gcc/
[official-gcc.git] / gcc / reload1.c
blob74dee444196f834ab9e0be3afa87cf6182610dcc
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl-error.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "ggc.h"
32 #include "flags.h"
33 #include "hashtab.h"
34 #include "hash-set.h"
35 #include "vec.h"
36 #include "input.h"
37 #include "function.h"
38 #include "expr.h"
39 #include "optabs.h"
40 #include "regs.h"
41 #include "addresses.h"
42 #include "basic-block.h"
43 #include "df.h"
44 #include "reload.h"
45 #include "recog.h"
46 #include "except.h"
47 #include "tree.h"
48 #include "ira.h"
49 #include "target.h"
50 #include "emit-rtl.h"
51 #include "dumpfile.h"
52 #include "rtl-iter.h"
54 /* This file contains the reload pass of the compiler, which is
55 run after register allocation has been done. It checks that
56 each insn is valid (operands required to be in registers really
57 are in registers of the proper class) and fixes up invalid ones
58 by copying values temporarily into registers for the insns
59 that need them.
61 The results of register allocation are described by the vector
62 reg_renumber; the insns still contain pseudo regs, but reg_renumber
63 can be used to find which hard reg, if any, a pseudo reg is in.
65 The technique we always use is to free up a few hard regs that are
66 called ``reload regs'', and for each place where a pseudo reg
67 must be in a hard reg, copy it temporarily into one of the reload regs.
69 Reload regs are allocated locally for every instruction that needs
70 reloads. When there are pseudos which are allocated to a register that
71 has been chosen as a reload reg, such pseudos must be ``spilled''.
72 This means that they go to other hard regs, or to stack slots if no other
73 available hard regs can be found. Spilling can invalidate more
74 insns, requiring additional need for reloads, so we must keep checking
75 until the process stabilizes.
77 For machines with different classes of registers, we must keep track
78 of the register class needed for each reload, and make sure that
79 we allocate enough reload registers of each class.
81 The file reload.c contains the code that checks one insn for
82 validity and reports the reloads that it needs. This file
83 is in charge of scanning the entire rtl code, accumulating the
84 reload needs, spilling, assigning reload registers to use for
85 fixing up each insn, and generating the new insns to copy values
86 into the reload registers. */
88 struct target_reload default_target_reload;
89 #if SWITCHABLE_TARGET
90 struct target_reload *this_target_reload = &default_target_reload;
91 #endif
93 #define spill_indirect_levels \
94 (this_target_reload->x_spill_indirect_levels)
96 /* During reload_as_needed, element N contains a REG rtx for the hard reg
97 into which reg N has been reloaded (perhaps for a previous insn). */
98 static rtx *reg_last_reload_reg;
100 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
101 for an output reload that stores into reg N. */
102 static regset_head reg_has_output_reload;
104 /* Indicates which hard regs are reload-registers for an output reload
105 in the current insn. */
106 static HARD_REG_SET reg_is_output_reload;
108 /* Widest width in which each pseudo reg is referred to (via subreg). */
109 static unsigned int *reg_max_ref_width;
111 /* Vector to remember old contents of reg_renumber before spilling. */
112 static short *reg_old_renumber;
114 /* During reload_as_needed, element N contains the last pseudo regno reloaded
115 into hard register N. If that pseudo reg occupied more than one register,
116 reg_reloaded_contents points to that pseudo for each spill register in
117 use; all of these must remain set for an inheritance to occur. */
118 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
120 /* During reload_as_needed, element N contains the insn for which
121 hard register N was last used. Its contents are significant only
122 when reg_reloaded_valid is set for this register. */
123 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
125 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
126 static HARD_REG_SET reg_reloaded_valid;
127 /* Indicate if the register was dead at the end of the reload.
128 This is only valid if reg_reloaded_contents is set and valid. */
129 static HARD_REG_SET reg_reloaded_dead;
131 /* Indicate whether the register's current value is one that is not
132 safe to retain across a call, even for registers that are normally
133 call-saved. This is only meaningful for members of reg_reloaded_valid. */
134 static HARD_REG_SET reg_reloaded_call_part_clobbered;
136 /* Number of spill-regs so far; number of valid elements of spill_regs. */
137 static int n_spills;
139 /* In parallel with spill_regs, contains REG rtx's for those regs.
140 Holds the last rtx used for any given reg, or 0 if it has never
141 been used for spilling yet. This rtx is reused, provided it has
142 the proper mode. */
143 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
145 /* In parallel with spill_regs, contains nonzero for a spill reg
146 that was stored after the last time it was used.
147 The precise value is the insn generated to do the store. */
148 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
150 /* This is the register that was stored with spill_reg_store. This is a
151 copy of reload_out / reload_out_reg when the value was stored; if
152 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
153 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
155 /* This table is the inverse mapping of spill_regs:
156 indexed by hard reg number,
157 it contains the position of that reg in spill_regs,
158 or -1 for something that is not in spill_regs.
160 ?!? This is no longer accurate. */
161 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
163 /* This reg set indicates registers that can't be used as spill registers for
164 the currently processed insn. These are the hard registers which are live
165 during the insn, but not allocated to pseudos, as well as fixed
166 registers. */
167 static HARD_REG_SET bad_spill_regs;
169 /* These are the hard registers that can't be used as spill register for any
170 insn. This includes registers used for user variables and registers that
171 we can't eliminate. A register that appears in this set also can't be used
172 to retry register allocation. */
173 static HARD_REG_SET bad_spill_regs_global;
175 /* Describes order of use of registers for reloading
176 of spilled pseudo-registers. `n_spills' is the number of
177 elements that are actually valid; new ones are added at the end.
179 Both spill_regs and spill_reg_order are used on two occasions:
180 once during find_reload_regs, where they keep track of the spill registers
181 for a single insn, but also during reload_as_needed where they show all
182 the registers ever used by reload. For the latter case, the information
183 is calculated during finish_spills. */
184 static short spill_regs[FIRST_PSEUDO_REGISTER];
186 /* This vector of reg sets indicates, for each pseudo, which hard registers
187 may not be used for retrying global allocation because the register was
188 formerly spilled from one of them. If we allowed reallocating a pseudo to
189 a register that it was already allocated to, reload might not
190 terminate. */
191 static HARD_REG_SET *pseudo_previous_regs;
193 /* This vector of reg sets indicates, for each pseudo, which hard
194 registers may not be used for retrying global allocation because they
195 are used as spill registers during one of the insns in which the
196 pseudo is live. */
197 static HARD_REG_SET *pseudo_forbidden_regs;
199 /* All hard regs that have been used as spill registers for any insn are
200 marked in this set. */
201 static HARD_REG_SET used_spill_regs;
203 /* Index of last register assigned as a spill register. We allocate in
204 a round-robin fashion. */
205 static int last_spill_reg;
207 /* Record the stack slot for each spilled hard register. */
208 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
210 /* Width allocated so far for that stack slot. */
211 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
213 /* Record which pseudos needed to be spilled. */
214 static regset_head spilled_pseudos;
216 /* Record which pseudos changed their allocation in finish_spills. */
217 static regset_head changed_allocation_pseudos;
219 /* Used for communication between order_regs_for_reload and count_pseudo.
220 Used to avoid counting one pseudo twice. */
221 static regset_head pseudos_counted;
223 /* First uid used by insns created by reload in this function.
224 Used in find_equiv_reg. */
225 int reload_first_uid;
227 /* Flag set by local-alloc or global-alloc if anything is live in
228 a call-clobbered reg across calls. */
229 int caller_save_needed;
231 /* Set to 1 while reload_as_needed is operating.
232 Required by some machines to handle any generated moves differently. */
233 int reload_in_progress = 0;
235 /* This obstack is used for allocation of rtl during register elimination.
236 The allocated storage can be freed once find_reloads has processed the
237 insn. */
238 static struct obstack reload_obstack;
240 /* Points to the beginning of the reload_obstack. All insn_chain structures
241 are allocated first. */
242 static char *reload_startobj;
244 /* The point after all insn_chain structures. Used to quickly deallocate
245 memory allocated in copy_reloads during calculate_needs_all_insns. */
246 static char *reload_firstobj;
248 /* This points before all local rtl generated by register elimination.
249 Used to quickly free all memory after processing one insn. */
250 static char *reload_insn_firstobj;
252 /* List of insn_chain instructions, one for every insn that reload needs to
253 examine. */
254 struct insn_chain *reload_insn_chain;
256 /* TRUE if we potentially left dead insns in the insn stream and want to
257 run DCE immediately after reload, FALSE otherwise. */
258 static bool need_dce;
260 /* List of all insns needing reloads. */
261 static struct insn_chain *insns_need_reload;
263 /* This structure is used to record information about register eliminations.
264 Each array entry describes one possible way of eliminating a register
265 in favor of another. If there is more than one way of eliminating a
266 particular register, the most preferred should be specified first. */
268 struct elim_table
270 int from; /* Register number to be eliminated. */
271 int to; /* Register number used as replacement. */
272 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
273 int can_eliminate; /* Nonzero if this elimination can be done. */
274 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
275 target hook in previous scan over insns
276 made by reload. */
277 HOST_WIDE_INT offset; /* Current offset between the two regs. */
278 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
279 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
280 rtx from_rtx; /* REG rtx for the register to be eliminated.
281 We cannot simply compare the number since
282 we might then spuriously replace a hard
283 register corresponding to a pseudo
284 assigned to the reg to be eliminated. */
285 rtx to_rtx; /* REG rtx for the replacement. */
288 static struct elim_table *reg_eliminate = 0;
290 /* This is an intermediate structure to initialize the table. It has
291 exactly the members provided by ELIMINABLE_REGS. */
292 static const struct elim_table_1
294 const int from;
295 const int to;
296 } reg_eliminate_1[] =
298 /* If a set of eliminable registers was specified, define the table from it.
299 Otherwise, default to the normal case of the frame pointer being
300 replaced by the stack pointer. */
302 #ifdef ELIMINABLE_REGS
303 ELIMINABLE_REGS;
304 #else
305 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
306 #endif
308 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
310 /* Record the number of pending eliminations that have an offset not equal
311 to their initial offset. If nonzero, we use a new copy of each
312 replacement result in any insns encountered. */
313 int num_not_at_initial_offset;
315 /* Count the number of registers that we may be able to eliminate. */
316 static int num_eliminable;
317 /* And the number of registers that are equivalent to a constant that
318 can be eliminated to frame_pointer / arg_pointer + constant. */
319 static int num_eliminable_invariants;
321 /* For each label, we record the offset of each elimination. If we reach
322 a label by more than one path and an offset differs, we cannot do the
323 elimination. This information is indexed by the difference of the
324 number of the label and the first label number. We can't offset the
325 pointer itself as this can cause problems on machines with segmented
326 memory. The first table is an array of flags that records whether we
327 have yet encountered a label and the second table is an array of arrays,
328 one entry in the latter array for each elimination. */
330 static int first_label_num;
331 static char *offsets_known_at;
332 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
334 vec<reg_equivs_t, va_gc> *reg_equivs;
336 /* Stack of addresses where an rtx has been changed. We can undo the
337 changes by popping items off the stack and restoring the original
338 value at each location.
340 We use this simplistic undo capability rather than copy_rtx as copy_rtx
341 will not make a deep copy of a normally sharable rtx, such as
342 (const (plus (symbol_ref) (const_int))). If such an expression appears
343 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
344 rtx expression would be changed. See PR 42431. */
346 typedef rtx *rtx_p;
347 static vec<rtx_p> substitute_stack;
349 /* Number of labels in the current function. */
351 static int num_labels;
353 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
354 static void maybe_fix_stack_asms (void);
355 static void copy_reloads (struct insn_chain *);
356 static void calculate_needs_all_insns (int);
357 static int find_reg (struct insn_chain *, int);
358 static void find_reload_regs (struct insn_chain *);
359 static void select_reload_regs (void);
360 static void delete_caller_save_insns (void);
362 static void spill_failure (rtx_insn *, enum reg_class);
363 static void count_spilled_pseudo (int, int, int);
364 static void delete_dead_insn (rtx_insn *);
365 static void alter_reg (int, int, bool);
366 static void set_label_offsets (rtx, rtx_insn *, int);
367 static void check_eliminable_occurrences (rtx);
368 static void elimination_effects (rtx, enum machine_mode);
369 static rtx eliminate_regs_1 (rtx, enum machine_mode, rtx, bool, bool);
370 static int eliminate_regs_in_insn (rtx_insn *, int);
371 static void update_eliminable_offsets (void);
372 static void mark_not_eliminable (rtx, const_rtx, void *);
373 static void set_initial_elim_offsets (void);
374 static bool verify_initial_elim_offsets (void);
375 static void set_initial_label_offsets (void);
376 static void set_offsets_for_label (rtx_insn *);
377 static void init_eliminable_invariants (rtx_insn *, bool);
378 static void init_elim_table (void);
379 static void free_reg_equiv (void);
380 static void update_eliminables (HARD_REG_SET *);
381 static bool update_eliminables_and_spill (void);
382 static void elimination_costs_in_insn (rtx_insn *);
383 static void spill_hard_reg (unsigned int, int);
384 static int finish_spills (int);
385 static void scan_paradoxical_subregs (rtx);
386 static void count_pseudo (int);
387 static void order_regs_for_reload (struct insn_chain *);
388 static void reload_as_needed (int);
389 static void forget_old_reloads_1 (rtx, const_rtx, void *);
390 static void forget_marked_reloads (regset);
391 static int reload_reg_class_lower (const void *, const void *);
392 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
393 enum machine_mode);
394 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
395 enum machine_mode);
396 static int reload_reg_free_p (unsigned int, int, enum reload_type);
397 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
398 rtx, rtx, int, int);
399 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
400 rtx, rtx, int, int);
401 static int allocate_reload_reg (struct insn_chain *, int, int);
402 static int conflicts_with_override (rtx);
403 static void failed_reload (rtx_insn *, int);
404 static int set_reload_reg (int, int);
405 static void choose_reload_regs_init (struct insn_chain *, rtx *);
406 static void choose_reload_regs (struct insn_chain *);
407 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
408 rtx, int);
409 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
410 int);
411 static void do_input_reload (struct insn_chain *, struct reload *, int);
412 static void do_output_reload (struct insn_chain *, struct reload *, int);
413 static void emit_reload_insns (struct insn_chain *);
414 static void delete_output_reload (rtx_insn *, int, int, rtx);
415 static void delete_address_reloads (rtx_insn *, rtx_insn *);
416 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
417 static void inc_for_reload (rtx, rtx, rtx, int);
418 #ifdef AUTO_INC_DEC
419 static void add_auto_inc_notes (rtx_insn *, rtx);
420 #endif
421 static void substitute (rtx *, const_rtx, rtx);
422 static bool gen_reload_chain_without_interm_reg_p (int, int);
423 static int reloads_conflict (int, int);
424 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
425 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
427 /* Initialize the reload pass. This is called at the beginning of compilation
428 and may be called again if the target is reinitialized. */
430 void
431 init_reload (void)
433 int i;
435 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
436 Set spill_indirect_levels to the number of levels such addressing is
437 permitted, zero if it is not permitted at all. */
439 rtx tem
440 = gen_rtx_MEM (Pmode,
441 gen_rtx_PLUS (Pmode,
442 gen_rtx_REG (Pmode,
443 LAST_VIRTUAL_REGISTER + 1),
444 gen_int_mode (4, Pmode)));
445 spill_indirect_levels = 0;
447 while (memory_address_p (QImode, tem))
449 spill_indirect_levels++;
450 tem = gen_rtx_MEM (Pmode, tem);
453 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
455 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
456 indirect_symref_ok = memory_address_p (QImode, tem);
458 /* See if reg+reg is a valid (and offsettable) address. */
460 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
462 tem = gen_rtx_PLUS (Pmode,
463 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
464 gen_rtx_REG (Pmode, i));
466 /* This way, we make sure that reg+reg is an offsettable address. */
467 tem = plus_constant (Pmode, tem, 4);
469 if (memory_address_p (QImode, tem))
471 double_reg_address_ok = 1;
472 break;
476 /* Initialize obstack for our rtl allocation. */
477 if (reload_startobj == NULL)
479 gcc_obstack_init (&reload_obstack);
480 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
483 INIT_REG_SET (&spilled_pseudos);
484 INIT_REG_SET (&changed_allocation_pseudos);
485 INIT_REG_SET (&pseudos_counted);
488 /* List of insn chains that are currently unused. */
489 static struct insn_chain *unused_insn_chains = 0;
491 /* Allocate an empty insn_chain structure. */
492 struct insn_chain *
493 new_insn_chain (void)
495 struct insn_chain *c;
497 if (unused_insn_chains == 0)
499 c = XOBNEW (&reload_obstack, struct insn_chain);
500 INIT_REG_SET (&c->live_throughout);
501 INIT_REG_SET (&c->dead_or_set);
503 else
505 c = unused_insn_chains;
506 unused_insn_chains = c->next;
508 c->is_caller_save_insn = 0;
509 c->need_operand_change = 0;
510 c->need_reload = 0;
511 c->need_elim = 0;
512 return c;
515 /* Small utility function to set all regs in hard reg set TO which are
516 allocated to pseudos in regset FROM. */
518 void
519 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
521 unsigned int regno;
522 reg_set_iterator rsi;
524 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
526 int r = reg_renumber[regno];
528 if (r < 0)
530 /* reload_combine uses the information from DF_LIVE_IN,
531 which might still contain registers that have not
532 actually been allocated since they have an
533 equivalence. */
534 gcc_assert (ira_conflicts_p || reload_completed);
536 else
537 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
541 /* Replace all pseudos found in LOC with their corresponding
542 equivalences. */
544 static void
545 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
547 rtx x = *loc;
548 enum rtx_code code;
549 const char *fmt;
550 int i, j;
552 if (! x)
553 return;
555 code = GET_CODE (x);
556 if (code == REG)
558 unsigned int regno = REGNO (x);
560 if (regno < FIRST_PSEUDO_REGISTER)
561 return;
563 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
564 if (x != *loc)
566 *loc = x;
567 replace_pseudos_in (loc, mem_mode, usage);
568 return;
571 if (reg_equiv_constant (regno))
572 *loc = reg_equiv_constant (regno);
573 else if (reg_equiv_invariant (regno))
574 *loc = reg_equiv_invariant (regno);
575 else if (reg_equiv_mem (regno))
576 *loc = reg_equiv_mem (regno);
577 else if (reg_equiv_address (regno))
578 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
579 else
581 gcc_assert (!REG_P (regno_reg_rtx[regno])
582 || REGNO (regno_reg_rtx[regno]) != regno);
583 *loc = regno_reg_rtx[regno];
586 return;
588 else if (code == MEM)
590 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
591 return;
594 /* Process each of our operands recursively. */
595 fmt = GET_RTX_FORMAT (code);
596 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
597 if (*fmt == 'e')
598 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
599 else if (*fmt == 'E')
600 for (j = 0; j < XVECLEN (x, i); j++)
601 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
604 /* Determine if the current function has an exception receiver block
605 that reaches the exit block via non-exceptional edges */
607 static bool
608 has_nonexceptional_receiver (void)
610 edge e;
611 edge_iterator ei;
612 basic_block *tos, *worklist, bb;
614 /* If we're not optimizing, then just err on the safe side. */
615 if (!optimize)
616 return true;
618 /* First determine which blocks can reach exit via normal paths. */
619 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
621 FOR_EACH_BB_FN (bb, cfun)
622 bb->flags &= ~BB_REACHABLE;
624 /* Place the exit block on our worklist. */
625 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
626 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
628 /* Iterate: find everything reachable from what we've already seen. */
629 while (tos != worklist)
631 bb = *--tos;
633 FOR_EACH_EDGE (e, ei, bb->preds)
634 if (!(e->flags & EDGE_ABNORMAL))
636 basic_block src = e->src;
638 if (!(src->flags & BB_REACHABLE))
640 src->flags |= BB_REACHABLE;
641 *tos++ = src;
645 free (worklist);
647 /* Now see if there's a reachable block with an exceptional incoming
648 edge. */
649 FOR_EACH_BB_FN (bb, cfun)
650 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
651 return true;
653 /* No exceptional block reached exit unexceptionally. */
654 return false;
657 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
658 zero elements) to MAX_REG_NUM elements.
660 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
661 void
662 grow_reg_equivs (void)
664 int old_size = vec_safe_length (reg_equivs);
665 int max_regno = max_reg_num ();
666 int i;
667 reg_equivs_t ze;
669 memset (&ze, 0, sizeof (reg_equivs_t));
670 vec_safe_reserve (reg_equivs, max_regno);
671 for (i = old_size; i < max_regno; i++)
672 reg_equivs->quick_insert (i, ze);
676 /* Global variables used by reload and its subroutines. */
678 /* The current basic block while in calculate_elim_costs_all_insns. */
679 static basic_block elim_bb;
681 /* Set during calculate_needs if an insn needs register elimination. */
682 static int something_needs_elimination;
683 /* Set during calculate_needs if an insn needs an operand changed. */
684 static int something_needs_operands_changed;
685 /* Set by alter_regs if we spilled a register to the stack. */
686 static bool something_was_spilled;
688 /* Nonzero means we couldn't get enough spill regs. */
689 static int failure;
691 /* Temporary array of pseudo-register number. */
692 static int *temp_pseudo_reg_arr;
694 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
695 If that insn didn't set the register (i.e., it copied the register to
696 memory), just delete that insn instead of the equivalencing insn plus
697 anything now dead. If we call delete_dead_insn on that insn, we may
698 delete the insn that actually sets the register if the register dies
699 there and that is incorrect. */
700 static void
701 remove_init_insns ()
703 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
705 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
707 rtx list;
708 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
710 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
712 /* If we already deleted the insn or if it may trap, we can't
713 delete it. The latter case shouldn't happen, but can
714 if an insn has a variable address, gets a REG_EH_REGION
715 note added to it, and then gets converted into a load
716 from a constant address. */
717 if (NOTE_P (equiv_insn)
718 || can_throw_internal (equiv_insn))
720 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
721 delete_dead_insn (equiv_insn);
722 else
723 SET_INSN_DELETED (equiv_insn);
729 /* Return true if remove_init_insns will delete INSN. */
730 static bool
731 will_delete_init_insn_p (rtx_insn *insn)
733 rtx set = single_set (insn);
734 if (!set || !REG_P (SET_DEST (set)))
735 return false;
736 unsigned regno = REGNO (SET_DEST (set));
738 if (can_throw_internal (insn))
739 return false;
741 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
742 return false;
744 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
746 rtx equiv_insn = XEXP (list, 0);
747 if (equiv_insn == insn)
748 return true;
750 return false;
753 /* Main entry point for the reload pass.
755 FIRST is the first insn of the function being compiled.
757 GLOBAL nonzero means we were called from global_alloc
758 and should attempt to reallocate any pseudoregs that we
759 displace from hard regs we will use for reloads.
760 If GLOBAL is zero, we do not have enough information to do that,
761 so any pseudo reg that is spilled must go to the stack.
763 Return value is TRUE if reload likely left dead insns in the
764 stream and a DCE pass should be run to elimiante them. Else the
765 return value is FALSE. */
767 bool
768 reload (rtx_insn *first, int global)
770 int i, n;
771 rtx_insn *insn;
772 struct elim_table *ep;
773 basic_block bb;
774 bool inserted;
776 /* Make sure even insns with volatile mem refs are recognizable. */
777 init_recog ();
779 failure = 0;
781 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
783 /* Make sure that the last insn in the chain
784 is not something that needs reloading. */
785 emit_note (NOTE_INSN_DELETED);
787 /* Enable find_equiv_reg to distinguish insns made by reload. */
788 reload_first_uid = get_max_uid ();
790 #ifdef SECONDARY_MEMORY_NEEDED
791 /* Initialize the secondary memory table. */
792 clear_secondary_mem ();
793 #endif
795 /* We don't have a stack slot for any spill reg yet. */
796 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
797 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
799 /* Initialize the save area information for caller-save, in case some
800 are needed. */
801 init_save_areas ();
803 /* Compute which hard registers are now in use
804 as homes for pseudo registers.
805 This is done here rather than (eg) in global_alloc
806 because this point is reached even if not optimizing. */
807 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
808 mark_home_live (i);
810 /* A function that has a nonlocal label that can reach the exit
811 block via non-exceptional paths must save all call-saved
812 registers. */
813 if (cfun->has_nonlocal_label
814 && has_nonexceptional_receiver ())
815 crtl->saves_all_registers = 1;
817 if (crtl->saves_all_registers)
818 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
819 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
820 df_set_regs_ever_live (i, true);
822 /* Find all the pseudo registers that didn't get hard regs
823 but do have known equivalent constants or memory slots.
824 These include parameters (known equivalent to parameter slots)
825 and cse'd or loop-moved constant memory addresses.
827 Record constant equivalents in reg_equiv_constant
828 so they will be substituted by find_reloads.
829 Record memory equivalents in reg_mem_equiv so they can
830 be substituted eventually by altering the REG-rtx's. */
832 grow_reg_equivs ();
833 reg_old_renumber = XCNEWVEC (short, max_regno);
834 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
835 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
836 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
838 CLEAR_HARD_REG_SET (bad_spill_regs_global);
840 init_eliminable_invariants (first, true);
841 init_elim_table ();
843 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
844 stack slots to the pseudos that lack hard regs or equivalents.
845 Do not touch virtual registers. */
847 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
848 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
849 temp_pseudo_reg_arr[n++] = i;
851 if (ira_conflicts_p)
852 /* Ask IRA to order pseudo-registers for better stack slot
853 sharing. */
854 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
856 for (i = 0; i < n; i++)
857 alter_reg (temp_pseudo_reg_arr[i], -1, false);
859 /* If we have some registers we think can be eliminated, scan all insns to
860 see if there is an insn that sets one of these registers to something
861 other than itself plus a constant. If so, the register cannot be
862 eliminated. Doing this scan here eliminates an extra pass through the
863 main reload loop in the most common case where register elimination
864 cannot be done. */
865 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
866 if (INSN_P (insn))
867 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
869 maybe_fix_stack_asms ();
871 insns_need_reload = 0;
872 something_needs_elimination = 0;
874 /* Initialize to -1, which means take the first spill register. */
875 last_spill_reg = -1;
877 /* Spill any hard regs that we know we can't eliminate. */
878 CLEAR_HARD_REG_SET (used_spill_regs);
879 /* There can be multiple ways to eliminate a register;
880 they should be listed adjacently.
881 Elimination for any register fails only if all possible ways fail. */
882 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
884 int from = ep->from;
885 int can_eliminate = 0;
888 can_eliminate |= ep->can_eliminate;
889 ep++;
891 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
892 if (! can_eliminate)
893 spill_hard_reg (from, 1);
896 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
897 if (frame_pointer_needed)
898 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
899 #endif
900 finish_spills (global);
902 /* From now on, we may need to generate moves differently. We may also
903 allow modifications of insns which cause them to not be recognized.
904 Any such modifications will be cleaned up during reload itself. */
905 reload_in_progress = 1;
907 /* This loop scans the entire function each go-round
908 and repeats until one repetition spills no additional hard regs. */
909 for (;;)
911 int something_changed;
912 int did_spill;
913 HOST_WIDE_INT starting_frame_size;
915 starting_frame_size = get_frame_size ();
916 something_was_spilled = false;
918 set_initial_elim_offsets ();
919 set_initial_label_offsets ();
921 /* For each pseudo register that has an equivalent location defined,
922 try to eliminate any eliminable registers (such as the frame pointer)
923 assuming initial offsets for the replacement register, which
924 is the normal case.
926 If the resulting location is directly addressable, substitute
927 the MEM we just got directly for the old REG.
929 If it is not addressable but is a constant or the sum of a hard reg
930 and constant, it is probably not addressable because the constant is
931 out of range, in that case record the address; we will generate
932 hairy code to compute the address in a register each time it is
933 needed. Similarly if it is a hard register, but one that is not
934 valid as an address register.
936 If the location is not addressable, but does not have one of the
937 above forms, assign a stack slot. We have to do this to avoid the
938 potential of producing lots of reloads if, e.g., a location involves
939 a pseudo that didn't get a hard register and has an equivalent memory
940 location that also involves a pseudo that didn't get a hard register.
942 Perhaps at some point we will improve reload_when_needed handling
943 so this problem goes away. But that's very hairy. */
945 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
946 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
948 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
949 NULL_RTX);
951 if (strict_memory_address_addr_space_p
952 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
953 MEM_ADDR_SPACE (x)))
954 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
955 else if (CONSTANT_P (XEXP (x, 0))
956 || (REG_P (XEXP (x, 0))
957 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
958 || (GET_CODE (XEXP (x, 0)) == PLUS
959 && REG_P (XEXP (XEXP (x, 0), 0))
960 && (REGNO (XEXP (XEXP (x, 0), 0))
961 < FIRST_PSEUDO_REGISTER)
962 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
963 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
964 else
966 /* Make a new stack slot. Then indicate that something
967 changed so we go back and recompute offsets for
968 eliminable registers because the allocation of memory
969 below might change some offset. reg_equiv_{mem,address}
970 will be set up for this pseudo on the next pass around
971 the loop. */
972 reg_equiv_memory_loc (i) = 0;
973 reg_equiv_init (i) = 0;
974 alter_reg (i, -1, true);
978 if (caller_save_needed)
979 setup_save_areas ();
981 if (starting_frame_size && crtl->stack_alignment_needed)
983 /* If we have a stack frame, we must align it now. The
984 stack size may be a part of the offset computation for
985 register elimination. So if this changes the stack size,
986 then repeat the elimination bookkeeping. We don't
987 realign when there is no stack, as that will cause a
988 stack frame when none is needed should
989 STARTING_FRAME_OFFSET not be already aligned to
990 STACK_BOUNDARY. */
991 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
993 /* If we allocated another stack slot, redo elimination bookkeeping. */
994 if (something_was_spilled || starting_frame_size != get_frame_size ())
996 update_eliminables_and_spill ();
997 continue;
1000 if (caller_save_needed)
1002 save_call_clobbered_regs ();
1003 /* That might have allocated new insn_chain structures. */
1004 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1007 calculate_needs_all_insns (global);
1009 if (! ira_conflicts_p)
1010 /* Don't do it for IRA. We need this info because we don't
1011 change live_throughout and dead_or_set for chains when IRA
1012 is used. */
1013 CLEAR_REG_SET (&spilled_pseudos);
1015 did_spill = 0;
1017 something_changed = 0;
1019 /* If we allocated any new memory locations, make another pass
1020 since it might have changed elimination offsets. */
1021 if (something_was_spilled || starting_frame_size != get_frame_size ())
1022 something_changed = 1;
1024 /* Even if the frame size remained the same, we might still have
1025 changed elimination offsets, e.g. if find_reloads called
1026 force_const_mem requiring the back end to allocate a constant
1027 pool base register that needs to be saved on the stack. */
1028 else if (!verify_initial_elim_offsets ())
1029 something_changed = 1;
1031 if (update_eliminables_and_spill ())
1033 did_spill = 1;
1034 something_changed = 1;
1037 select_reload_regs ();
1038 if (failure)
1039 goto failed;
1041 if (insns_need_reload != 0 || did_spill)
1042 something_changed |= finish_spills (global);
1044 if (! something_changed)
1045 break;
1047 if (caller_save_needed)
1048 delete_caller_save_insns ();
1050 obstack_free (&reload_obstack, reload_firstobj);
1053 /* If global-alloc was run, notify it of any register eliminations we have
1054 done. */
1055 if (global)
1056 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1057 if (ep->can_eliminate)
1058 mark_elimination (ep->from, ep->to);
1060 remove_init_insns ();
1062 /* Use the reload registers where necessary
1063 by generating move instructions to move the must-be-register
1064 values into or out of the reload registers. */
1066 if (insns_need_reload != 0 || something_needs_elimination
1067 || something_needs_operands_changed)
1069 HOST_WIDE_INT old_frame_size = get_frame_size ();
1071 reload_as_needed (global);
1073 gcc_assert (old_frame_size == get_frame_size ());
1075 gcc_assert (verify_initial_elim_offsets ());
1078 /* If we were able to eliminate the frame pointer, show that it is no
1079 longer live at the start of any basic block. If it ls live by
1080 virtue of being in a pseudo, that pseudo will be marked live
1081 and hence the frame pointer will be known to be live via that
1082 pseudo. */
1084 if (! frame_pointer_needed)
1085 FOR_EACH_BB_FN (bb, cfun)
1086 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1088 /* Come here (with failure set nonzero) if we can't get enough spill
1089 regs. */
1090 failed:
1092 CLEAR_REG_SET (&changed_allocation_pseudos);
1093 CLEAR_REG_SET (&spilled_pseudos);
1094 reload_in_progress = 0;
1096 /* Now eliminate all pseudo regs by modifying them into
1097 their equivalent memory references.
1098 The REG-rtx's for the pseudos are modified in place,
1099 so all insns that used to refer to them now refer to memory.
