2000-05-02 Jeff Sturm <jsturm@one-point.com>
[official-gcc.git] / gcc / cselib.c
blob1cc4a74a48bf1d7ed09f056d6756abea432c7a14
1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include <setjmp.h>
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "regs.h"
29 #include "hard-reg-set.h"
30 #include "flags.h"
31 #include "real.h"
32 #include "insn-config.h"
33 #include "recog.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "toplev.h"
37 #include "output.h"
38 #include "ggc.h"
39 #include "obstack.h"
40 #include "hashtab.h"
41 #include "cselib.h"
43 static int entry_and_rtx_equal_p PARAMS ((const void *, const void *));
44 static unsigned int get_value_hash PARAMS ((const void *));
45 static struct elt_list *new_elt_list PARAMS ((struct elt_list *,
46 cselib_val *));
47 static struct elt_loc_list *new_elt_loc_list PARAMS ((struct elt_loc_list *,
48 rtx));
49 static void unchain_one_value PARAMS ((cselib_val *));
50 static void unchain_one_elt_list PARAMS ((struct elt_list **));
51 static void unchain_one_elt_loc_list PARAMS ((struct elt_loc_list **));
52 static void clear_table PARAMS ((int));
53 static int discard_useless_locs PARAMS ((void **, void *));
54 static int discard_useless_values PARAMS ((void **, void *));
55 static void remove_useless_values PARAMS ((void));
56 static rtx wrap_constant PARAMS ((enum machine_mode, rtx));
57 static unsigned int hash_rtx PARAMS ((rtx, enum machine_mode, int));
58 static cselib_val *new_cselib_val PARAMS ((unsigned int,
59 enum machine_mode));
60 static void add_mem_for_addr PARAMS ((cselib_val *, cselib_val *,
61 rtx));
62 static cselib_val *cselib_lookup_mem PARAMS ((rtx, int));
63 static rtx cselib_subst_to_values PARAMS ((rtx));
64 static void cselib_invalidate_regno PARAMS ((unsigned int,
65 enum machine_mode));
66 static int cselib_mem_conflict_p PARAMS ((rtx, rtx));
67 static int cselib_invalidate_mem_1 PARAMS ((void **, void *));
68 static void cselib_invalidate_mem PARAMS ((rtx));
69 static void cselib_invalidate_rtx PARAMS ((rtx, rtx, void *));
70 static void cselib_record_set PARAMS ((rtx, cselib_val *,
71 cselib_val *));
72 static void cselib_record_sets PARAMS ((rtx));
74 /* There are three ways in which cselib can look up an rtx:
75 - for a REG, the reg_values table (which is indexed by regno) is used
76 - for a MEM, we recursively look up its address and then follow the
77 addr_list of that value
78 - for everything else, we compute a hash value and go through the hash
79 table. Since different rtx's can still have the same hash value,
80 this involves walking the table entries for a given value and comparing
81 the locations of the entries with the rtx we are looking up. */
83 /* A table that enables us to look up elts by their value. */
84 static htab_t hash_table;
86 /* This is a global so we don't have to pass this through every function.
87 It is used in new_elt_loc_list to set SETTING_INSN. */
88 static rtx cselib_current_insn;
90 /* Every new unknown value gets a unique number. */
91 static unsigned int next_unknown_value;
93 /* The number of registers we had when the varrays were last resized. */
94 static unsigned int cselib_nregs;
96 /* Count values without known locations. Whenever this grows too big, we
97 remove these useless values from the table. */
98 static int n_useless_values;
100 /* Number of useless values before we remove them from the hash table. */
101 #define MAX_USELESS_VALUES 32
103 /* This table maps from register number to values. It does not contain
104 pointers to cselib_val structures, but rather elt_lists. The purpose is
105 to be able to refer to the same register in different modes. */
106 static varray_type reg_values;
107 #define REG_VALUES(I) VARRAY_ELT_LIST (reg_values, (I))
109 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
110 in clear_table() for fast emptying. */
111 static varray_type used_regs;
113 /* We pass this to cselib_invalidate_mem to invalidate all of
114 memory for a non-const call instruction. */
115 static rtx callmem;
117 /* Memory for our structures is allocated from this obstack. */
118 static struct obstack cselib_obstack;
120 /* Used to quickly free all memory. */
121 static char *cselib_startobj;
123 /* Caches for unused structures. */
124 static cselib_val *empty_vals;
125 static struct elt_list *empty_elt_lists;
126 static struct elt_loc_list *empty_elt_loc_lists;
128 /* Set by discard_useless_locs if it deleted the last location of any
129 value. */
130 static int values_became_useless;
133 /* Allocate a struct elt_list and fill in its two elements with the
134 arguments. */
136 static struct elt_list *
