1 /* Predicate aware uninitialized variable warning.
2 Copyright (C) 2001-2014 Free Software Foundation, Inc.
3 Contributed by Xinliang David Li <davidxl@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
28 #include "basic-block.h"
33 #include "hard-reg-set.h"
36 #include "gimple-pretty-print.h"
38 #include "tree-ssa-alias.h"
39 #include "internal-fn.h"
40 #include "gimple-expr.h"
43 #include "gimple-iterator.h"
44 #include "gimple-ssa.h"
45 #include "tree-phinodes.h"
46 #include "ssa-iterators.h"
48 #include "tree-inline.h"
49 #include "tree-pass.h"
50 #include "diagnostic-core.h"
53 /* This implements the pass that does predicate aware warning on uses of
54 possibly uninitialized variables. The pass first collects the set of
55 possibly uninitialized SSA names. For each such name, it walks through
56 all its immediate uses. For each immediate use, it rebuilds the condition
57 expression (the predicate) that guards the use. The predicate is then
58 examined to see if the variable is always defined under that same condition.
59 This is done either by pruning the unrealizable paths that lead to the
60 default definitions or by checking if the predicate set that guards the
61 defining paths is a superset of the use predicate. */
64 /* Pointer set of potentially undefined ssa names, i.e.,
65 ssa names that are defined by phi with operands that
66 are not defined or potentially undefined. */
67 static hash_set
<tree
> *possibly_undefined_names
= 0;
69 /* Bit mask handling macros. */
70 #define MASK_SET_BIT(mask, pos) mask |= (1 << pos)
71 #define MASK_TEST_BIT(mask, pos) (mask & (1 << pos))
72 #define MASK_EMPTY(mask) (mask == 0)
74 /* Returns the first bit position (starting from LSB)
75 in mask that is non zero. Returns -1 if the mask is empty. */
77 get_mask_first_set_bit (unsigned mask
)
83 while ((mask
& (1 << pos
)) == 0)
88 #define MASK_FIRST_SET_BIT(mask) get_mask_first_set_bit (mask)
90 /* Return true if T, an SSA_NAME, has an undefined value. */
92 has_undefined_value_p (tree t
)
94 return (ssa_undefined_value_p (t
)
95 || (possibly_undefined_names
96 && possibly_undefined_names
->contains (t
)));
101 /* Like has_undefined_value_p, but don't return true if TREE_NO_WARNING
102 is set on SSA_NAME_VAR. */
105 uninit_undefined_value_p (tree t
) {
106 if (!has_undefined_value_p (t
))
108 if (SSA_NAME_VAR (t
) && TREE_NO_WARNING (SSA_NAME_VAR (t
)))
113 /* Emit warnings for uninitialized variables. This is done in two passes.
115 The first pass notices real uses of SSA names with undefined values.
116 Such uses are unconditionally uninitialized, and we can be certain that
117 such a use is a mistake. This pass is run before most optimizations,
118 so that we catch as many as we can.
120 The second pass follows PHI nodes to find uses that are potentially
121 uninitialized. In this case we can't necessarily prove that the use
122 is really uninitialized. This pass is run after most optimizations,
123 so that we thread as many jumps and possible, and delete as much dead
124 code as possible, in order to reduce false positives. We also look
125 again for plain uninitialized variables, since optimization may have
126 changed conditionally uninitialized to unconditionally uninitialized. */
128 /* Emit a warning for EXPR based on variable VAR at the point in the
129 program T, an SSA_NAME, is used being uninitialized. The exact
130 warning text is in MSGID and DATA is the gimple stmt with info about
131 the location in source code. When DATA is a GIMPLE_PHI, PHIARG_IDX
132 gives which argument of the phi node to take the location from. WC
133 is the warning code. */
136 warn_uninit (enum opt_code wc
, tree t
, tree expr
, tree var
,
137 const char *gmsgid
, void *data
, location_t phiarg_loc
)
139 gimple context
= (gimple
) data
;
140 location_t location
, cfun_loc
;
141 expanded_location xloc
, floc
;
143 /* Ignore COMPLEX_EXPR as initializing only a part of a complex
144 turns in a COMPLEX_EXPR with the not initialized part being
145 set to its previous (undefined) value. */
146 if (is_gimple_assign (context
)
147 && gimple_assign_rhs_code (context
) == COMPLEX_EXPR
)
149 if (!has_undefined_value_p (t
))
152 /* TREE_NO_WARNING either means we already warned, or the front end
153 wishes to suppress the warning. */
155 && (gimple_no_warning_p (context
)
156 || (gimple_assign_single_p (context
)
157 && TREE_NO_WARNING (gimple_assign_rhs1 (context
)))))
158 || TREE_NO_WARNING (expr
))
161 if (context
!= NULL
&& gimple_has_location (context
))
162 location
= gimple_location (context
);
163 else if (phiarg_loc
!= UNKNOWN_LOCATION
)
164 location
= phiarg_loc
;
166 location
= DECL_SOURCE_LOCATION (var
);
167 location
= linemap_resolve_location (line_table
, location
,
168 LRK_SPELLING_LOCATION
,
170 cfun_loc
= DECL_SOURCE_LOCATION (cfun
->decl
);
171 xloc
= expand_location (location
);
172 floc
= expand_location (cfun_loc
);
173 if (warning_at (location
, wc
, gmsgid
, expr
))
175 TREE_NO_WARNING (expr
) = 1;
177 if (location
== DECL_SOURCE_LOCATION (var
))
179 if (xloc
.file
!= floc
.file
180 || linemap_location_before_p (line_table
,
182 || linemap_location_before_p (line_table
,
183 cfun
->function_end_locus
,
185 inform (DECL_SOURCE_LOCATION (var
), "%qD was declared here", var
);
190 warn_uninitialized_vars (bool warn_possibly_uninitialized
)
192 gimple_stmt_iterator gsi
;
195 FOR_EACH_BB_FN (bb
, cfun
)
197 bool always_executed
= dominated_by_p (CDI_POST_DOMINATORS
,
198 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun
)), bb
);
199 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
201 gimple stmt
= gsi_stmt (gsi
);
206 if (is_gimple_debug (stmt
))
209 /* We only do data flow with SSA_NAMEs, so that's all we
211 FOR_EACH_SSA_USE_OPERAND (use_p
, stmt
, op_iter
, SSA_OP_USE
)
213 use
= USE_FROM_PTR (use_p
);
215 warn_uninit (OPT_Wuninitialized
, use
,
216 SSA_NAME_VAR (use
), SSA_NAME_VAR (use
),
217 "%qD is used uninitialized in this function",
218 stmt
, UNKNOWN_LOCATION
);
219 else if (warn_possibly_uninitialized
)
220 warn_uninit (OPT_Wmaybe_uninitialized
, use
,
221 SSA_NAME_VAR (use
), SSA_NAME_VAR (use
),
222 "%qD may be used uninitialized in this function",
223 stmt
, UNKNOWN_LOCATION
);
226 /* For memory the only cheap thing we can do is see if we
227 have a use of the default def of the virtual operand.