1101 For a reg that has a reg_equiv_address, all those insns
1102 were changed by reloading so that no insns refer to it any longer;
1103 but the DECL_RTL of a variable decl may refer to it,
1104 and if so this causes the debugging info to mention the variable. */
1106 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1108 rtx addr = 0;
1110 if (reg_equiv_mem (i))
1111 addr = XEXP (reg_equiv_mem (i), 0);
1113 if (reg_equiv_address (i))
1114 addr = reg_equiv_address (i);
1116 if (addr)
1118 if (reg_renumber[i] < 0)
1120 rtx reg = regno_reg_rtx[i];
1122 REG_USERVAR_P (reg) = 0;
1123 PUT_CODE (reg, MEM);
1124 XEXP (reg, 0) = addr;
1125 if (reg_equiv_memory_loc (i))
1126 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1127 else
1128 MEM_ATTRS (reg) = 0;
1129 MEM_NOTRAP_P (reg) = 1;
1131 else if (reg_equiv_mem (i))
1132 XEXP (reg_equiv_mem (i), 0) = addr;
1135 /* We don't want complex addressing modes in debug insns
1136 if simpler ones will do, so delegitimize equivalences
1137 in debug insns. */
1138 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1140 rtx reg = regno_reg_rtx[i];
1141 rtx equiv = 0;
1142 df_ref use, next;
1144 if (reg_equiv_constant (i))
1145 equiv = reg_equiv_constant (i);
1146 else if (reg_equiv_invariant (i))
1147 equiv = reg_equiv_invariant (i);
1148 else if (reg && MEM_P (reg))
1149 equiv = targetm.delegitimize_address (reg);
1150 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1151 equiv = reg;
1153 if (equiv == reg)
1154 continue;
1156 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1158 insn = DF_REF_INSN (use);
1160 /* Make sure the next ref is for a different instruction,
1161 so that we're not affected by the rescan. */
1162 next = DF_REF_NEXT_REG (use);
1163 while (next && DF_REF_INSN (next) == insn)
1164 next = DF_REF_NEXT_REG (next);
1166 if (DEBUG_INSN_P (insn))
1168 if (!equiv)
1170 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1171 df_insn_rescan_debug_internal (insn);
1173 else
1174 INSN_VAR_LOCATION_LOC (insn)
1175 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1176 reg, equiv);
1182 /* We must set reload_completed now since the cleanup_subreg_operands call
1183 below will re-recognize each insn and reload may have generated insns
1184 which are only valid during and after reload. */
1185 reload_completed = 1;
1187 /* Make a pass over all the insns and delete all USEs which we inserted
1188 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1189 notes. Delete all CLOBBER insns, except those that refer to the return
1190 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1191 from misarranging variable-array code, and simplify (subreg (reg))
1192 operands. Strip and regenerate REG_INC notes that may have been moved
1193 around. */
1195 for (insn = first; insn; insn = NEXT_INSN (insn))
1196 if (INSN_P (insn))
1198 rtx *pnote;
1200 if (CALL_P (insn))
1201 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1202 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1204 if ((GET_CODE (PATTERN (insn)) == USE
1205 /* We mark with QImode USEs introduced by reload itself. */
1206 && (GET_MODE (insn) == QImode
1207 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1208 || (GET_CODE (PATTERN (insn)) == CLOBBER
1209 && (!MEM_P (XEXP (PATTERN (insn), 0))
1210 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1211 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1212 && XEXP (XEXP (PATTERN (insn), 0), 0)
1213 != stack_pointer_rtx))
1214 && (!REG_P (XEXP (PATTERN (insn), 0))
1215 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1217 delete_insn (insn);
1218 continue;
1221 /* Some CLOBBERs may survive until here and still reference unassigned
1222 pseudos with const equivalent, which may in turn cause ICE in later
1223 passes if the reference remains in place. */
1224 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1225 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1226 VOIDmode, PATTERN (insn));
1228 /* Discard obvious no-ops, even without -O. This optimization
1229 is fast and doesn't interfere with debugging. */
1230 if (NONJUMP_INSN_P (insn)
1231 && GET_CODE (PATTERN (insn)) == SET
1232 && REG_P (SET_SRC (PATTERN (insn)))
1233 && REG_P (SET_DEST (PATTERN (insn)))
1234 && (REGNO (SET_SRC (PATTERN (insn)))
1235 == REGNO (SET_DEST (PATTERN (insn)))))
1237 delete_insn (insn);
1238 continue;
1241 pnote = &REG_NOTES (insn);
1242 while (*pnote != 0)
1244 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1245 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1246 || REG_NOTE_KIND (*pnote) == REG_INC)
1247 *pnote = XEXP (*pnote, 1);
1248 else
1249 pnote = &XEXP (*pnote, 1);
1252 #ifdef AUTO_INC_DEC
1253 add_auto_inc_notes (insn, PATTERN (insn));
1254 #endif
1256 /* Simplify (subreg (reg)) if it appears as an operand. */
1257 cleanup_subreg_operands (insn);
1259 /* Clean up invalid ASMs so that they don't confuse later passes.
1260 See PR 21299. */
1261 if (asm_noperands (PATTERN (insn)) >= 0)
1263 extract_insn (insn);
1264 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1266 error_for_asm (insn,
1267 "%<asm%> operand has impossible constraints");
1268 delete_insn (insn);
1269 continue;
1274 /* If we are doing generic stack checking, give a warning if this
1275 function's frame size is larger than we expect. */
1276 if (flag_stack_check == GENERIC_STACK_CHECK)
1278 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1279 static int verbose_warned = 0;
1281 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1282 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1283 size += UNITS_PER_WORD;
1285 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1287 warning (0, "frame size too large for reliable stack checking");
1288 if (! verbose_warned)
1290 warning (0, "try reducing the number of local variables");
1291 verbose_warned = 1;
1296 free (temp_pseudo_reg_arr);
1298 /* Indicate that we no longer have known memory locations or constants. */
1299 free_reg_equiv ();
1301 free (reg_max_ref_width);
1302 free (reg_old_renumber);
1303 free (pseudo_previous_regs);
1304 free (pseudo_forbidden_regs);
1306 CLEAR_HARD_REG_SET (used_spill_regs);
1307 for (i = 0; i < n_spills; i++)
1308 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1310 /* Free all the insn_chain structures at once. */
1311 obstack_free (&reload_obstack, reload_startobj);
1312 unused_insn_chains = 0;
1314 inserted = fixup_abnormal_edges ();
1316 /* We've possibly turned single trapping insn into multiple ones. */
1317 if (cfun->can_throw_non_call_exceptions)
1319 sbitmap blocks;
1320 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
1321 bitmap_ones (blocks);
1322 find_many_sub_basic_blocks (blocks);
1323 sbitmap_free (blocks);
1326 if (inserted)
1327 commit_edge_insertions ();
1329 /* Replacing pseudos with their memory equivalents might have
1330 created shared rtx. Subsequent passes would get confused
1331 by this, so unshare everything here. */
1332 unshare_all_rtl_again (first);
1334 #ifdef STACK_BOUNDARY
1335 /* init_emit has set the alignment of the hard frame pointer
1336 to STACK_BOUNDARY. It is very likely no longer valid if
1337 the hard frame pointer was used for register allocation. */
1338 if (!frame_pointer_needed)
1339 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1340 #endif
1342 substitute_stack.release ();
1344 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1346 reload_completed = !failure;
1348 return need_dce;
1351 /* Yet another special case. Unfortunately, reg-stack forces people to
1352 write incorrect clobbers in asm statements. These clobbers must not
1353 cause the register to appear in bad_spill_regs, otherwise we'll call
1354 fatal_insn later. We clear the corresponding regnos in the live
1355 register sets to avoid this.
1356 The whole thing is rather sick, I'm afraid. */
1358 static void
1359 maybe_fix_stack_asms (void)
1361 #ifdef STACK_REGS
1362 const char *constraints[MAX_RECOG_OPERANDS];
1363 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1364 struct insn_chain *chain;
1366 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1368 int i, noperands;
1369 HARD_REG_SET clobbered, allowed;
1370 rtx pat;
1372 if (! INSN_P (chain->insn)
1373 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1374 continue;
1375 pat = PATTERN (chain->insn);
1376 if (GET_CODE (pat) != PARALLEL)
1377 continue;
1379 CLEAR_HARD_REG_SET (clobbered);
1380 CLEAR_HARD_REG_SET (allowed);
1382 /* First, make a mask of all stack regs that are clobbered. */
1383 for (i = 0; i < XVECLEN (pat, 0); i++)
1385 rtx t = XVECEXP (pat, 0, i);
1386 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1387 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1390 /* Get the operand values and constraints out of the insn. */
1391 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1392 constraints, operand_mode, NULL);
1394 /* For every operand, see what registers are allowed. */
1395 for (i = 0; i < noperands; i++)
1397 const char *p = constraints[i];
1398 /* For every alternative, we compute the class of registers allowed
1399 for reloading in CLS, and merge its contents into the reg set
1400 ALLOWED. */
1401 int cls = (int) NO_REGS;
1403 for (;;)
1405 char c = *p;
1407 if (c == '\0' || c == ',' || c == '#')
1409 /* End of one alternative - mark the regs in the current
1410 class, and reset the class. */
1411 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1412 cls = NO_REGS;
1413 p++;
1414 if (c == '#')
1415 do {
1416 c = *p++;
1417 } while (c != '\0' && c != ',');
1418 if (c == '\0')
1419 break;
1420 continue;
1423 switch (c)
1425 case 'g':
1426 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1427 break;
1429 default:
1430 enum constraint_num cn = lookup_constraint (p);
1431 if (insn_extra_address_constraint (cn))
1432 cls = (int) reg_class_subunion[cls]
1433 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1434 ADDRESS, SCRATCH)];
1435 else
1436 cls = (int) reg_class_subunion[cls]
1437 [reg_class_for_constraint (cn)];
1438 break;
1440 p += CONSTRAINT_LEN (c, p);
1443 /* Those of the registers which are clobbered, but allowed by the
1444 constraints, must be usable as reload registers. So clear them
1445 out of the life information. */
1446 AND_HARD_REG_SET (allowed, clobbered);
1447 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1448 if (TEST_HARD_REG_BIT (allowed, i))
1450 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1451 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1455 #endif
1458 /* Copy the global variables n_reloads and rld into the corresponding elts
1459 of CHAIN. */
1460 static void
1461 copy_reloads (struct insn_chain *chain)
1463 chain->n_reloads = n_reloads;
1464 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1465 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1466 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1469 /* Walk the chain of insns, and determine for each whether it needs reloads
1470 and/or eliminations. Build the corresponding insns_need_reload list, and
1471 set something_needs_elimination as appropriate. */
1472 static void
1473 calculate_needs_all_insns (int global)
1475 struct insn_chain **pprev_reload = &insns_need_reload;
1476 struct insn_chain *chain, *next = 0;
1478 something_needs_elimination = 0;
1480 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1481 for (chain = reload_insn_chain; chain != 0; chain = next)
1483 rtx_insn *insn = chain->insn;
1485 next = chain->next;
1487 /* Clear out the shortcuts. */
1488 chain->n_reloads = 0;
1489 chain->need_elim = 0;
1490 chain->need_reload = 0;
1491 chain->need_operand_change = 0;
1493 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1494 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1495 what effects this has on the known offsets at labels. */
1497 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1498 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1499 set_label_offsets (insn, insn, 0);
1501 if (INSN_P (insn))
1503 rtx old_body = PATTERN (insn);
1504 int old_code = INSN_CODE (insn);
1505 rtx old_notes = REG_NOTES (insn);
1506 int did_elimination = 0;
1507 int operands_changed = 0;
1509 /* Skip insns that only set an equivalence. */
1510 if (will_delete_init_insn_p (insn))
1511 continue;
1513 /* If needed, eliminate any eliminable registers. */
1514 if (num_eliminable || num_eliminable_invariants)
1515 did_elimination = eliminate_regs_in_insn (insn, 0);
1517 /* Analyze the instruction. */
1518 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1519 global, spill_reg_order);
1521 /* If a no-op set needs more than one reload, this is likely
1522 to be something that needs input address reloads. We
1523 can't get rid of this cleanly later, and it is of no use
1524 anyway, so discard it now.
1525 We only do this when expensive_optimizations is enabled,
1526 since this complements reload inheritance / output
1527 reload deletion, and it can make debugging harder. */
1528 if (flag_expensive_optimizations && n_reloads > 1)
1530 rtx set = single_set (insn);
1531 if (set
1533 ((SET_SRC (set) == SET_DEST (set)
1534 && REG_P (SET_SRC (set))
1535 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1536 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1537 && reg_renumber[REGNO (SET_SRC (set))] < 0
1538 && reg_renumber[REGNO (SET_DEST (set))] < 0
1539 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1540 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1541 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1542 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1544 if (ira_conflicts_p)
1545 /* Inform IRA about the insn deletion. */
1546 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1547 REGNO (SET_SRC (set)));
1548 delete_insn (insn);
1549 /* Delete it from the reload chain. */
1550 if (chain->prev)
1551 chain->prev->next = next;
1552 else
1553 reload_insn_chain = next;
1554 if (next)
1555 next->prev = chain->prev;
1556 chain->next = unused_insn_chains;
1557 unused_insn_chains = chain;
1558 continue;
1561 if (num_eliminable)
1562 update_eliminable_offsets ();
1564 /* Remember for later shortcuts which insns had any reloads or
1565 register eliminations. */
1566 chain->need_elim = did_elimination;
1567 chain->need_reload = n_reloads > 0;
1568 chain->need_operand_change = operands_changed;
1570 /* Discard any register replacements done. */
1571 if (did_elimination)
1573 obstack_free (&reload_obstack, reload_insn_firstobj);
1574 PATTERN (insn) = old_body;
1575 INSN_CODE (insn) = old_code;
1576 REG_NOTES (insn) = old_notes;
1577 something_needs_elimination = 1;
1580 something_needs_operands_changed |= operands_changed;
1582 if (n_reloads != 0)
1584 copy_reloads (chain);
1585 *pprev_reload = chain;
1586 pprev_reload = &chain->next_need_reload;
1590 *pprev_reload = 0;
1593 /* This function is called from the register allocator to set up estimates
1594 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1595 an invariant. The structure is similar to calculate_needs_all_insns. */
1597 void
1598 calculate_elim_costs_all_insns (void)
1600 int *reg_equiv_init_cost;
1601 basic_block bb;
1602 int i;
1604 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1605 init_elim_table ();
1606 init_eliminable_invariants (get_insns (), false);
1608 set_initial_elim_offsets ();
1609 set_initial_label_offsets ();
1611 FOR_EACH_BB_FN (bb, cfun)
1613 rtx_insn *insn;
1614 elim_bb = bb;
1616 FOR_BB_INSNS (bb, insn)
1618 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1619 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1620 what effects this has on the known offsets at labels. */
1622 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1623 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1624 set_label_offsets (insn, insn, 0);
1626 if (INSN_P (insn))
1628 rtx set = single_set (insn);
1630 /* Skip insns that only set an equivalence. */
1631 if (set && REG_P (SET_DEST (set))
1632 && reg_renumber[REGNO (SET_DEST (set))] < 0
1633 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1634 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1636 unsigned regno = REGNO (SET_DEST (set));
1637 rtx init = reg_equiv_init (regno);
1638 if (init)
1640 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1641 false, true);
1642 int cost = set_src_cost (t, optimize_bb_for_speed_p (bb));
1643 int freq = REG_FREQ_FROM_BB (bb);
1645 reg_equiv_init_cost[regno] = cost * freq;
1646 continue;
1649 /* If needed, eliminate any eliminable registers. */
1650 if (num_eliminable || num_eliminable_invariants)
1651 elimination_costs_in_insn (insn);
1653 if (num_eliminable)
1654 update_eliminable_offsets ();
1658 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1660 if (reg_equiv_invariant (i))
1662 if (reg_equiv_init (i))
1664 int cost = reg_equiv_init_cost[i];
1665 if (dump_file)
1666 fprintf (dump_file,
1667 "Reg %d has equivalence, initial gains %d\n", i, cost);
1668 if (cost != 0)
1669 ira_adjust_equiv_reg_cost (i, cost);
1671 else
1673 if (dump_file)
1674 fprintf (dump_file,
1675 "Reg %d had equivalence, but can't be eliminated\n",
1677 ira_adjust_equiv_reg_cost (i, 0);
1682 free (reg_equiv_init_cost);
1683 free (offsets_known_at);
1684 free (offsets_at);
1685 offsets_at = NULL;
1686 offsets_known_at = NULL;
1689 /* Comparison function for qsort to decide which of two reloads
1690 should be handled first. *P1 and *P2 are the reload numbers. */
1692 static int
1693 reload_reg_class_lower (const void *r1p, const void *r2p)
1695 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1696 int t;
1698 /* Consider required reloads before optional ones. */
1699 t = rld[r1].optional - rld[r2].optional;
1700 if (t != 0)
1701 return t;
1703 /* Count all solitary classes before non-solitary ones. */
1704 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1705 - (reg_class_size[(int) rld[r1].rclass] == 1));
1706 if (t != 0)
1707 return t;
1709 /* Aside from solitaires, consider all multi-reg groups first. */
1710 t = rld[r2].nregs - rld[r1].nregs;
1711 if (t != 0)
1712 return t;
1714 /* Consider reloads in order of increasing reg-class number. */
1715 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1716 if (t != 0)
1717 return t;
1719 /* If reloads are equally urgent, sort by reload number,
1720 so that the results of qsort leave nothing to chance. */
1721 return r1 - r2;
1724 /* The cost of spilling each hard reg. */
1725 static int spill_cost[FIRST_PSEUDO_REGISTER];
1727 /* When spilling multiple hard registers, we use SPILL_COST for the first
1728 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1729 only the first hard reg for a multi-reg pseudo. */
1730 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1732 /* Map of hard regno to pseudo regno currently occupying the hard
1733 reg. */
1734 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1736 /* Update the spill cost arrays, considering that pseudo REG is live. */
1738 static void
1739 count_pseudo (int reg)
1741 int freq = REG_FREQ (reg);
1742 int r = reg_renumber[reg];
1743 int nregs;
1745 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1746 if (ira_conflicts_p && r < 0)
1747 return;
1749 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1750 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1751 return;
1753 SET_REGNO_REG_SET (&pseudos_counted, reg);
1755 gcc_assert (r >= 0);
1757 spill_add_cost[r] += freq;
1758 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1759 while (nregs-- > 0)
1761 hard_regno_to_pseudo_regno[r + nregs] = reg;
1762 spill_cost[r + nregs] += freq;
1766 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1767 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1769 static void
1770 order_regs_for_reload (struct insn_chain *chain)
1772 unsigned i;
1773 HARD_REG_SET used_by_pseudos;
1774 HARD_REG_SET used_by_pseudos2;
1775 reg_set_iterator rsi;
1777 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1779 memset (spill_cost, 0, sizeof spill_cost);
1780 memset (spill_add_cost, 0, sizeof spill_add_cost);
1781 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1782 hard_regno_to_pseudo_regno[i] = -1;
1784 /* Count number of uses of each hard reg by pseudo regs allocated to it
1785 and then order them by decreasing use. First exclude hard registers
1786 that are live in or across this insn. */
1788 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1789 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1790 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1791 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1793 /* Now find out which pseudos are allocated to it, and update
1794 hard_reg_n_uses. */
1795 CLEAR_REG_SET (&pseudos_counted);
1797 EXECUTE_IF_SET_IN_REG_SET
1798 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1800 count_pseudo (i);
1802 EXECUTE_IF_SET_IN_REG_SET
1803 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1805 count_pseudo (i);
1807 CLEAR_REG_SET (&pseudos_counted);
1810 /* Vector of reload-numbers showing the order in which the reloads should
1811 be processed. */
1812 static short reload_order[MAX_RELOADS];
1814 /* This is used to keep track of the spill regs used in one insn. */
1815 static HARD_REG_SET used_spill_regs_local;
1817 /* We decided to spill hard register SPILLED, which has a size of
1818 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1819 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1820 update SPILL_COST/SPILL_ADD_COST. */
1822 static void
1823 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1825 int freq = REG_FREQ (reg);
1826 int r = reg_renumber[reg];
1827 int nregs;
1829 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1830 if (ira_conflicts_p && r < 0)
1831 return;
1833 gcc_assert (r >= 0);
1835 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1837 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1838 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1839 return;
1841 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1843 spill_add_cost[r] -= freq;
1844 while (nregs-- > 0)
1846 hard_regno_to_pseudo_regno[r + nregs] = -1;
1847 spill_cost[r + nregs] -= freq;
1851 /* Find reload register to use for reload number ORDER. */
1853 static int
1854 find_reg (struct insn_chain *chain, int order)
1856 int rnum = reload_order[order];
1857 struct reload *rl = rld + rnum;
1858 int best_cost = INT_MAX;
1859 int best_reg = -1;
1860 unsigned int i, j, n;
1861 int k;
1862 HARD_REG_SET not_usable;
1863 HARD_REG_SET used_by_other_reload;
1864 reg_set_iterator rsi;
1865 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1866 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1868 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1869 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1870 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1872 CLEAR_HARD_REG_SET (used_by_other_reload);
1873 for (k = 0; k < order; k++)
1875 int other = reload_order[k];
1877 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1878 for (j = 0; j < rld[other].nregs; j++)
1879 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1882 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1884 #ifdef REG_ALLOC_ORDER
1885 unsigned int regno = reg_alloc_order[i];
1886 #else
1887 unsigned int regno = i;
1888 #endif
1890 if (! TEST_HARD_REG_BIT (not_usable, regno)
1891 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1892 && HARD_REGNO_MODE_OK (regno, rl->mode))
1894 int this_cost = spill_cost[regno];
1895 int ok = 1;
1896 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1898 for (j = 1; j < this_nregs; j++)
1900 this_cost += spill_add_cost[regno + j];
1901 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1902 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1903 ok = 0;
1905 if (! ok)
1906 continue;
1908 if (ira_conflicts_p)
1910 /* Ask IRA to find a better pseudo-register for
1911 spilling. */
1912 for (n = j = 0; j < this_nregs; j++)
1914 int r = hard_regno_to_pseudo_regno[regno + j];
1916 if (r < 0)
1917 continue;
1918 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1919 regno_pseudo_regs[n++] = r;
1921 regno_pseudo_regs[n++] = -1;
1922 if (best_reg < 0
1923 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1924 best_regno_pseudo_regs,
1925 rl->in, rl->out,
1926 chain->insn))
1928 best_reg = regno;
1929 for (j = 0;; j++)
1931 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1932 if (regno_pseudo_regs[j] < 0)
1933 break;
1936 continue;
1939 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1940 this_cost--;
1941 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1942 this_cost--;
1943 if (this_cost < best_cost
1944 /* Among registers with equal cost, prefer caller-saved ones, or
1945 use REG_ALLOC_ORDER if it is defined. */
1946 || (this_cost == best_cost
1947 #ifdef REG_ALLOC_ORDER
1948 && (inv_reg_alloc_order[regno]
1949 < inv_reg_alloc_order[best_reg])
1950 #else
1951 && call_used_regs[regno]
1952 && ! call_used_regs[best_reg]
1953 #endif
1956 best_reg = regno;
1957 best_cost = this_cost;
1961 if (best_reg == -1)
1962 return 0;
1964 if (dump_file)
1965 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1967 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1968 rl->regno = best_reg;
1970 EXECUTE_IF_SET_IN_REG_SET
1971 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1973 count_spilled_pseudo (best_reg, rl->nregs, j);
1976 EXECUTE_IF_SET_IN_REG_SET
1977 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1979 count_spilled_pseudo (best_reg, rl->nregs, j);
1982 for (i = 0; i < rl->nregs; i++)
1984 gcc_assert (spill_cost[best_reg + i] == 0);
1985 gcc_assert (spill_add_cost[best_reg + i] == 0);
1986 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1987 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1989 return 1;
1992 /* Find more reload regs to satisfy the remaining need of an insn, which
1993 is given by CHAIN.
1994 Do it by ascending class number, since otherwise a reg
1995 might be spilled for a big class and might fail to count
1996 for a smaller class even though it belongs to that class. */
1998 static void
1999 find_reload_regs (struct insn_chain *chain)
2001 int i;
2003 /* In order to be certain of getting the registers we need,
2004 we must sort the reloads into order of increasing register class.
2005 Then our grabbing of reload registers will parallel the process
2006 that provided the reload registers. */
2007 for (i = 0; i < chain->n_reloads; i++)
2009 /* Show whether this reload already has a hard reg. */
2010 if (chain->rld[i].reg_rtx)
2012 int regno = REGNO (chain->rld[i].reg_rtx);
2013 chain->rld[i].regno = regno;
2014 chain->rld[i].nregs
2015 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
2017 else
2018 chain->rld[i].regno = -1;
2019 reload_order[i] = i;
2022 n_reloads = chain->n_reloads;
2023 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
2025 CLEAR_HARD_REG_SET (used_spill_regs_local);
2027 if (dump_file)
2028 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2030 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2032 /* Compute the order of preference for hard registers to spill. */
2034 order_regs_for_reload (chain);
2036 for (i = 0; i < n_reloads; i++)
2038 int r = reload_order[i];
2040 /* Ignore reloads that got marked inoperative. */
2041 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2042 && ! rld[r].optional
2043 && rld[r].regno == -1)
2044 if (! find_reg (chain, i))
2046 if (dump_file)
2047 fprintf (dump_file, "reload failure for reload %d\n", r);
2048 spill_failure (chain->insn, rld[r].rclass);
2049 failure = 1;
2050 return;
2054 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2055 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2057 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2060 static void
2061 select_reload_regs (void)
2063 struct insn_chain *chain;
2065 /* Try to satisfy the needs for each insn. */
2066 for (chain = insns_need_reload; chain != 0;
2067 chain = chain->next_need_reload)
2068 find_reload_regs (chain);
2071 /* Delete all insns that were inserted by emit_caller_save_insns during
2072 this iteration. */
2073 static void
2074 delete_caller_save_insns (void)
2076 struct insn_chain *c = reload_insn_chain;
2078 while (c != 0)
2080 while (c != 0 && c->is_caller_save_insn)
2082 struct insn_chain *next = c->next;
2083 rtx_insn *insn = c->insn;
2085 if (c == reload_insn_chain)
2086 reload_insn_chain = next;
2087 delete_insn (insn);
2089 if (next)
2090 next->prev = c->prev;
2091 if (c->prev)
2092 c->prev->next = next;
2093 c->next = unused_insn_chains;
2094 unused_insn_chains = c;
2095 c = next;
2097 if (c != 0)
2098 c = c->next;
2102 /* Handle the failure to find a register to spill.
2103 INSN should be one of the insns which needed this particular spill reg. */
2105 static void
2106 spill_failure (rtx_insn *insn, enum reg_class rclass)
2108 if (asm_noperands (PATTERN (insn)) >= 0)
2109 error_for_asm (insn, "can%'t find a register in class %qs while "
2110 "reloading %<asm%>",
2111 reg_class_names[rclass]);
2112 else
2114 error ("unable to find a register to spill in class %qs",
2115 reg_class_names[rclass]);
2117 if (dump_file)
2119 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2120 debug_reload_to_stream (dump_file);
2122 fatal_insn ("this is the insn:", insn);
2126 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2127 data that is dead in INSN. */
2129 static void
2130 delete_dead_insn (rtx_insn *insn)
2132 rtx_insn *prev = prev_active_insn (insn);
2133 rtx prev_dest;
2135 /* If the previous insn sets a register that dies in our insn make
2136 a note that we want to run DCE immediately after reload.
2138 We used to delete the previous insn & recurse, but that's wrong for
2139 block local equivalences. Instead of trying to figure out the exact
2140 circumstances where we can delete the potentially dead insns, just
2141 let DCE do the job. */
2142 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2143 && GET_CODE (PATTERN (prev)) == SET
2144 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2145 && reg_mentioned_p (prev_dest, PATTERN (insn))
2146 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2147 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2148 need_dce = 1;
2150 SET_INSN_DELETED (insn);
2153 /* Modify the home of pseudo-reg I.
2154 The new home is present in reg_renumber[I].
2156 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2157 or it may be -1, meaning there is none or it is not relevant.
2158 This is used so that all pseudos spilled from a given hard reg
2159 can share one stack slot. */
2161 static void
2162 alter_reg (int i, int from_reg, bool dont_share_p)
2164 /* When outputting an inline function, this can happen
2165 for a reg that isn't actually used. */
2166 if (regno_reg_rtx[i] == 0)
2167 return;
2169 /* If the reg got changed to a MEM at rtl-generation time,
2170 ignore it. */
2171 if (!REG_P (regno_reg_rtx[i]))
2172 return;
2174 /* Modify the reg-rtx to contain the new hard reg
2175 number or else to contain its pseudo reg number. */
2176 SET_REGNO (regno_reg_rtx[i],
2177 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2179 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2180 allocate a stack slot for it. */
2182 if (reg_renumber[i] < 0
2183 && REG_N_REFS (i) > 0
2184 && reg_equiv_constant (i) == 0
2185 && (reg_equiv_invariant (i) == 0
2186 || reg_equiv_init (i) == 0)
2187 && reg_equiv_memory_loc (i) == 0)
2189 rtx x = NULL_RTX;
2190 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2191 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2192 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2193 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2194 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2195 int adjust = 0;
2197 something_was_spilled = true;
2199 if (ira_conflicts_p)
2201 /* Mark the spill for IRA. */
2202 SET_REGNO_REG_SET (&spilled_pseudos, i);
2203 if (!dont_share_p)
2204 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2207 if (x)
2210 /* Each pseudo reg has an inherent size which comes from its own mode,
2211 and a total size which provides room for paradoxical subregs
2212 which refer to the pseudo reg in wider modes.
2214 We can use a slot already allocated if it provides both
2215 enough inherent space and enough total space.
2216 Otherwise, we allocate a new slot, making sure that it has no less
2217 inherent space, and no less total space, then the previous slot. */
2218 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2220 rtx stack_slot;
2222 /* No known place to spill from => no slot to reuse. */
2223 x = assign_stack_local (mode, total_size,
2224 min_align > inherent_align
2225 || total_size > inherent_size ? -1 : 0);
2227 stack_slot = x;
2229 /* Cancel the big-endian correction done in assign_stack_local.
2230 Get the address of the beginning of the slot. This is so we
2231 can do a big-endian correction unconditionally below. */
2232 if (BYTES_BIG_ENDIAN)
2234 adjust = inherent_size - total_size;
2235 if (adjust)
2236 stack_slot
2237 = adjust_address_nv (x, mode_for_size (total_size
2238 * BITS_PER_UNIT,
2239 MODE_INT, 1),
2240 adjust);
2243 if (! dont_share_p && ira_conflicts_p)
2244 /* Inform IRA about allocation a new stack slot. */
2245 ira_mark_new_stack_slot (stack_slot, i, total_size);
2248 /* Reuse a stack slot if possible. */
2249 else if (spill_stack_slot[from_reg] != 0
2250 && spill_stack_slot_width[from_reg] >= total_size
2251 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2252 >= inherent_size)
2253 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2254 x = spill_stack_slot[from_reg];
2256 /* Allocate a bigger slot. */
2257 else
2259 /* Compute maximum size needed, both for inherent size
2260 and for total size. */
2261 rtx stack_slot;
2263 if (spill_stack_slot[from_reg])
2265 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2266 > inherent_size)
2267 mode = GET_MODE (spill_stack_slot[from_reg]);
2268 if (spill_stack_slot_width[from_reg] > total_size)
2269 total_size = spill_stack_slot_width[from_reg];
2270 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2271 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2274 /* Make a slot with that size. */
2275 x = assign_stack_local (mode, total_size,
2276 min_align > inherent_align
2277 || total_size > inherent_size ? -1 : 0);
2278 stack_slot = x;
2280 /* Cancel the big-endian correction done in assign_stack_local.
2281 Get the address of the beginning of the slot. This is so we
2282 can do a big-endian correction unconditionally below. */
2283 if (BYTES_BIG_ENDIAN)
2285 adjust = GET_MODE_SIZE (mode) - total_size;
2286 if (adjust)
2287 stack_slot
2288 = adjust_address_nv (x, mode_for_size (total_size
2289 * BITS_PER_UNIT,
2290 MODE_INT, 1),
2291 adjust);
2294 spill_stack_slot[from_reg] = stack_slot;
2295 spill_stack_slot_width[from_reg] = total_size;
2298 /* On a big endian machine, the "address" of the slot
2299 is the address of the low part that fits its inherent mode. */
2300 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2301 adjust += (total_size - inherent_size);
2303 /* If we have any adjustment to make, or if the stack slot is the
2304 wrong mode, make a new stack slot. */
2305 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2307 /* Set all of the memory attributes as appropriate for a spill. */
2308 set_mem_attrs_for_spill (x);
2310 /* Save the stack slot for later. */
2311 reg_equiv_memory_loc (i) = x;
2315 /* Mark the slots in regs_ever_live for the hard regs used by
2316 pseudo-reg number REGNO, accessed in MODE. */
2318 static void
2319 mark_home_live_1 (int regno, enum machine_mode mode)
2321 int i, lim;
2323 i = reg_renumber[regno];
2324 if (i < 0)
2325 return;
2326 lim = end_hard_regno (mode, i);
2327 while (i < lim)
2328 df_set_regs_ever_live (i++, true);
2331 /* Mark the slots in regs_ever_live for the hard regs
2332 used by pseudo-reg number REGNO. */
2334 void
2335 mark_home_live (int regno)
2337 if (reg_renumber[regno] >= 0)
2338 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2341 /* This function handles the tracking of elimination offsets around branches.
