5205 /* Also ignore language dependent types here, because they are probably
5206 also built-in types. If we didn't ignore them, then we would get
5207 references to undefined labels because output_type doesn't support
5208 them. So, for now, we need to ignore them to avoid assembler
5211 /* ??? This code is different than the equivalent code in dwarf2out.c.
5212 The dwarf2out.c code is probably more correct. */
5214 if (DECL_SOURCE_LINE (decl
) == 0
5215 && (type_is_fundamental (TREE_TYPE (decl
))
5216 || TREE_CODE (TREE_TYPE (decl
)) == LANG_TYPE
))
5219 /* If we are in terse mode, don't generate any DIEs to represent
5220 any actual typedefs. Note that even when we are in terse mode,
5221 we must still output DIEs to represent those tagged types which
5222 are used (directly or indirectly) in the specification of either
5223 a return type or a formal parameter type of some function. */
5225 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
5226 if (! TYPE_DECL_IS_STUB (decl
)
5227 || ! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl
)))
5236 fputc ('\n', asm_out_file
);
5237 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_SECTION
);
5238 finalizing
= set_finalizing
;
5239 output_decl (decl
, NULL_TREE
);
5241 /* NOTE: The call above to `output_decl' may have caused one or more
5242 file-scope named types (i.e. tagged types) to be placed onto the
5243 pending_types_list. We have to get those types off of that list
5244 at some point, and this is the perfect time to do it. If we didn't
5245 take them off now, they might still be on the list when cc1 finally
5246 exits. That might be OK if it weren't for the fact that when we put
5247 types onto the pending_types_list, we set the TREE_ASM_WRITTEN flag
5248 for these types, and that causes them never to be output unless
5249 `output_pending_types_for_scope' takes them off of the list and un-sets
5250 their TREE_ASM_WRITTEN flags. */
5252 output_pending_types_for_scope (NULL_TREE
);
5254 /* The above call should have totally emptied the pending_types_list
5255 if this is not a nested function or class. If this is a nested type,
5256 then the remaining pending_types will be emitted when the containing type
5259 if (! DECL_CONTEXT (decl
))
5261 if (pending_types
!= 0)
5265 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5267 if (TREE_CODE (decl
) == FUNCTION_DECL
&& DECL_INITIAL (decl
) != NULL
)
5268 current_funcdef_number
++;
5271 /* Output a marker (i.e. a label) for the beginning of the generated code
5272 for a lexical block. */
5275 dwarfout_begin_block (blocknum
)
5276 register unsigned blocknum
;
5278 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5280 function_section (current_function_decl
);
5281 sprintf (label
, BLOCK_BEGIN_LABEL_FMT
, blocknum
);
5282 ASM_OUTPUT_LABEL (asm_out_file
, label
);
5285 /* Output a marker (i.e. a label) for the end of the generated code
5286 for a lexical block. */
5289 dwarfout_end_block (blocknum
)
5290 register unsigned blocknum
;
5292 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5294 function_section (current_function_decl
);
5295 sprintf (label
, BLOCK_END_LABEL_FMT
, blocknum
);
5296 ASM_OUTPUT_LABEL (asm_out_file
, label
);
5299 /* Output a marker (i.e. a label) for the point in the generated code where
5300 the real body of the function begins (after parameters have been moved
5301 to their home locations). */
5304 dwarfout_begin_function ()
5306 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5308 if (! use_gnu_debug_info_extensions
)
5310 function_section (current_function_decl
);
5311 sprintf (label
, BODY_BEGIN_LABEL_FMT
, current_funcdef_number
);
5312 ASM_OUTPUT_LABEL (asm_out_file
, label
);
5315 /* Output a marker (i.e. a label) for the point in the generated code where
5316 the real body of the function ends (just before the epilogue code). */
5319 dwarfout_end_function ()
5321 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5323 if (! use_gnu_debug_info_extensions
)
5325 function_section (current_function_decl
);
5326 sprintf (label
, BODY_END_LABEL_FMT
, current_funcdef_number
);
5327 ASM_OUTPUT_LABEL (asm_out_file
, label
);
5330 /* Output a marker (i.e. a label) for the absolute end of the generated code