137 new_elt_list (next, elt)
138 struct elt_list *next;
139 cselib_val *elt;
141 struct elt_list *el = empty_elt_lists;
143 if (el)
144 empty_elt_lists = el->next;
145 else
146 el = (struct elt_list *) obstack_alloc (&cselib_obstack,
147 sizeof (struct elt_list));
148 el->next = next;
149 el->elt = elt;
150 return el;
153 /* Allocate a struct elt_loc_list and fill in its two elements with the
154 arguments. */
156 static struct elt_loc_list *
157 new_elt_loc_list (next, loc)
158 struct elt_loc_list *next;
159 rtx loc;
161 struct elt_loc_list *el = empty_elt_loc_lists;
163 if (el)
164 empty_elt_loc_lists = el->next;
165 else
166 el = (struct elt_loc_list *) obstack_alloc (&cselib_obstack,
167 sizeof (struct elt_loc_list));
168 el->next = next;
169 el->loc = loc;
170 el->setting_insn = cselib_current_insn;
171 return el;
174 /* The elt_list at *PL is no longer needed. Unchain it and free its
175 storage. */
177 static void
178 unchain_one_elt_list (pl)
179 struct elt_list **pl;
181 struct elt_list *l = *pl;
183 *pl = l->next;
184 l->next = empty_elt_lists;
185 empty_elt_lists = l;
188 /* Likewise for elt_loc_lists. */
190 static void
191 unchain_one_elt_loc_list (pl)
192 struct elt_loc_list **pl;
194 struct elt_loc_list *l = *pl;
196 *pl = l->next;
197 l->next = empty_elt_loc_lists;
198 empty_elt_loc_lists = l;
201 /* Likewise for cselib_vals. This also frees the addr_list associated with
202 V. */
204 static void
205 unchain_one_value (v)
206 cselib_val *v;
208 while (v->addr_list)
209 unchain_one_elt_list (&v->addr_list);
211 v->u.next_free = empty_vals;
212 empty_vals = v;
215 /* Remove all entries from the hash table. Also used during
216 initialization. If CLEAR_ALL isn't set, then only clear the entries
217 which are known to have been used. */
219 static void
220 clear_table (clear_all)
221 int clear_all;
223 unsigned int i;
225 if (clear_all)
226 for (i = 0; i < cselib_nregs; i++)
227 REG_VALUES (i) = 0;
228 else
229 for (i = 0; i < VARRAY_ACTIVE_SIZE (used_regs); i++)
230 REG_VALUES (VARRAY_UINT (used_regs, i)) = 0;
232 VARRAY_POP_ALL (used_regs);
234 htab_empty (hash_table);
235 obstack_free (&cselib_obstack, cselib_startobj);
237 empty_vals = 0;
238 empty_elt_lists = 0;
239 empty_elt_loc_lists = 0;
240 n_useless_values = 0;
242 next_unknown_value = 0;
245 /* The equality test for our hash table. The first argument ENTRY is a table
246 element (i.e. a cselib_val), while the second arg X is an rtx. We know
247 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
248 CONST of an appropriate mode. */
250 static int
251 entry_and_rtx_equal_p (entry, x_arg)
252 const void *entry, *x_arg;
254 struct elt_loc_list *l;
255 const cselib_val *v = (const cselib_val *) entry;
256 rtx x = (rtx) x_arg;
257 enum machine_mode mode = GET_MODE (x);
259 if (GET_CODE (x) == CONST_INT
260 || (mode == VOIDmode && GET_CODE (x) == CONST_DOUBLE))
261 abort ();
262 if (mode != GET_MODE (v->u.val_rtx))
263 return 0;
265 /* Unwrap X if necessary. */
266 if (GET_CODE (x) == CONST
267 && (GET_CODE (XEXP (x, 0)) == CONST_INT
268 || GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
269 x = XEXP (x, 0);
271 /* We don't guarantee that distinct rtx's have different hash values,
272 so we need to do a comparison. */
273 for (l = v->locs; l; l = l->next)
274 if (rtx_equal_for_cselib_p (l->loc, x))
275 return 1;
277 return 0;
280 /* The hash function for our hash table. The value is always computed with
281 hash_rtx when adding an element; this function just extracts the hash
282 value from a cselib_val structure. */
284 static unsigned int
285 get_value_hash (entry)
286 const void *entry;
288 const cselib_val *v = (const cselib_val *) entry;
289 return v->value;
292 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
293 only return true for values which point to a cselib_val whose value
294 element has been set to zero, which implies the cselib_val will be
295 removed. */
298 references_value_p (x, only_useless)
299 rtx x;
300 int only_useless;
302 enum rtx_code code = GET_CODE (x);
303 const char *fmt = GET_RTX_FORMAT (code);
304 int i, j;
306 if (GET_CODE (x) == VALUE
307 && (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
308 return 1;
310 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
312 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
313 return 1;
314 else if (fmt[i] == 'E')
315 for (j = 0; j < XVECLEN (x, i); j++)
316 if (references_value_p (XVECEXP (x, i, j), only_useless))
317 return 1;
320 return 0;
323 /* For all locations found in X, delete locations that reference useless
324 values (i.e. values without any location). Called through