2343 X is a piece of RTL being scanned.
2345 INSN is the insn that it came from, if any.
2347 INITIAL_P is nonzero if we are to set the offset to be the initial
2348 offset and zero if we are setting the offset of the label to be the
2349 current offset. */
2351 static void
2352 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2354 enum rtx_code code = GET_CODE (x);
2355 rtx tem;
2356 unsigned int i;
2357 struct elim_table *p;
2359 switch (code)
2361 case LABEL_REF:
2362 if (LABEL_REF_NONLOCAL_P (x))
2363 return;
2365 x = LABEL_REF_LABEL (x);
2367 /* ... fall through ... */
2369 case CODE_LABEL:
2370 /* If we know nothing about this label, set the desired offsets. Note
2371 that this sets the offset at a label to be the offset before a label
2372 if we don't know anything about the label. This is not correct for
2373 the label after a BARRIER, but is the best guess we can make. If
2374 we guessed wrong, we will suppress an elimination that might have
2375 been possible had we been able to guess correctly. */
2377 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2379 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2380 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2381 = (initial_p ? reg_eliminate[i].initial_offset
2382 : reg_eliminate[i].offset);
2383 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2386 /* Otherwise, if this is the definition of a label and it is
2387 preceded by a BARRIER, set our offsets to the known offset of
2388 that label. */
2390 else if (x == insn
2391 && (tem = prev_nonnote_insn (insn)) != 0
2392 && BARRIER_P (tem))
2393 set_offsets_for_label (insn);
2394 else
2395 /* If neither of the above cases is true, compare each offset
2396 with those previously recorded and suppress any eliminations
2397 where the offsets disagree. */
2399 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2400 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2401 != (initial_p ? reg_eliminate[i].initial_offset
2402 : reg_eliminate[i].offset))
2403 reg_eliminate[i].can_eliminate = 0;
2405 return;
2407 case JUMP_TABLE_DATA:
2408 set_label_offsets (PATTERN (insn), insn, initial_p);
2409 return;
2411 case JUMP_INSN:
2412 set_label_offsets (PATTERN (insn), insn, initial_p);
2414 /* ... fall through ... */
2416 case INSN:
2417 case CALL_INSN:
2418 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2419 to indirectly and hence must have all eliminations at their
2420 initial offsets. */
2421 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2422 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2423 set_label_offsets (XEXP (tem, 0), insn, 1);
2424 return;
2426 case PARALLEL:
2427 case ADDR_VEC:
2428 case ADDR_DIFF_VEC:
2429 /* Each of the labels in the parallel or address vector must be
2430 at their initial offsets. We want the first field for PARALLEL
2431 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2433 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2434 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2435 insn, initial_p);
2436 return;
2438 case SET:
2439 /* We only care about setting PC. If the source is not RETURN,
2440 IF_THEN_ELSE, or a label, disable any eliminations not at
2441 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2442 isn't one of those possibilities. For branches to a label,
2443 call ourselves recursively.
2445 Note that this can disable elimination unnecessarily when we have
2446 a non-local goto since it will look like a non-constant jump to
2447 someplace in the current function. This isn't a significant
2448 problem since such jumps will normally be when all elimination
2449 pairs are back to their initial offsets. */
2451 if (SET_DEST (x) != pc_rtx)
2452 return;
2454 switch (GET_CODE (SET_SRC (x)))
2456 case PC:
2457 case RETURN:
2458 return;
2460 case LABEL_REF:
2461 set_label_offsets (SET_SRC (x), insn, initial_p);
2462 return;
2464 case IF_THEN_ELSE:
2465 tem = XEXP (SET_SRC (x), 1);
2466 if (GET_CODE (tem) == LABEL_REF)
2467 set_label_offsets (LABEL_REF_LABEL (tem), insn, initial_p);
2468 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2469 break;
2471 tem = XEXP (SET_SRC (x), 2);
2472 if (GET_CODE (tem) == LABEL_REF)
2473 set_label_offsets (LABEL_REF_LABEL (tem), insn, initial_p);
2474 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2475 break;
2476 return;
2478 default:
2479 break;
2482 /* If we reach here, all eliminations must be at their initial
2483 offset because we are doing a jump to a variable address. */
2484 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2485 if (p->offset != p->initial_offset)
2486 p->can_eliminate = 0;
2487 break;
2489 default:
2490 break;
2494 /* This function examines every reg that occurs in X and adjusts the
2495 costs for its elimination which are gathered by IRA. INSN is the
2496 insn in which X occurs. We do not recurse into MEM expressions. */
2498 static void
2499 note_reg_elim_costly (const_rtx x, rtx insn)
2501 subrtx_iterator::array_type array;
2502 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2504 const_rtx x = *iter;
2505 if (MEM_P (x))
2506 iter.skip_subrtxes ();
2507 else if (REG_P (x)
2508 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2509 && reg_equiv_init (REGNO (x))
2510 && reg_equiv_invariant (REGNO (x)))
2512 rtx t = reg_equiv_invariant (REGNO (x));
2513 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2514 int cost = set_src_cost (new_rtx, optimize_bb_for_speed_p (elim_bb));
2515 int freq = REG_FREQ_FROM_BB (elim_bb);
2517 if (cost != 0)
2518 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2523 /* Scan X and replace any eliminable registers (such as fp) with a
2524 replacement (such as sp), plus an offset.
2526 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2527 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2528 MEM, we are allowed to replace a sum of a register and the constant zero
2529 with the register, which we cannot do outside a MEM. In addition, we need
2530 to record the fact that a register is referenced outside a MEM.
2532 If INSN is an insn, it is the insn containing X. If we replace a REG
2533 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2534 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2535 the REG is being modified.
2537 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2538 That's used when we eliminate in expressions stored in notes.
2539 This means, do not set ref_outside_mem even if the reference
2540 is outside of MEMs.
2542 If FOR_COSTS is true, we are being called before reload in order to
2543 estimate the costs of keeping registers with an equivalence unallocated.
2545 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2546 replacements done assuming all offsets are at their initial values. If
2547 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2548 encounter, return the actual location so that find_reloads will do
2549 the proper thing. */
2551 static rtx
2552 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2553 bool may_use_invariant, bool for_costs)
2555 enum rtx_code code = GET_CODE (x);
2556 struct elim_table *ep;
2557 int regno;
2558 rtx new_rtx;
2559 int i, j;
2560 const char *fmt;
2561 int copied = 0;
2563 if (! current_function_decl)
2564 return x;
2566 switch (code)
2568 CASE_CONST_ANY:
2569 case CONST:
2570 case SYMBOL_REF:
2571 case CODE_LABEL:
2572 case PC:
2573 case CC0:
2574 case ASM_INPUT:
2575 case ADDR_VEC:
2576 case ADDR_DIFF_VEC:
2577 case RETURN:
2578 return x;
2580 case REG:
2581 regno = REGNO (x);
2583 /* First handle the case where we encounter a bare register that
2584 is eliminable. Replace it with a PLUS. */
2585 if (regno < FIRST_PSEUDO_REGISTER)
2587 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2588 ep++)
2589 if (ep->from_rtx == x && ep->can_eliminate)
2590 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2593 else if (reg_renumber && reg_renumber[regno] < 0
2594 && reg_equivs
2595 && reg_equiv_invariant (regno))
2597 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2598 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2599 mem_mode, insn, true, for_costs);
2600 /* There exists at least one use of REGNO that cannot be
2601 eliminated. Prevent the defining insn from being deleted. */
2602 reg_equiv_init (regno) = NULL_RTX;
2603 if (!for_costs)
2604 alter_reg (regno, -1, true);
2606 return x;
2608 /* You might think handling MINUS in a manner similar to PLUS is a
2609 good idea. It is not. It has been tried multiple times and every
2610 time the change has had to have been reverted.
2612 Other parts of reload know a PLUS is special (gen_reload for example)
2613 and require special code to handle code a reloaded PLUS operand.
2615 Also consider backends where the flags register is clobbered by a
2616 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2617 lea instruction comes to mind). If we try to reload a MINUS, we
2618 may kill the flags register that was holding a useful value.
2620 So, please before trying to handle MINUS, consider reload as a
2621 whole instead of this little section as well as the backend issues. */
2622 case PLUS:
2623 /* If this is the sum of an eliminable register and a constant, rework
2624 the sum. */
2625 if (REG_P (XEXP (x, 0))
2626 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2627 && CONSTANT_P (XEXP (x, 1)))
2629 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2630 ep++)
2631 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2633 /* The only time we want to replace a PLUS with a REG (this
2634 occurs when the constant operand of the PLUS is the negative
2635 of the offset) is when we are inside a MEM. We won't want
2636 to do so at other times because that would change the
2637 structure of the insn in a way that reload can't handle.
2638 We special-case the commonest situation in
2639 eliminate_regs_in_insn, so just replace a PLUS with a
2640 PLUS here, unless inside a MEM. */
2641 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2642 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2643 return ep->to_rtx;
2644 else
2645 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2646 plus_constant (Pmode, XEXP (x, 1),
2647 ep->previous_offset));
2650 /* If the register is not eliminable, we are done since the other
2651 operand is a constant. */
2652 return x;
2655 /* If this is part of an address, we want to bring any constant to the
2656 outermost PLUS. We will do this by doing register replacement in
2657 our operands and seeing if a constant shows up in one of them.
2659 Note that there is no risk of modifying the structure of the insn,
2660 since we only get called for its operands, thus we are either
2661 modifying the address inside a MEM, or something like an address
2662 operand of a load-address insn. */
2665 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2666 for_costs);
2667 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2668 for_costs);
2670 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2672 /* If one side is a PLUS and the other side is a pseudo that
2673 didn't get a hard register but has a reg_equiv_constant,
2674 we must replace the constant here since it may no longer
2675 be in the position of any operand. */
2676 if (GET_CODE (new0) == PLUS && REG_P (new1)
2677 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2678 && reg_renumber[REGNO (new1)] < 0
2679 && reg_equivs
2680 && reg_equiv_constant (REGNO (new1)) != 0)
2681 new1 = reg_equiv_constant (REGNO (new1));
2682 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2683 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2684 && reg_renumber[REGNO (new0)] < 0
2685 && reg_equiv_constant (REGNO (new0)) != 0)
2686 new0 = reg_equiv_constant (REGNO (new0));
2688 new_rtx = form_sum (GET_MODE (x), new0, new1);
2690 /* As above, if we are not inside a MEM we do not want to
2691 turn a PLUS into something else. We might try to do so here
2692 for an addition of 0 if we aren't optimizing. */
2693 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2694 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2695 else
2696 return new_rtx;
2699 return x;
2701 case MULT:
2702 /* If this is the product of an eliminable register and a
2703 constant, apply the distribute law and move the constant out
2704 so that we have (plus (mult ..) ..). This is needed in order
2705 to keep load-address insns valid. This case is pathological.
2706 We ignore the possibility of overflow here. */
2707 if (REG_P (XEXP (x, 0))
2708 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2709 && CONST_INT_P (XEXP (x, 1)))
2710 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2711 ep++)
2712 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2714 if (! mem_mode
2715 /* Refs inside notes or in DEBUG_INSNs don't count for
2716 this purpose. */
2717 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2718 || GET_CODE (insn) == INSN_LIST
2719 || DEBUG_INSN_P (insn))))
2720 ep->ref_outside_mem = 1;
2722 return
2723 plus_constant (Pmode,
2724 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2725 ep->previous_offset * INTVAL (XEXP (x, 1)));
2728 /* ... fall through ... */
2730 case CALL:
2731 case COMPARE:
2732 /* See comments before PLUS about handling MINUS. */
2733 case MINUS:
2734 case DIV: case UDIV:
2735 case MOD: case UMOD:
2736 case AND: case IOR: case XOR:
2737 case ROTATERT: case ROTATE:
2738 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2739 case NE: case EQ:
2740 case GE: case GT: case GEU: case GTU:
2741 case LE: case LT: case LEU: case LTU:
2743 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2744 for_costs);
2745 rtx new1 = XEXP (x, 1)
2746 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2747 for_costs) : 0;
2749 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2750 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2752 return x;
2754 case EXPR_LIST:
2755 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2756 if (XEXP (x, 0))
2758 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2759 for_costs);
2760 if (new_rtx != XEXP (x, 0))
2762 /* If this is a REG_DEAD note, it is not valid anymore.
2763 Using the eliminated version could result in creating a
2764 REG_DEAD note for the stack or frame pointer. */
2765 if (REG_NOTE_KIND (x) == REG_DEAD)
2766 return (XEXP (x, 1)
2767 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2768 for_costs)
2769 : NULL_RTX);
2771 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2775 /* ... fall through ... */
2777 case INSN_LIST:
2778 case INT_LIST:
2779 /* Now do eliminations in the rest of the chain. If this was
2780 an EXPR_LIST, this might result in allocating more memory than is
2781 strictly needed, but it simplifies the code. */
2782 if (XEXP (x, 1))
2784 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2785 for_costs);
2786 if (new_rtx != XEXP (x, 1))
2787 return
2788 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2790 return x;
2792 case PRE_INC:
2793 case POST_INC:
2794 case PRE_DEC:
2795 case POST_DEC:
2796 /* We do not support elimination of a register that is modified.
2797 elimination_effects has already make sure that this does not
2798 happen. */
2799 return x;
2801 case PRE_MODIFY:
2802 case POST_MODIFY:
2803 /* We do not support elimination of a register that is modified.
2804 elimination_effects has already make sure that this does not
2805 happen. The only remaining case we need to consider here is
2806 that the increment value may be an eliminable register. */
2807 if (GET_CODE (XEXP (x, 1)) == PLUS
2808 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2810 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2811 insn, true, for_costs);
2813 if (new_rtx != XEXP (XEXP (x, 1), 1))
2814 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2815 gen_rtx_PLUS (GET_MODE (x),
2816 XEXP (x, 0), new_rtx));
2818 return x;
2820 case STRICT_LOW_PART:
2821 case NEG: case NOT:
2822 case SIGN_EXTEND: case ZERO_EXTEND:
2823 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2824 case FLOAT: case FIX:
2825 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2826 case ABS:
2827 case SQRT:
2828 case FFS:
2829 case CLZ:
2830 case CTZ:
2831 case POPCOUNT:
2832 case PARITY:
2833 case BSWAP:
2834 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2835 for_costs);
2836 if (new_rtx != XEXP (x, 0))
2837 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2838 return x;
2840 case SUBREG:
2841 /* Similar to above processing, but preserve SUBREG_BYTE.
2842 Convert (subreg (mem)) to (mem) if not paradoxical.
2843 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2844 pseudo didn't get a hard reg, we must replace this with the
2845 eliminated version of the memory location because push_reload
2846 may do the replacement in certain circumstances. */
2847 if (REG_P (SUBREG_REG (x))
2848 && !paradoxical_subreg_p (x)
2849 && reg_equivs
2850 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2852 new_rtx = SUBREG_REG (x);
2854 else
2855 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2857 if (new_rtx != SUBREG_REG (x))
2859 int x_size = GET_MODE_SIZE (GET_MODE (x));
2860 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2862 if (MEM_P (new_rtx)
2863 && ((x_size < new_size
2864 #ifdef WORD_REGISTER_OPERATIONS
2865 /* On these machines, combine can create rtl of the form
2866 (set (subreg:m1 (reg:m2 R) 0) ...)
2867 where m1 < m2, and expects something interesting to
2868 happen to the entire word. Moreover, it will use the
2869 (reg:m2 R) later, expecting all bits to be preserved.
2870 So if the number of words is the same, preserve the
2871 subreg so that push_reload can see it. */
2872 && ! ((x_size - 1) / UNITS_PER_WORD
2873 == (new_size -1 ) / UNITS_PER_WORD)
2874 #endif
2876 || x_size == new_size)
2878 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2879 else
2880 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2883 return x;
2885 case MEM:
2886 /* Our only special processing is to pass the mode of the MEM to our
2887 recursive call and copy the flags. While we are here, handle this
2888 case more efficiently. */
2890 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2891 for_costs);
2892 if (for_costs
2893 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2894 && !memory_address_p (GET_MODE (x), new_rtx))
2895 note_reg_elim_costly (XEXP (x, 0), insn);
2897 return replace_equiv_address_nv (x, new_rtx);
2899 case USE:
2900 /* Handle insn_list USE that a call to a pure function may generate. */
2901 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2902 for_costs);
2903 if (new_rtx != XEXP (x, 0))
2904 return gen_rtx_USE (GET_MODE (x), new_rtx);
2905 return x;
2907 case CLOBBER:
2908 case ASM_OPERANDS:
2909 gcc_assert (insn && DEBUG_INSN_P (insn));
2910 break;
2912 case SET:
2913 gcc_unreachable ();
2915 default:
2916 break;
2919 /* Process each of our operands recursively. If any have changed, make a
2920 copy of the rtx. */
2921 fmt = GET_RTX_FORMAT (code);
2922 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2924 if (*fmt == 'e')
2926 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2927 for_costs);
2928 if (new_rtx != XEXP (x, i) && ! copied)
2930 x = shallow_copy_rtx (x);
2931 copied = 1;
2933 XEXP (x, i) = new_rtx;
2935 else if (*fmt == 'E')
2937 int copied_vec = 0;
2938 for (j = 0; j < XVECLEN (x, i); j++)
2940 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2941 for_costs);
2942 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2944 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2945 XVEC (x, i)->elem);
2946 if (! copied)
2948 x = shallow_copy_rtx (x);
2949 copied = 1;
2951 XVEC (x, i) = new_v;
2952 copied_vec = 1;
2954 XVECEXP (x, i, j) = new_rtx;
2959 return x;
2963 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2965 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2968 /* Scan rtx X for modifications of elimination target registers. Update
2969 the table of eliminables to reflect the changed state. MEM_MODE is
2970 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2972 static void
2973 elimination_effects (rtx x, enum machine_mode mem_mode)
2975 enum rtx_code code = GET_CODE (x);
2976 struct elim_table *ep;
2977 int regno;
2978 int i, j;
2979 const char *fmt;
2981 switch (code)
2983 CASE_CONST_ANY:
2984 case CONST:
2985 case SYMBOL_REF:
2986 case CODE_LABEL:
2987 case PC:
2988 case CC0:
2989 case ASM_INPUT:
2990 case ADDR_VEC:
2991 case ADDR_DIFF_VEC:
2992 case RETURN:
2993 return;
2995 case REG:
2996 regno = REGNO (x);
2998 /* First handle the case where we encounter a bare register that
2999 is eliminable. Replace it with a PLUS. */
3000 if (regno < FIRST_PSEUDO_REGISTER)
3002 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3003 ep++)
3004 if (ep->from_rtx == x && ep->can_eliminate)
3006 if (! mem_mode)
3007 ep->ref_outside_mem = 1;
3008 return;
3012 else if (reg_renumber[regno] < 0
3013 && reg_equivs
3014 && reg_equiv_constant (regno)
3015 && ! function_invariant_p (reg_equiv_constant (regno)))
3016 elimination_effects (reg_equiv_constant (regno), mem_mode);
3017 return;
3019 case PRE_INC:
3020 case POST_INC:
3021 case PRE_DEC:
3022 case POST_DEC:
3023 case POST_MODIFY:
3024 case PRE_MODIFY:
3025 /* If we modify the source of an elimination rule, disable it. */
3026 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3027 if (ep->from_rtx == XEXP (x, 0))
3028 ep->can_eliminate = 0;
3030 /* If we modify the target of an elimination rule by adding a constant,
3031 update its offset. If we modify the target in any other way, we'll
3032 have to disable the rule as well. */
3033 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3034 if (ep->to_rtx == XEXP (x, 0))
3036 int size = GET_MODE_SIZE (mem_mode);
3038 /* If more bytes than MEM_MODE are pushed, account for them. */
3039 #ifdef PUSH_ROUNDING
3040 if (ep->to_rtx == stack_pointer_rtx)
3041 size = PUSH_ROUNDING (size);
3042 #endif
3043 if (code == PRE_DEC || code == POST_DEC)
3044 ep->offset += size;
3045 else if (code == PRE_INC || code == POST_INC)
3046 ep->offset -= size;
3047 else if (code == PRE_MODIFY || code == POST_MODIFY)
3049 if (GET_CODE (XEXP (x, 1)) == PLUS
3050 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3051 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3052 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3053 else
3054 ep->can_eliminate = 0;
3058 /* These two aren't unary operators. */
3059 if (code == POST_MODIFY || code == PRE_MODIFY)
3060 break;
3062 /* Fall through to generic unary operation case. */
3063 case STRICT_LOW_PART:
3064 case NEG: case NOT:
3065 case SIGN_EXTEND: case ZERO_EXTEND:
3066 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3067 case FLOAT: case FIX:
3068 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3069 case ABS:
3070 case SQRT:
3071 case FFS:
3072 case CLZ:
3073 case CTZ:
3074 case POPCOUNT:
3075 case PARITY:
3076 case BSWAP:
3077 elimination_effects (XEXP (x, 0), mem_mode);
3078 return;
3080 case SUBREG:
3081 if (REG_P (SUBREG_REG (x))
3082 && (GET_MODE_SIZE (GET_MODE (x))
3083 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3084 && reg_equivs
3085 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3086 return;
3088 elimination_effects (SUBREG_REG (x), mem_mode);
3089 return;
3091 case USE:
3092 /* If using a register that is the source of an eliminate we still
3093 think can be performed, note it cannot be performed since we don't
3094 know how this register is used. */
3095 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3096 if (ep->from_rtx == XEXP (x, 0))
3097 ep->can_eliminate = 0;
3099 elimination_effects (XEXP (x, 0), mem_mode);
3100 return;
3102 case CLOBBER:
3103 /* If clobbering a register that is the replacement register for an
3104 elimination we still think can be performed, note that it cannot
3105 be performed. Otherwise, we need not be concerned about it. */
3106 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3107 if (ep->to_rtx == XEXP (x, 0))
3108 ep->can_eliminate = 0;
3110 elimination_effects (XEXP (x, 0), mem_mode);
3111 return;
3113 case SET:
3114 /* Check for setting a register that we know about. */
3115 if (REG_P (SET_DEST (x)))
3117 /* See if this is setting the replacement register for an
3118 elimination.
3120 If DEST is the hard frame pointer, we do nothing because we
3121 assume that all assignments to the frame pointer are for
3122 non-local gotos and are being done at a time when they are valid
3123 and do not disturb anything else. Some machines want to
3124 eliminate a fake argument pointer (or even a fake frame pointer)
3125 with either the real frame or the stack pointer. Assignments to
3126 the hard frame pointer must not prevent this elimination. */
3128 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3129 ep++)
3130 if (ep->to_rtx == SET_DEST (x)
3131 && SET_DEST (x) != hard_frame_pointer_rtx)
3133 /* If it is being incremented, adjust the offset. Otherwise,
3134 this elimination can't be done. */
3135 rtx src = SET_SRC (x);
3137 if (GET_CODE (src) == PLUS
3138 && XEXP (src, 0) == SET_DEST (x)
3139 && CONST_INT_P (XEXP (src, 1)))
3140 ep->offset -= INTVAL (XEXP (src, 1));
3141 else
3142 ep->can_eliminate = 0;
3146 elimination_effects (SET_DEST (x), VOIDmode);
3147 elimination_effects (SET_SRC (x), VOIDmode);
3148 return;
3150 case MEM:
3151 /* Our only special processing is to pass the mode of the MEM to our
3152 recursive call. */
3153 elimination_effects (XEXP (x, 0), GET_MODE (x));
3154 return;
3156 default:
3157 break;
3160 fmt = GET_RTX_FORMAT (code);
3161 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3163 if (*fmt == 'e')
3164 elimination_effects (XEXP (x, i), mem_mode);
3165 else if (*fmt == 'E')
3166 for (j = 0; j < XVECLEN (x, i); j++)
3167 elimination_effects (XVECEXP (x, i, j), mem_mode);
3171 /* Descend through rtx X and verify that no references to eliminable registers
3172 remain. If any do remain, mark the involved register as not
3173 eliminable. */
3175 static void
3176 check_eliminable_occurrences (rtx x)
3178 const char *fmt;
3179 int i;
3180 enum rtx_code code;
3182 if (x == 0)
3183 return;
3185 code = GET_CODE (x);
3187 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3189 struct elim_table *ep;
3191 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3192 if (ep->from_rtx == x)
3193 ep->can_eliminate = 0;
3194 return;
3197 fmt = GET_RTX_FORMAT (code);
3198 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3200 if (*fmt == 'e')
3201 check_eliminable_occurrences (XEXP (x, i));
3202 else if (*fmt == 'E')
3204 int j;
3205 for (j = 0; j < XVECLEN (x, i); j++)
3206 check_eliminable_occurrences (XVECEXP (x, i, j));
3211 /* Scan INSN and eliminate all eliminable registers in it.
3213 If REPLACE is nonzero, do the replacement destructively. Also
3214 delete the insn as dead it if it is setting an eliminable register.
3216 If REPLACE is zero, do all our allocations in reload_obstack.
3218 If no eliminations were done and this insn doesn't require any elimination
3219 processing (these are not identical conditions: it might be updating sp,
3220 but not referencing fp; this needs to be seen during reload_as_needed so
3221 that the offset between fp and sp can be taken into consideration), zero
3222 is returned. Otherwise, 1 is returned. */
3224 static int
3225 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3227 int icode = recog_memoized (insn);
3228 rtx old_body = PATTERN (insn);
3229 int insn_is_asm = asm_noperands (old_body) >= 0;
3230 rtx old_set = single_set (insn);
3231 rtx new_body;
3232 int val = 0;
3233 int i;
3234 rtx substed_operand[MAX_RECOG_OPERANDS];
3235 rtx orig_operand[MAX_RECOG_OPERANDS];
3236 struct elim_table *ep;
3237 rtx plus_src, plus_cst_src;
3239 if (! insn_is_asm && icode < 0)
3241 gcc_assert (DEBUG_INSN_P (insn)
3242 || GET_CODE (PATTERN (insn)) == USE
3243 || GET_CODE (PATTERN (insn)) == CLOBBER
3244 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3245 if (DEBUG_INSN_P (insn))
3246 INSN_VAR_LOCATION_LOC (insn)
3247 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3248 return 0;
3251 if (old_set != 0 && REG_P (SET_DEST (old_set))
3252 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3254 /* Check for setting an eliminable register. */
3255 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3256 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3258 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
3259 /* If this is setting the frame pointer register to the
3260 hardware frame pointer register and this is an elimination
3261 that will be done (tested above), this insn is really
3262 adjusting the frame pointer downward to compensate for
3263 the adjustment done before a nonlocal goto. */
3264 if (ep->from == FRAME_POINTER_REGNUM
3265 && ep->to == HARD_FRAME_POINTER_REGNUM)
3267 rtx base = SET_SRC (old_set);
3268 rtx_insn *base_insn = insn;
3269 HOST_WIDE_INT offset = 0;
3271 while (base != ep->to_rtx)
3273 rtx_insn *prev_insn;
3274 rtx prev_set;
3276 if (GET_CODE (base) == PLUS
3277 && CONST_INT_P (XEXP (base, 1)))
3279 offset += INTVAL (XEXP (base, 1));
3280 base = XEXP (base, 0);
3282 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3283 && (prev_set = single_set (prev_insn)) != 0
3284 && rtx_equal_p (SET_DEST (prev_set), base))
3286 base = SET_SRC (prev_set);
3287 base_insn = prev_insn;
3289 else
3290 break;
3293 if (base == ep->to_rtx)
3295 rtx src = plus_constant (Pmode, ep->to_rtx,
3296 offset - ep->offset);
3298 new_body = old_body;
3299 if (! replace)
3301 new_body = copy_insn (old_body);
3302 if (REG_NOTES (insn))
3303 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3305 PATTERN (insn) = new_body;
3306 old_set = single_set (insn);
3308 /* First see if this insn remains valid when we
3309 make the change. If not, keep the INSN_CODE
3310 the same and let reload fit it up. */
3311 validate_change (insn, &SET_SRC (old_set), src, 1);
3312 validate_change (insn, &SET_DEST (old_set),
3313 ep->to_rtx, 1);
3314 if (! apply_change_group ())
3316 SET_SRC (old_set) = src;
3317 SET_DEST (old_set) = ep->to_rtx;
3320 val = 1;
3321 goto done;
3324 #endif
3326 /* In this case this insn isn't serving a useful purpose. We
3327 will delete it in reload_as_needed once we know that this
3328 elimination is, in fact, being done.
3330 If REPLACE isn't set, we can't delete this insn, but needn't
3331 process it since it won't be used unless something changes. */
3332 if (replace)
3334 delete_dead_insn (insn);
3335 return 1;
3337 val = 1;
3338 goto done;
3342 /* We allow one special case which happens to work on all machines we
3343 currently support: a single set with the source or a REG_EQUAL
3344 note being a PLUS of an eliminable register and a constant. */
3345 plus_src = plus_cst_src = 0;
3346 if (old_set && REG_P (SET_DEST (old_set)))
3348 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3349 plus_src = SET_SRC (old_set);
3350 /* First see if the source is of the form (plus (...) CST). */
3351 if (plus_src
3352 && CONST_INT_P (XEXP (plus_src, 1)))
3353 plus_cst_src = plus_src;
3354 else if (REG_P (SET_SRC (old_set))
3355 || plus_src)
3357 /* Otherwise, see if we have a REG_EQUAL note of the form
3358 (plus (...) CST). */
3359 rtx links;
3360 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3362 if ((REG_NOTE_KIND (links) == REG_EQUAL
3363 || REG_NOTE_KIND (links) == REG_EQUIV)
3364 && GET_CODE (XEXP (links, 0)) == PLUS
3365 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3367 plus_cst_src = XEXP (links, 0);
3368 break;
3373 /* Check that the first operand of the PLUS is a hard reg or
3374 the lowpart subreg of one. */
3375 if (plus_cst_src)
3377 rtx reg = XEXP (plus_cst_src, 0);
3378 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3379 reg = SUBREG_REG (reg);
3381 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3382 plus_cst_src = 0;
3385 if (plus_cst_src)
3387 rtx reg = XEXP (plus_cst_src, 0);
3388 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3390 if (GET_CODE (reg) == SUBREG)
3391 reg = SUBREG_REG (reg);
3393 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3394 if (ep->from_rtx == reg && ep->can_eliminate)
3396 rtx to_rtx = ep->to_rtx;
3397 offset += ep->offset;
3398 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3400 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3401 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3402 to_rtx);
3403 /* If we have a nonzero offset, and the source is already
3404 a simple REG, the following transformation would
3405 increase the cost of the insn by replacing a simple REG
3406 with (plus (reg sp) CST). So try only when we already
3407 had a PLUS before. */
3408 if (offset == 0 || plus_src)
3410 rtx new_src = plus_constant (GET_MODE (to_rtx),
3411 to_rtx, offset);
3413 new_body = old_body;
3414 if (! replace)
3416 new_body = copy_insn (old_body);
3417 if (REG_NOTES (insn))
3418 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3420 PATTERN (insn) = new_body;
3421 old_set = single_set (insn);
3423 /* First see if this insn remains valid when we make the
3424 change. If not, try to replace the whole pattern with
3425 a simple set (this may help if the original insn was a
3426 PARALLEL that was only recognized as single_set due to
3427 REG_UNUSED notes). If this isn't valid either, keep
3428 the INSN_CODE the same and let reload fix it up. */
3429 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3431 rtx new_pat = gen_rtx_SET (VOIDmode,
3432 SET_DEST (old_set), new_src);
3434 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3435 SET_SRC (old_set) = new_src;
3438 else
3439 break;
3441 val = 1;
3442 /* This can't have an effect on elimination offsets, so skip right
3443 to the end. */
3444 goto done;
3448 /* Determine the effects of this insn on elimination offsets. */
3449 elimination_effects (old_body, VOIDmode);
3451 /* Eliminate all eliminable registers occurring in operands that
3452 can be handled by reload. */
3453 extract_insn (insn);
3454 for (i = 0; i < recog_data.n_operands; i++)
3456 orig_operand[i] = recog_data.operand[i];
3457 substed_operand[i] = recog_data.operand[i];
3459 /* For an asm statement, every operand is eliminable. */
3460 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3462 bool is_set_src, in_plus;
3464 /* Check for setting a register that we know about. */
3465 if (recog_data.operand_type[i] != OP_IN
3466 && REG_P (orig_operand[i]))
3468 /* If we are assigning to a register that can be eliminated, it
3469 must be as part of a PARALLEL, since the code above handles
3470 single SETs. We must indicate that we can no longer
3471 eliminate this reg. */
3472 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3473 ep++)
3474 if (ep->from_rtx == orig_operand[i])
3475 ep->can_eliminate = 0;
3478 /* Companion to the above plus substitution, we can allow
3479 invariants as the source of a plain move. */
3480 is_set_src = false;
3481 if (old_set
3482 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3483 is_set_src = true;
3484 in_plus = false;
3485 if (plus_src
3486 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3487 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3488 in_plus = true;
3490 substed_operand[i]
3491 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3492 replace ? insn : NULL_RTX,
3493 is_set_src || in_plus, false);
3494 if (substed_operand[i] != orig_operand[i])
3495 val = 1;
3496 /* Terminate the search in check_eliminable_occurrences at
3497 this point. */
3498 *recog_data.operand_loc[i] = 0;
3500 /* If an output operand changed from a REG to a MEM and INSN is an
3501 insn, write a CLOBBER insn. */
3502 if (recog_data.operand_type[i] != OP_IN
3503 && REG_P (orig_operand[i])
3504 && MEM_P (substed_operand[i])
3505 && replace)
3506 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3510 for (i = 0; i < recog_data.n_dups; i++)
3511 *recog_data.dup_loc[i]
3512 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3514 /* If any eliminable remain, they aren't eliminable anymore. */
3515 check_eliminable_occurrences (old_body);
3517 /* Substitute the operands; the new values are in the substed_operand
3518 array. */
3519 for (i = 0; i < recog_data.n_operands; i++)
3520 *recog_data.operand_loc[i] = substed_operand[i];
3521 for (i = 0; i < recog_data.n_dups; i++)
3522 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3524 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3525 re-recognize the insn. We do this in case we had a simple addition
3526 but now can do this as a load-address. This saves an insn in this
3527 common case.
3528 If re-recognition fails, the old insn code number will still be used,
3529 and some register operands may have changed into PLUS expressions.