5331 for a function definition. This gets called *after* the epilogue code
5332 has been generated. */
5335 dwarfout_end_epilogue ()
5337 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5339 /* Output a label to mark the endpoint of the code generated for this
5342 sprintf (label
, FUNC_END_LABEL_FMT
, current_funcdef_number
);
5343 ASM_OUTPUT_LABEL (asm_out_file
, label
);
5347 shuffle_filename_entry (new_zeroth
)
5348 register filename_entry
*new_zeroth
;
5350 filename_entry temp_entry
;
5351 register filename_entry
*limit_p
;
5352 register filename_entry
*move_p
;
5354 if (new_zeroth
== &filename_table
[0])
5357 temp_entry
= *new_zeroth
;
5359 /* Shift entries up in the table to make room at [0]. */
5361 limit_p
= &filename_table
[0];
5362 for (move_p
= new_zeroth
; move_p
> limit_p
; move_p
--)
5363 *move_p
= *(move_p
-1);
5365 /* Install the found entry at [0]. */
5367 filename_table
[0] = temp_entry
;
5370 /* Create a new (string) entry for the .debug_sfnames section. */
5373 generate_new_sfname_entry ()
5375 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5377 fputc ('\n', asm_out_file
);
5378 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, SFNAMES_SECTION
);
5379 sprintf (label
, SFNAMES_ENTRY_LABEL_FMT
, filename_table
[0].number
);
5380 ASM_OUTPUT_LABEL (asm_out_file
, label
);
5381 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
,
5382 filename_table
[0].name
5383 ? filename_table
[0].name
5385 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5388 /* Lookup a filename (in the list of filenames that we know about here in
5389 dwarfout.c) and return its "index". The index of each (known) filename
5390 is just a unique number which is associated with only that one filename.
5391 We need such numbers for the sake of generating labels (in the
5392 .debug_sfnames section) and references to those unique labels (in the
5393 .debug_srcinfo and .debug_macinfo sections).
5395 If the filename given as an argument is not found in our current list,
5396 add it to the list and assign it the next available unique index number.
5398 Whatever we do (i.e. whether we find a pre-existing filename or add a new
5399 one), we shuffle the filename found (or added) up to the zeroth entry of
5400 our list of filenames (which is always searched linearly). We do this so
5401 as to optimize the most common case for these filename lookups within
5402 dwarfout.c. The most common case by far is the case where we call
5403 lookup_filename to lookup the very same filename that we did a lookup
5404 on the last time we called lookup_filename. We make sure that this
5405 common case is fast because such cases will constitute 99.9% of the
5406 lookups we ever do (in practice).
5408 If we add a new filename entry to our table, we go ahead and generate
5409 the corresponding entry in the .debug_sfnames section right away.
5410 Doing so allows us to avoid tickling an assembler bug (present in some
5411 m68k assemblers) which yields assembly-time errors in cases where the
5412 difference of two label addresses is taken and where the two labels
5413 are in a section *other* than the one where the difference is being
5414 calculated, and where at least one of the two symbol references is a
5415 forward reference. (This bug could be tickled by our .debug_srcinfo
5416 entries if we don't output their corresponding .debug_sfnames entries
5420 lookup_filename (file_name
)
5421 const char *file_name
;
5423 register filename_entry
*search_p
;
5424 register filename_entry
*limit_p
= &filename_table
[ft_entries
];
5426 for (search_p
= filename_table
; search_p
< limit_p
; search_p
++)
5427 if (!strcmp (file_name
, search_p
->name
))
5429 /* When we get here, we have found the filename that we were
5430 looking for in the filename_table. Now we want to make sure
5431 that it gets moved to the zero'th entry in the table (if it
5432 is not already there) so that subsequent attempts to find the
5433 same filename will find it as quickly as possible. */
5435 shuffle_filename_entry (search_p
);
5436 return filename_table
[0].number
;
5439 /* We come here whenever we have a new filename which is not registered
5440 in the current table. Here we add it to the table. */
5442 /* Prepare to add a new table entry by making sure there is enough space