228 ??? Not so cheap would be to use the alias oracle via
229 walk_aliased_vdefs, if we don't find any aliasing vdef
230 warn as is-used-uninitialized, if we don't find an aliasing
231 vdef that kills our use (stmt_kills_ref_p), warn as
232 may-be-used-uninitialized. But this walk is quadratic and
233 so must be limited which means we would miss warning
235 use
= gimple_vuse (stmt
);
237 && gimple_assign_single_p (stmt
)
238 && !gimple_vdef (stmt
)
239 && SSA_NAME_IS_DEFAULT_DEF (use
))
241 tree rhs
= gimple_assign_rhs1 (stmt
);
242 tree base
= get_base_address (rhs
);
244 /* Do not warn if it can be initialized outside this function. */
245 if (TREE_CODE (base
) != VAR_DECL
246 || DECL_HARD_REGISTER (base
)
247 || is_global_var (base
))
251 warn_uninit (OPT_Wuninitialized
, use
,
252 gimple_assign_rhs1 (stmt
), base
,
253 "%qE is used uninitialized in this function",
254 stmt
, UNKNOWN_LOCATION
);
255 else if (warn_possibly_uninitialized
)
256 warn_uninit (OPT_Wmaybe_uninitialized
, use
,
257 gimple_assign_rhs1 (stmt
), base
,
258 "%qE may be used uninitialized in this function",
259 stmt
, UNKNOWN_LOCATION
);
267 /* Checks if the operand OPND of PHI is defined by
268 another phi with one operand defined by this PHI,
269 but the rest operands are all defined. If yes,
270 returns true to skip this this operand as being
271 redundant. Can be enhanced to be more general. */
274 can_skip_redundant_opnd (tree opnd
, gimple phi
)
280 phi_def
= gimple_phi_result (phi
);
281 op_def
= SSA_NAME_DEF_STMT (opnd
);
282 if (gimple_code (op_def
) != GIMPLE_PHI
)
284 n
= gimple_phi_num_args (op_def
);
285 for (i
= 0; i
< n
; ++i
)
287 tree op
= gimple_phi_arg_def (op_def
, i
);
288 if (TREE_CODE (op
) != SSA_NAME
)
290 if (op
!= phi_def
&& uninit_undefined_value_p (op
))
297 /* Returns a bit mask holding the positions of arguments in PHI
298 that have empty (or possibly empty) definitions. */
301 compute_uninit_opnds_pos (gimple phi
)
304 unsigned uninit_opnds
= 0;
306 n
= gimple_phi_num_args (phi
);
307 /* Bail out for phi with too many args. */
311 for (i
= 0; i
< n
; ++i
)
313 tree op
= gimple_phi_arg_def (phi
, i
);
314 if (TREE_CODE (op
) == SSA_NAME
315 && uninit_undefined_value_p (op
)
316 && !can_skip_redundant_opnd (op
, phi
))
318 if (cfun
->has_nonlocal_label
|| cfun
->calls_setjmp
)
320 /* Ignore SSA_NAMEs that appear on abnormal edges
322 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op
))
325 MASK_SET_BIT (uninit_opnds
, i
);
331 /* Find the immediate postdominator PDOM of the specified
332 basic block BLOCK. */
334 static inline basic_block
335 find_pdom (basic_block block
)
337 if (block
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
338 return EXIT_BLOCK_PTR_FOR_FN (cfun
);
342 = get_immediate_dominator (CDI_POST_DOMINATORS
, block
);
344 return EXIT_BLOCK_PTR_FOR_FN (cfun
);
349 /* Find the immediate DOM of the specified
350 basic block BLOCK. */
352 static inline basic_block
353 find_dom (basic_block block
)
355 if (block
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
356 return ENTRY_BLOCK_PTR_FOR_FN (cfun
);
359 basic_block bb
= get_immediate_dominator (CDI_DOMINATORS
, block
);
361 return ENTRY_BLOCK_PTR_FOR_FN (cfun
);
366 /* Returns true if BB1 is postdominating BB2 and BB1 is
367 not a loop exit bb. The loop exit bb check is simple and does
368 not cover all cases. */
371 is_non_loop_exit_postdominating (basic_block bb1
, basic_block bb2
)
373 if (!dominated_by_p (CDI_POST_DOMINATORS
, bb2
, bb1
))
376 if (single_pred_p (bb1
) && !single_succ_p (bb2
))
382 /* Find the closest postdominator of a specified BB, which is control
385 static inline basic_block
386 find_control_equiv_block (basic_block bb
)
390 pdom
= find_pdom (bb
);
392 /* Skip the postdominating bb that is also loop exit. */
393 if (!is_non_loop_exit_postdominating (pdom
, bb
))
396 if (dominated_by_p (CDI_DOMINATORS
, pdom
, bb
))
402 #define MAX_NUM_CHAINS 8
403 #define MAX_CHAIN_LEN 5
404 #define MAX_POSTDOM_CHECK 8
406 /* Computes the control dependence chains (paths of edges)
407 for DEP_BB up to the dominating basic block BB (the head node of a
408 chain should be dominated by it). CD_CHAINS is pointer to an
409 array holding the result chains. CUR_CD_CHAIN is the current
410 chain being computed. *NUM_CHAINS is total number of chains. The
411 function returns true if the information is successfully computed,
412 return false if there is no control dependence or not computed. */
415 compute_control_dep_chain (basic_block bb
, basic_block dep_bb
,
416 vec
<edge
> *cd_chains
,
418 vec
<edge
> *cur_cd_chain
,
424 bool found_cd_chain
= false;
425 size_t cur_chain_len
= 0;
427 if (EDGE_COUNT (bb
->succs
) < 2)
430 if (*num_calls
> PARAM_VALUE (PARAM_UNINIT_CONTROL_DEP_ATTEMPTS
))
434 /* Could use a set instead. */
435 cur_chain_len
= cur_cd_chain
->length ();
436 if (cur_chain_len
> MAX_CHAIN_LEN
)
439 for (i
= 0; i
< cur_chain_len
; i
++)
441 edge e
= (*cur_cd_chain
)[i
];
442 /* Cycle detected. */
447 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
450 int post_dom_check
= 0;
451 if (e
->flags
& (EDGE_FAKE
| EDGE_ABNORMAL
))
455 cur_cd_chain
->safe_push (e
);
456 while (!is_non_loop_exit_postdominating (cd_bb
, bb
))
460 /* Found a direct control dependence. */
461 if (*num_chains
< MAX_NUM_CHAINS
)
463 cd_chains
[*num_chains
] = cur_cd_chain
->copy ();
466 found_cd_chain
= true;
467 /* Check path from next edge. */
471 /* Now check if DEP_BB is indirectly control dependent on BB. */
472 if (compute_control_dep_chain (cd_bb
, dep_bb
, cd_chains
,
473 num_chains
, cur_cd_chain
, num_calls
))
475 found_cd_chain
= true;
479 cd_bb
= find_pdom (cd_bb
);
481 if (cd_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
) || post_dom_check
>
485 cur_cd_chain
->pop ();
486 gcc_assert (cur_cd_chain
->length () == cur_chain_len
);
488 gcc_assert (cur_cd_chain
->length () == cur_chain_len
);
490 return found_cd_chain
;
493 /* The type to represent a simple predicate */
495 typedef struct use_def_pred_info
499 enum tree_code cond_code
;
503 /* The type to represent a sequence of predicates grouped
504 with .AND. operation. */
506 typedef vec
<pred_info
, va_heap
, vl_ptr
> pred_chain
;
508 /* The type to represent a sequence of pred_chains grouped
509 with .OR. operation. */
511 typedef vec
<pred_chain
, va_heap
, vl_ptr
> pred_chain_union
;
513 /* Converts the chains of control dependence edges into a set of
514 predicates. A control dependence chain is represented by a vector
515 edges. DEP_CHAINS points to an array of dependence chains.
516 NUM_CHAINS is the size of the chain array. One edge in a dependence
517 chain is mapped to predicate expression represented by pred_info
518 type. One dependence chain is converted to a composite predicate that
519 is the result of AND operation of pred_info mapped to each edge.
520 A composite predicate is presented by a vector of pred_info. On
521 return, *PREDS points to the resulting array of composite predicates.