3530 These will be handled by find_reloads by loading them into a register
3531 again. */
3533 if (val)
3535 /* If we aren't replacing things permanently and we changed something,
3536 make another copy to ensure that all the RTL is new. Otherwise
3537 things can go wrong if find_reload swaps commutative operands
3538 and one is inside RTL that has been copied while the other is not. */
3539 new_body = old_body;
3540 if (! replace)
3542 new_body = copy_insn (old_body);
3543 if (REG_NOTES (insn))
3544 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3546 PATTERN (insn) = new_body;
3548 /* If we had a move insn but now we don't, rerecognize it. This will
3549 cause spurious re-recognition if the old move had a PARALLEL since
3550 the new one still will, but we can't call single_set without
3551 having put NEW_BODY into the insn and the re-recognition won't
3552 hurt in this rare case. */
3553 /* ??? Why this huge if statement - why don't we just rerecognize the
3554 thing always? */
3555 if (! insn_is_asm
3556 && old_set != 0
3557 && ((REG_P (SET_SRC (old_set))
3558 && (GET_CODE (new_body) != SET
3559 || !REG_P (SET_SRC (new_body))))
3560 /* If this was a load from or store to memory, compare
3561 the MEM in recog_data.operand to the one in the insn.
3562 If they are not equal, then rerecognize the insn. */
3563 || (old_set != 0
3564 && ((MEM_P (SET_SRC (old_set))
3565 && SET_SRC (old_set) != recog_data.operand[1])
3566 || (MEM_P (SET_DEST (old_set))
3567 && SET_DEST (old_set) != recog_data.operand[0])))
3568 /* If this was an add insn before, rerecognize. */
3569 || GET_CODE (SET_SRC (old_set)) == PLUS))
3571 int new_icode = recog (PATTERN (insn), insn, 0);
3572 if (new_icode >= 0)
3573 INSN_CODE (insn) = new_icode;
3577 /* Restore the old body. If there were any changes to it, we made a copy
3578 of it while the changes were still in place, so we'll correctly return
3579 a modified insn below. */
3580 if (! replace)
3582 /* Restore the old body. */
3583 for (i = 0; i < recog_data.n_operands; i++)
3584 /* Restoring a top-level match_parallel would clobber the new_body
3585 we installed in the insn. */
3586 if (recog_data.operand_loc[i] != &PATTERN (insn))
3587 *recog_data.operand_loc[i] = orig_operand[i];
3588 for (i = 0; i < recog_data.n_dups; i++)
3589 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3592 /* Update all elimination pairs to reflect the status after the current
3593 insn. The changes we make were determined by the earlier call to
3594 elimination_effects.
3596 We also detect cases where register elimination cannot be done,
3597 namely, if a register would be both changed and referenced outside a MEM
3598 in the resulting insn since such an insn is often undefined and, even if
3599 not, we cannot know what meaning will be given to it. Note that it is
3600 valid to have a register used in an address in an insn that changes it
3601 (presumably with a pre- or post-increment or decrement).
3603 If anything changes, return nonzero. */
3605 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3607 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3608 ep->can_eliminate = 0;
3610 ep->ref_outside_mem = 0;
3612 if (ep->previous_offset != ep->offset)
3613 val = 1;
3616 done:
3617 /* If we changed something, perform elimination in REG_NOTES. This is
3618 needed even when REPLACE is zero because a REG_DEAD note might refer
3619 to a register that we eliminate and could cause a different number
3620 of spill registers to be needed in the final reload pass than in
3621 the pre-passes. */
3622 if (val && REG_NOTES (insn) != 0)
3623 REG_NOTES (insn)
3624 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3625 false);
3627 return val;
3630 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3631 register allocator. INSN is the instruction we need to examine, we perform
3632 eliminations in its operands and record cases where eliminating a reg with
3633 an invariant equivalence would add extra cost. */
3635 static void
3636 elimination_costs_in_insn (rtx_insn *insn)
3638 int icode = recog_memoized (insn);
3639 rtx old_body = PATTERN (insn);
3640 int insn_is_asm = asm_noperands (old_body) >= 0;
3641 rtx old_set = single_set (insn);
3642 int i;
3643 rtx orig_operand[MAX_RECOG_OPERANDS];
3644 rtx orig_dup[MAX_RECOG_OPERANDS];
3645 struct elim_table *ep;
3646 rtx plus_src, plus_cst_src;
3647 bool sets_reg_p;
3649 if (! insn_is_asm && icode < 0)
3651 gcc_assert (DEBUG_INSN_P (insn)
3652 || GET_CODE (PATTERN (insn)) == USE
3653 || GET_CODE (PATTERN (insn)) == CLOBBER
3654 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3655 return;
3658 if (old_set != 0 && REG_P (SET_DEST (old_set))
3659 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3661 /* Check for setting an eliminable register. */
3662 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3663 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3664 return;
3667 /* We allow one special case which happens to work on all machines we
3668 currently support: a single set with the source or a REG_EQUAL
3669 note being a PLUS of an eliminable register and a constant. */
3670 plus_src = plus_cst_src = 0;
3671 sets_reg_p = false;
3672 if (old_set && REG_P (SET_DEST (old_set)))
3674 sets_reg_p = true;
3675 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3676 plus_src = SET_SRC (old_set);
3677 /* First see if the source is of the form (plus (...) CST). */
3678 if (plus_src
3679 && CONST_INT_P (XEXP (plus_src, 1)))
3680 plus_cst_src = plus_src;
3681 else if (REG_P (SET_SRC (old_set))
3682 || plus_src)
3684 /* Otherwise, see if we have a REG_EQUAL note of the form
3685 (plus (...) CST). */
3686 rtx links;
3687 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3689 if ((REG_NOTE_KIND (links) == REG_EQUAL
3690 || REG_NOTE_KIND (links) == REG_EQUIV)
3691 && GET_CODE (XEXP (links, 0)) == PLUS
3692 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3694 plus_cst_src = XEXP (links, 0);
3695 break;
3701 /* Determine the effects of this insn on elimination offsets. */
3702 elimination_effects (old_body, VOIDmode);
3704 /* Eliminate all eliminable registers occurring in operands that
3705 can be handled by reload. */
3706 extract_insn (insn);
3707 for (i = 0; i < recog_data.n_dups; i++)
3708 orig_dup[i] = *recog_data.dup_loc[i];
3710 for (i = 0; i < recog_data.n_operands; i++)
3712 orig_operand[i] = recog_data.operand[i];
3714 /* For an asm statement, every operand is eliminable. */
3715 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3717 bool is_set_src, in_plus;
3719 /* Check for setting a register that we know about. */
3720 if (recog_data.operand_type[i] != OP_IN
3721 && REG_P (orig_operand[i]))
3723 /* If we are assigning to a register that can be eliminated, it
3724 must be as part of a PARALLEL, since the code above handles
3725 single SETs. We must indicate that we can no longer
3726 eliminate this reg. */
3727 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3728 ep++)
3729 if (ep->from_rtx == orig_operand[i])
3730 ep->can_eliminate = 0;
3733 /* Companion to the above plus substitution, we can allow
3734 invariants as the source of a plain move. */
3735 is_set_src = false;
3736 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3737 is_set_src = true;
3738 if (is_set_src && !sets_reg_p)
3739 note_reg_elim_costly (SET_SRC (old_set), insn);
3740 in_plus = false;
3741 if (plus_src && sets_reg_p
3742 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3743 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3744 in_plus = true;
3746 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3747 NULL_RTX,
3748 is_set_src || in_plus, true);
3749 /* Terminate the search in check_eliminable_occurrences at
3750 this point. */
3751 *recog_data.operand_loc[i] = 0;
3755 for (i = 0; i < recog_data.n_dups; i++)
3756 *recog_data.dup_loc[i]
3757 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3759 /* If any eliminable remain, they aren't eliminable anymore. */
3760 check_eliminable_occurrences (old_body);
3762 /* Restore the old body. */
3763 for (i = 0; i < recog_data.n_operands; i++)
3764 *recog_data.operand_loc[i] = orig_operand[i];
3765 for (i = 0; i < recog_data.n_dups; i++)
3766 *recog_data.dup_loc[i] = orig_dup[i];
3768 /* Update all elimination pairs to reflect the status after the current
3769 insn. The changes we make were determined by the earlier call to
3770 elimination_effects. */
3772 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3774 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3775 ep->can_eliminate = 0;
3777 ep->ref_outside_mem = 0;
3780 return;
3783 /* Loop through all elimination pairs.
3784 Recalculate the number not at initial offset.
3786 Compute the maximum offset (minimum offset if the stack does not
3787 grow downward) for each elimination pair. */
3789 static void
3790 update_eliminable_offsets (void)
3792 struct elim_table *ep;
3794 num_not_at_initial_offset = 0;
3795 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3797 ep->previous_offset = ep->offset;
3798 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3799 num_not_at_initial_offset++;
3803 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3804 replacement we currently believe is valid, mark it as not eliminable if X
3805 modifies DEST in any way other than by adding a constant integer to it.
3807 If DEST is the frame pointer, we do nothing because we assume that
3808 all assignments to the hard frame pointer are nonlocal gotos and are being
3809 done at a time when they are valid and do not disturb anything else.
3810 Some machines want to eliminate a fake argument pointer with either the
3811 frame or stack pointer. Assignments to the hard frame pointer must not
3812 prevent this elimination.
3814 Called via note_stores from reload before starting its passes to scan
3815 the insns of the function. */
3817 static void
3818 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3820 unsigned int i;
3822 /* A SUBREG of a hard register here is just changing its mode. We should
3823 not see a SUBREG of an eliminable hard register, but check just in
3824 case. */
3825 if (GET_CODE (dest) == SUBREG)
3826 dest = SUBREG_REG (dest);
3828 if (dest == hard_frame_pointer_rtx)
3829 return;
3831 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3832 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3833 && (GET_CODE (x) != SET
3834 || GET_CODE (SET_SRC (x)) != PLUS
3835 || XEXP (SET_SRC (x), 0) != dest
3836 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3838 reg_eliminate[i].can_eliminate_previous
3839 = reg_eliminate[i].can_eliminate = 0;
3840 num_eliminable--;
3844 /* Verify that the initial elimination offsets did not change since the
3845 last call to set_initial_elim_offsets. This is used to catch cases
3846 where something illegal happened during reload_as_needed that could
3847 cause incorrect code to be generated if we did not check for it. */
3849 static bool
3850 verify_initial_elim_offsets (void)
3852 HOST_WIDE_INT t;
3854 if (!num_eliminable)
3855 return true;
3857 #ifdef ELIMINABLE_REGS
3859 struct elim_table *ep;
3861 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3863 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3864 if (t != ep->initial_offset)
3865 return false;
3868 #else
3869 INITIAL_FRAME_POINTER_OFFSET (t);
3870 if (t != reg_eliminate[0].initial_offset)
3871 return false;
3872 #endif
3874 return true;
3877 /* Reset all offsets on eliminable registers to their initial values. */
3879 static void
3880 set_initial_elim_offsets (void)
3882 struct elim_table *ep = reg_eliminate;
3884 #ifdef ELIMINABLE_REGS
3885 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3887 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3888 ep->previous_offset = ep->offset = ep->initial_offset;
3890 #else
3891 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3892 ep->previous_offset = ep->offset = ep->initial_offset;
3893 #endif
3895 num_not_at_initial_offset = 0;
3898 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3900 static void
3901 set_initial_eh_label_offset (rtx label)
3903 set_label_offsets (label, NULL, 1);
3906 /* Initialize the known label offsets.
3907 Set a known offset for each forced label to be at the initial offset
3908 of each elimination. We do this because we assume that all
3909 computed jumps occur from a location where each elimination is
3910 at its initial offset.
3911 For all other labels, show that we don't know the offsets. */
3913 static void
3914 set_initial_label_offsets (void)
3916 memset (offsets_known_at, 0, num_labels);
3918 for (rtx_insn_list *x = forced_labels; x; x = x->next ())
3919 if (x->insn ())
3920 set_label_offsets (x->insn (), NULL, 1);
3922 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3923 if (x->insn ())
3924 set_label_offsets (x->insn (), NULL, 1);
3926 for_each_eh_label (set_initial_eh_label_offset);
3929 /* Set all elimination offsets to the known values for the code label given
3930 by INSN. */
3932 static void
3933 set_offsets_for_label (rtx_insn *insn)
3935 unsigned int i;
3936 int label_nr = CODE_LABEL_NUMBER (insn);
3937 struct elim_table *ep;
3939 num_not_at_initial_offset = 0;
3940 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3942 ep->offset = ep->previous_offset
3943 = offsets_at[label_nr - first_label_num][i];
3944 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3945 num_not_at_initial_offset++;
3949 /* See if anything that happened changes which eliminations are valid.
3950 For example, on the SPARC, whether or not the frame pointer can
3951 be eliminated can depend on what registers have been used. We need
3952 not check some conditions again (such as flag_omit_frame_pointer)
3953 since they can't have changed. */
3955 static void
3956 update_eliminables (HARD_REG_SET *pset)
3958 int previous_frame_pointer_needed = frame_pointer_needed;
3959 struct elim_table *ep;
3961 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3962 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3963 && targetm.frame_pointer_required ())
3964 #ifdef ELIMINABLE_REGS
3965 || ! targetm.can_eliminate (ep->from, ep->to)
3966 #endif
3968 ep->can_eliminate = 0;
3970 /* Look for the case where we have discovered that we can't replace
3971 register A with register B and that means that we will now be
3972 trying to replace register A with register C. This means we can
3973 no longer replace register C with register B and we need to disable
3974 such an elimination, if it exists. This occurs often with A == ap,
3975 B == sp, and C == fp. */
3977 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3979 struct elim_table *op;
3980 int new_to = -1;
3982 if (! ep->can_eliminate && ep->can_eliminate_previous)
3984 /* Find the current elimination for ep->from, if there is a
3985 new one. */
3986 for (op = reg_eliminate;
3987 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3988 if (op->from == ep->from && op->can_eliminate)
3990 new_to = op->to;
3991 break;
3994 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3995 disable it. */
3996 for (op = reg_eliminate;
3997 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3998 if (op->from == new_to && op->to == ep->to)
3999 op->can_eliminate = 0;
4003 /* See if any registers that we thought we could eliminate the previous
4004 time are no longer eliminable. If so, something has changed and we
4005 must spill the register. Also, recompute the number of eliminable
4006 registers and see if the frame pointer is needed; it is if there is
4007 no elimination of the frame pointer that we can perform. */
4009 frame_pointer_needed = 1;
4010 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4012 if (ep->can_eliminate
4013 && ep->from == FRAME_POINTER_REGNUM
4014 && ep->to != HARD_FRAME_POINTER_REGNUM
4015 && (! SUPPORTS_STACK_ALIGNMENT
4016 || ! crtl->stack_realign_needed))
4017 frame_pointer_needed = 0;
4019 if (! ep->can_eliminate && ep->can_eliminate_previous)
4021 ep->can_eliminate_previous = 0;
4022 SET_HARD_REG_BIT (*pset, ep->from);
4023 num_eliminable--;
4027 /* If we didn't need a frame pointer last time, but we do now, spill
4028 the hard frame pointer. */
4029 if (frame_pointer_needed && ! previous_frame_pointer_needed)
4030 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
4033 /* Call update_eliminables an spill any registers we can't eliminate anymore.
4034 Return true iff a register was spilled. */
4036 static bool
4037 update_eliminables_and_spill (void)
4039 int i;
4040 bool did_spill = false;
4041 HARD_REG_SET to_spill;
4042 CLEAR_HARD_REG_SET (to_spill);
4043 update_eliminables (&to_spill);
4044 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
4046 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4047 if (TEST_HARD_REG_BIT (to_spill, i))
4049 spill_hard_reg (i, 1);
4050 did_spill = true;
4052 /* Regardless of the state of spills, if we previously had
4053 a register that we thought we could eliminate, but now can
4054 not eliminate, we must run another pass.
4056 Consider pseudos which have an entry in reg_equiv_* which
4057 reference an eliminable register. We must make another pass
4058 to update reg_equiv_* so that we do not substitute in the
4059 old value from when we thought the elimination could be
4060 performed. */
4062 return did_spill;
4065 /* Return true if X is used as the target register of an elimination. */
4067 bool
4068 elimination_target_reg_p (rtx x)
4070 struct elim_table *ep;
4072 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4073 if (ep->to_rtx == x && ep->can_eliminate)
4074 return true;
4076 return false;
4079 /* Initialize the table of registers to eliminate.
4080 Pre-condition: global flag frame_pointer_needed has been set before
4081 calling this function. */
4083 static void
4084 init_elim_table (void)
4086 struct elim_table *ep;
4087 #ifdef ELIMINABLE_REGS
4088 const struct elim_table_1 *ep1;
4089 #endif
4091 if (!reg_eliminate)
4092 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4094 num_eliminable = 0;
4096 #ifdef ELIMINABLE_REGS
4097 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4098 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4100 ep->from = ep1->from;
4101 ep->to = ep1->to;
4102 ep->can_eliminate = ep->can_eliminate_previous
4103 = (targetm.can_eliminate (ep->from, ep->to)
4104 && ! (ep->to == STACK_POINTER_REGNUM
4105 && frame_pointer_needed
4106 && (! SUPPORTS_STACK_ALIGNMENT
4107 || ! stack_realign_fp)));
4109 #else
4110 reg_eliminate[0].from = reg_eliminate_1[0].from;
4111 reg_eliminate[0].to = reg_eliminate_1[0].to;
4112 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
4113 = ! frame_pointer_needed;
4114 #endif
4116 /* Count the number of eliminable registers and build the FROM and TO
4117 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4118 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4119 We depend on this. */
4120 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4122 num_eliminable += ep->can_eliminate;
4123 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4124 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4128 /* Find all the pseudo registers that didn't get hard regs
4129 but do have known equivalent constants or memory slots.
4130 These include parameters (known equivalent to parameter slots)
4131 and cse'd or loop-moved constant memory addresses.
4133 Record constant equivalents in reg_equiv_constant
4134 so they will be substituted by find_reloads.
4135 Record memory equivalents in reg_mem_equiv so they can
4136 be substituted eventually by altering the REG-rtx's. */
4138 static void
4139 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4141 int i;
4142 rtx_insn *insn;
4144 grow_reg_equivs ();
4145 if (do_subregs)
4146 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4147 else
4148 reg_max_ref_width = NULL;
4150 num_eliminable_invariants = 0;
4152 first_label_num = get_first_label_num ();
4153 num_labels = max_label_num () - first_label_num;
4155 /* Allocate the tables used to store offset information at labels. */
4156 offsets_known_at = XNEWVEC (char, num_labels);
4157 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4159 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4160 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4161 find largest such for each pseudo. FIRST is the head of the insn
4162 list. */
4164 for (insn = first; insn; insn = NEXT_INSN (insn))
4166 rtx set = single_set (insn);
4168 /* We may introduce USEs that we want to remove at the end, so
4169 we'll mark them with QImode. Make sure there are no
4170 previously-marked insns left by say regmove. */
4171 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4172 && GET_MODE (insn) != VOIDmode)
4173 PUT_MODE (insn, VOIDmode);
4175 if (do_subregs && NONDEBUG_INSN_P (insn))
4176 scan_paradoxical_subregs (PATTERN (insn));
4178 if (set != 0 && REG_P (SET_DEST (set)))
4180 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4181 rtx x;
4183 if (! note)
4184 continue;
4186 i = REGNO (SET_DEST (set));
4187 x = XEXP (note, 0);
4189 if (i <= LAST_VIRTUAL_REGISTER)
4190 continue;
4192 /* If flag_pic and we have constant, verify it's legitimate. */
4193 if (!CONSTANT_P (x)
4194 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4196 /* It can happen that a REG_EQUIV note contains a MEM
4197 that is not a legitimate memory operand. As later
4198 stages of reload assume that all addresses found
4199 in the reg_equiv_* arrays were originally legitimate,
4200 we ignore such REG_EQUIV notes. */
4201 if (memory_operand (x, VOIDmode))
4203 /* Always unshare the equivalence, so we can
4204 substitute into this insn without touching the
4205 equivalence. */
4206 reg_equiv_memory_loc (i) = copy_rtx (x);
4208 else if (function_invariant_p (x))
4210 enum machine_mode mode;
4212 mode = GET_MODE (SET_DEST (set));
4213 if (GET_CODE (x) == PLUS)
4215 /* This is PLUS of frame pointer and a constant,
4216 and might be shared. Unshare it. */
4217 reg_equiv_invariant (i) = copy_rtx (x);
4218 num_eliminable_invariants++;
4220 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4222 reg_equiv_invariant (i) = x;
4223 num_eliminable_invariants++;
4225 else if (targetm.legitimate_constant_p (mode, x))
4226 reg_equiv_constant (i) = x;
4227 else
4229 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4230 if (! reg_equiv_memory_loc (i))
4231 reg_equiv_init (i) = NULL_RTX;
4234 else
4236 reg_equiv_init (i) = NULL_RTX;
4237 continue;
4240 else
4241 reg_equiv_init (i) = NULL_RTX;
4245 if (dump_file)
4246 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4247 if (reg_equiv_init (i))
4249 fprintf (dump_file, "init_insns for %u: ", i);
4250 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4251 fprintf (dump_file, "\n");
4255 /* Indicate that we no longer have known memory locations or constants.
4256 Free all data involved in tracking these. */
4258 static void
4259 free_reg_equiv (void)
4261 int i;
4263 free (offsets_known_at);
4264 free (offsets_at);
4265 offsets_at = 0;
4266 offsets_known_at = 0;
4268 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4269 if (reg_equiv_alt_mem_list (i))
4270 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4271 vec_free (reg_equivs);
4274 /* Kick all pseudos out of hard register REGNO.
4276 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4277 because we found we can't eliminate some register. In the case, no pseudos
4278 are allowed to be in the register, even if they are only in a block that
4279 doesn't require spill registers, unlike the case when we are spilling this
4280 hard reg to produce another spill register.
4282 Return nonzero if any pseudos needed to be kicked out. */
4284 static void
4285 spill_hard_reg (unsigned int regno, int cant_eliminate)
4287 int i;
4289 if (cant_eliminate)
4291 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4292 df_set_regs_ever_live (regno, true);
4295 /* Spill every pseudo reg that was allocated to this reg
4296 or to something that overlaps this reg. */
4298 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4299 if (reg_renumber[i] >= 0
4300 && (unsigned int) reg_renumber[i] <= regno
4301 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4302 SET_REGNO_REG_SET (&spilled_pseudos, i);
4305 /* After find_reload_regs has been run for all insn that need reloads,
4306 and/or spill_hard_regs was called, this function is used to actually
4307 spill pseudo registers and try to reallocate them. It also sets up the
4308 spill_regs array for use by choose_reload_regs. */
4310 static int
4311 finish_spills (int global)
4313 struct insn_chain *chain;
4314 int something_changed = 0;
4315 unsigned i;
4316 reg_set_iterator rsi;
4318 /* Build the spill_regs array for the function. */
4319 /* If there are some registers still to eliminate and one of the spill regs
4320 wasn't ever used before, additional stack space may have to be
4321 allocated to store this register. Thus, we may have changed the offset
4322 between the stack and frame pointers, so mark that something has changed.
4324 One might think that we need only set VAL to 1 if this is a call-used
4325 register. However, the set of registers that must be saved by the
4326 prologue is not identical to the call-used set. For example, the
4327 register used by the call insn for the return PC is a call-used register,
4328 but must be saved by the prologue. */
4330 n_spills = 0;
4331 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4332 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4334 spill_reg_order[i] = n_spills;
4335 spill_regs[n_spills++] = i;
4336 if (num_eliminable && ! df_regs_ever_live_p (i))
4337 something_changed = 1;
4338 df_set_regs_ever_live (i, true);
4340 else
4341 spill_reg_order[i] = -1;
4343 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4344 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4346 /* Record the current hard register the pseudo is allocated to
4347 in pseudo_previous_regs so we avoid reallocating it to the
4348 same hard reg in a later pass. */
4349 gcc_assert (reg_renumber[i] >= 0);
4351 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4352 /* Mark it as no longer having a hard register home. */
4353 reg_renumber[i] = -1;
4354 if (ira_conflicts_p)
4355 /* Inform IRA about the change. */
4356 ira_mark_allocation_change (i);
4357 /* We will need to scan everything again. */
4358 something_changed = 1;
4361 /* Retry global register allocation if possible. */
4362 if (global && ira_conflicts_p)
4364 unsigned int n;
4366 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4367 /* For every insn that needs reloads, set the registers used as spill
4368 regs in pseudo_forbidden_regs for every pseudo live across the
4369 insn. */
4370 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4372 EXECUTE_IF_SET_IN_REG_SET
4373 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4375 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4376 chain->used_spill_regs);
4378 EXECUTE_IF_SET_IN_REG_SET
4379 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4381 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4382 chain->used_spill_regs);
4386 /* Retry allocating the pseudos spilled in IRA and the
4387 reload. For each reg, merge the various reg sets that
4388 indicate which hard regs can't be used, and call
4389 ira_reassign_pseudos. */
4390 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4391 if (reg_old_renumber[i] != reg_renumber[i])
4393 if (reg_renumber[i] < 0)
4394 temp_pseudo_reg_arr[n++] = i;
4395 else
4396 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4398 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4399 bad_spill_regs_global,
4400 pseudo_forbidden_regs, pseudo_previous_regs,
4401 &spilled_pseudos))
4402 something_changed = 1;
4404 /* Fix up the register information in the insn chain.
4405 This involves deleting those of the spilled pseudos which did not get
4406 a new hard register home from the live_{before,after} sets. */
4407 for (chain = reload_insn_chain; chain; chain = chain->next)
4409 HARD_REG_SET used_by_pseudos;
4410 HARD_REG_SET used_by_pseudos2;
4412 if (! ira_conflicts_p)
4414 /* Don't do it for IRA because IRA and the reload still can
4415 assign hard registers to the spilled pseudos on next
4416 reload iterations. */
4417 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4418 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4420 /* Mark any unallocated hard regs as available for spills. That
4421 makes inheritance work somewhat better. */
4422 if (chain->need_reload)
4424 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4425 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4426 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4428 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4429 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4430 /* Value of chain->used_spill_regs from previous iteration
4431 may be not included in the value calculated here because
4432 of possible removing caller-saves insns (see function
4433 delete_caller_save_insns. */
4434 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4435 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4439 CLEAR_REG_SET (&changed_allocation_pseudos);
4440 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4441 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4443 int regno = reg_renumber[i];
4444 if (reg_old_renumber[i] == regno)
4445 continue;
4447 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4449 alter_reg (i, reg_old_renumber[i], false);
4450 reg_old_renumber[i] = regno;
4451 if (dump_file)
4453 if (regno == -1)
4454 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4455 else
4456 fprintf (dump_file, " Register %d now in %d.\n\n",
4457 i, reg_renumber[i]);
4461 return something_changed;
4464 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4466 static void
4467 scan_paradoxical_subregs (rtx x)
4469 int i;
4470 const char *fmt;
4471 enum rtx_code code = GET_CODE (x);
4473 switch (code)
4475 case REG:
4476 case CONST:
4477 case SYMBOL_REF:
4478 case LABEL_REF:
4479 CASE_CONST_ANY:
4480 case CC0:
4481 case PC:
4482 case USE:
4483 case CLOBBER:
4484 return;
4486 case SUBREG:
4487 if (REG_P (SUBREG_REG (x))
4488 && (GET_MODE_SIZE (GET_MODE (x))
4489 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4491 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4492 = GET_MODE_SIZE (GET_MODE (x));
4493 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4495 return;
4497 default:
4498 break;
4501 fmt = GET_RTX_FORMAT (code);
4502 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4504 if (fmt[i] == 'e')
4505 scan_paradoxical_subregs (XEXP (x, i));
4506 else if (fmt[i] == 'E')
4508 int j;
4509 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4510 scan_paradoxical_subregs (XVECEXP (x, i, j));
4515 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4516 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4517 and apply the corresponding narrowing subreg to *OTHER_PTR.
4518 Return true if the operands were changed, false otherwise. */
4520 static bool
4521 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4523 rtx op, inner, other, tem;
4525 op = *op_ptr;
4526 if (!paradoxical_subreg_p (op))
4527 return false;
4528 inner = SUBREG_REG (op);
4530 other = *other_ptr;
4531 tem = gen_lowpart_common (GET_MODE (inner), other);
4532 if (!tem)
4533 return false;
4535 /* If the lowpart operation turned a hard register into a subreg,
4536 rather than simplifying it to another hard register, then the
4537 mode change cannot be properly represented. For example, OTHER
4538 might be valid in its current mode, but not in the new one. */
4539 if (GET_CODE (tem) == SUBREG
4540 && REG_P (other)
4541 && HARD_REGISTER_P (other))
4542 return false;
4544 *op_ptr = inner;
4545 *other_ptr = tem;
4546 return true;
4549 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4550 examine all of the reload insns between PREV and NEXT exclusive, and
4551 annotate all that may trap. */
4553 static void
4554 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4556 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4557 if (note == NULL)
4558 return;
4559 if (!insn_could_throw_p (insn))
4560 remove_note (insn, note);
4561 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4564 /* Reload pseudo-registers into hard regs around each insn as needed.
4565 Additional register load insns are output before the insn that needs it
4566 and perhaps store insns after insns that modify the reloaded pseudo reg.
4568 reg_last_reload_reg and reg_reloaded_contents keep track of
4569 which registers are already available in reload registers.
4570 We update these for the reloads that we perform,
4571 as the insns are scanned. */
4573 static void
4574 reload_as_needed (int live_known)
4576 struct insn_chain *chain;
4577 #if defined (AUTO_INC_DEC)
4578 int i;
4579 #endif
4580 rtx_note *marker;
4582 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4583 memset (spill_reg_store, 0, sizeof spill_reg_store);
4584 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4585 INIT_REG_SET (&reg_has_output_reload);
4586 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4587 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4589 set_initial_elim_offsets ();
4591 /* Generate a marker insn that we will move around. */
4592 marker = emit_note (NOTE_INSN_DELETED);
4593 unlink_insn_chain (marker, marker);
4595 for (chain = reload_insn_chain; chain; chain = chain->next)
4597 rtx_insn *prev = 0;
4598 rtx_insn *insn = chain->insn;
4599 rtx_insn *old_next = NEXT_INSN (insn);
4600 #ifdef AUTO_INC_DEC
4601 rtx_insn *old_prev = PREV_INSN (insn);
4602 #endif
4604 if (will_delete_init_insn_p (insn))
4605 continue;
4607 /* If we pass a label, copy the offsets from the label information
4608 into the current offsets of each elimination. */
4609 if (LABEL_P (insn))
4610 set_offsets_for_label (insn);
4612 else if (INSN_P (insn))
4614 regset_head regs_to_forget;
4615 INIT_REG_SET (&regs_to_forget);
4616 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4618 /* If this is a USE and CLOBBER of a MEM, ensure that any
4619 references to eliminable registers have been removed. */
4621 if ((GET_CODE (PATTERN (insn)) == USE
4622 || GET_CODE (PATTERN (insn)) == CLOBBER)
4623 && MEM_P (XEXP (PATTERN (insn), 0)))
4624 XEXP (XEXP (PATTERN (insn), 0), 0)
4625 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4626 GET_MODE (XEXP (PATTERN (insn), 0)),
4627 NULL_RTX);
4629 /* If we need to do register elimination processing, do so.
4630 This might delete the insn, in which case we are done. */
4631 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4633 eliminate_regs_in_insn (insn, 1);
4634 if (NOTE_P (insn))
4636 update_eliminable_offsets ();
4637 CLEAR_REG_SET (&regs_to_forget);
4638 continue;
4642 /* If need_elim is nonzero but need_reload is zero, one might think
4643 that we could simply set n_reloads to 0. However, find_reloads
4644 could have done some manipulation of the insn (such as swapping
4645 commutative operands), and these manipulations are lost during
4646 the first pass for every insn that needs register elimination.
4647 So the actions of find_reloads must be redone here. */
4649 if (! chain->need_elim && ! chain->need_reload
4650 && ! chain->need_operand_change)
4651 n_reloads = 0;
4652 /* First find the pseudo regs that must be reloaded for this insn.
4653 This info is returned in the tables reload_... (see reload.h).
4654 Also modify the body of INSN by substituting RELOAD
4655 rtx's for those pseudo regs. */
4656 else
4658 CLEAR_REG_SET (&reg_has_output_reload);
4659 CLEAR_HARD_REG_SET (reg_is_output_reload);
4661 find_reloads (insn, 1, spill_indirect_levels, live_known,
4662 spill_reg_order);
4665 if (n_reloads > 0)
4667 rtx_insn *next = NEXT_INSN (insn);
4669 /* ??? PREV can get deleted by reload inheritance.
4670 Work around this by emitting a marker note. */
4671 prev = PREV_INSN (insn);
4672 reorder_insns_nobb (marker, marker, prev);
4674 /* Now compute which reload regs to reload them into. Perhaps
4675 reusing reload regs from previous insns, or else output
4676 load insns to reload them. Maybe output store insns too.
4677 Record the choices of reload reg in reload_reg_rtx. */
4678 choose_reload_regs (chain);
4680 /* Generate the insns to reload operands into or out of
4681 their reload regs. */
4682 emit_reload_insns (chain);
4684 /* Substitute the chosen reload regs from reload_reg_rtx
4685 into the insn's body (or perhaps into the bodies of other
4686 load and store insn that we just made for reloading
4687 and that we moved the structure into). */
4688 subst_reloads (insn);
4690 prev = PREV_INSN (marker);
4691 unlink_insn_chain (marker, marker);
4693 /* Adjust the exception region notes for loads and stores. */
4694 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4695 fixup_eh_region_note (insn, prev, next);
4697 /* Adjust the location of REG_ARGS_SIZE. */
4698 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4699 if (p)
4701 remove_note (insn, p);
4702 fixup_args_size_notes (prev, PREV_INSN (next),
4703 INTVAL (XEXP (p, 0)));
4706 /* If this was an ASM, make sure that all the reload insns
4707 we have generated are valid. If not, give an error
4708 and delete them. */
4709 if (asm_noperands (PATTERN (insn)) >= 0)
4710 for (rtx_insn *p = NEXT_INSN (prev);
4711 p != next;
4712 p = NEXT_INSN (p))
4713 if (p != insn && INSN_P (p)
4714 && GET_CODE (PATTERN (p)) != USE
4715 && (recog_memoized (p) < 0
4716 || (extract_insn (p),
4717 !(constrain_operands (1,
4718 get_enabled_alternatives (p))))))
4720 error_for_asm (insn,
4721 "%<asm%> operand requires "
4722 "impossible reload");
4723 delete_insn (p);
4727 if (num_eliminable && chain->need_elim)
4728 update_eliminable_offsets ();
4730 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4731 is no longer validly lying around to save a future reload.