5443 in the table to do so. If not, expand the current table. */
5445 if (ft_entries
== ft_entries_allocated
)
5447 ft_entries_allocated
+= FT_ENTRIES_INCREMENT
;
5449 = (filename_entry
*)
5450 xrealloc (filename_table
,
5451 ft_entries_allocated
* sizeof (filename_entry
));
5454 /* Initially, add the new entry at the end of the filename table. */
5456 filename_table
[ft_entries
].number
= ft_entries
;
5457 filename_table
[ft_entries
].name
= xstrdup (file_name
);
5459 /* Shuffle the new entry into filename_table[0]. */
5461 shuffle_filename_entry (&filename_table
[ft_entries
]);
5463 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
5464 generate_new_sfname_entry ();
5467 return filename_table
[0].number
;
5471 generate_srcinfo_entry (line_entry_num
, files_entry_num
)
5472 unsigned line_entry_num
;
5473 unsigned files_entry_num
;
5475 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5477 fputc ('\n', asm_out_file
);
5478 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, SRCINFO_SECTION
);
5479 sprintf (label
, LINE_ENTRY_LABEL_FMT
, line_entry_num
);
5480 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, label
, LINE_BEGIN_LABEL
);
5481 sprintf (label
, SFNAMES_ENTRY_LABEL_FMT
, files_entry_num
);
5482 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, label
, SFNAMES_BEGIN_LABEL
);
5483 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5487 dwarfout_line (filename
, line
)
5488 register const char *filename
;
5489 register unsigned line
;
5491 if (debug_info_level
>= DINFO_LEVEL_NORMAL
5492 /* We can't emit line number info for functions in separate sections,
5493 because the assembler can't subtract labels in different sections. */
5494 && DECL_SECTION_NAME (current_function_decl
) == NULL_TREE
)
5496 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5497 static unsigned last_line_entry_num
= 0;
5498 static unsigned prev_file_entry_num
= (unsigned) -1;
5499 register unsigned this_file_entry_num
;
5501 function_section (current_function_decl
);
5502 sprintf (label
, LINE_CODE_LABEL_FMT
, ++last_line_entry_num
);
5503 ASM_OUTPUT_LABEL (asm_out_file
, label
);
5505 fputc ('\n', asm_out_file
);
5507 if (use_gnu_debug_info_extensions
)
5508 this_file_entry_num
= lookup_filename (filename
);
5510 this_file_entry_num
= (unsigned) -1;
5512 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, LINE_SECTION
);
5513 if (this_file_entry_num
!= prev_file_entry_num
)
5515 char line_entry_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5517 sprintf (line_entry_label
, LINE_ENTRY_LABEL_FMT
, last_line_entry_num
);
5518 ASM_OUTPUT_LABEL (asm_out_file
, line_entry_label
);
5522 register const char *tail
= strrchr (filename
, '/');
5528 fprintf (asm_out_file
, "%s%u\t%s %s:%u\n",
5529 UNALIGNED_INT_ASM_OP
, line
, ASM_COMMENT_START
,
5531 ASM_OUTPUT_DWARF_DATA2 (asm_out_file
, 0xffff);
5532 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, label
, TEXT_BEGIN_LABEL
);
5533 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5535 if (this_file_entry_num
!= prev_file_entry_num
)
5536 generate_srcinfo_entry (last_line_entry_num
, this_file_entry_num
);
5537 prev_file_entry_num
= this_file_entry_num
;
5541 /* Generate an entry in the .debug_macinfo section. */
5544 generate_macinfo_entry (type_and_offset
, string
)
5545 register const char *type_and_offset
;
5546 register const char *string
;
5548 if (! use_gnu_debug_info_extensions
)
5551 fputc ('\n', asm_out_file
);
5552 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, MACINFO_SECTION
);
5553 fprintf (asm_out_file
, "%s%s\n", UNALIGNED_INT_ASM_OP
, type_and_offset
);
5554 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, string
);
5555 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5559 dwarfout_start_new_source_file (filename
)
5560 register const char *filename
;
5562 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5563 char type_and_offset
[MAX_ARTIFICIAL_LABEL_BYTES
*3];
5565 sprintf (label
, SFNAMES_ENTRY_LABEL_FMT
, lookup_filename (filename
));
5566 sprintf (type_and_offset
, "0x%08x+%s-%s",
5567 ((unsigned) MACINFO_start
<< 24),
5568 /* Hack: skip leading '*' . */
5569 (*label
== '*') + label
,
5570 (*SFNAMES_BEGIN_LABEL
== '*') + SFNAMES_BEGIN_LABEL
);