325 htab_traverse. */
327 static int
328 discard_useless_locs (x, info)
329 void **x;
330 void *info ATTRIBUTE_UNUSED;
332 cselib_val *v = (cselib_val *)*x;
333 struct elt_loc_list **p = &v->locs;
334 int had_locs = v->locs != 0;
336 while (*p)
338 if (references_value_p ((*p)->loc, 1))
339 unchain_one_elt_loc_list (p);
340 else
341 p = &(*p)->next;
344 if (had_locs && v->locs == 0)
346 n_useless_values++;
347 values_became_useless = 1;
349 return 1;
352 /* If X is a value with no locations, remove it from the hashtable. */
354 static int
355 discard_useless_values (x, info)
356 void **x;
357 void *info ATTRIBUTE_UNUSED;
359 cselib_val *v = (cselib_val *)*x;
361 if (v->locs == 0)
363 htab_clear_slot (hash_table, x);
364 unchain_one_value (v);
365 n_useless_values--;
368 return 1;
371 /* Clean out useless values (i.e. those which no longer have locations
372 associated with them) from the hash table. */
374 static void
375 remove_useless_values ()
377 /* First pass: eliminate locations that reference the value. That in
378 turn can make more values useless. */
381 values_became_useless = 0;
382 htab_traverse (hash_table, discard_useless_locs, 0);
384 while (values_became_useless);
386 /* Second pass: actually remove the values. */
387 htab_traverse (hash_table, discard_useless_values, 0);
389 if (n_useless_values != 0)
390 abort ();
393 /* Return nonzero if we can prove that X and Y contain the same value, taking
394 our gathered information into account. */
397 rtx_equal_for_cselib_p (x, y)
398 rtx x, y;
400 enum rtx_code code;
401 const char *fmt;
402 int i;
404 if (GET_CODE (x) == REG || GET_CODE (x) == MEM)
406 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0);
408 if (e)
409 x = e->u.val_rtx;
412 if (GET_CODE (y) == REG || GET_CODE (y) == MEM)
414 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0);
416 if (e)
417 y = e->u.val_rtx;
420 if (x == y)
421 return 1;
423 if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
424 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
426 if (GET_CODE (x) == VALUE)
428 cselib_val *e = CSELIB_VAL_PTR (x);
429 struct elt_loc_list *l;
431 for (l = e->locs; l; l = l->next)
433 rtx t = l->loc;
435 /* Avoid infinite recursion. */
436 if (GET_CODE (t) == REG || GET_CODE (t) == MEM)
437 continue;
438 else if (rtx_equal_for_cselib_p (t, y))
439 return 1;
442 return 0;
445 if (GET_CODE (y) == VALUE)
447 cselib_val *e = CSELIB_VAL_PTR (y);
448 struct elt_loc_list *l;
450 for (l = e->locs; l; l = l->next)
452 rtx t = l->loc;
454 if (GET_CODE (t) == REG || GET_CODE (t) == MEM)
455 continue;
456 else if (rtx_equal_for_cselib_p (x, t))
457 return 1;
460 return 0;
463 if (GET_CODE (x) != GET_CODE (y) || GET_MODE (x) != GET_MODE (y))
464 return 0;
466 /* This won't be handled correctly by the code below. */
467 if (GET_CODE (x) == LABEL_REF)
468 return XEXP (x, 0) == XEXP (y, 0);
470 code = GET_CODE (x);
471 fmt = GET_RTX_FORMAT (code);
473 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
475 int j;
477 switch (fmt[i])
479 case 'w':
480 if (XWINT (x, i) != XWINT (y, i))
481 return 0;
482 break;
484 case 'n':
485 case 'i':
486 if (XINT (x, i) != XINT (y, i))
487 return 0;
488 break;
490 case 'V':
491 case 'E':
492 /* Two vectors must have the same length. */
493 if (XVECLEN (x, i) != XVECLEN (y, i))
494 return 0;
496 /* And the corresponding elements must match. */
497 for (j = 0; j < XVECLEN (x, i); j++)
498 if (! rtx_equal_for_cselib_p (XVECEXP (x, i, j),
499 XVECEXP (y, i, j)))
500 return 0;
501 break;
503 case 'e':
504 if (! rtx_equal_for_cselib_p (XEXP (x, i), XEXP (y, i)))
505 return 0;
506 break;
508 case 'S':
509 case 's':
510 if (strcmp (XSTR (x, i), XSTR (y, i)))
511 return 0;
512 break;
514 case 'u':
515 /* These are just backpointers, so they don't matter. */
516 break;
518 case '0':
519 case 't':
520 break;
522 /* It is believed that rtx's at this level will never
523 contain anything but integers and other rtx's,
524 except for within LABEL_REFs and SYMBOL_REFs. */
525 default:
526 abort ();
529 return 1;
532 /* We need to pass down the mode of constants through the hash table
533 functions. For that purpose, wrap them in a CONST of the appropriate
534 mode. */
535 static rtx
536 wrap_constant (mode, x)
537 enum machine_mode mode;
538 rtx x;
540 if (GET_CODE (x) != CONST_INT
541 && (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
542 return x;
543 if (mode == VOIDmode)
544 abort ();
545 return gen_rtx_CONST (mode, x);
548 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
549 For registers and memory locations, we look up their cselib_val structure
550 and return its VALUE element.