4732 Note that this does not detect pseudos that were reloaded
4733 for this insn in order to be stored in
4734 (obeying register constraints). That is correct; such reload
4735 registers ARE still valid. */
4736 forget_marked_reloads (&regs_to_forget);
4737 CLEAR_REG_SET (&regs_to_forget);
4739 /* There may have been CLOBBER insns placed after INSN. So scan
4740 between INSN and NEXT and use them to forget old reloads. */
4741 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4742 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4743 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4745 #ifdef AUTO_INC_DEC
4746 /* Likewise for regs altered by auto-increment in this insn.
4747 REG_INC notes have been changed by reloading:
4748 find_reloads_address_1 records substitutions for them,
4749 which have been performed by subst_reloads above. */
4750 for (i = n_reloads - 1; i >= 0; i--)
4752 rtx in_reg = rld[i].in_reg;
4753 if (in_reg)
4755 enum rtx_code code = GET_CODE (in_reg);
4756 /* PRE_INC / PRE_DEC will have the reload register ending up
4757 with the same value as the stack slot, but that doesn't
4758 hold true for POST_INC / POST_DEC. Either we have to
4759 convert the memory access to a true POST_INC / POST_DEC,
4760 or we can't use the reload register for inheritance. */
4761 if ((code == POST_INC || code == POST_DEC)
4762 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4763 REGNO (rld[i].reg_rtx))
4764 /* Make sure it is the inc/dec pseudo, and not
4765 some other (e.g. output operand) pseudo. */
4766 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4767 == REGNO (XEXP (in_reg, 0))))
4770 rtx reload_reg = rld[i].reg_rtx;
4771 enum machine_mode mode = GET_MODE (reload_reg);
4772 int n = 0;
4773 rtx_insn *p;
4775 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4777 /* We really want to ignore REG_INC notes here, so
4778 use PATTERN (p) as argument to reg_set_p . */
4779 if (reg_set_p (reload_reg, PATTERN (p)))
4780 break;
4781 n = count_occurrences (PATTERN (p), reload_reg, 0);
4782 if (! n)
4783 continue;
4784 if (n == 1)
4786 rtx replace_reg
4787 = gen_rtx_fmt_e (code, mode, reload_reg);
4789 validate_replace_rtx_group (reload_reg,
4790 replace_reg, p);
4791 n = verify_changes (0);
4793 /* We must also verify that the constraints
4794 are met after the replacement. Make sure
4795 extract_insn is only called for an insn
4796 where the replacements were found to be
4797 valid so far. */
4798 if (n)
4800 extract_insn (p);
4801 n = constrain_operands (1,
4802 get_enabled_alternatives (p));
4805 /* If the constraints were not met, then
4806 undo the replacement, else confirm it. */
4807 if (!n)
4808 cancel_changes (0);
4809 else
4810 confirm_change_group ();
4812 break;
4814 if (n == 1)
4816 add_reg_note (p, REG_INC, reload_reg);
4817 /* Mark this as having an output reload so that the
4818 REG_INC processing code below won't invalidate
4819 the reload for inheritance. */
4820 SET_HARD_REG_BIT (reg_is_output_reload,
4821 REGNO (reload_reg));
4822 SET_REGNO_REG_SET (&reg_has_output_reload,
4823 REGNO (XEXP (in_reg, 0)));
4825 else
4826 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4827 NULL);
4829 else if ((code == PRE_INC || code == PRE_DEC)
4830 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4831 REGNO (rld[i].reg_rtx))
4832 /* Make sure it is the inc/dec pseudo, and not
4833 some other (e.g. output operand) pseudo. */
4834 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4835 == REGNO (XEXP (in_reg, 0))))
4837 SET_HARD_REG_BIT (reg_is_output_reload,
4838 REGNO (rld[i].reg_rtx));
4839 SET_REGNO_REG_SET (&reg_has_output_reload,
4840 REGNO (XEXP (in_reg, 0)));
4842 else if (code == PRE_INC || code == PRE_DEC
4843 || code == POST_INC || code == POST_DEC)
4845 int in_regno = REGNO (XEXP (in_reg, 0));
4847 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4849 int in_hard_regno;
4850 bool forget_p = true;
4852 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4853 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4854 in_hard_regno))
4856 for (rtx_insn *x = (old_prev ?
4857 NEXT_INSN (old_prev) : insn);
4858 x != old_next;
4859 x = NEXT_INSN (x))
4860 if (x == reg_reloaded_insn[in_hard_regno])
4862 forget_p = false;
4863 break;
4866 /* If for some reasons, we didn't set up
4867 reg_last_reload_reg in this insn,
4868 invalidate inheritance from previous
4869 insns for the incremented/decremented
4870 register. Such registers will be not in
4871 reg_has_output_reload. Invalidate it
4872 also if the corresponding element in
4873 reg_reloaded_insn is also
4874 invalidated. */
4875 if (forget_p)
4876 forget_old_reloads_1 (XEXP (in_reg, 0),
4877 NULL_RTX, NULL);
4882 /* If a pseudo that got a hard register is auto-incremented,
4883 we must purge records of copying it into pseudos without
4884 hard registers. */
4885 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4886 if (REG_NOTE_KIND (x) == REG_INC)
4888 /* See if this pseudo reg was reloaded in this insn.
4889 If so, its last-reload info is still valid
4890 because it is based on this insn's reload. */
4891 for (i = 0; i < n_reloads; i++)
4892 if (rld[i].out == XEXP (x, 0))
4893 break;
4895 if (i == n_reloads)
4896 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4898 #endif
4900 /* A reload reg's contents are unknown after a label. */
4901 if (LABEL_P (insn))
4902 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4904 /* Don't assume a reload reg is still good after a call insn
4905 if it is a call-used reg, or if it contains a value that will
4906 be partially clobbered by the call. */
4907 else if (CALL_P (insn))
4909 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4910 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4912 /* If this is a call to a setjmp-type function, we must not
4913 reuse any reload reg contents across the call; that will
4914 just be clobbered by other uses of the register in later
4915 code, before the longjmp. */
4916 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4917 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4921 /* Clean up. */
4922 free (reg_last_reload_reg);
4923 CLEAR_REG_SET (&reg_has_output_reload);
4926 /* Discard all record of any value reloaded from X,
4927 or reloaded in X from someplace else;
4928 unless X is an output reload reg of the current insn.
4930 X may be a hard reg (the reload reg)
4931 or it may be a pseudo reg that was reloaded from.
4933 When DATA is non-NULL just mark the registers in regset
4934 to be forgotten later. */
4936 static void
4937 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4938 void *data)
4940 unsigned int regno;
4941 unsigned int nr;
4942 regset regs = (regset) data;
4944 /* note_stores does give us subregs of hard regs,
4945 subreg_regno_offset requires a hard reg. */
4946 while (GET_CODE (x) == SUBREG)
4948 /* We ignore the subreg offset when calculating the regno,
4949 because we are using the entire underlying hard register
4950 below. */
4951 x = SUBREG_REG (x);
4954 if (!REG_P (x))
4955 return;
4957 regno = REGNO (x);
4959 if (regno >= FIRST_PSEUDO_REGISTER)
4960 nr = 1;
4961 else
4963 unsigned int i;
4965 nr = hard_regno_nregs[regno][GET_MODE (x)];
4966 /* Storing into a spilled-reg invalidates its contents.
4967 This can happen if a block-local pseudo is allocated to that reg
4968 and it wasn't spilled because this block's total need is 0.
4969 Then some insn might have an optional reload and use this reg. */
4970 if (!regs)
4971 for (i = 0; i < nr; i++)
4972 /* But don't do this if the reg actually serves as an output
4973 reload reg in the current instruction. */
4974 if (n_reloads == 0
4975 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4977 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4978 spill_reg_store[regno + i] = 0;
4982 if (regs)
4983 while (nr-- > 0)
4984 SET_REGNO_REG_SET (regs, regno + nr);
4985 else
4987 /* Since value of X has changed,
4988 forget any value previously copied from it. */
4990 while (nr-- > 0)
4991 /* But don't forget a copy if this is the output reload
4992 that establishes the copy's validity. */
4993 if (n_reloads == 0
4994 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4995 reg_last_reload_reg[regno + nr] = 0;
4999 /* Forget the reloads marked in regset by previous function. */
5000 static void
5001 forget_marked_reloads (regset regs)
5003 unsigned int reg;
5004 reg_set_iterator rsi;
5005 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
5007 if (reg < FIRST_PSEUDO_REGISTER
5008 /* But don't do this if the reg actually serves as an output
5009 reload reg in the current instruction. */
5010 && (n_reloads == 0
5011 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
5013 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
5014 spill_reg_store[reg] = 0;
5016 if (n_reloads == 0
5017 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
5018 reg_last_reload_reg[reg] = 0;
5022 /* The following HARD_REG_SETs indicate when each hard register is
5023 used for a reload of various parts of the current insn. */
5025 /* If reg is unavailable for all reloads. */
5026 static HARD_REG_SET reload_reg_unavailable;
5027 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
5028 static HARD_REG_SET reload_reg_used;
5029 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
5030 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
5031 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
5032 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
5033 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
5034 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
5035 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
5036 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
5037 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
5038 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
5039 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
5040 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
5041 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
5042 static HARD_REG_SET reload_reg_used_in_op_addr;
5043 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
5044 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
5045 /* If reg is in use for a RELOAD_FOR_INSN reload. */
5046 static HARD_REG_SET reload_reg_used_in_insn;
5047 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
5048 static HARD_REG_SET reload_reg_used_in_other_addr;
5050 /* If reg is in use as a reload reg for any sort of reload. */
5051 static HARD_REG_SET reload_reg_used_at_all;
5053 /* If reg is use as an inherited reload. We just mark the first register
5054 in the group. */
5055 static HARD_REG_SET reload_reg_used_for_inherit;
5057 /* Records which hard regs are used in any way, either as explicit use or
5058 by being allocated to a pseudo during any point of the current insn. */
5059 static HARD_REG_SET reg_used_in_insn;
5061 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5062 TYPE. MODE is used to indicate how many consecutive regs are
5063 actually used. */
5065 static void
5066 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5067 enum machine_mode mode)
5069 switch (type)
5071 case RELOAD_OTHER:
5072 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5073 break;
5075 case RELOAD_FOR_INPUT_ADDRESS:
5076 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5077 break;
5079 case RELOAD_FOR_INPADDR_ADDRESS:
5080 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5081 break;
5083 case RELOAD_FOR_OUTPUT_ADDRESS:
5084 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5085 break;
5087 case RELOAD_FOR_OUTADDR_ADDRESS:
5088 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5089 break;
5091 case RELOAD_FOR_OPERAND_ADDRESS:
5092 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5093 break;
5095 case RELOAD_FOR_OPADDR_ADDR:
5096 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5097 break;
5099 case RELOAD_FOR_OTHER_ADDRESS:
5100 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5101 break;
5103 case RELOAD_FOR_INPUT:
5104 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5105 break;
5107 case RELOAD_FOR_OUTPUT:
5108 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5109 break;
5111 case RELOAD_FOR_INSN:
5112 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5113 break;
5116 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5119 /* Similarly, but show REGNO is no longer in use for a reload. */
5121 static void
5122 clear_reload_reg_in_use (unsigned int regno, int opnum,
5123 enum reload_type type, enum machine_mode mode)
5125 unsigned int nregs = hard_regno_nregs[regno][mode];
5126 unsigned int start_regno, end_regno, r;
5127 int i;
5128 /* A complication is that for some reload types, inheritance might
5129 allow multiple reloads of the same types to share a reload register.
5130 We set check_opnum if we have to check only reloads with the same
5131 operand number, and check_any if we have to check all reloads. */
5132 int check_opnum = 0;
5133 int check_any = 0;
5134 HARD_REG_SET *used_in_set;
5136 switch (type)
5138 case RELOAD_OTHER:
5139 used_in_set = &reload_reg_used;
5140 break;
5142 case RELOAD_FOR_INPUT_ADDRESS:
5143 used_in_set = &reload_reg_used_in_input_addr[opnum];
5144 break;
5146 case RELOAD_FOR_INPADDR_ADDRESS:
5147 check_opnum = 1;
5148 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5149 break;
5151 case RELOAD_FOR_OUTPUT_ADDRESS:
5152 used_in_set = &reload_reg_used_in_output_addr[opnum];
5153 break;
5155 case RELOAD_FOR_OUTADDR_ADDRESS:
5156 check_opnum = 1;
5157 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5158 break;
5160 case RELOAD_FOR_OPERAND_ADDRESS:
5161 used_in_set = &reload_reg_used_in_op_addr;
5162 break;
5164 case RELOAD_FOR_OPADDR_ADDR:
5165 check_any = 1;
5166 used_in_set = &reload_reg_used_in_op_addr_reload;
5167 break;
5169 case RELOAD_FOR_OTHER_ADDRESS:
5170 used_in_set = &reload_reg_used_in_other_addr;
5171 check_any = 1;
5172 break;
5174 case RELOAD_FOR_INPUT:
5175 used_in_set = &reload_reg_used_in_input[opnum];
5176 break;
5178 case RELOAD_FOR_OUTPUT:
5179 used_in_set = &reload_reg_used_in_output[opnum];
5180 break;
5182 case RELOAD_FOR_INSN:
5183 used_in_set = &reload_reg_used_in_insn;
5184 break;
5185 default:
5186 gcc_unreachable ();
5188 /* We resolve conflicts with remaining reloads of the same type by
5189 excluding the intervals of reload registers by them from the
5190 interval of freed reload registers. Since we only keep track of
5191 one set of interval bounds, we might have to exclude somewhat
5192 more than what would be necessary if we used a HARD_REG_SET here.
5193 But this should only happen very infrequently, so there should
5194 be no reason to worry about it. */
5196 start_regno = regno;
5197 end_regno = regno + nregs;
5198 if (check_opnum || check_any)
5200 for (i = n_reloads - 1; i >= 0; i--)
5202 if (rld[i].when_needed == type
5203 && (check_any || rld[i].opnum == opnum)
5204 && rld[i].reg_rtx)
5206 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5207 unsigned int conflict_end
5208 = end_hard_regno (rld[i].mode, conflict_start);
5210 /* If there is an overlap with the first to-be-freed register,
5211 adjust the interval start. */
5212 if (conflict_start <= start_regno && conflict_end > start_regno)
5213 start_regno = conflict_end;
5214 /* Otherwise, if there is a conflict with one of the other
5215 to-be-freed registers, adjust the interval end. */
5216 if (conflict_start > start_regno && conflict_start < end_regno)
5217 end_regno = conflict_start;
5222 for (r = start_regno; r < end_regno; r++)
5223 CLEAR_HARD_REG_BIT (*used_in_set, r);
5226 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5227 specified by OPNUM and TYPE. */
5229 static int
5230 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5232 int i;
5234 /* In use for a RELOAD_OTHER means it's not available for anything. */
5235 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5236 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5237 return 0;
5239 switch (type)
5241 case RELOAD_OTHER:
5242 /* In use for anything means we can't use it for RELOAD_OTHER. */
5243 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5244 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5245 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5246 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5247 return 0;
5249 for (i = 0; i < reload_n_operands; i++)
5250 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5251 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5252 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5253 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5254 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5255 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5256 return 0;
5258 return 1;
5260 case RELOAD_FOR_INPUT:
5261 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5262 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5263 return 0;
5265 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5266 return 0;
5268 /* If it is used for some other input, can't use it. */
5269 for (i = 0; i < reload_n_operands; i++)
5270 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5271 return 0;
5273 /* If it is used in a later operand's address, can't use it. */
5274 for (i = opnum + 1; i < reload_n_operands; i++)
5275 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5276 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5277 return 0;
5279 return 1;
5281 case RELOAD_FOR_INPUT_ADDRESS:
5282 /* Can't use a register if it is used for an input address for this
5283 operand or used as an input in an earlier one. */
5284 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5285 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5286 return 0;
5288 for (i = 0; i < opnum; i++)
5289 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5290 return 0;
5292 return 1;
5294 case RELOAD_FOR_INPADDR_ADDRESS:
5295 /* Can't use a register if it is used for an input address
5296 for this operand or used as an input in an earlier
5297 one. */
5298 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5299 return 0;
5301 for (i = 0; i < opnum; i++)
5302 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5303 return 0;
5305 return 1;
5307 case RELOAD_FOR_OUTPUT_ADDRESS:
5308 /* Can't use a register if it is used for an output address for this
5309 operand or used as an output in this or a later operand. Note
5310 that multiple output operands are emitted in reverse order, so
5311 the conflicting ones are those with lower indices. */
5312 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5313 return 0;
5315 for (i = 0; i <= opnum; i++)
5316 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5317 return 0;
5319 return 1;
5321 case RELOAD_FOR_OUTADDR_ADDRESS:
5322 /* Can't use a register if it is used for an output address
5323 for this operand or used as an output in this or a
5324 later operand. Note that multiple output operands are
5325 emitted in reverse order, so the conflicting ones are
5326 those with lower indices. */
5327 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5328 return 0;
5330 for (i = 0; i <= opnum; i++)
5331 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5332 return 0;
5334 return 1;
5336 case RELOAD_FOR_OPERAND_ADDRESS:
5337 for (i = 0; i < reload_n_operands; i++)
5338 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5339 return 0;
5341 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5342 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5344 case RELOAD_FOR_OPADDR_ADDR:
5345 for (i = 0; i < reload_n_operands; i++)
5346 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5347 return 0;
5349 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5351 case RELOAD_FOR_OUTPUT:
5352 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5353 outputs, or an operand address for this or an earlier output.
5354 Note that multiple output operands are emitted in reverse order,
5355 so the conflicting ones are those with higher indices. */
5356 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5357 return 0;
5359 for (i = 0; i < reload_n_operands; i++)
5360 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5361 return 0;
5363 for (i = opnum; i < reload_n_operands; i++)
5364 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5365 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5366 return 0;
5368 return 1;
5370 case RELOAD_FOR_INSN:
5371 for (i = 0; i < reload_n_operands; i++)
5372 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5373 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5374 return 0;
5376 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5377 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5379 case RELOAD_FOR_OTHER_ADDRESS:
5380 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5382 default:
5383 gcc_unreachable ();
5387 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5388 the number RELOADNUM, is still available in REGNO at the end of the insn.
5390 We can assume that the reload reg was already tested for availability
5391 at the time it is needed, and we should not check this again,
5392 in case the reg has already been marked in use. */
5394 static int
5395 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5397 int opnum = rld[reloadnum].opnum;
5398 enum reload_type type = rld[reloadnum].when_needed;
5399 int i;
5401 /* See if there is a reload with the same type for this operand, using
5402 the same register. This case is not handled by the code below. */
5403 for (i = reloadnum + 1; i < n_reloads; i++)
5405 rtx reg;
5406 int nregs;
5408 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5409 continue;
5410 reg = rld[i].reg_rtx;
5411 if (reg == NULL_RTX)
5412 continue;
5413 nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5414 if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5415 return 0;
5418 switch (type)
5420 case RELOAD_OTHER:
5421 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5422 its value must reach the end. */
5423 return 1;
5425 /* If this use is for part of the insn,
5426 its value reaches if no subsequent part uses the same register.
5427 Just like the above function, don't try to do this with lots
5428 of fallthroughs. */
5430 case RELOAD_FOR_OTHER_ADDRESS:
5431 /* Here we check for everything else, since these don't conflict
5432 with anything else and everything comes later. */
5434 for (i = 0; i < reload_n_operands; i++)
5435 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5436 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5437 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5438 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5439 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5440 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5441 return 0;
5443 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5444 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5445 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5446 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5448 case RELOAD_FOR_INPUT_ADDRESS:
5449 case RELOAD_FOR_INPADDR_ADDRESS:
5450 /* Similar, except that we check only for this and subsequent inputs
5451 and the address of only subsequent inputs and we do not need
5452 to check for RELOAD_OTHER objects since they are known not to
5453 conflict. */
5455 for (i = opnum; i < reload_n_operands; i++)
5456 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5457 return 0;
5459 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5460 could be killed if the register is also used by reload with type
5461 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5462 if (type == RELOAD_FOR_INPADDR_ADDRESS
5463 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5464 return 0;
5466 for (i = opnum + 1; i < reload_n_operands; i++)
5467 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5468 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5469 return 0;
5471 for (i = 0; i < reload_n_operands; i++)
5472 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5473 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5474 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5475 return 0;
5477 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5478 return 0;
5480 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5481 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5482 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5484 case RELOAD_FOR_INPUT:
5485 /* Similar to input address, except we start at the next operand for
5486 both input and input address and we do not check for
5487 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5488 would conflict. */
5490 for (i = opnum + 1; i < reload_n_operands; i++)
5491 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5492 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5493 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5494 return 0;
5496 /* ... fall through ... */
5498 case RELOAD_FOR_OPERAND_ADDRESS:
5499 /* Check outputs and their addresses. */
5501 for (i = 0; i < reload_n_operands; i++)
5502 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5503 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5504 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5505 return 0;
5507 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5509 case RELOAD_FOR_OPADDR_ADDR:
5510 for (i = 0; i < reload_n_operands; i++)
5511 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5512 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5513 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5514 return 0;
5516 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5517 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5518 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5520 case RELOAD_FOR_INSN:
5521 /* These conflict with other outputs with RELOAD_OTHER. So
5522 we need only check for output addresses. */
5524 opnum = reload_n_operands;
5526 /* ... fall through ... */
5528 case RELOAD_FOR_OUTPUT:
5529 case RELOAD_FOR_OUTPUT_ADDRESS:
5530 case RELOAD_FOR_OUTADDR_ADDRESS:
5531 /* We already know these can't conflict with a later output. So the
5532 only thing to check are later output addresses.
5533 Note that multiple output operands are emitted in reverse order,
5534 so the conflicting ones are those with lower indices. */
5535 for (i = 0; i < opnum; i++)
5536 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5537 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5538 return 0;
5540 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5541 could be killed if the register is also used by reload with type
5542 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5543 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5544 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5545 return 0;
5547 return 1;
5549 default:
5550 gcc_unreachable ();
5554 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5555 every register in REG. */
5557 static bool
5558 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5560 unsigned int i;
5562 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5563 if (!reload_reg_reaches_end_p (i, reloadnum))
5564 return false;
5565 return true;
5569 /* Returns whether R1 and R2 are uniquely chained: the value of one
5570 is used by the other, and that value is not used by any other
5571 reload for this insn. This is used to partially undo the decision
5572 made in find_reloads when in the case of multiple
5573 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5574 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5575 reloads. This code tries to avoid the conflict created by that
5576 change. It might be cleaner to explicitly keep track of which
5577 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5578 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5579 this after the fact. */
5580 static bool
5581 reloads_unique_chain_p (int r1, int r2)
5583 int i;
5585 /* We only check input reloads. */
5586 if (! rld[r1].in || ! rld[r2].in)
5587 return false;
5589 /* Avoid anything with output reloads. */
5590 if (rld[r1].out || rld[r2].out)
5591 return false;
5593 /* "chained" means one reload is a component of the other reload,
5594 not the same as the other reload. */
5595 if (rld[r1].opnum != rld[r2].opnum
5596 || rtx_equal_p (rld[r1].in, rld[r2].in)
5597 || rld[r1].optional || rld[r2].optional
5598 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5599 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5600 return false;
5602 /* The following loop assumes that r1 is the reload that feeds r2. */
5603 if (r1 > r2)
5605 int tmp = r2;
5606 r2 = r1;
5607 r1 = tmp;
5610 for (i = 0; i < n_reloads; i ++)
5611 /* Look for input reloads that aren't our two */
5612 if (i != r1 && i != r2 && rld[i].in)
5614 /* If our reload is mentioned at all, it isn't a simple chain. */
5615 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5616 return false;
5618 return true;
5621 /* The recursive function change all occurrences of WHAT in *WHERE
5622 to REPL. */
5623 static void
5624 substitute (rtx *where, const_rtx what, rtx repl)
5626 const char *fmt;
5627 int i;
5628 enum rtx_code code;
5630 if (*where == 0)
5631 return;
5633 if (*where == what || rtx_equal_p (*where, what))
5635 /* Record the location of the changed rtx. */
5636 substitute_stack.safe_push (where);
5637 *where = repl;
5638 return;
5641 code = GET_CODE (*where);
5642 fmt = GET_RTX_FORMAT (code);
5643 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5645 if (fmt[i] == 'E')
5647 int j;
5649 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5650 substitute (&XVECEXP (*where, i, j), what, repl);
5652 else if (fmt[i] == 'e')
5653 substitute (&XEXP (*where, i), what, repl);
5657 /* The function returns TRUE if chain of reload R1 and R2 (in any
5658 order) can be evaluated without usage of intermediate register for
5659 the reload containing another reload. It is important to see
5660 gen_reload to understand what the function is trying to do. As an
5661 example, let us have reload chain
5663 r2: const
5664 r1: <something> + const
5666 and reload R2 got reload reg HR. The function returns true if
5667 there is a correct insn HR = HR + <something>. Otherwise,
5668 gen_reload will use intermediate register (and this is the reload
5669 reg for R1) to reload <something>.
5671 We need this function to find a conflict for chain reloads. In our
5672 example, if HR = HR + <something> is incorrect insn, then we cannot
5673 use HR as a reload register for R2. If we do use it then we get a
5674 wrong code:
5676 HR = const
5677 HR = <something>
5678 HR = HR + HR
5681 static bool
5682 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5684 /* Assume other cases in gen_reload are not possible for
5685 chain reloads or do need an intermediate hard registers. */
5686 bool result = true;
5687 int regno, n, code;
5688 rtx out, in;
5689 rtx_insn *insn;
5690 rtx_insn *last = get_last_insn ();
5692 /* Make r2 a component of r1. */
5693 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5695 n = r1;
5696 r1 = r2;
5697 r2 = n;
5699 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5700 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5701 gcc_assert (regno >= 0);
5702 out = gen_rtx_REG (rld[r1].mode, regno);
5703 in = rld[r1].in;
5704 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5706 /* If IN is a paradoxical SUBREG, remove it and try to put the
5707 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5708 strip_paradoxical_subreg (&in, &out);
5710 if (GET_CODE (in) == PLUS
5711 && (REG_P (XEXP (in, 0))
5712 || GET_CODE (XEXP (in, 0)) == SUBREG
5713 || MEM_P (XEXP (in, 0)))
5714 && (REG_P (XEXP (in, 1))
5715 || GET_CODE (XEXP (in, 1)) == SUBREG
5716 || CONSTANT_P (XEXP (in, 1))
5717 || MEM_P (XEXP (in, 1))))
5719 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
5720 code = recog_memoized (insn);
5721 result = false;
5723 if (code >= 0)
5725 extract_insn (insn);
5726 /* We want constrain operands to treat this insn strictly in
5727 its validity determination, i.e., the way it would after
5728 reload has completed. */
5729 result = constrain_operands (1, get_enabled_alternatives (insn));
5732 delete_insns_since (last);
5735 /* Restore the original value at each changed address within R1. */
5736 while (!substitute_stack.is_empty ())
5738 rtx *where = substitute_stack.pop ();
5739 *where = rld[r2].in;
5742 return result;
5745 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5746 Return 0 otherwise.
5748 This function uses the same algorithm as reload_reg_free_p above. */
5750 static int
5751 reloads_conflict (int r1, int r2)
5753 enum reload_type r1_type = rld[r1].when_needed;
5754 enum reload_type r2_type = rld[r2].when_needed;
5755 int r1_opnum = rld[r1].opnum;
5756 int r2_opnum = rld[r2].opnum;
5758 /* RELOAD_OTHER conflicts with everything. */
5759 if (r2_type == RELOAD_OTHER)
5760 return 1;
5762 /* Otherwise, check conflicts differently for each type. */
5764 switch (r1_type)
5766 case RELOAD_FOR_INPUT:
5767 return (r2_type == RELOAD_FOR_INSN
5768 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5769 || r2_type == RELOAD_FOR_OPADDR_ADDR
5770 || r2_type == RELOAD_FOR_INPUT
5771 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5772 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5773 && r2_opnum > r1_opnum));
5775 case RELOAD_FOR_INPUT_ADDRESS:
5776 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5777 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5779 case RELOAD_FOR_INPADDR_ADDRESS:
5780 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5781 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5783 case RELOAD_FOR_OUTPUT_ADDRESS:
5784 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5785 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5787 case RELOAD_FOR_OUTADDR_ADDRESS:
5788 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5789 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5791 case RELOAD_FOR_OPERAND_ADDRESS:
5792 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5793 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5794 && (!reloads_unique_chain_p (r1, r2)
5795 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5797 case RELOAD_FOR_OPADDR_ADDR:
5798 return (r2_type == RELOAD_FOR_INPUT
5799 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5801 case RELOAD_FOR_OUTPUT:
5802 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5803 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5804 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5805 && r2_opnum >= r1_opnum));
5807 case RELOAD_FOR_INSN:
5808 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5809 || r2_type == RELOAD_FOR_INSN
5810 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5812 case RELOAD_FOR_OTHER_ADDRESS:
5813 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5815 case RELOAD_OTHER:
5816 return 1;
5818 default:
5819 gcc_unreachable ();
5823 /* Indexed by reload number, 1 if incoming value
5824 inherited from previous insns. */
5825 static char reload_inherited[MAX_RELOADS];
5827 /* For an inherited reload, this is the insn the reload was inherited from,
5828 if we know it. Otherwise, this is 0. */
5829 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5831 /* If nonzero, this is a place to get the value of the reload,
5832 rather than using reload_in. */
5833 static rtx reload_override_in[MAX_RELOADS];
5835 /* For each reload, the hard register number of the register used,
5836 or -1 if we did not need a register for this reload. */
5837 static int reload_spill_index[MAX_RELOADS];
5839 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5840 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5842 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5843 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5845 /* Subroutine of free_for_value_p, used to check a single register.
5846 START_REGNO is the starting regno of the full reload register
5847 (possibly comprising multiple hard registers) that we are considering. */
5849 static int
5850 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5851 enum reload_type type, rtx value, rtx out,
5852 int reloadnum, int ignore_address_reloads)
5854 int time1;
5855 /* Set if we see an input reload that must not share its reload register
5856 with any new earlyclobber, but might otherwise share the reload
5857 register with an output or input-output reload. */
5858 int check_earlyclobber = 0;
5859 int i;
5860 int copy = 0;
5862 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5863 return 0;
5865 if (out == const0_rtx)
5867 copy = 1;
5868 out = NULL_RTX;
5871 /* We use some pseudo 'time' value to check if the lifetimes of the
5872 new register use would overlap with the one of a previous reload
5873 that is not read-only or uses a different value.
5874 The 'time' used doesn't have to be linear in any shape or form, just
5875 monotonic.
5876 Some reload types use different 'buckets' for each operand.
5877 So there are MAX_RECOG_OPERANDS different time values for each
5878 such reload type.
5879 We compute TIME1 as the time when the register for the prospective
5880 new reload ceases to be live, and TIME2 for each existing
5881 reload as the time when that the reload register of that reload
5882 becomes live.