522 *NUM_PREDS is the number of composite predictes. */
525 convert_control_dep_chain_into_preds (vec
<edge
> *dep_chains
,
527 pred_chain_union
*preds
)
529 bool has_valid_pred
= false;
531 if (num_chains
== 0 || num_chains
>= MAX_NUM_CHAINS
)
534 /* Now convert the control dep chain into a set
536 preds
->reserve (num_chains
);
538 for (i
= 0; i
< num_chains
; i
++)
540 vec
<edge
> one_cd_chain
= dep_chains
[i
];
542 has_valid_pred
= false;
543 pred_chain t_chain
= vNULL
;
544 for (j
= 0; j
< one_cd_chain
.length (); j
++)
547 gimple_stmt_iterator gsi
;
548 basic_block guard_bb
;
554 gsi
= gsi_last_bb (guard_bb
);
557 has_valid_pred
= false;
560 cond_stmt
= gsi_stmt (gsi
);
561 if (is_gimple_call (cond_stmt
)
562 && EDGE_COUNT (e
->src
->succs
) >= 2)
564 /* Ignore EH edge. Can add assertion
565 on the other edge's flag. */
568 /* Skip if there is essentially one succesor. */
569 if (EDGE_COUNT (e
->src
->succs
) == 2)
575 FOR_EACH_EDGE (e1
, ei1
, e
->src
->succs
)
577 if (EDGE_COUNT (e1
->dest
->succs
) == 0)
586 if (gimple_code (cond_stmt
) != GIMPLE_COND
)
588 has_valid_pred
= false;
591 one_pred
.pred_lhs
= gimple_cond_lhs (cond_stmt
);
592 one_pred
.pred_rhs
= gimple_cond_rhs (cond_stmt
);
593 one_pred
.cond_code
= gimple_cond_code (cond_stmt
);
594 one_pred
.invert
= !!(e
->flags
& EDGE_FALSE_VALUE
);
595 t_chain
.safe_push (one_pred
);
596 has_valid_pred
= true;
602 preds
->safe_push (t_chain
);
604 return has_valid_pred
;
607 /* Computes all control dependence chains for USE_BB. The control
608 dependence chains are then converted to an array of composite
609 predicates pointed to by PREDS. PHI_BB is the basic block of
610 the phi whose result is used in USE_BB. */
613 find_predicates (pred_chain_union
*preds
,
617 size_t num_chains
= 0, i
;
619 vec
<edge
> dep_chains
[MAX_NUM_CHAINS
];
620 auto_vec
<edge
, MAX_CHAIN_LEN
+ 1> cur_chain
;
621 bool has_valid_pred
= false;
622 basic_block cd_root
= 0;
624 /* First find the closest bb that is control equivalent to PHI_BB
625 that also dominates USE_BB. */
627 while (dominated_by_p (CDI_DOMINATORS
, use_bb
, cd_root
))
629 basic_block ctrl_eq_bb
= find_control_equiv_block (cd_root
);
630 if (ctrl_eq_bb
&& dominated_by_p (CDI_DOMINATORS
, use_bb
, ctrl_eq_bb
))
631 cd_root
= ctrl_eq_bb
;
636 compute_control_dep_chain (cd_root
, use_bb
, dep_chains
, &num_chains
,
637 &cur_chain
, &num_calls
);
640 = convert_control_dep_chain_into_preds (dep_chains
, num_chains
, preds
);
641 for (i
= 0; i
< num_chains
; i
++)
642 dep_chains
[i
].release ();
643 return has_valid_pred
;
646 /* Computes the set of incoming edges of PHI that have non empty
647 definitions of a phi chain. The collection will be done
648 recursively on operands that are defined by phis. CD_ROOT
649 is the control dependence root. *EDGES holds the result, and
650 VISITED_PHIS is a pointer set for detecting cycles. */
653 collect_phi_def_edges (gimple phi
, basic_block cd_root
,
655 hash_set
<gimple
> *visited_phis
)
661 if (visited_phis
->add (phi
))
664 n
= gimple_phi_num_args (phi
);
665 for (i
= 0; i
< n
; i
++)
667 opnd_edge
= gimple_phi_arg_edge (phi
, i
);
668 opnd
= gimple_phi_arg_def (phi
, i
);
670 if (TREE_CODE (opnd
) != SSA_NAME
)
672 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
674 fprintf (dump_file
, "\n[CHECK] Found def edge %d in ", (int)i
);
675 print_gimple_stmt (dump_file
, phi
, 0, 0);
677 edges
->safe_push (opnd_edge
);
681 gimple def
= SSA_NAME_DEF_STMT (opnd
);
683 if (gimple_code (def
) == GIMPLE_PHI
684 && dominated_by_p (CDI_DOMINATORS
,
685 gimple_bb (def
), cd_root
))
686 collect_phi_def_edges (def
, cd_root
, edges
,
688 else if (!uninit_undefined_value_p (opnd
))
690 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
692 fprintf (dump_file
, "\n[CHECK] Found def edge %d in ", (int)i
);
693 print_gimple_stmt (dump_file
, phi
, 0, 0);
695 edges
->safe_push (opnd_edge
);
701 /* For each use edge of PHI, computes all control dependence chains.
702 The control dependence chains are then converted to an array of
703 composite predicates pointed to by PREDS. */
706 find_def_preds (pred_chain_union
*preds
, gimple phi
)
708 size_t num_chains
= 0, i
, n
;
709 vec
<edge
> dep_chains
[MAX_NUM_CHAINS
];
710 auto_vec
<edge
, MAX_CHAIN_LEN
+ 1> cur_chain
;
711 vec
<edge
> def_edges
= vNULL
;
712 bool has_valid_pred
= false;
713 basic_block phi_bb
, cd_root
= 0;
715 phi_bb
= gimple_bb (phi
);
716 /* First find the closest dominating bb to be
717 the control dependence root */
718 cd_root
= find_dom (phi_bb
);
722 hash_set
<gimple
> visited_phis
;
723 collect_phi_def_edges (phi
, cd_root
, &def_edges
, &visited_phis
);
725 n
= def_edges
.length ();
729 for (i
= 0; i
< n
; i
++)
735 opnd_edge
= def_edges
[i
];
736 prev_nc
= num_chains
;
737 compute_control_dep_chain (cd_root
, opnd_edge
->src
, dep_chains
,
738 &num_chains
, &cur_chain
, &num_calls
);
740 /* Now update the newly added chains with
741 the phi operand edge: */
742 if (EDGE_COUNT (opnd_edge
->src
->succs
) > 1)
744 if (prev_nc
== num_chains
&& num_chains
< MAX_NUM_CHAINS
)
745 dep_chains
[num_chains
++] = vNULL
;
746 for (j
= prev_nc
; j
< num_chains
; j
++)
747 dep_chains
[j
].safe_push (opnd_edge
);
752 = convert_control_dep_chain_into_preds (dep_chains
, num_chains
, preds
);
753 for (i
= 0; i
< num_chains
; i
++)
754 dep_chains
[i
].release ();
755 return has_valid_pred
;
758 /* Dumps the predicates (PREDS) for USESTMT. */
761 dump_predicates (gimple usestmt
, pred_chain_union preds
,
765 pred_chain one_pred_chain
= vNULL
;
766 fprintf (dump_file
, msg
);
767 print_gimple_stmt (dump_file
, usestmt
, 0, 0);
768 fprintf (dump_file
, "is guarded by :\n\n");
769 size_t num_preds
= preds
.length ();
770 /* Do some dumping here: */
771 for (i
= 0; i
< num_preds
; i
++)
775 one_pred_chain
= preds
[i
];
776 np
= one_pred_chain
.length ();
778 for (j
= 0; j
< np
; j
++)
780 pred_info one_pred
= one_pred_chain
[j
];
782 fprintf (dump_file
, " (.NOT.) ");
783 print_generic_expr (dump_file
, one_pred
.pred_lhs
, 0);
784 fprintf (dump_file
, " %s ", op_symbol_code (one_pred
.cond_code
));
785 print_generic_expr (dump_file
, one_pred
.pred_rhs
, 0);
787 fprintf (dump_file
, " (.AND.) ");
789 fprintf (dump_file
, "\n");
791 if (i
< num_preds
- 1)
792 fprintf (dump_file
, "(.OR.)\n");
794 fprintf (dump_file
, "\n\n");
798 /* Destroys the predicate set *PREDS. */
801 destroy_predicate_vecs (pred_chain_union preds
)
805 size_t n
= preds
.length ();
806 for (i
= 0; i
< n
; i
++)
812 /* Computes the 'normalized' conditional code with operand
813 swapping and condition inversion. */
815 static enum tree_code
816 get_cmp_code (enum tree_code orig_cmp_code
,
817 bool swap_cond
, bool invert
)
819 enum tree_code tc
= orig_cmp_code
;
822 tc
= swap_tree_comparison (orig_cmp_code
);
824 tc
= invert_tree_comparison (tc
, false);
841 /* Returns true if VAL falls in the range defined by BOUNDARY and CMPC, i.e.
842 all values in the range satisfies (x CMPC BOUNDARY) == true. */
845 is_value_included_in (tree val
, tree boundary
, enum tree_code cmpc
)
847 bool inverted
= false;
851 /* Only handle integer constant here. */
852 if (TREE_CODE (val
) != INTEGER_CST
853 || TREE_CODE (boundary
) != INTEGER_CST
)
856 is_unsigned
= TYPE_UNSIGNED (TREE_TYPE (val
));
858 if (cmpc
== GE_EXPR
|| cmpc
== GT_EXPR
861 cmpc
= invert_tree_comparison (cmpc
, false);
868 result
= tree_int_cst_equal (val
, boundary
);
869 else if (cmpc
== LT_EXPR
)
870 result
= tree_int_cst_lt (val
, boundary
);
873 gcc_assert (cmpc
== LE_EXPR
);
874 result
= tree_int_cst_le (val
, boundary
);
880 result
= tree_int_cst_equal (val
, boundary
);
881 else if (cmpc
== LT_EXPR
)
882 result
= tree_int_cst_lt (val
, boundary
);
885 gcc_assert (cmpc
== LE_EXPR
);
886 result
= (tree_int_cst_equal (val
, boundary
)
887 || tree_int_cst_lt (val
, boundary
));
897 /* Returns true if PRED is common among all the predicate
898 chains (PREDS) (and therefore can be factored out).