551 Possible reasons for return 0 are: the object is volatile, or we couldn't
552 find a register or memory location in the table and CREATE is zero. If
553 CREATE is nonzero, table elts are created for regs and mem.
554 MODE is used in hashing for CONST_INTs only;
555 otherwise the mode of X is used. */
557 static unsigned int
558 hash_rtx (x, mode, create)
559 rtx x;
560 enum machine_mode mode;
561 int create;
563 cselib_val *e;
564 int i, j;
565 enum rtx_code code;
566 const char *fmt;
567 unsigned int hash = 0;
569 code = GET_CODE (x);
570 hash += (unsigned) code + (unsigned) GET_MODE (x);
572 switch (code)
574 case MEM:
575 case REG:
576 e = cselib_lookup (x, GET_MODE (x), create);
577 if (! e)
578 return 0;
580 return e->value;
582 case CONST_INT:
583 hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + INTVAL (x);
584 return hash ? hash : (unsigned int) CONST_INT;
586 case CONST_DOUBLE:
587 /* This is like the general case, except that it only counts
588 the integers representing the constant. */
589 hash += (unsigned) code + (unsigned) GET_MODE (x);
590 if (GET_MODE (x) != VOIDmode)
591 for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
592 hash += XWINT (x, i);
593 else
594 hash += ((unsigned) CONST_DOUBLE_LOW (x)
595 + (unsigned) CONST_DOUBLE_HIGH (x));
596 return hash ? hash : (unsigned int) CONST_DOUBLE;
598 /* Assume there is only one rtx object for any given label. */
599 case LABEL_REF:
600 hash
601 += ((unsigned) LABEL_REF << 7) + (unsigned long) XEXP (x, 0);
602 return hash ? hash : (unsigned int) LABEL_REF;
604 case SYMBOL_REF:
605 hash
606 += ((unsigned) SYMBOL_REF << 7) + (unsigned long) XSTR (x, 0);
607 return hash ? hash : (unsigned int) SYMBOL_REF;
609 case PRE_DEC:
610 case PRE_INC:
611 case POST_DEC:
612 case POST_INC:
613 case POST_MODIFY:
614 case PRE_MODIFY:
615 case PC:
616 case CC0:
617 case CALL:
618 case UNSPEC_VOLATILE:
619 return 0;
621 case ASM_OPERANDS:
622 if (MEM_VOLATILE_P (x))
623 return 0;
625 break;
627 default:
628 break;
631 i = GET_RTX_LENGTH (code) - 1;
632 fmt = GET_RTX_FORMAT (code);
633 for (; i >= 0; i--)
635 if (fmt[i] == 'e')
637 rtx tem = XEXP (x, i);
638 unsigned int tem_hash = hash_rtx (tem, 0, create);
640 if (tem_hash == 0)
641 return 0;
643 hash += tem_hash;
645 else if (fmt[i] == 'E')
646 for (j = 0; j < XVECLEN (x, i); j++)
648 unsigned int tem_hash = hash_rtx (XVECEXP (x, i, j), 0, create);
650 if (tem_hash == 0)
651 return 0;
653 hash += tem_hash;
655 else if (fmt[i] == 's')
657 const unsigned char *p = (const unsigned char *) XSTR (x, i);
659 if (p)
660 while (*p)
661 hash += *p++;
663 else if (fmt[i] == 'i')
664 hash += XINT (x, i);
665 else if (fmt[i] == '0' || fmt[i] == 't')
666 /* unused */;
667 else
668 abort ();
671 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
674 /* Create a new value structure for VALUE and initialize it. The mode of the
675 value is MODE. */
677 static cselib_val *
678 new_cselib_val (value, mode)
679 unsigned int value;
680 enum machine_mode mode;
682 cselib_val *e = empty_vals;
684 if (e)
685 empty_vals = e->u.next_free;
686 else
687 e = (cselib_val *) obstack_alloc (&cselib_obstack, sizeof (cselib_val));
689 if (value == 0)
690 abort ();
692 e->value = value;
693 e->u.val_rtx = gen_rtx_VALUE (mode);
694 CSELIB_VAL_PTR (e->u.val_rtx) = e;
695 e->addr_list = 0;
696 e->locs = 0;
697 return e;
700 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