5883 Where there is little to be gained by exact lifetime calculations,
5884 we just make conservative assumptions, i.e. a longer lifetime;
5885 this is done in the 'default:' cases. */
5886 switch (type)
5888 case RELOAD_FOR_OTHER_ADDRESS:
5889 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5890 time1 = copy ? 0 : 1;
5891 break;
5892 case RELOAD_OTHER:
5893 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5894 break;
5895 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5896 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5897 respectively, to the time values for these, we get distinct time
5898 values. To get distinct time values for each operand, we have to
5899 multiply opnum by at least three. We round that up to four because
5900 multiply by four is often cheaper. */
5901 case RELOAD_FOR_INPADDR_ADDRESS:
5902 time1 = opnum * 4 + 2;
5903 break;
5904 case RELOAD_FOR_INPUT_ADDRESS:
5905 time1 = opnum * 4 + 3;
5906 break;
5907 case RELOAD_FOR_INPUT:
5908 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5909 executes (inclusive). */
5910 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5911 break;
5912 case RELOAD_FOR_OPADDR_ADDR:
5913 /* opnum * 4 + 4
5914 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5915 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5916 break;
5917 case RELOAD_FOR_OPERAND_ADDRESS:
5918 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5919 is executed. */
5920 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5921 break;
5922 case RELOAD_FOR_OUTADDR_ADDRESS:
5923 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5924 break;
5925 case RELOAD_FOR_OUTPUT_ADDRESS:
5926 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5927 break;
5928 default:
5929 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5932 for (i = 0; i < n_reloads; i++)
5934 rtx reg = rld[i].reg_rtx;
5935 if (reg && REG_P (reg)
5936 && ((unsigned) regno - true_regnum (reg)
5937 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5938 && i != reloadnum)
5940 rtx other_input = rld[i].in;
5942 /* If the other reload loads the same input value, that
5943 will not cause a conflict only if it's loading it into
5944 the same register. */
5945 if (true_regnum (reg) != start_regno)
5946 other_input = NULL_RTX;
5947 if (! other_input || ! rtx_equal_p (other_input, value)
5948 || rld[i].out || out)
5950 int time2;
5951 switch (rld[i].when_needed)
5953 case RELOAD_FOR_OTHER_ADDRESS:
5954 time2 = 0;
5955 break;
5956 case RELOAD_FOR_INPADDR_ADDRESS:
5957 /* find_reloads makes sure that a
5958 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5959 by at most one - the first -
5960 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5961 address reload is inherited, the address address reload
5962 goes away, so we can ignore this conflict. */
5963 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5964 && ignore_address_reloads
5965 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5966 Then the address address is still needed to store
5967 back the new address. */
5968 && ! rld[reloadnum].out)
5969 continue;
5970 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5971 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5972 reloads go away. */
5973 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5974 && ignore_address_reloads
5975 /* Unless we are reloading an auto_inc expression. */
5976 && ! rld[reloadnum].out)
5977 continue;
5978 time2 = rld[i].opnum * 4 + 2;
5979 break;
5980 case RELOAD_FOR_INPUT_ADDRESS:
5981 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5982 && ignore_address_reloads
5983 && ! rld[reloadnum].out)
5984 continue;
5985 time2 = rld[i].opnum * 4 + 3;
5986 break;
5987 case RELOAD_FOR_INPUT:
5988 time2 = rld[i].opnum * 4 + 4;
5989 check_earlyclobber = 1;
5990 break;
5991 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5992 == MAX_RECOG_OPERAND * 4 */
5993 case RELOAD_FOR_OPADDR_ADDR:
5994 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5995 && ignore_address_reloads
5996 && ! rld[reloadnum].out)
5997 continue;
5998 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5999 break;
6000 case RELOAD_FOR_OPERAND_ADDRESS:
6001 time2 = MAX_RECOG_OPERANDS * 4 + 2;
6002 check_earlyclobber = 1;
6003 break;
6004 case RELOAD_FOR_INSN:
6005 time2 = MAX_RECOG_OPERANDS * 4 + 3;
6006 break;
6007 case RELOAD_FOR_OUTPUT:
6008 /* All RELOAD_FOR_OUTPUT reloads become live just after the
6009 instruction is executed. */
6010 time2 = MAX_RECOG_OPERANDS * 4 + 4;
6011 break;
6012 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
6013 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
6014 value. */
6015 case RELOAD_FOR_OUTADDR_ADDRESS:
6016 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
6017 && ignore_address_reloads
6018 && ! rld[reloadnum].out)
6019 continue;
6020 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
6021 break;
6022 case RELOAD_FOR_OUTPUT_ADDRESS:
6023 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
6024 break;
6025 case RELOAD_OTHER:
6026 /* If there is no conflict in the input part, handle this
6027 like an output reload. */
6028 if (! rld[i].in || rtx_equal_p (other_input, value))
6030 time2 = MAX_RECOG_OPERANDS * 4 + 4;
6031 /* Earlyclobbered outputs must conflict with inputs. */
6032 if (earlyclobber_operand_p (rld[i].out))
6033 time2 = MAX_RECOG_OPERANDS * 4 + 3;
6035 break;
6037 time2 = 1;
6038 /* RELOAD_OTHER might be live beyond instruction execution,
6039 but this is not obvious when we set time2 = 1. So check
6040 here if there might be a problem with the new reload
6041 clobbering the register used by the RELOAD_OTHER. */
6042 if (out)
6043 return 0;
6044 break;
6045 default:
6046 return 0;
6048 if ((time1 >= time2
6049 && (! rld[i].in || rld[i].out
6050 || ! rtx_equal_p (other_input, value)))
6051 || (out && rld[reloadnum].out_reg
6052 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
6053 return 0;
6058 /* Earlyclobbered outputs must conflict with inputs. */
6059 if (check_earlyclobber && out && earlyclobber_operand_p (out))
6060 return 0;
6062 return 1;
6065 /* Return 1 if the value in reload reg REGNO, as used by a reload
6066 needed for the part of the insn specified by OPNUM and TYPE,
6067 may be used to load VALUE into it.
6069 MODE is the mode in which the register is used, this is needed to
6070 determine how many hard regs to test.
6072 Other read-only reloads with the same value do not conflict
6073 unless OUT is nonzero and these other reloads have to live while
6074 output reloads live.
6075 If OUT is CONST0_RTX, this is a special case: it means that the
6076 test should not be for using register REGNO as reload register, but
6077 for copying from register REGNO into the reload register.
6079 RELOADNUM is the number of the reload we want to load this value for;
6080 a reload does not conflict with itself.
6082 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6083 reloads that load an address for the very reload we are considering.
6085 The caller has to make sure that there is no conflict with the return
6086 register. */
6088 static int
6089 free_for_value_p (int regno, enum machine_mode mode, int opnum,
6090 enum reload_type type, rtx value, rtx out, int reloadnum,
6091 int ignore_address_reloads)
6093 int nregs = hard_regno_nregs[regno][mode];
6094 while (nregs-- > 0)
6095 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6096 value, out, reloadnum,
6097 ignore_address_reloads))
6098 return 0;
6099 return 1;
6102 /* Return nonzero if the rtx X is invariant over the current function. */
6103 /* ??? Actually, the places where we use this expect exactly what is
6104 tested here, and not everything that is function invariant. In
6105 particular, the frame pointer and arg pointer are special cased;
6106 pic_offset_table_rtx is not, and we must not spill these things to
6107 memory. */
6110 function_invariant_p (const_rtx x)
6112 if (CONSTANT_P (x))
6113 return 1;
6114 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6115 return 1;
6116 if (GET_CODE (x) == PLUS
6117 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6118 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6119 return 1;
6120 return 0;
6123 /* Determine whether the reload reg X overlaps any rtx'es used for
6124 overriding inheritance. Return nonzero if so. */
6126 static int
6127 conflicts_with_override (rtx x)
6129 int i;
6130 for (i = 0; i < n_reloads; i++)
6131 if (reload_override_in[i]
6132 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6133 return 1;
6134 return 0;
6137 /* Give an error message saying we failed to find a reload for INSN,
6138 and clear out reload R. */
6139 static void
6140 failed_reload (rtx_insn *insn, int r)
6142 if (asm_noperands (PATTERN (insn)) < 0)
6143 /* It's the compiler's fault. */
6144 fatal_insn ("could not find a spill register", insn);
6146 /* It's the user's fault; the operand's mode and constraint
6147 don't match. Disable this reload so we don't crash in final. */
6148 error_for_asm (insn,
6149 "%<asm%> operand constraint incompatible with operand size");
6150 rld[r].in = 0;
6151 rld[r].out = 0;
6152 rld[r].reg_rtx = 0;
6153 rld[r].optional = 1;
6154 rld[r].secondary_p = 1;
6157 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6158 for reload R. If it's valid, get an rtx for it. Return nonzero if
6159 successful. */
6160 static int
6161 set_reload_reg (int i, int r)
6163 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6164 parameter. */
6165 int regno ATTRIBUTE_UNUSED;
6166 rtx reg = spill_reg_rtx[i];
6168 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6169 spill_reg_rtx[i] = reg
6170 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6172 regno = true_regnum (reg);
6174 /* Detect when the reload reg can't hold the reload mode.
6175 This used to be one `if', but Sequent compiler can't handle that. */
6176 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6178 enum machine_mode test_mode = VOIDmode;
6179 if (rld[r].in)
6180 test_mode = GET_MODE (rld[r].in);
6181 /* If rld[r].in has VOIDmode, it means we will load it
6182 in whatever mode the reload reg has: to wit, rld[r].mode.
6183 We have already tested that for validity. */
6184 /* Aside from that, we need to test that the expressions
6185 to reload from or into have modes which are valid for this
6186 reload register. Otherwise the reload insns would be invalid. */
6187 if (! (rld[r].in != 0 && test_mode != VOIDmode
6188 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6189 if (! (rld[r].out != 0
6190 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6192 /* The reg is OK. */
6193 last_spill_reg = i;
6195 /* Mark as in use for this insn the reload regs we use
6196 for this. */
6197 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6198 rld[r].when_needed, rld[r].mode);
6200 rld[r].reg_rtx = reg;
6201 reload_spill_index[r] = spill_regs[i];
6202 return 1;
6205 return 0;
6208 /* Find a spill register to use as a reload register for reload R.
6209 LAST_RELOAD is nonzero if this is the last reload for the insn being
6210 processed.
6212 Set rld[R].reg_rtx to the register allocated.
6214 We return 1 if successful, or 0 if we couldn't find a spill reg and
6215 we didn't change anything. */
6217 static int
6218 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6219 int last_reload)
6221 int i, pass, count;
6223 /* If we put this reload ahead, thinking it is a group,
6224 then insist on finding a group. Otherwise we can grab a
6225 reg that some other reload needs.
6226 (That can happen when we have a 68000 DATA_OR_FP_REG
6227 which is a group of data regs or one fp reg.)
6228 We need not be so restrictive if there are no more reloads
6229 for this insn.
6231 ??? Really it would be nicer to have smarter handling
6232 for that kind of reg class, where a problem like this is normal.
6233 Perhaps those classes should be avoided for reloading
6234 by use of more alternatives. */
6236 int force_group = rld[r].nregs > 1 && ! last_reload;
6238 /* If we want a single register and haven't yet found one,
6239 take any reg in the right class and not in use.
6240 If we want a consecutive group, here is where we look for it.
6242 We use three passes so we can first look for reload regs to
6243 reuse, which are already in use for other reloads in this insn,
6244 and only then use additional registers which are not "bad", then
6245 finally any register.
6247 I think that maximizing reuse is needed to make sure we don't
6248 run out of reload regs. Suppose we have three reloads, and
6249 reloads A and B can share regs. These need two regs.
6250 Suppose A and B are given different regs.
6251 That leaves none for C. */
6252 for (pass = 0; pass < 3; pass++)
6254 /* I is the index in spill_regs.
6255 We advance it round-robin between insns to use all spill regs
6256 equally, so that inherited reloads have a chance
6257 of leapfrogging each other. */
6259 i = last_spill_reg;
6261 for (count = 0; count < n_spills; count++)
6263 int rclass = (int) rld[r].rclass;
6264 int regnum;
6266 i++;
6267 if (i >= n_spills)
6268 i -= n_spills;
6269 regnum = spill_regs[i];
6271 if ((reload_reg_free_p (regnum, rld[r].opnum,
6272 rld[r].when_needed)
6273 || (rld[r].in
6274 /* We check reload_reg_used to make sure we
6275 don't clobber the return register. */
6276 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6277 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6278 rld[r].when_needed, rld[r].in,
6279 rld[r].out, r, 1)))
6280 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6281 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6282 /* Look first for regs to share, then for unshared. But
6283 don't share regs used for inherited reloads; they are
6284 the ones we want to preserve. */
6285 && (pass
6286 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6287 regnum)
6288 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6289 regnum))))
6291 int nr = hard_regno_nregs[regnum][rld[r].mode];
6293 /* During the second pass we want to avoid reload registers
6294 which are "bad" for this reload. */
6295 if (pass == 1
6296 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6297 continue;
6299 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6300 (on 68000) got us two FP regs. If NR is 1,
6301 we would reject both of them. */
6302 if (force_group)
6303 nr = rld[r].nregs;
6304 /* If we need only one reg, we have already won. */
6305 if (nr == 1)
6307 /* But reject a single reg if we demand a group. */
6308 if (force_group)
6309 continue;
6310 break;
6312 /* Otherwise check that as many consecutive regs as we need
6313 are available here. */
6314 while (nr > 1)
6316 int regno = regnum + nr - 1;
6317 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6318 && spill_reg_order[regno] >= 0
6319 && reload_reg_free_p (regno, rld[r].opnum,
6320 rld[r].when_needed)))
6321 break;
6322 nr--;
6324 if (nr == 1)
6325 break;
6329 /* If we found something on the current pass, omit later passes. */
6330 if (count < n_spills)
6331 break;
6334 /* We should have found a spill register by now. */
6335 if (count >= n_spills)
6336 return 0;
6338 /* I is the index in SPILL_REG_RTX of the reload register we are to
6339 allocate. Get an rtx for it and find its register number. */
6341 return set_reload_reg (i, r);
6344 /* Initialize all the tables needed to allocate reload registers.
6345 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6346 is the array we use to restore the reg_rtx field for every reload. */
6348 static void
6349 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6351 int i;
6353 for (i = 0; i < n_reloads; i++)
6354 rld[i].reg_rtx = save_reload_reg_rtx[i];
6356 memset (reload_inherited, 0, MAX_RELOADS);
6357 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6358 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6360 CLEAR_HARD_REG_SET (reload_reg_used);
6361 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6362 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6363 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6364 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6365 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6367 CLEAR_HARD_REG_SET (reg_used_in_insn);
6369 HARD_REG_SET tmp;
6370 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6371 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6372 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6373 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6374 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6375 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6378 for (i = 0; i < reload_n_operands; i++)
6380 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6381 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6382 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6383 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6384 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6385 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6388 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6390 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6392 for (i = 0; i < n_reloads; i++)
6393 /* If we have already decided to use a certain register,
6394 don't use it in another way. */
6395 if (rld[i].reg_rtx)
6396 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6397 rld[i].when_needed, rld[i].mode);
6400 #ifdef SECONDARY_MEMORY_NEEDED
6401 /* If X is not a subreg, return it unmodified. If it is a subreg,
6402 look up whether we made a replacement for the SUBREG_REG. Return
6403 either the replacement or the SUBREG_REG. */
6405 static rtx
6406 replaced_subreg (rtx x)
6408 if (GET_CODE (x) == SUBREG)
6409 return find_replacement (&SUBREG_REG (x));
6410 return x;
6412 #endif
6414 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6415 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6416 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6417 otherwise it is NULL. */
6419 static int
6420 compute_reload_subreg_offset (enum machine_mode outermode,
6421 rtx subreg,
6422 enum machine_mode innermode)
6424 int outer_offset;
6425 enum machine_mode middlemode;
6427 if (!subreg)
6428 return subreg_lowpart_offset (outermode, innermode);
6430 outer_offset = SUBREG_BYTE (subreg);
6431 middlemode = GET_MODE (SUBREG_REG (subreg));
6433 /* If SUBREG is paradoxical then return the normal lowpart offset
6434 for OUTERMODE and INNERMODE. Our caller has already checked
6435 that OUTERMODE fits in INNERMODE. */
6436 if (outer_offset == 0
6437 && GET_MODE_SIZE (outermode) > GET_MODE_SIZE (middlemode))
6438 return subreg_lowpart_offset (outermode, innermode);
6440 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6441 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6442 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6445 /* Assign hard reg targets for the pseudo-registers we must reload
6446 into hard regs for this insn.
6447 Also output the instructions to copy them in and out of the hard regs.
6449 For machines with register classes, we are responsible for
6450 finding a reload reg in the proper class. */
6452 static void
6453 choose_reload_regs (struct insn_chain *chain)
6455 rtx_insn *insn = chain->insn;
6456 int i, j;
6457 unsigned int max_group_size = 1;
6458 enum reg_class group_class = NO_REGS;
6459 int pass, win, inheritance;
6461 rtx save_reload_reg_rtx[MAX_RELOADS];
6463 /* In order to be certain of getting the registers we need,
6464 we must sort the reloads into order of increasing register class.
6465 Then our grabbing of reload registers will parallel the process
6466 that provided the reload registers.
6468 Also note whether any of the reloads wants a consecutive group of regs.
6469 If so, record the maximum size of the group desired and what
6470 register class contains all the groups needed by this insn. */
6472 for (j = 0; j < n_reloads; j++)
6474 reload_order[j] = j;
6475 if (rld[j].reg_rtx != NULL_RTX)
6477 gcc_assert (REG_P (rld[j].reg_rtx)
6478 && HARD_REGISTER_P (rld[j].reg_rtx));
6479 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6481 else
6482 reload_spill_index[j] = -1;
6484 if (rld[j].nregs > 1)
6486 max_group_size = MAX (rld[j].nregs, max_group_size);
6487 group_class
6488 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6491 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6494 if (n_reloads > 1)
6495 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6497 /* If -O, try first with inheritance, then turning it off.
6498 If not -O, don't do inheritance.
6499 Using inheritance when not optimizing leads to paradoxes
6500 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6501 because one side of the comparison might be inherited. */
6502 win = 0;
6503 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6505 choose_reload_regs_init (chain, save_reload_reg_rtx);
6507 /* Process the reloads in order of preference just found.
6508 Beyond this point, subregs can be found in reload_reg_rtx.
6510 This used to look for an existing reloaded home for all of the
6511 reloads, and only then perform any new reloads. But that could lose
6512 if the reloads were done out of reg-class order because a later
6513 reload with a looser constraint might have an old home in a register
6514 needed by an earlier reload with a tighter constraint.
6516 To solve this, we make two passes over the reloads, in the order
6517 described above. In the first pass we try to inherit a reload
6518 from a previous insn. If there is a later reload that needs a
6519 class that is a proper subset of the class being processed, we must
6520 also allocate a spill register during the first pass.
6522 Then make a second pass over the reloads to allocate any reloads
6523 that haven't been given registers yet. */
6525 for (j = 0; j < n_reloads; j++)
6527 int r = reload_order[j];
6528 rtx search_equiv = NULL_RTX;
6530 /* Ignore reloads that got marked inoperative. */
6531 if (rld[r].out == 0 && rld[r].in == 0
6532 && ! rld[r].secondary_p)
6533 continue;
6535 /* If find_reloads chose to use reload_in or reload_out as a reload
6536 register, we don't need to chose one. Otherwise, try even if it
6537 found one since we might save an insn if we find the value lying
6538 around.
6539 Try also when reload_in is a pseudo without a hard reg. */
6540 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6541 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6542 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6543 && !MEM_P (rld[r].in)
6544 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6545 continue;
6547 #if 0 /* No longer needed for correct operation.
6548 It might give better code, or might not; worth an experiment? */
6549 /* If this is an optional reload, we can't inherit from earlier insns
6550 until we are sure that any non-optional reloads have been allocated.
6551 The following code takes advantage of the fact that optional reloads
6552 are at the end of reload_order. */
6553 if (rld[r].optional != 0)
6554 for (i = 0; i < j; i++)
6555 if ((rld[reload_order[i]].out != 0
6556 || rld[reload_order[i]].in != 0
6557 || rld[reload_order[i]].secondary_p)
6558 && ! rld[reload_order[i]].optional
6559 && rld[reload_order[i]].reg_rtx == 0)
6560 allocate_reload_reg (chain, reload_order[i], 0);
6561 #endif
6563 /* First see if this pseudo is already available as reloaded
6564 for a previous insn. We cannot try to inherit for reloads
6565 that are smaller than the maximum number of registers needed
6566 for groups unless the register we would allocate cannot be used
6567 for the groups.
6569 We could check here to see if this is a secondary reload for
6570 an object that is already in a register of the desired class.
6571 This would avoid the need for the secondary reload register.
6572 But this is complex because we can't easily determine what
6573 objects might want to be loaded via this reload. So let a
6574 register be allocated here. In `emit_reload_insns' we suppress
6575 one of the loads in the case described above. */
6577 if (inheritance)
6579 int byte = 0;
6580 int regno = -1;
6581 enum machine_mode mode = VOIDmode;
6582 rtx subreg = NULL_RTX;
6584 if (rld[r].in == 0)
6586 else if (REG_P (rld[r].in))
6588 regno = REGNO (rld[r].in);
6589 mode = GET_MODE (rld[r].in);
6591 else if (REG_P (rld[r].in_reg))
6593 regno = REGNO (rld[r].in_reg);
6594 mode = GET_MODE (rld[r].in_reg);
6596 else if (GET_CODE (rld[r].in_reg) == SUBREG
6597 && REG_P (SUBREG_REG (rld[r].in_reg)))
6599 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6600 if (regno < FIRST_PSEUDO_REGISTER)
6601 regno = subreg_regno (rld[r].in_reg);
6602 else
6604 subreg = rld[r].in_reg;
6605 byte = SUBREG_BYTE (subreg);
6607 mode = GET_MODE (rld[r].in_reg);
6609 #ifdef AUTO_INC_DEC
6610 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6611 && REG_P (XEXP (rld[r].in_reg, 0)))
6613 regno = REGNO (XEXP (rld[r].in_reg, 0));
6614 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6615 rld[r].out = rld[r].in;
6617 #endif
6618 #if 0
6619 /* This won't work, since REGNO can be a pseudo reg number.
6620 Also, it takes much more hair to keep track of all the things
6621 that can invalidate an inherited reload of part of a pseudoreg. */
6622 else if (GET_CODE (rld[r].in) == SUBREG
6623 && REG_P (SUBREG_REG (rld[r].in)))
6624 regno = subreg_regno (rld[r].in);
6625 #endif
6627 if (regno >= 0
6628 && reg_last_reload_reg[regno] != 0
6629 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6630 >= GET_MODE_SIZE (mode) + byte)
6631 #ifdef CANNOT_CHANGE_MODE_CLASS
6632 /* Verify that the register it's in can be used in
6633 mode MODE. */
6634 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6635 GET_MODE (reg_last_reload_reg[regno]),
6636 mode)
6637 #endif
6640 enum reg_class rclass = rld[r].rclass, last_class;
6641 rtx last_reg = reg_last_reload_reg[regno];
6643 i = REGNO (last_reg);
6644 byte = compute_reload_subreg_offset (mode,
6645 subreg,
6646 GET_MODE (last_reg));
6647 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6648 last_class = REGNO_REG_CLASS (i);
6650 if (reg_reloaded_contents[i] == regno
6651 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6652 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6653 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6654 /* Even if we can't use this register as a reload
6655 register, we might use it for reload_override_in,
6656 if copying it to the desired class is cheap
6657 enough. */
6658 || ((register_move_cost (mode, last_class, rclass)
6659 < memory_move_cost (mode, rclass, true))
6660 && (secondary_reload_class (1, rclass, mode,
6661 last_reg)
6662 == NO_REGS)
6663 #ifdef SECONDARY_MEMORY_NEEDED
6664 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6665 mode)
6666 #endif
6669 && (rld[r].nregs == max_group_size
6670 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6672 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6673 rld[r].when_needed, rld[r].in,
6674 const0_rtx, r, 1))
6676 /* If a group is needed, verify that all the subsequent
6677 registers still have their values intact. */
6678 int nr = hard_regno_nregs[i][rld[r].mode];
6679 int k;
6681 for (k = 1; k < nr; k++)
6682 if (reg_reloaded_contents[i + k] != regno
6683 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6684 break;
6686 if (k == nr)
6688 int i1;
6689 int bad_for_class;
6691 last_reg = (GET_MODE (last_reg) == mode
6692 ? last_reg : gen_rtx_REG (mode, i));
6694 bad_for_class = 0;
6695 for (k = 0; k < nr; k++)
6696 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6697 i+k);
6699 /* We found a register that contains the
6700 value we need. If this register is the
6701 same as an `earlyclobber' operand of the
6702 current insn, just mark it as a place to
6703 reload from since we can't use it as the
6704 reload register itself. */
6706 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6707 if (reg_overlap_mentioned_for_reload_p
6708 (reg_last_reload_reg[regno],
6709 reload_earlyclobbers[i1]))
6710 break;
6712 if (i1 != n_earlyclobbers
6713 || ! (free_for_value_p (i, rld[r].mode,
6714 rld[r].opnum,
6715 rld[r].when_needed, rld[r].in,
6716 rld[r].out, r, 1))
6717 /* Don't use it if we'd clobber a pseudo reg. */
6718 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6719 && rld[r].out
6720 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6721 /* Don't clobber the frame pointer. */
6722 || (i == HARD_FRAME_POINTER_REGNUM
6723 && frame_pointer_needed
6724 && rld[r].out)
6725 /* Don't really use the inherited spill reg
6726 if we need it wider than we've got it. */
6727 || (GET_MODE_SIZE (rld[r].mode)
6728 > GET_MODE_SIZE (mode))
6729 || bad_for_class
6731 /* If find_reloads chose reload_out as reload
6732 register, stay with it - that leaves the
6733 inherited register for subsequent reloads. */
6734 || (rld[r].out && rld[r].reg_rtx
6735 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6737 if (! rld[r].optional)
6739 reload_override_in[r] = last_reg;
6740 reload_inheritance_insn[r]
6741 = reg_reloaded_insn[i];
6744 else
6746 int k;
6747 /* We can use this as a reload reg. */
6748 /* Mark the register as in use for this part of
6749 the insn. */
6750 mark_reload_reg_in_use (i,
6751 rld[r].opnum,
6752 rld[r].when_needed,
6753 rld[r].mode);
6754 rld[r].reg_rtx = last_reg;
6755 reload_inherited[r] = 1;
6756 reload_inheritance_insn[r]
6757 = reg_reloaded_insn[i];
6758 reload_spill_index[r] = i;
6759 for (k = 0; k < nr; k++)
6760 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6761 i + k);
6768 /* Here's another way to see if the value is already lying around. */
6769 if (inheritance
6770 && rld[r].in != 0
6771 && ! reload_inherited[r]
6772 && rld[r].out == 0
6773 && (CONSTANT_P (rld[r].in)
6774 || GET_CODE (rld[r].in) == PLUS
6775 || REG_P (rld[r].in)
6776 || MEM_P (rld[r].in))
6777 && (rld[r].nregs == max_group_size
6778 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6779 search_equiv = rld[r].in;
6781 if (search_equiv)
6783 rtx equiv
6784 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6785 -1, NULL, 0, rld[r].mode);
6786 int regno = 0;
6788 if (equiv != 0)
6790 if (REG_P (equiv))
6791 regno = REGNO (equiv);
6792 else
6794 /* This must be a SUBREG of a hard register.
6795 Make a new REG since this might be used in an
6796 address and not all machines support SUBREGs
6797 there. */
6798 gcc_assert (GET_CODE (equiv) == SUBREG);
6799 regno = subreg_regno (equiv);
6800 equiv = gen_rtx_REG (rld[r].mode, regno);
6801 /* If we choose EQUIV as the reload register, but the
6802 loop below decides to cancel the inheritance, we'll
6803 end up reloading EQUIV in rld[r].mode, not the mode
6804 it had originally. That isn't safe when EQUIV isn't
6805 available as a spill register since its value might
6806 still be live at this point. */
6807 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6808 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6809 equiv = 0;
6813 /* If we found a spill reg, reject it unless it is free
6814 and of the desired class. */
6815 if (equiv != 0)
6817 int regs_used = 0;
6818 int bad_for_class = 0;
6819 int max_regno = regno + rld[r].nregs;
6821 for (i = regno; i < max_regno; i++)
6823 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6825 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6829 if ((regs_used
6830 && ! free_for_value_p (regno, rld[r].mode,
6831 rld[r].opnum, rld[r].when_needed,
6832 rld[r].in, rld[r].out, r, 1))
6833 || bad_for_class)
6834 equiv = 0;
6837 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6838 equiv = 0;
6840 /* We found a register that contains the value we need.
6841 If this register is the same as an `earlyclobber' operand
6842 of the current insn, just mark it as a place to reload from
6843 since we can't use it as the reload register itself. */
6845 if (equiv != 0)
6846 for (i = 0; i < n_earlyclobbers; i++)
6847 if (reg_overlap_mentioned_for_reload_p (equiv,
6848 reload_earlyclobbers[i]))
6850 if (! rld[r].optional)
6851 reload_override_in[r] = equiv;
6852 equiv = 0;
6853 break;
6856 /* If the equiv register we have found is explicitly clobbered
6857 in the current insn, it depends on the reload type if we
6858 can use it, use it for reload_override_in, or not at all.
6859 In particular, we then can't use EQUIV for a
6860 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6862 if (equiv != 0)
6864 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6865 switch (rld[r].when_needed)
6867 case RELOAD_FOR_OTHER_ADDRESS:
6868 case RELOAD_FOR_INPADDR_ADDRESS:
6869 case RELOAD_FOR_INPUT_ADDRESS:
6870 case RELOAD_FOR_OPADDR_ADDR:
6871 break;
6872 case RELOAD_OTHER:
6873 case RELOAD_FOR_INPUT:
6874 case RELOAD_FOR_OPERAND_ADDRESS:
6875 if (! rld[r].optional)
6876 reload_override_in[r] = equiv;
6877 /* Fall through. */
6878 default:
6879 equiv = 0;
6880 break;
6882 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6883 switch (rld[r].when_needed)
6885 case RELOAD_FOR_OTHER_ADDRESS:
6886 case RELOAD_FOR_INPADDR_ADDRESS:
6887 case RELOAD_FOR_INPUT_ADDRESS:
6888 case RELOAD_FOR_OPADDR_ADDR:
6889 case RELOAD_FOR_OPERAND_ADDRESS:
6890 case RELOAD_FOR_INPUT:
6891 break;
6892 case RELOAD_OTHER:
6893 if (! rld[r].optional)
6894 reload_override_in[r] = equiv;
6895 /* Fall through. */
6896 default:
6897 equiv = 0;
6898 break;
6902 /* If we found an equivalent reg, say no code need be generated
6903 to load it, and use it as our reload reg. */
6904 if (equiv != 0
6905 && (regno != HARD_FRAME_POINTER_REGNUM
6906 || !frame_pointer_needed))
6908 int nr = hard_regno_nregs[regno][rld[r].mode];
6909 int k;
6910 rld[r].reg_rtx = equiv;
6911 reload_spill_index[r] = regno;
6912 reload_inherited[r] = 1;
6914 /* If reg_reloaded_valid is not set for this register,
6915 there might be a stale spill_reg_store lying around.
6916 We must clear it, since otherwise emit_reload_insns
6917 might delete the store. */
6918 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6919 spill_reg_store[regno] = NULL;
6920 /* If any of the hard registers in EQUIV are spill
6921 registers, mark them as in use for this insn. */
6922 for (k = 0; k < nr; k++)
6924 i = spill_reg_order[regno + k];
6925 if (i >= 0)
6927 mark_reload_reg_in_use (regno, rld[r].opnum,
6928 rld[r].when_needed,
6929 rld[r].mode);
6930 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6931 regno + k);
6937 /* If we found a register to use already, or if this is an optional
6938 reload, we are done. */
6939 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6940 continue;
6942 #if 0
6943 /* No longer needed for correct operation. Might or might
6944 not give better code on the average. Want to experiment? */
6946 /* See if there is a later reload that has a class different from our
6947 class that intersects our class or that requires less register
6948 than our reload. If so, we must allocate a register to this
6949 reload now, since that reload might inherit a previous reload
6950 and take the only available register in our class. Don't do this
6951 for optional reloads since they will force all previous reloads
6952 to be allocated. Also don't do this for reloads that have been
6953 turned off. */
6955 for (i = j + 1; i < n_reloads; i++)
6957 int s = reload_order[i];
6959 if ((rld[s].in == 0 && rld[s].out == 0
6960 && ! rld[s].secondary_p)
6961 || rld[s].optional)
6962 continue;
6964 if ((rld[s].rclass != rld[r].rclass
6965 && reg_classes_intersect_p (rld[r].rclass,
6966 rld[s].rclass))
6967 || rld[s].nregs < rld[r].nregs)
6968 break;
6971 if (i == n_reloads)
6972 continue;
6974 allocate_reload_reg (chain, r, j == n_reloads - 1);
6975 #endif
6978 /* Now allocate reload registers for anything non-optional that
6979 didn't get one yet. */
6980 for (j = 0; j < n_reloads; j++)
6982 int r = reload_order[j];
6984 /* Ignore reloads that got marked inoperative. */
6985 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6986 continue;
6988 /* Skip reloads that already have a register allocated or are
6989 optional. */
6990 if (rld[r].reg_rtx != 0 || rld[r].optional)
6991 continue;
6993 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6994 break;
6997 /* If that loop got all the way, we have won. */
6998 if (j == n_reloads)
7000 win = 1;
7001 break;
7004 /* Loop around and try without any inheritance. */
7007 if (! win)
7009 /* First undo everything done by the failed attempt
7010 to allocate with inheritance. */
7011 choose_reload_regs_init (chain, save_reload_reg_rtx);
7013 /* Some sanity tests to verify that the reloads found in the first
7014 pass are identical to the ones we have now. */
7015 gcc_assert (chain->n_reloads == n_reloads);
7017 for (i = 0; i < n_reloads; i++)
7019 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
7020 continue;
7021 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
7022 for (j = 0; j < n_spills; j++)
7023 if (spill_regs[j] == chain->rld[i].regno)
7024 if (! set_reload_reg (j, i))
7025 failed_reload (chain->insn, i);
7029 /* If we thought we could inherit a reload, because it seemed that
7030 nothing else wanted the same reload register earlier in the insn,
7031 verify that assumption, now that all reloads have been assigned.
7032 Likewise for reloads where reload_override_in has been set. */
7034 /* If doing expensive optimizations, do one preliminary pass that doesn't
7035 cancel any inheritance, but removes reloads that have been needed only
7036 for reloads that we know can be inherited. */
7037 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
7039 for (j = 0; j < n_reloads; j++)
7041 int r = reload_order[j];
7042 rtx check_reg;
7043 #ifdef SECONDARY_MEMORY_NEEDED
7044 rtx tem;
7045 #endif
7046 if (reload_inherited[r] && rld[r].reg_rtx)
7047 check_reg = rld[r].reg_rtx;
7048 else if (reload_override_in[r]
7049 && (REG_P (reload_override_in[r])
7050 || GET_CODE (reload_override_in[r]) == SUBREG))
7051 check_reg = reload_override_in[r];
7052 else
7053 continue;
7054 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
7055 rld[r].opnum, rld[r].when_needed, rld[r].in,
7056 (reload_inherited[r]
7057 ? rld[r].out : const0_rtx),
7058 r, 1))
7060 if (pass)
7061 continue;
7062 reload_inherited[r] = 0;
7063 reload_override_in[r] = 0;
7065 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
7066 reload_override_in, then we do not need its related
7067 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
7068 likewise for other reload types.
7069 We handle this by removing a reload when its only replacement
7070 is mentioned in reload_in of the reload we are going to inherit.
7071 A special case are auto_inc expressions; even if the input is
7072 inherited, we still need the address for the output. We can
7073 recognize them because they have RELOAD_OUT set to RELOAD_IN.