899 NUM_PRED_CHAIN is the size of array PREDS. */
902 find_matching_predicate_in_rest_chains (pred_info pred
,
903 pred_chain_union preds
,
904 size_t num_pred_chains
)
909 if (num_pred_chains
== 1)
912 for (i
= 1; i
< num_pred_chains
; i
++)
915 pred_chain one_chain
= preds
[i
];
916 n
= one_chain
.length ();
917 for (j
= 0; j
< n
; j
++)
919 pred_info pred2
= one_chain
[j
];
920 /* Can relax the condition comparison to not
921 use address comparison. However, the most common
922 case is that multiple control dependent paths share
923 a common path prefix, so address comparison should
926 if (operand_equal_p (pred2
.pred_lhs
, pred
.pred_lhs
, 0)
927 && operand_equal_p (pred2
.pred_rhs
, pred
.pred_rhs
, 0)
928 && pred2
.invert
== pred
.invert
)
940 /* Forward declaration. */
942 is_use_properly_guarded (gimple use_stmt
,
945 unsigned uninit_opnds
,
946 hash_set
<gimple
> *visited_phis
);
948 /* Returns true if all uninitialized opnds are pruned. Returns false
949 otherwise. PHI is the phi node with uninitialized operands,
950 UNINIT_OPNDS is the bitmap of the uninitialize operand positions,
951 FLAG_DEF is the statement defining the flag guarding the use of the
952 PHI output, BOUNDARY_CST is the const value used in the predicate
953 associated with the flag, CMP_CODE is the comparison code used in
954 the predicate, VISITED_PHIS is the pointer set of phis visited, and
955 VISITED_FLAG_PHIS is the pointer to the pointer set of flag definitions
961 flag_1 = phi <0, 1> // (1)
962 var_1 = phi <undef, some_val>
966 flag_2 = phi <0, flag_1, flag_1> // (2)
967 var_2 = phi <undef, var_1, var_1>
974 Because some flag arg in (1) is not constant, if we do not look into the
975 flag phis recursively, it is conservatively treated as unknown and var_1
976 is thought to be flowed into use at (3). Since var_1 is potentially uninitialized
977 a false warning will be emitted. Checking recursively into (1), the compiler can
978 find out that only some_val (which is defined) can flow into (3) which is OK.
983 prune_uninit_phi_opnds_in_unrealizable_paths (gimple phi
,
984 unsigned uninit_opnds
,
987 enum tree_code cmp_code
,
988 hash_set
<gimple
> *visited_phis
,
989 bitmap
*visited_flag_phis
)
993 for (i
= 0; i
< MIN (32, gimple_phi_num_args (flag_def
)); i
++)
997 if (!MASK_TEST_BIT (uninit_opnds
, i
))
1000 flag_arg
= gimple_phi_arg_def (flag_def
, i
);
1001 if (!is_gimple_constant (flag_arg
))
1003 gimple flag_arg_def
, phi_arg_def
;
1005 unsigned uninit_opnds_arg_phi
;
1007 if (TREE_CODE (flag_arg
) != SSA_NAME
)
1009 flag_arg_def
= SSA_NAME_DEF_STMT (flag_arg
);
1010 if (gimple_code (flag_arg_def
) != GIMPLE_PHI
)
1013 phi_arg
= gimple_phi_arg_def (phi
, i
);
1014 if (TREE_CODE (phi_arg
) != SSA_NAME
)
1017 phi_arg_def
= SSA_NAME_DEF_STMT (phi_arg
);
1018 if (gimple_code (phi_arg_def
) != GIMPLE_PHI
)
1021 if (gimple_bb (phi_arg_def
) != gimple_bb (flag_arg_def
))
1024 if (!*visited_flag_phis
)
1025 *visited_flag_phis
= BITMAP_ALLOC (NULL
);
1027 if (bitmap_bit_p (*visited_flag_phis
,
1028 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def
))))
1031 bitmap_set_bit (*visited_flag_phis
,
1032 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def
)));
1034 /* Now recursively prune the uninitialized phi args. */
1035 uninit_opnds_arg_phi
= compute_uninit_opnds_pos (phi_arg_def
);
1036 if (!prune_uninit_phi_opnds_in_unrealizable_paths
1037 (phi_arg_def
, uninit_opnds_arg_phi
, flag_arg_def
,
1038 boundary_cst
, cmp_code
, visited_phis
, visited_flag_phis
))
1041 bitmap_clear_bit (*visited_flag_phis
,
1042 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def
)));
1046 /* Now check if the constant is in the guarded range. */
1047 if (is_value_included_in (flag_arg
, boundary_cst
, cmp_code
))
1052 /* Now that we know that this undefined edge is not
1053 pruned. If the operand is defined by another phi,
1054 we can further prune the incoming edges of that
1055 phi by checking the predicates of this operands. */
1057 opnd
= gimple_phi_arg_def (phi
, i
);
1058 opnd_def
= SSA_NAME_DEF_STMT (opnd
);
1059 if (gimple_code (opnd_def
) == GIMPLE_PHI
)
1062 unsigned uninit_opnds2
1063 = compute_uninit_opnds_pos (opnd_def
);
1064 gcc_assert (!MASK_EMPTY (uninit_opnds2
));
1065 opnd_edge
= gimple_phi_arg_edge (phi
, i
);
1066 if (!is_use_properly_guarded (phi
,
1081 /* A helper function that determines if the predicate set
1082 of the use is not overlapping with that of the uninit paths.
1083 The most common senario of guarded use is in Example 1:
1096 The real world examples are usually more complicated, but similar
1097 and usually result from inlining:
1099 bool init_func (int * x)
1118 Another possible use scenario is in the following trivial example:
1130 Predicate analysis needs to compute the composite predicate:
1132 1) 'x' use predicate: (n > 0) .AND. (m < 2)
1133 2) 'x' default value (non-def) predicate: .NOT. (n > 0)
1134 (the predicate chain for phi operand defs can be computed
1135 starting from a bb that is control equivalent to the phi's
1136 bb and is dominating the operand def.)
1138 and check overlapping:
1139 (n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
1142 This implementation provides framework that can handle
1143 scenarios. (Note that many simple cases are handled properly
1144 without the predicate analysis -- this is due to jump threading
1145 transformation which eliminates the merge point thus makes
1146 path sensitive analysis unnecessary.)
1148 NUM_PREDS is the number is the number predicate chains, PREDS is
1149 the array of chains, PHI is the phi node whose incoming (undefined)
1150 paths need to be pruned, and UNINIT_OPNDS is the bitmap holding
1151 uninit operand positions. VISITED_PHIS is the pointer set of phi
1152 stmts being checked. */
1156 use_pred_not_overlap_with_undef_path_pred (pred_chain_union preds
,
1157 gimple phi
, unsigned uninit_opnds
,
1158 hash_set
<gimple
> *visited_phis
)
1161 gimple flag_def
= 0;
1162 tree boundary_cst
= 0;
1163 enum tree_code cmp_code
;
1164 bool swap_cond
= false;
1165 bool invert
= false;
1166 pred_chain the_pred_chain
= vNULL
;
1167 bitmap visited_flag_phis
= NULL
;
1168 bool all_pruned
= false;
1169 size_t num_preds
= preds
.length ();
1171 gcc_assert (num_preds
> 0);
1172 /* Find within the common prefix of multiple predicate chains
1173 a predicate that is a comparison of a flag variable against
1175 the_pred_chain
= preds
[0];
1176 n
= the_pred_chain
.length ();
1177 for (i
= 0; i
< n
; i
++)
1179 tree cond_lhs
, cond_rhs
, flag
= 0;
1181 pred_info the_pred
= the_pred_chain
[i
];
1183 invert
= the_pred
.invert
;
1184 cond_lhs
= the_pred
.pred_lhs
;
1185 cond_rhs
= the_pred
.pred_rhs
;
1186 cmp_code
= the_pred
.cond_code
;
1188 if (cond_lhs
!= NULL_TREE
&& TREE_CODE (cond_lhs
) == SSA_NAME
1189 && cond_rhs
!= NULL_TREE
&& is_gimple_constant (cond_rhs
))
1191 boundary_cst
= cond_rhs
;
1194 else if (cond_rhs
!= NULL_TREE
&& TREE_CODE (cond_rhs
) == SSA_NAME
1195 && cond_lhs
!= NULL_TREE