5571 generate_macinfo_entry (type_and_offset
, "");
5575 dwarfout_resume_previous_source_file (lineno
)
5576 register unsigned lineno
;
5578 char type_and_offset
[MAX_ARTIFICIAL_LABEL_BYTES
*2];
5580 sprintf (type_and_offset
, "0x%08x+%u",
5581 ((unsigned) MACINFO_resume
<< 24), lineno
);
5582 generate_macinfo_entry (type_and_offset
, "");
5585 /* Called from check_newline in c-parse.y. The `buffer' parameter
5586 contains the tail part of the directive line, i.e. the part which
5587 is past the initial whitespace, #, whitespace, directive-name,
5591 dwarfout_define (lineno
, buffer
)
5592 register unsigned lineno
;
5593 register const char *buffer
;
5595 static int initialized
= 0;
5596 char type_and_offset
[MAX_ARTIFICIAL_LABEL_BYTES
*2];
5600 dwarfout_start_new_source_file (primary_filename
);
5603 sprintf (type_and_offset
, "0x%08x+%u",
5604 ((unsigned) MACINFO_define
<< 24), lineno
);
5605 generate_macinfo_entry (type_and_offset
, buffer
);
5608 /* Called from check_newline in c-parse.y. The `buffer' parameter
5609 contains the tail part of the directive line, i.e. the part which
5610 is past the initial whitespace, #, whitespace, directive-name,
5614 dwarfout_undef (lineno
, buffer
)
5615 register unsigned lineno
;
5616 register const char *buffer
;
5618 char type_and_offset
[MAX_ARTIFICIAL_LABEL_BYTES
*2];
5620 sprintf (type_and_offset
, "0x%08x+%u",
5621 ((unsigned) MACINFO_undef
<< 24), lineno
);
5622 generate_macinfo_entry (type_and_offset
, buffer
);
5625 /* Set up for Dwarf output at the start of compilation. */
5628 dwarfout_init (asm_out_file
, main_input_filename
)
5629 register FILE *asm_out_file
;
5630 register const char *main_input_filename
;
5632 /* Remember the name of the primary input file. */
5634 primary_filename
= main_input_filename
;
5636 /* Allocate the initial hunk of the pending_sibling_stack. */
5638 pending_sibling_stack
5640 xmalloc (PENDING_SIBLINGS_INCREMENT
* sizeof (unsigned));
5641 pending_siblings_allocated
= PENDING_SIBLINGS_INCREMENT
;
5642 pending_siblings
= 1;
5644 /* Allocate the initial hunk of the filename_table. */
5647 = (filename_entry
*)
5648 xmalloc (FT_ENTRIES_INCREMENT
* sizeof (filename_entry
));
5649 ft_entries_allocated
= FT_ENTRIES_INCREMENT
;
5652 /* Allocate the initial hunk of the pending_types_list. */
5655 = (tree
*) xmalloc (PENDING_TYPES_INCREMENT
* sizeof (tree
));
5656 pending_types_allocated
= PENDING_TYPES_INCREMENT
;
5659 /* Create an artificial RECORD_TYPE node which we can use in our hack
5660 to get the DIEs representing types of formal parameters to come out
5661 only *after* the DIEs for the formal parameters themselves. */
5663 fake_containing_scope
= make_node (RECORD_TYPE
);
5665 /* Output a starting label for the .text section. */
5667 fputc ('\n', asm_out_file
);
5668 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, TEXT_SECTION
);
5669 ASM_OUTPUT_LABEL (asm_out_file
, TEXT_BEGIN_LABEL
);
5670 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5672 /* Output a starting label for the .data section. */
5674 fputc ('\n', asm_out_file
);
5675 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DATA_SECTION
);
5676 ASM_OUTPUT_LABEL (asm_out_file
, DATA_BEGIN_LABEL
);
5677 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5679 #if 0 /* GNU C doesn't currently use .data1. */
5680 /* Output a starting label for the .data1 section. */
5682 fputc ('\n', asm_out_file
);
5683 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DATA1_SECTION
);
5684 ASM_OUTPUT_LABEL (asm_out_file
, DATA1_BEGIN_LABEL
);
5685 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5688 /* Output a starting label for the .rodata section. */
5690 fputc ('\n', asm_out_file
);
5691 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, RODATA_SECTION
);
5692 ASM_OUTPUT_LABEL (asm_out_file
, RODATA_BEGIN_LABEL
);
5693 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5695 #if 0 /* GNU C doesn't currently use .rodata1. */
5696 /* Output a starting label for the .rodata1 section. */
5698 fputc ('\n', asm_out_file
);
5699 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, RODATA1_SECTION
);
5700 ASM_OUTPUT_LABEL (asm_out_file
, RODATA1_BEGIN_LABEL
);
5701 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5704 /* Output a starting label for the .bss section. */