7074 If we succeeded removing some reload and we are doing a preliminary
7075 pass just to remove such reloads, make another pass, since the
7076 removal of one reload might allow us to inherit another one. */
7077 else if (rld[r].in
7078 && rld[r].out != rld[r].in
7079 && remove_address_replacements (rld[r].in))
7081 if (pass)
7082 pass = 2;
7084 #ifdef SECONDARY_MEMORY_NEEDED
7085 /* If we needed a memory location for the reload, we also have to
7086 remove its related reloads. */
7087 else if (rld[r].in
7088 && rld[r].out != rld[r].in
7089 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7090 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7091 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem)),
7092 rld[r].rclass, rld[r].inmode)
7093 && remove_address_replacements
7094 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7095 rld[r].when_needed)))
7097 if (pass)
7098 pass = 2;
7100 #endif
7104 /* Now that reload_override_in is known valid,
7105 actually override reload_in. */
7106 for (j = 0; j < n_reloads; j++)
7107 if (reload_override_in[j])
7108 rld[j].in = reload_override_in[j];
7110 /* If this reload won't be done because it has been canceled or is
7111 optional and not inherited, clear reload_reg_rtx so other
7112 routines (such as subst_reloads) don't get confused. */
7113 for (j = 0; j < n_reloads; j++)
7114 if (rld[j].reg_rtx != 0
7115 && ((rld[j].optional && ! reload_inherited[j])
7116 || (rld[j].in == 0 && rld[j].out == 0
7117 && ! rld[j].secondary_p)))
7119 int regno = true_regnum (rld[j].reg_rtx);
7121 if (spill_reg_order[regno] >= 0)
7122 clear_reload_reg_in_use (regno, rld[j].opnum,
7123 rld[j].when_needed, rld[j].mode);
7124 rld[j].reg_rtx = 0;
7125 reload_spill_index[j] = -1;
7128 /* Record which pseudos and which spill regs have output reloads. */
7129 for (j = 0; j < n_reloads; j++)
7131 int r = reload_order[j];
7133 i = reload_spill_index[r];
7135 /* I is nonneg if this reload uses a register.
7136 If rld[r].reg_rtx is 0, this is an optional reload
7137 that we opted to ignore. */
7138 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7139 && rld[r].reg_rtx != 0)
7141 int nregno = REGNO (rld[r].out_reg);
7142 int nr = 1;
7144 if (nregno < FIRST_PSEUDO_REGISTER)
7145 nr = hard_regno_nregs[nregno][rld[r].mode];
7147 while (--nr >= 0)
7148 SET_REGNO_REG_SET (&reg_has_output_reload,
7149 nregno + nr);
7151 if (i >= 0)
7152 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7154 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7155 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7156 || rld[r].when_needed == RELOAD_FOR_INSN);
7161 /* Deallocate the reload register for reload R. This is called from
7162 remove_address_replacements. */
7164 void
7165 deallocate_reload_reg (int r)
7167 int regno;
7169 if (! rld[r].reg_rtx)
7170 return;
7171 regno = true_regnum (rld[r].reg_rtx);
7172 rld[r].reg_rtx = 0;
7173 if (spill_reg_order[regno] >= 0)
7174 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7175 rld[r].mode);
7176 reload_spill_index[r] = -1;
7179 /* These arrays are filled by emit_reload_insns and its subroutines. */
7180 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7181 static rtx_insn *other_input_address_reload_insns = 0;
7182 static rtx_insn *other_input_reload_insns = 0;
7183 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7184 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7185 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7186 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7187 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7188 static rtx_insn *operand_reload_insns = 0;
7189 static rtx_insn *other_operand_reload_insns = 0;
7190 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7192 /* Values to be put in spill_reg_store are put here first. Instructions
7193 must only be placed here if the associated reload register reaches
7194 the end of the instruction's reload sequence. */
7195 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7196 static HARD_REG_SET reg_reloaded_died;
7198 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7199 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7200 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7201 adjusted register, and return true. Otherwise, return false. */
7202 static bool
7203 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7204 enum reg_class new_class,
7205 enum machine_mode new_mode)
7208 rtx reg;
7210 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7212 unsigned regno = REGNO (reg);
7214 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7215 continue;
7216 if (GET_MODE (reg) != new_mode)
7218 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7219 continue;
7220 if (hard_regno_nregs[regno][new_mode]
7221 > hard_regno_nregs[regno][GET_MODE (reg)])
7222 continue;
7223 reg = reload_adjust_reg_for_mode (reg, new_mode);
7225 *reload_reg = reg;
7226 return true;
7228 return false;
7231 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7232 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7233 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7234 adjusted register, and return true. Otherwise, return false. */
7235 static bool
7236 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7237 enum insn_code icode)
7240 enum reg_class new_class = scratch_reload_class (icode);
7241 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7243 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7244 new_class, new_mode);
7247 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7248 has the number J. OLD contains the value to be used as input. */
7250 static void
7251 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7252 rtx old, int j)
7254 rtx_insn *insn = chain->insn;
7255 rtx reloadreg;
7256 rtx oldequiv_reg = 0;
7257 rtx oldequiv = 0;
7258 int special = 0;
7259 enum machine_mode mode;
7260 rtx_insn **where;
7262 /* delete_output_reload is only invoked properly if old contains
7263 the original pseudo register. Since this is replaced with a
7264 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7265 find the pseudo in RELOAD_IN_REG. This is also used to
7266 determine whether a secondary reload is needed. */
7267 if (reload_override_in[j]
7268 && (REG_P (rl->in_reg)
7269 || (GET_CODE (rl->in_reg) == SUBREG
7270 && REG_P (SUBREG_REG (rl->in_reg)))))
7272 oldequiv = old;
7273 old = rl->in_reg;
7275 if (oldequiv == 0)
7276 oldequiv = old;
7277 else if (REG_P (oldequiv))
7278 oldequiv_reg = oldequiv;
7279 else if (GET_CODE (oldequiv) == SUBREG)
7280 oldequiv_reg = SUBREG_REG (oldequiv);
7282 reloadreg = reload_reg_rtx_for_input[j];
7283 mode = GET_MODE (reloadreg);
7285 /* If we are reloading from a register that was recently stored in
7286 with an output-reload, see if we can prove there was
7287 actually no need to store the old value in it. */
7289 if (optimize && REG_P (oldequiv)
7290 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7291 && spill_reg_store[REGNO (oldequiv)]
7292 && REG_P (old)
7293 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7294 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7295 rl->out_reg)))
7296 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7298 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7299 OLDEQUIV. */
7301 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7302 oldequiv = SUBREG_REG (oldequiv);
7303 if (GET_MODE (oldequiv) != VOIDmode
7304 && mode != GET_MODE (oldequiv))
7305 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7307 /* Switch to the right place to emit the reload insns. */
7308 switch (rl->when_needed)
7310 case RELOAD_OTHER:
7311 where = &other_input_reload_insns;
7312 break;
7313 case RELOAD_FOR_INPUT:
7314 where = &input_reload_insns[rl->opnum];
7315 break;
7316 case RELOAD_FOR_INPUT_ADDRESS:
7317 where = &input_address_reload_insns[rl->opnum];
7318 break;
7319 case RELOAD_FOR_INPADDR_ADDRESS:
7320 where = &inpaddr_address_reload_insns[rl->opnum];
7321 break;
7322 case RELOAD_FOR_OUTPUT_ADDRESS:
7323 where = &output_address_reload_insns[rl->opnum];
7324 break;
7325 case RELOAD_FOR_OUTADDR_ADDRESS:
7326 where = &outaddr_address_reload_insns[rl->opnum];
7327 break;
7328 case RELOAD_FOR_OPERAND_ADDRESS:
7329 where = &operand_reload_insns;
7330 break;
7331 case RELOAD_FOR_OPADDR_ADDR:
7332 where = &other_operand_reload_insns;
7333 break;
7334 case RELOAD_FOR_OTHER_ADDRESS:
7335 where = &other_input_address_reload_insns;
7336 break;
7337 default:
7338 gcc_unreachable ();
7341 push_to_sequence (*where);
7343 /* Auto-increment addresses must be reloaded in a special way. */
7344 if (rl->out && ! rl->out_reg)
7346 /* We are not going to bother supporting the case where a
7347 incremented register can't be copied directly from
7348 OLDEQUIV since this seems highly unlikely. */
7349 gcc_assert (rl->secondary_in_reload < 0);
7351 if (reload_inherited[j])
7352 oldequiv = reloadreg;
7354 old = XEXP (rl->in_reg, 0);
7356 /* Prevent normal processing of this reload. */
7357 special = 1;
7358 /* Output a special code sequence for this case. */
7359 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7362 /* If we are reloading a pseudo-register that was set by the previous
7363 insn, see if we can get rid of that pseudo-register entirely
7364 by redirecting the previous insn into our reload register. */
7366 else if (optimize && REG_P (old)
7367 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7368 && dead_or_set_p (insn, old)
7369 /* This is unsafe if some other reload
7370 uses the same reg first. */
7371 && ! conflicts_with_override (reloadreg)
7372 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7373 rl->when_needed, old, rl->out, j, 0))
7375 rtx_insn *temp = PREV_INSN (insn);
7376 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7377 temp = PREV_INSN (temp);
7378 if (temp
7379 && NONJUMP_INSN_P (temp)
7380 && GET_CODE (PATTERN (temp)) == SET
7381 && SET_DEST (PATTERN (temp)) == old
7382 /* Make sure we can access insn_operand_constraint. */
7383 && asm_noperands (PATTERN (temp)) < 0
7384 /* This is unsafe if operand occurs more than once in current
7385 insn. Perhaps some occurrences aren't reloaded. */
7386 && count_occurrences (PATTERN (insn), old, 0) == 1)
7388 rtx old = SET_DEST (PATTERN (temp));
7389 /* Store into the reload register instead of the pseudo. */
7390 SET_DEST (PATTERN (temp)) = reloadreg;
7392 /* Verify that resulting insn is valid.
7394 Note that we have replaced the destination of TEMP with
7395 RELOADREG. If TEMP references RELOADREG within an
7396 autoincrement addressing mode, then the resulting insn
7397 is ill-formed and we must reject this optimization. */
7398 extract_insn (temp);
7399 if (constrain_operands (1, get_enabled_alternatives (temp))
7400 #ifdef AUTO_INC_DEC
7401 && ! find_reg_note (temp, REG_INC, reloadreg)
7402 #endif
7405 /* If the previous insn is an output reload, the source is
7406 a reload register, and its spill_reg_store entry will
7407 contain the previous destination. This is now
7408 invalid. */
7409 if (REG_P (SET_SRC (PATTERN (temp)))
7410 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7412 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7413 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7416 /* If these are the only uses of the pseudo reg,
7417 pretend for GDB it lives in the reload reg we used. */
7418 if (REG_N_DEATHS (REGNO (old)) == 1
7419 && REG_N_SETS (REGNO (old)) == 1)
7421 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7422 if (ira_conflicts_p)
7423 /* Inform IRA about the change. */
7424 ira_mark_allocation_change (REGNO (old));
7425 alter_reg (REGNO (old), -1, false);
7427 special = 1;
7429 /* Adjust any debug insns between temp and insn. */
7430 while ((temp = NEXT_INSN (temp)) != insn)
7431 if (DEBUG_INSN_P (temp))
7432 replace_rtx (PATTERN (temp), old, reloadreg);
7433 else
7434 gcc_assert (NOTE_P (temp));
7436 else
7438 SET_DEST (PATTERN (temp)) = old;
7443 /* We can't do that, so output an insn to load RELOADREG. */
7445 /* If we have a secondary reload, pick up the secondary register
7446 and icode, if any. If OLDEQUIV and OLD are different or
7447 if this is an in-out reload, recompute whether or not we
7448 still need a secondary register and what the icode should
7449 be. If we still need a secondary register and the class or
7450 icode is different, go back to reloading from OLD if using
7451 OLDEQUIV means that we got the wrong type of register. We
7452 cannot have different class or icode due to an in-out reload
7453 because we don't make such reloads when both the input and
7454 output need secondary reload registers. */
7456 if (! special && rl->secondary_in_reload >= 0)
7458 rtx second_reload_reg = 0;
7459 rtx third_reload_reg = 0;
7460 int secondary_reload = rl->secondary_in_reload;
7461 rtx real_oldequiv = oldequiv;
7462 rtx real_old = old;
7463 rtx tmp;
7464 enum insn_code icode;
7465 enum insn_code tertiary_icode = CODE_FOR_nothing;
7467 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7468 and similarly for OLD.
7469 See comments in get_secondary_reload in reload.c. */
7470 /* If it is a pseudo that cannot be replaced with its
7471 equivalent MEM, we must fall back to reload_in, which
7472 will have all the necessary substitutions registered.
7473 Likewise for a pseudo that can't be replaced with its
7474 equivalent constant.
7476 Take extra care for subregs of such pseudos. Note that
7477 we cannot use reg_equiv_mem in this case because it is
7478 not in the right mode. */
7480 tmp = oldequiv;
7481 if (GET_CODE (tmp) == SUBREG)
7482 tmp = SUBREG_REG (tmp);
7483 if (REG_P (tmp)
7484 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7485 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7486 || reg_equiv_constant (REGNO (tmp)) != 0))
7488 if (! reg_equiv_mem (REGNO (tmp))
7489 || num_not_at_initial_offset
7490 || GET_CODE (oldequiv) == SUBREG)
7491 real_oldequiv = rl->in;
7492 else
7493 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7496 tmp = old;
7497 if (GET_CODE (tmp) == SUBREG)
7498 tmp = SUBREG_REG (tmp);
7499 if (REG_P (tmp)
7500 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7501 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7502 || reg_equiv_constant (REGNO (tmp)) != 0))
7504 if (! reg_equiv_mem (REGNO (tmp))
7505 || num_not_at_initial_offset
7506 || GET_CODE (old) == SUBREG)
7507 real_old = rl->in;
7508 else
7509 real_old = reg_equiv_mem (REGNO (tmp));
7512 second_reload_reg = rld[secondary_reload].reg_rtx;
7513 if (rld[secondary_reload].secondary_in_reload >= 0)
7515 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7517 third_reload_reg = rld[tertiary_reload].reg_rtx;
7518 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7519 /* We'd have to add more code for quartary reloads. */
7520 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7522 icode = rl->secondary_in_icode;
7524 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7525 || (rl->in != 0 && rl->out != 0))
7527 secondary_reload_info sri, sri2;
7528 enum reg_class new_class, new_t_class;
7530 sri.icode = CODE_FOR_nothing;
7531 sri.prev_sri = NULL;
7532 new_class
7533 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7534 rl->rclass, mode,
7535 &sri);
7537 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7538 second_reload_reg = 0;
7539 else if (new_class == NO_REGS)
7541 if (reload_adjust_reg_for_icode (&second_reload_reg,
7542 third_reload_reg,
7543 (enum insn_code) sri.icode))
7545 icode = (enum insn_code) sri.icode;
7546 third_reload_reg = 0;
7548 else
7550 oldequiv = old;
7551 real_oldequiv = real_old;
7554 else if (sri.icode != CODE_FOR_nothing)
7555 /* We currently lack a way to express this in reloads. */
7556 gcc_unreachable ();
7557 else
7559 sri2.icode = CODE_FOR_nothing;
7560 sri2.prev_sri = &sri;
7561 new_t_class
7562 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7563 new_class, mode,
7564 &sri);
7565 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7567 if (reload_adjust_reg_for_temp (&second_reload_reg,
7568 third_reload_reg,
7569 new_class, mode))
7571 third_reload_reg = 0;
7572 tertiary_icode = (enum insn_code) sri2.icode;
7574 else
7576 oldequiv = old;
7577 real_oldequiv = real_old;
7580 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7582 rtx intermediate = second_reload_reg;
7584 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7585 new_class, mode)
7586 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7587 ((enum insn_code)
7588 sri2.icode)))
7590 second_reload_reg = intermediate;
7591 tertiary_icode = (enum insn_code) sri2.icode;
7593 else
7595 oldequiv = old;
7596 real_oldequiv = real_old;
7599 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7601 rtx intermediate = second_reload_reg;
7603 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7604 new_class, mode)
7605 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7606 new_t_class, mode))
7608 second_reload_reg = intermediate;
7609 tertiary_icode = (enum insn_code) sri2.icode;
7611 else
7613 oldequiv = old;
7614 real_oldequiv = real_old;
7617 else
7619 /* This could be handled more intelligently too. */
7620 oldequiv = old;
7621 real_oldequiv = real_old;
7626 /* If we still need a secondary reload register, check
7627 to see if it is being used as a scratch or intermediate
7628 register and generate code appropriately. If we need
7629 a scratch register, use REAL_OLDEQUIV since the form of
7630 the insn may depend on the actual address if it is
7631 a MEM. */
7633 if (second_reload_reg)
7635 if (icode != CODE_FOR_nothing)
7637 /* We'd have to add extra code to handle this case. */
7638 gcc_assert (!third_reload_reg);
7640 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7641 second_reload_reg));
7642 special = 1;
7644 else
7646 /* See if we need a scratch register to load the
7647 intermediate register (a tertiary reload). */
7648 if (tertiary_icode != CODE_FOR_nothing)
7650 emit_insn ((GEN_FCN (tertiary_icode)
7651 (second_reload_reg, real_oldequiv,
7652 third_reload_reg)));
7654 else if (third_reload_reg)
7656 gen_reload (third_reload_reg, real_oldequiv,
7657 rl->opnum,
7658 rl->when_needed);
7659 gen_reload (second_reload_reg, third_reload_reg,
7660 rl->opnum,
7661 rl->when_needed);
7663 else
7664 gen_reload (second_reload_reg, real_oldequiv,
7665 rl->opnum,
7666 rl->when_needed);
7668 oldequiv = second_reload_reg;
7673 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7675 rtx real_oldequiv = oldequiv;
7677 if ((REG_P (oldequiv)
7678 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7679 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7680 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7681 || (GET_CODE (oldequiv) == SUBREG
7682 && REG_P (SUBREG_REG (oldequiv))
7683 && (REGNO (SUBREG_REG (oldequiv))
7684 >= FIRST_PSEUDO_REGISTER)
7685 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7686 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7687 || (CONSTANT_P (oldequiv)
7688 && (targetm.preferred_reload_class (oldequiv,
7689 REGNO_REG_CLASS (REGNO (reloadreg)))
7690 == NO_REGS)))
7691 real_oldequiv = rl->in;
7692 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7693 rl->when_needed);
7696 if (cfun->can_throw_non_call_exceptions)
7697 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7699 /* End this sequence. */
7700 *where = get_insns ();
7701 end_sequence ();
7703 /* Update reload_override_in so that delete_address_reloads_1
7704 can see the actual register usage. */
7705 if (oldequiv_reg)
7706 reload_override_in[j] = oldequiv;
7709 /* Generate insns to for the output reload RL, which is for the insn described
7710 by CHAIN and has the number J. */
7711 static void
7712 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7713 int j)
7715 rtx reloadreg;
7716 rtx_insn *insn = chain->insn;
7717 int special = 0;
7718 rtx old = rl->out;
7719 enum machine_mode mode;
7720 rtx_insn *p;
7721 rtx rl_reg_rtx;
7723 if (rl->when_needed == RELOAD_OTHER)
7724 start_sequence ();
7725 else
7726 push_to_sequence (output_reload_insns[rl->opnum]);
7728 rl_reg_rtx = reload_reg_rtx_for_output[j];
7729 mode = GET_MODE (rl_reg_rtx);
7731 reloadreg = rl_reg_rtx;
7733 /* If we need two reload regs, set RELOADREG to the intermediate
7734 one, since it will be stored into OLD. We might need a secondary
7735 register only for an input reload, so check again here. */
7737 if (rl->secondary_out_reload >= 0)
7739 rtx real_old = old;
7740 int secondary_reload = rl->secondary_out_reload;
7741 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7743 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7744 && reg_equiv_mem (REGNO (old)) != 0)
7745 real_old = reg_equiv_mem (REGNO (old));
7747 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7749 rtx second_reloadreg = reloadreg;
7750 reloadreg = rld[secondary_reload].reg_rtx;
7752 /* See if RELOADREG is to be used as a scratch register
7753 or as an intermediate register. */
7754 if (rl->secondary_out_icode != CODE_FOR_nothing)
7756 /* We'd have to add extra code to handle this case. */
7757 gcc_assert (tertiary_reload < 0);
7759 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7760 (real_old, second_reloadreg, reloadreg)));
7761 special = 1;
7763 else
7765 /* See if we need both a scratch and intermediate reload
7766 register. */
7768 enum insn_code tertiary_icode
7769 = rld[secondary_reload].secondary_out_icode;
7771 /* We'd have to add more code for quartary reloads. */
7772 gcc_assert (tertiary_reload < 0
7773 || rld[tertiary_reload].secondary_out_reload < 0);
7775 if (GET_MODE (reloadreg) != mode)
7776 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7778 if (tertiary_icode != CODE_FOR_nothing)
7780 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7782 /* Copy primary reload reg to secondary reload reg.
7783 (Note that these have been swapped above, then
7784 secondary reload reg to OLD using our insn.) */
7786 /* If REAL_OLD is a paradoxical SUBREG, remove it
7787 and try to put the opposite SUBREG on
7788 RELOADREG. */
7789 strip_paradoxical_subreg (&real_old, &reloadreg);
7791 gen_reload (reloadreg, second_reloadreg,
7792 rl->opnum, rl->when_needed);
7793 emit_insn ((GEN_FCN (tertiary_icode)
7794 (real_old, reloadreg, third_reloadreg)));
7795 special = 1;
7798 else
7800 /* Copy between the reload regs here and then to
7801 OUT later. */
7803 gen_reload (reloadreg, second_reloadreg,
7804 rl->opnum, rl->when_needed);
7805 if (tertiary_reload >= 0)
7807 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7809 gen_reload (third_reloadreg, reloadreg,
7810 rl->opnum, rl->when_needed);
7811 reloadreg = third_reloadreg;
7818 /* Output the last reload insn. */
7819 if (! special)
7821 rtx set;
7823 /* Don't output the last reload if OLD is not the dest of
7824 INSN and is in the src and is clobbered by INSN. */
7825 if (! flag_expensive_optimizations
7826 || !REG_P (old)
7827 || !(set = single_set (insn))
7828 || rtx_equal_p (old, SET_DEST (set))
7829 || !reg_mentioned_p (old, SET_SRC (set))
7830 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7831 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7832 gen_reload (old, reloadreg, rl->opnum,
7833 rl->when_needed);
7836 /* Look at all insns we emitted, just to be safe. */
7837 for (p = get_insns (); p; p = NEXT_INSN (p))
7838 if (INSN_P (p))
7840 rtx pat = PATTERN (p);
7842 /* If this output reload doesn't come from a spill reg,
7843 clear any memory of reloaded copies of the pseudo reg.
7844 If this output reload comes from a spill reg,
7845 reg_has_output_reload will make this do nothing. */
7846 note_stores (pat, forget_old_reloads_1, NULL);
7848 if (reg_mentioned_p (rl_reg_rtx, pat))
7850 rtx set = single_set (insn);
7851 if (reload_spill_index[j] < 0
7852 && set
7853 && SET_SRC (set) == rl_reg_rtx)
7855 int src = REGNO (SET_SRC (set));
7857 reload_spill_index[j] = src;
7858 SET_HARD_REG_BIT (reg_is_output_reload, src);
7859 if (find_regno_note (insn, REG_DEAD, src))
7860 SET_HARD_REG_BIT (reg_reloaded_died, src);
7862 if (HARD_REGISTER_P (rl_reg_rtx))
7864 int s = rl->secondary_out_reload;
7865 set = single_set (p);
7866 /* If this reload copies only to the secondary reload
7867 register, the secondary reload does the actual
7868 store. */
7869 if (s >= 0 && set == NULL_RTX)
7870 /* We can't tell what function the secondary reload
7871 has and where the actual store to the pseudo is
7872 made; leave new_spill_reg_store alone. */
7874 else if (s >= 0
7875 && SET_SRC (set) == rl_reg_rtx
7876 && SET_DEST (set) == rld[s].reg_rtx)
7878 /* Usually the next instruction will be the
7879 secondary reload insn; if we can confirm
7880 that it is, setting new_spill_reg_store to
7881 that insn will allow an extra optimization. */
7882 rtx s_reg = rld[s].reg_rtx;
7883 rtx_insn *next = NEXT_INSN (p);
7884 rld[s].out = rl->out;
7885 rld[s].out_reg = rl->out_reg;
7886 set = single_set (next);
7887 if (set && SET_SRC (set) == s_reg
7888 && reload_reg_rtx_reaches_end_p (s_reg, s))
7890 SET_HARD_REG_BIT (reg_is_output_reload,
7891 REGNO (s_reg));
7892 new_spill_reg_store[REGNO (s_reg)] = next;
7895 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7896 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7901 if (rl->when_needed == RELOAD_OTHER)
7903 emit_insn (other_output_reload_insns[rl->opnum]);
7904 other_output_reload_insns[rl->opnum] = get_insns ();
7906 else
7907 output_reload_insns[rl->opnum] = get_insns ();
7909 if (cfun->can_throw_non_call_exceptions)
7910 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7912 end_sequence ();
7915 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7916 and has the number J. */
7917 static void
7918 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7920 rtx_insn *insn = chain->insn;
7921 rtx old = (rl->in && MEM_P (rl->in)
7922 ? rl->in_reg : rl->in);
7923 rtx reg_rtx = rl->reg_rtx;
7925 if (old && reg_rtx)
7927 enum machine_mode mode;
7929 /* Determine the mode to reload in.
7930 This is very tricky because we have three to choose from.
7931 There is the mode the insn operand wants (rl->inmode).
7932 There is the mode of the reload register RELOADREG.
7933 There is the intrinsic mode of the operand, which we could find
7934 by stripping some SUBREGs.
7935 It turns out that RELOADREG's mode is irrelevant:
7936 we can change that arbitrarily.
7938 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7939 then the reload reg may not support QImode moves, so use SImode.
7940 If foo is in memory due to spilling a pseudo reg, this is safe,
7941 because the QImode value is in the least significant part of a
7942 slot big enough for a SImode. If foo is some other sort of
7943 memory reference, then it is impossible to reload this case,
7944 so previous passes had better make sure this never happens.
7946 Then consider a one-word union which has SImode and one of its
7947 members is a float, being fetched as (SUBREG:SF union:SI).
7948 We must fetch that as SFmode because we could be loading into
7949 a float-only register. In this case OLD's mode is correct.
7951 Consider an immediate integer: it has VOIDmode. Here we need
7952 to get a mode from something else.
7954 In some cases, there is a fourth mode, the operand's
7955 containing mode. If the insn specifies a containing mode for
7956 this operand, it overrides all others.
7958 I am not sure whether the algorithm here is always right,
7959 but it does the right things in those cases. */
7961 mode = GET_MODE (old);
7962 if (mode == VOIDmode)
7963 mode = rl->inmode;
7965 /* We cannot use gen_lowpart_common since it can do the wrong thing
7966 when REG_RTX has a multi-word mode. Note that REG_RTX must
7967 always be a REG here. */
7968 if (GET_MODE (reg_rtx) != mode)
7969 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7971 reload_reg_rtx_for_input[j] = reg_rtx;
7973 if (old != 0
7974 /* AUTO_INC reloads need to be handled even if inherited. We got an
7975 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7976 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7977 && ! rtx_equal_p (reg_rtx, old)
7978 && reg_rtx != 0)
7979 emit_input_reload_insns (chain, rld + j, old, j);
7981 /* When inheriting a wider reload, we have a MEM in rl->in,
7982 e.g. inheriting a SImode output reload for
7983 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7984 if (optimize && reload_inherited[j] && rl->in
7985 && MEM_P (rl->in)
7986 && MEM_P (rl->in_reg)
7987 && reload_spill_index[j] >= 0
7988 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7989 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7991 /* If we are reloading a register that was recently stored in with an
7992 output-reload, see if we can prove there was
7993 actually no need to store the old value in it. */
7995 if (optimize
7996 && (reload_inherited[j] || reload_override_in[j])
7997 && reg_rtx
7998 && REG_P (reg_rtx)
7999 && spill_reg_store[REGNO (reg_rtx)] != 0
8000 #if 0
8001 /* There doesn't seem to be any reason to restrict this to pseudos
8002 and doing so loses in the case where we are copying from a
8003 register of the wrong class. */
8004 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
8005 #endif
8006 /* The insn might have already some references to stackslots
8007 replaced by MEMs, while reload_out_reg still names the
8008 original pseudo. */
8009 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
8010 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
8011 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
8014 /* Do output reloading for reload RL, which is for the insn described by
8015 CHAIN and has the number J.
8016 ??? At some point we need to support handling output reloads of
8017 JUMP_INSNs or insns that set cc0. */
8018 static void
8019 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
8021 rtx note, old;
8022 rtx_insn *insn = chain->insn;
8023 /* If this is an output reload that stores something that is
8024 not loaded in this same reload, see if we can eliminate a previous
8025 store. */
8026 rtx pseudo = rl->out_reg;
8027 rtx reg_rtx = rl->reg_rtx;
8029 if (rl->out && reg_rtx)
8031 enum machine_mode mode;
8033 /* Determine the mode to reload in.
8034 See comments above (for input reloading). */
8035 mode = GET_MODE (rl->out);
8036 if (mode == VOIDmode)
8038 /* VOIDmode should never happen for an output. */
8039 if (asm_noperands (PATTERN (insn)) < 0)
8040 /* It's the compiler's fault. */
8041 fatal_insn ("VOIDmode on an output", insn);
8042 error_for_asm (insn, "output operand is constant in %<asm%>");
8043 /* Prevent crash--use something we know is valid. */
8044 mode = word_mode;
8045 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
8047 if (GET_MODE (reg_rtx) != mode)
8048 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
8050 reload_reg_rtx_for_output[j] = reg_rtx;
8052 if (pseudo
8053 && optimize
8054 && REG_P (pseudo)
8055 && ! rtx_equal_p (rl->in_reg, pseudo)
8056 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
8057 && reg_last_reload_reg[REGNO (pseudo)])
8059 int pseudo_no = REGNO (pseudo);
8060 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
8062 /* We don't need to test full validity of last_regno for
8063 inherit here; we only want to know if the store actually
8064 matches the pseudo. */
8065 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
8066 && reg_reloaded_contents[last_regno] == pseudo_no
8067 && spill_reg_store[last_regno]
8068 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
8069 delete_output_reload (insn, j, last_regno, reg_rtx);
8072 old = rl->out_reg;
8073 if (old == 0
8074 || reg_rtx == 0
8075 || rtx_equal_p (old, reg_rtx))
8076 return;
8078 /* An output operand that dies right away does need a reload,
8079 but need not be copied from it. Show the new location in the
8080 REG_UNUSED note. */
8081 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
8082 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
8084 XEXP (note, 0) = reg_rtx;
8085 return;
8087 /* Likewise for a SUBREG of an operand that dies. */
8088 else if (GET_CODE (old) == SUBREG
8089 && REG_P (SUBREG_REG (old))
8090 && 0 != (note = find_reg_note (insn, REG_UNUSED,
8091 SUBREG_REG (old))))
8093 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
8094 return;
8096 else if (GET_CODE (old) == SCRATCH)
8097 /* If we aren't optimizing, there won't be a REG_UNUSED note,
8098 but we don't want to make an output reload. */
8099 return;
8101 /* If is a JUMP_INSN, we can't support output reloads yet. */
8102 gcc_assert (NONJUMP_INSN_P (insn));
8104 emit_output_reload_insns (chain, rld + j, j);
8107 /* A reload copies values of MODE from register SRC to register DEST.
8108 Return true if it can be treated for inheritance purposes like a
8109 group of reloads, each one reloading a single hard register. The
8110 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8111 occupy the same number of hard registers. */
8113 static bool
8114 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8115 int src ATTRIBUTE_UNUSED,
8116 enum machine_mode mode ATTRIBUTE_UNUSED)
8118 #ifdef CANNOT_CHANGE_MODE_CLASS
8119 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8120 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8121 #else
8122 return true;
8123 #endif
8126 /* Output insns to reload values in and out of the chosen reload regs. */
8128 static void
8129 emit_reload_insns (struct insn_chain *chain)
8131 rtx_insn *insn = chain->insn;
8133 int j;
8135 CLEAR_HARD_REG_SET (reg_reloaded_died);
8137 for (j = 0; j < reload_n_operands; j++)
8138 input_reload_insns[j] = input_address_reload_insns[j]
8139 = inpaddr_address_reload_insns[j]
8140 = output_reload_insns[j] = output_address_reload_insns[j]
8141 = outaddr_address_reload_insns[j]
8142 = other_output_reload_insns[j] = 0;
8143 other_input_address_reload_insns = 0;
8144 other_input_reload_insns = 0;
8145 operand_reload_insns = 0;
8146 other_operand_reload_insns = 0;
8148 /* Dump reloads into the dump file. */
8149 if (dump_file)
8151 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8152 debug_reload_to_stream (dump_file);
8155 for (j = 0; j < n_reloads; j++)
8156 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8158 unsigned int i;
8160 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8161 new_spill_reg_store[i] = 0;
8164 /* Now output the instructions to copy the data into and out of the
8165 reload registers. Do these in the order that the reloads were reported,
8166 since reloads of base and index registers precede reloads of operands
8167 and the operands may need the base and index registers reloaded. */
8169 for (j = 0; j < n_reloads; j++)
8171 do_input_reload (chain, rld + j, j);
8172 do_output_reload (chain, rld + j, j);
8175 /* Now write all the insns we made for reloads in the order expected by
8176 the allocation functions. Prior to the insn being reloaded, we write
8177 the following reloads:
8179 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8181 RELOAD_OTHER reloads.