&& is_gimple_constant (cond_lhs
))
1197 boundary_cst
= cond_lhs
;
1205 flag_def
= SSA_NAME_DEF_STMT (flag
);
1210 if ((gimple_code (flag_def
) == GIMPLE_PHI
)
1211 && (gimple_bb (flag_def
) == gimple_bb (phi
))
1212 && find_matching_predicate_in_rest_chains (the_pred
, preds
,
1222 /* Now check all the uninit incoming edge has a constant flag value
1223 that is in conflict with the use guard/predicate. */
1224 cmp_code
= get_cmp_code (cmp_code
, swap_cond
, invert
);
1226 if (cmp_code
== ERROR_MARK
)
1229 all_pruned
= prune_uninit_phi_opnds_in_unrealizable_paths (phi
,
1235 &visited_flag_phis
);
1237 if (visited_flag_phis
)
1238 BITMAP_FREE (visited_flag_phis
);
1243 /* The helper function returns true if two predicates X1 and X2
1244 are equivalent. It assumes the expressions have already
1245 properly re-associated. */
1248 pred_equal_p (pred_info x1
, pred_info x2
)
1250 enum tree_code c1
, c2
;
1251 if (!operand_equal_p (x1
.pred_lhs
, x2
.pred_lhs
, 0)
1252 || !operand_equal_p (x1
.pred_rhs
, x2
.pred_rhs
, 0))
1256 if (x1
.invert
!= x2
.invert
)
1257 c2
= invert_tree_comparison (x2
.cond_code
, false);
1264 /* Returns true if the predication is testing !=. */
1267 is_neq_relop_p (pred_info pred
)
1270 return (pred
.cond_code
== NE_EXPR
&& !pred
.invert
)
1271 || (pred
.cond_code
== EQ_EXPR
&& pred
.invert
);
1274 /* Returns true if pred is of the form X != 0. */
1277 is_neq_zero_form_p (pred_info pred
)
1279 if (!is_neq_relop_p (pred
) || !integer_zerop (pred
.pred_rhs
)
1280 || TREE_CODE (pred
.pred_lhs
) != SSA_NAME
)
1285 /* The helper function returns true if two predicates X1
1286 is equivalent to X2 != 0. */
1289 pred_expr_equal_p (pred_info x1
, tree x2
)
1291 if (!is_neq_zero_form_p (x1
))
1294 return operand_equal_p (x1
.pred_lhs
, x2
, 0);
1297 /* Returns true of the domain of single predicate expression
1298 EXPR1 is a subset of that of EXPR2. Returns false if it
1299 can not be proved. */
1302 is_pred_expr_subset_of (pred_info expr1
, pred_info expr2
)
1304 enum tree_code code1
, code2
;
1306 if (pred_equal_p (expr1
, expr2
))
1309 if ((TREE_CODE (expr1
.pred_rhs
) != INTEGER_CST
)
1310 || (TREE_CODE (expr2
.pred_rhs
) != INTEGER_CST
))
1313 if (!operand_equal_p (expr1
.pred_lhs
, expr2
.pred_lhs
, 0))
1316 code1
= expr1
.cond_code
;
1318 code1
= invert_tree_comparison (code1
, false);
1319 code2
= expr2
.cond_code
;
1321 code2
= invert_tree_comparison (code2
, false);
1323 if (code1
!= code2
&& code2
!= NE_EXPR
)
1326 if (is_value_included_in (expr1
.pred_rhs
, expr2
.pred_rhs
, code2
))
1332 /* Returns true if the domain of PRED1 is a subset
1333 of that of PRED2. Returns false if it can not be proved so. */
1336 is_pred_chain_subset_of (pred_chain pred1
,
1339 size_t np1
, np2
, i1
, i2
;
1341 np1
= pred1
.length ();
1342 np2
= pred2
.length ();
1344 for (i2
= 0; i2
< np2
; i2
++)
1347 pred_info info2
= pred2
[i2
];
1348 for (i1
= 0; i1
< np1
; i1
++)
1350 pred_info info1
= pred1
[i1
];
1351 if (is_pred_expr_subset_of (info1
, info2
))
1363 /* Returns true if the domain defined by
1364 one pred chain ONE_PRED is a subset of the domain
1365 of *PREDS. It returns false if ONE_PRED's domain is
1366 not a subset of any of the sub-domains of PREDS
1367 (corresponding to each individual chains in it), even
1368 though it may be still be a subset of whole domain
1369 of PREDS which is the union (ORed) of all its subdomains.
1370 In other words, the result is conservative. */
1373 is_included_in (pred_chain one_pred
, pred_chain_union preds
)
1376 size_t n
= preds
.length ();
1378 for (i
= 0; i
< n
; i
++)
1380 if (is_pred_chain_subset_of (one_pred
, preds
[i
]))
1387 /* Compares two predicate sets PREDS1 and PREDS2 and returns
1388 true if the domain defined by PREDS1 is a superset
1389 of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
1390 PREDS2 respectively. The implementation chooses not to build
1391 generic trees (and relying on the folding capability of the
1392 compiler), but instead performs brute force comparison of
1393 individual predicate chains (won't be a compile time problem
1394 as the chains are pretty short). When the function returns
1395 false, it does not necessarily mean *PREDS1 is not a superset
1396 of *PREDS2, but mean it may not be so since the analysis can
1397 not prove it. In such cases, false warnings may still be
1401 is_superset_of (pred_chain_union preds1
, pred_chain_union preds2
)
1404 pred_chain one_pred_chain
= vNULL
;
1406 n2
= preds2
.length ();
1408 for (i
= 0; i
< n2
; i
++)
1410 one_pred_chain
= preds2
[i
];
1411 if (!is_included_in (one_pred_chain
, preds1
))
1418 /* Returns true if TC is AND or OR. */
1421 is_and_or_or_p (enum tree_code tc
, tree type
)
1423 return (tc
== BIT_IOR_EXPR
1424 || (tc
== BIT_AND_EXPR
1425 && (type
== 0 || TREE_CODE (type
) == BOOLEAN_TYPE
)));
1428 /* Returns true if X1 is the negate of X2. */
1431 pred_neg_p (pred_info x1
, pred_info x2
)
1433 enum tree_code c1
, c2
;
1434 if (!operand_equal_p (x1
.pred_lhs
, x2
.pred_lhs
, 0)
1435 || !operand_equal_p (x1
.pred_rhs
, x2
.pred_rhs
, 0))
1439 if (x1
.invert
== x2
.invert
)
1440 c2
= invert_tree_comparison (x2
.cond_code
, false);
1447 /* 1) ((x IOR y) != 0) AND (x != 0) is equivalent to (x != 0);
1448 2) (X AND Y) OR (!X AND Y) is equivalent to Y;
1449 3) X OR (!X AND Y) is equivalent to (X OR Y);
1450 4) ((x IAND y) != 0) || (x != 0 AND y != 0)) is equivalent to
1452 5) (X AND Y) OR (!X AND Z) OR (!Y AND Z) is equivalent to
1455 PREDS is the predicate chains, and N is the number of chains. */
1457 /* Helper function to implement rule 1 above. ONE_CHAIN is
1458 the AND predication to be simplified. */
1461 simplify_pred (pred_chain
*one_chain
)
1464 bool simplified
= false;
1465 pred_chain s_chain
= vNULL
;
1467 n
= one_chain
->length ();
1469 for (i
= 0; i
< n
; i
++)
1471 pred_info
*a_pred
= &(*one_chain
)[i
];
1473 if (!a_pred
->pred_lhs
)
1475 if (!is_neq_zero_form_p (*a_pred
))
1478 gimple def_stmt
= SSA_NAME_DEF_STMT (a_pred
->pred_lhs
);
1479 if (gimple_code (def_stmt
) != GIMPLE_ASSIGN
)
1481 if (gimple_assign_rhs_code (def_stmt
) == BIT_IOR_EXPR
)
1483 for (j
= 0; j
< n
; j
++)
1485 pred_info
*b_pred
= &(*one_chain
)[j
];
1487 if (!b_pred
->pred_lhs
)
1489 if (!is_neq_zero_form_p (*b_pred
))
1492 if (pred_expr_equal_p (*b_pred
, gimple_assign_rhs1 (def_stmt
))
1493 || pred_expr_equal_p (*b_pred
, gimple_assign_rhs2 (def_stmt
)))
1495 /* Mark a_pred for removal. */
1496 a_pred
->pred_lhs
= NULL
;
1497 a_pred
->pred_rhs
= NULL
;
1508 for (i
= 0; i
< n
; i
++)
1510 pred_info
*a_pred
= &(*one_chain
)[i
];
1511 if (!a_pred
->pred_lhs
)
1513 s_chain
.safe_push (*a_pred
);
1516 one_chain
->release ();
1517 *one_chain
= s_chain
;
1520 /* The helper function implements the rule 2 for the
1523 2) (X AND Y) OR (!X AND Y) is equivalent to Y. */
1526 simplify_preds_2 (pred_chain_union
*preds
)
1529 bool simplified
= false;
1530 pred_chain_union s_preds
= vNULL
;
1532 /* (X AND Y) OR (!X AND Y) is equivalent to Y.