5706 fputc ('\n', asm_out_file
);
5707 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, BSS_SECTION
);
5708 ASM_OUTPUT_LABEL (asm_out_file
, BSS_BEGIN_LABEL
);
5709 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5711 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
5713 if (use_gnu_debug_info_extensions
)
5715 /* Output a starting label and an initial (compilation directory)
5716 entry for the .debug_sfnames section. The starting label will be
5717 referenced by the initial entry in the .debug_srcinfo section. */
5719 fputc ('\n', asm_out_file
);
5720 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, SFNAMES_SECTION
);
5721 ASM_OUTPUT_LABEL (asm_out_file
, SFNAMES_BEGIN_LABEL
);
5723 register const char *pwd
= getpwd ();
5724 register char *dirname
;
5727 fatal_io_error ("can't get current directory");
5729 dirname
= concat (pwd
, "/", NULL
);
5730 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, dirname
);
5733 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5736 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
5737 && use_gnu_debug_info_extensions
)
5739 /* Output a starting label for the .debug_macinfo section. This
5740 label will be referenced by the AT_mac_info attribute in the
5741 TAG_compile_unit DIE. */
5743 fputc ('\n', asm_out_file
);
5744 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, MACINFO_SECTION
);
5745 ASM_OUTPUT_LABEL (asm_out_file
, MACINFO_BEGIN_LABEL
);
5746 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5749 /* Generate the initial entry for the .line section. */
5751 fputc ('\n', asm_out_file
);
5752 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, LINE_SECTION
);
5753 ASM_OUTPUT_LABEL (asm_out_file
, LINE_BEGIN_LABEL
);
5754 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, LINE_END_LABEL
, LINE_BEGIN_LABEL
);
5755 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, TEXT_BEGIN_LABEL
);
5756 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5758 if (use_gnu_debug_info_extensions
)
5760 /* Generate the initial entry for the .debug_srcinfo section. */
5762 fputc ('\n', asm_out_file
);
5763 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, SRCINFO_SECTION
);
5764 ASM_OUTPUT_LABEL (asm_out_file
, SRCINFO_BEGIN_LABEL
);
5765 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, LINE_BEGIN_LABEL
);
5766 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, SFNAMES_BEGIN_LABEL
);
5767 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, TEXT_BEGIN_LABEL
);
5768 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, TEXT_END_LABEL
);
5769 #ifdef DWARF_TIMESTAMPS
5770 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, time (NULL
));
5772 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, -1);
5774 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5777 /* Generate the initial entry for the .debug_pubnames section. */
5779 fputc ('\n', asm_out_file
);
5780 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, PUBNAMES_SECTION
);
5781 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, DEBUG_BEGIN_LABEL
);
5782 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5784 /* Generate the initial entry for the .debug_aranges section. */
5786 fputc ('\n', asm_out_file
);
5787 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, ARANGES_SECTION
);
5788 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
,
5789 DEBUG_ARANGES_END_LABEL
,
5790 DEBUG_ARANGES_BEGIN_LABEL
);
5791 ASM_OUTPUT_LABEL (asm_out_file
, DEBUG_ARANGES_BEGIN_LABEL
);
5792 ASM_OUTPUT_DWARF_DATA1 (asm_out_file
, 1);
5793 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, DEBUG_BEGIN_LABEL
);
5794 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5797 /* Setup first DIE number == 1. */
5798 NEXT_DIE_NUM
= next_unused_dienum
++;
5800 /* Generate the initial DIE for the .debug section. Note that the
5801 (string) value given in the AT_name attribute of the TAG_compile_unit
5802 DIE will (typically) be a relative pathname and that this pathname
5803 should be taken as being relative to the directory from which the
5804 compiler was invoked when the given (base) source file was compiled. */
5806 fputc ('\n', asm_out_file
);
5807 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_SECTION