8183 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8184 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8185 RELOAD_FOR_INPUT reload for the operand.
8187 RELOAD_FOR_OPADDR_ADDRS reloads.
8189 RELOAD_FOR_OPERAND_ADDRESS reloads.
8191 After the insn being reloaded, we write the following:
8193 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8194 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8195 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8196 reloads for the operand. The RELOAD_OTHER output reloads are
8197 output in descending order by reload number. */
8199 emit_insn_before (other_input_address_reload_insns, insn);
8200 emit_insn_before (other_input_reload_insns, insn);
8202 for (j = 0; j < reload_n_operands; j++)
8204 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8205 emit_insn_before (input_address_reload_insns[j], insn);
8206 emit_insn_before (input_reload_insns[j], insn);
8209 emit_insn_before (other_operand_reload_insns, insn);
8210 emit_insn_before (operand_reload_insns, insn);
8212 for (j = 0; j < reload_n_operands; j++)
8214 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8215 x = emit_insn_after (output_address_reload_insns[j], x);
8216 x = emit_insn_after (output_reload_insns[j], x);
8217 emit_insn_after (other_output_reload_insns[j], x);
8220 /* For all the spill regs newly reloaded in this instruction,
8221 record what they were reloaded from, so subsequent instructions
8222 can inherit the reloads.
8224 Update spill_reg_store for the reloads of this insn.
8225 Copy the elements that were updated in the loop above. */
8227 for (j = 0; j < n_reloads; j++)
8229 int r = reload_order[j];
8230 int i = reload_spill_index[r];
8232 /* If this is a non-inherited input reload from a pseudo, we must
8233 clear any memory of a previous store to the same pseudo. Only do
8234 something if there will not be an output reload for the pseudo
8235 being reloaded. */
8236 if (rld[r].in_reg != 0
8237 && ! (reload_inherited[r] || reload_override_in[r]))
8239 rtx reg = rld[r].in_reg;
8241 if (GET_CODE (reg) == SUBREG)
8242 reg = SUBREG_REG (reg);
8244 if (REG_P (reg)
8245 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8246 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8248 int nregno = REGNO (reg);
8250 if (reg_last_reload_reg[nregno])
8252 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8254 if (reg_reloaded_contents[last_regno] == nregno)
8255 spill_reg_store[last_regno] = 0;
8260 /* I is nonneg if this reload used a register.
8261 If rld[r].reg_rtx is 0, this is an optional reload
8262 that we opted to ignore. */
8264 if (i >= 0 && rld[r].reg_rtx != 0)
8266 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8267 int k;
8269 /* For a multi register reload, we need to check if all or part
8270 of the value lives to the end. */
8271 for (k = 0; k < nr; k++)
8272 if (reload_reg_reaches_end_p (i + k, r))
8273 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8275 /* Maybe the spill reg contains a copy of reload_out. */
8276 if (rld[r].out != 0
8277 && (REG_P (rld[r].out)
8278 || (rld[r].out_reg
8279 ? REG_P (rld[r].out_reg)
8280 /* The reload value is an auto-modification of
8281 some kind. For PRE_INC, POST_INC, PRE_DEC
8282 and POST_DEC, we record an equivalence
8283 between the reload register and the operand
8284 on the optimistic assumption that we can make
8285 the equivalence hold. reload_as_needed must
8286 then either make it hold or invalidate the
8287 equivalence.
8289 PRE_MODIFY and POST_MODIFY addresses are reloaded
8290 somewhat differently, and allowing them here leads
8291 to problems. */
8292 : (GET_CODE (rld[r].out) != POST_MODIFY
8293 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8295 rtx reg;
8297 reg = reload_reg_rtx_for_output[r];
8298 if (reload_reg_rtx_reaches_end_p (reg, r))
8300 enum machine_mode mode = GET_MODE (reg);
8301 int regno = REGNO (reg);
8302 int nregs = hard_regno_nregs[regno][mode];
8303 rtx out = (REG_P (rld[r].out)
8304 ? rld[r].out
8305 : rld[r].out_reg
8306 ? rld[r].out_reg
8307 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8308 int out_regno = REGNO (out);
8309 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8310 : hard_regno_nregs[out_regno][mode]);
8311 bool piecemeal;
8313 spill_reg_store[regno] = new_spill_reg_store[regno];
8314 spill_reg_stored_to[regno] = out;
8315 reg_last_reload_reg[out_regno] = reg;
8317 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8318 && nregs == out_nregs
8319 && inherit_piecemeal_p (out_regno, regno, mode));
8321 /* If OUT_REGNO is a hard register, it may occupy more than
8322 one register. If it does, say what is in the
8323 rest of the registers assuming that both registers
8324 agree on how many words the object takes. If not,
8325 invalidate the subsequent registers. */
8327 if (HARD_REGISTER_NUM_P (out_regno))
8328 for (k = 1; k < out_nregs; k++)
8329 reg_last_reload_reg[out_regno + k]
8330 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8332 /* Now do the inverse operation. */
8333 for (k = 0; k < nregs; k++)
8335 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8336 reg_reloaded_contents[regno + k]
8337 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8338 ? out_regno
8339 : out_regno + k);
8340 reg_reloaded_insn[regno + k] = insn;
8341 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8342 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8343 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8344 regno + k);
8345 else
8346 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8347 regno + k);
8351 /* Maybe the spill reg contains a copy of reload_in. Only do
8352 something if there will not be an output reload for
8353 the register being reloaded. */
8354 else if (rld[r].out_reg == 0
8355 && rld[r].in != 0
8356 && ((REG_P (rld[r].in)
8357 && !HARD_REGISTER_P (rld[r].in)
8358 && !REGNO_REG_SET_P (&reg_has_output_reload,
8359 REGNO (rld[r].in)))
8360 || (REG_P (rld[r].in_reg)
8361 && !REGNO_REG_SET_P (&reg_has_output_reload,
8362 REGNO (rld[r].in_reg))))
8363 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8365 rtx reg;
8367 reg = reload_reg_rtx_for_input[r];
8368 if (reload_reg_rtx_reaches_end_p (reg, r))
8370 enum machine_mode mode;
8371 int regno;
8372 int nregs;
8373 int in_regno;
8374 int in_nregs;
8375 rtx in;
8376 bool piecemeal;
8378 mode = GET_MODE (reg);
8379 regno = REGNO (reg);
8380 nregs = hard_regno_nregs[regno][mode];
8381 if (REG_P (rld[r].in)
8382 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8383 in = rld[r].in;
8384 else if (REG_P (rld[r].in_reg))
8385 in = rld[r].in_reg;
8386 else
8387 in = XEXP (rld[r].in_reg, 0);
8388 in_regno = REGNO (in);
8390 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8391 : hard_regno_nregs[in_regno][mode]);
8393 reg_last_reload_reg[in_regno] = reg;
8395 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8396 && nregs == in_nregs
8397 && inherit_piecemeal_p (regno, in_regno, mode));
8399 if (HARD_REGISTER_NUM_P (in_regno))
8400 for (k = 1; k < in_nregs; k++)
8401 reg_last_reload_reg[in_regno + k]
8402 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8404 /* Unless we inherited this reload, show we haven't
8405 recently done a store.
8406 Previous stores of inherited auto_inc expressions
8407 also have to be discarded. */
8408 if (! reload_inherited[r]
8409 || (rld[r].out && ! rld[r].out_reg))
8410 spill_reg_store[regno] = 0;
8412 for (k = 0; k < nregs; k++)
8414 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8415 reg_reloaded_contents[regno + k]
8416 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8417 ? in_regno
8418 : in_regno + k);
8419 reg_reloaded_insn[regno + k] = insn;
8420 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8421 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8422 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8423 regno + k);
8424 else
8425 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8426 regno + k);
8432 /* The following if-statement was #if 0'd in 1.34 (or before...).
8433 It's reenabled in 1.35 because supposedly nothing else
8434 deals with this problem. */
8436 /* If a register gets output-reloaded from a non-spill register,
8437 that invalidates any previous reloaded copy of it.
8438 But forget_old_reloads_1 won't get to see it, because
8439 it thinks only about the original insn. So invalidate it here.
8440 Also do the same thing for RELOAD_OTHER constraints where the
8441 output is discarded. */
8442 if (i < 0
8443 && ((rld[r].out != 0
8444 && (REG_P (rld[r].out)
8445 || (MEM_P (rld[r].out)
8446 && REG_P (rld[r].out_reg))))
8447 || (rld[r].out == 0 && rld[r].out_reg
8448 && REG_P (rld[r].out_reg))))
8450 rtx out = ((rld[r].out && REG_P (rld[r].out))
8451 ? rld[r].out : rld[r].out_reg);
8452 int out_regno = REGNO (out);
8453 enum machine_mode mode = GET_MODE (out);
8455 /* REG_RTX is now set or clobbered by the main instruction.
8456 As the comment above explains, forget_old_reloads_1 only
8457 sees the original instruction, and there is no guarantee
8458 that the original instruction also clobbered REG_RTX.
8459 For example, if find_reloads sees that the input side of
8460 a matched operand pair dies in this instruction, it may
8461 use the input register as the reload register.
8463 Calling forget_old_reloads_1 is a waste of effort if
8464 REG_RTX is also the output register.
8466 If we know that REG_RTX holds the value of a pseudo
8467 register, the code after the call will record that fact. */
8468 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8469 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8471 if (!HARD_REGISTER_NUM_P (out_regno))
8473 rtx src_reg;
8474 rtx_insn *store_insn = NULL;
8476 reg_last_reload_reg[out_regno] = 0;
8478 /* If we can find a hard register that is stored, record
8479 the storing insn so that we may delete this insn with
8480 delete_output_reload. */
8481 src_reg = reload_reg_rtx_for_output[r];
8483 if (src_reg)
8485 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8486 store_insn = new_spill_reg_store[REGNO (src_reg)];
8487 else
8488 src_reg = NULL_RTX;
8490 else
8492 /* If this is an optional reload, try to find the
8493 source reg from an input reload. */
8494 rtx set = single_set (insn);
8495 if (set && SET_DEST (set) == rld[r].out)
8497 int k;
8499 src_reg = SET_SRC (set);
8500 store_insn = insn;
8501 for (k = 0; k < n_reloads; k++)
8503 if (rld[k].in == src_reg)
8505 src_reg = reload_reg_rtx_for_input[k];
8506 break;
8511 if (src_reg && REG_P (src_reg)
8512 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8514 int src_regno, src_nregs, k;
8515 rtx note;
8517 gcc_assert (GET_MODE (src_reg) == mode);
8518 src_regno = REGNO (src_reg);
8519 src_nregs = hard_regno_nregs[src_regno][mode];
8520 /* The place where to find a death note varies with
8521 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8522 necessarily checked exactly in the code that moves
8523 notes, so just check both locations. */
8524 note = find_regno_note (insn, REG_DEAD, src_regno);
8525 if (! note && store_insn)
8526 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8527 for (k = 0; k < src_nregs; k++)
8529 spill_reg_store[src_regno + k] = store_insn;
8530 spill_reg_stored_to[src_regno + k] = out;
8531 reg_reloaded_contents[src_regno + k] = out_regno;
8532 reg_reloaded_insn[src_regno + k] = store_insn;
8533 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8534 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8535 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8536 mode))
8537 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8538 src_regno + k);
8539 else
8540 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8541 src_regno + k);
8542 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8543 if (note)
8544 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8545 else
8546 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8548 reg_last_reload_reg[out_regno] = src_reg;
8549 /* We have to set reg_has_output_reload here, or else
8550 forget_old_reloads_1 will clear reg_last_reload_reg
8551 right away. */
8552 SET_REGNO_REG_SET (&reg_has_output_reload,
8553 out_regno);
8556 else
8558 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8560 for (k = 0; k < out_nregs; k++)
8561 reg_last_reload_reg[out_regno + k] = 0;
8565 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8568 /* Go through the motions to emit INSN and test if it is strictly valid.
8569 Return the emitted insn if valid, else return NULL. */
8571 static rtx_insn *
8572 emit_insn_if_valid_for_reload (rtx pat)
8574 rtx_insn *last = get_last_insn ();
8575 int code;
8577 rtx_insn *insn = emit_insn (pat);
8578 code = recog_memoized (insn);
8580 if (code >= 0)
8582 extract_insn (insn);
8583 /* We want constrain operands to treat this insn strictly in its
8584 validity determination, i.e., the way it would after reload has
8585 completed. */
8586 if (constrain_operands (1, get_enabled_alternatives (insn)))
8587 return insn;
8590 delete_insns_since (last);
8591 return NULL;
8594 /* Emit code to perform a reload from IN (which may be a reload register) to
8595 OUT (which may also be a reload register). IN or OUT is from operand
8596 OPNUM with reload type TYPE.
8598 Returns first insn emitted. */
8600 static rtx_insn *
8601 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8603 rtx_insn *last = get_last_insn ();
8604 rtx_insn *tem;
8605 #ifdef SECONDARY_MEMORY_NEEDED
8606 rtx tem1, tem2;
8607 #endif
8609 /* If IN is a paradoxical SUBREG, remove it and try to put the
8610 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8611 if (!strip_paradoxical_subreg (&in, &out))
8612 strip_paradoxical_subreg (&out, &in);
8614 /* How to do this reload can get quite tricky. Normally, we are being
8615 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8616 register that didn't get a hard register. In that case we can just
8617 call emit_move_insn.
8619 We can also be asked to reload a PLUS that adds a register or a MEM to
8620 another register, constant or MEM. This can occur during frame pointer
8621 elimination and while reloading addresses. This case is handled by
8622 trying to emit a single insn to perform the add. If it is not valid,
8623 we use a two insn sequence.
8625 Or we can be asked to reload an unary operand that was a fragment of
8626 an addressing mode, into a register. If it isn't recognized as-is,
8627 we try making the unop operand and the reload-register the same:
8628 (set reg:X (unop:X expr:Y))
8629 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8631 Finally, we could be called to handle an 'o' constraint by putting
8632 an address into a register. In that case, we first try to do this
8633 with a named pattern of "reload_load_address". If no such pattern
8634 exists, we just emit a SET insn and hope for the best (it will normally
8635 be valid on machines that use 'o').
8637 This entire process is made complex because reload will never
8638 process the insns we generate here and so we must ensure that
8639 they will fit their constraints and also by the fact that parts of
8640 IN might be being reloaded separately and replaced with spill registers.
8641 Because of this, we are, in some sense, just guessing the right approach
8642 here. The one listed above seems to work.
8644 ??? At some point, this whole thing needs to be rethought. */
8646 if (GET_CODE (in) == PLUS
8647 && (REG_P (XEXP (in, 0))
8648 || GET_CODE (XEXP (in, 0)) == SUBREG
8649 || MEM_P (XEXP (in, 0)))
8650 && (REG_P (XEXP (in, 1))
8651 || GET_CODE (XEXP (in, 1)) == SUBREG
8652 || CONSTANT_P (XEXP (in, 1))
8653 || MEM_P (XEXP (in, 1))))
8655 /* We need to compute the sum of a register or a MEM and another
8656 register, constant, or MEM, and put it into the reload
8657 register. The best possible way of doing this is if the machine
8658 has a three-operand ADD insn that accepts the required operands.
8660 The simplest approach is to try to generate such an insn and see if it
8661 is recognized and matches its constraints. If so, it can be used.
8663 It might be better not to actually emit the insn unless it is valid,
8664 but we need to pass the insn as an operand to `recog' and
8665 `extract_insn' and it is simpler to emit and then delete the insn if
8666 not valid than to dummy things up. */
8668 rtx op0, op1, tem;
8669 rtx_insn *insn;
8670 enum insn_code code;
8672 op0 = find_replacement (&XEXP (in, 0));
8673 op1 = find_replacement (&XEXP (in, 1));
8675 /* Since constraint checking is strict, commutativity won't be
8676 checked, so we need to do that here to avoid spurious failure
8677 if the add instruction is two-address and the second operand
8678 of the add is the same as the reload reg, which is frequently
8679 the case. If the insn would be A = B + A, rearrange it so
8680 it will be A = A + B as constrain_operands expects. */
8682 if (REG_P (XEXP (in, 1))
8683 && REGNO (out) == REGNO (XEXP (in, 1)))
8684 tem = op0, op0 = op1, op1 = tem;
8686 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8687 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8689 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8690 if (insn)
8691 return insn;
8693 /* If that failed, we must use a conservative two-insn sequence.
8695 Use a move to copy one operand into the reload register. Prefer
8696 to reload a constant, MEM or pseudo since the move patterns can
8697 handle an arbitrary operand. If OP1 is not a constant, MEM or
8698 pseudo and OP1 is not a valid operand for an add instruction, then
8699 reload OP1.
8701 After reloading one of the operands into the reload register, add
8702 the reload register to the output register.
8704 If there is another way to do this for a specific machine, a
8705 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8706 we emit below. */
8708 code = optab_handler (add_optab, GET_MODE (out));
8710 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8711 || (REG_P (op1)
8712 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8713 || (code != CODE_FOR_nothing
8714 && !insn_operand_matches (code, 2, op1)))
8715 tem = op0, op0 = op1, op1 = tem;
8717 gen_reload (out, op0, opnum, type);
8719 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8720 This fixes a problem on the 32K where the stack pointer cannot
8721 be used as an operand of an add insn. */
8723 if (rtx_equal_p (op0, op1))
8724 op1 = out;
8726 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8727 if (insn)
8729 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8730 set_dst_reg_note (insn, REG_EQUIV, in, out);
8731 return insn;
8734 /* If that failed, copy the address register to the reload register.
8735 Then add the constant to the reload register. */
8737 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8738 gen_reload (out, op1, opnum, type);
8739 insn = emit_insn (gen_add2_insn (out, op0));
8740 set_dst_reg_note (insn, REG_EQUIV, in, out);
8743 #ifdef SECONDARY_MEMORY_NEEDED
8744 /* If we need a memory location to do the move, do it that way. */
8745 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8746 (REG_P (tem1) && REG_P (tem2)))
8747 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8748 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8749 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem1)),
8750 REGNO_REG_CLASS (REGNO (tem2)),
8751 GET_MODE (out)))
8753 /* Get the memory to use and rewrite both registers to its mode. */
8754 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8756 if (GET_MODE (loc) != GET_MODE (out))
8757 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8759 if (GET_MODE (loc) != GET_MODE (in))
8760 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8762 gen_reload (loc, in, opnum, type);
8763 gen_reload (out, loc, opnum, type);
8765 #endif
8766 else if (REG_P (out) && UNARY_P (in))
8768 rtx insn;
8769 rtx op1;
8770 rtx out_moded;
8771 rtx_insn *set;
8773 op1 = find_replacement (&XEXP (in, 0));
8774 if (op1 != XEXP (in, 0))
8775 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8777 /* First, try a plain SET. */
8778 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8779 if (set)
8780 return set;
8782 /* If that failed, move the inner operand to the reload
8783 register, and try the same unop with the inner expression
8784 replaced with the reload register. */
8786 if (GET_MODE (op1) != GET_MODE (out))
8787 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8788 else
8789 out_moded = out;
8791 gen_reload (out_moded, op1, opnum, type);
8793 insn
8794 = gen_rtx_SET (VOIDmode, out,
8795 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8796 out_moded));
8797 insn = emit_insn_if_valid_for_reload (insn);
8798 if (insn)
8800 set_unique_reg_note (insn, REG_EQUIV, in);
8801 return as_a <rtx_insn *> (insn);
8804 fatal_insn ("failure trying to reload:", set);
8806 /* If IN is a simple operand, use gen_move_insn. */
8807 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8809 tem = emit_insn (gen_move_insn (out, in));
8810 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8811 mark_jump_label (in, tem, 0);
8814 #ifdef HAVE_reload_load_address
8815 else if (HAVE_reload_load_address)
8816 emit_insn (gen_reload_load_address (out, in));
8817 #endif
8819 /* Otherwise, just write (set OUT IN) and hope for the best. */
8820 else
8821 emit_insn (gen_rtx_SET (VOIDmode, out, in));
8823 /* Return the first insn emitted.
8824 We can not just return get_last_insn, because there may have
8825 been multiple instructions emitted. Also note that gen_move_insn may
8826 emit more than one insn itself, so we can not assume that there is one
8827 insn emitted per emit_insn_before call. */
8829 return last ? NEXT_INSN (last) : get_insns ();
8832 /* Delete a previously made output-reload whose result we now believe
8833 is not needed. First we double-check.
8835 INSN is the insn now being processed.
8836 LAST_RELOAD_REG is the hard register number for which we want to delete
8837 the last output reload.
8838 J is the reload-number that originally used REG. The caller has made
8839 certain that reload J doesn't use REG any longer for input.
8840 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8842 static void
8843 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8844 rtx new_reload_reg)
8846 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8847 rtx reg = spill_reg_stored_to[last_reload_reg];
8848 int k;
8849 int n_occurrences;
8850 int n_inherited = 0;
8851 rtx substed;
8852 unsigned regno;
8853 int nregs;
8855 /* It is possible that this reload has been only used to set another reload
8856 we eliminated earlier and thus deleted this instruction too. */
8857 if (output_reload_insn->deleted ())
8858 return;
8860 /* Get the raw pseudo-register referred to. */
8862 while (GET_CODE (reg) == SUBREG)
8863 reg = SUBREG_REG (reg);
8864 substed = reg_equiv_memory_loc (REGNO (reg));
8866 /* This is unsafe if the operand occurs more often in the current
8867 insn than it is inherited. */
8868 for (k = n_reloads - 1; k >= 0; k--)
8870 rtx reg2 = rld[k].in;
8871 if (! reg2)
8872 continue;
8873 if (MEM_P (reg2) || reload_override_in[k])
8874 reg2 = rld[k].in_reg;
8875 #ifdef AUTO_INC_DEC
8876 if (rld[k].out && ! rld[k].out_reg)
8877 reg2 = XEXP (rld[k].in_reg, 0);
8878 #endif
8879 while (GET_CODE (reg2) == SUBREG)
8880 reg2 = SUBREG_REG (reg2);
8881 if (rtx_equal_p (reg2, reg))
8883 if (reload_inherited[k] || reload_override_in[k] || k == j)
8884 n_inherited++;
8885 else
8886 return;
8889 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8890 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8891 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8892 reg, 0);
8893 if (substed)
8894 n_occurrences += count_occurrences (PATTERN (insn),
8895 eliminate_regs (substed, VOIDmode,
8896 NULL_RTX), 0);
8897 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8899 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8900 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8902 if (n_occurrences > n_inherited)
8903 return;
8905 regno = REGNO (reg);
8906 if (regno >= FIRST_PSEUDO_REGISTER)
8907 nregs = 1;
8908 else
8909 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8911 /* If the pseudo-reg we are reloading is no longer referenced
8912 anywhere between the store into it and here,
8913 and we're within the same basic block, then the value can only
8914 pass through the reload reg and end up here.
8915 Otherwise, give up--return. */
8916 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8917 i1 != insn; i1 = NEXT_INSN (i1))
8919 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8920 return;
8921 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8922 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8924 /* If this is USE in front of INSN, we only have to check that
8925 there are no more references than accounted for by inheritance. */
8926 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8928 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8929 i1 = NEXT_INSN (i1);
8931 if (n_occurrences <= n_inherited && i1 == insn)
8932 break;
8933 return;
8937 /* We will be deleting the insn. Remove the spill reg information. */
8938 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8940 spill_reg_store[last_reload_reg + k] = 0;
8941 spill_reg_stored_to[last_reload_reg + k] = 0;
8944 /* The caller has already checked that REG dies or is set in INSN.
8945 It has also checked that we are optimizing, and thus some
8946 inaccuracies in the debugging information are acceptable.
8947 So we could just delete output_reload_insn. But in some cases
8948 we can improve the debugging information without sacrificing
8949 optimization - maybe even improving the code: See if the pseudo
8950 reg has been completely replaced with reload regs. If so, delete
8951 the store insn and forget we had a stack slot for the pseudo. */
8952 if (rld[j].out != rld[j].in
8953 && REG_N_DEATHS (REGNO (reg)) == 1
8954 && REG_N_SETS (REGNO (reg)) == 1
8955 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8956 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8958 rtx_insn *i2;
8960 /* We know that it was used only between here and the beginning of
8961 the current basic block. (We also know that the last use before
8962 INSN was the output reload we are thinking of deleting, but never
8963 mind that.) Search that range; see if any ref remains. */
8964 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8966 rtx set = single_set (i2);
8968 /* Uses which just store in the pseudo don't count,
8969 since if they are the only uses, they are dead. */
8970 if (set != 0 && SET_DEST (set) == reg)
8971 continue;
8972 if (LABEL_P (i2) || JUMP_P (i2))
8973 break;
8974 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8975 && reg_mentioned_p (reg, PATTERN (i2)))
8977 /* Some other ref remains; just delete the output reload we
8978 know to be dead. */
8979 delete_address_reloads (output_reload_insn, insn);
8980 delete_insn (output_reload_insn);
8981 return;
8985 /* Delete the now-dead stores into this pseudo. Note that this
8986 loop also takes care of deleting output_reload_insn. */
8987 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8989 rtx set = single_set (i2);
8991 if (set != 0 && SET_DEST (set) == reg)
8993 delete_address_reloads (i2, insn);
8994 delete_insn (i2);
8996 if (LABEL_P (i2) || JUMP_P (i2))
8997 break;
9000 /* For the debugging info, say the pseudo lives in this reload reg. */
9001 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
9002 if (ira_conflicts_p)
9003 /* Inform IRA about the change. */
9004 ira_mark_allocation_change (REGNO (reg));
9005 alter_reg (REGNO (reg), -1, false);
9007 else
9009 delete_address_reloads (output_reload_insn, insn);
9010 delete_insn (output_reload_insn);
9014 /* We are going to delete DEAD_INSN. Recursively delete loads of
9015 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
9016 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
9017 static void
9018 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
9020 rtx set = single_set (dead_insn);
9021 rtx set2, dst;
9022 rtx_insn *prev, *next;
9023 if (set)
9025 rtx dst = SET_DEST (set);
9026 if (MEM_P (dst))
9027 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
9029 /* If we deleted the store from a reloaded post_{in,de}c expression,
9030 we can delete the matching adds. */
9031 prev = PREV_INSN (dead_insn);
9032 next = NEXT_INSN (dead_insn);
9033 if (! prev || ! next)
9034 return;
9035 set = single_set (next);
9036 set2 = single_set (prev);
9037 if (! set || ! set2
9038 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
9039 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
9040 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
9041 return;
9042 dst = SET_DEST (set);
9043 if (! rtx_equal_p (dst, SET_DEST (set2))
9044 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
9045 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
9046 || (INTVAL (XEXP (SET_SRC (set), 1))
9047 != -INTVAL (XEXP (SET_SRC (set2), 1))))
9048 return;
9049 delete_related_insns (prev);
9050 delete_related_insns (next);
9053 /* Subfunction of delete_address_reloads: process registers found in X. */
9054 static void
9055 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
9057 rtx_insn *prev, *i2;
9058 rtx set, dst;
9059 int i, j;
9060 enum rtx_code code = GET_CODE (x);
9062 if (code != REG)
9064 const char *fmt = GET_RTX_FORMAT (code);
9065 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9067 if (fmt[i] == 'e')
9068 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
9069 else if (fmt[i] == 'E')
9071 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9072 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
9073 current_insn);
9076 return;
9079 if (spill_reg_order[REGNO (x)] < 0)
9080 return;
9082 /* Scan backwards for the insn that sets x. This might be a way back due
9083 to inheritance. */
9084 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
9086 code = GET_CODE (prev);
9087 if (code == CODE_LABEL || code == JUMP_INSN)
9088 return;
9089 if (!INSN_P (prev))
9090 continue;
9091 if (reg_set_p (x, PATTERN (prev)))
9092 break;
9093 if (reg_referenced_p (x, PATTERN (prev)))
9094 return;
9096 if (! prev || INSN_UID (prev) < reload_first_uid)
9097 return;
9098 /* Check that PREV only sets the reload register. */
9099 set = single_set (prev);
9100 if (! set)
9101 return;
9102 dst = SET_DEST (set);
9103 if (!REG_P (dst)
9104 || ! rtx_equal_p (dst, x))
9105 return;
9106 if (! reg_set_p (dst, PATTERN (dead_insn)))
9108 /* Check if DST was used in a later insn -
9109 it might have been inherited. */
9110 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9112 if (LABEL_P (i2))
9113 break;
9114 if (! INSN_P (i2))
9115 continue;
9116 if (reg_referenced_p (dst, PATTERN (i2)))
9118 /* If there is a reference to the register in the current insn,
9119 it might be loaded in a non-inherited reload. If no other
9120 reload uses it, that means the register is set before
9121 referenced. */
9122 if (i2 == current_insn)
9124 for (j = n_reloads - 1; j >= 0; j--)
9125 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9126 || reload_override_in[j] == dst)
9127 return;
9128 for (j = n_reloads - 1; j >= 0; j--)
9129 if (rld[j].in && rld[j].reg_rtx == dst)
9130 break;
9131 if (j >= 0)
9132 break;
9134 return;
9136 if (JUMP_P (i2))
9137 break;
9138 /* If DST is still live at CURRENT_INSN, check if it is used for
9139 any reload. Note that even if CURRENT_INSN sets DST, we still
9140 have to check the reloads. */
9141 if (i2 == current_insn)
9143 for (j = n_reloads - 1; j >= 0; j--)
9144 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9145 || reload_override_in[j] == dst)
9146 return;
9147 /* ??? We can't finish the loop here, because dst might be
9148 allocated to a pseudo in this block if no reload in this
9149 block needs any of the classes containing DST - see
9150 spill_hard_reg. There is no easy way to tell this, so we
9151 have to scan till the end of the basic block. */
9153 if (reg_set_p (dst, PATTERN (i2)))
9154 break;
9157 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9158 reg_reloaded_contents[REGNO (dst)] = -1;
9159 delete_insn (prev);
9162 /* Output reload-insns to reload VALUE into RELOADREG.
9163 VALUE is an autoincrement or autodecrement RTX whose operand
9164 is a register or memory location;
9165 so reloading involves incrementing that location.
9166 IN is either identical to VALUE, or some cheaper place to reload from.
9168 INC_AMOUNT is the number to increment or decrement by (always positive).
9169 This cannot be deduced from VALUE. */
9171 static void
9172 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9174 /* REG or MEM to be copied and incremented. */
9175 rtx incloc = find_replacement (&XEXP (value, 0));
9176 /* Nonzero if increment after copying. */
9177 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9178 || GET_CODE (value) == POST_MODIFY);
9179 rtx_insn *last;
9180 rtx inc;
9181 rtx_insn *add_insn;
9182 int code;
9183 rtx real_in = in == value ? incloc : in;
9185 /* No hard register is equivalent to this register after
9186 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9187 we could inc/dec that register as well (maybe even using it for
9188 the source), but I'm not sure it's worth worrying about. */
9189 if (REG_P (incloc))
9190 reg_last_reload_reg[REGNO (incloc)] = 0;
9192 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9194 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9195 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9197 else
9199 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9200 inc_amount = -inc_amount;
9202 inc = GEN_INT (inc_amount);
9205 /* If this is post-increment, first copy the location to the reload reg. */
9206 if (post && real_in != reloadreg)
9207 emit_insn (gen_move_insn (reloadreg, real_in));
9209 if (in == value)
9211 /* See if we can directly increment INCLOC. Use a method similar to
9212 that in gen_reload. */
9214 last = get_last_insn ();
9215 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
9216 gen_rtx_PLUS (GET_MODE (incloc),
9217 incloc, inc)));
9219 code = recog_memoized (add_insn);
9220 if (code >= 0)
9222 extract_insn (add_insn);
9223 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9225 /* If this is a pre-increment and we have incremented the value
9226 where it lives, copy the incremented value to RELOADREG to
9227 be used as an address. */
9229 if (! post)
9230 emit_insn (gen_move_insn (reloadreg, incloc));
9231 return;
9234 delete_insns_since (last);
9237 /* If couldn't do the increment directly, must increment in RELOADREG.
9238 The way we do this depends on whether this is pre- or post-increment.
9239 For pre-increment, copy INCLOC to the reload register, increment it
9240 there, then save back. */
9242 if (! post)
9244 if (in != reloadreg)
9245 emit_insn (gen_move_insn (reloadreg, real_in));
9246 emit_insn (gen_add2_insn (reloadreg, inc));
9247 emit_insn (gen_move_insn (incloc, reloadreg));
9249 else
9251 /* Postincrement.
9252 Because this might be a jump insn or a compare, and because RELOADREG
9253 may not be available after the insn in an input reload, we must do
9254 the incrementation before the insn being reloaded for.
9256 We have already copied IN to RELOADREG. Increment the copy in
9257 RELOADREG, save that back, then decrement RELOADREG so it has
9258 the original value. */
9260 emit_insn (gen_add2_insn (reloadreg, inc));
9261 emit_insn (gen_move_insn (incloc, reloadreg));
9262 if (CONST_INT_P (inc))
9263 emit_insn (gen_add2_insn (reloadreg,
9264 gen_int_mode (-INTVAL (inc),
9265 GET_MODE (reloadreg))));
9266 else
9267 emit_insn (gen_sub2_insn (reloadreg, inc));
9271 #ifdef AUTO_INC_DEC
9272 static void
9273 add_auto_inc_notes (rtx_insn *insn, rtx x)
9275 enum rtx_code code = GET_CODE (x);
9276 const char *fmt;
9277 int i, j;
9279 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9281 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9282 return;
9285 /* Scan all the operand sub-expressions. */
9286 fmt = GET_RTX_FORMAT (code);
9287 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9289 if (fmt[i] == 'e')
9290 add_auto_inc_notes (insn, XEXP (x, i));
9291 else if (fmt[i] == 'E')
9292 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9293 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9296 #endif