1533 (X AND Y) OR (X AND !Y) is equivalent to X. */
1535 n
= preds
->length ();
1536 for (i
= 0; i
< n
; i
++)
1539 pred_chain
*a_chain
= &(*preds
)[i
];
1541 if (a_chain
->length () != 2)
1547 for (j
= 0; j
< n
; j
++)
1549 pred_chain
*b_chain
;
1555 b_chain
= &(*preds
)[j
];
1556 if (b_chain
->length () != 2)
1562 if (pred_equal_p (x
, x2
) && pred_neg_p (y
, y2
))
1565 a_chain
->release ();
1566 b_chain
->release ();
1567 b_chain
->safe_push (x
);
1571 if (pred_neg_p (x
, x2
) && pred_equal_p (y
, y2
))
1574 a_chain
->release ();
1575 b_chain
->release ();
1576 b_chain
->safe_push (y
);
1582 /* Now clean up the chain. */
1585 for (i
= 0; i
< n
; i
++)
1587 if ((*preds
)[i
].is_empty ())
1589 s_preds
.safe_push ((*preds
)[i
]);
1599 /* The helper function implements the rule 2 for the
1602 3) x OR (!x AND y) is equivalent to x OR y. */
1605 simplify_preds_3 (pred_chain_union
*preds
)
1608 bool simplified
= false;
1610 /* Now iteratively simplify X OR (!X AND Z ..)
1611 into X OR (Z ...). */
1613 n
= preds
->length ();
1617 for (i
= 0; i
< n
; i
++)
1620 pred_chain
*a_chain
= &(*preds
)[i
];
1622 if (a_chain
->length () != 1)
1627 for (j
= 0; j
< n
; j
++)
1629 pred_chain
*b_chain
;
1636 b_chain
= &(*preds
)[j
];
1637 if (b_chain
->length () < 2)
1640 for (k
= 0; k
< b_chain
->length (); k
++)
1643 if (pred_neg_p (x
, x2
))
1645 b_chain
->unordered_remove (k
);
1655 /* The helper function implements the rule 4 for the
1658 2) ((x AND y) != 0) OR (x != 0 AND y != 0) is equivalent to
1659 (x != 0 ANd y != 0). */
1662 simplify_preds_4 (pred_chain_union
*preds
)
1665 bool simplified
= false;
1666 pred_chain_union s_preds
= vNULL
;
1669 n
= preds
->length ();
1670 for (i
= 0; i
< n
; i
++)
1673 pred_chain
*a_chain
= &(*preds
)[i
];
1675 if (a_chain
->length () != 1)
1680 if (!is_neq_zero_form_p (z
))
1683 def_stmt
= SSA_NAME_DEF_STMT (z
.pred_lhs
);
1684 if (gimple_code (def_stmt
) != GIMPLE_ASSIGN
)
1687 if (gimple_assign_rhs_code (def_stmt
) != BIT_AND_EXPR
)
1690 for (j
= 0; j
< n
; j
++)
1692 pred_chain
*b_chain
;
1698 b_chain
= &(*preds
)[j
];
1699 if (b_chain
->length () != 2)
1704 if (!is_neq_zero_form_p (x2
)
1705 || !is_neq_zero_form_p (y2
))
1708 if ((pred_expr_equal_p (x2
, gimple_assign_rhs1 (def_stmt
))
1709 && pred_expr_equal_p (y2
, gimple_assign_rhs2 (def_stmt
)))
1710 || (pred_expr_equal_p (x2
, gimple_assign_rhs2 (def_stmt
))
1711 && pred_expr_equal_p (y2
, gimple_assign_rhs1 (def_stmt
))))
1714 a_chain
->release ();
1720 /* Now clean up the chain. */
1723 for (i
= 0; i
< n
; i
++)
1725 if ((*preds
)[i
].is_empty ())
1727 s_preds
.safe_push ((*preds
)[i
]);
1738 /* This function simplifies predicates in PREDS. */
1741 simplify_preds (pred_chain_union
*preds
, gimple use_or_def
, bool is_use
)
1744 bool changed
= false;
1746 if (dump_file
&& dump_flags
& TDF_DETAILS
)
1748 fprintf (dump_file
, "[BEFORE SIMPLICATION -- ");
1749 dump_predicates (use_or_def
, *preds
, is_use
? "[USE]:\n" : "[DEF]:\n");
1752 for (i
= 0; i
< preds
->length (); i
++)
1753 simplify_pred (&(*preds
)[i
]);
1755 n
= preds
->length ();
1762 if (simplify_preds_2 (preds
))
1765 /* Now iteratively simplify X OR (!X AND Z ..)
1766 into X OR (Z ...). */
1767 if (simplify_preds_3 (preds
))
1770 if (simplify_preds_4 (preds
))
1778 /* This is a helper function which attempts to normalize predicate chains
1779 by following UD chains. It basically builds up a big tree of either IOR
1780 operations or AND operations, and convert the IOR tree into a
1781 pred_chain_union or BIT_AND tree into a pred_chain.
1791 then _t != 0 will be normalized into a pred_chain_union
1793 (_2 RELOP1 _1) OR (_5 RELOP2 _4) OR (_8 RELOP3 _7) OR (_0 != 0)
1803 then _t != 0 will be normalized into a pred_chain:
1804 (_2 RELOP1 _1) AND (_5 RELOP2 _4) AND (_8 RELOP3 _7) AND (_0 != 0)
1808 /* This is a helper function that stores a PRED into NORM_PREDS. */
1811 push_pred (pred_chain_union
*norm_preds
, pred_info pred
)
1813 pred_chain pred_chain
= vNULL
;
1814 pred_chain
.safe_push (pred
);
1815 norm_preds
->safe_push (pred_chain
);
1818 /* A helper function that creates a predicate of the form
1819 OP != 0 and push it WORK_LIST. */
1822 push_to_worklist (tree op
, vec
<pred_info
, va_heap
, vl_ptr
> *work_list
,
1823 hash_set
<tree
> *mark_set
)
1825 if (mark_set
->contains (op
))
1830 arg_pred
.pred_lhs
= op
;
1831 arg_pred
.pred_rhs
= integer_zero_node
;
1832 arg_pred
.cond_code
= NE_EXPR
;
1833 arg_pred
.invert
= false;
1834 work_list
->safe_push (arg_pred
);
1837 /* A helper that generates a pred_info from a gimple assignment
1838 CMP_ASSIGN with comparison rhs. */
1841 get_pred_info_from_cmp (gimple cmp_assign
)
1844 n_pred
.pred_lhs
= gimple_assign_rhs1 (cmp_assign
);
1845 n_pred
.pred_rhs
= gimple_assign_rhs2 (cmp_assign
);
1846 n_pred
.cond_code
= gimple_assign_rhs_code (cmp_assign
);
1847 n_pred
.invert
= false;
1851 /* Returns true if the PHI is a degenerated phi with
1852 all args with the same value (relop). In that case, *PRED
1853 will be updated to that value. */
1856 is_degenerated_phi (gimple phi
, pred_info
*pred_p
)
1863 n
= gimple_phi_num_args (phi
);
1864 op0
= gimple_phi_arg_def (phi
, 0);
1866 if (TREE_CODE (op0
) != SSA_NAME
)
1869 def0
= SSA_NAME_DEF_STMT (op0
);
1870 if (gimple_code (def0
) != GIMPLE_ASSIGN
)
1872 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def0
))
1875 pred0
= get_pred_info_from_cmp (def0
);
1877 for (i
= 1; i
< n
; ++i
)
1881 tree op
= gimple_phi_arg_def (phi
, i
);
1883 if (TREE_CODE (op
) != SSA_NAME
)
1886 def
= SSA_NAME_DEF_STMT (op
);
1887 if (gimple_code (def
) != GIMPLE_ASSIGN
)
1889 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def
))
1892 pred
= get_pred_info_from_cmp (def
);
1893 if (!pred_equal_p (pred
, pred0
))
1901 /* Normalize one predicate PRED
1902 1) if PRED can no longer be normlized, put it into NORM_PREDS.