701 contains the data at this address. X is a MEM that represents the
702 value. Update the two value structures to represent this situation. */
704 static void
705 add_mem_for_addr (addr_elt, mem_elt, x)
706 cselib_val *addr_elt, *mem_elt;
707 rtx x;
709 rtx new;
710 struct elt_loc_list *l;
712 /* Avoid duplicates. */
713 for (l = mem_elt->locs; l; l = l->next)
714 if (GET_CODE (l->loc) == MEM
715 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
716 return;
718 new = gen_rtx_MEM (GET_MODE (x), addr_elt->u.val_rtx);
719 MEM_COPY_ATTRIBUTES (new, x);
721 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
722 mem_elt->locs = new_elt_loc_list (mem_elt->locs, new);
725 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
726 If CREATE, make a new one if we haven't seen it before. */
728 static cselib_val *
729 cselib_lookup_mem (x, create)
730 rtx x;
731 int create;
733 enum machine_mode mode = GET_MODE (x);
734 void **slot;
735 cselib_val *addr;
736 cselib_val *mem_elt;
737 struct elt_list *l;
739 if (MEM_VOLATILE_P (x) || mode == BLKmode
740 || (FLOAT_MODE_P (mode) && flag_float_store))
741 return 0;
743 /* Look up the value for the address. */
744 addr = cselib_lookup (XEXP (x, 0), mode, create);
745 if (! addr)
746 return 0;
748 /* Find a value that describes a value of our mode at that address. */
749 for (l = addr->addr_list; l; l = l->next)
750 if (GET_MODE (l->elt->u.val_rtx) == mode)
751 return l->elt;
753 if (! create)
754 return 0;
756 mem_elt = new_cselib_val (++next_unknown_value, mode);
757 add_mem_for_addr (addr, mem_elt, x);
758 slot = htab_find_slot_with_hash (hash_table, wrap_constant (mode, x),
759 mem_elt->value, INSERT);
760 *slot = mem_elt;
761 return mem_elt;
764 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
765 with VALUE expressions. This way, it becomes independent of changes
766 to registers and memory.
767 X isn't actually modified; if modifications are needed, new rtl is
768 allocated. However, the return value can share rtl with X. */
770 static rtx
771 cselib_subst_to_values (x)
772 rtx x;
774 enum rtx_code code = GET_CODE (x);
775 const char *fmt = GET_RTX_FORMAT (code);
776 cselib_val *e;
777 struct elt_list *l;
778 rtx copy = x;
779 int i;
781 switch (code)
783 case REG:
784 for (l = REG_VALUES (REGNO (x)); l; l = l->next)
785 if (GET_MODE (l->elt->u.val_rtx) == GET_MODE (x))
786 return l->elt->u.val_rtx;
788 abort ();
790 case MEM:
791 e = cselib_lookup_mem (x, 0);
792 if (! e)
793 abort ();
794 return e->u.val_rtx;
796 /* CONST_DOUBLEs must be special-cased here so that we won't try to
797 look up the CONST_DOUBLE_MEM inside. */
798 case CONST_DOUBLE:
799 case CONST_INT:
800 return x;
802 default:
803 break;
806 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
808 if (fmt[i] == 'e')
810 rtx t = cselib_subst_to_values (XEXP (x, i));
812 if (t != XEXP (x, i) && x == copy)
813 copy = shallow_copy_rtx (x);
815 XEXP (copy, i) = t;
817 else if (fmt[i] == 'E')
819 int j, k;
821 for (j = 0; j < XVECLEN (x, i); j++)
823 rtx t = cselib_subst_to_values (XVECEXP (x, i, j));
825 if (t != XVECEXP (x, i, j) && XVEC (x, i) == XVEC (copy, i))
827 if (x == copy)
828 copy = shallow_copy_rtx (x);
830 XVEC (copy, i) = rtvec_alloc (XVECLEN (x, i));
831 for (k = 0; k < j; k++)
832 XVECEXP (copy, i, k) = XVECEXP (x, i, k);
835 XVECEXP (copy, i, j) = t;
840 return copy;
843 /* Look up the rtl expression X in our tables and return the value it has.