);
5808 ASM_OUTPUT_LABEL (asm_out_file
, DEBUG_BEGIN_LABEL
);
5809 output_die (output_compile_unit_die
, (PTR
) main_input_filename
);
5810 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5812 fputc ('\n', asm_out_file
);
5815 /* Output stuff that dwarf requires at the end of every file. */
5820 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
5822 fputc ('\n', asm_out_file
);
5823 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DEBUG_SECTION
);
5824 retry_incomplete_types ();
5825 fputc ('\n', asm_out_file
);
5827 /* Mark the end of the chain of siblings which represent all file-scope
5828 declarations in this compilation unit. */
5830 /* The (null) DIE which represents the terminator for the (sibling linked)
5831 list of file-scope items is *special*. Normally, we would just call
5832 end_sibling_chain at this point in order to output a word with the
5833 value `4' and that word would act as the terminator for the list of
5834 DIEs describing file-scope items. Unfortunately, if we were to simply
5835 do that, the label that would follow this DIE in the .debug section
5836 (i.e. `..D2') would *not* be properly aligned (as it must be on some
5837 machines) to a 4 byte boundary.
5839 In order to force the label `..D2' to get aligned to a 4 byte boundary,
5840 the trick used is to insert extra (otherwise useless) padding bytes
5841 into the (null) DIE that we know must precede the ..D2 label in the
5842 .debug section. The amount of padding required can be anywhere between
5843 0 and 3 bytes. The length word at the start of this DIE (i.e. the one
5844 with the padding) would normally contain the value 4, but now it will
5845 also have to include the padding bytes, so it will instead have some
5846 value in the range 4..7.
5848 Fortunately, the rules of Dwarf say that any DIE whose length word
5849 contains *any* value less than 8 should be treated as a null DIE, so
5850 this trick works out nicely. Clever, eh? Don't give me any credit
5851 (or blame). I didn't think of this scheme. I just conformed to it.
5854 output_die (output_padded_null_die
, (void *) 0);
5857 sprintf (label
, DIE_BEGIN_LABEL_FMT
, NEXT_DIE_NUM
);
5858 ASM_OUTPUT_LABEL (asm_out_file
, label
); /* should be ..D2 */
5859 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5861 /* Output a terminator label for the .text section. */
5863 fputc ('\n', asm_out_file
);
5864 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, TEXT_SECTION
);
5865 ASM_OUTPUT_LABEL (asm_out_file
, TEXT_END_LABEL
);
5866 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5868 /* Output a terminator label for the .data section. */
5870 fputc ('\n', asm_out_file
);
5871 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DATA_SECTION
);
5872 ASM_OUTPUT_LABEL (asm_out_file
, DATA_END_LABEL
);
5873 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5875 #if 0 /* GNU C doesn't currently use .data1. */
5876 /* Output a terminator label for the .data1 section. */
5878 fputc ('\n', asm_out_file
);
5879 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, DATA1_SECTION
);
5880 ASM_OUTPUT_LABEL (asm_out_file
, DATA1_END_LABEL
);
5881 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5884 /* Output a terminator label for the .rodata section. */
5886 fputc ('\n', asm_out_file
);
5887 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, RODATA_SECTION
);
5888 ASM_OUTPUT_LABEL (asm_out_file
, RODATA_END_LABEL
);
5889 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5891 #if 0 /* GNU C doesn't currently use .rodata1. */
5892 /* Output a terminator label for the .rodata1 section. */
5894 fputc ('\n', asm_out_file
);
5895 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, RODATA1_SECTION
);
5896 ASM_OUTPUT_LABEL (asm_out_file
, RODATA1_END_LABEL
);
5897 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5900 /* Output a terminator label for the .bss section. */
5902 fputc ('\n', asm_out_file
);
5903 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, BSS_SECTION
);
5904 ASM_OUTPUT_LABEL (asm_out_file
, BSS_END_LABEL
);
5905 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5907 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
5909 /* Output a terminating entry for the .line section. */