1903 2) otherwise if PRED is of the form x != 0, follow x's definition
1904 and put normalized predicates into WORK_LIST. */
1907 normalize_one_pred_1 (pred_chain_union
*norm_preds
,
1908 pred_chain
*norm_chain
,
1910 enum tree_code and_or_code
,
1911 vec
<pred_info
, va_heap
, vl_ptr
> *work_list
,
1912 hash_set
<tree
> *mark_set
)
1914 if (!is_neq_zero_form_p (pred
))
1916 if (and_or_code
== BIT_IOR_EXPR
)
1917 push_pred (norm_preds
, pred
);
1919 norm_chain
->safe_push (pred
);
1923 gimple def_stmt
= SSA_NAME_DEF_STMT (pred
.pred_lhs
);
1925 if (gimple_code (def_stmt
) == GIMPLE_PHI
1926 && is_degenerated_phi (def_stmt
, &pred
))
1927 work_list
->safe_push (pred
);
1928 else if (gimple_code (def_stmt
) == GIMPLE_PHI
1929 && and_or_code
== BIT_IOR_EXPR
)
1932 n
= gimple_phi_num_args (def_stmt
);
1934 /* If we see non zero constant, we should punt. The predicate
1935 * should be one guarding the phi edge. */
1936 for (i
= 0; i
< n
; ++i
)
1938 tree op
= gimple_phi_arg_def (def_stmt
, i
);
1939 if (TREE_CODE (op
) == INTEGER_CST
&& !integer_zerop (op
))
1941 push_pred (norm_preds
, pred
);
1946 for (i
= 0; i
< n
; ++i
)
1948 tree op
= gimple_phi_arg_def (def_stmt
, i
);
1949 if (integer_zerop (op
))
1952 push_to_worklist (op
, work_list
, mark_set
);
1955 else if (gimple_code (def_stmt
) != GIMPLE_ASSIGN
)
1957 if (and_or_code
== BIT_IOR_EXPR
)
1958 push_pred (norm_preds
, pred
);
1960 norm_chain
->safe_push (pred
);
1962 else if (gimple_assign_rhs_code (def_stmt
) == and_or_code
)
1964 push_to_worklist (gimple_assign_rhs1 (def_stmt
), work_list
, mark_set
);
1965 push_to_worklist (gimple_assign_rhs2 (def_stmt
), work_list
, mark_set
);
1967 else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
))
1970 pred_info n_pred
= get_pred_info_from_cmp (def_stmt
);
1971 if (and_or_code
== BIT_IOR_EXPR
)
1972 push_pred (norm_preds
, n_pred
);
1974 norm_chain
->safe_push (n_pred
);
1978 if (and_or_code
== BIT_IOR_EXPR
)
1979 push_pred (norm_preds
, pred
);
1981 norm_chain
->safe_push (pred
);
1985 /* Normalize PRED and store the normalized predicates into NORM_PREDS. */
1988 normalize_one_pred (pred_chain_union
*norm_preds
,
1991 vec
<pred_info
, va_heap
, vl_ptr
> work_list
= vNULL
;
1992 enum tree_code and_or_code
= ERROR_MARK
;
1993 pred_chain norm_chain
= vNULL
;
1995 if (!is_neq_zero_form_p (pred
))
1997 push_pred (norm_preds
, pred
);
2001 gimple def_stmt
= SSA_NAME_DEF_STMT (pred
.pred_lhs
);
2002 if (gimple_code (def_stmt
) == GIMPLE_ASSIGN
)
2003 and_or_code
= gimple_assign_rhs_code (def_stmt
);
2004 if (and_or_code
!= BIT_IOR_EXPR
2005 && and_or_code
!= BIT_AND_EXPR
)
2007 if (TREE_CODE_CLASS (and_or_code
)
2010 pred_info n_pred
= get_pred_info_from_cmp (def_stmt
);
2011 push_pred (norm_preds
, n_pred
);
2014 push_pred (norm_preds
, pred
);
2018 work_list
.safe_push (pred
);
2019 hash_set
<tree
> mark_set
;
2021 while (!work_list
.is_empty ())
2023 pred_info a_pred
= work_list
.pop ();
2024 normalize_one_pred_1 (norm_preds
, &norm_chain
, a_pred
,
2025 and_or_code
, &work_list
, &mark_set
);
2027 if (and_or_code
== BIT_AND_EXPR
)
2028 norm_preds
->safe_push (norm_chain
);
2030 work_list
.release ();
2034 normalize_one_pred_chain (pred_chain_union
*norm_preds
,
2035 pred_chain one_chain
)
2037 vec
<pred_info
, va_heap
, vl_ptr
> work_list
= vNULL
;
2038 hash_set
<tree
> mark_set
;
2039 pred_chain norm_chain
= vNULL
;
2042 for (i
= 0; i
< one_chain
.length (); i
++)
2044 work_list
.safe_push (one_chain
[i
]);
2045 mark_set
.add (one_chain
[i
].pred_lhs
);
2048 while (!work_list
.is_empty ())
2050 pred_info a_pred
= work_list
.pop ();
2051 normalize_one_pred_1 (0, &norm_chain
, a_pred
,
2052 BIT_AND_EXPR
, &work_list
, &mark_set
);
2055 norm_preds
->safe_push (norm_chain
);
2056 work_list
.release ();
2059 /* Normalize predicate chains PREDS and returns the normalized one. */
2061 static pred_chain_union
2062 normalize_preds (pred_chain_union preds
, gimple use_or_def
, bool is_use
)
2064 pred_chain_union norm_preds
= vNULL
;
2065 size_t n
= preds
.length ();
2068 if (dump_file
&& dump_flags
& TDF_DETAILS
)
2070 fprintf (dump_file
, "[BEFORE NORMALIZATION --");
2071 dump_predicates (use_or_def
, preds
, is_use
? "[USE]:\n" : "[DEF]:\n");
2074 for (i
= 0; i
< n
; i
++)
2076 if (preds
[i
].length () != 1)
2077 normalize_one_pred_chain (&norm_preds
, preds
[i
]);
2080 normalize_one_pred (&norm_preds
, preds
[i
][0]);
2081 preds
[i
].release ();
2087 fprintf (dump_file
, "[AFTER NORMALIZATION -- ");
2088 dump_predicates (use_or_def
, norm_preds
, is_use
? "[USE]:\n" : "[DEF]:\n");
2096 /* Computes the predicates that guard the use and checks
2097 if the incoming paths that have empty (or possibly
2098 empty) definition can be pruned/filtered. The function returns
2099 true if it can be determined that the use of PHI's def in
2100 USE_STMT is guarded with a predicate set not overlapping with
2101 predicate sets of all runtime paths that do not have a definition.
2102 Returns false if it is not or it can not be determined. USE_BB is
2103 the bb of the use (for phi operand use, the bb is not the bb of
2104 the phi stmt, but the src bb of the operand edge). UNINIT_OPNDS
2105 is a bit vector. If an operand of PHI is uninitialized, the
2106 corresponding bit in the vector is 1. VISIED_PHIS is a pointer
2107 set of phis being visted. */
2110 is_use_properly_guarded (gimple use_stmt
,
2113 unsigned uninit_opnds
,
2114 hash_set
<gimple
> *visited_phis
)
2117 pred_chain_union preds
= vNULL
;
2118 pred_chain_union def_preds
= vNULL
;
2119 bool has_valid_preds
= false;
2120 bool is_properly_guarded
= false;
2122 if (visited_phis
->add (phi
))
2125 phi_bb
= gimple_bb (phi
);
2127 if (is_non_loop_exit_postdominating (use_bb
, phi_bb
))
2130 has_valid_preds
= find_predicates (&preds
, phi_bb
, use_bb
);
2132 if (!has_valid_preds
)
2134 destroy_predicate_vecs (preds
);
2138 /* Try to prune the dead incoming phi edges. */
2140 = use_pred_not_overlap_with_undef_path_pred (preds
, phi
, uninit_opnds
,
2143 if (is_properly_guarded
)
2145 destroy_predicate_vecs (preds
);
2149 has_valid_preds
= find_def_preds (&def_preds
, phi
);
2151 if (!has_valid_preds
)
2153 destroy_predicate_vecs (preds
);
2154 destroy_predicate_vecs (def_preds
);
2158 simplify_preds (&preds
, use_stmt
, true);
2159 preds
= normalize_preds (preds
, use_stmt
, true);
2161 simplify_preds (&def_preds
, phi
, false);
2162 def_preds
= normalize_preds (def_preds
, phi
, false);
2164 is_properly_guarded
= is_superset_of (def_preds
, preds
);
2166 destroy_predicate_vecs (preds
);
2167 destroy_predicate_vecs (def_preds
);
2168 return is_properly_guarded
;
2171 /* Searches through all uses of a potentially
2172 uninitialized variable defined by PHI and returns a use
2173 statement if the use is not properly guarded. It returns
2174 NULL if all uses are guarded. UNINIT_OPNDS is a bitvector
2175 holding the position(s) of uninit PHI operands. WORKLIST
2176 is the vector of candidate phis that may be updated by this
2177 function. ADDED_TO_WORKLIST is the pointer set tracking
2178 if the new phi is already in the worklist. */
2181 find_uninit_use (gimple phi
, unsigned uninit_opnds
,
2182 vec
<gimple
> *worklist
,
2183 hash_set
<gimple
> *added_to_worklist
)