844 If CREATE is zero, we return NULL if we don't know the value. Otherwise,
845 we create a new one if possible, using mode MODE if X doesn't have a mode
846 (i.e. because it's a constant). */
848 cselib_val *
849 cselib_lookup (x, mode, create)
850 rtx x;
851 enum machine_mode mode;
852 int create;
854 void **slot;
855 cselib_val *e;
856 unsigned int hashval;
858 if (GET_MODE (x) != VOIDmode)
859 mode = GET_MODE (x);
861 if (GET_CODE (x) == VALUE)
862 return CSELIB_VAL_PTR (x);
864 if (GET_CODE (x) == REG)
866 struct elt_list *l;
867 unsigned int i = REGNO (x);
869 for (l = REG_VALUES (i); l; l = l->next)
870 if (mode == GET_MODE (l->elt->u.val_rtx))
871 return l->elt;
873 if (! create)
874 return 0;
876 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
877 e->locs = new_elt_loc_list (e->locs, x);
878 if (REG_VALUES (i) == 0)
879 VARRAY_PUSH_UINT (used_regs, i);
880 REG_VALUES (i) = new_elt_list (REG_VALUES (i), e);
881 slot = htab_find_slot_with_hash (hash_table, x, e->value, INSERT);
882 *slot = e;
883 return e;
886 if (GET_CODE (x) == MEM)
887 return cselib_lookup_mem (x, create);
889 hashval = hash_rtx (x, mode, create);
890 /* Can't even create if hashing is not possible. */
891 if (! hashval)
892 return 0;
894 slot = htab_find_slot_with_hash (hash_table, wrap_constant (mode, x),
895 hashval, create ? INSERT : NO_INSERT);
896 if (slot == 0)
897 return 0;
899 e = (cselib_val *) *slot;
900 if (e)
901 return e;
903 e = new_cselib_val (hashval, mode);
905 /* We have to fill the slot before calling cselib_subst_to_values:
906 the hash table is inconsistent until we do so, and
907 cselib_subst_to_values will need to do lookups. */
908 *slot = (void *) e;
909 e->locs = new_elt_loc_list (e->locs, cselib_subst_to_values (x));
910 return e;
913 /* Invalidate any entries in reg_values that overlap REGNO. This is called
914 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
915 is used to determine how many hard registers are being changed. If MODE
916 is VOIDmode, then only REGNO is being changed; this is used when
917 invalidating call clobbered registers across a call. */
919 static void
920 cselib_invalidate_regno (regno, mode)
921 unsigned int regno;
922 enum machine_mode mode;
924 unsigned int endregno;
925 unsigned int i;
927 /* If we see pseudos after reload, something is _wrong_. */
928 if (reload_completed && regno >= FIRST_PSEUDO_REGISTER
929 && reg_renumber[regno] >= 0)
930 abort ();
932 /* Determine the range of registers that must be invalidated. For
933 pseudos, only REGNO is affected. For hard regs, we must take MODE
934 into account, and we must also invalidate lower register numbers
935 if they contain values that overlap REGNO. */
936 endregno = regno + 1;
937 if (regno < FIRST_PSEUDO_REGISTER && mode != VOIDmode)
938 endregno = regno + HARD_REGNO_NREGS (regno, mode);
940 for (i = 0; i < endregno; i++)
942 struct elt_list **l = &REG_VALUES (i);
944 /* Go through all known values for this reg; if it overlaps the range
945 we're invalidating, remove the value. */
946 while (*l)
948 cselib_val *v = (*l)->elt;
949 struct elt_loc_list **p;
950 unsigned int this_last = i;
952 if (i < FIRST_PSEUDO_REGISTER)
953 this_last += HARD_REGNO_NREGS (i, GET_MODE (v->u.val_rtx)) - 1;
955 if (this_last < regno)
957 l = &(*l)->next;
958 continue;
961 /* We have an overlap. */
962 unchain_one_elt_list (l);
964 /* Now, we clear the mapping from value to reg. It must exist, so
965 this code will crash intentionally if it doesn't. */
966 for (p = &v->locs; ; p = &(*p)->next)
968 rtx x = (*p)->loc;
970 if (GET_CODE (x) == REG && REGNO (x) == i)
972 unchain_one_elt_loc_list (p);
973 break;
976 if (v->locs == 0)
977 n_useless_values++;
982 /* The memory at address MEM_BASE is being changed.