5911 fputc ('\n', asm_out_file
);
5912 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, LINE_SECTION
);
5913 ASM_OUTPUT_LABEL (asm_out_file
, LINE_LAST_ENTRY_LABEL
);
5914 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, 0);
5915 ASM_OUTPUT_DWARF_DATA2 (asm_out_file
, 0xffff);
5916 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, TEXT_END_LABEL
, TEXT_BEGIN_LABEL
);
5917 ASM_OUTPUT_LABEL (asm_out_file
, LINE_END_LABEL
);
5918 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5920 if (use_gnu_debug_info_extensions
)
5922 /* Output a terminating entry for the .debug_srcinfo section. */
5924 fputc ('\n', asm_out_file
);
5925 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, SRCINFO_SECTION
);
5926 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
,
5927 LINE_LAST_ENTRY_LABEL
, LINE_BEGIN_LABEL
);
5928 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, -1);
5929 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5932 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
5934 /* Output terminating entries for the .debug_macinfo section. */
5936 dwarfout_resume_previous_source_file (0);
5938 fputc ('\n', asm_out_file
);
5939 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, MACINFO_SECTION
);
5940 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, 0);
5941 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, "");
5942 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5945 /* Generate the terminating entry for the .debug_pubnames section. */
5947 fputc ('\n', asm_out_file
);
5948 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, PUBNAMES_SECTION
);
5949 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, 0);
5950 ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file
, "");
5951 ASM_OUTPUT_POP_SECTION (asm_out_file
);
5953 /* Generate the terminating entries for the .debug_aranges section.
5955 Note that we want to do this only *after* we have output the end
5956 labels (for the various program sections) which we are going to
5957 refer to here. This allows us to work around a bug in the m68k
5958 svr4 assembler. That assembler gives bogus assembly-time errors
5959 if (within any given section) you try to take the difference of
5960 two relocatable symbols, both of which are located within some
5961 other section, and if one (or both?) of the symbols involved is
5962 being forward-referenced. By generating the .debug_aranges
5963 entries at this late point in the assembly output, we skirt the
5964 issue simply by avoiding forward-references.
5967 fputc ('\n', asm_out_file
);
5968 ASM_OUTPUT_PUSH_SECTION (asm_out_file
, ARANGES_SECTION
);
5970 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, TEXT_BEGIN_LABEL
);
5971 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, TEXT_END_LABEL
, TEXT_BEGIN_LABEL
);
5973 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, DATA_BEGIN_LABEL
);
5974 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, DATA_END_LABEL
, DATA_BEGIN_LABEL
);
5976 #if 0 /* GNU C doesn't currently use .data1. */
5977 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, DATA1_BEGIN_LABEL
);
5978 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, DATA1_END_LABEL
,
5982 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, RODATA_BEGIN_LABEL
);
5983 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, RODATA_END_LABEL
,
5984 RODATA_BEGIN_LABEL
);
5986 #if 0 /* GNU C doesn't currently use .rodata1. */
5987 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, RODATA1_BEGIN_LABEL
);
5988 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, RODATA1_END_LABEL
,
5989 RODATA1_BEGIN_LABEL
);
5992 ASM_OUTPUT_DWARF_ADDR (asm_out_file
, BSS_BEGIN_LABEL
);
5993 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file
, BSS_END_LABEL
, BSS_BEGIN_LABEL
);
5995 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, 0);
5996 ASM_OUTPUT_DWARF_DATA4 (asm_out_file
, 0);
5998 ASM_OUTPUT_LABEL (asm_out_file
, DEBUG_ARANGES_END_LABEL
);
5999 ASM_OUTPUT_POP_SECTION (asm_out_file
);
6002 /* There should not be any pending types left at the end. We need
6003 this now because it may not have been checked on the last call to
6004 dwarfout_file_scope_decl. */
6005 if (pending_types
!= 0)
6009 #endif /* DWARF_DEBUGGING_INFO */