2186 use_operand_p use_p
;
2188 imm_use_iterator iter
;
2190 phi_result
= gimple_phi_result (phi
);
2192 FOR_EACH_IMM_USE_FAST (use_p
, iter
, phi_result
)
2196 use_stmt
= USE_STMT (use_p
);
2197 if (is_gimple_debug (use_stmt
))
2200 if (gimple_code (use_stmt
) == GIMPLE_PHI
)
2201 use_bb
= gimple_phi_arg_edge (use_stmt
,
2202 PHI_ARG_INDEX_FROM_USE (use_p
))->src
;
2204 use_bb
= gimple_bb (use_stmt
);
2206 hash_set
<gimple
> visited_phis
;
2207 if (is_use_properly_guarded (use_stmt
, use_bb
, phi
, uninit_opnds
,
2211 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2213 fprintf (dump_file
, "[CHECK]: Found unguarded use: ");
2214 print_gimple_stmt (dump_file
, use_stmt
, 0, 0);
2216 /* Found one real use, return. */
2217 if (gimple_code (use_stmt
) != GIMPLE_PHI
)
2220 /* Found a phi use that is not guarded,
2221 add the phi to the worklist. */
2222 if (!added_to_worklist
->add (use_stmt
))
2224 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2226 fprintf (dump_file
, "[WORKLIST]: Update worklist with phi: ");
2227 print_gimple_stmt (dump_file
, use_stmt
, 0, 0);
2230 worklist
->safe_push (use_stmt
);
2231 possibly_undefined_names
->add (phi_result
);
2238 /* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
2239 and gives warning if there exists a runtime path from the entry to a
2240 use of the PHI def that does not contain a definition. In other words,
2241 the warning is on the real use. The more dead paths that can be pruned
2242 by the compiler, the fewer false positives the warning is. WORKLIST
2243 is a vector of candidate phis to be examined. ADDED_TO_WORKLIST is
2244 a pointer set tracking if the new phi is added to the worklist or not. */
2247 warn_uninitialized_phi (gimple phi
, vec
<gimple
> *worklist
,
2248 hash_set
<gimple
> *added_to_worklist
)
2250 unsigned uninit_opnds
;
2251 gimple uninit_use_stmt
= 0;
2256 /* Don't look at virtual operands. */
2257 if (virtual_operand_p (gimple_phi_result (phi
)))
2260 uninit_opnds
= compute_uninit_opnds_pos (phi
);
2262 if (MASK_EMPTY (uninit_opnds
))
2265 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2267 fprintf (dump_file
, "[CHECK]: examining phi: ");
2268 print_gimple_stmt (dump_file
, phi
, 0, 0);
2271 /* Now check if we have any use of the value without proper guard. */
2272 uninit_use_stmt
= find_uninit_use (phi
, uninit_opnds
,
2273 worklist
, added_to_worklist
);
2275 /* All uses are properly guarded. */
2276 if (!uninit_use_stmt
)
2279 phiarg_index
= MASK_FIRST_SET_BIT (uninit_opnds
);
2280 uninit_op
= gimple_phi_arg_def (phi
, phiarg_index
);
2281 if (SSA_NAME_VAR (uninit_op
) == NULL_TREE
)
2283 if (gimple_phi_arg_has_location (phi
, phiarg_index
))
2284 loc
= gimple_phi_arg_location (phi
, phiarg_index
);
2286 loc
= UNKNOWN_LOCATION
;
2287 warn_uninit (OPT_Wmaybe_uninitialized
, uninit_op
, SSA_NAME_VAR (uninit_op
),
2288 SSA_NAME_VAR (uninit_op
),
2289 "%qD may be used uninitialized in this function",
2290 uninit_use_stmt
, loc
);
2295 gate_warn_uninitialized (void)
2297 return warn_uninitialized
|| warn_maybe_uninitialized
;
2302 const pass_data pass_data_late_warn_uninitialized
=
2304 GIMPLE_PASS
, /* type */
2305 "uninit", /* name */
2306 OPTGROUP_NONE
, /* optinfo_flags */
2307 TV_NONE
, /* tv_id */
2308 PROP_ssa
, /* properties_required */
2309 0, /* properties_provided */
2310 0, /* properties_destroyed */
2311 0, /* todo_flags_start */
2312 0, /* todo_flags_finish */
2315 class pass_late_warn_uninitialized
: public gimple_opt_pass
2318 pass_late_warn_uninitialized (gcc::context
*ctxt
)
2319 : gimple_opt_pass (pass_data_late_warn_uninitialized
, ctxt
)
2322 /* opt_pass methods: */
2323 opt_pass
* clone () { return new pass_late_warn_uninitialized (m_ctxt
); }
2324 virtual bool gate (function
*) { return gate_warn_uninitialized (); }
2325 virtual unsigned int execute (function
*);
2327 }; // class pass_late_warn_uninitialized
2330 pass_late_warn_uninitialized::execute (function
*fun
)
2333 gimple_stmt_iterator gsi
;
2334 vec
<gimple
> worklist
= vNULL
;
2336 calculate_dominance_info (CDI_DOMINATORS
);
2337 calculate_dominance_info (CDI_POST_DOMINATORS
);
2338 /* Re-do the plain uninitialized variable check, as optimization may have
2339 straightened control flow. Do this first so that we don't accidentally
2340 get a "may be" warning when we'd have seen an "is" warning later. */
2341 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/1);
2343 timevar_push (TV_TREE_UNINIT
);
2345 possibly_undefined_names
= new hash_set
<tree
>;
2346 hash_set
<gimple
> added_to_worklist
;
2348 /* Initialize worklist */
2349 FOR_EACH_BB_FN (bb
, fun
)
2350 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2352 gimple phi
= gsi_stmt (gsi
);
2355 n
= gimple_phi_num_args (phi
);
2357 /* Don't look at virtual operands. */
2358 if (virtual_operand_p (gimple_phi_result (phi
)))
2361 for (i
= 0; i
< n
; ++i
)
2363 tree op
= gimple_phi_arg_def (phi
, i
);
2364 if (TREE_CODE (op
) == SSA_NAME
2365 && uninit_undefined_value_p (op
))
2367 worklist
.safe_push (phi
);
2368 added_to_worklist
.add (phi
);
2369 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2371 fprintf (dump_file
, "[WORKLIST]: add to initial list: ");
2372 print_gimple_stmt (dump_file
, phi
, 0, 0);
2379 while (worklist
.length () != 0)
2382 cur_phi
= worklist
.pop ();
2383 warn_uninitialized_phi (cur_phi
, &worklist
, &added_to_worklist
);
2386 worklist
.release ();
2387 delete possibly_undefined_names
;
2388 possibly_undefined_names
= NULL
;
2389 free_dominance_info (CDI_POST_DOMINATORS
);
2390 timevar_pop (TV_TREE_UNINIT
);
2397 make_pass_late_warn_uninitialized (gcc::context
*ctxt
)
2399 return new pass_late_warn_uninitialized (ctxt
);
2404 execute_early_warn_uninitialized (void)
2406 /* Currently, this pass runs always but
2407 execute_late_warn_uninitialized only runs with optimization. With
2408 optimization we want to warn about possible uninitialized as late
2409 as possible, thus don't do it here. However, without
2410 optimization we need to warn here about "may be uninitialized". */
2411 calculate_dominance_info (CDI_POST_DOMINATORS
);
2413 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/!optimize
);
2415 /* Post-dominator information can not be reliably updated. Free it
2418 free_dominance_info (CDI_POST_DOMINATORS
);
2425 const pass_data pass_data_early_warn_uninitialized
=
2427 GIMPLE_PASS
, /* type */
2428 "*early_warn_uninitialized", /* name */
2429 OPTGROUP_NONE
, /* optinfo_flags */
2430 TV_TREE_UNINIT
, /* tv_id */
2431 PROP_ssa
, /* properties_required */
2432 0, /* properties_provided */
2433 0, /* properties_destroyed */
2434 0, /* todo_flags_start */
2435 0, /* todo_flags_finish */
2438 class pass_early_warn_uninitialized
: public gimple_opt_pass
2441 pass_early_warn_uninitialized (gcc::context
*ctxt
)
2442 : gimple_opt_pass (pass_data_early_warn_uninitialized
, ctxt
)
2445 /* opt_pass methods: */
2446 virtual bool gate (function
*) { return gate_warn_uninitialized (); }
2447 virtual unsigned int execute (function
*)
2449 return execute_early_warn_uninitialized ();
2452 }; // class pass_early_warn_uninitialized
2457 make_pass_early_warn_uninitialized (gcc::context
*ctxt
)
2459 return new pass_early_warn_uninitialized (ctxt
);