983 Return whether this change will invalidate VAL. */
985 static int
986 cselib_mem_conflict_p (mem_base, val)
987 rtx mem_base;
988 rtx val;
990 enum rtx_code code;
991 const char *fmt;
992 int i, j;
994 code = GET_CODE (val);
995 switch (code)
997 /* Get rid of a few simple cases quickly. */
998 case REG:
999 case PC:
1000 case CC0:
1001 case SCRATCH:
1002 case CONST:
1003 case CONST_INT:
1004 case CONST_DOUBLE:
1005 case SYMBOL_REF:
1006 case LABEL_REF:
1007 return 0;
1009 case MEM:
1010 if (GET_MODE (mem_base) == BLKmode
1011 || GET_MODE (val) == BLKmode
1012 || anti_dependence (val, mem_base))
1013 return 1;
1015 /* The address may contain nested MEMs. */
1016 break;
1018 default:
1019 break;
1022 fmt = GET_RTX_FORMAT (code);
1023 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1025 if (fmt[i] == 'e')
1027 if (cselib_mem_conflict_p (mem_base, XEXP (val, i)))
1028 return 1;
1030 else if (fmt[i] == 'E')
1031 for (j = 0; j < XVECLEN (val, i); j++)
1032 if (cselib_mem_conflict_p (mem_base, XVECEXP (val, i, j)))
1033 return 1;
1036 return 0;
1039 /* For the value found in SLOT, walk its locations to determine if any overlap
1040 INFO (which is a MEM rtx). */
1042 static int
1043 cselib_invalidate_mem_1 (slot, info)
1044 void **slot;
1045 void *info;
1047 cselib_val *v = (cselib_val *) *slot;
1048 rtx mem_rtx = (rtx) info;
1049 struct elt_loc_list **p = &v->locs;
1050 int had_locs = v->locs != 0;
1052 while (*p)
1054 rtx x = (*p)->loc;
1055 cselib_val *addr;
1056 struct elt_list **mem_chain;
1058 /* MEMs may occur in locations only at the top level; below
1059 that every MEM or REG is substituted by its VALUE. */
1060 if (GET_CODE (x) != MEM
1061 || ! cselib_mem_conflict_p (mem_rtx, x))
1063 p = &(*p)->next;
1064 continue;
1067 /* This one overlaps. */
1068 /* We must have a mapping from this MEM's address to the
1069 value (E). Remove that, too. */
1070 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0);
1071 mem_chain = &addr->addr_list;
1072 for (;;)
1074 if ((*mem_chain)->elt == v)
1076 unchain_one_elt_list (mem_chain);
1077 break;
1080 mem_chain = &(*mem_chain)->next;
1083 unchain_one_elt_loc_list (p);
1086 if (had_locs && v->locs == 0)
1087 n_useless_values++;
1089 return 1;
1092 /* Invalidate any locations in the table which are changed because of a
1093 store to MEM_RTX. If this is called because of a non-const call
1094 instruction, MEM_RTX is (mem:BLK const0_rtx). */
1096 static void
1097 cselib_invalidate_mem (mem_rtx)
1098 rtx mem_rtx;
1100 htab_traverse (hash_table, cselib_invalidate_mem_1, mem_rtx);
1103 /* Invalidate DEST, which is being assigned to or clobbered. The second and
1104 the third parameter exist so that this function can be passed to
1105 note_stores; they are ignored. */
1107 static void
1108 cselib_invalidate_rtx (dest, ignore, data)
1109 rtx dest;
1110 rtx ignore ATTRIBUTE_UNUSED;
1111 void *data ATTRIBUTE_UNUSED;
1113 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SIGN_EXTRACT
1114 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG)
1115 dest = XEXP (dest, 0);
1117 if (GET_CODE (dest) == REG)
1118 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
1119 else if (GET_CODE (dest) == MEM)
1120 cselib_invalidate_mem (dest);
1122 /* Some machines don't define AUTO_INC_DEC, but they still use push
1123 instructions. We need to catch that case here in order to
1124 invalidate the stack pointer correctly. Note that invalidating
1125 the stack pointer is different from invalidating DEST. */
1126 if (push_operand (dest, GET_MODE (dest)))
1127 cselib_invalidate_rtx (stack_pointer_rtx, NULL_RTX, NULL);
1130 /* Record the result of a SET instruction. DEST is being set; the source
1131 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
1132 describes its address. */
1134 static void
1135 cselib_record_set (dest, src_elt, dest_addr_elt)
1136 rtx dest;
1137 cselib_val *src_elt, *dest_addr_elt;
1139 int dreg = GET_CODE (dest) == REG ? (int) REGNO (dest) : -1;
1141 if (src_elt == 0 || side_effects_p (dest))
1142 return;
1144 if (dreg >= 0)
1146 if (REG_VALUES (dreg) == 0)
1147 VARRAY_PUSH_UINT (used_regs, dreg);
1149 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
1150 if (src_elt->locs == 0)
1151 n_useless_values--;
1152 src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
1154 else if (GET_CODE (dest) == MEM && dest_addr_elt != 0)
1156 if (src_elt->locs == 0)
1157 n_useless_values--;
1158 add_mem_for_addr (dest_addr_elt, src_elt, dest);
1162 /* Describe a single set that is part of an insn. */
1163 struct set
1165 rtx src;
1166 rtx dest;
1167 cselib_val *src_elt;
1168 cselib_val *dest_addr_elt;
1171 /* There is no good way to determine how many elements there can be
1172 in a PARALLEL. Since it's fairly cheap, use a really large number. */
1173 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
1175 /* Record the effects of any sets in INSN. */
1176 static void
1177 cselib_record_sets (insn)
1178 rtx insn;
1180 int n_sets = 0;
1181 int i;
1182 struct set sets[MAX_SETS];
1183 rtx body = PATTERN (insn);
1185 body = PATTERN (insn);
1186 /* Find all sets. */
1187 if (GET_CODE (body) == SET)
1189 sets[0].src = SET_SRC (body);
1190 sets[0].dest = SET_DEST (body);
1191 n_sets = 1;
1193 else if (GET_CODE (body) == PARALLEL)
1195 /* Look through the PARALLEL and record the values being
1196 set, if possible. Also handle any CLOBBERs. */
1197 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
1199 rtx x = XVECEXP (body, 0, i);
1201 if (GET_CODE (x) == SET)
1203 sets[n_sets].src = SET_SRC (x);
1204 sets[n_sets].dest = SET_DEST (x);
1205 n_sets++;
1210 /* Look up the values that are read. Do this before invalidating the
1211 locations that are written. */
1212 for (i = 0; i < n_sets; i++)
1214 rtx dest = sets[i].dest;
1216 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
1217 the low part after invalidating any knowledge about larger modes. */
1218 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
1219 sets[i].dest = dest = XEXP (dest, 0);
1221 /* We don't know how to record anything but REG or MEM. */
1222 if (GET_CODE (dest) == REG || GET_CODE (dest) == MEM)
1224 sets[i].src_elt = cselib_lookup (sets[i].src, GET_MODE (dest), 1);
1225 if (GET_CODE (dest) == MEM)
1226 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0), Pmode, 1);
1227 else
1228 sets[i].dest_addr_elt = 0;
1232 /* Invalidate all locations written by this insn. Note that the elts we
1233 looked up in the previous loop aren't affected, just some of their
1234 locations may go away. */
1235 note_stores (body, cselib_invalidate_rtx, NULL);
1237 /* Now enter the equivalences in our tables. */
1238 for (i = 0; i < n_sets; i++)
1240 rtx dest = sets[i].dest;
1241 if (GET_CODE (dest) == REG || GET_CODE (dest) == MEM)
1242 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
1246 /* Record the effects of INSN. */
1248 void
1249 cselib_process_insn (insn)
1250 rtx insn;
1252 int i;
1253 rtx x;
1255 cselib_current_insn = insn;
1257 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
1258 if (GET_CODE (insn) == CODE_LABEL
1259 || (GET_CODE (insn) == NOTE
1260 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
1261 || (GET_CODE (insn) == INSN
1262 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
1263 && MEM_VOLATILE_P (PATTERN (insn))))
1265 clear_table (0);
1266 return;
1269 if (! INSN_P (insn))
1271 cselib_current_insn = 0;
1272 return;
1275 /* If this is a call instruction, forget anything stored in a
1276 call clobbered register, or, if this is not a const call, in
1277 memory. */
1278 if (GET_CODE (insn) == CALL_INSN)
1280 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1281 if (call_used_regs[i])
1282 cselib_invalidate_regno (i, VOIDmode);
1284 if (! CONST_CALL_P (insn))
1285 cselib_invalidate_mem (callmem);
1288 cselib_record_sets (insn);
1290 #ifdef AUTO_INC_DEC
1291 /* Clobber any registers which appear in REG_INC notes. We
1292 could keep track of the changes to their values, but it is
1293 unlikely to help. */
1294 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1295 if (REG_NOTE_KIND (x) == REG_INC)
1296 cselib_invalidate_rtx (XEXP (x, 0), NULL_RTX, NULL);
1297 #endif
1299 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
1300 after we have processed the insn. */
1301 if (GET_CODE (insn) == CALL_INSN)
1302 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
1303 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
1304 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0), NULL_RTX, NULL);
1306 cselib_current_insn = 0;
1308 if (n_useless_values > MAX_USELESS_VALUES)
1309 remove_useless_values ();
1312 /* Make sure our varrays are big enough. Not called from any cselib routines;
1313 it must be called by the user if it allocated new registers. */
1315 void
1316 cselib_update_varray_sizes ()
1318 unsigned int nregs = max_reg_num ();
1320 if (nregs == cselib_nregs)
1321 return;
1323 cselib_nregs = nregs;
1324 VARRAY_GROW (reg_values, nregs);
1325 VARRAY_GROW (used_regs, nregs);
1328 /* Initialize cselib for one pass. The caller must also call
1329 init_alias_analysis. */
1331 void
1332 cselib_init ()
1334 /* These are only created once. */
1335 if (! callmem)
1337 gcc_obstack_init (&cselib_obstack);
1338 cselib_startobj = obstack_alloc (&cselib_obstack, 0);
1340 callmem = gen_rtx_MEM (BLKmode, const0_rtx);
1341 ggc_add_rtx_root (&callmem, 1);
1344 cselib_nregs = max_reg_num ();
1345 VARRAY_ELT_LIST_INIT (reg_values, cselib_nregs, "reg_values");
1346 VARRAY_UINT_INIT (used_regs, cselib_nregs, "used_regs");
1347 hash_table = htab_create (31, get_value_hash, entry_and_rtx_equal_p, NULL);
1348 clear_table (1);
1351 /* Called when the current user is done with cselib. */
1353 void
1354 cselib_finish ()
1356 clear_table (0);
1357 VARRAY_FREE (reg_values);
1358 VARRAY_FREE (used_regs);
1359 htab_delete (hash_table);